xref: /linux/drivers/net/wireless/ath/ath9k/eeprom.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include <linux/ath9k_platform.h>
19 
20 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
21 {
22         REG_WRITE(ah, reg, val);
23 
24         if (ah->config.analog_shiftreg)
25 		udelay(100);
26 }
27 
28 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
29 			       u32 shift, u32 val)
30 {
31 	REG_RMW(ah, reg, ((val << shift) & mask), mask);
32 
33 	if (ah->config.analog_shiftreg)
34 		udelay(100);
35 }
36 
37 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
38 			     int16_t targetLeft, int16_t targetRight)
39 {
40 	int16_t rv;
41 
42 	if (srcRight == srcLeft) {
43 		rv = targetLeft;
44 	} else {
45 		rv = (int16_t) (((target - srcLeft) * targetRight +
46 				 (srcRight - target) * targetLeft) /
47 				(srcRight - srcLeft));
48 	}
49 	return rv;
50 }
51 
52 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
53 				    u16 *indexL, u16 *indexR)
54 {
55 	u16 i;
56 
57 	if (target <= pList[0]) {
58 		*indexL = *indexR = 0;
59 		return true;
60 	}
61 	if (target >= pList[listSize - 1]) {
62 		*indexL = *indexR = (u16) (listSize - 1);
63 		return true;
64 	}
65 
66 	for (i = 0; i < listSize - 1; i++) {
67 		if (pList[i] == target) {
68 			*indexL = *indexR = i;
69 			return true;
70 		}
71 		if (target < pList[i + 1]) {
72 			*indexL = i;
73 			*indexR = (u16) (i + 1);
74 			return false;
75 		}
76 	}
77 	return false;
78 }
79 
80 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
81 				  int eep_start_loc, int size)
82 {
83 	int i = 0, j, addr;
84 	u32 addrdata[8];
85 	u32 data[8];
86 
87 	for (addr = 0; addr < size; addr++) {
88 		addrdata[i] = AR5416_EEPROM_OFFSET +
89 			((addr + eep_start_loc) << AR5416_EEPROM_S);
90 		i++;
91 		if (i == 8) {
92 			REG_READ_MULTI(ah, addrdata, data, i);
93 
94 			for (j = 0; j < i; j++) {
95 				*eep_data = data[j];
96 				eep_data++;
97 			}
98 			i = 0;
99 		}
100 	}
101 
102 	if (i != 0) {
103 		REG_READ_MULTI(ah, addrdata, data, i);
104 
105 		for (j = 0; j < i; j++) {
106 			*eep_data = data[j];
107 			eep_data++;
108 		}
109 	}
110 }
111 
112 static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
113 				      off_t offset, u16 *data)
114 {
115 	if (offset >= blob_size)
116 		return false;
117 
118 	*data =  blob[offset];
119 	return true;
120 }
121 
122 static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
123 				      off_t offset, u16 *data)
124 {
125 	return ath9k_hw_nvram_read_array(pdata->eeprom_data,
126 					 ARRAY_SIZE(pdata->eeprom_data),
127 					 offset, data);
128 }
129 
130 static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
131 					 off_t offset, u16 *data)
132 {
133 	return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
134 					 eeprom_blob->size / sizeof(u16),
135 					 offset, data);
136 }
137 
138 static bool ath9k_hw_nvram_read_nvmem(struct ath_hw *ah, off_t offset,
139 				      u16 *data)
140 {
141 	return ath9k_hw_nvram_read_array(ah->nvmem_blob,
142 					 ah->nvmem_blob_len / sizeof(u16),
143 					 offset, data);
144 }
145 
146 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
147 {
148 	struct ath_common *common = ath9k_hw_common(ah);
149 	struct ath9k_platform_data *pdata = ah->dev->platform_data;
150 	bool ret;
151 
152 	if (ah->nvmem_blob)
153 		ret = ath9k_hw_nvram_read_nvmem(ah, off, data);
154 	else if (ah->eeprom_blob)
155 		ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
156 	else if (pdata && !pdata->use_eeprom)
157 		ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
158 	else
159 		ret = common->bus_ops->eeprom_read(common, off, data);
160 
161 	if (!ret)
162 		ath_dbg(common, EEPROM,
163 			"unable to read eeprom region at offset %u\n", off);
164 
165 	return ret;
166 }
167 
