xref: /linux/drivers/net/wireless/ath/ath9k/eeprom_4k.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 {
23 	return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 }
25 
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 {
28 	return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 }
30 
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32 
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 {
35 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
36 	int addr, eep_start_loc = 64;
37 
38 	for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
39 		if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
40 			return false;
41 		eep_data++;
42 	}
43 
44 	return true;
45 }
46 
47 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
48 {
49 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
50 
51 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
52 
53 	return true;
54 }
55 
56 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
57 {
58 	struct ath_common *common = ath9k_hw_common(ah);
59 
60 	if (!ath9k_hw_use_flash(ah)) {
61 		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
62 	}
63 
64 	if (common->bus_ops->ath_bus_type == ATH_USB)
65 		return __ath9k_hw_usb_4k_fill_eeprom(ah);
66 	else
67 		return __ath9k_hw_4k_fill_eeprom(ah);
68 }
69 
70 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
71 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
72 				      struct modal_eep_4k_header *modal_hdr)
73 {
74 	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
75 	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
76 	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
77 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
78 	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
79 	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
80 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
81 	PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
82 	PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
83 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
84 	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
85 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
86 	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
87 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
88 	PR_EEP("xpdGain", modal_hdr->xpdGain);
89 	PR_EEP("External PD", modal_hdr->xpd);
90 	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
91 	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
92 	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
93 	PR_EEP("O/D Bias Version", modal_hdr->version);
94 	PR_EEP("CCK OutputBias", modal_hdr->ob_0);
95 	PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
96 	PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
97 	PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
98 	PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
99 	PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
100 	PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
101 	PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
102 	PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
103 	PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
104 	PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
105 	PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
106 	PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
107 	PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
108 	PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
109 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
110 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
111 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
112 	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
113 	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
114 	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
115 	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
116 	PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
117 	PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
118 	PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
119 	PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
120 	PR_EEP("TX Diversity", modal_hdr->tx_diversity);
121 
122 	return len;
123 }
124 
125 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
126 				       u8 *buf, u32 len, u32 size)
127 {
128 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
129 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
130 
131 	if (!dump_base_hdr) {
132 		len += scnprintf(buf + len, size - len,
133 				 "%20s :\n", "2GHz modal Header");
134 		len = ath9k_dump_4k_modal_eeprom(buf, len, size,
135 						 &eep->modalHeader);
136 		goto out;
137 	}
138 
139 	PR_EEP("Major Version", pBase->version >> 12);
140 	PR_EEP("Minor Version", pBase->version & 0xFFF);
141 	PR_EEP("Checksum", pBase->checksum);
142 	PR_EEP("Length", pBase->length);
143 	PR_EEP("RegDomain1", pBase->regDmn[0]);
144 	PR_EEP("RegDomain2", pBase->regDmn[1]);
145 	PR_EEP("TX Mask", pBase->txMask);
146 	PR_EEP("RX Mask", pBase->rxMask);
147 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
148 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
149 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
150 					AR5416_OPFLAGS_N_2G_HT20));
151 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
152 					AR5416_OPFLAGS_N_2G_HT40));
153 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
154 					AR5416_OPFLAGS_N_5G_HT20));
155 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
156 					AR5416_OPFLAGS_N_5G_HT40));
157 	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
158 	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
