xref: /linux/drivers/net/wireless/ath/ath9k/eeprom.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 
19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
20 {
21         REG_WRITE(ah, reg, val);
22 
23         if (ah->config.analog_shiftreg)
24 		udelay(100);
25 }
26 
27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 			       u32 shift, u32 val)
29 {
30 	u32 regVal;
31 
32 	regVal = REG_READ(ah, reg) & ~mask;
33 	regVal |= (val << shift) & mask;
34 
35 	REG_WRITE(ah, reg, regVal);
36 
37 	if (ah->config.analog_shiftreg)
38 		udelay(100);
39 }
40 
41 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
42 			     int16_t targetLeft, int16_t targetRight)
43 {
44 	int16_t rv;
45 
46 	if (srcRight == srcLeft) {
47 		rv = targetLeft;
48 	} else {
49 		rv = (int16_t) (((target - srcLeft) * targetRight +
50 				 (srcRight - target) * targetLeft) /
51 				(srcRight - srcLeft));
52 	}
53 	return rv;
54 }
55 
56 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
57 				    u16 *indexL, u16 *indexR)
58 {
59 	u16 i;
60 
61 	if (target <= pList[0]) {
62 		*indexL = *indexR = 0;
63 		return true;
64 	}
65 	if (target >= pList[listSize - 1]) {
66 		*indexL = *indexR = (u16) (listSize - 1);
67 		return true;
68 	}
69 
70 	for (i = 0; i < listSize - 1; i++) {
71 		if (pList[i] == target) {
72 			*indexL = *indexR = i;
73 			return true;
74 		}
75 		if (target < pList[i + 1]) {
76 			*indexL = i;
77 			*indexR = (u16) (i + 1);
78 			return false;
79 		}
80 	}
81 	return false;
82 }
83 
84 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
85 				  int eep_start_loc, int size)
86 {
87 	int i = 0, j, addr;
88 	u32 addrdata[8];
89 	u32 data[8];
90 
91 	for (addr = 0; addr < size; addr++) {
92 		addrdata[i] = AR5416_EEPROM_OFFSET +
93 			((addr + eep_start_loc) << AR5416_EEPROM_S);
94 		i++;
95 		if (i == 8) {
96 			REG_READ_MULTI(ah, addrdata, data, i);
97 
98 			for (j = 0; j < i; j++) {
99 				*eep_data = data[j];
100 				eep_data++;
101 			}
102 			i = 0;
103 		}
104 	}
105 
106 	if (i != 0) {
107 		REG_READ_MULTI(ah, addrdata, data, i);
108 
109 		for (j = 0; j < i; j++) {
110 			*eep_data = data[j];
111 			eep_data++;
112 		}
113 	}
114 }
115 
116 bool ath9k_hw_nvram_read(struct ath_common *common, u32 off, u16 *data)
117 {
118 	return common->bus_ops->eeprom_read(common, off, data);
119 }
120 
121 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
122 			     u8 *pVpdList, u16 numIntercepts,
123 			     u8 *pRetVpdList)
124 {
125 	u16 i, k;
126 	u8 currPwr = pwrMin;
127 	u16 idxL = 0, idxR = 0;
128 
129 	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
130 		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
131 					       numIntercepts, &(idxL),
132 					       &(idxR));
133 		if (idxR < 1)
134 			idxR = 1;
135 		if (idxL == numIntercepts - 1)
136 			idxL = (u16) (numIntercepts - 2);
137 		if (pPwrList[idxL] == pPwrList[idxR])
138 			k = pVpdList[idxL];
139 		else
140 			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
141 				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
142 				  (pPwrList[idxR] - pPwrList[idxL]));
143 		pRetVpdList[i] = (u8) k;
144 		currPwr += 2;
145 	}
146 }
147 
148 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
149 				       struct ath9k_channel *chan,
150 				       struct cal_target_power_leg *powInfo,
151 				       u16 numChannels,
152 				       struct cal_target_power_leg *pNewPower,
153 				       u16 numRates, bool isExtTarget)
154 {
155 	struct chan_centers centers;
156 	u16 clo, chi;
157 	int i;
158 	int matchIndex = -1, lowIndex = -1;
159 	u16 freq;
160 
161 	ath9k_hw_get_channel_centers(ah, chan, &centers);
162 	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
163 
164 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
165 				       IS_CHAN_2GHZ(chan))) {
166 		matchIndex = 0;
167 	} else {
