xref: /linux/drivers/net/wireless/ath/ath9k/hw.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "ar9003_phy.h"
28 #include "debug.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
38 static int __init ath9k_init(void)
39 {
40 	return 0;
41 }
42 module_init(ath9k_init);
43 
44 static void __exit ath9k_exit(void)
45 {
46 	return;
47 }
48 module_exit(ath9k_exit);
49 
50 /* Private hardware callbacks */
51 
52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56 
57 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
58 {
59 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
60 }
61 
62 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
63 					struct ath9k_channel *chan)
64 {
65 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
66 }
67 
68 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
69 {
70 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
71 		return;
72 
73 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
74 }
75 
76 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
77 {
78 	/* You will not have this callback if using the old ANI */
79 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
80 		return;
81 
82 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
83 }
84 
85 /********************/
86 /* Helper Functions */
87 /********************/
88 
89 #ifdef CONFIG_ATH9K_DEBUGFS
90 
91 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
92 {
93 	struct ath_softc *sc = common->priv;
94 	if (sync_cause)
95 		sc->debug.stats.istats.sync_cause_all++;
96 	if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
97 		sc->debug.stats.istats.sync_rtc_irq++;
98 	if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
99 		sc->debug.stats.istats.sync_mac_irq++;
100 	if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
101 		sc->debug.stats.istats.eeprom_illegal_access++;
102 	if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
103 		sc->debug.stats.istats.apb_timeout++;
104 	if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
105 		sc->debug.stats.istats.pci_mode_conflict++;
106 	if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
107 		sc->debug.stats.istats.host1_fatal++;
108 	if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
109 		sc->debug.stats.istats.host1_perr++;
110 	if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
111 		sc->debug.stats.istats.trcv_fifo_perr++;
112 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
113 		sc->debug.stats.istats.radm_cpl_ep++;
114 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
115 		sc->debug.stats.istats.radm_cpl_dllp_abort++;
116 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
117 		sc->debug.stats.istats.radm_cpl_tlp_abort++;
118 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
119 		sc->debug.stats.istats.radm_cpl_ecrc_err++;
120 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
121 		sc->debug.stats.istats.radm_cpl_timeout++;
122 	if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
123 		sc->debug.stats.istats.local_timeout++;
124 	if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
125 		sc->debug.stats.istats.pm_access++;
126 	if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
127 		sc->debug.stats.istats.mac_awake++;
128 	if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
129 		sc->debug.stats.istats.mac_asleep++;
130 	if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
131 		sc->debug.stats.istats.mac_sleep_access++;
132 }
133 #endif
134 
135 
136 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
137 {
138 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
139 	struct ath_common *common = ath9k_hw_common(ah);
140 	unsigned int clockrate;
141 
142 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
143 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
144 		clockrate = 117;
145 	else if (!ah->curchan) /* should really check for CCK instead */
146 		clockrate = ATH9K_CLOCK_RATE_CCK;
147 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
148 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
149 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
150 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
151 	else
152 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
153 
154 	if (conf_is_ht40(conf))
155 		clockrate *= 2;
156 
157 	if (ah->curchan) {
158 		if (IS_CHAN_HALF_RATE(ah->curchan))
159 			clockrate /= 2;
160 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
161 			clockrate /= 4;
162 	}
163 
164 	common->clockrate = clockrate;
165 }
166 
167 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
168 {
169 	struct ath_common *common = ath9k_hw_common(ah);
170 
171 	return usecs * common->clockrate;
172 }
173 
174 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
175 {
176 	int i;
177 
178 	BUG_ON(timeout < AH_TIME_QUANTUM);
179 
180 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
181 		if ((REG_READ(ah, reg) & mask) == val)
182 			return true;
183 
184 		udelay(AH_TIME_QUANTUM);
185 	}
186 
187 	ath_dbg(ath9k_hw_common(ah), ANY,
188 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
189 		timeout, reg, REG_READ(ah, reg), mask, val);
190 
191 	return false;
192 }
193 EXPORT_SYMBOL(ath9k_hw_wait);
194 
195 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
196 			  int hw_delay)
197 {
198 	if (IS_CHAN_B(chan))
199 		hw_delay = (4 * hw_delay) / 22;
200 	else
201 		hw_delay /= 10;
202 
203 	if (IS_CHAN_HALF_RATE(chan))
204 		hw_delay *= 2;
205 	else if (IS_CHAN_QUARTER_RATE(chan))
206 		hw_delay *= 4;
207 
208 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
209 }
210 
211 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
212 			  int column, unsigned int *writecnt)
213 {
214 	int r;
215 
216 	ENABLE_REGWRITE_BUFFER(ah);
217 	for (r = 0; r < array->ia_rows; r++) {
218 		REG_WRITE(ah, INI_RA(array, r, 0),
219 			  INI_RA(array, r, column));
220 		DO_DELAY(*writecnt);
221 	}
222 	REGWRITE_BUFFER_FLUSH(ah);
223 }
224 
225 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
226 {
227 	u32 retval;
228 	int i;
229 
230 	for (i = 0, retval = 0; i < n; i++) {
231 		retval = (retval << 1) | (val & 1);
232 		val >>= 1;
233 	}
234 	return retval;
235 }
236 
237 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
238 			   u8 phy, int kbps,
239 			   u32 frameLen, u16 rateix,
240 			   bool shortPreamble)
241 {
242 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
243 
244 	if (kbps == 0)
245 		return 0;
246 
247 	switch (phy) {
248 	case WLAN_RC_PHY_CCK:
249 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
250 		if (shortPreamble)
251 			phyTime >>= 1;
252 		numBits = frameLen << 3;
253 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
254 		break;
255 	case WLAN_RC_PHY_OFDM:
256 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
257 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
258 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
259 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
260 			txTime = OFDM_SIFS_TIME_QUARTER
261 				+ OFDM_PREAMBLE_TIME_QUARTER
262 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
263 		} else if (ah->curchan &&
264 			   IS_CHAN_HALF_RATE(ah->curchan)) {
265 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
266 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
267 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
268 			txTime = OFDM_SIFS_TIME_HALF +
269 				OFDM_PREAMBLE_TIME_HALF
270 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
271 		} else {
272 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
273 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
274 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
275 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
276 				+ (numSymbols * OFDM_SYMBOL_TIME);
277 		}
278 		break;
279 	default:
280 		ath_err(ath9k_hw_common(ah),
281 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
282 		txTime = 0;
283 		break;
284 	}
285 
286 	return txTime;
287 }
288 EXPORT_SYMBOL(ath9k_hw_computetxtime);
289 
290 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
291 				  struct ath9k_channel *chan,
292 				  struct chan_centers *centers)
293 {
294 	int8_t extoff;
295 
296 	if (!IS_CHAN_HT40(chan)) {
297 		centers->ctl_center = centers->ext_center =
298 			centers->synth_center = chan->channel;
299 		return;
300 	}
301 
302 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
303 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
304 		centers->synth_center =
305 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
306 		extoff = 1;
307 	} else {
308 		centers->synth_center =
309 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
310 		extoff = -1;
311 	}
312 
313 	centers->ctl_center =
314 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
315 	/* 25 MHz spacing is supported by hw but not on upper layers */
316 	centers->ext_center =
317 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
318 }
319 
320 /******************/
321 /* Chip Revisions */
322 /******************/
323 
324 static void ath9k_hw_read_revisions(struct ath_hw *ah)
325 {
326 	u32 val;
327 
328 	switch (ah->hw_version.devid) {
329 	case AR5416_AR9100_DEVID:
330 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
331 		break;
332 	case AR9300_DEVID_AR9330:
333 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
334 		if (ah->get_mac_revision) {
335 			ah->hw_version.macRev = ah->get_mac_revision();
336 		} else {
337 			val = REG_READ(ah, AR_SREV);
338 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
339 		}
340 		return;
341 	case AR9300_DEVID_AR9340:
342 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
343 		val = REG_READ(ah, AR_SREV);
344 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
345 		return;
346 	case AR9300_DEVID_QCA955X:
347 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
348 		return;
349 	}
350 
351 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
352 
353 	if (val == 0xFF) {
354 		val = REG_READ(ah, AR_SREV);
355 		ah->hw_version.macVersion =
356 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
357 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
358 
359 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
360 			ah->is_pciexpress = true;
361 		else
362 			ah->is_pciexpress = (val &
363 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
364 	} else {
365 		if (!AR_SREV_9100(ah))
366 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
367 
368 		ah->hw_version.macRev = val & AR_SREV_REVISION;
369 
370 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
371 			ah->is_pciexpress = true;
372 	}
373 }
374 
375 /************************************/
376 /* HW Attach, Detach, Init Routines */
377 /************************************/
378 
379 static void ath9k_hw_disablepcie(struct ath_hw *ah)
380 {
381 	if (!AR_SREV_5416(ah))
382 		return;
383 
384 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
385 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
386 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
387 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
388 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
389 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
390 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
391 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
392 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
393 
394 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
395 }
396 
397 /* This should work for all families including legacy */
398 static bool ath9k_hw_chip_test(struct ath_hw *ah)
399 {
400 	struct ath_common *common = ath9k_hw_common(ah);
401 	u32 regAddr[2] = { AR_STA_ID0 };
402 	u32 regHold[2];
403 	static const u32 patternData[4] = {
404 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
405 	};
406 	int i, j, loop_max;
407 
408 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
409 		loop_max = 2;
410 		regAddr[1] = AR_PHY_BASE + (8 << 2);
411 	} else
412 		loop_max = 1;
413 
414 	for (i = 0; i < loop_max; i++) {
415 		u32 addr = regAddr[i];
416 		u32 wrData, rdData;
417 
418 		regHold[i] = REG_READ(ah, addr);
419 		for (j = 0; j < 0x100; j++) {
420 			wrData = (j << 16) | j;
421 			REG_WRITE(ah, addr, wrData);
422 			rdData = REG_READ(ah, addr);
423 			if (rdData != wrData) {
424 				ath_err(common,
425 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
426 					addr, wrData, rdData);
427 				return false;
428 			}
429 		}
430 		for (j = 0; j < 4; j++) {
431 			wrData = patternData[j];
432 			REG_WRITE(ah, addr, wrData);
433 			rdData = REG_READ(ah, addr);
434 			if (wrData != rdData) {
435 				ath_err(common,
436 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
437 					addr, wrData, rdData);
438 				return false;
439 			}
440 		}
441 		REG_WRITE(ah, regAddr[i], regHold[i]);
442 	}
443 	udelay(100);
444 
445 	return true;
446 }
447 
448 static void ath9k_hw_init_config(struct ath_hw *ah)
449 {
450 	int i;
451 
452 	ah->config.dma_beacon_response_time = 1;
453 	ah->config.sw_beacon_response_time = 6;
454 	ah->config.additional_swba_backoff = 0;
455 	ah->config.ack_6mb = 0x0;
456 	ah->config.cwm_ignore_extcca = 0;
457 	ah->config.pcie_clock_req = 0;
458 	ah->config.pcie_waen = 0;
459 	ah->config.analog_shiftreg = 1;
460 	ah->config.enable_ani = true;
461 
462 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
463 		ah->config.spurchans[i][0] = AR_NO_SPUR;
464 		ah->config.spurchans[i][1] = AR_NO_SPUR;
465 	}
466 
467 	ah->config.rx_intr_mitigation = true;
468 	ah->config.pcieSerDesWrite = true;
469 
470 	/*
471 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
472 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
473 	 * This means we use it for all AR5416 devices, and the few
474 	 * minor PCI AR9280 devices out there.
