xref: /linux/drivers/net/wireless/ath/ath9k/eeprom_4k.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 {
23 	return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 }
25 
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 {
28 	return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 }
30 
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32 
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 {
35 	struct ath_common *common = ath9k_hw_common(ah);
36 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
37 	int addr, eep_start_loc = 64;
38 
39 	for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
40 		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc, eep_data)) {
41 			ath_dbg(common, ATH_DBG_EEPROM,
42 				"Unable to read eeprom region\n");
43 			return false;
44 		}
45 		eep_data++;
46 	}
47 
48 	return true;
49 }
50 
51 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
52 {
53 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
54 
55 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
56 
57 	return true;
58 }
59 
60 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
61 {
62 	struct ath_common *common = ath9k_hw_common(ah);
63 
64 	if (!ath9k_hw_use_flash(ah)) {
65 		ath_dbg(common, ATH_DBG_EEPROM,
66 			"Reading from EEPROM, not flash\n");
67 	}
68 
69 	if (common->bus_ops->ath_bus_type == ATH_USB)
70 		return __ath9k_hw_usb_4k_fill_eeprom(ah);
71 	else
72 		return __ath9k_hw_4k_fill_eeprom(ah);
73 }
74 
75 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
76 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
77 				      struct modal_eep_4k_header *modal_hdr)
78 {
79 	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
80 	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
81 	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
82 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
83 	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
84 	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
85 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
86 	PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
87 	PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
88 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
89 	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
90 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
91 	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
92 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
93 	PR_EEP("xpdGain", modal_hdr->xpdGain);
94 	PR_EEP("External PD", modal_hdr->xpd);
95 	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
96 	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
97 	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
98 	PR_EEP("O/D Bias Version", modal_hdr->version);
99 	PR_EEP("CCK OutputBias", modal_hdr->ob_0);
100 	PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
101 	PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
102 	PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
103 	PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
104 	PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
105 	PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
106 	PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
107 	PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
108 	PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
109 	PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
110 	PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
111 	PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
112 	PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
113 	PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
114 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
115 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
116 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
117 	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
118 	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
119 	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
120 	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
121 	PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
122 	PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
123 	PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
124 	PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
125 	PR_EEP("TX Diversity", modal_hdr->tx_diversity);
126 
127 	return len;
128 }
129 
130 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
131 				       u8 *buf, u32 len, u32 size)
132 {
133 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
134 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
135 
136 	if (!dump_base_hdr) {
137 		len += snprintf(buf + len, size - len,
138 				"%20s :\n", "2GHz modal Header");
139 		len += ath9k_dump_4k_modal_eeprom(buf, len, size,
140 						  &eep->modalHeader);
141 		goto out;
142 	}
143 
144 	PR_EEP("Major Version", pBase->version >> 12);
145 	PR_EEP("Minor Version", pBase->version & 0xFFF);
146 	PR_EEP("Checksum", pBase->checksum);
147 	PR_EEP("Length", pBase->length);
148 	PR_EEP("RegDomain1", pBase->regDmn[0]);
149 	PR_EEP("RegDomain2", pBase->regDmn[1]);
150 	PR_EEP("TX Mask", pBase->txMask);
151 	PR_EEP("RX Mask", pBase->rxMask);
152 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
153 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
154 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
155 					AR5416_OPFLAGS_N_2G_HT20));
156 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
157 					AR5416_OPFLAGS_N_2G_HT40));
158 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
159 					AR5416_OPFLAGS_N_5G_HT20));
