xref: /linux/drivers/net/wireless/ath/ath9k/hw.c (revision 74e13060f11dbf4028b810e34c359f64929415f3)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "ar9003_phy.h"
28 #include "debug.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
38 static int __init ath9k_init(void)
39 {
40 	return 0;
41 }
42 module_init(ath9k_init);
43 
44 static void __exit ath9k_exit(void)
45 {
46 	return;
47 }
48 module_exit(ath9k_exit);
49 
50 /* Private hardware callbacks */
51 
52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 #ifdef CONFIG_ATH9K_DEBUGFS
85 
86 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
87 {
88 	struct ath_softc *sc = common->priv;
89 	if (sync_cause)
90 		sc->debug.stats.istats.sync_cause_all++;
91 	if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
92 		sc->debug.stats.istats.sync_rtc_irq++;
93 	if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
94 		sc->debug.stats.istats.sync_mac_irq++;
95 	if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
96 		sc->debug.stats.istats.eeprom_illegal_access++;
97 	if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
98 		sc->debug.stats.istats.apb_timeout++;
99 	if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
100 		sc->debug.stats.istats.pci_mode_conflict++;
101 	if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
102 		sc->debug.stats.istats.host1_fatal++;
103 	if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
104 		sc->debug.stats.istats.host1_perr++;
105 	if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
106 		sc->debug.stats.istats.trcv_fifo_perr++;
107 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
108 		sc->debug.stats.istats.radm_cpl_ep++;
109 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
110 		sc->debug.stats.istats.radm_cpl_dllp_abort++;
111 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
112 		sc->debug.stats.istats.radm_cpl_tlp_abort++;
113 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
114 		sc->debug.stats.istats.radm_cpl_ecrc_err++;
115 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
116 		sc->debug.stats.istats.radm_cpl_timeout++;
117 	if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
118 		sc->debug.stats.istats.local_timeout++;
119 	if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
120 		sc->debug.stats.istats.pm_access++;
121 	if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
122 		sc->debug.stats.istats.mac_awake++;
123 	if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
124 		sc->debug.stats.istats.mac_asleep++;
125 	if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
126 		sc->debug.stats.istats.mac_sleep_access++;
127 }
128 #endif
129 
130 
131 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
132 {
133 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
134 	struct ath_common *common = ath9k_hw_common(ah);
135 	unsigned int clockrate;
136 
137 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
138 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
139 		clockrate = 117;
140 	else if (!ah->curchan) /* should really check for CCK instead */
141 		clockrate = ATH9K_CLOCK_RATE_CCK;
142 	else if (conf->chandef.chan->band == IEEE80211_BAND_2GHZ)
143 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
144 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
145 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
146 	else
147 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
148 
149 	if (conf_is_ht40(conf))
150 		clockrate *= 2;
151 
152 	if (ah->curchan) {
153 		if (IS_CHAN_HALF_RATE(ah->curchan))
154 			clockrate /= 2;
155 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
156 			clockrate /= 4;
157 	}
158 
159 	common->clockrate = clockrate;
160 }
161 
162 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
163 {
164 	struct ath_common *common = ath9k_hw_common(ah);
165 
166 	return usecs * common->clockrate;
167 }
168 
169 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
170 {
171 	int i;
172 
173 	BUG_ON(timeout < AH_TIME_QUANTUM);
174 
175 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
176 		if ((REG_READ(ah, reg) & mask) == val)
177 			return true;
178 
179 		udelay(AH_TIME_QUANTUM);
180 	}
181 
182 	ath_dbg(ath9k_hw_common(ah), ANY,
183 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
184 		timeout, reg, REG_READ(ah, reg), mask, val);
185 
186 	return false;
187 }
188 EXPORT_SYMBOL(ath9k_hw_wait);
189 
190 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
191 			  int hw_delay)
192 {
193 	if (IS_CHAN_B(chan))
194 		hw_delay = (4 * hw_delay) / 22;
195 	else
196 		hw_delay /= 10;
197 
198 	if (IS_CHAN_HALF_RATE(chan))
199 		hw_delay *= 2;
200 	else if (IS_CHAN_QUARTER_RATE(chan))
201 		hw_delay *= 4;
202 
203 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
204 }
205 
206 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
207 			  int column, unsigned int *writecnt)
208 {
209 	int r;
210 
211 	ENABLE_REGWRITE_BUFFER(ah);
212 	for (r = 0; r < array->ia_rows; r++) {
213 		REG_WRITE(ah, INI_RA(array, r, 0),
214 			  INI_RA(array, r, column));
215 		DO_DELAY(*writecnt);
216 	}
217 	REGWRITE_BUFFER_FLUSH(ah);
218 }
219 
220 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
221 {
222 	u32 retval;
223 	int i;
224 
225 	for (i = 0, retval = 0; i < n; i++) {
226 		retval = (retval << 1) | (val & 1);
227 		val >>= 1;
228 	}
229 	return retval;
230 }
231 
232 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
233 			   u8 phy, int kbps,
234 			   u32 frameLen, u16 rateix,
235 			   bool shortPreamble)
236 {
237 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
238 
239 	if (kbps == 0)
240 		return 0;
241 
242 	switch (phy) {
243 	case WLAN_RC_PHY_CCK:
244 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
245 		if (shortPreamble)
246 			phyTime >>= 1;
247 		numBits = frameLen << 3;
248 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
249 		break;
250 	case WLAN_RC_PHY_OFDM:
251 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
252 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
253 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
254 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
255 			txTime = OFDM_SIFS_TIME_QUARTER
256 				+ OFDM_PREAMBLE_TIME_QUARTER
257 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
258 		} else if (ah->curchan &&
259 			   IS_CHAN_HALF_RATE(ah->curchan)) {
260 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
261 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
262 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
263 			txTime = OFDM_SIFS_TIME_HALF +
264 				OFDM_PREAMBLE_TIME_HALF
265 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
266 		} else {
267 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
268 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
269 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
270 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
271 				+ (numSymbols * OFDM_SYMBOL_TIME);
272 		}
273 		break;
274 	default:
275 		ath_err(ath9k_hw_common(ah),
276 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
277 		txTime = 0;
278 		break;
279 	}
280 
281 	return txTime;
282 }
283 EXPORT_SYMBOL(ath9k_hw_computetxtime);
284 
285 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
286 				  struct ath9k_channel *chan,
287 				  struct chan_centers *centers)
288 {
289 	int8_t extoff;
290 
291 	if (!IS_CHAN_HT40(chan)) {
292 		centers->ctl_center = centers->ext_center =
293 			centers->synth_center = chan->channel;
294 		return;
295 	}
296 
297 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
298 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
299 		centers->synth_center =
300 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
301 		extoff = 1;
302 	} else {
303 		centers->synth_center =
304 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
305 		extoff = -1;
306 	}
307 
308 	centers->ctl_center =
309 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
310 	/* 25 MHz spacing is supported by hw but not on upper layers */
311 	centers->ext_center =
312 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
313 }
314 
315 /******************/
316 /* Chip Revisions */
317 /******************/
318 
319 static void ath9k_hw_read_revisions(struct ath_hw *ah)
320 {
321 	u32 val;
322 
323 	switch (ah->hw_version.devid) {
324 	case AR5416_AR9100_DEVID:
325 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
326 		break;
327 	case AR9300_DEVID_AR9330:
328 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
329 		if (ah->get_mac_revision) {
330 			ah->hw_version.macRev = ah->get_mac_revision();
331 		} else {
332 			val = REG_READ(ah, AR_SREV);
333 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
334 		}
335 		return;
336 	case AR9300_DEVID_AR9340:
337 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
338 		val = REG_READ(ah, AR_SREV);
339 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
340 		return;
341 	case AR9300_DEVID_QCA955X:
342 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
343 		return;
344 	}
345 
346 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
347 
348 	if (val == 0xFF) {
349 		val = REG_READ(ah, AR_SREV);
350 		ah->hw_version.macVersion =
351 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
352 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
353 
354 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
355 			ah->is_pciexpress = true;
356 		else
357 			ah->is_pciexpress = (val &
358 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
359 	} else {
360 		if (!AR_SREV_9100(ah))
361 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
362 
363 		ah->hw_version.macRev = val & AR_SREV_REVISION;
364 
365 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
366 			ah->is_pciexpress = true;
367 	}
368 }
369 
370 /************************************/
371 /* HW Attach, Detach, Init Routines */
372 /************************************/
373 
374 static void ath9k_hw_disablepcie(struct ath_hw *ah)
375 {
376 	if (!AR_SREV_5416(ah))
377 		return;
378 
379 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
380 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
381 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
382 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
383 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
384 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
385 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
386 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
387 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
388 
389 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
390 }
391 
392 /* This should work for all families including legacy */
393 static bool ath9k_hw_chip_test(struct ath_hw *ah)
394 {
395 	struct ath_common *common = ath9k_hw_common(ah);
396 	u32 regAddr[2] = { AR_STA_ID0 };
397 	u32 regHold[2];
398 	static const u32 patternData[4] = {
399 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
400 	};
401 	int i, j, loop_max;
402 
403 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
404 		loop_max = 2;
405 		regAddr[1] = AR_PHY_BASE + (8 << 2);
406 	} else
407 		loop_max = 1;
408 
409 	for (i = 0; i < loop_max; i++) {
410 		u32 addr = regAddr[i];
411 		u32 wrData, rdData;
412 
413 		regHold[i] = REG_READ(ah, addr);
414 		for (j = 0; j < 0x100; j++) {
415 			wrData = (j << 16) | j;
416 			REG_WRITE(ah, addr, wrData);
417 			rdData = REG_READ(ah, addr);
418 			if (rdData != wrData) {
419 				ath_err(common,
420 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
421 					addr, wrData, rdData);
422 				return false;
423 			}
424 		}
425 		for (j = 0; j < 4; j++) {
426 			wrData = patternData[j];
427 			REG_WRITE(ah, addr, wrData);
428 			rdData = REG_READ(ah, addr);
429 			if (wrData != rdData) {
430 				ath_err(common,
431 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
432 					addr, wrData, rdData);
433 				return false;
434 			}
435 		}
436 		REG_WRITE(ah, regAddr[i], regHold[i]);
437 	}
438 	udelay(100);
439 
440 	return true;
441 }
442 
443 static void ath9k_hw_init_config(struct ath_hw *ah)
444 {
445 	int i;
446 
447 	ah->config.dma_beacon_response_time = 1;
448 	ah->config.sw_beacon_response_time = 6;
449 	ah->config.additional_swba_backoff = 0;
450 	ah->config.ack_6mb = 0x0;
451 	ah->config.cwm_ignore_extcca = 0;
452 	ah->config.pcie_clock_req = 0;
453 	ah->config.pcie_waen = 0;
454 	ah->config.analog_shiftreg = 1;
455 
456 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
457 		ah->config.spurchans[i][0] = AR_NO_SPUR;
458 		ah->config.spurchans[i][1] = AR_NO_SPUR;
459 	}
460 
461 	ah->config.rx_intr_mitigation = true;
462 	ah->config.pcieSerDesWrite = true;
463 
464 	/*
465 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
466 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
467 	 * This means we use it for all AR5416 devices, and the few
468 	 * minor PCI AR9280 devices out there.