159 	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
160 	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
161 	PR_EEP("TX Gain type", pBase->txGainType);
162 
163 	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
164 			 pBase->macAddr);
165 
166 out:
167 	if (len > size)
168 		len = size;
169 
170 	return len;
171 }
172 #else
173 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
174 				       u8 *buf, u32 len, u32 size)
175 {
176 	return 0;
177 }
178 #endif
179 
180 
181 #undef SIZE_EEPROM_4K
182 
183 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
184 {
185 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
186 	struct ath_common *common = ath9k_hw_common(ah);
187 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
188 	u16 *eepdata, temp, magic, magic2;
189 	u32 sum = 0, el;
190 	bool need_swap = false;
191 	int i, addr;
192 
193 
194 	if (!ath9k_hw_use_flash(ah)) {
195 		if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
196 					 &magic)) {
197 			ath_err(common, "Reading Magic # failed\n");
198 			return false;
199 		}
200 
201 		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
202 
203 		if (magic != AR5416_EEPROM_MAGIC) {
204 			magic2 = swab16(magic);
205 
206 			if (magic2 == AR5416_EEPROM_MAGIC) {
207 				need_swap = true;
208 				eepdata = (u16 *) (&ah->eeprom);
209 
210 				for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
211 					temp = swab16(*eepdata);
212 					*eepdata = temp;
213 					eepdata++;
214 				}
215 			} else {
216 				ath_err(common,
217 					"Invalid EEPROM Magic. Endianness mismatch.\n");
218 				return -EINVAL;
219 			}
220 		}
221 	}
222 
223 	ath_dbg(common, EEPROM, "need_swap = %s\n",
224 		need_swap ? "True" : "False");
225 
226 	if (need_swap)
227 		el = swab16(ah->eeprom.map4k.baseEepHeader.length);
228 	else
229 		el = ah->eeprom.map4k.baseEepHeader.length;
230 
231 	if (el > sizeof(struct ar5416_eeprom_4k))
232 		el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
233 	else
234 		el = el / sizeof(u16);
235 
236 	eepdata = (u16 *)(&ah->eeprom);
237 
238 	for (i = 0; i < el; i++)
239 		sum ^= *eepdata++;
240 
241 	if (need_swap) {
242 		u32 integer;
243 		u16 word;
244 
245 		ath_dbg(common, EEPROM,
246 			"EEPROM Endianness is not native.. Changing\n");
247 
248 		word = swab16(eep->baseEepHeader.length);
249 		eep->baseEepHeader.length = word;
250 
251 		word = swab16(eep->baseEepHeader.checksum);
252 		eep->baseEepHeader.checksum = word;
253 
254 		word = swab16(eep->baseEepHeader.version);
255 		eep->baseEepHeader.version = word;
256 
257 		word = swab16(eep->baseEepHeader.regDmn[0]);
258 		eep->baseEepHeader.regDmn[0] = word;
259 
260 		word = swab16(eep->baseEepHeader.regDmn[1]);
261 		eep->baseEepHeader.regDmn[1] = word;
262 
263 		word = swab16(eep->baseEepHeader.rfSilent);
264 		eep->baseEepHeader.rfSilent = word;
265 
266 		word = swab16(eep->baseEepHeader.blueToothOptions);
267 		eep->baseEepHeader.blueToothOptions = word;
268 
269 		word = swab16(eep->baseEepHeader.deviceCap);
270 		eep->baseEepHeader.deviceCap = word;
271 
272 		integer = swab32(eep->modalHeader.antCtrlCommon);
273 		eep->modalHeader.antCtrlCommon = integer;
274 
275 		for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
276 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
277 			eep->modalHeader.antCtrlChain[i] = integer;
278 		}
279 
280 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
281 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
282 			eep->modalHeader.spurChans[i].spurChan = word;
283 		}
284 	}
285 
286 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
287 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
288 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
289 			sum, ah->eep_ops->get_eeprom_ver(ah));
290 		return -EINVAL;
291 	}
292 
293 	return 0;
294 #undef EEPROM_4K_SIZE
295 }
296 
297 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
298 				  enum eeprom_param param)
299 {
300 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
301 	struct modal_eep_4k_header *pModal = &eep->modalHeader;
302 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
303 	u16 ver_minor;
304 
305 	ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
306 
307 	switch (param) {
308 	case EEP_NFTHRESH_2:
309 		return pModal->noiseFloorThreshCh[0];
310 	case EEP_MAC_LSW:
311 		return get_unaligned_be16(pBase->macAddr);
312 	case EEP_MAC_MID:
313 		return get_unaligned_be16(pBase->macAddr + 2);
314 	case EEP_MAC_MSW:
315 		return get_unaligned_be16(pBase->macAddr + 4);
316 	case EEP_REG_0:
317 		return pBase->regDmn[0];
318 	case EEP_OP_CAP:
319 		return pBase->deviceCap;
320 	case EEP_OP_MODE:
321 		return pBase->opCapFlags;
322 	case EEP_RF_SILENT:
323 		return pBase->rfSilent;
324 	case EEP_OB_2:
325 		return pModal->ob_0;
326 	case EEP_DB_2:
327 		return pModal->db1_1;
328 	case EEP_MINOR_REV:
329 		return ver_minor;
330 	case EEP_TX_MASK:
331 		return pBase->txMask;
332 	case EEP_RX_MASK:
333 		return pBase->rxMask;
334 	case EEP_FRAC_N_5G:
335 		return 0;
336 	case EEP_PWR_TABLE_OFFSET:
337 		return AR5416_PWR_TABLE_OFFSET_DB;
338 	case EEP_MODAL_VER:
339 		return pModal->version;
340 	case EEP_ANT_DIV_CTL1:
341 		return pModal->antdiv_ctl1;
342 	case EEP_TXGAIN_TYPE:
343 		return pBase->txGainType;
344 	case EEP_ANTENNA_GAIN_2G:
345 		return pModal->antennaGainCh[0];
346 	default:
347 		return 0;
348 	}
349 }
350 
351 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
352 				  struct ath9k_channel *chan)
353 {
354 	struct ath_common *common = ath9k_hw_common(ah);
355 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