160 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
161 					AR5416_OPFLAGS_N_5G_HT40));
162 	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
163 	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
164 	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
165 	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
166 	PR_EEP("TX Gain type", pBase->txGainType);
167 
168 	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
169 			pBase->macAddr);
170 
171 out:
172 	if (len > size)
173 		len = size;
174 
175 	return len;
176 }
177 #else
178 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
179 				       u8 *buf, u32 len, u32 size)
180 {
181 	return 0;
182 }
183 #endif
184 
185 
186 #undef SIZE_EEPROM_4K
187 
188 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
189 {
190 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
191 	struct ath_common *common = ath9k_hw_common(ah);
192 	struct ar5416_eeprom_4k *eep =
193 		(struct ar5416_eeprom_4k *) &ah->eeprom.map4k;
194 	u16 *eepdata, temp, magic, magic2;
195 	u32 sum = 0, el;
196 	bool need_swap = false;
197 	int i, addr;
198 
199 
200 	if (!ath9k_hw_use_flash(ah)) {
201 		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
202 					 &magic)) {
203 			ath_err(common, "Reading Magic # failed\n");
204 			return false;
205 		}
206 
207 		ath_dbg(common, ATH_DBG_EEPROM,
208 			"Read Magic = 0x%04X\n", magic);
209 
210 		if (magic != AR5416_EEPROM_MAGIC) {
211 			magic2 = swab16(magic);
212 
213 			if (magic2 == AR5416_EEPROM_MAGIC) {
214 				need_swap = true;
215 				eepdata = (u16 *) (&ah->eeprom);
216 
217 				for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
218 					temp = swab16(*eepdata);
219 					*eepdata = temp;
220 					eepdata++;
221 				}
222 			} else {
223 				ath_err(common,
224 					"Invalid EEPROM Magic. Endianness mismatch.\n");
225 				return -EINVAL;
226 			}
227 		}
228 	}
229 
230 	ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
231 		need_swap ? "True" : "False");
232 
233 	if (need_swap)
234 		el = swab16(ah->eeprom.map4k.baseEepHeader.length);
235 	else
236 		el = ah->eeprom.map4k.baseEepHeader.length;
237 
238 	if (el > sizeof(struct ar5416_eeprom_4k))
239 		el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
240 	else
241 		el = el / sizeof(u16);
242 
243 	eepdata = (u16 *)(&ah->eeprom);
244 
245 	for (i = 0; i < el; i++)
246 		sum ^= *eepdata++;
247 
248 	if (need_swap) {
249 		u32 integer;
250 		u16 word;
251 
252 		ath_dbg(common, ATH_DBG_EEPROM,
253 			"EEPROM Endianness is not native.. Changing\n");
254 
255 		word = swab16(eep->baseEepHeader.length);
256 		eep->baseEepHeader.length = word;
257 
258 		word = swab16(eep->baseEepHeader.checksum);
259 		eep->baseEepHeader.checksum = word;
260 
261 		word = swab16(eep->baseEepHeader.version);
262 		eep->baseEepHeader.version = word;
263 
264 		word = swab16(eep->baseEepHeader.regDmn[0]);
265 		eep->baseEepHeader.regDmn[0] = word;
266 
267 		word = swab16(eep->baseEepHeader.regDmn[1]);
268 		eep->baseEepHeader.regDmn[1] = word;
269 
270 		word = swab16(eep->baseEepHeader.rfSilent);
271 		eep->baseEepHeader.rfSilent = word;
272 
273 		word = swab16(eep->baseEepHeader.blueToothOptions);
274 		eep->baseEepHeader.blueToothOptions = word;
275 
276 		word = swab16(eep->baseEepHeader.deviceCap);
277 		eep->baseEepHeader.deviceCap = word;
278 
279 		integer = swab32(eep->modalHeader.antCtrlCommon);
280 		eep->modalHeader.antCtrlCommon = integer;
281 
282 		for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
283 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
284 			eep->modalHeader.antCtrlChain[i] = integer;
285 		}
286 
287 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
288 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
289 			eep->modalHeader.spurChans[i].spurChan = word;
290 		}
291 	}
292 
293 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
294 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
295 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
296 			sum, ah->eep_ops->get_eeprom_ver(ah));
297 		return -EINVAL;
298 	}
299 
300 	return 0;
301 #undef EEPROM_4K_SIZE
302 }
303 
304 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
305 				  enum eeprom_param param)
306 {
307 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
308 	struct modal_eep_4k_header *pModal = &eep->modalHeader;
309 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
310 	u16 ver_minor;
311 
312 	ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
313 
314 	switch (param) {
315 	case EEP_NFTHRESH_2:
316 		return pModal->noiseFloorThreshCh[0];
317 	case EEP_MAC_LSW:
318 		return get_unaligned_be16(pBase->macAddr);
319 	case EEP_MAC_MID:
320 		return get_unaligned_be16(pBase->macAddr + 2);
321 	case EEP_MAC_MSW:
322 		return get_unaligned_be16(pBase->macAddr + 4);
323 	case EEP_REG_0:
324 		return pBase->regDmn[0];
325 	case EEP_OP_CAP:
326 		return pBase->deviceCap;
327 	case EEP_OP_MODE:
328 		return pBase->opCapFlags;
329 	case EEP_RF_SILENT:
330 		return pBase->rfSilent;
331 	case EEP_OB_2:
332 		return pModal->ob_0;
333 	case EEP_DB_2:
334 		return pModal->db1_1;
335 	case EEP_MINOR_REV:
336 		return ver_minor;
337 	case EEP_TX_MASK:
338 		return pBase->txMask;
339 	case EEP_RX_MASK:
340 		return pBase->rxMask;
341 	case EEP_FRAC_N_5G:
342 		return 0;
343 	case EEP_PWR_TABLE_OFFSET:
344 		return AR5416_PWR_TABLE_OFFSET_DB;
345 	case EEP_MODAL_VER:
346 		return pModal->version;
347 	case EEP_ANT_DIV_CTL1:
348 		return pModal->antdiv_ctl1;
349 	case EEP_TXGAIN_TYPE:
350 		return pBase->txGainType;
351 	case EEP_ANTENNA_GAIN_2G:
352 		return pModal->antennaGainCh[0];