469 	 *
470 	 * Serialization is required because these devices do not handle
471 	 * well the case of two concurrent reads/writes due to the latency
472 	 * involved. During one read/write another read/write can be issued
473 	 * on another CPU while the previous read/write may still be working
474 	 * on our hardware, if we hit this case the hardware poops in a loop.
475 	 * We prevent this by serializing reads and writes.
476 	 *
477 	 * This issue is not present on PCI-Express devices or pre-AR5416
478 	 * devices (legacy, 802.11abg).
479 	 */
480 	if (num_possible_cpus() > 1)
481 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
482 }
483 
484 static void ath9k_hw_init_defaults(struct ath_hw *ah)
485 {
486 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
487 
488 	regulatory->country_code = CTRY_DEFAULT;
489 	regulatory->power_limit = MAX_RATE_POWER;
490 
491 	ah->hw_version.magic = AR5416_MAGIC;
492 	ah->hw_version.subvendorid = 0;
493 
494 	ah->atim_window = 0;
495 	ah->sta_id1_defaults =
496 		AR_STA_ID1_CRPT_MIC_ENABLE |
497 		AR_STA_ID1_MCAST_KSRCH;
498 	if (AR_SREV_9100(ah))
499 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
500 	ah->slottime = ATH9K_SLOT_TIME_9;
501 	ah->globaltxtimeout = (u32) -1;
502 	ah->power_mode = ATH9K_PM_UNDEFINED;
503 	ah->htc_reset_init = true;
504 }
505 
506 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
507 {
508 	struct ath_common *common = ath9k_hw_common(ah);
509 	u32 sum;
510 	int i;
511 	u16 eeval;
512 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
513 
514 	sum = 0;
515 	for (i = 0; i < 3; i++) {
516 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
517 		sum += eeval;
518 		common->macaddr[2 * i] = eeval >> 8;
519 		common->macaddr[2 * i + 1] = eeval & 0xff;
520 	}
521 	if (sum == 0 || sum == 0xffff * 3)
522 		return -EADDRNOTAVAIL;
523 
524 	return 0;
525 }
526 
527 static int ath9k_hw_post_init(struct ath_hw *ah)
528 {
529 	struct ath_common *common = ath9k_hw_common(ah);
530 	int ecode;
531 
532 	if (common->bus_ops->ath_bus_type != ATH_USB) {
533 		if (!ath9k_hw_chip_test(ah))
534 			return -ENODEV;
535 	}
536 
537 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
538 		ecode = ar9002_hw_rf_claim(ah);
539 		if (ecode != 0)
540 			return ecode;
541 	}
542 
543 	ecode = ath9k_hw_eeprom_init(ah);
544 	if (ecode != 0)
545 		return ecode;
546 
547 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
548 		ah->eep_ops->get_eeprom_ver(ah),
549 		ah->eep_ops->get_eeprom_rev(ah));
550 
551 	ath9k_hw_ani_init(ah);
552 
553 	return 0;
554 }
555 
556 static int ath9k_hw_attach_ops(struct ath_hw *ah)
557 {
558 	if (!AR_SREV_9300_20_OR_LATER(ah))
559 		return ar9002_hw_attach_ops(ah);
560 
561 	ar9003_hw_attach_ops(ah);
562 	return 0;
563 }
564 
565 /* Called for all hardware families */
566 static int __ath9k_hw_init(struct ath_hw *ah)
567 {
568 	struct ath_common *common = ath9k_hw_common(ah);
569 	int r = 0;
570 
571 	ath9k_hw_read_revisions(ah);
572 
573 	/*
574 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
575 	 * We need to do this to avoid RMW of this register. We cannot
576 	 * read the reg when chip is asleep.
577 	 */
578 	ah->WARegVal = REG_READ(ah, AR_WA);
579 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
580 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
581 
582 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
583 		ath_err(common, "Couldn't reset chip\n");
584 		return -EIO;
585 	}
586 
587 	if (AR_SREV_9462(ah))
588 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
589 
590 	if (AR_SREV_9565(ah)) {
591 		ah->WARegVal |= AR_WA_BIT22;
592 		REG_WRITE(ah, AR_WA, ah->WARegVal);
593 	}
594 
595 	ath9k_hw_init_defaults(ah);
596 	ath9k_hw_init_config(ah);
597 
598 	r = ath9k_hw_attach_ops(ah);
599 	if (r)
600 		return r;
601 
602 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
603 		ath_err(common, "Couldn't wakeup chip\n");
604 		return -EIO;
605 	}
606 
607 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
608 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
609 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
610 		     !ah->is_pciexpress)) {
611 			ah->config.serialize_regmode =
612 				SER_REG_MODE_ON;
613 		} else {
614 			ah->config.serialize_regmode =
615 				SER_REG_MODE_OFF;
616 		}
617 	}
618 
619 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
620 		ah->config.serialize_regmode);
621 
622 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
623 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
624 	else
625 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
626 
627 	switch (ah->hw_version.macVersion) {
628 	case AR_SREV_VERSION_5416_PCI:
629 	case AR_SREV_VERSION_5416_PCIE:
630 	case AR_SREV_VERSION_9160:
631 	case AR_SREV_VERSION_9100:
632 	case AR_SREV_VERSION_9280:
633 	case AR_SREV_VERSION_9285:
634 	case AR_SREV_VERSION_9287:
635 	case AR_SREV_VERSION_9271:
636 	case AR_SREV_VERSION_9300:
637 	case AR_SREV_VERSION_9330:
638 	case AR_SREV_VERSION_9485:
639 	case AR_SREV_VERSION_9340:
640 	case AR_SREV_VERSION_9462:
641 	case AR_SREV_VERSION_9550:
642 	case AR_SREV_VERSION_9565:
643 		break;
644 	default:
645 		ath_err(common,
646 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
647 			ah->hw_version.macVersion, ah->hw_version.macRev);
648 		return -EOPNOTSUPP;
649 	}
650 
651 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
652 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
653 		ah->is_pciexpress = false;
654 
655 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
656 	ath9k_hw_init_cal_settings(ah);
657 
658 	ah->ani_function = ATH9K_ANI_ALL;
659 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
660 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
661 	if (!AR_SREV_9300_20_OR_LATER(ah))
662 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
663 
664 	if (!ah->is_pciexpress)
665 		ath9k_hw_disablepcie(ah);
666 
667 	r = ath9k_hw_post_init(ah);
668 	if (r)
669 		return r;
670 
671 	ath9k_hw_init_mode_gain_regs(ah);
672 	r = ath9k_hw_fill_cap_info(ah);
673 	if (r)
674 		return r;
675 
676 	r = ath9k_hw_init_macaddr(ah);
677 	if (r) {
678 		ath_err(common, "Failed to initialize MAC address\n");
679 		return r;
680 	}
681 
682 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
683 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
684 	else
685 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
686 
687 	if (AR_SREV_9330(ah))
688 		ah->bb_watchdog_timeout_ms = 85;
689 	else
690 		ah->bb_watchdog_timeout_ms = 25;
691 
692 	common->state = ATH_HW_INITIALIZED;
693 
694 	return 0;
695 }
696 
697 int ath9k_hw_init(struct ath_hw *ah)
698 {
699 	int ret;
700 	struct ath_common *common = ath9k_hw_common(ah);
701 
702 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
703 	switch (ah->hw_version.devid) {
704 	case AR5416_DEVID_PCI:
705 	case AR5416_DEVID_PCIE:
706 	case AR5416_AR9100_DEVID:
707 	case AR9160_DEVID_PCI:
708 	case AR9280_DEVID_PCI:
709 	case AR9280_DEVID_PCIE:
710 	case AR9285_DEVID_PCIE:
711 	case AR9287_DEVID_PCI:
712 	case AR9287_DEVID_PCIE:
713 	case AR2427_DEVID_PCIE:
714 	case AR9300_DEVID_PCIE:
715 	case AR9300_DEVID_AR9485_PCIE:
716 	case AR9300_DEVID_AR9330:
717 	case AR9300_DEVID_AR9340:
718 	case AR9300_DEVID_QCA955X:
719 	case AR9300_DEVID_AR9580:
720 	case AR9300_DEVID_AR9462:
721 	case AR9485_DEVID_AR1111:
722 	case AR9300_DEVID_AR9565:
723 		break;
724 	default:
725 		if (common->bus_ops->ath_bus_type == ATH_USB)
726 			break;
727 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
728 			ah->hw_version.devid);
729 		return -EOPNOTSUPP;
730 	}
731 
732 	ret = __ath9k_hw_init(ah);
733 	if (ret) {
734 		ath_err(common,
735 			"Unable to initialize hardware; initialization status: %d\n",
736 			ret);
737 		return ret;
738 	}
739 
740 	return 0;
741 }
742 EXPORT_SYMBOL(ath9k_hw_init);
743 
744 static void ath9k_hw_init_qos(struct ath_hw *ah)
745 {
746 	ENABLE_REGWRITE_BUFFER(ah);
747 
748 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
749 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
750 
751 	REG_WRITE(ah, AR_QOS_NO_ACK,
752 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
753 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
754 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
755 
756 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
757 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
758 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
759 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
760 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
761 
762 	REGWRITE_BUFFER_FLUSH(ah);
763 }
764 
765 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
766 {
767 	struct ath_common *common = ath9k_hw_common(ah);
768 	int i = 0;
769 
770 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
771 	udelay(100);
772 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
773 
774 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
775 
776 		udelay(100);
777 
778 		if (WARN_ON_ONCE(i >= 100)) {
779 			ath_err(common, "PLL4 meaurement not done\n");
780 			break;
781 		}
782 
783 		i++;
784 	}
785 
786 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
787 }
788 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
789 
790 static void ath9k_hw_init_pll(struct ath_hw *ah,
791 			      struct ath9k_channel *chan)
792 {
793 	u32 pll;
794 
795 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
796 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
797 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
798 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
799 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
800 			      AR_CH0_DPLL2_KD, 0x40);
801 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
802 			      AR_CH0_DPLL2_KI, 0x4);
803 
804 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
805 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
806 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
807 			      AR_CH0_BB_DPLL1_NINI, 0x58);
808 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
809 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
810 
811 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
812 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
813 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
814 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
815 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
816 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
817 
818 		/* program BB PLL phase_shift to 0x6 */
819 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
820 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
821 
822 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
823 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
824 		udelay(1000);
825 	} else if (AR_SREV_9330(ah)) {
826 		u32 ddr_dpll2, pll_control2, kd;
827 
828 		if (ah->is_clk_25mhz) {
829 			ddr_dpll2 = 0x18e82f01;
830 			pll_control2 = 0xe04a3d;
831 			kd = 0x1d;
832 		} else {
833 			ddr_dpll2 = 0x19e82f01;
834 			pll_control2 = 0x886666;
835 			kd = 0x3d;
836 		}
837 
838 		/* program DDR PLL ki and kd value */
839 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
840 
841 		/* program DDR PLL phase_shift */
842 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
843 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
844 
845 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
846 		udelay(1000);
847 
848 		/* program refdiv, nint, frac to RTC register */
849 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