356 	struct cal_data_per_freq_4k *pRawDataset;
357 	u8 *pCalBChans = NULL;
358 	u16 pdGainOverlap_t2;
359 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
360 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
361 	u16 numPiers, i, j;
362 	u16 numXpdGain, xpdMask;
363 	u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
364 	u32 reg32, regOffset, regChainOffset;
365 
366 	xpdMask = pEepData->modalHeader.xpdGain;
367 
368 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
369 	    AR5416_EEP_MINOR_VER_2) {
370 		pdGainOverlap_t2 =
371 			pEepData->modalHeader.pdGainOverlap;
372 	} else {
373 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
374 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
375 	}
376 
377 	pCalBChans = pEepData->calFreqPier2G;
378 	numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
379 
380 	numXpdGain = 0;
381 
382 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
383 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
384 			if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
385 				break;
386 			xpdGainValues[numXpdGain] =
387 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
388 			numXpdGain++;
389 		}
390 	}
391 
392 	ENABLE_REG_RMW_BUFFER(ah);
393 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
394 		      (numXpdGain - 1) & 0x3);
395 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
396 		      xpdGainValues[0]);
397 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
398 		      xpdGainValues[1]);
399 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
400 	REG_RMW_BUFFER_FLUSH(ah);
401 
402 	for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
403 		regChainOffset = i * 0x1000;
404 
405 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
406 			pRawDataset = pEepData->calPierData2G[i];
407 
408 			ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
409 					    pRawDataset, pCalBChans,
410 					    numPiers, pdGainOverlap_t2,
411 					    gainBoundaries,
412 					    pdadcValues, numXpdGain);
413 
414 			ENABLE_REGWRITE_BUFFER(ah);
415 
416 			REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
417 				  SM(pdGainOverlap_t2,
418 				     AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
419 				  | SM(gainBoundaries[0],
420 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
421 				  | SM(gainBoundaries[1],
422 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
423 				  | SM(gainBoundaries[2],
424 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
425 				  | SM(gainBoundaries[3],
426 			       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
427 
428 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
429 			for (j = 0; j < 32; j++) {
430 				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
431 				REG_WRITE(ah, regOffset, reg32);
432 
433 				ath_dbg(common, EEPROM,
434 					"PDADC (%d,%4x): %4.4x %8.8x\n",
435 					i, regChainOffset, regOffset,
436 					reg32);
437 				ath_dbg(common, EEPROM,
438 					"PDADC: Chain %d | "
439 					"PDADC %3d Value %3d | "
440 					"PDADC %3d Value %3d | "
441 					"PDADC %3d Value %3d | "
442 					"PDADC %3d Value %3d |\n",
443 					i, 4 * j, pdadcValues[4 * j],
444 					4 * j + 1, pdadcValues[4 * j + 1],
445 					4 * j + 2, pdadcValues[4 * j + 2],
446 					4 * j + 3, pdadcValues[4 * j + 3]);
447 
448 				regOffset += 4;
449 			}
450 
451 			REGWRITE_BUFFER_FLUSH(ah);
452 		}
453 	}
454 }
455 
456 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
457 						 struct ath9k_channel *chan,
458 						 int16_t *ratesArray,
459 						 u16 cfgCtl,
460 						 u16 antenna_reduction,
461 						 u16 powerLimit)
462 {
463 #define CMP_TEST_GRP \
464 	(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==	\
465 	 pEepData->ctlIndex[i])						\
466 	|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
467 	    ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
468 
469 	int i;
470 	u16 twiceMinEdgePower;
471 	u16 twiceMaxEdgePower;
472 	u16 scaledPower = 0, minCtlPower;
473 	u16 numCtlModes;
474 	const u16 *pCtlMode;
475 	u16 ctlMode, freq;
476 	struct chan_centers centers;
477 	struct cal_ctl_data_4k *rep;
478 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
479 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
480 		0, { 0, 0, 0, 0}
481 	};
482 	struct cal_target_power_leg targetPowerOfdmExt = {
483 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
484 		0, { 0, 0, 0, 0 }
485 	};
486 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
487 		0, {0, 0, 0, 0}
488 	};
489 	static const u16 ctlModesFor11g[] = {
490 		CTL_11B, CTL_11G, CTL_2GHT20,
491 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
492 	};
493 
494 	ath9k_hw_get_channel_centers(ah, chan, &centers);
495 
496 	scaledPower = powerLimit - antenna_reduction;
497 	numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
498 	pCtlMode = ctlModesFor11g;
499 
500 	ath9k_hw_get_legacy_target_powers(ah, chan,
501 			pEepData->calTargetPowerCck,
502 			AR5416_NUM_2G_CCK_TARGET_POWERS,
503 			&targetPowerCck, 4, false);
504 	ath9k_hw_get_legacy_target_powers(ah, chan,
505 			pEepData->calTargetPower2G,
506 			AR5416_NUM_2G_20_TARGET_POWERS,
507 			&targetPowerOfdm, 4, false);
508 	ath9k_hw_get_target_powers(ah, chan,
509 			pEepData->calTargetPower2GHT20,
510 			AR5416_NUM_2G_20_TARGET_POWERS,
511 			&targetPowerHt20, 8, false);
512 
513 	if (IS_CHAN_HT40(chan)) {
514 		numCtlModes = ARRAY_SIZE(ctlModesFor11g);
515 		ath9k_hw_get_target_powers(ah, chan,
516 				pEepData->calTargetPower2GHT40,
517 				AR5416_NUM_2G_40_TARGET_POWERS,
518 				&targetPowerHt40, 8, true);