168 		for (i = 0; (i < numChannels) &&
169 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
170 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
171 						       IS_CHAN_2GHZ(chan))) {
172 				matchIndex = i;
173 				break;
174 			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
175 						IS_CHAN_2GHZ(chan)) && i > 0 &&
176 				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
177 						IS_CHAN_2GHZ(chan))) {
178 				lowIndex = i - 1;
179 				break;
180 			}
181 		}
182 		if ((matchIndex == -1) && (lowIndex == -1))
183 			matchIndex = i - 1;
184 	}
185 
186 	if (matchIndex != -1) {
187 		*pNewPower = powInfo[matchIndex];
188 	} else {
189 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
190 					 IS_CHAN_2GHZ(chan));
191 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
192 					 IS_CHAN_2GHZ(chan));
193 
194 		for (i = 0; i < numRates; i++) {
195 			pNewPower->tPow2x[i] =
196 				(u8)ath9k_hw_interpolate(freq, clo, chi,
197 						powInfo[lowIndex].tPow2x[i],
198 						powInfo[lowIndex + 1].tPow2x[i]);
199 		}
200 	}
201 }
202 
203 void ath9k_hw_get_target_powers(struct ath_hw *ah,
204 				struct ath9k_channel *chan,
205 				struct cal_target_power_ht *powInfo,
206 				u16 numChannels,
207 				struct cal_target_power_ht *pNewPower,
208 				u16 numRates, bool isHt40Target)
209 {
210 	struct chan_centers centers;
211 	u16 clo, chi;
212 	int i;
213 	int matchIndex = -1, lowIndex = -1;
214 	u16 freq;
215 
216 	ath9k_hw_get_channel_centers(ah, chan, &centers);
217 	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
218 
219 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
220 		matchIndex = 0;
221 	} else {
222 		for (i = 0; (i < numChannels) &&
223 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
224 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
225 						       IS_CHAN_2GHZ(chan))) {
226 				matchIndex = i;
227 				break;
228 			} else
229 				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
230 						IS_CHAN_2GHZ(chan)) && i > 0 &&
231 				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
232 						IS_CHAN_2GHZ(chan))) {
233 					lowIndex = i - 1;
234 					break;
235 				}
236 		}
237 		if ((matchIndex == -1) && (lowIndex == -1))
238 			matchIndex = i - 1;
239 	}
240 
241 	if (matchIndex != -1) {
242 		*pNewPower = powInfo[matchIndex];
243 	} else {
244 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
245 					 IS_CHAN_2GHZ(chan));
246 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
247 					 IS_CHAN_2GHZ(chan));
248 
249 		for (i = 0; i < numRates; i++) {
250 			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
251 						clo, chi,
252 						powInfo[lowIndex].tPow2x[i],
253 						powInfo[lowIndex + 1].tPow2x[i]);
254 		}
255 	}
256 }
257 
258 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
259 				bool is2GHz, int num_band_edges)
260 {
261 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
262 	int i;
263 
264 	for (i = 0; (i < num_band_edges) &&
265 		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
266 		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
267 			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
268 			break;
269 		} else if ((i > 0) &&
270 			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
271 						      is2GHz))) {
272 			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
273 					       is2GHz) < freq &&
274 			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
275 				twiceMaxEdgePower =
276 					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
277 			}
278 			break;
279 		}
280 	}
281 
282 	return twiceMaxEdgePower;
283 }
284 
285 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
286 			      u8 antenna_reduction)
287 {
288 	u16 reduction = antenna_reduction;
289 
290 	/*
291 	 * Reduce scaled Power by number of chains active
292 	 * to get the per chain tx power level.
