xref: /linux/drivers/net/wireless/ath/ath9k/hw.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
25 
26 #include "hw.h"
27 #include "hw-ops.h"
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
31 #include "ath9k.h"
32 
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34 
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39 
40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
41 {
42 	struct ath_common *common = ath9k_hw_common(ah);
43 	struct ath9k_channel *chan = ah->curchan;
44 	unsigned int clockrate;
45 
46 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 		clockrate = 117;
49 	else if (!chan) /* should really check for CCK instead */
50 		clockrate = ATH9K_CLOCK_RATE_CCK;
51 	else if (IS_CHAN_2GHZ(chan))
52 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 	else
56 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
57 
58 	if (chan) {
59 		if (IS_CHAN_HT40(chan))
60 			clockrate *= 2;
61 		if (IS_CHAN_HALF_RATE(chan))
62 			clockrate /= 2;
63 		if (IS_CHAN_QUARTER_RATE(chan))
64 			clockrate /= 4;
65 	}
66 
67 	common->clockrate = clockrate;
68 }
69 
70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
71 {
72 	struct ath_common *common = ath9k_hw_common(ah);
73 
74 	return usecs * common->clockrate;
75 }
76 
77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 	int i;
80 
81 	BUG_ON(timeout < AH_TIME_QUANTUM);
82 
83 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 		if ((REG_READ(ah, reg) & mask) == val)
85 			return true;
86 
87 		udelay(AH_TIME_QUANTUM);
88 	}
89 
90 	ath_dbg(ath9k_hw_common(ah), ANY,
91 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 		timeout, reg, REG_READ(ah, reg), mask, val);
93 
94 	return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97 
98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 			  int hw_delay)
100 {
101 	hw_delay /= 10;
102 
103 	if (IS_CHAN_HALF_RATE(chan))
104 		hw_delay *= 2;
105 	else if (IS_CHAN_QUARTER_RATE(chan))
106 		hw_delay *= 4;
107 
108 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
109 }
110 
111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 			  int column, unsigned int *writecnt)
113 {
114 	int r;
115 
116 	ENABLE_REGWRITE_BUFFER(ah);
117 	for (r = 0; r < array->ia_rows; r++) {
118 		REG_WRITE(ah, INI_RA(array, r, 0),
119 			  INI_RA(array, r, column));
120 		DO_DELAY(*writecnt);
121 	}
122 	REGWRITE_BUFFER_FLUSH(ah);
123 }
124 
125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
126 {
127 	u32 *tmp_reg_list, *tmp_data;
128 	int i;
129 
130 	tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL);
131 	if (!tmp_reg_list) {
132 		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
133 		return;
134 	}
135 
136 	tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL);
137 	if (!tmp_data) {
138 		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
139 		goto error_tmp_data;
140 	}
141 
142 	for (i = 0; i < size; i++)
143 		tmp_reg_list[i] = array[i][0];
144 
145 	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
146 
147 	for (i = 0; i < size; i++)
148 		array[i][1] = tmp_data[i];
149 
150 	kfree(tmp_data);
151 error_tmp_data:
152 	kfree(tmp_reg_list);
153 }
154 
155 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
156 {
157 	u32 retval;
158 	int i;
159 
160 	for (i = 0, retval = 0; i < n; i++) {
161 		retval = (retval << 1) | (val & 1);
162 		val >>= 1;
163 	}
164 	return retval;
165 }
166 
167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168 			   u8 phy, int kbps,
169 			   u32 frameLen, u16 rateix,
170 			   bool shortPreamble)
171 {
172 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173 
174 	if (kbps == 0)
175 		return 0;
176 
177 	switch (phy) {
178 	case WLAN_RC_PHY_CCK:
179 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
180 		if (shortPreamble)
181 			phyTime >>= 1;
182 		numBits = frameLen << 3;
183 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
184 		break;
185 	case WLAN_RC_PHY_OFDM:
186 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
187 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
188 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
189 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190 			txTime = OFDM_SIFS_TIME_QUARTER
191 				+ OFDM_PREAMBLE_TIME_QUARTER
192 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
193 		} else if (ah->curchan &&
194 			   IS_CHAN_HALF_RATE(ah->curchan)) {
195 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
196 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
197 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
198 			txTime = OFDM_SIFS_TIME_HALF +
199 				OFDM_PREAMBLE_TIME_HALF
200 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
201 		} else {
202 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
203 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
204 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
205 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
206 				+ (numSymbols * OFDM_SYMBOL_TIME);
207 		}
208 		break;
209 	default:
210 		ath_err(ath9k_hw_common(ah),
211 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
212 		txTime = 0;
213 		break;
214 	}
215 
216 	return txTime;
217 }
218 EXPORT_SYMBOL(ath9k_hw_computetxtime);
219 
220 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
221 				  struct ath9k_channel *chan,
222 				  struct chan_centers *centers)
223 {
224 	int8_t extoff;
225 
226 	if (!IS_CHAN_HT40(chan)) {
227 		centers->ctl_center = centers->ext_center =
228 			centers->synth_center = chan->channel;
229 		return;
230 	}
231 
232 	if (IS_CHAN_HT40PLUS(chan)) {
233 		centers->synth_center =
234 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
235 		extoff = 1;
236 	} else {
237 		centers->synth_center =
238 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
239 		extoff = -1;
240 	}
241 
242 	centers->ctl_center =
243 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
244 	/* 25 MHz spacing is supported by hw but not on upper layers */
245 	centers->ext_center =
246 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
247 }
248 
249 /******************/
250 /* Chip Revisions */
251 /******************/
252 
253 static void ath9k_hw_read_revisions(struct ath_hw *ah)
254 {
255 	u32 val;
256 
257 	if (ah->get_mac_revision)
258 		ah->hw_version.macRev = ah->get_mac_revision();
259 
260 	switch (ah->hw_version.devid) {
261 	case AR5416_AR9100_DEVID:
262 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263 		break;
264 	case AR9300_DEVID_AR9330:
265 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266 		if (!ah->get_mac_revision) {
267 			val = REG_READ(ah, AR_SREV);
268 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269 		}
270 		return;
271 	case AR9300_DEVID_AR9340:
272 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
273 		return;
274 	case AR9300_DEVID_QCA955X:
275 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
276 		return;
277 	case AR9300_DEVID_AR953X:
278 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
279 		return;
280 	case AR9300_DEVID_QCA956X:
281 		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
282 	}
283 
284 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
285 
286 	if (val == 0xFF) {
287 		val = REG_READ(ah, AR_SREV);
288 		ah->hw_version.macVersion =
289 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
290 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
291 
292 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
293 			ah->is_pciexpress = true;
294 		else
295 			ah->is_pciexpress = (val &
296 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
297 	} else {
298 		if (!AR_SREV_9100(ah))
299 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
300 
301 		ah->hw_version.macRev = val & AR_SREV_REVISION;
302 
303 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
304 			ah->is_pciexpress = true;
305 	}
306 }
307 
308 /************************************/
309 /* HW Attach, Detach, Init Routines */
310 /************************************/
311 
312 static void ath9k_hw_disablepcie(struct ath_hw *ah)
313 {
314 	if (!AR_SREV_5416(ah))
315 		return;
316 
317 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
318 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
319 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
320 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
321 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
322 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
323 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
324 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
325 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
326 
327 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
328 }
329 
330 /* This should work for all families including legacy */
331 static bool ath9k_hw_chip_test(struct ath_hw *ah)
332 {
333 	struct ath_common *common = ath9k_hw_common(ah);
334 	u32 regAddr[2] = { AR_STA_ID0 };
335 	u32 regHold[2];
336 	static const u32 patternData[4] = {
337 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
338 	};
339 	int i, j, loop_max;
340 
341 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
342 		loop_max = 2;
343 		regAddr[1] = AR_PHY_BASE + (8 << 2);
344 	} else
345 		loop_max = 1;
346 
347 	for (i = 0; i < loop_max; i++) {
348 		u32 addr = regAddr[i];
349 		u32 wrData, rdData;
350 
351 		regHold[i] = REG_READ(ah, addr);
352 		for (j = 0; j < 0x100; j++) {
353 			wrData = (j << 16) | j;
354 			REG_WRITE(ah, addr, wrData);
355 			rdData = REG_READ(ah, addr);
356 			if (rdData != wrData) {
357 				ath_err(common,
358 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
359 					addr, wrData, rdData);
360 				return false;
361 			}
362 		}
363 		for (j = 0; j < 4; j++) {
364 			wrData = patternData[j];
365 			REG_WRITE(ah, addr, wrData);
366 			rdData = REG_READ(ah, addr);
367 			if (wrData != rdData) {
368 				ath_err(common,
369 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
370 					addr, wrData, rdData);
371 				return false;
372 			}
373 		}
374 		REG_WRITE(ah, regAddr[i], regHold[i]);
375 	}
376 	udelay(100);
377 
378 	return true;
379 }
380 
381 static void ath9k_hw_init_config(struct ath_hw *ah)
382 {
383 	struct ath_common *common = ath9k_hw_common(ah);
384 
385 	ah->config.dma_beacon_response_time = 1;
386 	ah->config.sw_beacon_response_time = 6;
387 	ah->config.cwm_ignore_extcca = 0;
388 	ah->config.analog_shiftreg = 1;
389 
390 	ah->config.rx_intr_mitigation = true;
391 
392 	if (AR_SREV_9300_20_OR_LATER(ah)) {
393 		ah->config.rimt_last = 500;
394 		ah->config.rimt_first = 2000;
395 	} else {
396 		ah->config.rimt_last = 250;
397 		ah->config.rimt_first = 700;
398 	}
399 
400 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
401 		ah->config.pll_pwrsave = 7;
402 
403 	/*
404 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
405 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
406 	 * This means we use it for all AR5416 devices, and the few
407 	 * minor PCI AR9280 devices out there.
408 	 *
409 	 * Serialization is required because these devices do not handle
410 	 * well the case of two concurrent reads/writes due to the latency
411 	 * involved. During one read/write another read/write can be issued
412 	 * on another CPU while the previous read/write may still be working
413 	 * on our hardware, if we hit this case the hardware poops in a loop.
414 	 * We prevent this by serializing reads and writes.
415 	 *
416 	 * This issue is not present on PCI-Express devices or pre-AR5416
417 	 * devices (legacy, 802.11abg).