850 
851 		/* program BB PLL kd and ki value */
852 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
853 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
854 
855 		/* program BB PLL phase_shift */
856 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
857 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
858 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
859 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
860 
861 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
862 		udelay(1000);
863 
864 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
865 		udelay(100);
866 
867 		if (ah->is_clk_25mhz) {
868 			pll2_divint = 0x54;
869 			pll2_divfrac = 0x1eb85;
870 			refdiv = 3;
871 		} else {
872 			if (AR_SREV_9340(ah)) {
873 				pll2_divint = 88;
874 				pll2_divfrac = 0;
875 				refdiv = 5;
876 			} else {
877 				pll2_divint = 0x11;
878 				pll2_divfrac = 0x26666;
879 				refdiv = 1;
880 			}
881 		}
882 
883 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
884 		regval |= (0x1 << 16);
885 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
886 		udelay(100);
887 
888 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
889 			  (pll2_divint << 18) | pll2_divfrac);
890 		udelay(100);
891 
892 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
893 		if (AR_SREV_9340(ah))
894 			regval = (regval & 0x80071fff) | (0x1 << 30) |
895 				 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
896 		else
897 			regval = (regval & 0x80071fff) | (0x3 << 30) |
898 				 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
899 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
900 		REG_WRITE(ah, AR_PHY_PLL_MODE,
901 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
902 		udelay(1000);
903 	}
904 
905 	pll = ath9k_hw_compute_pll_control(ah, chan);
906 	if (AR_SREV_9565(ah))
907 		pll |= 0x40000;
908 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
909 
910 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
911 	    AR_SREV_9550(ah))
912 		udelay(1000);
913 
914 	/* Switch the core clock for ar9271 to 117Mhz */
915 	if (AR_SREV_9271(ah)) {
916 		udelay(500);
917 		REG_WRITE(ah, 0x50040, 0x304);
918 	}
919 
920 	udelay(RTC_PLL_SETTLE_DELAY);
921 
922 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
923 
924 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
925 		if (ah->is_clk_25mhz) {
926 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
927 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
928 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
929 		} else {
930 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
931 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
932 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
933 		}
934 		udelay(100);
935 	}
936 }
937 
938 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
939 					  enum nl80211_iftype opmode)
940 {
941 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
942 	u32 imr_reg = AR_IMR_TXERR |
943 		AR_IMR_TXURN |
944 		AR_IMR_RXERR |
945 		AR_IMR_RXORN |
946 		AR_IMR_BCNMISC;
947 
948 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
949 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
950 
951 	if (AR_SREV_9300_20_OR_LATER(ah)) {
952 		imr_reg |= AR_IMR_RXOK_HP;
953 		if (ah->config.rx_intr_mitigation)
954 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
955 		else
956 			imr_reg |= AR_IMR_RXOK_LP;
957 
958 	} else {
959 		if (ah->config.rx_intr_mitigation)
960 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
961 		else
962 			imr_reg |= AR_IMR_RXOK;
963 	}
964 
965 	if (ah->config.tx_intr_mitigation)
966 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
967 	else
968 		imr_reg |= AR_IMR_TXOK;
969 
970 	ENABLE_REGWRITE_BUFFER(ah);
971 
972 	REG_WRITE(ah, AR_IMR, imr_reg);
973 	ah->imrs2_reg |= AR_IMR_S2_GTT;
974 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
975 
976 	if (!AR_SREV_9100(ah)) {
977 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
978 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
979 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
980 	}
981 
982 	REGWRITE_BUFFER_FLUSH(ah);
983 
984 	if (AR_SREV_9300_20_OR_LATER(ah)) {
985 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
986 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
987 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
988 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
989 	}
990 }
991 
992 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
993 {
994 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
995 	val = min(val, (u32) 0xFFFF);
996 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
997 }
998 
999 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1000 {
1001 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1002 	val = min(val, (u32) 0xFFFF);
1003 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1004 }
1005 
1006 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1007 {
1008 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1009 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1010 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1011 }
1012 
1013 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1014 {
1015 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1016 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1017 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1018 }
1019 
1020 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1021 {
1022 	if (tu > 0xFFFF) {
1023 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1024 			tu);
1025 		ah->globaltxtimeout = (u32) -1;
1026 		return false;
1027 	} else {
1028 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1029 		ah->globaltxtimeout = tu;
1030 		return true;
1031 	}
1032 }
1033 
1034 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1035 {
1036 	struct ath_common *common = ath9k_hw_common(ah);
1037 	struct ieee80211_conf *conf = &common->hw->conf;
1038 	const struct ath9k_channel *chan = ah->curchan;
1039 	int acktimeout, ctstimeout, ack_offset = 0;
1040 	int slottime;
1041 	int sifstime;
1042 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1043 	u32 reg;
1044 
1045 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1046 		ah->misc_mode);
1047 
1048 	if (!chan)
1049 		return;
1050 
1051 	if (ah->misc_mode != 0)
1052 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1053 
1054 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1055 		rx_lat = 41;
1056 	else
1057 		rx_lat = 37;
1058 	tx_lat = 54;
1059 
1060 	if (IS_CHAN_5GHZ(chan))
1061 		sifstime = 16;
1062 	else
1063 		sifstime = 10;
1064 
1065 	if (IS_CHAN_HALF_RATE(chan)) {
1066 		eifs = 175;
1067 		rx_lat *= 2;
1068 		tx_lat *= 2;
1069 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1070 		    tx_lat += 11;
1071 
1072 		sifstime *= 2;
1073 		ack_offset = 16;
1074 		slottime = 13;
1075 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1076 		eifs = 340;
1077 		rx_lat = (rx_lat * 4) - 1;
1078 		tx_lat *= 4;
1079 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1080 		    tx_lat += 22;
1081 
1082 		sifstime *= 4;
1083 		ack_offset = 32;
1084 		slottime = 21;
1085 	} else {
1086 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1087 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1088 			reg = AR_USEC_ASYNC_FIFO;
1089 		} else {
1090 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1091 				common->clockrate;
1092 			reg = REG_READ(ah, AR_USEC);
1093 		}
1094 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1095 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1096 
1097 		slottime = ah->slottime;
1098 	}
1099 
1100 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1101 	slottime += 3 * ah->coverage_class;
1102 	acktimeout = slottime + sifstime + ack_offset;
1103 	ctstimeout = acktimeout;
1104 
1105 	/*
1106 	 * Workaround for early ACK timeouts, add an offset to match the
1107 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1108 	 * This was initially only meant to work around an issue with delayed
1109 	 * BA frames in some implementations, but it has been found to fix ACK
1110 	 * timeout issues in other cases as well.
1111 	 */
1112 	if (conf->chandef.chan &&
1113 	    conf->chandef.chan->band == IEEE80211_BAND_2GHZ &&
1114 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1115 		acktimeout += 64 - sifstime - ah->slottime;
1116 		ctstimeout += 48 - sifstime - ah->slottime;
1117 	}
1118 
1119 
1120 	ath9k_hw_set_sifs_time(ah, sifstime);
1121 	ath9k_hw_setslottime(ah, slottime);
1122 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1123 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1124 	if (ah->globaltxtimeout != (u32) -1)
1125 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1126 
1127 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1128 	REG_RMW(ah, AR_USEC,
1129 		(common->clockrate - 1) |
1130 		SM(rx_lat, AR_USEC_RX_LAT) |
1131 		SM(tx_lat, AR_USEC_TX_LAT),
1132 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1133 
1134 }
1135 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1136 
1137 void ath9k_hw_deinit(struct ath_hw *ah)
1138 {
1139 	struct ath_common *common = ath9k_hw_common(ah);
1140 
1141 	if (common->state < ATH_HW_INITIALIZED)
1142 		return;
1143 
1144 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1145 }
1146 EXPORT_SYMBOL(ath9k_hw_deinit);
1147 
1148 /*******/
1149 /* INI */
1150 /*******/
1151 
1152 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1153 {
1154 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1155 
1156 	if (IS_CHAN_B(chan))
1157 		ctl |= CTL_11B;
1158 	else if (IS_CHAN_G(chan))
1159 		ctl |= CTL_11G;
1160 	else
1161 		ctl |= CTL_11A;
1162 
1163 	return ctl;
1164 }
1165 
1166 /****************************************/
1167 /* Reset and Channel Switching Routines */
1168 /****************************************/
1169 
1170 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1171 {
1172 	struct ath_common *common = ath9k_hw_common(ah);
1173 	int txbuf_size;
1174 
1175 	ENABLE_REGWRITE_BUFFER(ah);
1176 
1177 	/*
1178 	 * set AHB_MODE not to do cacheline prefetches
1179 	*/
1180 	if (!AR_SREV_9300_20_OR_LATER(ah))
1181 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1182 
1183 	/*
1184 	 * let mac dma reads be in 128 byte chunks
1185 	 */
1186 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1187 
1188 	REGWRITE_BUFFER_FLUSH(ah);
1189 
1190 	/*
1191 	 * Restore TX Trigger Level to its pre-reset value.
1192 	 * The initial value depends on whether aggregation is enabled, and is
1193 	 * adjusted whenever underruns are detected.
1194 	 */
1195 	if (!AR_SREV_9300_20_OR_LATER(ah))
1196 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1197 
1198 	ENABLE_REGWRITE_BUFFER(ah);
1199 
1200 	/*
1201 	 * let mac dma writes be in 128 byte chunks
1202 	 */
1203 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1204 
1205 	/*
1206 	 * Setup receive FIFO threshold to hold off TX activities
1207 	 */
1208 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1209 
1210 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1211 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1212 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1213 
1214 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1215 			ah->caps.rx_status_len);
1216 	}
1217 
1218 	/*
1219 	 * reduce the number of usable entries in PCU TXBUF to avoid
1220 	 * wrap around issues.
1221 	 */
1222 	if (AR_SREV_9285(ah)) {
1223 		/* For AR9285 the number of Fifos are reduced to half.