293 	 */
294 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
295 	case 1:
296 		break;
297 	case 2:
298 		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
299 		break;
300 	case 3:
301 		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
302 		break;
303 	}
304 
305 	if (power_limit > reduction)
306 		power_limit -= reduction;
307 	else
308 		power_limit = 0;
309 
310 	return power_limit;
311 }
312 
313 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
314 {
315 	struct ath_common *common = ath9k_hw_common(ah);
316 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
317 
318 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
319 	case 1:
320 		break;
321 	case 2:
322 		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
323 		break;
324 	case 3:
325 		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
326 		break;
327 	default:
328 		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
329 		break;
330 	}
331 }
332 
333 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
334 				struct ath9k_channel *chan,
335 				void *pRawDataSet,
336 				u8 *bChans, u16 availPiers,
337 				u16 tPdGainOverlap,
338 				u16 *pPdGainBoundaries, u8 *pPDADCValues,
339 				u16 numXpdGains)
340 {
341 	int i, j, k;
342 	int16_t ss;
343 	u16 idxL = 0, idxR = 0, numPiers;
344 	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
345 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
346 	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
347 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
348 	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
349 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
350 
351 	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
352 	u8 minPwrT4[AR5416_NUM_PD_GAINS];
353 	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
354 	int16_t vpdStep;
355 	int16_t tmpVal;
356 	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
357 	bool match;
358 	int16_t minDelta = 0;
359 	struct chan_centers centers;
360 	int pdgain_boundary_default;
361 	struct cal_data_per_freq *data_def = pRawDataSet;
362 	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
363 	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
364 	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
365 	int intercepts;
366 
367 	if (AR_SREV_9287(ah))
368 		intercepts = AR9287_PD_GAIN_ICEPTS;
369 	else
370 		intercepts = AR5416_PD_GAIN_ICEPTS;
371 
372 	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
373 	ath9k_hw_get_channel_centers(ah, chan, &centers);
374 
375 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
376 		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
377 			break;
378 	}
379 
380 	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
381 							     IS_CHAN_2GHZ(chan)),
382 					       bChans, numPiers, &idxL, &idxR);
383 
384 	if (match) {
385 		if (AR_SREV_9287(ah)) {
386 			/* FIXME: array overrun? */
387 			for (i = 0; i < numXpdGains; i++) {
388 				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
389 				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
390 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
391 						data_9287[idxL].pwrPdg[i],
392 						data_9287[idxL].vpdPdg[i],
393 						intercepts,
394 						vpdTableI[i]);
395 			}
396 		} else if (eeprom_4k) {
397 			for (i = 0; i < numXpdGains; i++) {
398 				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
399 				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
400 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
401 						data_4k[idxL].pwrPdg[i],
402 						data_4k[idxL].vpdPdg[i],
403 						intercepts,
404 						vpdTableI[i]);
405 			}
406 		} else {
407 			for (i = 0; i < numXpdGains; i++) {
408 				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
409 				maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
410 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
411 						data_def[idxL].pwrPdg[i],
412 						data_def[idxL].vpdPdg[i],
413 						intercepts,
414 						vpdTableI[i]);
415 			}
416 		}
417 	} else {
418 		for (i = 0; i < numXpdGains; i++) {
419 			if (AR_SREV_9287(ah)) {
420 				pVpdL = data_9287[idxL].vpdPdg[i];
421 				pPwrL = data_9287[idxL].pwrPdg[i];
422 				pVpdR = data_9287[idxR].vpdPdg[i];
423 				pPwrR = data_9287[idxR].pwrPdg[i];
424 			} else if (eeprom_4k) {
425 				pVpdL = data_4k[idxL].vpdPdg[i];
426 				pPwrL = data_4k[idxL].pwrPdg[i];
427 				pVpdR = data_4k[idxR].vpdPdg[i];
428 				pPwrR = data_4k[idxR].pwrPdg[i];
429 			} else {
430 				pVpdL = data_def[idxL].vpdPdg[i];
431 				pPwrL = data_def[idxL].pwrPdg[i];
432 				pVpdR = data_def[idxR].vpdPdg[i];
433 				pPwrR = data_def[idxR].pwrPdg[i];
434 			}
435 
436 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
437 
438 			maxPwrT4[i] =
439 				min(pPwrL[intercepts - 1],
440 				    pPwrR[intercepts - 1]);
441 
442 
443 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
444 						pPwrL, pVpdL,
445 						intercepts,
446 						vpdTableL[i]);
447 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
448 						pPwrR, pVpdR,
449 						intercepts,
450 						vpdTableR[i]);
451 
452 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
453 				vpdTableI[i][j] =
454 					(u8)(ath9k_hw_interpolate((u16)