418 	 */
419 	if (num_possible_cpus() > 1)
420 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
421 
422 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
423 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
424 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
425 		     !ah->is_pciexpress)) {
426 			ah->config.serialize_regmode = SER_REG_MODE_ON;
427 		} else {
428 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
429 		}
430 	}
431 
432 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
433 		ah->config.serialize_regmode);
434 
435 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
436 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
437 	else
438 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
439 }
440 
441 static void ath9k_hw_init_defaults(struct ath_hw *ah)
442 {
443 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
444 
445 	regulatory->country_code = CTRY_DEFAULT;
446 	regulatory->power_limit = MAX_RATE_POWER;
447 
448 	ah->hw_version.magic = AR5416_MAGIC;
449 	ah->hw_version.subvendorid = 0;
450 
451 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
452 			       AR_STA_ID1_MCAST_KSRCH;
453 	if (AR_SREV_9100(ah))
454 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
455 
456 	ah->slottime = ATH9K_SLOT_TIME_9;
457 	ah->globaltxtimeout = (u32) -1;
458 	ah->power_mode = ATH9K_PM_UNDEFINED;
459 	ah->htc_reset_init = true;
460 
461 	ah->tpc_enabled = false;
462 
463 	ah->ani_function = ATH9K_ANI_ALL;
464 	if (!AR_SREV_9300_20_OR_LATER(ah))
465 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
466 
467 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
468 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
469 	else
470 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
471 }
472 
473 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
474 {
475 	struct ath_common *common = ath9k_hw_common(ah);
476 	u32 sum;
477 	int i;
478 	u16 eeval;
479 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
480 
481 	sum = 0;
482 	for (i = 0; i < 3; i++) {
483 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
484 		sum += eeval;
485 		common->macaddr[2 * i] = eeval >> 8;
486 		common->macaddr[2 * i + 1] = eeval & 0xff;
487 	}
488 	if (!is_valid_ether_addr(common->macaddr)) {
489 		ath_err(common,
490 			"eeprom contains invalid mac address: %pM\n",
491 			common->macaddr);
492 
493 		random_ether_addr(common->macaddr);
494 		ath_err(common,
495 			"random mac address will be used: %pM\n",
496 			common->macaddr);
497 	}
498 
499 	return 0;
500 }
501 
502 static int ath9k_hw_post_init(struct ath_hw *ah)
503 {
504 	struct ath_common *common = ath9k_hw_common(ah);
505 	int ecode;
506 
507 	if (common->bus_ops->ath_bus_type != ATH_USB) {
508 		if (!ath9k_hw_chip_test(ah))
509 			return -ENODEV;
510 	}
511 
512 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
513 		ecode = ar9002_hw_rf_claim(ah);
514 		if (ecode != 0)
515 			return ecode;
516 	}
517 
518 	ecode = ath9k_hw_eeprom_init(ah);
519 	if (ecode != 0)
520 		return ecode;
521 
522 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
523 		ah->eep_ops->get_eeprom_ver(ah),
524 		ah->eep_ops->get_eeprom_rev(ah));
525 
526 	ath9k_hw_ani_init(ah);
527 
528 	/*
529 	 * EEPROM needs to be initialized before we do this.
530 	 * This is required for regulatory compliance.
531 	 */
532 	if (AR_SREV_9300_20_OR_LATER(ah)) {
533 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
534 		if ((regdmn & 0xF0) == CTL_FCC) {
535 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
536 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
537 		}
538 	}
539 
540 	return 0;
541 }
542 
543 static int ath9k_hw_attach_ops(struct ath_hw *ah)
544 {
545 	if (!AR_SREV_9300_20_OR_LATER(ah))
546 		return ar9002_hw_attach_ops(ah);
547 
548 	ar9003_hw_attach_ops(ah);
549 	return 0;
550 }
551 
552 /* Called for all hardware families */
553 static int __ath9k_hw_init(struct ath_hw *ah)
554 {
555 	struct ath_common *common = ath9k_hw_common(ah);
556 	int r = 0;
557 
558 	ath9k_hw_read_revisions(ah);
559 
560 	switch (ah->hw_version.macVersion) {
561 	case AR_SREV_VERSION_5416_PCI:
562 	case AR_SREV_VERSION_5416_PCIE:
563 	case AR_SREV_VERSION_9160:
564 	case AR_SREV_VERSION_9100:
565 	case AR_SREV_VERSION_9280:
566 	case AR_SREV_VERSION_9285:
567 	case AR_SREV_VERSION_9287:
568 	case AR_SREV_VERSION_9271:
569 	case AR_SREV_VERSION_9300:
570 	case AR_SREV_VERSION_9330:
571 	case AR_SREV_VERSION_9485:
572 	case AR_SREV_VERSION_9340:
573 	case AR_SREV_VERSION_9462:
574 	case AR_SREV_VERSION_9550:
575 	case AR_SREV_VERSION_9565:
576 	case AR_SREV_VERSION_9531:
577 	case AR_SREV_VERSION_9561:
578 		break;
579 	default:
580 		ath_err(common,
581 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
582 			ah->hw_version.macVersion, ah->hw_version.macRev);
583 		return -EOPNOTSUPP;
584 	}
585 
586 	/*
587 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
588 	 * We need to do this to avoid RMW of this register. We cannot
589 	 * read the reg when chip is asleep.
590 	 */
591 	if (AR_SREV_9300_20_OR_LATER(ah)) {
592 		ah->WARegVal = REG_READ(ah, AR_WA);
593 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
594 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
595 	}
596 
597 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
598 		ath_err(common, "Couldn't reset chip\n");
599 		return -EIO;
600 	}
601 
602 	if (AR_SREV_9565(ah)) {
603 		ah->WARegVal |= AR_WA_BIT22;
604 		REG_WRITE(ah, AR_WA, ah->WARegVal);
605 	}
606 
607 	ath9k_hw_init_defaults(ah);
608 	ath9k_hw_init_config(ah);
609 
610 	r = ath9k_hw_attach_ops(ah);
611 	if (r)
612 		return r;
613 
614 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
615 		ath_err(common, "Couldn't wakeup chip\n");
616 		return -EIO;
617 	}
618 
619 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
620 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
621 		ah->is_pciexpress = false;
622 
623 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
624 	ath9k_hw_init_cal_settings(ah);
625 
626 	if (!ah->is_pciexpress)
627 		ath9k_hw_disablepcie(ah);
628 
629 	r = ath9k_hw_post_init(ah);
630 	if (r)
631 		return r;
632 
633 	ath9k_hw_init_mode_gain_regs(ah);
634 	r = ath9k_hw_fill_cap_info(ah);
635 	if (r)
636 		return r;
637 
638 	r = ath9k_hw_init_macaddr(ah);
639 	if (r) {
640 		ath_err(common, "Failed to initialize MAC address\n");
641 		return r;
642 	}
643 
644 	ath9k_hw_init_hang_checks(ah);
645 
646 	common->state = ATH_HW_INITIALIZED;
647 
648 	return 0;
649 }
650 
651 int ath9k_hw_init(struct ath_hw *ah)
652 {
653 	int ret;
654 	struct ath_common *common = ath9k_hw_common(ah);
655 
656 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
657 	switch (ah->hw_version.devid) {
658 	case AR5416_DEVID_PCI:
659 	case AR5416_DEVID_PCIE:
660 	case AR5416_AR9100_DEVID:
661 	case AR9160_DEVID_PCI:
662 	case AR9280_DEVID_PCI:
663 	case AR9280_DEVID_PCIE:
664 	case AR9285_DEVID_PCIE:
665 	case AR9287_DEVID_PCI:
666 	case AR9287_DEVID_PCIE:
667 	case AR2427_DEVID_PCIE:
668 	case AR9300_DEVID_PCIE:
669 	case AR9300_DEVID_AR9485_PCIE:
670 	case AR9300_DEVID_AR9330:
671 	case AR9300_DEVID_AR9340:
672 	case AR9300_DEVID_QCA955X:
673 	case AR9300_DEVID_AR9580:
674 	case AR9300_DEVID_AR9462:
675 	case AR9485_DEVID_AR1111:
676 	case AR9300_DEVID_AR9565:
677 	case AR9300_DEVID_AR953X:
678 	case AR9300_DEVID_QCA956X:
679 		break;
680 	default:
681 		if (common->bus_ops->ath_bus_type == ATH_USB)
682 			break;
683 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
684 			ah->hw_version.devid);
685 		return -EOPNOTSUPP;
686 	}
687 
688 	ret = __ath9k_hw_init(ah);
689 	if (ret) {
690 		ath_err(common,
691 			"Unable to initialize hardware; initialization status: %d\n",
692 			ret);
693 		return ret;
694 	}
695 
696 	ath_dynack_init(ah);
697 
698 	return 0;
699 }
700 EXPORT_SYMBOL(ath9k_hw_init);
701 
702 static void ath9k_hw_init_qos(struct ath_hw *ah)
703 {
704 	ENABLE_REGWRITE_BUFFER(ah);
705 
706 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
707 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
708 
709 	REG_WRITE(ah, AR_QOS_NO_ACK,
710 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
711 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
712 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
713 
714 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
715 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
716 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
717 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
718 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
719 
720 	REGWRITE_BUFFER_FLUSH(ah);
721 }
722 
723 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
724 {
725 	struct ath_common *common = ath9k_hw_common(ah);
726 	int i = 0;
727 
728 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
729 	udelay(100);
730 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
731 
732 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
733 
734 		udelay(100);
735 
736 		if (WARN_ON_ONCE(i >= 100)) {
737 			ath_err(common, "PLL4 meaurement not done\n");
738 			break;
739 		}
740 
741 		i++;
742 	}
743 
744 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
745 }
746 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
747 
748 static void ath9k_hw_init_pll(struct ath_hw *ah,
749 			      struct ath9k_channel *chan)
750 {
751 	u32 pll;
752 
753 	pll = ath9k_hw_compute_pll_control(ah, chan);
754 
755 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
756 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
757 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
758 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
759 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
760 			      AR_CH0_DPLL2_KD, 0x40);
761 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
762 			      AR_CH0_DPLL2_KI, 0x4);
763 
764 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
765 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
766 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
767 			      AR_CH0_BB_DPLL1_NINI, 0x58);
768 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
769 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
770 
771 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
772 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
773 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
774 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
775 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
776 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
777 
778 		/* program BB PLL phase_shift to 0x6 */
779 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
780 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
781 
782 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
783 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
784 		udelay(1000);
785 	} else if (AR_SREV_9330(ah)) {
786 		u32 ddr_dpll2, pll_control2, kd;
787 
788 		if (ah->is_clk_25mhz) {
789 			ddr_dpll2 = 0x18e82f01;
790 			pll_control2 = 0xe04a3d;
791 			kd = 0x1d;
792 		} else {
793 			ddr_dpll2 = 0x19e82f01;
794 			pll_control2 = 0x886666;
795 			kd = 0x3d;
796 		}
797 
798 		/* program DDR PLL ki and kd value */
799 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
800 
801 		/* program DDR PLL phase_shift */
802 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
803 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
804 
805 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
806 			  pll | AR_RTC_9300_PLL_BYPASS);
807 		udelay(1000);
808 
809 		/* program refdiv, nint, frac to RTC register */
810 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
811 
812 		/* program BB PLL kd and ki value */
813 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
814 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
815 
816 		/* program BB PLL phase_shift */
817 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
818 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
819 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
820 		   AR_SREV_9561(ah)) {
821 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
822 
823 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
824 			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
825 		udelay(1000);
826 
827 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
828 		udelay(100);
829 
830 		if (ah->is_clk_25mhz) {
831 			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
832 				pll2_divint = 0x1c;
833 				pll2_divfrac = 0xa3d2;
834 				refdiv = 1;
835 			} else {
836 				pll2_divint = 0x54;
837 				pll2_divfrac = 0x1eb85;
838 				refdiv = 3;
839 			}
840 		} else {
841 			if (AR_SREV_9340(ah)) {
842 				pll2_divint = 88;
843 				pll2_divfrac = 0;
844 				refdiv = 5;
845 			} else {
846 				pll2_divint = 0x11;