475 	 *
476 	 * Serialization is required because these devices do not handle
477 	 * well the case of two concurrent reads/writes due to the latency
478 	 * involved. During one read/write another read/write can be issued
479 	 * on another CPU while the previous read/write may still be working
480 	 * on our hardware, if we hit this case the hardware poops in a loop.
481 	 * We prevent this by serializing reads and writes.
482 	 *
483 	 * This issue is not present on PCI-Express devices or pre-AR5416
484 	 * devices (legacy, 802.11abg).
485 	 */
486 	if (num_possible_cpus() > 1)
487 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
488 }
489 
490 static void ath9k_hw_init_defaults(struct ath_hw *ah)
491 {
492 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
493 
494 	regulatory->country_code = CTRY_DEFAULT;
495 	regulatory->power_limit = MAX_RATE_POWER;
496 
497 	ah->hw_version.magic = AR5416_MAGIC;
498 	ah->hw_version.subvendorid = 0;
499 
500 	ah->atim_window = 0;
501 	ah->sta_id1_defaults =
502 		AR_STA_ID1_CRPT_MIC_ENABLE |
503 		AR_STA_ID1_MCAST_KSRCH;
504 	if (AR_SREV_9100(ah))
505 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
506 	ah->slottime = ATH9K_SLOT_TIME_9;
507 	ah->globaltxtimeout = (u32) -1;
508 	ah->power_mode = ATH9K_PM_UNDEFINED;
509 	ah->htc_reset_init = true;
510 }
511 
512 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
513 {
514 	struct ath_common *common = ath9k_hw_common(ah);
515 	u32 sum;
516 	int i;
517 	u16 eeval;
518 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
519 
520 	sum = 0;
521 	for (i = 0; i < 3; i++) {
522 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
523 		sum += eeval;
524 		common->macaddr[2 * i] = eeval >> 8;
525 		common->macaddr[2 * i + 1] = eeval & 0xff;
526 	}
527 	if (sum == 0 || sum == 0xffff * 3)
528 		return -EADDRNOTAVAIL;
529 
530 	return 0;
531 }
532 
533 static int ath9k_hw_post_init(struct ath_hw *ah)
534 {
535 	struct ath_common *common = ath9k_hw_common(ah);
536 	int ecode;
537 
538 	if (common->bus_ops->ath_bus_type != ATH_USB) {
539 		if (!ath9k_hw_chip_test(ah))
540 			return -ENODEV;
541 	}
542 
543 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
544 		ecode = ar9002_hw_rf_claim(ah);
545 		if (ecode != 0)
546 			return ecode;
547 	}
548 
549 	ecode = ath9k_hw_eeprom_init(ah);
550 	if (ecode != 0)
551 		return ecode;
552 
553 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
554 		ah->eep_ops->get_eeprom_ver(ah),
555 		ah->eep_ops->get_eeprom_rev(ah));
556 
557 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
558 	if (ecode) {
559 		ath_err(ath9k_hw_common(ah),
560 			"Failed allocating banks for external radio\n");
561 		ath9k_hw_rf_free_ext_banks(ah);
562 		return ecode;
563 	}
564 
565 	if (ah->config.enable_ani) {
566 		ath9k_hw_ani_setup(ah);
567 		ath9k_hw_ani_init(ah);
568 	}
569 
570 	return 0;
571 }
572 
573 static void ath9k_hw_attach_ops(struct ath_hw *ah)
574 {
575 	if (AR_SREV_9300_20_OR_LATER(ah))
576 		ar9003_hw_attach_ops(ah);
577 	else
578 		ar9002_hw_attach_ops(ah);
579 }
580 
581 /* Called for all hardware families */
582 static int __ath9k_hw_init(struct ath_hw *ah)
583 {
584 	struct ath_common *common = ath9k_hw_common(ah);
585 	int r = 0;
586 
587 	ath9k_hw_read_revisions(ah);
588 
589 	/*
590 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
591 	 * We need to do this to avoid RMW of this register. We cannot
592 	 * read the reg when chip is asleep.
593 	 */
594 	ah->WARegVal = REG_READ(ah, AR_WA);
595 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
596 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
597 
598 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
599 		ath_err(common, "Couldn't reset chip\n");
600 		return -EIO;
601 	}
602 
603 	if (AR_SREV_9462(ah))
604 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
605 
606 	if (AR_SREV_9565(ah)) {
607 		ah->WARegVal |= AR_WA_BIT22;
608 		REG_WRITE(ah, AR_WA, ah->WARegVal);
609 	}
610 
611 	ath9k_hw_init_defaults(ah);
612 	ath9k_hw_init_config(ah);
613 
614 	ath9k_hw_attach_ops(ah);
615 
616 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
617 		ath_err(common, "Couldn't wakeup chip\n");
618 		return -EIO;
619 	}
620 
621 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
622 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
623 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
624 		     !ah->is_pciexpress)) {
625 			ah->config.serialize_regmode =
626 				SER_REG_MODE_ON;
627 		} else {
628 			ah->config.serialize_regmode =
629 				SER_REG_MODE_OFF;
630 		}
631 	}
632 
633 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
634 		ah->config.serialize_regmode);
635 
636 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
637 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
638 	else
639 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
640 
641 	switch (ah->hw_version.macVersion) {
642 	case AR_SREV_VERSION_5416_PCI:
643 	case AR_SREV_VERSION_5416_PCIE:
644 	case AR_SREV_VERSION_9160:
645 	case AR_SREV_VERSION_9100:
646 	case AR_SREV_VERSION_9280:
647 	case AR_SREV_VERSION_9285:
648 	case AR_SREV_VERSION_9287:
649 	case AR_SREV_VERSION_9271:
650 	case AR_SREV_VERSION_9300:
651 	case AR_SREV_VERSION_9330:
652 	case AR_SREV_VERSION_9485:
653 	case AR_SREV_VERSION_9340:
654 	case AR_SREV_VERSION_9462:
655 	case AR_SREV_VERSION_9550:
656 	case AR_SREV_VERSION_9565:
657 		break;
658 	default:
659 		ath_err(common,
660 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
661 			ah->hw_version.macVersion, ah->hw_version.macRev);
662 		return -EOPNOTSUPP;
663 	}
664 
665 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
666 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
667 		ah->is_pciexpress = false;
668 
669 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
670 	ath9k_hw_init_cal_settings(ah);
671 
672 	ah->ani_function = ATH9K_ANI_ALL;
673 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
674 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
675 	if (!AR_SREV_9300_20_OR_LATER(ah))
676 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
677 
678 	ath9k_hw_init_mode_regs(ah);
679 
680 	if (!ah->is_pciexpress)
681 		ath9k_hw_disablepcie(ah);
682 
683 	r = ath9k_hw_post_init(ah);
684 	if (r)
685 		return r;
686 
687 	ath9k_hw_init_mode_gain_regs(ah);
688 	r = ath9k_hw_fill_cap_info(ah);
689 	if (r)
690 		return r;
691 
692 	r = ath9k_hw_init_macaddr(ah);
693 	if (r) {
694 		ath_err(common, "Failed to initialize MAC address\n");
695 		return r;
696 	}
697 
698 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
699 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
700 	else
701 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
702 
703 	if (AR_SREV_9330(ah))
704 		ah->bb_watchdog_timeout_ms = 85;
705 	else
706 		ah->bb_watchdog_timeout_ms = 25;
707 
708 	common->state = ATH_HW_INITIALIZED;
709 
710 	return 0;
711 }
712 
713 int ath9k_hw_init(struct ath_hw *ah)
714 {
715 	int ret;
716 	struct ath_common *common = ath9k_hw_common(ah);
717 
718 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
719 	switch (ah->hw_version.devid) {
720 	case AR5416_DEVID_PCI:
721 	case AR5416_DEVID_PCIE:
722 	case AR5416_AR9100_DEVID:
723 	case AR9160_DEVID_PCI:
724 	case AR9280_DEVID_PCI:
725 	case AR9280_DEVID_PCIE:
726 	case AR9285_DEVID_PCIE:
727 	case AR9287_DEVID_PCI:
728 	case AR9287_DEVID_PCIE:
729 	case AR2427_DEVID_PCIE:
730 	case AR9300_DEVID_PCIE:
731 	case AR9300_DEVID_AR9485_PCIE:
732 	case AR9300_DEVID_AR9330:
733 	case AR9300_DEVID_AR9340:
734 	case AR9300_DEVID_QCA955X:
735 	case AR9300_DEVID_AR9580:
736 	case AR9300_DEVID_AR9462:
737 	case AR9485_DEVID_AR1111:
738 	case AR9300_DEVID_AR9565:
739 		break;
740 	default:
741 		if (common->bus_ops->ath_bus_type == ATH_USB)
742 			break;
743 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
744 			ah->hw_version.devid);
745 		return -EOPNOTSUPP;
746 	}
747 
748 	ret = __ath9k_hw_init(ah);
749 	if (ret) {
750 		ath_err(common,
751 			"Unable to initialize hardware; initialization status: %d\n",
752 			ret);
753 		return ret;
754 	}
755 
756 	return 0;
757 }
758 EXPORT_SYMBOL(ath9k_hw_init);
759 
760 static void ath9k_hw_init_qos(struct ath_hw *ah)
761 {
762 	ENABLE_REGWRITE_BUFFER(ah);
763 
764 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
765 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
766 
767 	REG_WRITE(ah, AR_QOS_NO_ACK,
768 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
769 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
770 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
771 
772 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
773 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
774 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
775 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
776 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
777 
778 	REGWRITE_BUFFER_FLUSH(ah);
779 }
780 
781 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
782 {
783 	struct ath_common *common = ath9k_hw_common(ah);
784 	int i = 0;
785 
786 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
787 	udelay(100);
788 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
789 
790 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
791 
792 		udelay(100);
793 
794 		if (WARN_ON_ONCE(i >= 100)) {
795 			ath_err(common, "PLL4 meaurement not done\n");
796 			break;
797 		}
798 
799 		i++;
800 	}
801 
802 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
803 }
804 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
805 
806 static void ath9k_hw_init_pll(struct ath_hw *ah,
807 			      struct ath9k_channel *chan)
808 {
809 	u32 pll;
810 
811 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
812 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
813 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
814 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
815 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
816 			      AR_CH0_DPLL2_KD, 0x40);
817 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
818 			      AR_CH0_DPLL2_KI, 0x4);
819 
820 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
821 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
822 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
823 			      AR_CH0_BB_DPLL1_NINI, 0x58);
824 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
825 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
826 
827 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
828 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
829 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
830 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
831 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
832 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
833 
834 		/* program BB PLL phase_shift to 0x6 */
835 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
836 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
837 
838 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
839 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
840 		udelay(1000);
841 	} else if (AR_SREV_9330(ah)) {
842 		u32 ddr_dpll2, pll_control2, kd;
843 
844 		if (ah->is_clk_25mhz) {
845 			ddr_dpll2 = 0x18e82f01;
846 			pll_control2 = 0xe04a3d;
847 			kd = 0x1d;
848 		} else {
849 			ddr_dpll2 = 0x19e82f01;
850 			pll_control2 = 0x886666;
851 			kd = 0x3d;
852 		}
853 
854 		/* program DDR PLL ki and kd value */
855 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
856 
857 		/* program DDR PLL phase_shift */
858 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
859 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
860 
861 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