168 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
169 {
170 	u16 magic;
171 	u16 *eepdata;
172 	int i;
173 	bool needs_byteswap = false;
174 	struct ath_common *common = ath9k_hw_common(ah);
175 
176 	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
177 		ath_err(common, "Reading Magic # failed\n");
178 		return -EIO;
179 	}
180 
181 	if (swab16(magic) == AR5416_EEPROM_MAGIC) {
182 		needs_byteswap = true;
183 		ath_dbg(common, EEPROM,
184 			"EEPROM needs byte-swapping to correct endianness.\n");
185 	} else if (magic != AR5416_EEPROM_MAGIC) {
186 		if (ath9k_hw_use_flash(ah)) {
187 			ath_dbg(common, EEPROM,
188 				"Ignoring invalid EEPROM magic (0x%04x).\n",
189 				magic);
190 		} else {
191 			ath_err(common,
192 				"Invalid EEPROM magic (0x%04x).\n", magic);
193 			return -EINVAL;
194 		}
195 	}
196 
197 	if (needs_byteswap) {
198 		if (ah->ah_flags & AH_NO_EEP_SWAP) {
199 			ath_info(common,
200 				 "Ignoring endianness difference in EEPROM magic bytes.\n");
201 		} else {
202 			eepdata = (u16 *)(&ah->eeprom);
203 
204 			for (i = 0; i < size; i++)
205 				eepdata[i] = swab16(eepdata[i]);
206 		}
207 	}
208 
209 	if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
210 		*swap_needed = true;
211 		ath_dbg(common, EEPROM,
212 			"Big Endian EEPROM detected according to EEPMISC register.\n");
213 	} else {
214 		*swap_needed = false;
215 	}
216 
217 	return 0;
218 }
219 
220 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
221 {
222 	u32 i, sum = 0;
223 	u16 *eepdata = (u16 *)(&ah->eeprom);
224 	struct ath_common *common = ath9k_hw_common(ah);
225 
226 	for (i = 0; i < size; i++)
227 		sum ^= eepdata[i];
228 
229 	if (sum != 0xffff) {
230 		ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
231 		return false;
232 	}
233 
234 	return true;
235 }
236 
237 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
238 {
239 	struct ath_common *common = ath9k_hw_common(ah);
240 
241 	if (ah->eep_ops->get_eeprom_ver(ah) != version ||
242 	    ah->eep_ops->get_eeprom_rev(ah) < minrev) {
243 		ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
244 			ah->eep_ops->get_eeprom_ver(ah),
245 			ah->eep_ops->get_eeprom_rev(ah));
246 		return false;
247 	}
248 
249 	return true;
250 }
251 
252 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
253 			     u8 *pVpdList, u16 numIntercepts,
254 			     u8 *pRetVpdList)
255 {
256 	u16 i, k;
257 	u8 currPwr = pwrMin;
258 	u16 idxL = 0, idxR = 0;
259 
260 	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
261 		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
262 					       numIntercepts, &(idxL),
263 					       &(idxR));
264 		if (idxR < 1)
265 			idxR = 1;
266 		if (idxL == numIntercepts - 1)
267 			idxL = (u16) (numIntercepts - 2);
268 		if (pPwrList[idxL] == pPwrList[idxR])
269 			k = pVpdList[idxL];
270 		else
271 			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
272 				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
273 				  (pPwrList[idxR] - pPwrList[idxL]));
274 		pRetVpdList[i] = (u8) k;
275 		currPwr += 2;
276 	}
277 }
278 
279 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
280 				       struct ath9k_channel *chan,
281 				       struct cal_target_power_leg *powInfo,
282 				       u16 numChannels,
283 				       struct cal_target_power_leg *pNewPower,
284 				       u16 numRates, bool isExtTarget)
285 {
286 	struct chan_centers centers;
287 	u16 clo, chi;
288 	int i;
289 	int matchIndex = -1, lowIndex = -1;
290 	u16 freq;
291 
292 	ath9k_hw_get_channel_centers(ah, chan, &centers);
293 	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
294 
295 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
296 				       IS_CHAN_2GHZ(chan))) {
297 		matchIndex = 0;
298 	} else {
299 		for (i = 0; (i < numChannels) &&
300 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