847 				pll2_divfrac = (AR_SREV_9531(ah) ||
848 						AR_SREV_9561(ah)) ?
849 						0x26665 : 0x26666;
850 				refdiv = 1;
851 			}
852 		}
853 
854 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
855 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
856 			regval |= (0x1 << 22);
857 		else
858 			regval |= (0x1 << 16);
859 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
860 		udelay(100);
861 
862 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
863 			  (pll2_divint << 18) | pll2_divfrac);
864 		udelay(100);
865 
866 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
867 		if (AR_SREV_9340(ah))
868 			regval = (regval & 0x80071fff) |
869 				(0x1 << 30) |
870 				(0x1 << 13) |
871 				(0x4 << 26) |
872 				(0x18 << 19);
873 		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
874 			regval = (regval & 0x01c00fff) |
875 				(0x1 << 31) |
876 				(0x2 << 29) |
877 				(0xa << 25) |
878 				(0x1 << 19);
879 
880 			if (AR_SREV_9531(ah))
881 				regval |= (0x6 << 12);
882 		} else
883 			regval = (regval & 0x80071fff) |
884 				(0x3 << 30) |
885 				(0x1 << 13) |
886 				(0x4 << 26) |
887 				(0x60 << 19);
888 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
889 
890 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
891 			REG_WRITE(ah, AR_PHY_PLL_MODE,
892 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
893 		else
894 			REG_WRITE(ah, AR_PHY_PLL_MODE,
895 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
896 
897 		udelay(1000);
898 	}
899 
900 	if (AR_SREV_9565(ah))
901 		pll |= 0x40000;
902 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
903 
904 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
905 	    AR_SREV_9550(ah))
906 		udelay(1000);
907 
908 	/* Switch the core clock for ar9271 to 117Mhz */
909 	if (AR_SREV_9271(ah)) {
910 		udelay(500);
911 		REG_WRITE(ah, 0x50040, 0x304);
912 	}
913 
914 	udelay(RTC_PLL_SETTLE_DELAY);
915 
916 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
917 }
918 
919 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
920 					  enum nl80211_iftype opmode)
921 {
922 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
923 	u32 imr_reg = AR_IMR_TXERR |
924 		AR_IMR_TXURN |
925 		AR_IMR_RXERR |
926 		AR_IMR_RXORN |
927 		AR_IMR_BCNMISC;
928 
929 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
930 	    AR_SREV_9561(ah))
931 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
932 
933 	if (AR_SREV_9300_20_OR_LATER(ah)) {
934 		imr_reg |= AR_IMR_RXOK_HP;
935 		if (ah->config.rx_intr_mitigation)
936 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
937 		else
938 			imr_reg |= AR_IMR_RXOK_LP;
939 
940 	} else {
941 		if (ah->config.rx_intr_mitigation)
942 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
943 		else
944 			imr_reg |= AR_IMR_RXOK;
945 	}
946 
947 	if (ah->config.tx_intr_mitigation)
948 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
949 	else
950 		imr_reg |= AR_IMR_TXOK;
951 
952 	ENABLE_REGWRITE_BUFFER(ah);
953 
954 	REG_WRITE(ah, AR_IMR, imr_reg);
955 	ah->imrs2_reg |= AR_IMR_S2_GTT;
956 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
957 
958 	if (!AR_SREV_9100(ah)) {
959 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
960 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
961 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
962 	}
963 
964 	REGWRITE_BUFFER_FLUSH(ah);
965 
966 	if (AR_SREV_9300_20_OR_LATER(ah)) {
967 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
968 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
969 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
970 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
971 	}
972 }
973 
974 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
975 {
976 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
977 	val = min(val, (u32) 0xFFFF);
978 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
979 }
980 
981 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
982 {
983 	u32 val = ath9k_hw_mac_to_clks(ah, us);
984 	val = min(val, (u32) 0xFFFF);
985 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
986 }
987 
988 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
989 {
990 	u32 val = ath9k_hw_mac_to_clks(ah, us);
991 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
992 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
993 }
994 
995 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
996 {
997 	u32 val = ath9k_hw_mac_to_clks(ah, us);
998 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
999 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1000 }
1001 
1002 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1003 {
1004 	if (tu > 0xFFFF) {
1005 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1006 			tu);
1007 		ah->globaltxtimeout = (u32) -1;
1008 		return false;
1009 	} else {
1010 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1011 		ah->globaltxtimeout = tu;
1012 		return true;
1013 	}
1014 }
1015 
1016 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1017 {
1018 	struct ath_common *common = ath9k_hw_common(ah);
1019 	const struct ath9k_channel *chan = ah->curchan;
1020 	int acktimeout, ctstimeout, ack_offset = 0;
1021 	int slottime;
1022 	int sifstime;
1023 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1024 	u32 reg;
1025 
1026 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1027 		ah->misc_mode);
1028 
1029 	if (!chan)
1030 		return;
1031 
1032 	if (ah->misc_mode != 0)
1033 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1034 
1035 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1036 		rx_lat = 41;
1037 	else
1038 		rx_lat = 37;
1039 	tx_lat = 54;
1040 
1041 	if (IS_CHAN_5GHZ(chan))
1042 		sifstime = 16;
1043 	else
1044 		sifstime = 10;
1045 
1046 	if (IS_CHAN_HALF_RATE(chan)) {
1047 		eifs = 175;
1048 		rx_lat *= 2;
1049 		tx_lat *= 2;
1050 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1051 		    tx_lat += 11;
1052 
1053 		sifstime = 32;
1054 		ack_offset = 16;
1055 		slottime = 13;
1056 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1057 		eifs = 340;
1058 		rx_lat = (rx_lat * 4) - 1;
1059 		tx_lat *= 4;
1060 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1061 		    tx_lat += 22;
1062 
1063 		sifstime = 64;
1064 		ack_offset = 32;
1065 		slottime = 21;
1066 	} else {
1067 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1068 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1069 			reg = AR_USEC_ASYNC_FIFO;
1070 		} else {
1071 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1072 				common->clockrate;
1073 			reg = REG_READ(ah, AR_USEC);
1074 		}
1075 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1076 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1077 
1078 		slottime = ah->slottime;
1079 	}
1080 
1081 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1082 	slottime += 3 * ah->coverage_class;
1083 	acktimeout = slottime + sifstime + ack_offset;
1084 	ctstimeout = acktimeout;
1085 
1086 	/*
1087 	 * Workaround for early ACK timeouts, add an offset to match the
1088 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1089 	 * This was initially only meant to work around an issue with delayed
1090 	 * BA frames in some implementations, but it has been found to fix ACK
1091 	 * timeout issues in other cases as well.
1092 	 */
1093 	if (IS_CHAN_2GHZ(chan) &&
1094 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1095 		acktimeout += 64 - sifstime - ah->slottime;
1096 		ctstimeout += 48 - sifstime - ah->slottime;
1097 	}
1098 
1099 	if (ah->dynack.enabled) {
1100 		acktimeout = ah->dynack.ackto;
1101 		ctstimeout = acktimeout;
1102 		slottime = (acktimeout - 3) / 2;
1103 	} else {
1104 		ah->dynack.ackto = acktimeout;
1105 	}
1106 
1107 	ath9k_hw_set_sifs_time(ah, sifstime);
1108 	ath9k_hw_setslottime(ah, slottime);
1109 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1110 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1111 	if (ah->globaltxtimeout != (u32) -1)
1112 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1113 
1114 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1115 	REG_RMW(ah, AR_USEC,
1116 		(common->clockrate - 1) |
1117 		SM(rx_lat, AR_USEC_RX_LAT) |
1118 		SM(tx_lat, AR_USEC_TX_LAT),
1119 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1120 
1121 }
1122 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1123 
1124 void ath9k_hw_deinit(struct ath_hw *ah)
1125 {
1126 	struct ath_common *common = ath9k_hw_common(ah);
1127 
1128 	if (common->state < ATH_HW_INITIALIZED)
1129 		return;
1130 
1131 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1132 }
1133 EXPORT_SYMBOL(ath9k_hw_deinit);
1134 
1135 /*******/
1136 /* INI */
1137 /*******/
1138 
1139 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1140 {
1141 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1142 
1143 	if (IS_CHAN_2GHZ(chan))
1144 		ctl |= CTL_11G;
1145 	else
1146 		ctl |= CTL_11A;
1147 
1148 	return ctl;
1149 }
1150 
1151 /****************************************/
1152 /* Reset and Channel Switching Routines */
1153 /****************************************/
1154 
1155 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1156 {
1157 	struct ath_common *common = ath9k_hw_common(ah);
1158 	int txbuf_size;
1159 
1160 	ENABLE_REGWRITE_BUFFER(ah);
1161 
1162 	/*
1163 	 * set AHB_MODE not to do cacheline prefetches
1164 	*/
1165 	if (!AR_SREV_9300_20_OR_LATER(ah))
1166 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1167 
1168 	/*
1169 	 * let mac dma reads be in 128 byte chunks
1170 	 */
1171 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1172 
1173 	REGWRITE_BUFFER_FLUSH(ah);
1174 
1175 	/*
1176 	 * Restore TX Trigger Level to its pre-reset value.
1177 	 * The initial value depends on whether aggregation is enabled, and is
1178 	 * adjusted whenever underruns are detected.
1179 	 */
1180 	if (!AR_SREV_9300_20_OR_LATER(ah))
1181 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1182 
1183 	ENABLE_REGWRITE_BUFFER(ah);
1184 
1185 	/*
1186 	 * let mac dma writes be in 128 byte chunks
1187 	 */
1188 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1189 
1190 	/*
1191 	 * Setup receive FIFO threshold to hold off TX activities
1192 	 */
1193 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1194 
1195 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1196 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1197 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1198 
1199 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1200 			ah->caps.rx_status_len);
1201 	}
1202 
1203 	/*
1204 	 * reduce the number of usable entries in PCU TXBUF to avoid
1205 	 * wrap around issues.
1206 	 */
1207 	if (AR_SREV_9285(ah)) {
1208 		/* For AR9285 the number of Fifos are reduced to half.
1209 		 * So set the usable tx buf size also to half to
1210 		 * avoid data/delimiter underruns
1211 		 */
1212 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1213 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1214 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1215 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1216 	} else {
1217 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1218 	}
1219 
1220 	if (!AR_SREV_9271(ah))
1221 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1222 
1223 	REGWRITE_BUFFER_FLUSH(ah);
1224 
1225 	if (AR_SREV_9300_20_OR_LATER(ah))
1226 		ath9k_hw_reset_txstatus_ring(ah);
1227 }
1228 
1229 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1230 {
1231 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1232 	u32 set = AR_STA_ID1_KSRCH_MODE;
1233 
1234 	ENABLE_REG_RMW_BUFFER(ah);
1235 	switch (opmode) {
1236 	case NL80211_IFTYPE_ADHOC:
1237 		if (!AR_SREV_9340_13(ah)) {
1238 			set |= AR_STA_ID1_ADHOC;
1239 			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1240 			break;
1241 		}
1242 		/* fall through */
1243 	case NL80211_IFTYPE_MESH_POINT:
1244 	case NL80211_IFTYPE_AP:
1245 		set |= AR_STA_ID1_STA_AP;
1246 		/* fall through */
1247 	case NL80211_IFTYPE_STATION:
1248 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1249 		break;
1250 	default:
1251 		if (!ah->is_monitoring)
1252 			set = 0;
1253 		break;
1254 	}
1255 	REG_RMW(ah, AR_STA_ID1, set, mask);
1256 	REG_RMW_BUFFER_FLUSH(ah);
1257 }
1258 
1259 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1260 				   u32 *coef_mantissa, u32 *coef_exponent)
1261 {
1262 	u32 coef_exp, coef_man;
1263 
1264 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1265 		if ((coef_scaled >> coef_exp) & 0x1)
1266 			break;
1267 
1268 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1269 
1270 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1271 
1272 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1273 	*coef_exponent = coef_exp - 16;
1274 }
1275 
1276 /* AR9330 WAR:
1277  * call external reset function to reset WMAC if:
1278  * - doing a cold reset
1279  * - we have pending frames in the TX queues.