455 					     FREQ2FBIN(centers.
456 						       synth_center,
457 						       IS_CHAN_2GHZ
458 						       (chan)),
459 					     bChans[idxL], bChans[idxR],
460 					     vpdTableL[i][j], vpdTableR[i][j]));
461 			}
462 		}
463 	}
464 
465 	k = 0;
466 
467 	for (i = 0; i < numXpdGains; i++) {
468 		if (i == (numXpdGains - 1))
469 			pPdGainBoundaries[i] =
470 				(u16)(maxPwrT4[i] / 2);
471 		else
472 			pPdGainBoundaries[i] =
473 				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
474 
475 		pPdGainBoundaries[i] =
476 			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
477 
478 		minDelta = 0;
479 
480 		if (i == 0) {
481 			if (AR_SREV_9280_20_OR_LATER(ah))
482 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
483 			else
484 				ss = 0;
485 		} else {
486 			ss = (int16_t)((pPdGainBoundaries[i - 1] -
487 					(minPwrT4[i] / 2)) -
488 				       tPdGainOverlap + 1 + minDelta);
489 		}
490 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
491 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
492 
493 		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
494 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
495 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
496 			ss++;
497 		}
498 
499 		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
500 		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
501 				(minPwrT4[i] / 2));
502 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
503 			tgtIndex : sizeCurrVpdTable;
504 
505 		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
506 			pPDADCValues[k++] = vpdTableI[i][ss++];
507 		}
508 
509 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
510 				    vpdTableI[i][sizeCurrVpdTable - 2]);
511 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
512 
513 		if (tgtIndex >= maxIndex) {
514 			while ((ss <= tgtIndex) &&
515 			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
516 				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
517 						    (ss - maxIndex + 1) * vpdStep));
518 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
519 							 255 : tmpVal);
520 				ss++;
521 			}
522 		}
523 	}
524 
525 	if (eeprom_4k)
526 		pdgain_boundary_default = 58;
527 	else
528 		pdgain_boundary_default = pPdGainBoundaries[i - 1];
529 
530 	while (i < AR5416_PD_GAINS_IN_MASK) {
531 		pPdGainBoundaries[i] = pdgain_boundary_default;
532 		i++;
533 	}
534 
535 	while (k < AR5416_NUM_PDADC_VALUES) {
536 		pPDADCValues[k] = pPDADCValues[k - 1];
537 		k++;
538 	}
539 }
540 
541 int ath9k_hw_eeprom_init(struct ath_hw *ah)
542 {
543 	int status;
544 
545 	if (AR_SREV_9300_20_OR_LATER(ah))
546 		ah->eep_ops = &eep_ar9300_ops;
547 	else if (AR_SREV_9287(ah)) {
548 		ah->eep_ops = &eep_ar9287_ops;
549 	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
550 		ah->eep_ops = &eep_4k_ops;
551 	} else {
552 		ah->eep_ops = &eep_def_ops;
553 	}
554 
555 	if (!ah->eep_ops->fill_eeprom(ah))
556 		return -EIO;
557 
558 	status = ah->eep_ops->check_eeprom(ah);
559 
560 	return status;
561 }
562