519 		ath9k_hw_get_legacy_target_powers(ah, chan,
520 				pEepData->calTargetPowerCck,
521 				AR5416_NUM_2G_CCK_TARGET_POWERS,
522 				&targetPowerCckExt, 4, true);
523 		ath9k_hw_get_legacy_target_powers(ah, chan,
524 				pEepData->calTargetPower2G,
525 				AR5416_NUM_2G_20_TARGET_POWERS,
526 				&targetPowerOfdmExt, 4, true);
527 	}
528 
529 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
530 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
531 			(pCtlMode[ctlMode] == CTL_2GHT40);
532 
533 		if (isHt40CtlMode)
534 			freq = centers.synth_center;
535 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
536 			freq = centers.ext_center;
537 		else
538 			freq = centers.ctl_center;
539 
540 		twiceMaxEdgePower = MAX_RATE_POWER;
541 
542 		for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
543 			     pEepData->ctlIndex[i]; i++) {
544 
545 			if (CMP_TEST_GRP) {
546 				rep = &(pEepData->ctlData[i]);
547 
548 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(
549 					freq,
550 					rep->ctlEdges[
551 					ar5416_get_ntxchains(ah->txchainmask) - 1],
552 					IS_CHAN_2GHZ(chan),
553 					AR5416_EEP4K_NUM_BAND_EDGES);
554 
555 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
556 					twiceMaxEdgePower =
557 						min(twiceMaxEdgePower,
558 						    twiceMinEdgePower);
559 				} else {
560 					twiceMaxEdgePower = twiceMinEdgePower;
561 					break;
562 				}
563 			}
564 		}
565 
566 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
567 
568 		switch (pCtlMode[ctlMode]) {
569 		case CTL_11B:
570 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
571 				targetPowerCck.tPow2x[i] =
572 					min((u16)targetPowerCck.tPow2x[i],
573 					    minCtlPower);
574 			}
575 			break;
576 		case CTL_11G:
577 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
578 				targetPowerOfdm.tPow2x[i] =
579 					min((u16)targetPowerOfdm.tPow2x[i],
580 					    minCtlPower);
581 			}
582 			break;
583 		case CTL_2GHT20:
584 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
585 				targetPowerHt20.tPow2x[i] =
586 					min((u16)targetPowerHt20.tPow2x[i],
587 					    minCtlPower);
588 			}
589 			break;
590 		case CTL_11B_EXT:
591 			targetPowerCckExt.tPow2x[0] =
592 				min((u16)targetPowerCckExt.tPow2x[0],
593 				    minCtlPower);
594 			break;
595 		case CTL_11G_EXT:
596 			targetPowerOfdmExt.tPow2x[0] =
597 				min((u16)targetPowerOfdmExt.tPow2x[0],
598 				    minCtlPower);
599 			break;
600 		case CTL_2GHT40:
601 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
602 				targetPowerHt40.tPow2x[i] =
603 					min((u16)targetPowerHt40.tPow2x[i],
604 					    minCtlPower);
605 			}
606 			break;
607 		default:
608 			break;
609 		}
610 	}
611 
612 	ratesArray[rate6mb] =
613 	ratesArray[rate9mb] =
614 	ratesArray[rate12mb] =
615 	ratesArray[rate18mb] =
616 	ratesArray[rate24mb] =
617 	targetPowerOfdm.tPow2x[0];
618 
619 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
620 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
621 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
622 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
623 
624 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
625 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
626 
627 	ratesArray[rate1l] = targetPowerCck.tPow2x[0];
628 	ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
629 	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
630 	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
631 
632 	if (IS_CHAN_HT40(chan)) {
633 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
634 			ratesArray[rateHt40_0 + i] =
635 				targetPowerHt40.tPow2x[i];
636 		}
637 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
638 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
639 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
640 		ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
641 	}
642 
643 #undef CMP_TEST_GRP
644 }
645 
646 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
647 				    struct ath9k_channel *chan,
648 				    u16 cfgCtl,
649 				    u8 twiceAntennaReduction,
650 				    u8 powerLimit, bool test)
651 {
652 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
653 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
654 	struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
655 	int16_t ratesArray[Ar5416RateSize];
656 	u8 ht40PowerIncForPdadc = 2;
657 	int i;
658 
659 	memset(ratesArray, 0, sizeof(ratesArray));
660 
661 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
662 	    AR5416_EEP_MINOR_VER_2) {
663 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
664 	}
665 
666 	ath9k_hw_set_4k_power_per_rate_table(ah, chan,
667 					     &ratesArray[0], cfgCtl,
668 					     twiceAntennaReduction,
669 					     powerLimit);
670 
671 	ath9k_hw_set_4k_power_cal_table(ah, chan);
672 
673 	regulatory->max_power_level = 0;
674 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
675 		if (ratesArray[i] > MAX_RATE_POWER)
676 			ratesArray[i] = MAX_RATE_POWER;
677 
678 		if (ratesArray[i] > regulatory->max_power_level)
679 			regulatory->max_power_level = ratesArray[i];
680 	}
681 
682 	if (test)
683 	    return;
684 
685 	for (i = 0; i < Ar5416RateSize; i++)
686 		ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
687 
688 	ENABLE_REGWRITE_BUFFER(ah);
689 
690 	/* OFDM power per rate */
691 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
692 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
693 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
694 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
695 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