1280  */
1281 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1282 {
1283 	int i, npend = 0;
1284 
1285 	for (i = 0; i < AR_NUM_QCU; i++) {
1286 		npend = ath9k_hw_numtxpending(ah, i);
1287 		if (npend)
1288 			break;
1289 	}
1290 
1291 	if (ah->external_reset &&
1292 	    (npend || type == ATH9K_RESET_COLD)) {
1293 		int reset_err = 0;
1294 
1295 		ath_dbg(ath9k_hw_common(ah), RESET,
1296 			"reset MAC via external reset\n");
1297 
1298 		reset_err = ah->external_reset();
1299 		if (reset_err) {
1300 			ath_err(ath9k_hw_common(ah),
1301 				"External reset failed, err=%d\n",
1302 				reset_err);
1303 			return false;
1304 		}
1305 
1306 		REG_WRITE(ah, AR_RTC_RESET, 1);
1307 	}
1308 
1309 	return true;
1310 }
1311 
1312 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1313 {
1314 	u32 rst_flags;
1315 	u32 tmpReg;
1316 
1317 	if (AR_SREV_9100(ah)) {
1318 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1319 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1320 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1321 	}
1322 
1323 	ENABLE_REGWRITE_BUFFER(ah);
1324 
1325 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1326 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1327 		udelay(10);
1328 	}
1329 
1330 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1331 		  AR_RTC_FORCE_WAKE_ON_INT);
1332 
1333 	if (AR_SREV_9100(ah)) {
1334 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1335 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1336 	} else {
1337 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1338 		if (AR_SREV_9340(ah))
1339 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1340 		else
1341 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1342 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1343 
1344 		if (tmpReg) {
1345 			u32 val;
1346 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1347 
1348 			val = AR_RC_HOSTIF;
1349 			if (!AR_SREV_9300_20_OR_LATER(ah))
1350 				val |= AR_RC_AHB;
1351 			REG_WRITE(ah, AR_RC, val);
1352 
1353 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1354 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1355 
1356 		rst_flags = AR_RTC_RC_MAC_WARM;
1357 		if (type == ATH9K_RESET_COLD)
1358 			rst_flags |= AR_RTC_RC_MAC_COLD;
1359 	}
1360 
1361 	if (AR_SREV_9330(ah)) {
1362 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1363 			return false;
1364 	}
1365 
1366 	if (ath9k_hw_mci_is_enabled(ah))
1367 		ar9003_mci_check_gpm_offset(ah);
1368 
1369 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1370 
1371 	REGWRITE_BUFFER_FLUSH(ah);
1372 
1373 	if (AR_SREV_9300_20_OR_LATER(ah))
1374 		udelay(50);
1375 	else if (AR_SREV_9100(ah))
1376 		mdelay(10);
1377 	else
1378 		udelay(100);
1379 
1380 	REG_WRITE(ah, AR_RTC_RC, 0);
1381 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1382 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1383 		return false;
1384 	}
1385 
1386 	if (!AR_SREV_9100(ah))
1387 		REG_WRITE(ah, AR_RC, 0);
1388 
1389 	if (AR_SREV_9100(ah))
1390 		udelay(50);
1391 
1392 	return true;
1393 }
1394 
1395 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1396 {
1397 	ENABLE_REGWRITE_BUFFER(ah);
1398 
1399 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1400 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1401 		udelay(10);
1402 	}
1403 
1404 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1405 		  AR_RTC_FORCE_WAKE_ON_INT);
1406 
1407 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1408 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1409 
1410 	REG_WRITE(ah, AR_RTC_RESET, 0);
1411 
1412 	REGWRITE_BUFFER_FLUSH(ah);
1413 
1414 	udelay(2);
1415 
1416 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1417 		REG_WRITE(ah, AR_RC, 0);
1418 
1419 	REG_WRITE(ah, AR_RTC_RESET, 1);
1420 
1421 	if (!ath9k_hw_wait(ah,
1422 			   AR_RTC_STATUS,
1423 			   AR_RTC_STATUS_M,
1424 			   AR_RTC_STATUS_ON,
1425 			   AH_WAIT_TIMEOUT)) {
1426 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1427 		return false;
1428 	}
1429 
1430 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1431 }
1432 
1433 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1434 {
1435 	bool ret = false;
1436 
1437 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1438 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1439 		udelay(10);
1440 	}
1441 
1442 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1443 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1444 
1445 	if (!ah->reset_power_on)
1446 		type = ATH9K_RESET_POWER_ON;
1447 
1448 	switch (type) {
1449 	case ATH9K_RESET_POWER_ON:
1450 		ret = ath9k_hw_set_reset_power_on(ah);
1451 		if (ret)
1452 			ah->reset_power_on = true;
1453 		break;
1454 	case ATH9K_RESET_WARM:
1455 	case ATH9K_RESET_COLD:
1456 		ret = ath9k_hw_set_reset(ah, type);
1457 		break;
1458 	default:
1459 		break;
1460 	}
1461 
1462 	return ret;
1463 }
1464 
1465 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1466 				struct ath9k_channel *chan)
1467 {
1468 	int reset_type = ATH9K_RESET_WARM;
1469 
1470 	if (AR_SREV_9280(ah)) {
1471 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1472 			reset_type = ATH9K_RESET_POWER_ON;
1473 		else
1474 			reset_type = ATH9K_RESET_COLD;
1475 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1476 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1477 		reset_type = ATH9K_RESET_COLD;
1478 
1479 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1480 		return false;
1481 
1482 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1483 		return false;
1484 
1485 	ah->chip_fullsleep = false;
1486 
1487 	if (AR_SREV_9330(ah))
1488 		ar9003_hw_internal_regulator_apply(ah);
1489 	ath9k_hw_init_pll(ah, chan);
1490 
1491 	return true;
1492 }
1493 
1494 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1495 				    struct ath9k_channel *chan)
1496 {
1497 	struct ath_common *common = ath9k_hw_common(ah);
1498 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1499 	bool band_switch = false, mode_diff = false;
1500 	u8 ini_reloaded = 0;
1501 	u32 qnum;
1502 	int r;
1503 
1504 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1505 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1506 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1507 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1508 	}
1509 
1510 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1511 		if (ath9k_hw_numtxpending(ah, qnum)) {
1512 			ath_dbg(common, QUEUE,
1513 				"Transmit frames pending on queue %d\n", qnum);
1514 			return false;
1515 		}
1516 	}
1517 
1518 	if (!ath9k_hw_rfbus_req(ah)) {
1519 		ath_err(common, "Could not kill baseband RX\n");
1520 		return false;
1521 	}
1522 
1523 	if (band_switch || mode_diff) {
1524 		ath9k_hw_mark_phy_inactive(ah);
1525 		udelay(5);
1526 
1527 		if (band_switch)
1528 			ath9k_hw_init_pll(ah, chan);
1529 
1530 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1531 			ath_err(common, "Failed to do fast channel change\n");
1532 			return false;
1533 		}
1534 	}
1535 
1536 	ath9k_hw_set_channel_regs(ah, chan);
1537 
1538 	r = ath9k_hw_rf_set_freq(ah, chan);
1539 	if (r) {
1540 		ath_err(common, "Failed to set channel\n");
1541 		return false;
1542 	}
1543 	ath9k_hw_set_clockrate(ah);
1544 	ath9k_hw_apply_txpower(ah, chan, false);
1545 
1546 	ath9k_hw_set_delta_slope(ah, chan);
1547 	ath9k_hw_spur_mitigate_freq(ah, chan);
1548 
1549 	if (band_switch || ini_reloaded)
1550 		ah->eep_ops->set_board_values(ah, chan);
1551 
1552 	ath9k_hw_init_bb(ah, chan);
1553 	ath9k_hw_rfbus_done(ah);
1554 
1555 	if (band_switch || ini_reloaded) {
1556 		ah->ah_flags |= AH_FASTCC;
1557 		ath9k_hw_init_cal(ah, chan);
1558 		ah->ah_flags &= ~AH_FASTCC;
1559 	}
1560 
1561 	return true;
1562 }
1563 
1564 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1565 {
1566 	u32 gpio_mask = ah->gpio_mask;
1567 	int i;
1568 
1569 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1570 		if (!(gpio_mask & 1))
1571 			continue;
1572 
1573 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1574 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1575 	}
1576 }
1577 
1578 void ath9k_hw_check_nav(struct ath_hw *ah)
1579 {
1580 	struct ath_common *common = ath9k_hw_common(ah);
1581 	u32 val;
1582 
1583 	val = REG_READ(ah, AR_NAV);
1584 	if (val != 0xdeadbeef && val > 0x7fff) {
1585 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1586 		REG_WRITE(ah, AR_NAV, 0);
1587 	}
1588 }
1589 EXPORT_SYMBOL(ath9k_hw_check_nav);
1590 
1591 bool ath9k_hw_check_alive(struct ath_hw *ah)
1592 {
1593 	int count = 50;
1594 	u32 reg, last_val;
1595 
1596 	if (AR_SREV_9300(ah))
1597 		return !ath9k_hw_detect_mac_hang(ah);
1598 
1599 	if (AR_SREV_9285_12_OR_LATER(ah))
1600 		return true;
1601 
1602 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1603 	do {
1604 		reg = REG_READ(ah, AR_OBS_BUS_1);
1605 		if (reg != last_val)
1606 			return true;
1607 
1608 		udelay(1);
1609 		last_val = reg;
1610 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1611 			continue;
1612 
1613 		switch (reg & 0x7E000B00) {
1614 		case 0x1E000000:
1615 		case 0x52000B00:
1616 		case 0x18000B00:
1617 			continue;
1618 		default:
1619 			return true;
1620 		}
1621 	} while (count-- > 0);
1622 
1623 	return false;
1624 }
1625 EXPORT_SYMBOL(ath9k_hw_check_alive);
1626 
1627 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1628 {
1629 	/* Setup MFP options for CCMP */
1630 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1631 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1632 		 * frames when constructing CCMP AAD. */
1633 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1634 			      0xc7ff);
1635 		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1636 			ah->sw_mgmt_crypto_tx = true;
1637 		else
1638 			ah->sw_mgmt_crypto_tx = false;
1639 		ah->sw_mgmt_crypto_rx = false;
1640 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1641 		/* Disable hardware crypto for management frames */
1642 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1643 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1644 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1645 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1646 		ah->sw_mgmt_crypto_tx = true;
1647 		ah->sw_mgmt_crypto_rx = true;
1648 	} else {
1649 		ah->sw_mgmt_crypto_tx = true;
1650 		ah->sw_mgmt_crypto_rx = true;
1651 	}
1652 }
1653 
1654 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1655 				  u32 macStaId1, u32 saveDefAntenna)
1656 {
1657 	struct ath_common *common = ath9k_hw_common(ah);
1658 
1659 	ENABLE_REGWRITE_BUFFER(ah);
1660 
1661 	REG_RMW(ah, AR_STA_ID1, macStaId1
1662 		  | AR_STA_ID1_RTS_USE_DEF
1663 		  | ah->sta_id1_defaults,
1664 		  ~AR_STA_ID1_SADH_MASK);
1665 	ath_hw_setbssidmask(common);
1666 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1667 	ath9k_hw_write_associd(ah);
1668 	REG_WRITE(ah, AR_ISR, ~0);
1669 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1670 
