xref: /linux/drivers/net/wireless/ath/ath9k/eeprom.c (revision cc9b94029e9ef51787af908e9856b1eed314bc00)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include <linux/ath9k_platform.h>
19 
20 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
21 {
22         REG_WRITE(ah, reg, val);
23 
24         if (ah->config.analog_shiftreg)
25 		udelay(100);
26 }
27 
28 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
29 			       u32 shift, u32 val)
30 {
31 	REG_RMW(ah, reg, ((val << shift) & mask), mask);
32 
33 	if (ah->config.analog_shiftreg)
34 		udelay(100);
35 }
36 
37 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
38 			     int16_t targetLeft, int16_t targetRight)
39 {
40 	int16_t rv;
41 
42 	if (srcRight == srcLeft) {
43 		rv = targetLeft;
44 	} else {
45 		rv = (int16_t) (((target - srcLeft) * targetRight +
46 				 (srcRight - target) * targetLeft) /
47 				(srcRight - srcLeft));
48 	}
49 	return rv;
50 }
51 
52 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
53 				    u16 *indexL, u16 *indexR)
54 {
55 	u16 i;
56 
57 	if (target <= pList[0]) {
58 		*indexL = *indexR = 0;
59 		return true;
60 	}
61 	if (target >= pList[listSize - 1]) {
62 		*indexL = *indexR = (u16) (listSize - 1);
63 		return true;
64 	}
65 
66 	for (i = 0; i < listSize - 1; i++) {
67 		if (pList[i] == target) {
68 			*indexL = *indexR = i;
69 			return true;
70 		}
71 		if (target < pList[i + 1]) {
72 			*indexL = i;
73 			*indexR = (u16) (i + 1);
74 			return false;
75 		}
76 	}
77 	return false;
78 }
79 
80 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
81 				  int eep_start_loc, int size)
82 {
83 	int i = 0, j, addr;
84 	u32 addrdata[8];
85 	u32 data[8];
86 
87 	for (addr = 0; addr < size; addr++) {
88 		addrdata[i] = AR5416_EEPROM_OFFSET +
89 			((addr + eep_start_loc) << AR5416_EEPROM_S);
90 		i++;
91 		if (i == 8) {
92 			REG_READ_MULTI(ah, addrdata, data, i);
93 
94 			for (j = 0; j < i; j++) {
95 				*eep_data = data[j];
96 				eep_data++;
97 			}
98 			i = 0;
99 		}
100 	}
101 
102 	if (i != 0) {
103 		REG_READ_MULTI(ah, addrdata, data, i);
104 
105 		for (j = 0; j < i; j++) {
106 			*eep_data = data[j];
107 			eep_data++;
108 		}
109 	}
110 }
111 
112 static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
113 				      off_t offset, u16 *data)
114 {
115 	if (offset > blob_size)
116 		return false;
117 
118 	*data =  blob[offset];
119 	return true;
120 }
121 
122 static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
123 				      off_t offset, u16 *data)
124 {
125 	return ath9k_hw_nvram_read_array(pdata->eeprom_data,
126 					 ARRAY_SIZE(pdata->eeprom_data),
127 					 offset, data);
128 }
129 
130 static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
131 					 off_t offset, u16 *data)
132 {
133 	return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
134 					 eeprom_blob->size / sizeof(u16),
135 					 offset, data);
136 }
137 
138 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
139 {
140 	struct ath_common *common = ath9k_hw_common(ah);
141 	struct ath9k_platform_data *pdata = ah->dev->platform_data;
142 	bool ret;
143 
144 	if (ah->eeprom_blob)
145 		ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
146 	else if (pdata && !pdata->use_eeprom && pdata->eeprom_data)
147 		ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
148 	else
149 		ret = common->bus_ops->eeprom_read(common, off, data);
150 
151 	if (!ret)
152 		ath_dbg(common, EEPROM,
153 			"unable to read eeprom region at offset %u\n", off);
154 
155 	return ret;
156 }
157 
158 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
159 {
160 	u16 magic;
161 	u16 *eepdata;
162 	int i;
163 	struct ath_common *common = ath9k_hw_common(ah);
164 
165 	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
166 		ath_err(common, "Reading Magic # failed\n");
167 		return -EIO;
168 	}
169 
170 	*swap_needed = false;
171 	if (swab16(magic) == AR5416_EEPROM_MAGIC) {
172 		if (ah->ah_flags & AH_NO_EEP_SWAP) {
173 			ath_info(common,
174 				 "Ignoring endianness difference in EEPROM magic bytes.\n");
175 		} else {
176 			*swap_needed = true;
177 		}
178 	} else if (magic != AR5416_EEPROM_MAGIC) {
179 		if (ath9k_hw_use_flash(ah))
180 			return 0;
181 
182 		ath_err(common,
183 			"Invalid EEPROM Magic (0x%04x).\n", magic);
184 		return -EINVAL;
185 	}
186 
187 	eepdata = (u16 *)(&ah->eeprom);
188 
189 	if (*swap_needed) {
190 		ath_dbg(common, EEPROM,
191 			"EEPROM Endianness is not native.. Changing.\n");
192 
193 		for (i = 0; i < size; i++)
194 			eepdata[i] = swab16(eepdata[i]);
195 	}
196 
197 	return 0;
198 }
199 
200 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
201 {
202 	u32 i, sum = 0;
203 	u16 *eepdata = (u16 *)(&ah->eeprom);
204 	struct ath_common *common = ath9k_hw_common(ah);