696 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
697 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
698 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
699 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
700 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
701 
702 	/* CCK power per rate */
703 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
704 		  ATH9K_POW_SM(ratesArray[rate2s], 24)
705 		  | ATH9K_POW_SM(ratesArray[rate2l], 16)
706 		  | ATH9K_POW_SM(ratesArray[rateXr], 8)
707 		  | ATH9K_POW_SM(ratesArray[rate1l], 0));
708 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
709 		  ATH9K_POW_SM(ratesArray[rate11s], 24)
710 		  | ATH9K_POW_SM(ratesArray[rate11l], 16)
711 		  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
712 		  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
713 
714 	/* HT20 power per rate */
715 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
716 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
717 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
718 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
719 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
720 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
721 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
722 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
723 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
724 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
725 
726 	/* HT40 power per rate */
727 	if (IS_CHAN_HT40(chan)) {
728 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
729 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
730 				       ht40PowerIncForPdadc, 24)
731 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
732 					 ht40PowerIncForPdadc, 16)
733 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
734 					 ht40PowerIncForPdadc, 8)
735 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
736 					 ht40PowerIncForPdadc, 0));
737 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
738 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
739 				       ht40PowerIncForPdadc, 24)
740 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
741 					 ht40PowerIncForPdadc, 16)
742 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
743 					 ht40PowerIncForPdadc, 8)
744 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
745 					 ht40PowerIncForPdadc, 0));
746 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
747 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
748 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
749 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
750 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
751 	}
752 
753 	/* TPC initializations */
754 	if (ah->tpc_enabled) {
755 		int ht40_delta;
756 
757 		ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
758 		ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
759 		/* Enable TPC */
760 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
761 			MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
762 	} else {
763 		/* Disable TPC */
764 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
765 	}
766 
767 	REGWRITE_BUFFER_FLUSH(ah);
768 }
769 
770 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
771 				 struct modal_eep_4k_header *pModal,
772 				 struct ar5416_eeprom_4k *eep,
773 				 u8 txRxAttenLocal)
774 {
775 	ENABLE_REG_RMW_BUFFER(ah);
776 	REG_RMW(ah, AR_PHY_SWITCH_CHAIN_0,
777 		pModal->antCtrlChain[0], 0);
778 
779 	REG_RMW(ah, AR_PHY_TIMING_CTRL4(0),
780 		SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
781 		SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF),
782 		AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF);
783 
784 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
785 	    AR5416_EEP_MINOR_VER_3) {
786 		txRxAttenLocal = pModal->txRxAttenCh[0];
787 
788 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
789 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
790 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
791 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
792 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
793 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
794 			      pModal->xatten2Margin[0]);
795 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
796 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
797 
798 		/* Set the block 1 value to block 0 value */
799 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
800 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
801 			      pModal->bswMargin[0]);
802 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
803 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
804 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
805 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
806 			      pModal->xatten2Margin[0]);
807 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
808 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
809 			      pModal->xatten2Db[0]);
810 	}
811 
812 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
813 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
814 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
815 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
816 
817 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
818 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
819 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
820 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
821 	REG_RMW_BUFFER_FLUSH(ah);
822 }
823 
824 /*
825  * Read EEPROM header info and program the device for correct operation
826  * given the channel value.