1671 	REGWRITE_BUFFER_FLUSH(ah);
1672 
1673 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1674 }
1675 
1676 static void ath9k_hw_init_queues(struct ath_hw *ah)
1677 {
1678 	int i;
1679 
1680 	ENABLE_REGWRITE_BUFFER(ah);
1681 
1682 	for (i = 0; i < AR_NUM_DCU; i++)
1683 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1684 
1685 	REGWRITE_BUFFER_FLUSH(ah);
1686 
1687 	ah->intr_txqs = 0;
1688 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1689 		ath9k_hw_resettxqueue(ah, i);
1690 }
1691 
1692 /*
1693  * For big endian systems turn on swapping for descriptors
1694  */
1695 static void ath9k_hw_init_desc(struct ath_hw *ah)
1696 {
1697 	struct ath_common *common = ath9k_hw_common(ah);
1698 
1699 	if (AR_SREV_9100(ah)) {
1700 		u32 mask;
1701 		mask = REG_READ(ah, AR_CFG);
1702 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1703 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1704 				mask);
1705 		} else {
1706 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1707 			REG_WRITE(ah, AR_CFG, mask);
1708 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1709 				REG_READ(ah, AR_CFG));
1710 		}
1711 	} else {
1712 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1713 			/* Configure AR9271 target WLAN */
1714 			if (AR_SREV_9271(ah))
1715 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1716 			else
1717 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1718 		}
1719 #ifdef __BIG_ENDIAN
1720 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1721 			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1722 			 AR_SREV_9561(ah))
1723 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1724 		else
1725 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1726 #endif
1727 	}
1728 }
1729 
1730 /*
1731  * Fast channel change:
1732  * (Change synthesizer based on channel freq without resetting chip)
1733  */
1734 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1735 {
1736 	struct ath_common *common = ath9k_hw_common(ah);
1737 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1738 	int ret;
1739 
1740 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1741 		goto fail;
1742 
1743 	if (ah->chip_fullsleep)
1744 		goto fail;
1745 
1746 	if (!ah->curchan)
1747 		goto fail;
1748 
1749 	if (chan->channel == ah->curchan->channel)
1750 		goto fail;
1751 
1752 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1753 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1754 		goto fail;
1755 
1756 	/*
1757 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1758 	 */
1759 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1760 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1761 		goto fail;
1762 
1763 	if (!ath9k_hw_check_alive(ah))
1764 		goto fail;
1765 
1766 	/*
1767 	 * For AR9462, make sure that calibration data for
1768 	 * re-using are present.
1769 	 */
1770 	if (AR_SREV_9462(ah) && (ah->caldata &&
1771 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1772 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1773 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1774 		goto fail;
1775 
1776 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1777 		ah->curchan->channel, chan->channel);
1778 
1779 	ret = ath9k_hw_channel_change(ah, chan);
1780 	if (!ret)
1781 		goto fail;
1782 
1783 	if (ath9k_hw_mci_is_enabled(ah))
1784 		ar9003_mci_2g5g_switch(ah, false);
1785 
1786 	ath9k_hw_loadnf(ah, ah->curchan);
1787 	ath9k_hw_start_nfcal(ah, true);
1788 
1789 	if (AR_SREV_9271(ah))
1790 		ar9002_hw_load_ani_reg(ah, chan);
1791 
1792 	return 0;
1793 fail:
1794 	return -EINVAL;
1795 }
1796 
1797 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1798 {
1799 	struct timespec ts;
1800 	s64 usec;
1801 
1802 	if (!cur) {
1803 		getrawmonotonic(&ts);
1804 		cur = &ts;
1805 	}
1806 
1807 	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1808 	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1809 
1810 	return (u32) usec;
1811 }
1812 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1813 
1814 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1815 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1816 {
1817 	struct ath_common *common = ath9k_hw_common(ah);
1818 	u32 saveLedState;
1819 	u32 saveDefAntenna;
1820 	u32 macStaId1;
1821 	u64 tsf = 0;
1822 	s64 usec = 0;
1823 	int r;
1824 	bool start_mci_reset = false;
1825 	bool save_fullsleep = ah->chip_fullsleep;
1826 
1827 	if (ath9k_hw_mci_is_enabled(ah)) {
1828 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1829 		if (start_mci_reset)
1830 			return 0;
1831 	}
1832 
1833 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1834 		return -EIO;
1835 
1836 	if (ah->curchan && !ah->chip_fullsleep)
1837 		ath9k_hw_getnf(ah, ah->curchan);
1838 
1839 	ah->caldata = caldata;
1840 	if (caldata && (chan->channel != caldata->channel ||
1841 			chan->channelFlags != caldata->channelFlags)) {
1842 		/* Operating channel changed, reset channel calibration data */
1843 		memset(caldata, 0, sizeof(*caldata));
1844 		ath9k_init_nfcal_hist_buffer(ah, chan);
1845 	} else if (caldata) {
1846 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1847 	}
1848 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1849 
1850 	if (fastcc) {
1851 		r = ath9k_hw_do_fastcc(ah, chan);
1852 		if (!r)
1853 			return r;
1854 	}
1855 
1856 	if (ath9k_hw_mci_is_enabled(ah))
1857 		ar9003_mci_stop_bt(ah, save_fullsleep);
1858 
1859 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1860 	if (saveDefAntenna == 0)
1861 		saveDefAntenna = 1;
1862 
1863 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1864 
1865 	/* Save TSF before chip reset, a cold reset clears it */
1866 	tsf = ath9k_hw_gettsf64(ah);
1867 	usec = ktime_to_us(ktime_get_raw());
1868 
1869 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1870 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1871 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1872 
1873 	ath9k_hw_mark_phy_inactive(ah);
1874 
1875 	ah->paprd_table_write_done = false;
1876 
1877 	/* Only required on the first reset */
1878 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1879 		REG_WRITE(ah,
1880 			  AR9271_RESET_POWER_DOWN_CONTROL,
1881 			  AR9271_RADIO_RF_RST);
1882 		udelay(50);
1883 	}
1884 
1885 	if (!ath9k_hw_chip_reset(ah, chan)) {
1886 		ath_err(common, "Chip reset failed\n");
1887 		return -EINVAL;
1888 	}
1889 
1890 	/* Only required on the first reset */
1891 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1892 		ah->htc_reset_init = false;
1893 		REG_WRITE(ah,
1894 			  AR9271_RESET_POWER_DOWN_CONTROL,
1895 			  AR9271_GATE_MAC_CTL);
1896 		udelay(50);
1897 	}
1898 
1899 	/* Restore TSF */
1900 	usec = ktime_to_us(ktime_get_raw()) - usec;
1901 	ath9k_hw_settsf64(ah, tsf + usec);
1902 
1903 	if (AR_SREV_9280_20_OR_LATER(ah))
1904 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1905 
1906 	if (!AR_SREV_9300_20_OR_LATER(ah))
1907 		ar9002_hw_enable_async_fifo(ah);
1908 
1909 	r = ath9k_hw_process_ini(ah, chan);
1910 	if (r)
1911 		return r;
1912 
1913 	ath9k_hw_set_rfmode(ah, chan);
1914 
1915 	if (ath9k_hw_mci_is_enabled(ah))
1916 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1917 
1918 	/*
1919 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1920 	 * right after the chip reset. When that happens, write a new
1921 	 * value after the initvals have been applied, with an offset
1922 	 * based on measured time difference
1923 	 */
1924 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1925 		tsf += 1500;
1926 		ath9k_hw_settsf64(ah, tsf);
1927 	}
1928 
1929 	ath9k_hw_init_mfp(ah);
1930 
1931 	ath9k_hw_set_delta_slope(ah, chan);
1932 	ath9k_hw_spur_mitigate_freq(ah, chan);
1933 	ah->eep_ops->set_board_values(ah, chan);
1934 
1935 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1936 
1937 	r = ath9k_hw_rf_set_freq(ah, chan);
1938 	if (r)
1939 		return r;
1940 
1941 	ath9k_hw_set_clockrate(ah);
1942 
1943 	ath9k_hw_init_queues(ah);
1944 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1945 	ath9k_hw_ani_cache_ini_regs(ah);
1946 	ath9k_hw_init_qos(ah);
1947 
1948 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1949 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1950 
1951 	ath9k_hw_init_global_settings(ah);
1952 
1953 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1954 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1955 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1956 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1957 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1958 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1959 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1960 	}
1961 
1962 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1963 
1964 	ath9k_hw_set_dma(ah);
1965 
1966 	if (!ath9k_hw_mci_is_enabled(ah))
1967 		REG_WRITE(ah, AR_OBS, 8);
1968 
1969 	ENABLE_REG_RMW_BUFFER(ah);
1970 	if (ah->config.rx_intr_mitigation) {
1971 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1972 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1973 	}
1974 
1975 	if (ah->config.tx_intr_mitigation) {
1976 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1977 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1978 	}
1979 	REG_RMW_BUFFER_FLUSH(ah);
1980 
1981 	ath9k_hw_init_bb(ah, chan);
1982 
1983 	if (caldata) {
1984 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1985 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1986 	}
1987 	if (!ath9k_hw_init_cal(ah, chan))
1988 		return -EIO;
1989 
1990 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1991 		return -EIO;
1992 
1993 	ENABLE_REGWRITE_BUFFER(ah);
1994 
1995 	ath9k_hw_restore_chainmask(ah);
1996 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1997 
1998 	REGWRITE_BUFFER_FLUSH(ah);
1999 
2000 	ath9k_hw_gen_timer_start_tsf2(ah);
2001 
2002 	ath9k_hw_init_desc(ah);
2003 
2004 	if (ath9k_hw_btcoex_is_enabled(ah))
2005 		ath9k_hw_btcoex_enable(ah);
2006 
2007 	if (ath9k_hw_mci_is_enabled(ah))
2008 		ar9003_mci_check_bt(ah);
2009 
2010 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2011 		ath9k_hw_loadnf(ah, chan);
2012 		ath9k_hw_start_nfcal(ah, true);
2013 	}
2014 
2015 	if (AR_SREV_9300_20_OR_LATER(ah))
2016 		ar9003_hw_bb_watchdog_config(ah);
2017 
2018 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2019 		ar9003_hw_disable_phy_restart(ah);
2020 
2021 	ath9k_hw_apply_gpio_override(ah);
2022 
2023 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2024 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2025 
2026 	if (ah->hw->conf.radar_enabled) {
2027 		/* set HW specific DFS configuration */
2028 		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2029 		ath9k_hw_set_radar_params(ah);
2030 	}
2031 
2032 	return 0;
2033 }
2034 EXPORT_SYMBOL(ath9k_hw_reset);
2035 
2036 /******************************/
2037 /* Power Management (Chipset) */
2038 /******************************/
2039 
2040 /*
2041  * Notify Power Mgt is disabled in self-generated frames.