1224 		 * So set the usable tx buf size also to half to
1225 		 * avoid data/delimiter underruns
1226 		 */
1227 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1228 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1229 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1230 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1231 	} else {
1232 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1233 	}
1234 
1235 	if (!AR_SREV_9271(ah))
1236 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1237 
1238 	REGWRITE_BUFFER_FLUSH(ah);
1239 
1240 	if (AR_SREV_9300_20_OR_LATER(ah))
1241 		ath9k_hw_reset_txstatus_ring(ah);
1242 }
1243 
1244 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1245 {
1246 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1247 	u32 set = AR_STA_ID1_KSRCH_MODE;
1248 
1249 	switch (opmode) {
1250 	case NL80211_IFTYPE_ADHOC:
1251 		set |= AR_STA_ID1_ADHOC;
1252 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1253 		break;
1254 	case NL80211_IFTYPE_MESH_POINT:
1255 	case NL80211_IFTYPE_AP:
1256 		set |= AR_STA_ID1_STA_AP;
1257 		/* fall through */
1258 	case NL80211_IFTYPE_STATION:
1259 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1260 		break;
1261 	default:
1262 		if (!ah->is_monitoring)
1263 			set = 0;
1264 		break;
1265 	}
1266 	REG_RMW(ah, AR_STA_ID1, set, mask);
1267 }
1268 
1269 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1270 				   u32 *coef_mantissa, u32 *coef_exponent)
1271 {
1272 	u32 coef_exp, coef_man;
1273 
1274 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1275 		if ((coef_scaled >> coef_exp) & 0x1)
1276 			break;
1277 
1278 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1279 
1280 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1281 
1282 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1283 	*coef_exponent = coef_exp - 16;
1284 }
1285 
1286 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1287 {
1288 	u32 rst_flags;
1289 	u32 tmpReg;
1290 
1291 	if (AR_SREV_9100(ah)) {
1292 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1293 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1294 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1295 	}
1296 
1297 	ENABLE_REGWRITE_BUFFER(ah);
1298 
1299 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1300 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1301 		udelay(10);
1302 	}
1303 
1304 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1305 		  AR_RTC_FORCE_WAKE_ON_INT);
1306 
1307 	if (AR_SREV_9100(ah)) {
1308 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1309 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1310 	} else {
1311 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1312 		if (AR_SREV_9340(ah))
1313 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1314 		else
1315 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1316 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1317 
1318 		if (tmpReg) {
1319 			u32 val;
1320 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1321 
1322 			val = AR_RC_HOSTIF;
1323 			if (!AR_SREV_9300_20_OR_LATER(ah))
1324 				val |= AR_RC_AHB;
1325 			REG_WRITE(ah, AR_RC, val);
1326 
1327 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1328 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1329 
1330 		rst_flags = AR_RTC_RC_MAC_WARM;
1331 		if (type == ATH9K_RESET_COLD)
1332 			rst_flags |= AR_RTC_RC_MAC_COLD;
1333 	}
1334 
1335 	if (AR_SREV_9330(ah)) {
1336 		int npend = 0;
1337 		int i;
1338 
1339 		/* AR9330 WAR:
1340 		 * call external reset function to reset WMAC if:
1341 		 * - doing a cold reset
1342 		 * - we have pending frames in the TX queues
1343 		 */
1344 
1345 		for (i = 0; i < AR_NUM_QCU; i++) {
1346 			npend = ath9k_hw_numtxpending(ah, i);
1347 			if (npend)
1348 				break;
1349 		}
1350 
1351 		if (ah->external_reset &&
1352 		    (npend || type == ATH9K_RESET_COLD)) {
1353 			int reset_err = 0;
1354 
1355 			ath_dbg(ath9k_hw_common(ah), RESET,
1356 				"reset MAC via external reset\n");
1357 
1358 			reset_err = ah->external_reset();
1359 			if (reset_err) {
1360 				ath_err(ath9k_hw_common(ah),
1361 					"External reset failed, err=%d\n",
1362 					reset_err);
1363 				return false;
1364 			}
1365 
1366 			REG_WRITE(ah, AR_RTC_RESET, 1);
1367 		}
1368 	}
1369 
1370 	if (ath9k_hw_mci_is_enabled(ah))
1371 		ar9003_mci_check_gpm_offset(ah);
1372 
1373 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1374 
1375 	REGWRITE_BUFFER_FLUSH(ah);
1376 
1377 	udelay(50);
1378 
1379 	REG_WRITE(ah, AR_RTC_RC, 0);
1380 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1381 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1382 		return false;
1383 	}
1384 
1385 	if (!AR_SREV_9100(ah))
1386 		REG_WRITE(ah, AR_RC, 0);
1387 
1388 	if (AR_SREV_9100(ah))
1389 		udelay(50);
1390 
1391 	return true;
1392 }
1393 
1394 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1395 {
1396 	ENABLE_REGWRITE_BUFFER(ah);
1397 
1398 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1399 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1400 		udelay(10);
1401 	}
1402 
1403 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1404 		  AR_RTC_FORCE_WAKE_ON_INT);
1405 
1406 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1407 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1408 
1409 	REG_WRITE(ah, AR_RTC_RESET, 0);
1410 
1411 	REGWRITE_BUFFER_FLUSH(ah);
1412 
1413 	if (!AR_SREV_9300_20_OR_LATER(ah))
1414 		udelay(2);
1415 
1416 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1417 		REG_WRITE(ah, AR_RC, 0);
1418 
1419 	REG_WRITE(ah, AR_RTC_RESET, 1);
1420 
1421 	if (!ath9k_hw_wait(ah,
1422 			   AR_RTC_STATUS,
1423 			   AR_RTC_STATUS_M,
1424 			   AR_RTC_STATUS_ON,
1425 			   AH_WAIT_TIMEOUT)) {
1426 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1427 		return false;
1428 	}
1429 
1430 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1431 }
1432 
1433 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1434 {
1435 	bool ret = false;
1436 
1437 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1438 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1439 		udelay(10);
1440 	}
1441 
1442 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1443 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1444 
1445 	if (!ah->reset_power_on)
1446 		type = ATH9K_RESET_POWER_ON;
1447 
1448 	switch (type) {
1449 	case ATH9K_RESET_POWER_ON:
1450 		ret = ath9k_hw_set_reset_power_on(ah);
1451 		if (ret)
1452 			ah->reset_power_on = true;
1453 		break;
1454 	case ATH9K_RESET_WARM:
1455 	case ATH9K_RESET_COLD:
1456 		ret = ath9k_hw_set_reset(ah, type);
1457 		break;
1458 	default:
1459 		break;
1460 	}
1461 
1462 	return ret;
1463 }
1464 
1465 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1466 				struct ath9k_channel *chan)
1467 {
1468 	int reset_type = ATH9K_RESET_WARM;
1469 
1470 	if (AR_SREV_9280(ah)) {
1471 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1472 			reset_type = ATH9K_RESET_POWER_ON;
1473 		else
1474 			reset_type = ATH9K_RESET_COLD;
1475 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1476 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1477 		reset_type = ATH9K_RESET_COLD;
1478 
1479 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1480 		return false;
1481 
1482 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1483 		return false;
1484 
1485 	ah->chip_fullsleep = false;
1486 
1487 	if (AR_SREV_9330(ah))
1488 		ar9003_hw_internal_regulator_apply(ah);
1489 	ath9k_hw_init_pll(ah, chan);
1490 	ath9k_hw_set_rfmode(ah, chan);
1491 
1492 	return true;
1493 }
1494 
1495 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1496 				    struct ath9k_channel *chan)
1497 {
1498 	struct ath_common *common = ath9k_hw_common(ah);
1499 	u32 qnum;
1500 	int r;
1501 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1502 	bool band_switch, mode_diff;
1503 	u8 ini_reloaded;
1504 
1505 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1506 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1507 						    CHANNEL_5GHZ));
1508 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1509 
1510 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1511 		if (ath9k_hw_numtxpending(ah, qnum)) {
1512 			ath_dbg(common, QUEUE,
1513 				"Transmit frames pending on queue %d\n", qnum);
1514 			return false;
1515 		}
1516 	}
1517 
1518 	if (!ath9k_hw_rfbus_req(ah)) {
1519 		ath_err(common, "Could not kill baseband RX\n");
1520 		return false;
1521 	}
1522 
1523 	if (edma && (band_switch || mode_diff)) {
1524 		ath9k_hw_mark_phy_inactive(ah);
1525 		udelay(5);
1526 
1527 		ath9k_hw_init_pll(ah, NULL);
1528 
1529 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1530 			ath_err(common, "Failed to do fast channel change\n");
1531 			return false;
1532 		}
1533 	}
1534 
1535 	ath9k_hw_set_channel_regs(ah, chan);
1536 
1537 	r = ath9k_hw_rf_set_freq(ah, chan);
1538 	if (r) {
1539 		ath_err(common, "Failed to set channel\n");
1540 		return false;
1541 	}
1542 	ath9k_hw_set_clockrate(ah);
1543 	ath9k_hw_apply_txpower(ah, chan, false);
1544 	ath9k_hw_rfbus_done(ah);
1545 
1546 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1547 		ath9k_hw_set_delta_slope(ah, chan);
1548 
1549 	ath9k_hw_spur_mitigate_freq(ah, chan);
1550 
1551 	if (edma && (band_switch || mode_diff)) {
1552 		ah->ah_flags |= AH_FASTCC;
1553 		if (band_switch || ini_reloaded)
1554 			ah->eep_ops->set_board_values(ah, chan);
1555 
1556 		ath9k_hw_init_bb(ah, chan);
1557 
1558 		if (band_switch || ini_reloaded)
1559 			ath9k_hw_init_cal(ah, chan);
1560 		ah->ah_flags &= ~AH_FASTCC;
1561 	}
1562 
1563 	return true;
1564 }
1565 
1566 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1567 {
1568 	u32 gpio_mask = ah->gpio_mask;
1569 	int i;
1570 
1571 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1572 		if (!(gpio_mask & 1))
1573 			continue;
1574 
1575 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1576 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1577 	}
1578 }
1579 
1580 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1581 			       int *hang_state, int *hang_pos)
1582 {
1583 	static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1584 	u32 chain_state, dcs_pos, i;
1585 
1586 	for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1587 		chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1588 		for (i = 0; i < 3; i++) {
1589 			if (chain_state == dcu_chain_state[i]) {
1590 				*hang_state = chain_state;
1591 				*hang_pos = dcs_pos;
1592 				return true;
1593 			}
1594 		}
1595 	}
1596 	return false;
1597 }
1598 
1599 #define DCU_COMPLETE_STATE        1
1600 #define DCU_COMPLETE_STATE_MASK 0x3
1601 #define NUM_STATUS_READS         50
1602 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1603 {
1604 	u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1605 	u32 i, hang_pos, hang_state, num_state = 6;
1606 
1607 	comp_state = REG_READ(ah, AR_DMADBG_6);
1608 
1609 	if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1610 		ath_dbg(ath9k_hw_common(ah), RESET,
1611 			"MAC Hang signature not found at DCU complete\n");
1612 		return false;
1613 	}
1614 
1615 	chain_state = REG_READ(ah, dcs_reg);
1616 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1617 		goto hang_check_iter;
1618 
1619 	dcs_reg = AR_DMADBG_5;
1620 	num_state = 4;
1621 	chain_state = REG_READ(ah, dcs_reg);
1622 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1623 		goto hang_check_iter;
1624 
1625 	ath_dbg(ath9k_hw_common(ah), RESET,
1626 		"MAC Hang signature 1 not found\n");
1627 	return false;
1628 
1629 hang_check_iter:
1630 	ath_dbg(ath9k_hw_common(ah), RESET,
1631 		"DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1632 		chain_state, comp_state, hang_state, hang_pos);
1633 
1634 	for (i = 0; i < NUM_STATUS_READS; i++) {
1635 		chain_state = REG_READ(ah, dcs_reg);
1636 		chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1637 		comp_state = REG_READ(ah, AR_DMADBG_6);
1638 
1639 		if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1640 					DCU_COMPLETE_STATE) ||
1641 		    (chain_state != hang_state))
1642 			return false;
1643 	}
1644 
1645 	ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1646 
1647 	return true;
1648 }
1649 
1650 bool ath9k_hw_check_alive(struct ath_hw *ah)