827  */
828 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
829 					 struct ath9k_channel *chan)
830 {
831 	struct ath9k_hw_capabilities *pCap = &ah->caps;
832 	struct modal_eep_4k_header *pModal;
833 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
834 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
835 	u8 txRxAttenLocal;
836 	u8 ob[5], db1[5], db2[5];
837 	u8 ant_div_control1, ant_div_control2;
838 	u8 bb_desired_scale;
839 	u32 regVal;
840 
841 	pModal = &eep->modalHeader;
842 	txRxAttenLocal = 23;
843 
844 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
845 
846 	/* Single chain for 4K EEPROM*/
847 	ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
848 
849 	/* Initialize Ant Diversity settings from EEPROM */
850 	if (pModal->version >= 3) {
851 		ant_div_control1 = pModal->antdiv_ctl1;
852 		ant_div_control2 = pModal->antdiv_ctl2;
853 
854 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
855 		regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
856 
857 		regVal |= SM(ant_div_control1,
858 			     AR_PHY_9285_ANT_DIV_CTL);
859 		regVal |= SM(ant_div_control2,
860 			     AR_PHY_9285_ANT_DIV_ALT_LNACONF);
861 		regVal |= SM((ant_div_control2 >> 2),
862 			     AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
863 		regVal |= SM((ant_div_control1 >> 1),
864 			     AR_PHY_9285_ANT_DIV_ALT_GAINTB);
865 		regVal |= SM((ant_div_control1 >> 2),
866 			     AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
867 
868 
869 		REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
870 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
871 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
872 		regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
873 		regVal |= SM((ant_div_control1 >> 3),
874 			     AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
875 
876 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
877 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
878 
879 		if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
880 			/*
881 			 * If diversity combining is enabled,
882 			 * set MAIN to LNA1 and ALT to LNA2 initially.
883 			 */
884 			regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
885 			regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
886 				     AR_PHY_9285_ANT_DIV_ALT_LNACONF));
887 
888 			regVal |= (ATH_ANT_DIV_COMB_LNA1 <<
889 				   AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S);
890 			regVal |= (ATH_ANT_DIV_COMB_LNA2 <<
891 				   AR_PHY_9285_ANT_DIV_ALT_LNACONF_S);
892 			regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS));
893 			regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S);
894 			REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
895 		}
896 	}
897 
898 	if (pModal->version >= 2) {
899 		ob[0] = pModal->ob_0;
900 		ob[1] = pModal->ob_1;
901 		ob[2] = pModal->ob_2;
902 		ob[3] = pModal->ob_3;
903 		ob[4] = pModal->ob_4;
904 
905 		db1[0] = pModal->db1_0;
906 		db1[1] = pModal->db1_1;
907 		db1[2] = pModal->db1_2;
908 		db1[3] = pModal->db1_3;
909 		db1[4] = pModal->db1_4;
910 
911 		db2[0] = pModal->db2_0;
912 		db2[1] = pModal->db2_1;
913 		db2[2] = pModal->db2_2;
914 		db2[3] = pModal->db2_3;
915 		db2[4] = pModal->db2_4;
916 	} else if (pModal->version == 1) {
917 		ob[0] = pModal->ob_0;
918 		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
919 		db1[0] = pModal->db1_0;