353 	default:
354 		return 0;
355 	}
356 }
357 
358 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
359 				  struct ath9k_channel *chan)
360 {
361 	struct ath_common *common = ath9k_hw_common(ah);
362 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
363 	struct cal_data_per_freq_4k *pRawDataset;
364 	u8 *pCalBChans = NULL;
365 	u16 pdGainOverlap_t2;
366 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
367 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
368 	u16 numPiers, i, j;
369 	u16 numXpdGain, xpdMask;
370 	u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
371 	u32 reg32, regOffset, regChainOffset;
372 
373 	xpdMask = pEepData->modalHeader.xpdGain;
374 
375 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
376 	    AR5416_EEP_MINOR_VER_2) {
377 		pdGainOverlap_t2 =
378 			pEepData->modalHeader.pdGainOverlap;
379 	} else {
380 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
381 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
382 	}
383 
384 	pCalBChans = pEepData->calFreqPier2G;
385 	numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
386 
387 	numXpdGain = 0;
388 
389 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
390 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
391 			if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
392 				break;
393 			xpdGainValues[numXpdGain] =
394 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
395 			numXpdGain++;
396 		}
397 	}
398 
399 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
400 		      (numXpdGain - 1) & 0x3);
401 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
402 		      xpdGainValues[0]);
403 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
404 		      xpdGainValues[1]);
405 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
406 
407 	for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
408 		regChainOffset = i * 0x1000;
409 
410 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
411 			pRawDataset = pEepData->calPierData2G[i];
412 
413 			ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
414 					    pRawDataset, pCalBChans,
415 					    numPiers, pdGainOverlap_t2,
416 					    gainBoundaries,
417 					    pdadcValues, numXpdGain);
418 
419 			ENABLE_REGWRITE_BUFFER(ah);
420 
421 			REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
422 				  SM(pdGainOverlap_t2,
423 				     AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
424 				  | SM(gainBoundaries[0],
425 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
426 				  | SM(gainBoundaries[1],
427 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
428 				  | SM(gainBoundaries[2],
429 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
430 				  | SM(gainBoundaries[3],
431 			       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
432 
433 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
434 			for (j = 0; j < 32; j++) {
435 				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
436 				REG_WRITE(ah, regOffset, reg32);
437 
438 				ath_dbg(common, ATH_DBG_EEPROM,
439 					"PDADC (%d,%4x): %4.4x %8.8x\n",
440 					i, regChainOffset, regOffset,
441 					reg32);
442 				ath_dbg(common, ATH_DBG_EEPROM,
443 					"PDADC: Chain %d | "
444 					"PDADC %3d Value %3d | "
445 					"PDADC %3d Value %3d | "
446 					"PDADC %3d Value %3d | "
447 					"PDADC %3d Value %3d |\n",
448 					i, 4 * j, pdadcValues[4 * j],
449 					4 * j + 1, pdadcValues[4 * j + 1],
450 					4 * j + 2, pdadcValues[4 * j + 2],
451 					4 * j + 3, pdadcValues[4 * j + 3]);
452 
453 				regOffset += 4;
454 			}
455 
456 			REGWRITE_BUFFER_FLUSH(ah);
457 		}
458 	}
459 }
460 
461 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
462 						 struct ath9k_channel *chan,
463 						 int16_t *ratesArray,
464 						 u16 cfgCtl,
465 						 u16 antenna_reduction,
466 						 u16 powerLimit)
467 {
468 #define CMP_TEST_GRP \
469 	(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==	\
470 	 pEepData->ctlIndex[i])						\
471 	|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
472 	    ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
473 
474 	int i;
475 	u16 twiceMinEdgePower;
476 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
477 	u16 scaledPower = 0, minCtlPower;
478 	u16 numCtlModes;
479 	const u16 *pCtlMode;
480 	u16 ctlMode, freq;
481 	struct chan_centers centers;
482 	struct cal_ctl_data_4k *rep;
483 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
484 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
485 		0, { 0, 0, 0, 0}
486 	};
487 	struct cal_target_power_leg targetPowerOfdmExt = {
488 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
489 		0, { 0, 0, 0, 0 }
490 	};
491 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
492 		0, {0, 0, 0, 0}
493 	};
494 	static const u16 ctlModesFor11g[] = {
495 		CTL_11B, CTL_11G, CTL_2GHT20,
496 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
497 	};
498 
499 	ath9k_hw_get_channel_centers(ah, chan, &centers);
500 
501 	scaledPower = powerLimit - antenna_reduction;
502 	numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
503 	pCtlMode = ctlModesFor11g;
504 
505 	ath9k_hw_get_legacy_target_powers(ah, chan,
506 			pEepData->calTargetPowerCck,
507 			AR5416_NUM_2G_CCK_TARGET_POWERS,
508 			&targetPowerCck, 4, false);
509 	ath9k_hw_get_legacy_target_powers(ah, chan,
510 			pEepData->calTargetPower2G,
511 			AR5416_NUM_2G_20_TARGET_POWERS,
512 			&targetPowerOfdm, 4, false);
513 	ath9k_hw_get_target_powers(ah, chan,
514 			pEepData->calTargetPower2GHT20,
515 			AR5416_NUM_2G_20_TARGET_POWERS,
516 			&targetPowerHt20, 8, false);
517 