862 		udelay(1000);
863 
864 		/* program refdiv, nint, frac to RTC register */
865 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
866 
867 		/* program BB PLL kd and ki value */
868 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
869 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
870 
871 		/* program BB PLL phase_shift */
872 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
873 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
874 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
875 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
876 
877 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
878 		udelay(1000);
879 
880 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
881 		udelay(100);
882 
883 		if (ah->is_clk_25mhz) {
884 			pll2_divint = 0x54;
885 			pll2_divfrac = 0x1eb85;
886 			refdiv = 3;
887 		} else {
888 			if (AR_SREV_9340(ah)) {
889 				pll2_divint = 88;
890 				pll2_divfrac = 0;
891 				refdiv = 5;
892 			} else {
893 				pll2_divint = 0x11;
894 				pll2_divfrac = 0x26666;
895 				refdiv = 1;
896 			}
897 		}
898 
899 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
900 		regval |= (0x1 << 16);
901 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
902 		udelay(100);
903 
904 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
905 			  (pll2_divint << 18) | pll2_divfrac);
906 		udelay(100);
907 
908 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
909 		if (AR_SREV_9340(ah))
910 			regval = (regval & 0x80071fff) | (0x1 << 30) |
911 				 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
912 		else
913 			regval = (regval & 0x80071fff) | (0x3 << 30) |
914 				 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
915 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
916 		REG_WRITE(ah, AR_PHY_PLL_MODE,
917 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
918 		udelay(1000);
919 	}
920 
921 	pll = ath9k_hw_compute_pll_control(ah, chan);
922 	if (AR_SREV_9565(ah))
923 		pll |= 0x40000;
924 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
925 
926 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
927 	    AR_SREV_9550(ah))
928 		udelay(1000);
929 
930 	/* Switch the core clock for ar9271 to 117Mhz */
931 	if (AR_SREV_9271(ah)) {
932 		udelay(500);
933 		REG_WRITE(ah, 0x50040, 0x304);
934 	}
935 
936 	udelay(RTC_PLL_SETTLE_DELAY);
937 
938 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
939 
940 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
941 		if (ah->is_clk_25mhz) {
942 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
943 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
944 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
945 		} else {
946 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
947 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
948 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
949 		}
950 		udelay(100);
951 	}
952 }
953 
954 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
955 					  enum nl80211_iftype opmode)
956 {
957 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
958 	u32 imr_reg = AR_IMR_TXERR |
959 		AR_IMR_TXURN |
960 		AR_IMR_RXERR |
961 		AR_IMR_RXORN |
962 		AR_IMR_BCNMISC;
963 
964 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
965 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
966 
967 	if (AR_SREV_9300_20_OR_LATER(ah)) {
968 		imr_reg |= AR_IMR_RXOK_HP;
969 		if (ah->config.rx_intr_mitigation)
970 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
971 		else
972 			imr_reg |= AR_IMR_RXOK_LP;
973 
974 	} else {
975 		if (ah->config.rx_intr_mitigation)
976 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
977 		else
978 			imr_reg |= AR_IMR_RXOK;
979 	}
980 
981 	if (ah->config.tx_intr_mitigation)
982 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
983 	else
984 		imr_reg |= AR_IMR_TXOK;
985 
986 	ENABLE_REGWRITE_BUFFER(ah);
987 
988 	REG_WRITE(ah, AR_IMR, imr_reg);
989 	ah->imrs2_reg |= AR_IMR_S2_GTT;
990 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
991 
992 	if (!AR_SREV_9100(ah)) {
993 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
994 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
995 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
996 	}
997 
998 	REGWRITE_BUFFER_FLUSH(ah);
999 
1000 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1001 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
1002 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
1003 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
1004 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
1005 	}
1006 }
1007 
1008 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
1009 {
1010 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
1011 	val = min(val, (u32) 0xFFFF);
1012 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1013 }
1014 
1015 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1016 {
1017 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1018 	val = min(val, (u32) 0xFFFF);
1019 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1020 }
1021 
1022 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1023 {
1024 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1025 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1026 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1027 }
1028 
1029 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1030 {
1031 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1032 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1033 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1034 }
1035 
1036 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1037 {
1038 	if (tu > 0xFFFF) {
1039 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1040 			tu);
1041 		ah->globaltxtimeout = (u32) -1;
1042 		return false;
1043 	} else {
1044 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1045 		ah->globaltxtimeout = tu;
1046 		return true;
1047 	}
1048 }
1049 
1050 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1051 {
1052 	struct ath_common *common = ath9k_hw_common(ah);
1053 	struct ieee80211_conf *conf = &common->hw->conf;
1054 	const struct ath9k_channel *chan = ah->curchan;
1055 	int acktimeout, ctstimeout, ack_offset = 0;
1056 	int slottime;
1057 	int sifstime;
1058 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1059 	u32 reg;
1060 
1061 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1062 		ah->misc_mode);
1063 
1064 	if (!chan)
1065 		return;
1066 
1067 	if (ah->misc_mode != 0)
1068 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1069 
1070 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1071 		rx_lat = 41;
1072 	else
1073 		rx_lat = 37;
1074 	tx_lat = 54;
1075 
1076 	if (IS_CHAN_5GHZ(chan))
1077 		sifstime = 16;
1078 	else
1079 		sifstime = 10;
1080 
1081 	if (IS_CHAN_HALF_RATE(chan)) {
1082 		eifs = 175;
1083 		rx_lat *= 2;
1084 		tx_lat *= 2;
1085 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1086 		    tx_lat += 11;
1087 
1088 		sifstime *= 2;
1089 		ack_offset = 16;
1090 		slottime = 13;
1091 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1092 		eifs = 340;
1093 		rx_lat = (rx_lat * 4) - 1;
1094 		tx_lat *= 4;
1095 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1096 		    tx_lat += 22;
1097 
1098 		sifstime *= 4;
1099 		ack_offset = 32;
1100 		slottime = 21;
1101 	} else {
1102 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1103 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1104 			reg = AR_USEC_ASYNC_FIFO;
1105 		} else {
1106 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1107 				common->clockrate;
1108 			reg = REG_READ(ah, AR_USEC);
1109 		}
1110 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1111 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1112 
1113 		slottime = ah->slottime;
1114 	}
1115 
1116 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1117 	acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
1118 	ctstimeout = acktimeout;
1119 
1120 	/*
1121 	 * Workaround for early ACK timeouts, add an offset to match the
1122 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1123 	 * This was initially only meant to work around an issue with delayed
1124 	 * BA frames in some implementations, but it has been found to fix ACK
1125 	 * timeout issues in other cases as well.
1126 	 */
1127 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
1128 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1129 		acktimeout += 64 - sifstime - ah->slottime;
1130 		ctstimeout += 48 - sifstime - ah->slottime;
1131 	}
1132 
1133 
1134 	ath9k_hw_set_sifs_time(ah, sifstime);
1135 	ath9k_hw_setslottime(ah, slottime);
1136 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1137 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1138 	if (ah->globaltxtimeout != (u32) -1)
1139 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1140 
1141 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1142 	REG_RMW(ah, AR_USEC,
1143 		(common->clockrate - 1) |
1144 		SM(rx_lat, AR_USEC_RX_LAT) |
1145 		SM(tx_lat, AR_USEC_TX_LAT),
1146 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1147 
1148 }
1149 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1150 
1151 void ath9k_hw_deinit(struct ath_hw *ah)
1152 {
1153 	struct ath_common *common = ath9k_hw_common(ah);
1154 
1155 	if (common->state < ATH_HW_INITIALIZED)
1156 		goto free_hw;
1157 
1158 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1159 
1160 free_hw:
1161 	ath9k_hw_rf_free_ext_banks(ah);
1162 }
1163 EXPORT_SYMBOL(ath9k_hw_deinit);
1164 
1165 /*******/
1166 /* INI */
1167 /*******/
1168 
1169 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1170 {
1171 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1172 
1173 	if (IS_CHAN_B(chan))
1174 		ctl |= CTL_11B;
1175 	else if (IS_CHAN_G(chan))
1176 		ctl |= CTL_11G;
1177 	else
1178 		ctl |= CTL_11A;
1179 
1180 	return ctl;
1181 }
1182 
1183 /****************************************/
1184 /* Reset and Channel Switching Routines */
1185 /****************************************/
1186 
1187 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1188 {
1189 	struct ath_common *common = ath9k_hw_common(ah);
1190 
1191 	ENABLE_REGWRITE_BUFFER(ah);
1192 
1193 	/*
1194 	 * set AHB_MODE not to do cacheline prefetches
1195 	*/
1196 	if (!AR_SREV_9300_20_OR_LATER(ah))
1197 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1198 
1199 	/*
1200 	 * let mac dma reads be in 128 byte chunks
1201 	 */
1202 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1203 
1204 	REGWRITE_BUFFER_FLUSH(ah);
1205 
1206 	/*
1207 	 * Restore TX Trigger Level to its pre-reset value.
1208 	 * The initial value depends on whether aggregation is enabled, and is
1209 	 * adjusted whenever underruns are detected.
1210 	 */
1211 	if (!AR_SREV_9300_20_OR_LATER(ah))
1212 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1213 
1214 	ENABLE_REGWRITE_BUFFER(ah);
1215 
1216 	/*
1217 	 * let mac dma writes be in 128 byte chunks
1218 	 */
1219 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1220 
1221 	/*
1222 	 * Setup receive FIFO threshold to hold off TX activities
1223 	 */
1224 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1225 
1226 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1227 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1228 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1229 
1230 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1231 			ah->caps.rx_status_len);
1232 	}
1233 
1234 	/*
1235 	 * reduce the number of usable entries in PCU TXBUF to avoid
1236 	 * wrap around issues.
1237 	 */
1238 	if (AR_SREV_9285(ah)) {
1239 		/* For AR9285 the number of Fifos are reduced to half.