920 		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
921 		db2[0] = pModal->db2_0;
922 		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
923 	} else {
924 		int i;
925 
926 		for (i = 0; i < 5; i++) {
927 			ob[i] = pModal->ob_0;
928 			db1[i] = pModal->db1_0;
929 			db2[i] = pModal->db1_0;
930 		}
931 	}
932 
933 	ENABLE_REG_RMW_BUFFER(ah);
934 	if (AR_SREV_9271(ah)) {
935 		ath9k_hw_analog_shift_rmw(ah,
936 					  AR9285_AN_RF2G3,
937 					  AR9271_AN_RF2G3_OB_cck,
938 					  AR9271_AN_RF2G3_OB_cck_S,
939 					  ob[0]);
940 		ath9k_hw_analog_shift_rmw(ah,
941 					  AR9285_AN_RF2G3,
942 					  AR9271_AN_RF2G3_OB_psk,
943 					  AR9271_AN_RF2G3_OB_psk_S,
944 					  ob[1]);
945 		ath9k_hw_analog_shift_rmw(ah,
946 					  AR9285_AN_RF2G3,
947 					  AR9271_AN_RF2G3_OB_qam,
948 					  AR9271_AN_RF2G3_OB_qam_S,
949 					  ob[2]);
950 		ath9k_hw_analog_shift_rmw(ah,
951 					  AR9285_AN_RF2G3,
952 					  AR9271_AN_RF2G3_DB_1,
953 					  AR9271_AN_RF2G3_DB_1_S,
954 					  db1[0]);
955 		ath9k_hw_analog_shift_rmw(ah,
956 					  AR9285_AN_RF2G4,
957 					  AR9271_AN_RF2G4_DB_2,
958 					  AR9271_AN_RF2G4_DB_2_S,
959 					  db2[0]);
960 	} else {
961 		ath9k_hw_analog_shift_rmw(ah,
962 					  AR9285_AN_RF2G3,
963 					  AR9285_AN_RF2G3_OB_0,
964 					  AR9285_AN_RF2G3_OB_0_S,
965 					  ob[0]);
966 		ath9k_hw_analog_shift_rmw(ah,
967 					  AR9285_AN_RF2G3,
968 					  AR9285_AN_RF2G3_OB_1,
969 					  AR9285_AN_RF2G3_OB_1_S,
970 					  ob[1]);
971 		ath9k_hw_analog_shift_rmw(ah,
972 					  AR9285_AN_RF2G3,
973 					  AR9285_AN_RF2G3_OB_2,
974 					  AR9285_AN_RF2G3_OB_2_S,
975 					  ob[2]);
976 		ath9k_hw_analog_shift_rmw(ah,
977 					  AR9285_AN_RF2G3,
978 					  AR9285_AN_RF2G3_OB_3,
979 					  AR9285_AN_RF2G3_OB_3_S,
980 					  ob[3]);
981 		ath9k_hw_analog_shift_rmw(ah,
982 					  AR9285_AN_RF2G3,
983 					  AR9285_AN_RF2G3_OB_4,
984 					  AR9285_AN_RF2G3_OB_4_S,
985 					  ob[4]);
986 
987 		ath9k_hw_analog_shift_rmw(ah,
988 					  AR9285_AN_RF2G3,
989 					  AR9285_AN_RF2G3_DB1_0,
990 					  AR9285_AN_RF2G3_DB1_0_S,
991 					  db1[0]);
992 		ath9k_hw_analog_shift_rmw(ah,
993 					  AR9285_AN_RF2G3,
994 					  AR9285_AN_RF2G3_DB1_1,
995 					  AR9285_AN_RF2G3_DB1_1_S,
996 					  db1[1]);
997 		ath9k_hw_analog_shift_rmw(ah,
998 					  AR9285_AN_RF2G3,
999 					  AR9285_AN_RF2G3_DB1_2,
1000 					  AR9285_AN_RF2G3_DB1_2_S,
1001 					  db1[2]);
1002 		ath9k_hw_analog_shift_rmw(ah,
1003 					  AR9285_AN_RF2G4,
1004 					  AR9285_AN_RF2G4_DB1_3,
1005 					  AR9285_AN_RF2G4_DB1_3_S,
1006 					  db1[3]);
1007 		ath9k_hw_analog_shift_rmw(ah,
1008 					  AR9285_AN_RF2G4,
1009 					  AR9285_AN_RF2G4_DB1_4,
1010 					  AR9285_AN_RF2G4_DB1_4_S, db1[4]);
1011 
1012 		ath9k_hw_analog_shift_rmw(ah,
1013 					  AR9285_AN_RF2G4,
1014 					  AR9285_AN_RF2G4_DB2_0,
1015 					  AR9285_AN_RF2G4_DB2_0_S,
1016 					  db2[0]);
1017 		ath9k_hw_analog_shift_rmw(ah,
1018 					  AR9285_AN_RF2G4,
1019 					  AR9285_AN_RF2G4_DB2_1,
1020 					  AR9285_AN_RF2G4_DB2_1_S,
1021 					  db2[1]);
1022 		ath9k_hw_analog_shift_rmw(ah,
1023 					  AR9285_AN_RF2G4,
1024 					  AR9285_AN_RF2G4_DB2_2,
1025 					  AR9285_AN_RF2G4_DB2_2_S,
1026 					  db2[2]);
1027 		ath9k_hw_analog_shift_rmw(ah,
1028 					  AR9285_AN_RF2G4,
1029 					  AR9285_AN_RF2G4_DB2_3,
1030 					  AR9285_AN_RF2G4_DB2_3_S,
1031 					  db2[3]);
1032 		ath9k_hw_analog_shift_rmw(ah,