518 	if (IS_CHAN_HT40(chan)) {
519 		numCtlModes = ARRAY_SIZE(ctlModesFor11g);
520 		ath9k_hw_get_target_powers(ah, chan,
521 				pEepData->calTargetPower2GHT40,
522 				AR5416_NUM_2G_40_TARGET_POWERS,
523 				&targetPowerHt40, 8, true);
524 		ath9k_hw_get_legacy_target_powers(ah, chan,
525 				pEepData->calTargetPowerCck,
526 				AR5416_NUM_2G_CCK_TARGET_POWERS,
527 				&targetPowerCckExt, 4, true);
528 		ath9k_hw_get_legacy_target_powers(ah, chan,
529 				pEepData->calTargetPower2G,
530 				AR5416_NUM_2G_20_TARGET_POWERS,
531 				&targetPowerOfdmExt, 4, true);
532 	}
533 
534 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
535 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
536 			(pCtlMode[ctlMode] == CTL_2GHT40);
537 
538 		if (isHt40CtlMode)
539 			freq = centers.synth_center;
540 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
541 			freq = centers.ext_center;
542 		else
543 			freq = centers.ctl_center;
544 
545 		if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
546 		    ah->eep_ops->get_eeprom_rev(ah) <= 2)
547 			twiceMaxEdgePower = MAX_RATE_POWER;
548 
549 		for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
550 			     pEepData->ctlIndex[i]; i++) {
551 
552 			if (CMP_TEST_GRP) {
553 				rep = &(pEepData->ctlData[i]);
554 
555 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(
556 					freq,
557 					rep->ctlEdges[
558 					ar5416_get_ntxchains(ah->txchainmask) - 1],
559 					IS_CHAN_2GHZ(chan),
560 					AR5416_EEP4K_NUM_BAND_EDGES);
561 
562 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
563 					twiceMaxEdgePower =
564 						min(twiceMaxEdgePower,
565 						    twiceMinEdgePower);
566 				} else {
567 					twiceMaxEdgePower = twiceMinEdgePower;
568 					break;
569 				}
570 			}
571 		}
572 
573 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
574 
575 		switch (pCtlMode[ctlMode]) {
576 		case CTL_11B:
577 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
578 				targetPowerCck.tPow2x[i] =
579 					min((u16)targetPowerCck.tPow2x[i],
580 					    minCtlPower);
581 			}
582 			break;
583 		case CTL_11G:
584 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
585 				targetPowerOfdm.tPow2x[i] =
586 					min((u16)targetPowerOfdm.tPow2x[i],
587 					    minCtlPower);
588 			}
589 			break;
590 		case CTL_2GHT20:
591 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
592 				targetPowerHt20.tPow2x[i] =
593 					min((u16)targetPowerHt20.tPow2x[i],
594 					    minCtlPower);
595 			}
596 			break;
597 		case CTL_11B_EXT:
598 			targetPowerCckExt.tPow2x[0] =
599 				min((u16)targetPowerCckExt.tPow2x[0],
600 				    minCtlPower);
601 			break;
602 		case CTL_11G_EXT:
603 			targetPowerOfdmExt.tPow2x[0] =
604 				min((u16)targetPowerOfdmExt.tPow2x[0],
605 				    minCtlPower);
606 			break;
607 		case CTL_2GHT40:
608 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
609 				targetPowerHt40.tPow2x[i] =
610 					min((u16)targetPowerHt40.tPow2x[i],
611 					    minCtlPower);
612 			}
613 			break;
614 		default:
615 			break;
616 		}
617 	}
618 
619 	ratesArray[rate6mb] =
620 	ratesArray[rate9mb] =
621 	ratesArray[rate12mb] =
622 	ratesArray[rate18mb] =
623 	ratesArray[rate24mb] =
624 	targetPowerOfdm.tPow2x[0];
625 
626 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
627 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
628 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
629 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
630 
631 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
632 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
633 
634 	ratesArray[rate1l] = targetPowerCck.tPow2x[0];
635 	ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
636 	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
637 	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
638 
639 	if (IS_CHAN_HT40(chan)) {
640 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
641 			ratesArray[rateHt40_0 + i] =
642 				targetPowerHt40.tPow2x[i];
643 		}
644 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
645 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
646 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
647 		ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
648 	}
649 
650 #undef CMP_TEST_GRP
651 }
652 
653 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
654 				    struct ath9k_channel *chan,
655 				    u16 cfgCtl,
656 				    u8 twiceAntennaReduction,
657 				    u8 powerLimit, bool test)
658 {
659 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
660 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
661 	struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
662 	int16_t ratesArray[Ar5416RateSize];
663 	u8 ht40PowerIncForPdadc = 2;
664 	int i;
665 
666 	memset(ratesArray, 0, sizeof(ratesArray));
667 
668 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
669 	    AR5416_EEP_MINOR_VER_2) {
670 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
671 	}
672 
673 	ath9k_hw_set_4k_power_per_rate_table(ah, chan,
674 					     &ratesArray[0], cfgCtl,
675 					     twiceAntennaReduction,
676 					     powerLimit);
677 
678 	ath9k_hw_set_4k_power_cal_table(ah, chan);
679 
680 	regulatory->max_power_level = 0;
681 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
682 		if (ratesArray[i] > MAX_RATE_POWER)
683 			ratesArray[i] = MAX_RATE_POWER;
684 
685 		if (ratesArray[i] > regulatory->max_power_level)
686 			regulatory->max_power_level = ratesArray[i];
687 	}
688 
689 	if (test)
690 	    return;
691 
692 	for (i = 0; i < Ar5416RateSize; i++)
693 		ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
694 