1240 		 * So set the usable tx buf size also to half to
1241 		 * avoid data/delimiter underruns
1242 		 */
1243 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1244 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1245 	} else if (!AR_SREV_9271(ah)) {
1246 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1247 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1248 	}
1249 
1250 	REGWRITE_BUFFER_FLUSH(ah);
1251 
1252 	if (AR_SREV_9300_20_OR_LATER(ah))
1253 		ath9k_hw_reset_txstatus_ring(ah);
1254 }
1255 
1256 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1257 {
1258 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1259 	u32 set = AR_STA_ID1_KSRCH_MODE;
1260 
1261 	switch (opmode) {
1262 	case NL80211_IFTYPE_ADHOC:
1263 	case NL80211_IFTYPE_MESH_POINT:
1264 		set |= AR_STA_ID1_ADHOC;
1265 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1266 		break;
1267 	case NL80211_IFTYPE_AP:
1268 		set |= AR_STA_ID1_STA_AP;
1269 		/* fall through */
1270 	case NL80211_IFTYPE_STATION:
1271 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1272 		break;
1273 	default:
1274 		if (!ah->is_monitoring)
1275 			set = 0;
1276 		break;
1277 	}
1278 	REG_RMW(ah, AR_STA_ID1, set, mask);
1279 }
1280 
1281 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1282 				   u32 *coef_mantissa, u32 *coef_exponent)
1283 {
1284 	u32 coef_exp, coef_man;
1285 
1286 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1287 		if ((coef_scaled >> coef_exp) & 0x1)
1288 			break;
1289 
1290 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1291 
1292 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1293 
1294 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1295 	*coef_exponent = coef_exp - 16;
1296 }
1297 
1298 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1299 {
1300 	u32 rst_flags;
1301 	u32 tmpReg;
1302 
1303 	if (AR_SREV_9100(ah)) {
1304 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1305 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1306 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1307 	}
1308 
1309 	ENABLE_REGWRITE_BUFFER(ah);
1310 
1311 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1312 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1313 		udelay(10);
1314 	}
1315 
1316 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1317 		  AR_RTC_FORCE_WAKE_ON_INT);
1318 
1319 	if (AR_SREV_9100(ah)) {
1320 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1321 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1322 	} else {
1323 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1324 		if (tmpReg &
1325 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1326 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1327 			u32 val;
1328 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1329 
1330 			val = AR_RC_HOSTIF;
1331 			if (!AR_SREV_9300_20_OR_LATER(ah))
1332 				val |= AR_RC_AHB;
1333 			REG_WRITE(ah, AR_RC, val);
1334 
1335 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1336 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1337 
1338 		rst_flags = AR_RTC_RC_MAC_WARM;
1339 		if (type == ATH9K_RESET_COLD)
1340 			rst_flags |= AR_RTC_RC_MAC_COLD;
1341 	}
1342 
1343 	if (AR_SREV_9330(ah)) {
1344 		int npend = 0;
1345 		int i;
1346 
1347 		/* AR9330 WAR:
1348 		 * call external reset function to reset WMAC if:
1349 		 * - doing a cold reset
1350 		 * - we have pending frames in the TX queues
1351 		 */
1352 
1353 		for (i = 0; i < AR_NUM_QCU; i++) {
1354 			npend = ath9k_hw_numtxpending(ah, i);
1355 			if (npend)
1356 				break;
1357 		}
1358 
1359 		if (ah->external_reset &&
1360 		    (npend || type == ATH9K_RESET_COLD)) {
1361 			int reset_err = 0;
1362 
1363 			ath_dbg(ath9k_hw_common(ah), RESET,
1364 				"reset MAC via external reset\n");
1365 
1366 			reset_err = ah->external_reset();
1367 			if (reset_err) {
1368 				ath_err(ath9k_hw_common(ah),
1369 					"External reset failed, err=%d\n",
1370 					reset_err);
1371 				return false;
1372 			}
1373 
1374 			REG_WRITE(ah, AR_RTC_RESET, 1);
1375 		}
1376 	}
1377 
1378 	if (ath9k_hw_mci_is_enabled(ah))
1379 		ar9003_mci_check_gpm_offset(ah);
1380 
1381 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1382 
1383 	REGWRITE_BUFFER_FLUSH(ah);
1384 
1385 	udelay(50);
1386 
1387 	REG_WRITE(ah, AR_RTC_RC, 0);
1388 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1389 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1390 		return false;
1391 	}
1392 
1393 	if (!AR_SREV_9100(ah))
1394 		REG_WRITE(ah, AR_RC, 0);
1395 
1396 	if (AR_SREV_9100(ah))
1397 		udelay(50);
1398 
1399 	return true;
1400 }
1401 
1402 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1403 {
1404 	ENABLE_REGWRITE_BUFFER(ah);
1405 
1406 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1407 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1408 		udelay(10);
1409 	}
1410 
1411 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1412 		  AR_RTC_FORCE_WAKE_ON_INT);
1413 
1414 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1415 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1416 
1417 	REG_WRITE(ah, AR_RTC_RESET, 0);
1418 
1419 	REGWRITE_BUFFER_FLUSH(ah);
1420 
1421 	if (!AR_SREV_9300_20_OR_LATER(ah))
1422 		udelay(2);
1423 
1424 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1425 		REG_WRITE(ah, AR_RC, 0);
1426 
1427 	REG_WRITE(ah, AR_RTC_RESET, 1);
1428 
1429 	if (!ath9k_hw_wait(ah,
1430 			   AR_RTC_STATUS,
1431 			   AR_RTC_STATUS_M,
1432 			   AR_RTC_STATUS_ON,
1433 			   AH_WAIT_TIMEOUT)) {
1434 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1435 		return false;
1436 	}
1437 
1438 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1439 }
1440 
1441 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1442 {
1443 	bool ret = false;
1444 
1445 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1446 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1447 		udelay(10);
1448 	}
1449 
1450 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1451 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1452 
1453 	if (!ah->reset_power_on)
1454 		type = ATH9K_RESET_POWER_ON;
1455 
1456 	switch (type) {
1457 	case ATH9K_RESET_POWER_ON:
1458 		ret = ath9k_hw_set_reset_power_on(ah);
1459 		if (ret)
1460 			ah->reset_power_on = true;
1461 		break;
1462 	case ATH9K_RESET_WARM:
1463 	case ATH9K_RESET_COLD:
1464 		ret = ath9k_hw_set_reset(ah, type);
1465 		break;
1466 	default:
1467 		break;
1468 	}
1469 
1470 	return ret;
1471 }
1472 
1473 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1474 				struct ath9k_channel *chan)
1475 {
1476 	int reset_type = ATH9K_RESET_WARM;
1477 
1478 	if (AR_SREV_9280(ah)) {
1479 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1480 			reset_type = ATH9K_RESET_POWER_ON;
1481 		else
1482 			reset_type = ATH9K_RESET_COLD;
1483 	}
1484 
1485 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1486 		return false;
1487 
1488 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1489 		return false;
1490 
1491 	ah->chip_fullsleep = false;
1492 
1493 	if (AR_SREV_9330(ah))
1494 		ar9003_hw_internal_regulator_apply(ah);
1495 	ath9k_hw_init_pll(ah, chan);
1496 	ath9k_hw_set_rfmode(ah, chan);
1497 
1498 	return true;
1499 }
1500 
1501 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1502 				    struct ath9k_channel *chan)
1503 {
1504 	struct ath_common *common = ath9k_hw_common(ah);
1505 	u32 qnum;
1506 	int r;
1507 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1508 	bool band_switch, mode_diff;
1509 	u8 ini_reloaded;
1510 
1511 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1512 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1513 						    CHANNEL_5GHZ));
1514 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1515 
1516 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1517 		if (ath9k_hw_numtxpending(ah, qnum)) {
1518 			ath_dbg(common, QUEUE,
1519 				"Transmit frames pending on queue %d\n", qnum);
1520 			return false;
1521 		}
1522 	}
1523 
1524 	if (!ath9k_hw_rfbus_req(ah)) {
1525 		ath_err(common, "Could not kill baseband RX\n");
1526 		return false;
1527 	}
1528 
1529 	if (edma && (band_switch || mode_diff)) {
1530 		ath9k_hw_mark_phy_inactive(ah);
1531 		udelay(5);
1532 
1533 		ath9k_hw_init_pll(ah, NULL);
1534 
1535 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1536 			ath_err(common, "Failed to do fast channel change\n");
1537 			return false;
1538 		}
1539 	}
1540 
1541 	ath9k_hw_set_channel_regs(ah, chan);
1542 
1543 	r = ath9k_hw_rf_set_freq(ah, chan);
1544 	if (r) {
1545 		ath_err(common, "Failed to set channel\n");
1546 		return false;
1547 	}
1548 	ath9k_hw_set_clockrate(ah);
1549 	ath9k_hw_apply_txpower(ah, chan, false);
1550 	ath9k_hw_rfbus_done(ah);
1551 
1552 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1553 		ath9k_hw_set_delta_slope(ah, chan);
1554 
1555 	ath9k_hw_spur_mitigate_freq(ah, chan);
1556 
1557 	if (edma && (band_switch || mode_diff)) {
1558 		ah->ah_flags |= AH_FASTCC;
1559 		if (band_switch || ini_reloaded)
1560 			ah->eep_ops->set_board_values(ah, chan);
1561 
1562 		ath9k_hw_init_bb(ah, chan);
1563 
1564 		if (band_switch || ini_reloaded)
1565 			ath9k_hw_init_cal(ah, chan);
1566 		ah->ah_flags &= ~AH_FASTCC;
1567 	}
1568 
1569 	return true;
1570 }
1571 
1572 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1573 {
1574 	u32 gpio_mask = ah->gpio_mask;
1575 	int i;
1576 
1577 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1578 		if (!(gpio_mask & 1))
1579 			continue;
1580 
1581 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1582 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1583 	}
1584 }
1585 
1586 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1587 			       int *hang_state, int *hang_pos)
1588 {
1589 	static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1590 	u32 chain_state, dcs_pos, i;
1591 
1592 	for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1593 		chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1594 		for (i = 0; i < 3; i++) {
1595 			if (chain_state == dcu_chain_state[i]) {
1596 				*hang_state = chain_state;
1597 				*hang_pos = dcs_pos;
1598 				return true;
1599 			}
1600 		}
1601 	}
1602 	return false;
1603 }
1604 
1605 #define DCU_COMPLETE_STATE        1
1606 #define DCU_COMPLETE_STATE_MASK 0x3
1607 #define NUM_STATUS_READS         50
1608 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1609 {
1610 	u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1611 	u32 i, hang_pos, hang_state, num_state = 6;
1612 
1613 	comp_state = REG_READ(ah, AR_DMADBG_6);
1614 
1615 	if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1616 		ath_dbg(ath9k_hw_common(ah), RESET,
1617 			"MAC Hang signature not found at DCU complete\n");
1618 		return false;
1619 	}
1620 
1621 	chain_state = REG_READ(ah, dcs_reg);
1622 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1623 		goto hang_check_iter;
1624 
1625 	dcs_reg = AR_DMADBG_5;
1626 	num_state = 4;
1627 	chain_state = REG_READ(ah, dcs_reg);
1628 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1629 		goto hang_check_iter;
1630 
1631 	ath_dbg(ath9k_hw_common(ah), RESET,
1632 		"MAC Hang signature 1 not found\n");
1633 	return false;
1634 
1635 hang_check_iter:
1636 	ath_dbg(ath9k_hw_common(ah), RESET,
1637 		"DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1638 		chain_state, comp_state, hang_state, hang_pos);
1639 
1640 	for (i = 0; i < NUM_STATUS_READS; i++) {
1641 		chain_state = REG_READ(ah, dcs_reg);
1642 		chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1643 		comp_state = REG_READ(ah, AR_DMADBG_6);
1644 
1645 		if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1646 					DCU_COMPLETE_STATE) ||
1647 		    (chain_state != hang_state))
1648 			return false;
1649 	}
1650 
1651 	ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1652 
1653 	return true;
1654 }
1655 
1656 bool ath9k_hw_check_alive(struct ath_hw *ah)
1657 {
1658 	int count = 50;
1659 	u32 reg;
1660 
1661 	if (AR_SREV_9300(ah))
1662 		return !ath9k_hw_detect_mac_hang(ah);
1663 
1664 	if (AR_SREV_9285_12_OR_LATER(ah))
1665 		return true;
1666 
1667 	do {
1668 		reg = REG_READ(ah, AR_OBS_BUS_1);
1669 
1670 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1671 			continue;
1672 
1673 		switch (reg & 0x7E000B00) {
1674 		case 0x1E000000:
1675 		case 0x52000B00:
1676 		case 0x18000B00:
1677 			continue;
1678 		default:
1679 			return true;
1680 		}
1681 	} while (count-- > 0);
1682 
1683 	return false;
1684 }
1685 EXPORT_SYMBOL(ath9k_hw_check_alive);
1686 
1687 /*
1688  * Fast channel change:
1689  * (Change synthesizer based on channel freq without resetting chip)
1690  *
1691  * Don't do FCC when
1692  *   - Flag is not set
1693  *   - Chip is just coming out of full sleep
1694  *   - Channel to be set is same as current channel
1695  *   - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1696  */
1697 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1698 {
1699 	struct ath_common *common = ath9k_hw_common(ah);
1700 	int ret;
1701 
1702 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1703 		goto fail;
1704 
1705 	if (ah->chip_fullsleep)
1706 		goto fail;
1707 
1708 	if (!ah->curchan)
1709 		goto fail;
1710 
1711 	if (chan->channel == ah->curchan->channel)
1712 		goto fail;
1713 
1714 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1715 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1716 		goto fail;
1717 
1718 	if ((chan->channelFlags & CHANNEL_ALL) !=
1719 	    (ah->curchan->channelFlags & CHANNEL_ALL))
1720 		goto fail;
1721 
1722 	if (!ath9k_hw_check_alive(ah))
1723 		goto fail;
1724 
1725 	/*
1726 	 * For AR9462, make sure that calibration data for
1727 	 * re-using are present.