205 
206 	for (i = 0; i < size; i++)
207 		sum ^= eepdata[i];
208 
209 	if (sum != 0xffff) {
210 		ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
211 		return false;
212 	}
213 
214 	return true;
215 }
216 
217 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
218 {
219 	struct ath_common *common = ath9k_hw_common(ah);
220 
221 	if (ah->eep_ops->get_eeprom_ver(ah) != version ||
222 	    ah->eep_ops->get_eeprom_rev(ah) < minrev) {
223 		ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
224 			ah->eep_ops->get_eeprom_ver(ah),
225 			ah->eep_ops->get_eeprom_rev(ah));
226 		return false;
227 	}
228 
229 	return true;
230 }
231 
232 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
233 			     u8 *pVpdList, u16 numIntercepts,
234 			     u8 *pRetVpdList)
235 {
236 	u16 i, k;
237 	u8 currPwr = pwrMin;
238 	u16 idxL = 0, idxR = 0;
239 
240 	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
241 		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
242 					       numIntercepts, &(idxL),
243 					       &(idxR));
244 		if (idxR < 1)
245 			idxR = 1;
246 		if (idxL == numIntercepts - 1)
247 			idxL = (u16) (numIntercepts - 2);
248 		if (pPwrList[idxL] == pPwrList[idxR])
249 			k = pVpdList[idxL];
250 		else
251 			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
252 				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
253 				  (pPwrList[idxR] - pPwrList[idxL]));
254 		pRetVpdList[i] = (u8) k;
255 		currPwr += 2;
256 	}
257 }
258 
259 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
260 				       struct ath9k_channel *chan,
261 				       struct cal_target_power_leg *powInfo,
262 				       u16 numChannels,
263 				       struct cal_target_power_leg *pNewPower,
264 				       u16 numRates, bool isExtTarget)
265 {
266 	struct chan_centers centers;
267 	u16 clo, chi;
268 	int i;
269 	int matchIndex = -1, lowIndex = -1;
270 	u16 freq;
271 
272 	ath9k_hw_get_channel_centers(ah, chan, &centers);
273 	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
274 
275 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
276 				       IS_CHAN_2GHZ(chan))) {
277 		matchIndex = 0;
278 	} else {
279 		for (i = 0; (i < numChannels) &&
280 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
281 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
282 						       IS_CHAN_2GHZ(chan))) {
283 				matchIndex = i;
284 				break;
285 			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
286 						IS_CHAN_2GHZ(chan)) && i > 0 &&
287 				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
288 						IS_CHAN_2GHZ(chan))) {
289 				lowIndex = i - 1;
290 				break;
291 			}
292 		}
293 		if ((matchIndex == -1) && (lowIndex == -1))
294 			matchIndex = i - 1;
295 	}
296 
297 	if (matchIndex != -1) {
298 		*pNewPower = powInfo[matchIndex];
299 	} else {
300 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
301 					 IS_CHAN_2GHZ(chan));
302 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
303 					 IS_CHAN_2GHZ(chan));
304 
305 		for (i = 0; i < numRates; i++) {
306 			pNewPower->tPow2x[i] =
307 				(u8)ath9k_hw_interpolate(freq, clo, chi,
308 						powInfo[lowIndex].tPow2x[i],
309 						powInfo[lowIndex + 1].tPow2x[i]);
310 		}
311 	}
312 }
313 
314 void ath9k_hw_get_target_powers(struct ath_hw *ah,
315 				struct ath9k_channel *chan,
316 				struct cal_target_power_ht *powInfo,
317 				u16 numChannels,
318 				struct cal_target_power_ht *pNewPower,
319 				u16 numRates, bool isHt40Target)
320 {
321 	struct chan_centers centers;
322 	u16 clo, chi;
323 	int i;
324 	int matchIndex = -1, lowIndex = -1;
325 	u16 freq;
326 
327 	ath9k_hw_get_channel_centers(ah, chan, &centers);
328 	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
329 
330 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
331 		matchIndex = 0;
332 	} else {
333 		for (i = 0; (i < numChannels) &&
334 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
335 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
336 						       IS_CHAN_2GHZ(chan))) {
337 				matchIndex = i;
338 				break;
339 			} else
340 				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
341 						IS_CHAN_2GHZ(chan)) && i > 0 &&
342 				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
343 						IS_CHAN_2GHZ(chan))) {
344 					lowIndex = i - 1;
345 					break;
346 				}
347 		}
348 		if ((matchIndex == -1) && (lowIndex == -1))
349 			matchIndex = i - 1;
350 	}
351 
352 	if (matchIndex != -1) {
353 		*pNewPower = powInfo[matchIndex];
354 	} else {
355 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
356 					 IS_CHAN_2GHZ(chan));
357 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
358 					 IS_CHAN_2GHZ(chan));
359 
360 		for (i = 0; i < numRates; i++) {