695 	ENABLE_REGWRITE_BUFFER(ah);
696 
697 	/* OFDM power per rate */
698 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
699 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
700 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
701 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
702 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
703 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
704 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
705 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
706 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
707 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
708 
709 	/* CCK power per rate */
710 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
711 		  ATH9K_POW_SM(ratesArray[rate2s], 24)
712 		  | ATH9K_POW_SM(ratesArray[rate2l], 16)
713 		  | ATH9K_POW_SM(ratesArray[rateXr], 8)
714 		  | ATH9K_POW_SM(ratesArray[rate1l], 0));
715 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
716 		  ATH9K_POW_SM(ratesArray[rate11s], 24)
717 		  | ATH9K_POW_SM(ratesArray[rate11l], 16)
718 		  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
719 		  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
720 
721 	/* HT20 power per rate */
722 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
723 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
724 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
725 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
726 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
727 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
728 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
729 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
730 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
731 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
732 
733 	/* HT40 power per rate */
734 	if (IS_CHAN_HT40(chan)) {
735 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
736 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
737 				       ht40PowerIncForPdadc, 24)
738 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
739 					 ht40PowerIncForPdadc, 16)
740 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
741 					 ht40PowerIncForPdadc, 8)
742 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
743 					 ht40PowerIncForPdadc, 0));
744 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
745 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
746 				       ht40PowerIncForPdadc, 24)
747 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
748 					 ht40PowerIncForPdadc, 16)
749 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
750 					 ht40PowerIncForPdadc, 8)
751 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
752 					 ht40PowerIncForPdadc, 0));
753 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
754 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
755 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
756 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
757 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
758 	}
759 
760 	REGWRITE_BUFFER_FLUSH(ah);
761 }
762 
763 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
764 				 struct modal_eep_4k_header *pModal,
765 				 struct ar5416_eeprom_4k *eep,
766 				 u8 txRxAttenLocal)
767 {
768 	REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
769 		  pModal->antCtrlChain[0]);
770 
771 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
772 		  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
773 		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
774 		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
775 		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
776 		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
777 
778 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
779 	    AR5416_EEP_MINOR_VER_3) {
780 		txRxAttenLocal = pModal->txRxAttenCh[0];
781 
782 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
783 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
784 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
785 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
786 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
787 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
788 			      pModal->xatten2Margin[0]);
789 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
790 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
791 
792 		/* Set the block 1 value to block 0 value */
793 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
794 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
795 			      pModal->bswMargin[0]);
796 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
797 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
798 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
799 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
800 			      pModal->xatten2Margin[0]);
801 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
802 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
803 			      pModal->xatten2Db[0]);
804 	}
805 
806 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
807 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
808 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
809 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
810 
811 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
812 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
813 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
814 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
815 }
816 
817 /*
818  * Read EEPROM header info and program the device for correct operation
819  * given the channel value.