1728 	 */
1729 	if (AR_SREV_9462(ah) && (ah->caldata &&
1730 				 (!ah->caldata->done_txiqcal_once ||
1731 				  !ah->caldata->done_txclcal_once ||
1732 				  !ah->caldata->rtt_done)))
1733 		goto fail;
1734 
1735 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1736 		ah->curchan->channel, chan->channel);
1737 
1738 	ret = ath9k_hw_channel_change(ah, chan);
1739 	if (!ret)
1740 		goto fail;
1741 
1742 	if (ath9k_hw_mci_is_enabled(ah))
1743 		ar9003_mci_2g5g_switch(ah, false);
1744 
1745 	ath9k_hw_loadnf(ah, ah->curchan);
1746 	ath9k_hw_start_nfcal(ah, true);
1747 
1748 	if (AR_SREV_9271(ah))
1749 		ar9002_hw_load_ani_reg(ah, chan);
1750 
1751 	return 0;
1752 fail:
1753 	return -EINVAL;
1754 }
1755 
1756 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1757 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1758 {
1759 	struct ath_common *common = ath9k_hw_common(ah);
1760 	u32 saveLedState;
1761 	u32 saveDefAntenna;
1762 	u32 macStaId1;
1763 	u64 tsf = 0;
1764 	int i, r;
1765 	bool start_mci_reset = false;
1766 	bool save_fullsleep = ah->chip_fullsleep;
1767 
1768 	if (ath9k_hw_mci_is_enabled(ah)) {
1769 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1770 		if (start_mci_reset)
1771 			return 0;
1772 	}
1773 
1774 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1775 		return -EIO;
1776 
1777 	if (ah->curchan && !ah->chip_fullsleep)
1778 		ath9k_hw_getnf(ah, ah->curchan);
1779 
1780 	ah->caldata = caldata;
1781 	if (caldata &&
1782 	    (chan->channel != caldata->channel ||
1783 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1784 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1785 		/* Operating channel changed, reset channel calibration data */
1786 		memset(caldata, 0, sizeof(*caldata));
1787 		ath9k_init_nfcal_hist_buffer(ah, chan);
1788 	} else if (caldata) {
1789 		caldata->paprd_packet_sent = false;
1790 	}
1791 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1792 
1793 	if (fastcc) {
1794 		r = ath9k_hw_do_fastcc(ah, chan);
1795 		if (!r)
1796 			return r;
1797 	}
1798 
1799 	if (ath9k_hw_mci_is_enabled(ah))
1800 		ar9003_mci_stop_bt(ah, save_fullsleep);
1801 
1802 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1803 	if (saveDefAntenna == 0)
1804 		saveDefAntenna = 1;
1805 
1806 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1807 
1808 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1809 	if (AR_SREV_9100(ah) ||
1810 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1811 		tsf = ath9k_hw_gettsf64(ah);
1812 
1813 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1814 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1815 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1816 
1817 	ath9k_hw_mark_phy_inactive(ah);
1818 
1819 	ah->paprd_table_write_done = false;
1820 
1821 	/* Only required on the first reset */
1822 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1823 		REG_WRITE(ah,
1824 			  AR9271_RESET_POWER_DOWN_CONTROL,
1825 			  AR9271_RADIO_RF_RST);
1826 		udelay(50);
1827 	}
1828 
1829 	if (!ath9k_hw_chip_reset(ah, chan)) {
1830 		ath_err(common, "Chip reset failed\n");
1831 		return -EINVAL;
1832 	}
1833 
1834 	/* Only required on the first reset */
1835 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1836 		ah->htc_reset_init = false;
1837 		REG_WRITE(ah,
1838 			  AR9271_RESET_POWER_DOWN_CONTROL,
1839 			  AR9271_GATE_MAC_CTL);
1840 		udelay(50);
1841 	}
1842 
1843 	/* Restore TSF */
1844 	if (tsf)
1845 		ath9k_hw_settsf64(ah, tsf);
1846 
1847 	if (AR_SREV_9280_20_OR_LATER(ah))
1848 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1849 
1850 	if (!AR_SREV_9300_20_OR_LATER(ah))
1851 		ar9002_hw_enable_async_fifo(ah);
1852 
1853 	r = ath9k_hw_process_ini(ah, chan);
1854 	if (r)
1855 		return r;
1856 
1857 	if (ath9k_hw_mci_is_enabled(ah))
1858 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1859 
1860 	/*
1861 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1862 	 * right after the chip reset. When that happens, write a new
1863 	 * value after the initvals have been applied, with an offset
1864 	 * based on measured time difference
1865 	 */
1866 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1867 		tsf += 1500;
1868 		ath9k_hw_settsf64(ah, tsf);
1869 	}
1870 
1871 	/* Setup MFP options for CCMP */
1872 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1873 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1874 		 * frames when constructing CCMP AAD. */
1875 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1876 			      0xc7ff);
1877 		ah->sw_mgmt_crypto = false;
1878 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1879 		/* Disable hardware crypto for management frames */
1880 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1881 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1882 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1883 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1884 		ah->sw_mgmt_crypto = true;
1885 	} else
1886 		ah->sw_mgmt_crypto = true;
1887 
1888 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1889 		ath9k_hw_set_delta_slope(ah, chan);
1890 
1891 	ath9k_hw_spur_mitigate_freq(ah, chan);
1892 	ah->eep_ops->set_board_values(ah, chan);
1893 
1894 	ENABLE_REGWRITE_BUFFER(ah);
1895 
1896 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1897 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1898 		  | macStaId1
1899 		  | AR_STA_ID1_RTS_USE_DEF
1900 		  | (ah->config.
1901 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1902 		  | ah->sta_id1_defaults);
1903 	ath_hw_setbssidmask(common);
1904 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1905 	ath9k_hw_write_associd(ah);
1906 	REG_WRITE(ah, AR_ISR, ~0);
1907 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1908 
1909 	REGWRITE_BUFFER_FLUSH(ah);
1910 
1911 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1912 
1913 	r = ath9k_hw_rf_set_freq(ah, chan);
1914 	if (r)
1915 		return r;
1916 
1917 	ath9k_hw_set_clockrate(ah);
1918 
1919 	ENABLE_REGWRITE_BUFFER(ah);
1920 
1921 	for (i = 0; i < AR_NUM_DCU; i++)
1922 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1923 
1924 	REGWRITE_BUFFER_FLUSH(ah);
1925 
1926 	ah->intr_txqs = 0;
1927 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1928 		ath9k_hw_resettxqueue(ah, i);
1929 
1930 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1931 	ath9k_hw_ani_cache_ini_regs(ah);
1932 	ath9k_hw_init_qos(ah);
1933 
1934 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1935 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1936 
1937 	ath9k_hw_init_global_settings(ah);
1938 
1939 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1940 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1941 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1942 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1943 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1944 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1945 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1946 	}
1947 
1948 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1949 
1950 	ath9k_hw_set_dma(ah);
1951 
1952 	if (!ath9k_hw_mci_is_enabled(ah))
1953 		REG_WRITE(ah, AR_OBS, 8);
1954 
1955 	if (ah->config.rx_intr_mitigation) {
1956 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1957 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1958 	}
1959 
1960 	if (ah->config.tx_intr_mitigation) {
1961 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1962 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1963 	}
1964 
1965 	ath9k_hw_init_bb(ah, chan);
1966 
1967 	if (caldata) {
1968 		caldata->done_txiqcal_once = false;
1969 		caldata->done_txclcal_once = false;
1970 	}
1971 	if (!ath9k_hw_init_cal(ah, chan))
1972 		return -EIO;
1973 
1974 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1975 		return -EIO;
1976 
1977 	ENABLE_REGWRITE_BUFFER(ah);
1978 
1979 	ath9k_hw_restore_chainmask(ah);
1980 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1981 
1982 	REGWRITE_BUFFER_FLUSH(ah);
1983 
1984 	/*
1985 	 * For big endian systems turn on swapping for descriptors
1986 	 */
1987 	if (AR_SREV_9100(ah)) {
1988 		u32 mask;
1989 		mask = REG_READ(ah, AR_CFG);
1990 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1991 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1992 				mask);
1993 		} else {
1994 			mask =
1995 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1996 			REG_WRITE(ah, AR_CFG, mask);
1997 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1998 				REG_READ(ah, AR_CFG));
1999 		}
2000 	} else {
2001 		if (common->bus_ops->ath_bus_type == ATH_USB) {
2002 			/* Configure AR9271 target WLAN */
2003 			if (AR_SREV_9271(ah))
2004 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2005 			else
2006 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2007 		}
2008 #ifdef __BIG_ENDIAN
2009 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
2010 			 AR_SREV_9550(ah))
2011 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
2012 		else
2013 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2014 #endif
2015 	}
2016 
2017 	if (ath9k_hw_btcoex_is_enabled(ah))
2018 		ath9k_hw_btcoex_enable(ah);
2019 
2020 	if (ath9k_hw_mci_is_enabled(ah))
2021 		ar9003_mci_check_bt(ah);
2022 
2023 	ath9k_hw_loadnf(ah, chan);
2024 	ath9k_hw_start_nfcal(ah, true);
2025 
2026 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2027 		ar9003_hw_bb_watchdog_config(ah);
2028 
2029 		ar9003_hw_disable_phy_restart(ah);
2030 	}
2031 
2032 	ath9k_hw_apply_gpio_override(ah);
2033 
2034 	if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv)
2035 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2036 
2037 	return 0;
2038 }
2039 EXPORT_SYMBOL(ath9k_hw_reset);
2040 
2041 /******************************/
2042 /* Power Management (Chipset) */
2043 /******************************/
2044 
2045 /*
2046  * Notify Power Mgt is disabled in self-generated frames.