361 			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
362 						clo, chi,
363 						powInfo[lowIndex].tPow2x[i],
364 						powInfo[lowIndex + 1].tPow2x[i]);
365 		}
366 	}
367 }
368 
369 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
370 				bool is2GHz, int num_band_edges)
371 {
372 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
373 	int i;
374 
375 	for (i = 0; (i < num_band_edges) &&
376 		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
377 		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
378 			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
379 			break;
380 		} else if ((i > 0) &&
381 			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
382 						      is2GHz))) {
383 			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
384 					       is2GHz) < freq &&
385 			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
386 				twiceMaxEdgePower =
387 					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
388 			}
389 			break;
390 		}
391 	}
392 
393 	return twiceMaxEdgePower;
394 }
395 
396 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
397 			      u8 antenna_reduction)
398 {
399 	u16 reduction = antenna_reduction;
400 
401 	/*
402 	 * Reduce scaled Power by number of chains active
403 	 * to get the per chain tx power level.
404 	 */
405 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
406 	case 1:
407 		break;
408 	case 2:
409 		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
410 		break;
411 	case 3:
412 		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
413 		break;
414 	}
415 
416 	if (power_limit > reduction)
417 		power_limit -= reduction;
418 	else
419 		power_limit = 0;
420 
421 	return power_limit;
422 }
423 
424 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
425 {
426 	struct ath_common *common = ath9k_hw_common(ah);
427 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
428 
429 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
430 	case 1:
431 		break;
432 	case 2:
433 		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
434 		break;
435 	case 3:
436 		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
437 		break;
438 	default:
439 		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
440 		break;
441 	}
442 }
443 
444 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
445 				struct ath9k_channel *chan,
446 				void *pRawDataSet,
447 				u8 *bChans, u16 availPiers,
448 				u16 tPdGainOverlap,
449 				u16 *pPdGainBoundaries, u8 *pPDADCValues,
450 				u16 numXpdGains)
451 {
452 	int i, j, k;
453 	int16_t ss;
454 	u16 idxL = 0, idxR = 0, numPiers;
455 	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
456 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
457 	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
458 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
459 	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
460 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
461 
462 	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
463 	u8 minPwrT4[AR5416_NUM_PD_GAINS];
464 	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
465 	int16_t vpdStep;
466 	int16_t tmpVal;
467 	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
468 	bool match;
469 	int16_t minDelta = 0;
470 	struct chan_centers centers;
471 	int pdgain_boundary_default;
472 	struct cal_data_per_freq *data_def = pRawDataSet;
473 	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
474 	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
475 	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
476 	int intercepts;
477 
478 	if (AR_SREV_9287(ah))
479 		intercepts = AR9287_PD_GAIN_ICEPTS;
480 	else
481 		intercepts = AR5416_PD_GAIN_ICEPTS;
482 
483 	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
484 	ath9k_hw_get_channel_centers(ah, chan, &centers);
485 
486 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
487 		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
488 			break;
489 	}
490 
491 	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
492 							     IS_CHAN_2GHZ(chan)),
493 					       bChans, numPiers, &idxL, &idxR);
494 
495 	if (match) {
496 		if (AR_SREV_9287(ah)) {
497 			for (i = 0; i < numXpdGains; i++) {
498 				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
499 				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
500 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
501 						data_9287[idxL].pwrPdg[i],
502 						data_9287[idxL].vpdPdg[i],
503 						intercepts,
504 						vpdTableI[i]);
505 			}
506 		} else if (eeprom_4k) {
507 			for (i = 0; i < numXpdGains; i++) {
508 				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
509 				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
510 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