1651 {
1652 	int count = 50;
1653 	u32 reg;
1654 
1655 	if (AR_SREV_9300(ah))
1656 		return !ath9k_hw_detect_mac_hang(ah);
1657 
1658 	if (AR_SREV_9285_12_OR_LATER(ah))
1659 		return true;
1660 
1661 	do {
1662 		reg = REG_READ(ah, AR_OBS_BUS_1);
1663 
1664 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1665 			continue;
1666 
1667 		switch (reg & 0x7E000B00) {
1668 		case 0x1E000000:
1669 		case 0x52000B00:
1670 		case 0x18000B00:
1671 			continue;
1672 		default:
1673 			return true;
1674 		}
1675 	} while (count-- > 0);
1676 
1677 	return false;
1678 }
1679 EXPORT_SYMBOL(ath9k_hw_check_alive);
1680 
1681 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1682 {
1683 	/* Setup MFP options for CCMP */
1684 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1685 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1686 		 * frames when constructing CCMP AAD. */
1687 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1688 			      0xc7ff);
1689 		ah->sw_mgmt_crypto = false;
1690 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1691 		/* Disable hardware crypto for management frames */
1692 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1693 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1694 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1695 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1696 		ah->sw_mgmt_crypto = true;
1697 	} else {
1698 		ah->sw_mgmt_crypto = true;
1699 	}
1700 }
1701 
1702 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1703 				  u32 macStaId1, u32 saveDefAntenna)
1704 {
1705 	struct ath_common *common = ath9k_hw_common(ah);
1706 
1707 	ENABLE_REGWRITE_BUFFER(ah);
1708 
1709 	REG_RMW(ah, AR_STA_ID1, macStaId1
1710 		  | AR_STA_ID1_RTS_USE_DEF
1711 		  | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1712 		  | ah->sta_id1_defaults,
1713 		  ~AR_STA_ID1_SADH_MASK);
1714 	ath_hw_setbssidmask(common);
1715 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1716 	ath9k_hw_write_associd(ah);
1717 	REG_WRITE(ah, AR_ISR, ~0);
1718 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1719 
1720 	REGWRITE_BUFFER_FLUSH(ah);
1721 
1722 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1723 }
1724 
1725 static void ath9k_hw_init_queues(struct ath_hw *ah)
1726 {
1727 	int i;
1728 
1729 	ENABLE_REGWRITE_BUFFER(ah);
1730 
1731 	for (i = 0; i < AR_NUM_DCU; i++)
1732 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1733 
1734 	REGWRITE_BUFFER_FLUSH(ah);
1735 
1736 	ah->intr_txqs = 0;
1737 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1738 		ath9k_hw_resettxqueue(ah, i);
1739 }
1740 
1741 /*
1742  * For big endian systems turn on swapping for descriptors
1743  */
1744 static void ath9k_hw_init_desc(struct ath_hw *ah)
1745 {
1746 	struct ath_common *common = ath9k_hw_common(ah);
1747 
1748 	if (AR_SREV_9100(ah)) {
1749 		u32 mask;
1750 		mask = REG_READ(ah, AR_CFG);
1751 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1752 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1753 				mask);
1754 		} else {
1755 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1756 			REG_WRITE(ah, AR_CFG, mask);
1757 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1758 				REG_READ(ah, AR_CFG));
1759 		}
1760 	} else {
1761 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1762 			/* Configure AR9271 target WLAN */
1763 			if (AR_SREV_9271(ah))
1764 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1765 			else
1766 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1767 		}
1768 #ifdef __BIG_ENDIAN
1769 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1770 			 AR_SREV_9550(ah))
1771 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1772 		else
1773 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1774 #endif
1775 	}
1776 }
1777 
1778 /*
1779  * Fast channel change:
1780  * (Change synthesizer based on channel freq without resetting chip)
1781  *
1782  * Don't do FCC when
1783  *   - Flag is not set
1784  *   - Chip is just coming out of full sleep
1785  *   - Channel to be set is same as current channel
1786  *   - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1787  */
1788 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1789 {
1790 	struct ath_common *common = ath9k_hw_common(ah);
1791 	int ret;
1792 
1793 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1794 		goto fail;
1795 
1796 	if (ah->chip_fullsleep)
1797 		goto fail;
1798 
1799 	if (!ah->curchan)
1800 		goto fail;
1801 
1802 	if (chan->channel == ah->curchan->channel)
1803 		goto fail;
1804 
1805 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1806 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1807 		goto fail;
1808 
1809 	if ((chan->channelFlags & CHANNEL_ALL) !=
1810 	    (ah->curchan->channelFlags & CHANNEL_ALL))
1811 		goto fail;
1812 
1813 	if (!ath9k_hw_check_alive(ah))
1814 		goto fail;
1815 
1816 	/*
1817 	 * For AR9462, make sure that calibration data for
1818 	 * re-using are present.
1819 	 */
1820 	if (AR_SREV_9462(ah) && (ah->caldata &&
1821 				 (!ah->caldata->done_txiqcal_once ||
1822 				  !ah->caldata->done_txclcal_once ||
1823 				  !ah->caldata->rtt_done)))
1824 		goto fail;
1825 
1826 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1827 		ah->curchan->channel, chan->channel);
1828 
1829 	ret = ath9k_hw_channel_change(ah, chan);
1830 	if (!ret)
1831 		goto fail;
1832 
1833 	if (ath9k_hw_mci_is_enabled(ah))
1834 		ar9003_mci_2g5g_switch(ah, false);
1835 
1836 	ath9k_hw_loadnf(ah, ah->curchan);
1837 	ath9k_hw_start_nfcal(ah, true);
1838 
1839 	if (AR_SREV_9271(ah))
1840 		ar9002_hw_load_ani_reg(ah, chan);
1841 
1842 	return 0;
1843 fail:
1844 	return -EINVAL;
1845 }
1846 
1847 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1848 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1849 {
1850 	struct ath_common *common = ath9k_hw_common(ah);
1851 	u32 saveLedState;
1852 	u32 saveDefAntenna;
1853 	u32 macStaId1;
1854 	u64 tsf = 0;
1855 	int r;
1856 	bool start_mci_reset = false;
1857 	bool save_fullsleep = ah->chip_fullsleep;
1858 
1859 	if (ath9k_hw_mci_is_enabled(ah)) {
1860 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1861 		if (start_mci_reset)
1862 			return 0;
1863 	}
1864 
1865 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1866 		return -EIO;
1867 
1868 	if (ah->curchan && !ah->chip_fullsleep)
1869 		ath9k_hw_getnf(ah, ah->curchan);
1870 
1871 	ah->caldata = caldata;
1872 	if (caldata && (chan->channel != caldata->channel ||
1873 			chan->channelFlags != caldata->channelFlags ||
1874 			chan->chanmode != caldata->chanmode)) {
1875 		/* Operating channel changed, reset channel calibration data */
1876 		memset(caldata, 0, sizeof(*caldata));
1877 		ath9k_init_nfcal_hist_buffer(ah, chan);
1878 	} else if (caldata) {
1879 		caldata->paprd_packet_sent = false;
1880 	}
1881 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1882 
1883 	if (fastcc) {
1884 		r = ath9k_hw_do_fastcc(ah, chan);
1885 		if (!r)
1886 			return r;
1887 	}
1888 
1889 	if (ath9k_hw_mci_is_enabled(ah))
1890 		ar9003_mci_stop_bt(ah, save_fullsleep);
1891 
1892 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1893 	if (saveDefAntenna == 0)
1894 		saveDefAntenna = 1;
1895 
1896 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1897 
1898 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1899 	if (AR_SREV_9100(ah) ||
1900 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1901 		tsf = ath9k_hw_gettsf64(ah);
1902 
1903 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1904 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1905 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1906 
1907 	ath9k_hw_mark_phy_inactive(ah);
1908 
1909 	ah->paprd_table_write_done = false;
1910 
1911 	/* Only required on the first reset */
1912 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1913 		REG_WRITE(ah,
1914 			  AR9271_RESET_POWER_DOWN_CONTROL,
1915 			  AR9271_RADIO_RF_RST);
1916 		udelay(50);
1917 	}
1918 
1919 	if (!ath9k_hw_chip_reset(ah, chan)) {
1920 		ath_err(common, "Chip reset failed\n");
1921 		return -EINVAL;
1922 	}
1923 
1924 	/* Only required on the first reset */
1925 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1926 		ah->htc_reset_init = false;
1927 		REG_WRITE(ah,
1928 			  AR9271_RESET_POWER_DOWN_CONTROL,
1929 			  AR9271_GATE_MAC_CTL);
1930 		udelay(50);
1931 	}
1932 
1933 	/* Restore TSF */
1934 	if (tsf)
1935 		ath9k_hw_settsf64(ah, tsf);
1936 
1937 	if (AR_SREV_9280_20_OR_LATER(ah))
1938 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1939 
1940 	if (!AR_SREV_9300_20_OR_LATER(ah))
1941 		ar9002_hw_enable_async_fifo(ah);
1942 
1943 	r = ath9k_hw_process_ini(ah, chan);
1944 	if (r)
1945 		return r;
1946 
1947 	if (ath9k_hw_mci_is_enabled(ah))
1948 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1949 
1950 	/*
1951 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1952 	 * right after the chip reset. When that happens, write a new
1953 	 * value after the initvals have been applied, with an offset
1954 	 * based on measured time difference
1955 	 */
1956 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1957 		tsf += 1500;
1958 		ath9k_hw_settsf64(ah, tsf);
1959 	}
1960 
1961 	ath9k_hw_init_mfp(ah);
1962 
1963 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1964 		ath9k_hw_set_delta_slope(ah, chan);
1965 
1966 	ath9k_hw_spur_mitigate_freq(ah, chan);
1967 	ah->eep_ops->set_board_values(ah, chan);
1968 
1969 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1970 
1971 	r = ath9k_hw_rf_set_freq(ah, chan);
1972 	if (r)
1973 		return r;
1974 
1975 	ath9k_hw_set_clockrate(ah);
1976 
1977 	ath9k_hw_init_queues(ah);
1978 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1979 	ath9k_hw_ani_cache_ini_regs(ah);
1980 	ath9k_hw_init_qos(ah);
1981 
1982 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1983 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1984 
1985 	ath9k_hw_init_global_settings(ah);
1986 
1987 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1988 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1989 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1990 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1991 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1992 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1993 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1994 	}
1995 
1996 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1997 
1998 	ath9k_hw_set_dma(ah);
1999 
2000 	if (!ath9k_hw_mci_is_enabled(ah))
2001 		REG_WRITE(ah, AR_OBS, 8);
2002 
2003 	if (ah->config.rx_intr_mitigation) {
2004 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2005 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2006 	}
2007 
2008 	if (ah->config.tx_intr_mitigation) {
2009 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2010 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2011 	}
2012 
2013 	ath9k_hw_init_bb(ah, chan);
2014 
2015 	if (caldata) {
2016 		caldata->done_txiqcal_once = false;
2017 		caldata->done_txclcal_once = false;
2018 	}
2019 	if (!ath9k_hw_init_cal(ah, chan))
2020 		return -EIO;
2021 
2022 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2023 		return -EIO;
2024 
2025 	ENABLE_REGWRITE_BUFFER(ah);
2026 
2027 	ath9k_hw_restore_chainmask(ah);
2028 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2029 
2030 	REGWRITE_BUFFER_FLUSH(ah);
2031 
2032 	ath9k_hw_init_desc(ah);
2033 
2034 	if (ath9k_hw_btcoex_is_enabled(ah))
2035 		ath9k_hw_btcoex_enable(ah);
2036 
2037 	if (ath9k_hw_mci_is_enabled(ah))
2038 		ar9003_mci_check_bt(ah);
2039 
2040 	ath9k_hw_loadnf(ah, chan);
2041 	ath9k_hw_start_nfcal(ah, true);
2042 
2043 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2044 		ar9003_hw_bb_watchdog_config(ah);
2045 		ar9003_hw_disable_phy_restart(ah);
2046 	}
2047 
2048 	ath9k_hw_apply_gpio_override(ah);
2049 
2050 	if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv)
2051 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2052 
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL(ath9k_hw_reset);
2056 
2057 /******************************/
2058 /* Power Management (Chipset) */
2059 /******************************/
2060 
2061 /*
2062  * Notify Power Mgt is disabled in self-generated frames.