2042  * If requested, force chip to sleep.
2043  */
2044 static void ath9k_set_power_sleep(struct ath_hw *ah)
2045 {
2046 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2047 
2048 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2049 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2050 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2051 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2052 		/* xxx Required for WLAN only case ? */
2053 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2054 		udelay(100);
2055 	}
2056 
2057 	/*
2058 	 * Clear the RTC force wake bit to allow the
2059 	 * mac to go to sleep.
2060 	 */
2061 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2062 
2063 	if (ath9k_hw_mci_is_enabled(ah))
2064 		udelay(100);
2065 
2066 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2067 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2068 
2069 	/* Shutdown chip. Active low */
2070 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2071 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2072 		udelay(2);
2073 	}
2074 
2075 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2076 	if (AR_SREV_9300_20_OR_LATER(ah))
2077 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2078 }
2079 
2080 /*
2081  * Notify Power Management is enabled in self-generating
2082  * frames. If request, set power mode of chip to
2083  * auto/normal.  Duration in units of 128us (1/8 TU).
2084  */
2085 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2086 {
2087 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2088 
2089 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2090 
2091 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2092 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2093 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2094 			  AR_RTC_FORCE_WAKE_ON_INT);
2095 	} else {
2096 
2097 		/* When chip goes into network sleep, it could be waken
2098 		 * up by MCI_INT interrupt caused by BT's HW messages
2099 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2100 		 * rate (~100us). This will cause chip to leave and
2101 		 * re-enter network sleep mode frequently, which in
2102 		 * consequence will have WLAN MCI HW to generate lots of
2103 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2104 		 * BT CPU to busy to process.
2105 		 */
2106 		if (ath9k_hw_mci_is_enabled(ah))
2107 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2108 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2109 		/*
2110 		 * Clear the RTC force wake bit to allow the
2111 		 * mac to go to sleep.
2112 		 */
2113 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2114 
2115 		if (ath9k_hw_mci_is_enabled(ah))
2116 			udelay(30);
2117 	}
2118 
2119 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2120 	if (AR_SREV_9300_20_OR_LATER(ah))
2121 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2122 }
2123 
2124 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2125 {
2126 	u32 val;
2127 	int i;
2128 
2129 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2130 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2131 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2132 		udelay(10);
2133 	}
2134 
2135 	if ((REG_READ(ah, AR_RTC_STATUS) &
2136 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2137 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2138 			return false;
2139 		}
2140 		if (!AR_SREV_9300_20_OR_LATER(ah))
2141 			ath9k_hw_init_pll(ah, NULL);
2142 	}
2143 	if (AR_SREV_9100(ah))
2144 		REG_SET_BIT(ah, AR_RTC_RESET,
2145 			    AR_RTC_RESET_EN);
2146 
2147 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2148 		    AR_RTC_FORCE_WAKE_EN);
2149 	if (AR_SREV_9100(ah))
2150 		mdelay(10);
2151 	else
2152 		udelay(50);
2153 
2154 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2155 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2156 		if (val == AR_RTC_STATUS_ON)
2157 			break;
2158 		udelay(50);
2159 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2160 			    AR_RTC_FORCE_WAKE_EN);
2161 	}
2162 	if (i == 0) {
2163 		ath_err(ath9k_hw_common(ah),
2164 			"Failed to wakeup in %uus\n",
2165 			POWER_UP_TIME / 20);
2166 		return false;
2167 	}
2168 
2169 	if (ath9k_hw_mci_is_enabled(ah))
2170 		ar9003_mci_set_power_awake(ah);
2171 
2172 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2173 
2174 	return true;
2175 }
2176 
2177 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2178 {
2179 	struct ath_common *common = ath9k_hw_common(ah);
2180 	int status = true;
2181 	static const char *modes[] = {
2182 		"AWAKE",
2183 		"FULL-SLEEP",
2184 		"NETWORK SLEEP",
2185 		"UNDEFINED"
2186 	};
2187 
2188 	if (ah->power_mode == mode)
2189 		return status;
2190 
2191 	ath_dbg(common, RESET, "%s -> %s\n",
2192 		modes[ah->power_mode], modes[mode]);
2193 
2194 	switch (mode) {
2195 	case ATH9K_PM_AWAKE:
2196 		status = ath9k_hw_set_power_awake(ah);
2197 		break;
2198 	case ATH9K_PM_FULL_SLEEP:
2199 		if (ath9k_hw_mci_is_enabled(ah))
2200 			ar9003_mci_set_full_sleep(ah);
2201 
2202 		ath9k_set_power_sleep(ah);
2203 		ah->chip_fullsleep = true;
2204 		break;
2205 	case ATH9K_PM_NETWORK_SLEEP:
2206 		ath9k_set_power_network_sleep(ah);
2207 		break;
2208 	default:
2209 		ath_err(common, "Unknown power mode %u\n", mode);
2210 		return false;
2211 	}
2212 	ah->power_mode = mode;
2213 
2214 	/*
2215 	 * XXX: If this warning never comes up after a while then
2216 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2217 	 * ath9k_hw_setpower() return type void.
2218 	 */
2219 
2220 	if (!(ah->ah_flags & AH_UNPLUGGED))
2221 		ATH_DBG_WARN_ON_ONCE(!status);
2222 
2223 	return status;
2224 }
2225 EXPORT_SYMBOL(ath9k_hw_setpower);
2226 
2227 /*******************/
2228 /* Beacon Handling */
2229 /*******************/
2230 
2231 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2232 {
2233 	int flags = 0;
2234 
2235 	ENABLE_REGWRITE_BUFFER(ah);
2236 
2237 	switch (ah->opmode) {
2238 	case NL80211_IFTYPE_ADHOC:
2239 		REG_SET_BIT(ah, AR_TXCFG,
2240 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2241 	case NL80211_IFTYPE_MESH_POINT:
2242 	case NL80211_IFTYPE_AP:
2243 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2244 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2245 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2246 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2247 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2248 		flags |=
2249 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2250 		break;
2251 	default:
2252 		ath_dbg(ath9k_hw_common(ah), BEACON,
2253 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2254 		return;
2255 		break;
2256 	}
2257 
2258 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2259 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2260 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2261 
2262 	REGWRITE_BUFFER_FLUSH(ah);
2263 
2264 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2265 }
2266 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2267 
2268 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2269 				    const struct ath9k_beacon_state *bs)
2270 {
2271 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2272 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2273 	struct ath_common *common = ath9k_hw_common(ah);
2274 
2275 	ENABLE_REGWRITE_BUFFER(ah);
2276 
2277 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2278 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2279 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2280 
2281 	REGWRITE_BUFFER_FLUSH(ah);
2282 
2283 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2284 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2285 
2286 	beaconintval = bs->bs_intval;
2287 
2288 	if (bs->bs_sleepduration > beaconintval)
2289 		beaconintval = bs->bs_sleepduration;
2290 
2291 	dtimperiod = bs->bs_dtimperiod;
2292 	if (bs->bs_sleepduration > dtimperiod)
2293 		dtimperiod = bs->bs_sleepduration;
2294 
2295 	if (beaconintval == dtimperiod)
2296 		nextTbtt = bs->bs_nextdtim;
2297 	else
2298 		nextTbtt = bs->bs_nexttbtt;
2299 
2300 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2301 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2302 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2303 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2304 
2305 	ENABLE_REGWRITE_BUFFER(ah);
2306 
2307 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2308 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2309 
2310 	REG_WRITE(ah, AR_SLEEP1,
2311 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2312 		  | AR_SLEEP1_ASSUME_DTIM);
2313 
2314 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2315 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2316 	else
2317 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2318 
2319 	REG_WRITE(ah, AR_SLEEP2,
2320 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2321 
2322 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2323 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2324 
2325 	REGWRITE_BUFFER_FLUSH(ah);
2326 
2327 	REG_SET_BIT(ah, AR_TIMER_MODE,
2328 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2329 		    AR_DTIM_TIMER_EN);
2330 
2331 	/* TSF Out of Range Threshold */
2332 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2333 }
2334 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2335 
2336 /*******************/
2337 /* HW Capabilities */
2338 /*******************/
2339 
2340 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2341 {
2342 	eeprom_chainmask &= chip_chainmask;
2343 	if (eeprom_chainmask)
2344 		return eeprom_chainmask;
2345 	else
2346 		return chip_chainmask;
2347 }
2348 
2349 /**
2350  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2351  * @ah: the atheros hardware data structure
2352  *
2353  * We enable DFS support upstream on chipsets which have passed a series
2354  * of tests. The testing requirements are going to be documented. Desired
2355  * test requirements are documented at:
2356  *
2357  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2358  *
2359  * Once a new chipset gets properly tested an individual commit can be used
2360  * to document the testing for DFS for that chipset.
2361  */
2362 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2363 {
2364 
2365 	switch (ah->hw_version.macVersion) {
2366 	/* for temporary testing DFS with 9280 */
2367 	case AR_SREV_VERSION_9280:
2368 	/* AR9580 will likely be our first target to get testing on */
2369 	case AR_SREV_VERSION_9580:
2370 		return true;
2371 	default:
2372 		return false;
2373 	}
2374 }
2375 
2376 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2377 {
2378 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2379 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2380 	struct ath_common *common = ath9k_hw_common(ah);
2381 
2382 	u16 eeval;
2383 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2384 
2385 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2386 	regulatory->current_rd = eeval;
2387 
2388 	if (ah->opmode != NL80211_IFTYPE_AP &&
2389 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2390 		if (regulatory->current_rd == 0x64 ||
2391 		    regulatory->current_rd == 0x65)
2392 			regulatory->current_rd += 5;
2393 		else if (regulatory->current_rd == 0x41)
2394 			regulatory->current_rd = 0x43;
2395 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2396 			regulatory->current_rd);
2397 	}
2398 
2399 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2400 
2401 	if (eeval & AR5416_OPFLAGS_11A) {
2402 		if (ah->disable_5ghz)
2403 			ath_warn(common, "disabling 5GHz band\n");
2404 		else
2405 			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2406 	}
2407 
2408 	if (eeval & AR5416_OPFLAGS_11G) {
2409 		if (ah->disable_2ghz)
2410 			ath_warn(common, "disabling 2GHz band\n");
2411 		else
2412 			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2413 	}
2414 
2415 	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2416 		ath_err(common, "both bands are disabled\n");
2417 		return -EINVAL;
2418 	}
2419 
2420 	if (AR_SREV_9485(ah) ||
2421 	    AR_SREV_9285(ah) ||
2422 	    AR_SREV_9330(ah) ||
2423 	    AR_SREV_9565(ah))
2424 		pCap->chip_chainmask = 1;
2425 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2426 		pCap->chip_chainmask = 7;
2427 	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2428 		 AR_SREV_9340(ah) ||
2429 		 AR_SREV_9462(ah) ||
2430 		 AR_SREV_9531(ah))
2431 		pCap->chip_chainmask = 3;
2432 	else
2433 		pCap->chip_chainmask = 7;
2434 
2435 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2436 	/*
2437 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2438 	 * the EEPROM.