820  */
821 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
822 					 struct ath9k_channel *chan)
823 {
824 	struct modal_eep_4k_header *pModal;
825 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
826 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
827 	u8 txRxAttenLocal;
828 	u8 ob[5], db1[5], db2[5];
829 	u8 ant_div_control1, ant_div_control2;
830 	u8 bb_desired_scale;
831 	u32 regVal;
832 
833 	pModal = &eep->modalHeader;
834 	txRxAttenLocal = 23;
835 
836 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
837 
838 	/* Single chain for 4K EEPROM*/
839 	ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
840 
841 	/* Initialize Ant Diversity settings from EEPROM */
842 	if (pModal->version >= 3) {
843 		ant_div_control1 = pModal->antdiv_ctl1;
844 		ant_div_control2 = pModal->antdiv_ctl2;
845 
846 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
847 		regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
848 
849 		regVal |= SM(ant_div_control1,
850 			     AR_PHY_9285_ANT_DIV_CTL);
851 		regVal |= SM(ant_div_control2,
852 			     AR_PHY_9285_ANT_DIV_ALT_LNACONF);
853 		regVal |= SM((ant_div_control2 >> 2),
854 			     AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
855 		regVal |= SM((ant_div_control1 >> 1),
856 			     AR_PHY_9285_ANT_DIV_ALT_GAINTB);
857 		regVal |= SM((ant_div_control1 >> 2),
858 			     AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
859 
860 
861 		REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
862 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
863 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
864 		regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
865 		regVal |= SM((ant_div_control1 >> 3),
866 			     AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
867 
868 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
869 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
870 	}
871 
872 	if (pModal->version >= 2) {
873 		ob[0] = pModal->ob_0;
874 		ob[1] = pModal->ob_1;
875 		ob[2] = pModal->ob_2;
876 		ob[3] = pModal->ob_3;
877 		ob[4] = pModal->ob_4;
878 
879 		db1[0] = pModal->db1_0;
880 		db1[1] = pModal->db1_1;
881 		db1[2] = pModal->db1_2;
882 		db1[3] = pModal->db1_3;
883 		db1[4] = pModal->db1_4;
884 
885 		db2[0] = pModal->db2_0;
886 		db2[1] = pModal->db2_1;
887 		db2[2] = pModal->db2_2;
888 		db2[3] = pModal->db2_3;
889 		db2[4] = pModal->db2_4;
890 	} else if (pModal->version == 1) {
891 		ob[0] = pModal->ob_0;
892 		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
893 		db1[0] = pModal->db1_0;
894 		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
895 		db2[0] = pModal->db2_0;
896 		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
897 	} else {
898 		int i;
899 
900 		for (i = 0; i < 5; i++) {
901 			ob[i] = pModal->ob_0;
902 			db1[i] = pModal->db1_0;
903 			db2[i] = pModal->db1_0;
904 		}
905 	}
906 
907 	if (AR_SREV_9271(ah)) {
908 		ath9k_hw_analog_shift_rmw(ah,
909 					  AR9285_AN_RF2G3,
910 					  AR9271_AN_RF2G3_OB_cck,
911 					  AR9271_AN_RF2G3_OB_cck_S,
912 					  ob[0]);
913 		ath9k_hw_analog_shift_rmw(ah,
914 					  AR9285_AN_RF2G3,
915 					  AR9271_AN_RF2G3_OB_psk,
916 					  AR9271_AN_RF2G3_OB_psk_S,
917 					  ob[1]);
918 		ath9k_hw_analog_shift_rmw(ah,