2047  * If requested, force chip to sleep.
2048  */
2049 static void ath9k_set_power_sleep(struct ath_hw *ah)
2050 {
2051 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2052 
2053 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2054 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2055 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2056 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2057 		/* xxx Required for WLAN only case ? */
2058 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2059 		udelay(100);
2060 	}
2061 
2062 	/*
2063 	 * Clear the RTC force wake bit to allow the
2064 	 * mac to go to sleep.
2065 	 */
2066 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2067 
2068 	if (ath9k_hw_mci_is_enabled(ah))
2069 		udelay(100);
2070 
2071 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2072 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2073 
2074 	/* Shutdown chip. Active low */
2075 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2076 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2077 		udelay(2);
2078 	}
2079 
2080 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2081 	if (AR_SREV_9300_20_OR_LATER(ah))
2082 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2083 }
2084 
2085 /*
2086  * Notify Power Management is enabled in self-generating
2087  * frames. If request, set power mode of chip to
2088  * auto/normal.  Duration in units of 128us (1/8 TU).
2089  */
2090 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2091 {
2092 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2093 
2094 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2095 
2096 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2097 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2098 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2099 			  AR_RTC_FORCE_WAKE_ON_INT);
2100 	} else {
2101 
2102 		/* When chip goes into network sleep, it could be waken
2103 		 * up by MCI_INT interrupt caused by BT's HW messages
2104 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2105 		 * rate (~100us). This will cause chip to leave and
2106 		 * re-enter network sleep mode frequently, which in
2107 		 * consequence will have WLAN MCI HW to generate lots of
2108 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2109 		 * BT CPU to busy to process.
2110 		 */
2111 		if (ath9k_hw_mci_is_enabled(ah))
2112 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2113 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2114 		/*
2115 		 * Clear the RTC force wake bit to allow the
2116 		 * mac to go to sleep.
2117 		 */
2118 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2119 
2120 		if (ath9k_hw_mci_is_enabled(ah))
2121 			udelay(30);
2122 	}
2123 
2124 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2125 	if (AR_SREV_9300_20_OR_LATER(ah))
2126 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2127 }
2128 
2129 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2130 {
2131 	u32 val;
2132 	int i;
2133 
2134 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2135 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2136 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2137 		udelay(10);
2138 	}
2139 
2140 	if ((REG_READ(ah, AR_RTC_STATUS) &
2141 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2142 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2143 			return false;
2144 		}
2145 		if (!AR_SREV_9300_20_OR_LATER(ah))
2146 			ath9k_hw_init_pll(ah, NULL);
2147 	}
2148 	if (AR_SREV_9100(ah))
2149 		REG_SET_BIT(ah, AR_RTC_RESET,
2150 			    AR_RTC_RESET_EN);
2151 
2152 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2153 		    AR_RTC_FORCE_WAKE_EN);
2154 	udelay(50);
2155 
2156 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2157 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2158 		if (val == AR_RTC_STATUS_ON)
2159 			break;
2160 		udelay(50);
2161 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2162 			    AR_RTC_FORCE_WAKE_EN);
2163 	}
2164 	if (i == 0) {
2165 		ath_err(ath9k_hw_common(ah),
2166 			"Failed to wakeup in %uus\n",
2167 			POWER_UP_TIME / 20);
2168 		return false;
2169 	}
2170 
2171 	if (ath9k_hw_mci_is_enabled(ah))
2172 		ar9003_mci_set_power_awake(ah);
2173 
2174 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2175 
2176 	return true;
2177 }
2178 
2179 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2180 {
2181 	struct ath_common *common = ath9k_hw_common(ah);
2182 	int status = true;
2183 	static const char *modes[] = {
2184 		"AWAKE",
2185 		"FULL-SLEEP",
2186 		"NETWORK SLEEP",
2187 		"UNDEFINED"
2188 	};
2189 
2190 	if (ah->power_mode == mode)
2191 		return status;
2192 
2193 	ath_dbg(common, RESET, "%s -> %s\n",
2194 		modes[ah->power_mode], modes[mode]);
2195 
2196 	switch (mode) {
2197 	case ATH9K_PM_AWAKE:
2198 		status = ath9k_hw_set_power_awake(ah);
2199 		break;
2200 	case ATH9K_PM_FULL_SLEEP:
2201 		if (ath9k_hw_mci_is_enabled(ah))
2202 			ar9003_mci_set_full_sleep(ah);
2203 
2204 		ath9k_set_power_sleep(ah);
2205 		ah->chip_fullsleep = true;
2206 		break;
2207 	case ATH9K_PM_NETWORK_SLEEP:
2208 		ath9k_set_power_network_sleep(ah);
2209 		break;
2210 	default:
2211 		ath_err(common, "Unknown power mode %u\n", mode);
2212 		return false;
2213 	}
2214 	ah->power_mode = mode;
2215 
2216 	/*
2217 	 * XXX: If this warning never comes up after a while then
2218 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2219 	 * ath9k_hw_setpower() return type void.
2220 	 */
2221 
2222 	if (!(ah->ah_flags & AH_UNPLUGGED))
2223 		ATH_DBG_WARN_ON_ONCE(!status);
2224 
2225 	return status;
2226 }
2227 EXPORT_SYMBOL(ath9k_hw_setpower);
2228 
2229 /*******************/
2230 /* Beacon Handling */
2231 /*******************/
2232 
2233 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2234 {
2235 	int flags = 0;
2236 
2237 	ENABLE_REGWRITE_BUFFER(ah);
2238 
2239 	switch (ah->opmode) {
2240 	case NL80211_IFTYPE_ADHOC:
2241 	case NL80211_IFTYPE_MESH_POINT:
2242 		REG_SET_BIT(ah, AR_TXCFG,
2243 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2244 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2245 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2246 		flags |= AR_NDP_TIMER_EN;
2247 	case NL80211_IFTYPE_AP:
2248 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2249 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2250 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2251 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2252 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2253 		flags |=
2254 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2255 		break;
2256 	default:
2257 		ath_dbg(ath9k_hw_common(ah), BEACON,
2258 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2259 		return;
2260 		break;
2261 	}
2262 
2263 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2264 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2265 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2266 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2267 
2268 	REGWRITE_BUFFER_FLUSH(ah);
2269 
2270 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2271 }
2272 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2273 
2274 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2275 				    const struct ath9k_beacon_state *bs)
2276 {
2277 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2278 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2279 	struct ath_common *common = ath9k_hw_common(ah);
2280 
2281 	ENABLE_REGWRITE_BUFFER(ah);
2282 
2283 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2284 
2285 	REG_WRITE(ah, AR_BEACON_PERIOD,
2286 		  TU_TO_USEC(bs->bs_intval));
2287 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2288 		  TU_TO_USEC(bs->bs_intval));
2289 
2290 	REGWRITE_BUFFER_FLUSH(ah);
2291 
2292 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2293 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2294 
2295 	beaconintval = bs->bs_intval;
2296 
2297 	if (bs->bs_sleepduration > beaconintval)
2298 		beaconintval = bs->bs_sleepduration;
2299 
2300 	dtimperiod = bs->bs_dtimperiod;
2301 	if (bs->bs_sleepduration > dtimperiod)
2302 		dtimperiod = bs->bs_sleepduration;
2303 
2304 	if (beaconintval == dtimperiod)
2305 		nextTbtt = bs->bs_nextdtim;
2306 	else
2307 		nextTbtt = bs->bs_nexttbtt;
2308 
2309 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2310 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2311 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2312 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2313 
2314 	ENABLE_REGWRITE_BUFFER(ah);
2315 
2316 	REG_WRITE(ah, AR_NEXT_DTIM,
2317 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2318 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2319 
2320 	REG_WRITE(ah, AR_SLEEP1,
2321 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2322 		  | AR_SLEEP1_ASSUME_DTIM);
2323 
2324 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2325 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2326 	else
2327 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2328 
2329 	REG_WRITE(ah, AR_SLEEP2,
2330 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2331 
2332 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2333 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2334 
2335 	REGWRITE_BUFFER_FLUSH(ah);
2336 
2337 	REG_SET_BIT(ah, AR_TIMER_MODE,
2338 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2339 		    AR_DTIM_TIMER_EN);
2340 
2341 	/* TSF Out of Range Threshold */
2342 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2343 }
2344 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2345 
2346 /*******************/
2347 /* HW Capabilities */
2348 /*******************/
2349 
2350 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2351 {
2352 	eeprom_chainmask &= chip_chainmask;
2353 	if (eeprom_chainmask)
2354 		return eeprom_chainmask;
2355 	else
2356 		return chip_chainmask;
2357 }
2358 
2359 /**
2360  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2361  * @ah: the atheros hardware data structure
2362  *
2363  * We enable DFS support upstream on chipsets which have passed a series
2364  * of tests. The testing requirements are going to be documented. Desired
2365  * test requirements are documented at:
2366  *
2367  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2368  *
2369  * Once a new chipset gets properly tested an individual commit can be used
2370  * to document the testing for DFS for that chipset.
2371  */
2372 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2373 {
2374 
2375 	switch (ah->hw_version.macVersion) {
2376 	/* AR9580 will likely be our first target to get testing on */
2377 	case AR_SREV_VERSION_9580:
2378 	default:
2379 		return false;
2380 	}
2381 }
2382 
2383 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2384 {
2385 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2386 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2387 	struct ath_common *common = ath9k_hw_common(ah);
2388 	unsigned int chip_chainmask;
2389 
2390 	u16 eeval;
2391 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2392 
2393 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2394 	regulatory->current_rd = eeval;
2395 
2396 	if (ah->opmode != NL80211_IFTYPE_AP &&
2397 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2398 		if (regulatory->current_rd == 0x64 ||
2399 		    regulatory->current_rd == 0x65)
2400 			regulatory->current_rd += 5;
2401 		else if (regulatory->current_rd == 0x41)
2402 			regulatory->current_rd = 0x43;
2403 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2404 			regulatory->current_rd);
2405 	}
2406 
2407 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2408 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2409 		ath_err(common,
2410 			"no band has been marked as supported in EEPROM\n");
2411 		return -EINVAL;
2412 	}
2413 
2414 	if (eeval & AR5416_OPFLAGS_11A)
2415 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2416 
2417 	if (eeval & AR5416_OPFLAGS_11G)
2418 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2419 
2420 	if (AR_SREV_9485(ah) ||
2421 	    AR_SREV_9285(ah) ||
2422 	    AR_SREV_9330(ah) ||
2423 	    AR_SREV_9565(ah))
2424 		chip_chainmask = 1;
2425 	else if (AR_SREV_9462(ah))
2426 		chip_chainmask = 3;
2427 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2428 		chip_chainmask = 7;
2429 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2430 		chip_chainmask = 3;
2431 	else
2432 		chip_chainmask = 7;
2433 
2434 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2435 	/*
2436 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2437 	 * the EEPROM.