2439 	 */
2440 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2441 	    !(eeval & AR5416_OPFLAGS_11A) &&
2442 	    !(AR_SREV_9271(ah)))
2443 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2444 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2445 	else if (AR_SREV_9100(ah))
2446 		pCap->rx_chainmask = 0x7;
2447 	else
2448 		/* Use rx_chainmask from EEPROM. */
2449 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2450 
2451 	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2452 	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2453 	ah->txchainmask = pCap->tx_chainmask;
2454 	ah->rxchainmask = pCap->rx_chainmask;
2455 
2456 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2457 
2458 	/* enable key search for every frame in an aggregate */
2459 	if (AR_SREV_9300_20_OR_LATER(ah))
2460 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2461 
2462 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2463 
2464 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2465 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2466 	else
2467 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2468 
2469 	if (AR_SREV_9271(ah))
2470 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2471 	else if (AR_DEVID_7010(ah))
2472 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2473 	else if (AR_SREV_9300_20_OR_LATER(ah))
2474 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2475 	else if (AR_SREV_9287_11_OR_LATER(ah))
2476 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2477 	else if (AR_SREV_9285_12_OR_LATER(ah))
2478 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2479 	else if (AR_SREV_9280_20_OR_LATER(ah))
2480 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2481 	else
2482 		pCap->num_gpio_pins = AR_NUM_GPIO;
2483 
2484 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2485 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2486 	else
2487 		pCap->rts_aggr_limit = (8 * 1024);
2488 
2489 #ifdef CONFIG_ATH9K_RFKILL
2490 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2491 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2492 		ah->rfkill_gpio =
2493 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2494 		ah->rfkill_polarity =
2495 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2496 
2497 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2498 	}
2499 #endif
2500 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2501 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2502 	else
2503 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2504 
2505 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2506 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2507 	else
2508 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2509 
2510 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2511 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2512 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2513 		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2514 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2515 
2516 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2517 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2518 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2519 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2520 		pCap->txs_len = sizeof(struct ar9003_txs);
2521 	} else {
2522 		pCap->tx_desc_len = sizeof(struct ath_desc);
2523 		if (AR_SREV_9280_20(ah))
2524 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2525 	}
2526 
2527 	if (AR_SREV_9300_20_OR_LATER(ah))
2528 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2529 
2530 	if (AR_SREV_9561(ah))
2531 		ah->ent_mode = 0x3BDA000;
2532 	else if (AR_SREV_9300_20_OR_LATER(ah))
2533 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2534 
2535 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2536 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2537 
2538 	if (AR_SREV_9285(ah)) {
2539 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2540 			ant_div_ctl1 =
2541 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2542 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2543 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2544 				ath_info(common, "Enable LNA combining\n");
2545 			}
2546 		}
2547 	}
2548 
2549 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2550 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2551 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2552 	}
2553 
2554 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2555 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2556 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2557 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2558 			ath_info(common, "Enable LNA combining\n");
2559 		}
2560 	}
2561 
2562 	if (ath9k_hw_dfs_tested(ah))
2563 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2564 
2565 	tx_chainmask = pCap->tx_chainmask;
2566 	rx_chainmask = pCap->rx_chainmask;
2567 	while (tx_chainmask || rx_chainmask) {
2568 		if (tx_chainmask & BIT(0))
2569 			pCap->max_txchains++;
2570 		if (rx_chainmask & BIT(0))
2571 			pCap->max_rxchains++;
2572 
2573 		tx_chainmask >>= 1;
2574 		rx_chainmask >>= 1;
2575 	}
2576 
2577 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2578 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2579 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2580 
2581 		if (AR_SREV_9462_20_OR_LATER(ah))
2582 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2583 	}
2584 
2585 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2586 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2587 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2588 
2589 #ifdef CONFIG_ATH9K_WOW
2590 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2591 		ah->wow.max_patterns = MAX_NUM_PATTERN;
2592 	else
2593 		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2594 #endif
2595 
2596 	return 0;
2597 }
2598 
2599 /****************************/
2600 /* GPIO / RFKILL / Antennae */
2601 /****************************/
2602 
2603 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2604 					 u32 gpio, u32 type)
2605 {
2606 	int addr;
2607 	u32 gpio_shift, tmp;
2608 
2609 	if (gpio > 11)
2610 		addr = AR_GPIO_OUTPUT_MUX3;
2611 	else if (gpio > 5)
2612 		addr = AR_GPIO_OUTPUT_MUX2;
2613 	else
2614 		addr = AR_GPIO_OUTPUT_MUX1;
2615 
2616 	gpio_shift = (gpio % 6) * 5;
2617 
2618 	if (AR_SREV_9280_20_OR_LATER(ah)
2619 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2620 		REG_RMW(ah, addr, (type << gpio_shift),
2621 			(0x1f << gpio_shift));
2622 	} else {
2623 		tmp = REG_READ(ah, addr);
2624 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2625 		tmp &= ~(0x1f << gpio_shift);
2626 		tmp |= (type << gpio_shift);
2627 		REG_WRITE(ah, addr, tmp);
2628 	}
2629 }
2630 
2631 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2632 {
2633 	u32 gpio_shift;
2634 
2635 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2636 
2637 	if (AR_DEVID_7010(ah)) {
2638 		gpio_shift = gpio;
2639 		REG_RMW(ah, AR7010_GPIO_OE,
2640 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2641 			(AR7010_GPIO_OE_MASK << gpio_shift));
2642 		return;
2643 	}
2644 
2645 	gpio_shift = gpio << 1;
2646 	REG_RMW(ah,
2647 		AR_GPIO_OE_OUT,
2648 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2649 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2650 }
2651 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2652 
2653 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2654 {
2655 #define MS_REG_READ(x, y) \
2656 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2657 
2658 	if (gpio >= ah->caps.num_gpio_pins)
2659 		return 0xffffffff;
2660 
2661 	if (AR_DEVID_7010(ah)) {
2662 		u32 val;
2663 		val = REG_READ(ah, AR7010_GPIO_IN);
2664 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2665 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2666 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2667 			AR_GPIO_BIT(gpio)) != 0;
2668 	else if (AR_SREV_9271(ah))
2669 		return MS_REG_READ(AR9271, gpio) != 0;
2670 	else if (AR_SREV_9287_11_OR_LATER(ah))
2671 		return MS_REG_READ(AR9287, gpio) != 0;
2672 	else if (AR_SREV_9285_12_OR_LATER(ah))
2673 		return MS_REG_READ(AR9285, gpio) != 0;
2674 	else if (AR_SREV_9280_20_OR_LATER(ah))
2675 		return MS_REG_READ(AR928X, gpio) != 0;
2676 	else
2677 		return MS_REG_READ(AR, gpio) != 0;
2678 }
2679 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2680 
2681 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2682 			 u32 ah_signal_type)
2683 {
2684 	u32 gpio_shift;
2685 
2686 	if (AR_DEVID_7010(ah)) {
2687 		gpio_shift = gpio;
2688 		REG_RMW(ah, AR7010_GPIO_OE,
2689 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2690 			(AR7010_GPIO_OE_MASK << gpio_shift));
2691 		return;
2692 	}
2693 
2694 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2695 	gpio_shift = 2 * gpio;
2696 	REG_RMW(ah,
2697 		AR_GPIO_OE_OUT,
2698 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2699 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2700 }
2701 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2702 
2703 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2704 {
2705 	if (AR_DEVID_7010(ah)) {
2706 		val = val ? 0 : 1;
2707 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2708 			AR_GPIO_BIT(gpio));
2709 		return;
2710 	}
2711 
2712 	if (AR_SREV_9271(ah))
2713 		val = ~val;
2714 
2715 	if ((1 << gpio) & AR_GPIO_OE_OUT_MASK)
2716 		REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2717 			AR_GPIO_BIT(gpio));
2718 	else
2719 		gpio_set_value(gpio, val & 1);
2720 }
2721 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2722 
2723 void ath9k_hw_request_gpio(struct ath_hw *ah, u32 gpio, const char *label)
2724 {
2725 	if (gpio >= ah->caps.num_gpio_pins)
2726 		return;
2727 
2728 	gpio_request_one(gpio, GPIOF_DIR_OUT | GPIOF_INIT_LOW, label);
2729 }
2730 EXPORT_SYMBOL(ath9k_hw_request_gpio);
2731 
2732 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2733 {
2734 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2735 }
2736 EXPORT_SYMBOL(ath9k_hw_setantenna);
2737 
2738 /*********************/
2739 /* General Operation */
2740 /*********************/
2741 
2742 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2743 {
2744 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2745 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2746 
2747 	if (phybits & AR_PHY_ERR_RADAR)
2748 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2749 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2750 		bits |= ATH9K_RX_FILTER_PHYERR;
2751 
2752 	return bits;
2753 }
2754 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2755 
2756 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2757 {
2758 	u32 phybits;
2759 
2760 	ENABLE_REGWRITE_BUFFER(ah);
2761 
2762 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2763 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2764 
2765 	REG_WRITE(ah, AR_RX_FILTER, bits);
2766 
2767 	phybits = 0;
2768 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2769 		phybits |= AR_PHY_ERR_RADAR;
2770 	if (bits & ATH9K_RX_FILTER_PHYERR)
2771 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2772 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2773 
2774 	if (phybits)
2775 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2776 	else
2777 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2778 
2779 	REGWRITE_BUFFER_FLUSH(ah);
2780 }
2781 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2782 
2783 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2784 {
2785 	if (ath9k_hw_mci_is_enabled(ah))
2786 		ar9003_mci_bt_gain_ctrl(ah);
2787 
2788 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2789 		return false;
2790 
2791 	ath9k_hw_init_pll(ah, NULL);
2792 	ah->htc_reset_init = true;
2793 	return true;
2794 }
2795 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2796 
2797 bool ath9k_hw_disable(struct ath_hw *ah)
2798 {
2799 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2800 		return false;
2801 
2802 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2803 		return false;
2804 
2805 	ath9k_hw_init_pll(ah, NULL);
2806 	return true;
2807 }
2808 EXPORT_SYMBOL(ath9k_hw_disable);
2809 
2810 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2811 {
2812 	enum eeprom_param gain_param;
2813 
2814 	if (IS_CHAN_2GHZ(chan))
2815 		gain_param = EEP_ANTENNA_GAIN_2G;
2816 	else
2817 		gain_param = EEP_ANTENNA_GAIN_5G;
2818 
2819 	return ah->eep_ops->get_eeprom(ah, gain_param);
2820 }
2821 
2822 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2823 			    bool test)
2824 {
2825 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2826 	struct ieee80211_channel *channel;
2827 	int chan_pwr, new_pwr, max_gain;
2828 	int ant_gain, ant_reduction = 0;
2829 
2830 	if (!chan)
2831 		return;
2832 
2833 	channel = chan->chan;
2834 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2835 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2836 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2837 
2838 	ant_gain = get_antenna_gain(ah, chan);
2839 	if (ant_gain > max_gain)
2840 		ant_reduction = ant_gain - max_gain;
2841 
2842 	ah->eep_ops->set_txpower(ah, chan,
2843 				 ath9k_regd_get_ctl(reg, chan),
2844 				 ant_reduction, new_pwr, test);
2845 }
2846 