919 					  AR9285_AN_RF2G3,
920 					  AR9271_AN_RF2G3_OB_qam,
921 					  AR9271_AN_RF2G3_OB_qam_S,
922 					  ob[2]);
923 		ath9k_hw_analog_shift_rmw(ah,
924 					  AR9285_AN_RF2G3,
925 					  AR9271_AN_RF2G3_DB_1,
926 					  AR9271_AN_RF2G3_DB_1_S,
927 					  db1[0]);
928 		ath9k_hw_analog_shift_rmw(ah,
929 					  AR9285_AN_RF2G4,
930 					  AR9271_AN_RF2G4_DB_2,
931 					  AR9271_AN_RF2G4_DB_2_S,
932 					  db2[0]);
933 	} else {
934 		ath9k_hw_analog_shift_rmw(ah,
935 					  AR9285_AN_RF2G3,
936 					  AR9285_AN_RF2G3_OB_0,
937 					  AR9285_AN_RF2G3_OB_0_S,
938 					  ob[0]);
939 		ath9k_hw_analog_shift_rmw(ah,
940 					  AR9285_AN_RF2G3,
941 					  AR9285_AN_RF2G3_OB_1,
942 					  AR9285_AN_RF2G3_OB_1_S,
943 					  ob[1]);
944 		ath9k_hw_analog_shift_rmw(ah,
945 					  AR9285_AN_RF2G3,
946 					  AR9285_AN_RF2G3_OB_2,
947 					  AR9285_AN_RF2G3_OB_2_S,
948 					  ob[2]);
949 		ath9k_hw_analog_shift_rmw(ah,
950 					  AR9285_AN_RF2G3,
951 					  AR9285_AN_RF2G3_OB_3,
952 					  AR9285_AN_RF2G3_OB_3_S,
953 					  ob[3]);
954 		ath9k_hw_analog_shift_rmw(ah,
955 					  AR9285_AN_RF2G3,
956 					  AR9285_AN_RF2G3_OB_4,
957 					  AR9285_AN_RF2G3_OB_4_S,
958 					  ob[4]);
959 
960 		ath9k_hw_analog_shift_rmw(ah,
961 					  AR9285_AN_RF2G3,
962 					  AR9285_AN_RF2G3_DB1_0,
963 					  AR9285_AN_RF2G3_DB1_0_S,
964 					  db1[0]);
965 		ath9k_hw_analog_shift_rmw(ah,
966 					  AR9285_AN_RF2G3,
967 					  AR9285_AN_RF2G3_DB1_1,
968 					  AR9285_AN_RF2G3_DB1_1_S,
969 					  db1[1]);
970 		ath9k_hw_analog_shift_rmw(ah,
971 					  AR9285_AN_RF2G3,
972 					  AR9285_AN_RF2G3_DB1_2,
973 					  AR9285_AN_RF2G3_DB1_2_S,
974 					  db1[2]);
975 		ath9k_hw_analog_shift_rmw(ah,
976 					  AR9285_AN_RF2G4,
977 					  AR9285_AN_RF2G4_DB1_3,
978 					  AR9285_AN_RF2G4_DB1_3_S,
979 					  db1[3]);
980 		ath9k_hw_analog_shift_rmw(ah,
981 					  AR9285_AN_RF2G4,
982 					  AR9285_AN_RF2G4_DB1_4,
983 					  AR9285_AN_RF2G4_DB1_4_S, db1[4]);
984 
985 		ath9k_hw_analog_shift_rmw(ah,
986 					  AR9285_AN_RF2G4,
987 					  AR9285_AN_RF2G4_DB2_0,
988 					  AR9285_AN_RF2G4_DB2_0_S,
989 					  db2[0]);
990 		ath9k_hw_analog_shift_rmw(ah,
991 					  AR9285_AN_RF2G4,
992 					  AR9285_AN_RF2G4_DB2_1,
993 					  AR9285_AN_RF2G4_DB2_1_S,
994 					  db2[1]);
995 		ath9k_hw_analog_shift_rmw(ah,
996 					  AR9285_AN_RF2G4,
997 					  AR9285_AN_RF2G4_DB2_2,
998 					  AR9285_AN_RF2G4_DB2_2_S,
999 					  db2[2]);
1000 		ath9k_hw_analog_shift_rmw(ah,
1001 					  AR9285_AN_RF2G4,
1002 					  AR9285_AN_RF2G4_DB2_3,
1003 					  AR9285_AN_RF2G4_DB2_3_S,
1004 					  db2[3]);
1005 		ath9k_hw_analog_shift_rmw(ah,
1006 					  AR9285_AN_RF2G4,
1007 					  AR9285_AN_RF2G4_DB2_4,
1008 					  AR9285_AN_RF2G4_DB2_4_S,
1009 					  db2[4]);
1010 	}
1011 
1012 
1013 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1014 		      pModal->switchSettling);
1015 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1016 		      pModal->adcDesiredSize);
1017 
1018 	REG_WRITE(ah, AR_PHY_RF_CTL4,
1019 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1020 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1021 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
1022 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1023 