301 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
302 						       IS_CHAN_2GHZ(chan))) {
303 				matchIndex = i;
304 				break;
305 			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
306 						IS_CHAN_2GHZ(chan)) && i > 0 &&
307 				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
308 						IS_CHAN_2GHZ(chan))) {
309 				lowIndex = i - 1;
310 				break;
311 			}
312 		}
313 		if ((matchIndex == -1) && (lowIndex == -1))
314 			matchIndex = i - 1;
315 	}
316 
317 	if (matchIndex != -1) {
318 		*pNewPower = powInfo[matchIndex];
319 	} else {
320 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
321 					 IS_CHAN_2GHZ(chan));
322 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
323 					 IS_CHAN_2GHZ(chan));
324 
325 		for (i = 0; i < numRates; i++) {
326 			pNewPower->tPow2x[i] =
327 				(u8)ath9k_hw_interpolate(freq, clo, chi,
328 						powInfo[lowIndex].tPow2x[i],
329 						powInfo[lowIndex + 1].tPow2x[i]);
330 		}
331 	}
332 }
333 
334 void ath9k_hw_get_target_powers(struct ath_hw *ah,
335 				struct ath9k_channel *chan,
336 				struct cal_target_power_ht *powInfo,
337 				u16 numChannels,
338 				struct cal_target_power_ht *pNewPower,
339 				u16 numRates, bool isHt40Target)
340 {
341 	struct chan_centers centers;
342 	u16 clo, chi;
343 	int i;
344 	int matchIndex = -1, lowIndex = -1;
345 	u16 freq;
346 
347 	ath9k_hw_get_channel_centers(ah, chan, &centers);
348 	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
349 
350 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
351 		matchIndex = 0;
352 	} else {
353 		for (i = 0; (i < numChannels) &&
354 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
355 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
356 						       IS_CHAN_2GHZ(chan))) {
357 				matchIndex = i;
358 				break;
359 			} else
360 				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
361 						IS_CHAN_2GHZ(chan)) && i > 0 &&
362 				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
363 						IS_CHAN_2GHZ(chan))) {
364 					lowIndex = i - 1;
365 					break;
366 				}
367 		}
368 		if ((matchIndex == -1) && (lowIndex == -1))
369 			matchIndex = i - 1;
370 	}
371 
372 	if (matchIndex != -1) {
373 		*pNewPower = powInfo[matchIndex];
374 	} else {
375 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
376 					 IS_CHAN_2GHZ(chan));
377 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
378 					 IS_CHAN_2GHZ(chan));
379 
380 		for (i = 0; i < numRates; i++) {
381 			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
382 						clo, chi,
383 						powInfo[lowIndex].tPow2x[i],
384 						powInfo[lowIndex + 1].tPow2x[i]);
385 		}
386 	}
387 }
388 
389 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
390 				bool is2GHz, int num_band_edges)
391 {
392 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
393 	int i;
394 
395 	for (i = 0; (i < num_band_edges) &&
396 		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
397 		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
398 			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
399 			break;
400 		} else if ((i > 0) &&
401 			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
402 						      is2GHz))) {
403 			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
404 					       is2GHz) < freq &&
405 			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
406 				twiceMaxEdgePower =
407 					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
408 			}
409 			break;
410 		}
411 	}
412 
413 	return twiceMaxEdgePower;
414 }
415 
416 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
417 			      u8 antenna_reduction)
418 {
419 	u16 reduction = antenna_reduction;
420 
421 	/*
422 	 * Reduce scaled Power by number of chains active
423 	 * to get the per chain tx power level.