2438 	 */
2439 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2440 	    !(eeval & AR5416_OPFLAGS_11A) &&
2441 	    !(AR_SREV_9271(ah)))
2442 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2443 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2444 	else if (AR_SREV_9100(ah))
2445 		pCap->rx_chainmask = 0x7;
2446 	else
2447 		/* Use rx_chainmask from EEPROM. */
2448 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2449 
2450 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2451 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2452 	ah->txchainmask = pCap->tx_chainmask;
2453 	ah->rxchainmask = pCap->rx_chainmask;
2454 
2455 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2456 
2457 	/* enable key search for every frame in an aggregate */
2458 	if (AR_SREV_9300_20_OR_LATER(ah))
2459 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2460 
2461 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2462 
2463 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2464 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2465 	else
2466 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2467 
2468 	if (AR_SREV_9271(ah))
2469 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2470 	else if (AR_DEVID_7010(ah))
2471 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2472 	else if (AR_SREV_9300_20_OR_LATER(ah))
2473 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2474 	else if (AR_SREV_9287_11_OR_LATER(ah))
2475 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2476 	else if (AR_SREV_9285_12_OR_LATER(ah))
2477 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2478 	else if (AR_SREV_9280_20_OR_LATER(ah))
2479 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2480 	else
2481 		pCap->num_gpio_pins = AR_NUM_GPIO;
2482 
2483 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2484 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2485 	else
2486 		pCap->rts_aggr_limit = (8 * 1024);
2487 
2488 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2489 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2490 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2491 		ah->rfkill_gpio =
2492 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2493 		ah->rfkill_polarity =
2494 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2495 
2496 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2497 	}
2498 #endif
2499 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2500 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2501 	else
2502 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2503 
2504 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2505 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2506 	else
2507 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2508 
2509 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2510 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2511 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2512 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2513 
2514 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2515 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2516 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2517 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2518 		pCap->txs_len = sizeof(struct ar9003_txs);
2519 	} else {
2520 		pCap->tx_desc_len = sizeof(struct ath_desc);
2521 		if (AR_SREV_9280_20(ah))
2522 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2523 	}
2524 
2525 	if (AR_SREV_9300_20_OR_LATER(ah))
2526 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2527 
2528 	if (AR_SREV_9300_20_OR_LATER(ah))
2529 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2530 
2531 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2532 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2533 
2534 	if (AR_SREV_9285(ah))
2535 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2536 			ant_div_ctl1 =
2537 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2538 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2539 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2540 		}
2541 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2542 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2543 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2544 	}
2545 
2546 
2547 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2548 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2549 		/*
2550 		 * enable the diversity-combining algorithm only when
2551 		 * both enable_lna_div and enable_fast_div are set
2552 		 *		Table for Diversity
2553 		 * ant_div_alt_lnaconf		bit 0-1
2554 		 * ant_div_main_lnaconf		bit 2-3
2555 		 * ant_div_alt_gaintb		bit 4
2556 		 * ant_div_main_gaintb		bit 5
2557 		 * enable_ant_div_lnadiv	bit 6
2558 		 * enable_ant_fast_div		bit 7
2559 		 */
2560 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2561 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2562 	}
2563 
2564 	if (ath9k_hw_dfs_tested(ah))
2565 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2566 
2567 	tx_chainmask = pCap->tx_chainmask;
2568 	rx_chainmask = pCap->rx_chainmask;
2569 	while (tx_chainmask || rx_chainmask) {
2570 		if (tx_chainmask & BIT(0))
2571 			pCap->max_txchains++;
2572 		if (rx_chainmask & BIT(0))
2573 			pCap->max_rxchains++;
2574 
2575 		tx_chainmask >>= 1;
2576 		rx_chainmask >>= 1;
2577 	}
2578 
2579 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2580 		ah->enabled_cals |= TX_IQ_CAL;
2581 		if (AR_SREV_9485_OR_LATER(ah))
2582 			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2583 	}
2584 
2585 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2586 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2587 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2588 
2589 		if (AR_SREV_9462_20(ah))
2590 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2591 	}
2592 
2593 
2594 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2595 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
2596 				 ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
2597 
2598 		if (AR_SREV_9280(ah))
2599 			pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
2600 	}
2601 
2602 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2603 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2604 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2605 
2606 	return 0;
2607 }
2608 
2609 /****************************/
2610 /* GPIO / RFKILL / Antennae */
2611 /****************************/
2612 
2613 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2614 					 u32 gpio, u32 type)
2615 {
2616 	int addr;
2617 	u32 gpio_shift, tmp;
2618 
2619 	if (gpio > 11)
2620 		addr = AR_GPIO_OUTPUT_MUX3;
2621 	else if (gpio > 5)
2622 		addr = AR_GPIO_OUTPUT_MUX2;
2623 	else
2624 		addr = AR_GPIO_OUTPUT_MUX1;
2625 
2626 	gpio_shift = (gpio % 6) * 5;
2627 
2628 	if (AR_SREV_9280_20_OR_LATER(ah)
2629 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2630 		REG_RMW(ah, addr, (type << gpio_shift),
2631 			(0x1f << gpio_shift));
2632 	} else {
2633 		tmp = REG_READ(ah, addr);
2634 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2635 		tmp &= ~(0x1f << gpio_shift);
2636 		tmp |= (type << gpio_shift);
2637 		REG_WRITE(ah, addr, tmp);
2638 	}
2639 }
2640 
2641 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2642 {
2643 	u32 gpio_shift;
2644 
2645 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2646 
2647 	if (AR_DEVID_7010(ah)) {
2648 		gpio_shift = gpio;
2649 		REG_RMW(ah, AR7010_GPIO_OE,
2650 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2651 			(AR7010_GPIO_OE_MASK << gpio_shift));
2652 		return;
2653 	}
2654 
2655 	gpio_shift = gpio << 1;
2656 	REG_RMW(ah,
2657 		AR_GPIO_OE_OUT,
2658 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2659 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2660 }
2661 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2662 
2663 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2664 {
2665 #define MS_REG_READ(x, y) \
2666 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2667 
2668 	if (gpio >= ah->caps.num_gpio_pins)
2669 		return 0xffffffff;
2670 
2671 	if (AR_DEVID_7010(ah)) {
2672 		u32 val;
2673 		val = REG_READ(ah, AR7010_GPIO_IN);
2674 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2675 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2676 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2677 			AR_GPIO_BIT(gpio)) != 0;
2678 	else if (AR_SREV_9271(ah))
2679 		return MS_REG_READ(AR9271, gpio) != 0;
2680 	else if (AR_SREV_9287_11_OR_LATER(ah))
2681 		return MS_REG_READ(AR9287, gpio) != 0;
2682 	else if (AR_SREV_9285_12_OR_LATER(ah))
2683 		return MS_REG_READ(AR9285, gpio) != 0;
2684 	else if (AR_SREV_9280_20_OR_LATER(ah))
2685 		return MS_REG_READ(AR928X, gpio) != 0;
2686 	else
2687 		return MS_REG_READ(AR, gpio) != 0;
2688 }
2689 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2690 
2691 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2692 			 u32 ah_signal_type)
2693 {
2694 	u32 gpio_shift;
2695 
2696 	if (AR_DEVID_7010(ah)) {
2697 		gpio_shift = gpio;
2698 		REG_RMW(ah, AR7010_GPIO_OE,
2699 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2700 			(AR7010_GPIO_OE_MASK << gpio_shift));
2701 		return;
2702 	}
2703 
2704 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2705 	gpio_shift = 2 * gpio;
2706 	REG_RMW(ah,
2707 		AR_GPIO_OE_OUT,
2708 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2709 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2710 }
2711 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2712 
2713 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2714 {
2715 	if (AR_DEVID_7010(ah)) {
2716 		val = val ? 0 : 1;
2717 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2718 			AR_GPIO_BIT(gpio));
2719 		return;
2720 	}
2721 
2722 	if (AR_SREV_9271(ah))
2723 		val = ~val;
2724 
2725 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2726 		AR_GPIO_BIT(gpio));
2727 }
2728 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2729 
2730 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2731 {
2732 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2733 }
2734 EXPORT_SYMBOL(ath9k_hw_setantenna);
2735 
2736 /*********************/
2737 /* General Operation */
2738 /*********************/
2739 
2740 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2741 {
2742 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2743 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2744 
2745 	if (phybits & AR_PHY_ERR_RADAR)
2746 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2747 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2748 		bits |= ATH9K_RX_FILTER_PHYERR;
2749 
2750 	return bits;
2751 }
2752 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2753 
2754 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2755 {
2756 	u32 phybits;
2757 
2758 	ENABLE_REGWRITE_BUFFER(ah);
2759 
2760 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2761 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2762 
2763 	REG_WRITE(ah, AR_RX_FILTER, bits);
2764 
2765 	phybits = 0;
2766 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2767 		phybits |= AR_PHY_ERR_RADAR;
2768 	if (bits & ATH9K_RX_FILTER_PHYERR)
2769 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2770 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2771 
2772 	if (phybits)
2773 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2774 	else
2775 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2776 
2777 	REGWRITE_BUFFER_FLUSH(ah);
2778 }
2779 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2780 
2781 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2782 {
2783 	if (ath9k_hw_mci_is_enabled(ah))
2784 		ar9003_mci_bt_gain_ctrl(ah);
2785 
2786 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2787 		return false;
2788 
2789 	ath9k_hw_init_pll(ah, NULL);
2790 	ah->htc_reset_init = true;
2791 	return true;
2792 }
2793 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2794 
2795 bool ath9k_hw_disable(struct ath_hw *ah)
2796 {
2797 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2798 		return false;
2799 
2800 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2801 		return false;
2802 
2803 	ath9k_hw_init_pll(ah, NULL);
2804 	return true;
2805 }
2806 EXPORT_SYMBOL(ath9k_hw_disable);
2807 
2808 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2809 {
2810 	enum eeprom_param gain_param;
2811 
2812 	if (IS_CHAN_2GHZ(chan))
2813 		gain_param = EEP_ANTENNA_GAIN_2G;
2814 	else
2815 		gain_param = EEP_ANTENNA_GAIN_5G;
2816 
2817 	return ah->eep_ops->get_eeprom(ah, gain_param);
2818 }
2819 
2820 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2821 			    bool test)
2822 {
2823 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2824 	struct ieee80211_channel *channel;
2825 	int chan_pwr, new_pwr, max_gain;
2826 	int ant_gain, ant_reduction = 0;
2827 
2828 	if (!chan)
2829 		return;
2830 
2831 	channel = chan->chan;
2832 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2833 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2834 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2835 
2836 	ant_gain = get_antenna_gain(ah, chan);
2837 	if (ant_gain > max_gain)
2838 		ant_reduction = ant_gain - max_gain;
2839 
2840 	ah->eep_ops->set_txpower(ah, chan,
2841 				 ath9k_regd_get_ctl(reg, chan),