1024 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1025 		      pModal->txEndToRxOn);
1026 
1027 	if (AR_SREV_9271_10(ah))
1028 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1029 			      pModal->txEndToRxOn);
1030 	REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1031 		      pModal->thresh62);
1032 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1033 		      pModal->thresh62);
1034 
1035 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1036 						AR5416_EEP_MINOR_VER_2) {
1037 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1038 			      pModal->txFrameToDataStart);
1039 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1040 			      pModal->txFrameToPaOn);
1041 	}
1042 
1043 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1044 						AR5416_EEP_MINOR_VER_3) {
1045 		if (IS_CHAN_HT40(chan))
1046 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1047 				      AR_PHY_SETTLING_SWITCH,
1048 				      pModal->swSettleHt40);
1049 	}
1050 
1051 	bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1052 			EEP_4K_BB_DESIRED_SCALE_MASK);
1053 	if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1054 		u32 pwrctrl, mask, clr;
1055 
1056 		mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1057 		pwrctrl = mask * bb_desired_scale;
1058 		clr = mask * 0x1f;
1059 		REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1060 		REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1061 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1062 
1063 		mask = BIT(0)|BIT(5)|BIT(15);
1064 		pwrctrl = mask * bb_desired_scale;
1065 		clr = mask * 0x1f;
1066 		REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1067 
1068 		mask = BIT(0)|BIT(5);
1069 		pwrctrl = mask * bb_desired_scale;
1070 		clr = mask * 0x1f;
1071 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1072 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1073 	}
1074 }
1075 
1076 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1077 {
1078 #define EEP_MAP4K_SPURCHAN \
1079 	(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1080 	struct ath_common *common = ath9k_hw_common(ah);
1081 
1082 	u16 spur_val = AR_NO_SPUR;
1083 
1084 	ath_dbg(common, ATH_DBG_ANI,
1085 		"Getting spur idx:%d is2Ghz:%d val:%x\n",
1086 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1087 
1088 	switch (ah->config.spurmode) {
1089 	case SPUR_DISABLE:
1090 		break;
1091 	case SPUR_ENABLE_IOCTL:
1092 		spur_val = ah->config.spurchans[i][is2GHz];
1093 		ath_dbg(common, ATH_DBG_ANI,
1094 			"Getting spur val from new loc. %d\n", spur_val);
1095 		break;
1096 	case SPUR_ENABLE_EEPROM:
1097 		spur_val = EEP_MAP4K_SPURCHAN;
1098 		break;
1099 	}
1100 
1101 	return spur_val;
1102 
1103 #undef EEP_MAP4K_SPURCHAN
1104 }
1105 
1106 const struct eeprom_ops eep_4k_ops = {
1107 	.check_eeprom		= ath9k_hw_4k_check_eeprom,
1108 	.get_eeprom		= ath9k_hw_4k_get_eeprom,
1109 	.fill_eeprom		= ath9k_hw_4k_fill_eeprom,
1110 	.dump_eeprom		= ath9k_hw_4k_dump_eeprom,
1111 	.get_eeprom_ver		= ath9k_hw_4k_get_eeprom_ver,
1112 	.get_eeprom_rev		= ath9k_hw_4k_get_eeprom_rev,
1113 	.set_board_values	= ath9k_hw_4k_set_board_values,
1114 	.set_txpower		= ath9k_hw_4k_set_txpower,
1115 	.get_spur_channel	= ath9k_hw_4k_get_spur_channel
1116 };
1117