511 						data_4k[idxL].pwrPdg[i],
512 						data_4k[idxL].vpdPdg[i],
513 						intercepts,
514 						vpdTableI[i]);
515 			}
516 		} else {
517 			for (i = 0; i < numXpdGains; i++) {
518 				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
519 				maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
520 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
521 						data_def[idxL].pwrPdg[i],
522 						data_def[idxL].vpdPdg[i],
523 						intercepts,
524 						vpdTableI[i]);
525 			}
526 		}
527 	} else {
528 		for (i = 0; i < numXpdGains; i++) {
529 			if (AR_SREV_9287(ah)) {
530 				pVpdL = data_9287[idxL].vpdPdg[i];
531 				pPwrL = data_9287[idxL].pwrPdg[i];
532 				pVpdR = data_9287[idxR].vpdPdg[i];
533 				pPwrR = data_9287[idxR].pwrPdg[i];
534 			} else if (eeprom_4k) {
535 				pVpdL = data_4k[idxL].vpdPdg[i];
536 				pPwrL = data_4k[idxL].pwrPdg[i];
537 				pVpdR = data_4k[idxR].vpdPdg[i];
538 				pPwrR = data_4k[idxR].pwrPdg[i];
539 			} else {
540 				pVpdL = data_def[idxL].vpdPdg[i];
541 				pPwrL = data_def[idxL].pwrPdg[i];
542 				pVpdR = data_def[idxR].vpdPdg[i];
543 				pPwrR = data_def[idxR].pwrPdg[i];
544 			}
545 
546 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
547 
548 			maxPwrT4[i] =
549 				min(pPwrL[intercepts - 1],
550 				    pPwrR[intercepts - 1]);
551 
552 
553 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
554 						pPwrL, pVpdL,
555 						intercepts,
556 						vpdTableL[i]);
557 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
558 						pPwrR, pVpdR,
559 						intercepts,
560 						vpdTableR[i]);
561 
562 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
563 				vpdTableI[i][j] =
564 					(u8)(ath9k_hw_interpolate((u16)
565 					     FREQ2FBIN(centers.
566 						       synth_center,
567 						       IS_CHAN_2GHZ
568 						       (chan)),
569 					     bChans[idxL], bChans[idxR],
570 					     vpdTableL[i][j], vpdTableR[i][j]));
571 			}
572 		}
573 	}
574 
575 	k = 0;
576 
577 	for (i = 0; i < numXpdGains; i++) {
578 		if (i == (numXpdGains - 1))
579 			pPdGainBoundaries[i] =
580 				(u16)(maxPwrT4[i] / 2);
581 		else
582 			pPdGainBoundaries[i] =
583 				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
584 
585 		pPdGainBoundaries[i] =
586 			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
587 
588 		minDelta = 0;
589 
590 		if (i == 0) {
591 			if (AR_SREV_9280_20_OR_LATER(ah))
592 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
593 			else
594 				ss = 0;
595 		} else {
596 			ss = (int16_t)((pPdGainBoundaries[i - 1] -
597 					(minPwrT4[i] / 2)) -
598 				       tPdGainOverlap + 1 + minDelta);
599 		}
600 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
601 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
602 
603 		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
604 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
605 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
606 			ss++;
607 		}
608 
609 		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
610 		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
611 				(minPwrT4[i] / 2));
612 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
613 			tgtIndex : sizeCurrVpdTable;
614 
615 		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
616 			pPDADCValues[k++] = vpdTableI[i][ss++];
617 		}
618 
619 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
620 				    vpdTableI[i][sizeCurrVpdTable - 2]);
621 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
622 
623 		if (tgtIndex >= maxIndex) {
624 			while ((ss <= tgtIndex) &&
625 			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
626 				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
627 						    (ss - maxIndex + 1) * vpdStep));
628 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
629 							 255 : tmpVal);
630 				ss++;
631 			}
632 		}
633 	}
634 
635 	if (eeprom_4k)
636 		pdgain_boundary_default = 58;
637 	else
638 		pdgain_boundary_default = pPdGainBoundaries[i - 1];
639 
640 	while (i < AR5416_PD_GAINS_IN_MASK) {
641 		pPdGainBoundaries[i] = pdgain_boundary_default;
642 		i++;
643 	}
644 
645 	while (k < AR5416_NUM_PDADC_VALUES) {
646 		pPDADCValues[k] = pPDADCValues[k - 1];
647 		k++;
648 	}
649 }
650 
651 int ath9k_hw_eeprom_init(struct ath_hw *ah)
652 {
653 	int status;
654 
655 	if (AR_SREV_9300_20_OR_LATER(ah))
656 		ah->eep_ops = &eep_ar9300_ops;
657 	else if (AR_SREV_9287(ah)) {
658 		ah->eep_ops = &eep_ar9287_ops;
659 	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
660 		ah->eep_ops = &eep_4k_ops;
661 	} else {
662 		ah->eep_ops = &eep_def_ops;
663 	}
664 
665 	if (!ah->eep_ops->fill_eeprom(ah))
666 		return -EIO;
667 
668 	status = ah->eep_ops->check_eeprom(ah);
669 
670 	return status;
671 }
672