2063  * If requested, force chip to sleep.
2064  */
2065 static void ath9k_set_power_sleep(struct ath_hw *ah)
2066 {
2067 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2068 
2069 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2070 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2071 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2072 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2073 		/* xxx Required for WLAN only case ? */
2074 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2075 		udelay(100);
2076 	}
2077 
2078 	/*
2079 	 * Clear the RTC force wake bit to allow the
2080 	 * mac to go to sleep.
2081 	 */
2082 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2083 
2084 	if (ath9k_hw_mci_is_enabled(ah))
2085 		udelay(100);
2086 
2087 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2088 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2089 
2090 	/* Shutdown chip. Active low */
2091 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2092 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2093 		udelay(2);
2094 	}
2095 
2096 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2097 	if (AR_SREV_9300_20_OR_LATER(ah))
2098 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2099 }
2100 
2101 /*
2102  * Notify Power Management is enabled in self-generating
2103  * frames. If request, set power mode of chip to
2104  * auto/normal.  Duration in units of 128us (1/8 TU).
2105  */
2106 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2107 {
2108 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2109 
2110 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2111 
2112 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2113 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2114 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2115 			  AR_RTC_FORCE_WAKE_ON_INT);
2116 	} else {
2117 
2118 		/* When chip goes into network sleep, it could be waken
2119 		 * up by MCI_INT interrupt caused by BT's HW messages
2120 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2121 		 * rate (~100us). This will cause chip to leave and
2122 		 * re-enter network sleep mode frequently, which in
2123 		 * consequence will have WLAN MCI HW to generate lots of
2124 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2125 		 * BT CPU to busy to process.
2126 		 */
2127 		if (ath9k_hw_mci_is_enabled(ah))
2128 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2129 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2130 		/*
2131 		 * Clear the RTC force wake bit to allow the
2132 		 * mac to go to sleep.
2133 		 */
2134 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2135 
2136 		if (ath9k_hw_mci_is_enabled(ah))
2137 			udelay(30);
2138 	}
2139 
2140 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2141 	if (AR_SREV_9300_20_OR_LATER(ah))
2142 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2143 }
2144 
2145 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2146 {
2147 	u32 val;
2148 	int i;
2149 
2150 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2151 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2152 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2153 		udelay(10);
2154 	}
2155 
2156 	if ((REG_READ(ah, AR_RTC_STATUS) &
2157 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2158 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2159 			return false;
2160 		}
2161 		if (!AR_SREV_9300_20_OR_LATER(ah))
2162 			ath9k_hw_init_pll(ah, NULL);
2163 	}
2164 	if (AR_SREV_9100(ah))
2165 		REG_SET_BIT(ah, AR_RTC_RESET,
2166 			    AR_RTC_RESET_EN);
2167 
2168 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2169 		    AR_RTC_FORCE_WAKE_EN);
2170 	udelay(50);
2171 
2172 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2173 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2174 		if (val == AR_RTC_STATUS_ON)
2175 			break;
2176 		udelay(50);
2177 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2178 			    AR_RTC_FORCE_WAKE_EN);
2179 	}
2180 	if (i == 0) {
2181 		ath_err(ath9k_hw_common(ah),
2182 			"Failed to wakeup in %uus\n",
2183 			POWER_UP_TIME / 20);
2184 		return false;
2185 	}
2186 
2187 	if (ath9k_hw_mci_is_enabled(ah))
2188 		ar9003_mci_set_power_awake(ah);
2189 
2190 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2191 
2192 	return true;
2193 }
2194 
2195 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2196 {
2197 	struct ath_common *common = ath9k_hw_common(ah);
2198 	int status = true;
2199 	static const char *modes[] = {
2200 		"AWAKE",
2201 		"FULL-SLEEP",
2202 		"NETWORK SLEEP",
2203 		"UNDEFINED"
2204 	};
2205 
2206 	if (ah->power_mode == mode)
2207 		return status;
2208 
2209 	ath_dbg(common, RESET, "%s -> %s\n",
2210 		modes[ah->power_mode], modes[mode]);
2211 
2212 	switch (mode) {
2213 	case ATH9K_PM_AWAKE:
2214 		status = ath9k_hw_set_power_awake(ah);
2215 		break;
2216 	case ATH9K_PM_FULL_SLEEP:
2217 		if (ath9k_hw_mci_is_enabled(ah))
2218 			ar9003_mci_set_full_sleep(ah);
2219 
2220 		ath9k_set_power_sleep(ah);
2221 		ah->chip_fullsleep = true;
2222 		break;
2223 	case ATH9K_PM_NETWORK_SLEEP:
2224 		ath9k_set_power_network_sleep(ah);
2225 		break;
2226 	default:
2227 		ath_err(common, "Unknown power mode %u\n", mode);
2228 		return false;
2229 	}
2230 	ah->power_mode = mode;
2231 
2232 	/*
2233 	 * XXX: If this warning never comes up after a while then
2234 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2235 	 * ath9k_hw_setpower() return type void.
2236 	 */
2237 
2238 	if (!(ah->ah_flags & AH_UNPLUGGED))
2239 		ATH_DBG_WARN_ON_ONCE(!status);
2240 
2241 	return status;
2242 }
2243 EXPORT_SYMBOL(ath9k_hw_setpower);
2244 
2245 /*******************/
2246 /* Beacon Handling */
2247 /*******************/
2248 
2249 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2250 {
2251 	int flags = 0;
2252 
2253 	ENABLE_REGWRITE_BUFFER(ah);
2254 
2255 	switch (ah->opmode) {
2256 	case NL80211_IFTYPE_ADHOC:
2257 		REG_SET_BIT(ah, AR_TXCFG,
2258 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2259 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2260 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2261 		flags |= AR_NDP_TIMER_EN;
2262 	case NL80211_IFTYPE_MESH_POINT:
2263 	case NL80211_IFTYPE_AP:
2264 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2265 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2266 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2267 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2268 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2269 		flags |=
2270 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2271 		break;
2272 	default:
2273 		ath_dbg(ath9k_hw_common(ah), BEACON,
2274 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2275 		return;
2276 		break;
2277 	}
2278 
2279 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2280 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2281 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2282 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2283 
2284 	REGWRITE_BUFFER_FLUSH(ah);
2285 
2286 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2287 }
2288 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2289 
2290 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2291 				    const struct ath9k_beacon_state *bs)
2292 {
2293 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2294 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2295 	struct ath_common *common = ath9k_hw_common(ah);
2296 
2297 	ENABLE_REGWRITE_BUFFER(ah);
2298 
2299 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2300 
2301 	REG_WRITE(ah, AR_BEACON_PERIOD,
2302 		  TU_TO_USEC(bs->bs_intval));
2303 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2304 		  TU_TO_USEC(bs->bs_intval));
2305 
2306 	REGWRITE_BUFFER_FLUSH(ah);
2307 
2308 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2309 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2310 
2311 	beaconintval = bs->bs_intval;
2312 
2313 	if (bs->bs_sleepduration > beaconintval)
2314 		beaconintval = bs->bs_sleepduration;
2315 
2316 	dtimperiod = bs->bs_dtimperiod;
2317 	if (bs->bs_sleepduration > dtimperiod)
2318 		dtimperiod = bs->bs_sleepduration;
2319 
2320 	if (beaconintval == dtimperiod)
2321 		nextTbtt = bs->bs_nextdtim;
2322 	else
2323 		nextTbtt = bs->bs_nexttbtt;
2324 
2325 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2326 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2327 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2328 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2329 
2330 	ENABLE_REGWRITE_BUFFER(ah);
2331 
2332 	REG_WRITE(ah, AR_NEXT_DTIM,
2333 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2334 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2335 
2336 	REG_WRITE(ah, AR_SLEEP1,
2337 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2338 		  | AR_SLEEP1_ASSUME_DTIM);
2339 
2340 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2341 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2342 	else
2343 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2344 
2345 	REG_WRITE(ah, AR_SLEEP2,
2346 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2347 
2348 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2349 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2350 
2351 	REGWRITE_BUFFER_FLUSH(ah);
2352 
2353 	REG_SET_BIT(ah, AR_TIMER_MODE,
2354 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2355 		    AR_DTIM_TIMER_EN);
2356 
2357 	/* TSF Out of Range Threshold */
2358 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2359 }
2360 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2361 
2362 /*******************/
2363 /* HW Capabilities */
2364 /*******************/
2365 
2366 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2367 {
2368 	eeprom_chainmask &= chip_chainmask;
2369 	if (eeprom_chainmask)
2370 		return eeprom_chainmask;
2371 	else
2372 		return chip_chainmask;
2373 }
2374 
2375 /**
2376  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2377  * @ah: the atheros hardware data structure
2378  *
2379  * We enable DFS support upstream on chipsets which have passed a series
2380  * of tests. The testing requirements are going to be documented. Desired
2381  * test requirements are documented at:
2382  *
2383  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2384  *
2385  * Once a new chipset gets properly tested an individual commit can be used
2386  * to document the testing for DFS for that chipset.
2387  */
2388 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2389 {
2390 
2391 	switch (ah->hw_version.macVersion) {
2392 	/* for temporary testing DFS with 9280 */
2393 	case AR_SREV_VERSION_9280:
2394 	/* AR9580 will likely be our first target to get testing on */
2395 	case AR_SREV_VERSION_9580:
2396 		return true;
2397 	default:
2398 		return false;
2399 	}
2400 }
2401 
2402 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2403 {
2404 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2405 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2406 	struct ath_common *common = ath9k_hw_common(ah);
2407 	unsigned int chip_chainmask;
2408 
2409 	u16 eeval;
2410 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2411 
2412 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2413 	regulatory->current_rd = eeval;
2414 
2415 	if (ah->opmode != NL80211_IFTYPE_AP &&
2416 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2417 		if (regulatory->current_rd == 0x64 ||
2418 		    regulatory->current_rd == 0x65)
2419 			regulatory->current_rd += 5;
2420 		else if (regulatory->current_rd == 0x41)
2421 			regulatory->current_rd = 0x43;
2422 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2423 			regulatory->current_rd);
2424 	}
2425 
2426 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2427 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2428 		ath_err(common,
2429 			"no band has been marked as supported in EEPROM\n");
2430 		return -EINVAL;
2431 	}
2432 
2433 	if (eeval & AR5416_OPFLAGS_11A)
2434 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2435 
2436 	if (eeval & AR5416_OPFLAGS_11G)
2437 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2438 
2439 	if (AR_SREV_9485(ah) ||
2440 	    AR_SREV_9285(ah) ||
2441 	    AR_SREV_9330(ah) ||
2442 	    AR_SREV_9565(ah))
2443 		chip_chainmask = 1;
2444 	else if (AR_SREV_9462(ah))
2445 		chip_chainmask = 3;
2446 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2447 		chip_chainmask = 7;
2448 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2449 		chip_chainmask = 3;
2450 	else
2451 		chip_chainmask = 7;
2452 
2453 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2454 	/*
2455 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2456 	 * the EEPROM.