1033 					  AR9285_AN_RF2G4,
1034 					  AR9285_AN_RF2G4_DB2_4,
1035 					  AR9285_AN_RF2G4_DB2_4_S,
1036 					  db2[4]);
1037 	}
1038 	REG_RMW_BUFFER_FLUSH(ah);
1039 
1040 	ENABLE_REG_RMW_BUFFER(ah);
1041 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1042 		      pModal->switchSettling);
1043 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1044 		      pModal->adcDesiredSize);
1045 
1046 	REG_RMW(ah, AR_PHY_RF_CTL4,
1047 		SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1048 		SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1049 		SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
1050 		SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON), 0);
1051 
1052 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1053 		      pModal->txEndToRxOn);
1054 
1055 	if (AR_SREV_9271_10(ah))
1056 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1057 			      pModal->txEndToRxOn);
1058 	REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1059 		      pModal->thresh62);
1060 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1061 		      pModal->thresh62);
1062 
1063 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1064 						AR5416_EEP_MINOR_VER_2) {
1065 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1066 			      pModal->txFrameToDataStart);
1067 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1068 			      pModal->txFrameToPaOn);
1069 	}
1070 
1071 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1072 						AR5416_EEP_MINOR_VER_3) {
1073 		if (IS_CHAN_HT40(chan))
1074 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1075 				      AR_PHY_SETTLING_SWITCH,
1076 				      pModal->swSettleHt40);
1077 	}
1078 
1079 	REG_RMW_BUFFER_FLUSH(ah);
1080 
1081 	bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1082 			EEP_4K_BB_DESIRED_SCALE_MASK);
1083 	if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1084 		u32 pwrctrl, mask, clr;
1085 
1086 		mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1087 		pwrctrl = mask * bb_desired_scale;
1088 		clr = mask * 0x1f;
1089 		ENABLE_REG_RMW_BUFFER(ah);
1090 		REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1091 		REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1092 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1093 
1094 		mask = BIT(0)|BIT(5)|BIT(15);
1095 		pwrctrl = mask * bb_desired_scale;
1096 		clr = mask * 0x1f;
1097 		REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1098 
1099 		mask = BIT(0)|BIT(5);
1100 		pwrctrl = mask * bb_desired_scale;
1101 		clr = mask * 0x1f;
1102 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1103 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1104 		REG_RMW_BUFFER_FLUSH(ah);
1105 	}
1106 }
1107 
1108 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1109 {
1110 	return ah->eeprom.map4k.modalHeader.spurChans[i].spurChan;
1111 }
1112 
1113 const struct eeprom_ops eep_4k_ops = {
1114 	.check_eeprom		= ath9k_hw_4k_check_eeprom,
1115 	.get_eeprom		= ath9k_hw_4k_get_eeprom,
1116 	.fill_eeprom		= ath9k_hw_4k_fill_eeprom,
1117 	.dump_eeprom		= ath9k_hw_4k_dump_eeprom,
1118 	.get_eeprom_ver		= ath9k_hw_4k_get_eeprom_ver,
1119 	.get_eeprom_rev		= ath9k_hw_4k_get_eeprom_rev,
1120 	.set_board_values	= ath9k_hw_4k_set_board_values,
1121 	.set_txpower		= ath9k_hw_4k_set_txpower,
1122 	.get_spur_channel	= ath9k_hw_4k_get_spur_channel
1123 };
1124