2842 				 ant_reduction, new_pwr, test);
2843 }
2844 
2845 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2846 {
2847 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2848 	struct ath9k_channel *chan = ah->curchan;
2849 	struct ieee80211_channel *channel = chan->chan;
2850 
2851 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2852 	if (test)
2853 		channel->max_power = MAX_RATE_POWER / 2;
2854 
2855 	ath9k_hw_apply_txpower(ah, chan, test);
2856 
2857 	if (test)
2858 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2859 }
2860 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2861 
2862 void ath9k_hw_setopmode(struct ath_hw *ah)
2863 {
2864 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2865 }
2866 EXPORT_SYMBOL(ath9k_hw_setopmode);
2867 
2868 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2869 {
2870 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2871 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2872 }
2873 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2874 
2875 void ath9k_hw_write_associd(struct ath_hw *ah)
2876 {
2877 	struct ath_common *common = ath9k_hw_common(ah);
2878 
2879 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2880 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2881 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2882 }
2883 EXPORT_SYMBOL(ath9k_hw_write_associd);
2884 
2885 #define ATH9K_MAX_TSF_READ 10
2886 
2887 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2888 {
2889 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2890 	int i;
2891 
2892 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2893 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2894 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2895 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2896 		if (tsf_upper2 == tsf_upper1)
2897 			break;
2898 		tsf_upper1 = tsf_upper2;
2899 	}
2900 
2901 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2902 
2903 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2904 }
2905 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2906 
2907 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2908 {
2909 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2910 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2911 }
2912 EXPORT_SYMBOL(ath9k_hw_settsf64);
2913 
2914 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2915 {
2916 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2917 			   AH_TSF_WRITE_TIMEOUT))
2918 		ath_dbg(ath9k_hw_common(ah), RESET,
2919 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2920 
2921 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2922 }
2923 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2924 
2925 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2926 {
2927 	if (set)
2928 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2929 	else
2930 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2931 }
2932 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2933 
2934 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2935 {
2936 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2937 	u32 macmode;
2938 
2939 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2940 		macmode = AR_2040_JOINED_RX_CLEAR;
2941 	else
2942 		macmode = 0;
2943 
2944 	REG_WRITE(ah, AR_2040_MODE, macmode);
2945 }
2946 
2947 /* HW Generic timers configuration */
2948 
2949 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2950 {
2951 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2952 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2953 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2954 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2955 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2956 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2957 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2958 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2959 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2960 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2961 				AR_NDP2_TIMER_MODE, 0x0002},
2962 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2963 				AR_NDP2_TIMER_MODE, 0x0004},
2964 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2965 				AR_NDP2_TIMER_MODE, 0x0008},
2966 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2967 				AR_NDP2_TIMER_MODE, 0x0010},
2968 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2969 				AR_NDP2_TIMER_MODE, 0x0020},
2970 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2971 				AR_NDP2_TIMER_MODE, 0x0040},
2972 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2973 				AR_NDP2_TIMER_MODE, 0x0080}
2974 };
2975 
2976 /* HW generic timer primitives */
2977 
2978 /* compute and clear index of rightmost 1 */
2979 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2980 {
2981 	u32 b;
2982 
2983 	b = *mask;
2984 	b &= (0-b);
2985 	*mask &= ~b;
2986 	b *= debruijn32;
2987 	b >>= 27;
2988 
2989 	return timer_table->gen_timer_index[b];
2990 }
2991 
2992 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2993 {
2994 	return REG_READ(ah, AR_TSF_L32);
2995 }
2996 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2997 
2998 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2999 					  void (*trigger)(void *),
3000 					  void (*overflow)(void *),
3001 					  void *arg,
3002 					  u8 timer_index)
3003 {
3004 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3005 	struct ath_gen_timer *timer;
3006 
3007 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3008 
3009 	if (timer == NULL) {
3010 		ath_err(ath9k_hw_common(ah),
3011 			"Failed to allocate memory for hw timer[%d]\n",
3012 			timer_index);
3013 		return NULL;
3014 	}
3015 
3016 	/* allocate a hardware generic timer slot */
3017 	timer_table->timers[timer_index] = timer;
3018 	timer->index = timer_index;
3019 	timer->trigger = trigger;
3020 	timer->overflow = overflow;
3021 	timer->arg = arg;
3022 
3023 	return timer;
3024 }
3025 EXPORT_SYMBOL(ath_gen_timer_alloc);
3026 
3027 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3028 			      struct ath_gen_timer *timer,
3029 			      u32 trig_timeout,
3030 			      u32 timer_period)
3031 {
3032 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3033 	u32 tsf, timer_next;
3034 
3035 	BUG_ON(!timer_period);
3036 
3037 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3038 
3039 	tsf = ath9k_hw_gettsf32(ah);
3040 
3041 	timer_next = tsf + trig_timeout;
3042 
3043 	ath_dbg(ath9k_hw_common(ah), HWTIMER,
3044 		"current tsf %x period %x timer_next %x\n",
3045 		tsf, timer_period, timer_next);
3046 
3047 	/*
3048 	 * Program generic timer registers
3049 	 */
3050 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3051 		 timer_next);
3052 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3053 		  timer_period);
3054 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3055 		    gen_tmr_configuration[timer->index].mode_mask);
3056 
3057 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3058 		/*
3059 		 * Starting from AR9462, each generic timer can select which tsf
3060 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3061 		 * 8 - 15  use tsf2.
3062 		 */
3063 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3064 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3065 				       (1 << timer->index));
3066 		else
3067 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3068 				       (1 << timer->index));
3069 	}
3070 
3071 	/* Enable both trigger and thresh interrupt masks */
3072 	REG_SET_BIT(ah, AR_IMR_S5,
3073 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3074 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3075 }
3076 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3077 
3078 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3079 {
3080 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3081 
3082 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3083 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3084 		return;
3085 	}
3086 
3087 	/* Clear generic timer enable bits. */
3088 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3089 			gen_tmr_configuration[timer->index].mode_mask);
3090 
3091 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3092 		/*
3093 		 * Need to switch back to TSF if it was using TSF2.
3094 		 */
3095 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3096 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3097 				    (1 << timer->index));
3098 		}
3099 	}
3100 
3101 	/* Disable both trigger and thresh interrupt masks */
3102 	REG_CLR_BIT(ah, AR_IMR_S5,
3103 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3104 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3105 
3106 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3107 }
3108 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3109 
3110 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3111 {
3112 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3113 
3114 	/* free the hardware generic timer slot */
3115 	timer_table->timers[timer->index] = NULL;
3116 	kfree(timer);
3117 }
3118 EXPORT_SYMBOL(ath_gen_timer_free);
3119 
3120 /*
3121  * Generic Timer Interrupts handling
3122  */
3123 void ath_gen_timer_isr(struct ath_hw *ah)
3124 {
3125 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3126 	struct ath_gen_timer *timer;
3127 	struct ath_common *common = ath9k_hw_common(ah);
3128 	u32 trigger_mask, thresh_mask, index;
3129 
3130 	/* get hardware generic timer interrupt status */
3131 	trigger_mask = ah->intr_gen_timer_trigger;
3132 	thresh_mask = ah->intr_gen_timer_thresh;
3133 	trigger_mask &= timer_table->timer_mask.val;
3134 	thresh_mask &= timer_table->timer_mask.val;
3135 
3136 	trigger_mask &= ~thresh_mask;
3137 
3138 	while (thresh_mask) {
3139 		index = rightmost_index(timer_table, &thresh_mask);
3140 		timer = timer_table->timers[index];
3141 		BUG_ON(!timer);
3142 		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3143 			index);
3144 		timer->overflow(timer->arg);
3145 	}
3146 
3147 	while (trigger_mask) {
3148 		index = rightmost_index(timer_table, &trigger_mask);
3149 		timer = timer_table->timers[index];
3150 		BUG_ON(!timer);
3151 		ath_dbg(common, HWTIMER,
3152 			"Gen timer[%d] trigger\n", index);
3153 		timer->trigger(timer->arg);
3154 	}
3155 }
3156 EXPORT_SYMBOL(ath_gen_timer_isr);
3157 
3158 /********/
3159 /* HTC  */
3160 /********/
3161 
3162 static struct {
3163 	u32 version;
3164 	const char * name;
3165 } ath_mac_bb_names[] = {
3166 	/* Devices with external radios */
3167 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3168 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3169 	{ AR_SREV_VERSION_9100,		"9100" },
3170 	{ AR_SREV_VERSION_9160,		"9160" },
3171 	/* Single-chip solutions */
3172 	{ AR_SREV_VERSION_9280,		"9280" },
3173 	{ AR_SREV_VERSION_9285,		"9285" },
3174 	{ AR_SREV_VERSION_9287,         "9287" },
3175 	{ AR_SREV_VERSION_9271,         "9271" },
3176 	{ AR_SREV_VERSION_9300,         "9300" },
3177 	{ AR_SREV_VERSION_9330,         "9330" },
3178 	{ AR_SREV_VERSION_9340,		"9340" },
3179 	{ AR_SREV_VERSION_9485,         "9485" },
3180 	{ AR_SREV_VERSION_9462,         "9462" },
3181 	{ AR_SREV_VERSION_9550,         "9550" },
3182 	{ AR_SREV_VERSION_9565,         "9565" },
3183 };
3184 
3185 /* For devices with external radios */
3186 static struct {
3187 	u16 version;
3188 	const char * name;
3189 } ath_rf_names[] = {
3190 	{ 0,				"5133" },
3191 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3192 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3193 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3194 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3195 };
3196 
3197 /*
3198  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3199  */
3200 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3201 {
3202 	int i;
3203 
3204 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3205 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3206 			return ath_mac_bb_names[i].name;
3207 		}
3208 	}
3209 
3210 	return "????";
3211 }
3212 
3213 /*
3214  * Return the RF name. "????" is returned if the RF is unknown.
3215  * Used for devices with external radios.
3216  */
3217 static const char *ath9k_hw_rf_name(u16 rf_version)
3218 {
3219 	int i;
3220 
3221 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3222 		if (ath_rf_names[i].version == rf_version) {
3223 			return ath_rf_names[i].name;
3224 		}
3225 	}
3226 
3227 	return "????";
3228 }
3229 
3230 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3231 {
3232 	int used;
3233 
3234 	/* chipsets >= AR9280 are single-chip */
3235 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3236 		used = snprintf(hw_name, len,
3237 			       "Atheros AR%s Rev:%x",
3238 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3239 			       ah->hw_version.macRev);
3240 	}
3241 	else {
3242 		used = snprintf(hw_name, len,
3243 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3244 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3245 			       ah->hw_version.macRev,
3246 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3247 						AR_RADIO_SREV_MAJOR)),
3248 			       ah->hw_version.phyRev);
3249 	}
3250 
3251 	hw_name[used] = '\0';
3252 }
3253 EXPORT_SYMBOL(ath9k_hw_name);
3254