2457 	 */
2458 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2459 	    !(eeval & AR5416_OPFLAGS_11A) &&
2460 	    !(AR_SREV_9271(ah)))
2461 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2462 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2463 	else if (AR_SREV_9100(ah))
2464 		pCap->rx_chainmask = 0x7;
2465 	else
2466 		/* Use rx_chainmask from EEPROM. */
2467 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2468 
2469 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2470 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2471 	ah->txchainmask = pCap->tx_chainmask;
2472 	ah->rxchainmask = pCap->rx_chainmask;
2473 
2474 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2475 
2476 	/* enable key search for every frame in an aggregate */
2477 	if (AR_SREV_9300_20_OR_LATER(ah))
2478 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2479 
2480 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2481 
2482 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2483 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2484 	else
2485 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2486 
2487 	if (AR_SREV_9271(ah))
2488 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2489 	else if (AR_DEVID_7010(ah))
2490 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2491 	else if (AR_SREV_9300_20_OR_LATER(ah))
2492 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2493 	else if (AR_SREV_9287_11_OR_LATER(ah))
2494 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2495 	else if (AR_SREV_9285_12_OR_LATER(ah))
2496 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2497 	else if (AR_SREV_9280_20_OR_LATER(ah))
2498 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2499 	else
2500 		pCap->num_gpio_pins = AR_NUM_GPIO;
2501 
2502 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2503 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2504 	else
2505 		pCap->rts_aggr_limit = (8 * 1024);
2506 
2507 #ifdef CONFIG_ATH9K_RFKILL
2508 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2509 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2510 		ah->rfkill_gpio =
2511 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2512 		ah->rfkill_polarity =
2513 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2514 
2515 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2516 	}
2517 #endif
2518 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2519 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2520 	else
2521 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2522 
2523 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2524 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2525 	else
2526 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2527 
2528 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2529 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2530 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2531 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2532 
2533 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2534 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2535 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2536 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2537 		pCap->txs_len = sizeof(struct ar9003_txs);
2538 	} else {
2539 		pCap->tx_desc_len = sizeof(struct ath_desc);
2540 		if (AR_SREV_9280_20(ah))
2541 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2542 	}
2543 
2544 	if (AR_SREV_9300_20_OR_LATER(ah))
2545 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2546 
2547 	if (AR_SREV_9300_20_OR_LATER(ah))
2548 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2549 
2550 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2551 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2552 
2553 	if (AR_SREV_9285(ah))
2554 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2555 			ant_div_ctl1 =
2556 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2557 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2558 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2559 		}
2560 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2561 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2562 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2563 	}
2564 
2565 
2566 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2567 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2568 		/*
2569 		 * enable the diversity-combining algorithm only when
2570 		 * both enable_lna_div and enable_fast_div are set
2571 		 *		Table for Diversity
2572 		 * ant_div_alt_lnaconf		bit 0-1
2573 		 * ant_div_main_lnaconf		bit 2-3
2574 		 * ant_div_alt_gaintb		bit 4
2575 		 * ant_div_main_gaintb		bit 5
2576 		 * enable_ant_div_lnadiv	bit 6
2577 		 * enable_ant_fast_div		bit 7
2578 		 */
2579 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2580 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2581 	}
2582 
2583 	if (ath9k_hw_dfs_tested(ah))
2584 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2585 
2586 	tx_chainmask = pCap->tx_chainmask;
2587 	rx_chainmask = pCap->rx_chainmask;
2588 	while (tx_chainmask || rx_chainmask) {
2589 		if (tx_chainmask & BIT(0))
2590 			pCap->max_txchains++;
2591 		if (rx_chainmask & BIT(0))
2592 			pCap->max_rxchains++;
2593 
2594 		tx_chainmask >>= 1;
2595 		rx_chainmask >>= 1;
2596 	}
2597 
2598 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2599 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2600 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2601 
2602 		if (AR_SREV_9462_20_OR_LATER(ah))
2603 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2604 	}
2605 
2606 	if (AR_SREV_9462(ah))
2607 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2608 
2609 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2610 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2611 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2612 
2613 	return 0;
2614 }
2615 
2616 /****************************/
2617 /* GPIO / RFKILL / Antennae */
2618 /****************************/
2619 
2620 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2621 					 u32 gpio, u32 type)
2622 {
2623 	int addr;
2624 	u32 gpio_shift, tmp;
2625 
2626 	if (gpio > 11)
2627 		addr = AR_GPIO_OUTPUT_MUX3;
2628 	else if (gpio > 5)
2629 		addr = AR_GPIO_OUTPUT_MUX2;
2630 	else
2631 		addr = AR_GPIO_OUTPUT_MUX1;
2632 
2633 	gpio_shift = (gpio % 6) * 5;
2634 
2635 	if (AR_SREV_9280_20_OR_LATER(ah)
2636 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2637 		REG_RMW(ah, addr, (type << gpio_shift),
2638 			(0x1f << gpio_shift));
2639 	} else {
2640 		tmp = REG_READ(ah, addr);
2641 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2642 		tmp &= ~(0x1f << gpio_shift);
2643 		tmp |= (type << gpio_shift);
2644 		REG_WRITE(ah, addr, tmp);
2645 	}
2646 }
2647 
2648 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2649 {
2650 	u32 gpio_shift;
2651 
2652 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2653 
2654 	if (AR_DEVID_7010(ah)) {
2655 		gpio_shift = gpio;
2656 		REG_RMW(ah, AR7010_GPIO_OE,
2657 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2658 			(AR7010_GPIO_OE_MASK << gpio_shift));
2659 		return;
2660 	}
2661 
2662 	gpio_shift = gpio << 1;
2663 	REG_RMW(ah,
2664 		AR_GPIO_OE_OUT,
2665 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2666 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2667 }
2668 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2669 
2670 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2671 {
2672 #define MS_REG_READ(x, y) \
2673 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2674 
2675 	if (gpio >= ah->caps.num_gpio_pins)
2676 		return 0xffffffff;
2677 
2678 	if (AR_DEVID_7010(ah)) {
2679 		u32 val;
2680 		val = REG_READ(ah, AR7010_GPIO_IN);
2681 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2682 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2683 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2684 			AR_GPIO_BIT(gpio)) != 0;
2685 	else if (AR_SREV_9271(ah))
2686 		return MS_REG_READ(AR9271, gpio) != 0;
2687 	else if (AR_SREV_9287_11_OR_LATER(ah))
2688 		return MS_REG_READ(AR9287, gpio) != 0;
2689 	else if (AR_SREV_9285_12_OR_LATER(ah))
2690 		return MS_REG_READ(AR9285, gpio) != 0;
2691 	else if (AR_SREV_9280_20_OR_LATER(ah))
2692 		return MS_REG_READ(AR928X, gpio) != 0;
2693 	else
2694 		return MS_REG_READ(AR, gpio) != 0;
2695 }
2696 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2697 
2698 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2699 			 u32 ah_signal_type)
2700 {
2701 	u32 gpio_shift;
2702 
2703 	if (AR_DEVID_7010(ah)) {
2704 		gpio_shift = gpio;
2705 		REG_RMW(ah, AR7010_GPIO_OE,
2706 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2707 			(AR7010_GPIO_OE_MASK << gpio_shift));
2708 		return;
2709 	}
2710 
2711 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2712 	gpio_shift = 2 * gpio;
2713 	REG_RMW(ah,
2714 		AR_GPIO_OE_OUT,
2715 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2716 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2717 }
2718 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2719 
2720 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2721 {
2722 	if (AR_DEVID_7010(ah)) {
2723 		val = val ? 0 : 1;
2724 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2725 			AR_GPIO_BIT(gpio));
2726 		return;
2727 	}
2728 
2729 	if (AR_SREV_9271(ah))
2730 		val = ~val;
2731 
2732 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2733 		AR_GPIO_BIT(gpio));
2734 }
2735 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2736 
2737 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2738 {
2739 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2740 }
2741 EXPORT_SYMBOL(ath9k_hw_setantenna);
2742 
2743 /*********************/
2744 /* General Operation */
2745 /*********************/
2746 
2747 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2748 {
2749 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2750 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2751 
2752 	if (phybits & AR_PHY_ERR_RADAR)
2753 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2754 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2755 		bits |= ATH9K_RX_FILTER_PHYERR;
2756 
2757 	return bits;
2758 }
2759 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2760 
2761 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2762 {
2763 	u32 phybits;
2764 
2765 	ENABLE_REGWRITE_BUFFER(ah);
2766 
2767 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2768 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2769 
2770 	REG_WRITE(ah, AR_RX_FILTER, bits);
2771 
2772 	phybits = 0;
2773 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2774 		phybits |= AR_PHY_ERR_RADAR;
2775 	if (bits & ATH9K_RX_FILTER_PHYERR)
2776 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2777 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2778 
2779 	if (phybits)
2780 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2781 	else
2782 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2783 
2784 	REGWRITE_BUFFER_FLUSH(ah);
2785 }
2786 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2787 
2788 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2789 {
2790 	if (ath9k_hw_mci_is_enabled(ah))
2791 		ar9003_mci_bt_gain_ctrl(ah);
2792 
2793 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2794 		return false;
2795 
2796 	ath9k_hw_init_pll(ah, NULL);
2797 	ah->htc_reset_init = true;
2798 	return true;
2799 }
2800 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2801 
2802 bool ath9k_hw_disable(struct ath_hw *ah)
2803 {
2804 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2805 		return false;
2806 
2807 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2808 		return false;
2809 
2810 	ath9k_hw_init_pll(ah, NULL);
2811 	return true;
2812 }
2813 EXPORT_SYMBOL(ath9k_hw_disable);
2814 
2815 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2816 {
2817 	enum eeprom_param gain_param;
2818 
2819 	if (IS_CHAN_2GHZ(chan))
2820 		gain_param = EEP_ANTENNA_GAIN_2G;
2821 	else
2822 		gain_param = EEP_ANTENNA_GAIN_5G;
2823 
2824 	return ah->eep_ops->get_eeprom(ah, gain_param);
2825 }
2826 
2827 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2828 			    bool test)
2829 {
2830 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2831 	struct ieee80211_channel *channel;
2832 	int chan_pwr, new_pwr, max_gain;
2833 	int ant_gain, ant_reduction = 0;
2834 
2835 	if (!chan)
2836 		return;
2837 
2838 	channel = chan->chan;
2839 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2840 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2841 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2842 
2843 	ant_gain = get_antenna_gain(ah, chan);
2844 	if (ant_gain > max_gain)
2845 		ant_reduction = ant_gain - max_gain;
2846 
2847 	ah->eep_ops->set_txpower(ah, chan,
2848 				 ath9k_regd_get_ctl(reg, chan),
2849 				 ant_reduction, new_pwr, test);
2850 }
2851 
2852 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2853 {