2847 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2848 {
2849 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2850 	struct ath9k_channel *chan = ah->curchan;
2851 	struct ieee80211_channel *channel = chan->chan;
2852 
2853 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2854 	if (test)
2855 		channel->max_power = MAX_RATE_POWER / 2;
2856 
2857 	ath9k_hw_apply_txpower(ah, chan, test);
2858 
2859 	if (test)
2860 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2861 }
2862 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2863 
2864 void ath9k_hw_setopmode(struct ath_hw *ah)
2865 {
2866 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2867 }
2868 EXPORT_SYMBOL(ath9k_hw_setopmode);
2869 
2870 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2871 {
2872 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2873 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2874 }
2875 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2876 
2877 void ath9k_hw_write_associd(struct ath_hw *ah)
2878 {
2879 	struct ath_common *common = ath9k_hw_common(ah);
2880 
2881 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2882 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2883 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2884 }
2885 EXPORT_SYMBOL(ath9k_hw_write_associd);
2886 
2887 #define ATH9K_MAX_TSF_READ 10
2888 
2889 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2890 {
2891 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2892 	int i;
2893 
2894 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2895 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2896 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2897 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2898 		if (tsf_upper2 == tsf_upper1)
2899 			break;
2900 		tsf_upper1 = tsf_upper2;
2901 	}
2902 
2903 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2904 
2905 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2906 }
2907 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2908 
2909 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2910 {
2911 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2912 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2913 }
2914 EXPORT_SYMBOL(ath9k_hw_settsf64);
2915 
2916 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2917 {
2918 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2919 			   AH_TSF_WRITE_TIMEOUT))
2920 		ath_dbg(ath9k_hw_common(ah), RESET,
2921 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2922 
2923 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2924 }
2925 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2926 
2927 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2928 {
2929 	if (set)
2930 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2931 	else
2932 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2933 }
2934 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2935 
2936 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2937 {
2938 	u32 macmode;
2939 
2940 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2941 		macmode = AR_2040_JOINED_RX_CLEAR;
2942 	else
2943 		macmode = 0;
2944 
2945 	REG_WRITE(ah, AR_2040_MODE, macmode);
2946 }
2947 
2948 /* HW Generic timers configuration */
2949 
2950 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2951 {
2952 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2953 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2954 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2955 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2956 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2957 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2958 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2959 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2960 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2961 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2962 				AR_NDP2_TIMER_MODE, 0x0002},
2963 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2964 				AR_NDP2_TIMER_MODE, 0x0004},
2965 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2966 				AR_NDP2_TIMER_MODE, 0x0008},
2967 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2968 				AR_NDP2_TIMER_MODE, 0x0010},
2969 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2970 				AR_NDP2_TIMER_MODE, 0x0020},
2971 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2972 				AR_NDP2_TIMER_MODE, 0x0040},
2973 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2974 				AR_NDP2_TIMER_MODE, 0x0080}
2975 };
2976 
2977 /* HW generic timer primitives */
2978 
2979 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2980 {
2981 	return REG_READ(ah, AR_TSF_L32);
2982 }
2983 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2984 
2985 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
2986 {
2987 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2988 
2989 	if (timer_table->tsf2_enabled) {
2990 		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
2991 		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
2992 	}
2993 }
2994 
2995 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2996 					  void (*trigger)(void *),
2997 					  void (*overflow)(void *),
2998 					  void *arg,
2999 					  u8 timer_index)
3000 {
3001 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3002 	struct ath_gen_timer *timer;
3003 
3004 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3005 	    (timer_index >= ATH_MAX_GEN_TIMER))
3006 		return NULL;
3007 
3008 	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3009 	    !AR_SREV_9300_20_OR_LATER(ah))
3010 		return NULL;
3011 
3012 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3013 	if (timer == NULL)
3014 		return NULL;
3015 
3016 	/* allocate a hardware generic timer slot */
3017 	timer_table->timers[timer_index] = timer;
3018 	timer->index = timer_index;
3019 	timer->trigger = trigger;
3020 	timer->overflow = overflow;
3021 	timer->arg = arg;
3022 
3023 	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3024 		timer_table->tsf2_enabled = true;
3025 		ath9k_hw_gen_timer_start_tsf2(ah);
3026 	}
3027 
3028 	return timer;
3029 }
3030 EXPORT_SYMBOL(ath_gen_timer_alloc);
3031 
3032 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3033 			      struct ath_gen_timer *timer,
3034 			      u32 timer_next,
3035 			      u32 timer_period)
3036 {
3037 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3038 	u32 mask = 0;
3039 
3040 	timer_table->timer_mask |= BIT(timer->index);
3041 
3042 	/*
3043 	 * Program generic timer registers
3044 	 */
3045 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3046 		 timer_next);
3047 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3048 		  timer_period);
3049 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3050 		    gen_tmr_configuration[timer->index].mode_mask);
3051 
3052 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3053 		/*
3054 		 * Starting from AR9462, each generic timer can select which tsf
3055 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3056 		 * 8 - 15  use tsf2.
3057 		 */
3058 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3059 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3060 				       (1 << timer->index));
3061 		else
3062 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3063 				       (1 << timer->index));
3064 	}
3065 
3066 	if (timer->trigger)
3067 		mask |= SM(AR_GENTMR_BIT(timer->index),
3068 			   AR_IMR_S5_GENTIMER_TRIG);
3069 	if (timer->overflow)
3070 		mask |= SM(AR_GENTMR_BIT(timer->index),
3071 			   AR_IMR_S5_GENTIMER_THRESH);
3072 
3073 	REG_SET_BIT(ah, AR_IMR_S5, mask);
3074 
3075 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3076 		ah->imask |= ATH9K_INT_GENTIMER;
3077 		ath9k_hw_set_interrupts(ah);
3078 	}
3079 }
3080 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3081 
3082 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3083 {
3084 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3085 
3086 	/* Clear generic timer enable bits. */
3087 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3088 			gen_tmr_configuration[timer->index].mode_mask);
3089 
3090 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3091 		/*
3092 		 * Need to switch back to TSF if it was using TSF2.
3093 		 */
3094 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3095 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3096 				    (1 << timer->index));
3097 		}
3098 	}
3099 
3100 	/* Disable both trigger and thresh interrupt masks */
3101 	REG_CLR_BIT(ah, AR_IMR_S5,
3102 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3103 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3104 
3105 	timer_table->timer_mask &= ~BIT(timer->index);
3106 
3107 	if (timer_table->timer_mask == 0) {
3108 		ah->imask &= ~ATH9K_INT_GENTIMER;
3109 		ath9k_hw_set_interrupts(ah);
3110 	}
3111 }
3112 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3113 
3114 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3115 {
3116 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3117 
3118 	/* free the hardware generic timer slot */
3119 	timer_table->timers[timer->index] = NULL;
3120 	kfree(timer);
3121 }
3122 EXPORT_SYMBOL(ath_gen_timer_free);
3123 
3124 /*
3125  * Generic Timer Interrupts handling
3126  */
3127 void ath_gen_timer_isr(struct ath_hw *ah)
3128 {
3129 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3130 	struct ath_gen_timer *timer;
3131 	unsigned long trigger_mask, thresh_mask;
3132 	unsigned int index;
3133 
3134 	/* get hardware generic timer interrupt status */
3135 	trigger_mask = ah->intr_gen_timer_trigger;
3136 	thresh_mask = ah->intr_gen_timer_thresh;
3137 	trigger_mask &= timer_table->timer_mask;
3138 	thresh_mask &= timer_table->timer_mask;
3139 
3140 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3141 		timer = timer_table->timers[index];
3142 		if (!timer)
3143 		    continue;
3144 		if (!timer->overflow)
3145 		    continue;
3146 
3147 		trigger_mask &= ~BIT(index);
3148 		timer->overflow(timer->arg);
3149 	}
3150 
3151 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3152 		timer = timer_table->timers[index];
3153 		if (!timer)
3154 		    continue;
3155 		if (!timer->trigger)
3156 		    continue;
3157 		timer->trigger(timer->arg);
3158 	}
3159 }
3160 EXPORT_SYMBOL(ath_gen_timer_isr);
3161 
3162 /********/
3163 /* HTC  */
3164 /********/
3165 
3166 static struct {
3167 	u32 version;
3168 	const char * name;
3169 } ath_mac_bb_names[] = {
3170 	/* Devices with external radios */
3171 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3172 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3173 	{ AR_SREV_VERSION_9100,		"9100" },
3174 	{ AR_SREV_VERSION_9160,		"9160" },
3175 	/* Single-chip solutions */
3176 	{ AR_SREV_VERSION_9280,		"9280" },
3177 	{ AR_SREV_VERSION_9285,		"9285" },
3178 	{ AR_SREV_VERSION_9287,         "9287" },
3179 	{ AR_SREV_VERSION_9271,         "9271" },
3180 	{ AR_SREV_VERSION_9300,         "9300" },
3181 	{ AR_SREV_VERSION_9330,         "9330" },
3182 	{ AR_SREV_VERSION_9340,		"9340" },
3183 	{ AR_SREV_VERSION_9485,         "9485" },
3184 	{ AR_SREV_VERSION_9462,         "9462" },
3185 	{ AR_SREV_VERSION_9550,         "9550" },
3186 	{ AR_SREV_VERSION_9565,         "9565" },
3187 	{ AR_SREV_VERSION_9531,         "9531" },
3188 };
3189 
3190 /* For devices with external radios */
3191 static struct {
3192 	u16 version;
3193 	const char * name;
3194 } ath_rf_names[] = {
3195 	{ 0,				"5133" },
3196 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3197 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3198 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3199 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3200 };
3201 
3202 /*
3203  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3204  */
3205 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3206 {
3207 	int i;
3208 
3209 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3210 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3211 			return ath_mac_bb_names[i].name;
3212 		}
3213 	}
3214 
3215 	return "????";
3216 }
3217 
3218 /*
3219  * Return the RF name. "????" is returned if the RF is unknown.
3220  * Used for devices with external radios.
3221  */
3222 static const char *ath9k_hw_rf_name(u16 rf_version)
3223 {
3224 	int i;
3225 
3226 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3227 		if (ath_rf_names[i].version == rf_version) {
3228 			return ath_rf_names[i].name;
3229 		}
3230 	}
3231 
3232 	return "????";
3233 }
3234 
3235 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3236 {
3237 	int used;
3238 
3239 	/* chipsets >= AR9280 are single-chip */
3240 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3241 		used = scnprintf(hw_name, len,
3242 				 "Atheros AR%s Rev:%x",
3243 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3244 				 ah->hw_version.macRev);
3245 	}
3246 	else {
3247 		used = scnprintf(hw_name, len,
3248 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3249 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3250 				 ah->hw_version.macRev,
3251 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3252 						  & AR_RADIO_SREV_MAJOR)),
3253 				 ah->hw_version.phyRev);
3254 	}
3255 
3256 	hw_name[used] = '\0';
3257 }
3258 EXPORT_SYMBOL(ath9k_hw_name);
3259