2854 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2855 	struct ath9k_channel *chan = ah->curchan;
2856 	struct ieee80211_channel *channel = chan->chan;
2857 
2858 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2859 	if (test)
2860 		channel->max_power = MAX_RATE_POWER / 2;
2861 
2862 	ath9k_hw_apply_txpower(ah, chan, test);
2863 
2864 	if (test)
2865 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2866 }
2867 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2868 
2869 void ath9k_hw_setopmode(struct ath_hw *ah)
2870 {
2871 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2872 }
2873 EXPORT_SYMBOL(ath9k_hw_setopmode);
2874 
2875 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2876 {
2877 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2878 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2879 }
2880 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2881 
2882 void ath9k_hw_write_associd(struct ath_hw *ah)
2883 {
2884 	struct ath_common *common = ath9k_hw_common(ah);
2885 
2886 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2887 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2888 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2889 }
2890 EXPORT_SYMBOL(ath9k_hw_write_associd);
2891 
2892 #define ATH9K_MAX_TSF_READ 10
2893 
2894 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2895 {
2896 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2897 	int i;
2898 
2899 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2900 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2901 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2902 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2903 		if (tsf_upper2 == tsf_upper1)
2904 			break;
2905 		tsf_upper1 = tsf_upper2;
2906 	}
2907 
2908 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2909 
2910 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2911 }
2912 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2913 
2914 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2915 {
2916 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2917 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2918 }
2919 EXPORT_SYMBOL(ath9k_hw_settsf64);
2920 
2921 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2922 {
2923 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2924 			   AH_TSF_WRITE_TIMEOUT))
2925 		ath_dbg(ath9k_hw_common(ah), RESET,
2926 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2927 
2928 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2929 }
2930 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2931 
2932 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2933 {
2934 	if (set)
2935 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2936 	else
2937 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2938 }
2939 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2940 
2941 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2942 {
2943 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2944 	u32 macmode;
2945 
2946 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2947 		macmode = AR_2040_JOINED_RX_CLEAR;
2948 	else
2949 		macmode = 0;
2950 
2951 	REG_WRITE(ah, AR_2040_MODE, macmode);
2952 }
2953 
2954 /* HW Generic timers configuration */
2955 
2956 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2957 {
2958 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2959 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2960 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2961 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2962 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2963 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2964 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2965 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2966 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2967 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2968 				AR_NDP2_TIMER_MODE, 0x0002},
2969 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2970 				AR_NDP2_TIMER_MODE, 0x0004},
2971 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2972 				AR_NDP2_TIMER_MODE, 0x0008},
2973 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2974 				AR_NDP2_TIMER_MODE, 0x0010},
2975 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2976 				AR_NDP2_TIMER_MODE, 0x0020},
2977 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2978 				AR_NDP2_TIMER_MODE, 0x0040},
2979 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2980 				AR_NDP2_TIMER_MODE, 0x0080}
2981 };
2982 
2983 /* HW generic timer primitives */
2984 
2985 /* compute and clear index of rightmost 1 */
2986 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2987 {
2988 	u32 b;
2989 
2990 	b = *mask;
2991 	b &= (0-b);
2992 	*mask &= ~b;
2993 	b *= debruijn32;
2994 	b >>= 27;
2995 
2996 	return timer_table->gen_timer_index[b];
2997 }
2998 
2999 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3000 {
3001 	return REG_READ(ah, AR_TSF_L32);
3002 }
3003 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3004 
3005 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3006 					  void (*trigger)(void *),
3007 					  void (*overflow)(void *),
3008 					  void *arg,
3009 					  u8 timer_index)
3010 {
3011 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3012 	struct ath_gen_timer *timer;
3013 
3014 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3015 	if (timer == NULL)
3016 		return NULL;
3017 
3018 	/* allocate a hardware generic timer slot */
3019 	timer_table->timers[timer_index] = timer;
3020 	timer->index = timer_index;
3021 	timer->trigger = trigger;
3022 	timer->overflow = overflow;
3023 	timer->arg = arg;
3024 
3025 	return timer;
3026 }
3027 EXPORT_SYMBOL(ath_gen_timer_alloc);
3028 
3029 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3030 			      struct ath_gen_timer *timer,
3031 			      u32 trig_timeout,
3032 			      u32 timer_period)
3033 {
3034 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3035 	u32 tsf, timer_next;
3036 
3037 	BUG_ON(!timer_period);
3038 
3039 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3040 
3041 	tsf = ath9k_hw_gettsf32(ah);
3042 
3043 	timer_next = tsf + trig_timeout;
3044 
3045 	ath_dbg(ath9k_hw_common(ah), BTCOEX,
3046 		"current tsf %x period %x timer_next %x\n",
3047 		tsf, timer_period, timer_next);
3048 
3049 	/*
3050 	 * Program generic timer registers
3051 	 */
3052 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3053 		 timer_next);
3054 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3055 		  timer_period);
3056 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3057 		    gen_tmr_configuration[timer->index].mode_mask);
3058 
3059 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3060 		/*
3061 		 * Starting from AR9462, each generic timer can select which tsf
3062 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3063 		 * 8 - 15  use tsf2.
3064 		 */
3065 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3066 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3067 				       (1 << timer->index));
3068 		else
3069 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3070 				       (1 << timer->index));
3071 	}
3072 
3073 	/* Enable both trigger and thresh interrupt masks */
3074 	REG_SET_BIT(ah, AR_IMR_S5,
3075 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3076 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3077 }
3078 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3079 
3080 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3081 {
3082 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3083 
3084 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3085 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3086 		return;
3087 	}
3088 
3089 	/* Clear generic timer enable bits. */
3090 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3091 			gen_tmr_configuration[timer->index].mode_mask);
3092 
3093 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3094 		/*
3095 		 * Need to switch back to TSF if it was using TSF2.
3096 		 */
3097 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3098 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3099 				    (1 << timer->index));
3100 		}
3101 	}
3102 
3103 	/* Disable both trigger and thresh interrupt masks */
3104 	REG_CLR_BIT(ah, AR_IMR_S5,
3105 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3106 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3107 
3108 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3109 }
3110 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3111 
3112 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3113 {
3114 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3115 
3116 	/* free the hardware generic timer slot */
3117 	timer_table->timers[timer->index] = NULL;
3118 	kfree(timer);
3119 }
3120 EXPORT_SYMBOL(ath_gen_timer_free);
3121 
3122 /*
3123  * Generic Timer Interrupts handling
3124  */
3125 void ath_gen_timer_isr(struct ath_hw *ah)
3126 {
3127 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3128 	struct ath_gen_timer *timer;
3129 	struct ath_common *common = ath9k_hw_common(ah);
3130 	u32 trigger_mask, thresh_mask, index;
3131 
3132 	/* get hardware generic timer interrupt status */
3133 	trigger_mask = ah->intr_gen_timer_trigger;
3134 	thresh_mask = ah->intr_gen_timer_thresh;
3135 	trigger_mask &= timer_table->timer_mask.val;
3136 	thresh_mask &= timer_table->timer_mask.val;
3137 
3138 	trigger_mask &= ~thresh_mask;
3139 
3140 	while (thresh_mask) {
3141 		index = rightmost_index(timer_table, &thresh_mask);
3142 		timer = timer_table->timers[index];
3143 		BUG_ON(!timer);
3144 		ath_dbg(common, BTCOEX, "TSF overflow for Gen timer %d\n",
3145 			index);
3146 		timer->overflow(timer->arg);
3147 	}
3148 
3149 	while (trigger_mask) {
3150 		index = rightmost_index(timer_table, &trigger_mask);
3151 		timer = timer_table->timers[index];
3152 		BUG_ON(!timer);
3153 		ath_dbg(common, BTCOEX,
3154 			"Gen timer[%d] trigger\n", index);
3155 		timer->trigger(timer->arg);
3156 	}
3157 }
3158 EXPORT_SYMBOL(ath_gen_timer_isr);
3159 
3160 /********/
3161 /* HTC  */
3162 /********/
3163 
3164 static struct {
3165 	u32 version;
3166 	const char * name;
3167 } ath_mac_bb_names[] = {
3168 	/* Devices with external radios */
3169 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3170 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3171 	{ AR_SREV_VERSION_9100,		"9100" },
3172 	{ AR_SREV_VERSION_9160,		"9160" },
3173 	/* Single-chip solutions */
3174 	{ AR_SREV_VERSION_9280,		"9280" },
3175 	{ AR_SREV_VERSION_9285,		"9285" },
3176 	{ AR_SREV_VERSION_9287,         "9287" },
3177 	{ AR_SREV_VERSION_9271,         "9271" },
3178 	{ AR_SREV_VERSION_9300,         "9300" },
3179 	{ AR_SREV_VERSION_9330,         "9330" },
3180 	{ AR_SREV_VERSION_9340,		"9340" },
3181 	{ AR_SREV_VERSION_9485,         "9485" },
3182 	{ AR_SREV_VERSION_9462,         "9462" },
3183 	{ AR_SREV_VERSION_9550,         "9550" },
3184 	{ AR_SREV_VERSION_9565,         "9565" },
3185 };
3186 
3187 /* For devices with external radios */
3188 static struct {
3189 	u16 version;
3190 	const char * name;
3191 } ath_rf_names[] = {
3192 	{ 0,				"5133" },
3193 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3194 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3195 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3196 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3197 };
3198 
3199 /*
3200  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3201  */
3202 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3203 {
3204 	int i;
3205 
3206 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3207 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3208 			return ath_mac_bb_names[i].name;
3209 		}
3210 	}
3211 
3212 	return "????";
3213 }
3214 
3215 /*
3216  * Return the RF name. "????" is returned if the RF is unknown.
3217  * Used for devices with external radios.
3218  */
3219 static const char *ath9k_hw_rf_name(u16 rf_version)
3220 {
3221 	int i;
3222 
3223 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3224 		if (ath_rf_names[i].version == rf_version) {
3225 			return ath_rf_names[i].name;
3226 		}
3227 	}
3228 
3229 	return "????";
3230 }
3231 
3232 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3233 {
3234 	int used;
3235 
3236 	/* chipsets >= AR9280 are single-chip */
3237 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3238 		used = snprintf(hw_name, len,
3239 			       "Atheros AR%s Rev:%x",
3240 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3241 			       ah->hw_version.macRev);
3242 	}
3243 	else {
3244 		used = snprintf(hw_name, len,
3245 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3246 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3247 			       ah->hw_version.macRev,
3248 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3249 						AR_RADIO_SREV_MAJOR)),
3250 			       ah->hw_version.phyRev);
3251 	}
3252 
3253 	hw_name[used] = '\0';
3254 }
3255 EXPORT_SYMBOL(ath9k_hw_name);
3256