424 	 */
425 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
426 	case 1:
427 		break;
428 	case 2:
429 		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
430 		break;
431 	case 3:
432 		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
433 		break;
434 	}
435 
436 	if (power_limit > reduction)
437 		power_limit -= reduction;
438 	else
439 		power_limit = 0;
440 
441 	return min_t(u16, power_limit, MAX_RATE_POWER);
442 }
443 
444 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
445 {
446 	struct ath_common *common = ath9k_hw_common(ah);
447 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
448 
449 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
450 	case 1:
451 		break;
452 	case 2:
453 		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
454 		break;
455 	case 3:
456 		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
457 		break;
458 	default:
459 		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
460 		break;
461 	}
462 }
463 
464 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
465 				struct ath9k_channel *chan,
466 				void *pRawDataSet,
467 				u8 *bChans, u16 availPiers,
468 				u16 tPdGainOverlap,
469 				u16 *pPdGainBoundaries, u8 *pPDADCValues,
470 				u16 numXpdGains)
471 {
472 	int i, j, k;
473 	int16_t ss;
474 	u16 idxL = 0, idxR = 0, numPiers;
475 	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
476 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
477 	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
478 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
479 	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
480 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
481 
482 	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
483 	u8 minPwrT4[AR5416_NUM_PD_GAINS];
484 	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
485 	int16_t vpdStep;
486 	int16_t tmpVal;
487 	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
488 	bool match;
489 	int16_t minDelta = 0;
490 	struct chan_centers centers;
491 	int pdgain_boundary_default;
492 	struct cal_data_per_freq *data_def = pRawDataSet;
493 	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
494 	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
495 	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
496 	int intercepts;
497 
498 	if (AR_SREV_9287(ah))
499 		intercepts = AR9287_PD_GAIN_ICEPTS;
500 	else
501 		intercepts = AR5416_PD_GAIN_ICEPTS;
502 
503 	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
504 	ath9k_hw_get_channel_centers(ah, chan, &centers);
505 
506 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
507 		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
508 			break;
509 	}
510 
511 	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
512 							     IS_CHAN_2GHZ(chan)),
513 					       bChans, numPiers, &idxL, &idxR);
514 
515 	if (match) {
516 		if (AR_SREV_9287(ah)) {
517 			for (i = 0; i < numXpdGains; i++) {
518 				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
519 				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
520 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
521 						data_9287[idxL].pwrPdg[i],
522 						data_9287[idxL].vpdPdg[i],
523 						intercepts,
524 						vpdTableI[i]);
525 			}
526 		} else if (eeprom_4k) {
527 			for (i = 0; i < numXpdGains; i++) {
528 				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
529 				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
530 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
531 						data_4k[idxL].pwrPdg[i],
532 						data_4k[idxL].vpdPdg[i],
533 						intercepts,
534 						vpdTableI[i]);
535 			}
536 		} else {
537 			for (i = 0; i < numXpdGains; i++) {
538 				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
539 				maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
540 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
541 						data_def[idxL].pwrPdg[i],
542 						data_def[idxL].vpdPdg[i],
543 						intercepts,
544 						vpdTableI[i]);
545 			}
546 		}
547 	} else {
548 		for (i = 0; i < numXpdGains; i++) {
549 			if (AR_SREV_9287(ah)) {
550 				pVpdL = data_9287[idxL].vpdPdg[i];
551 				pPwrL = data_9287[idxL].pwrPdg[i];
552 				pVpdR = data_9287[idxR].vpdPdg[i];
553 				pPwrR = data_9287[idxR].pwrPdg[i];
554 			} else if (eeprom_4k) {
555 				pVpdL = data_4k[idxL].vpdPdg[i];
556 				pPwrL = data_4k[idxL].pwrPdg[i];
557 				pVpdR = data_4k[idxR].vpdPdg[i];
558 				pPwrR = data_4k[idxR].pwrPdg[i];
559 			} else {
560 				pVpdL = data_def[idxL].vpdPdg[i];
561 				pPwrL = data_def[idxL].pwrPdg[i];
562 				pVpdR = data_def[idxR].vpdPdg[i];
563 				pPwrR = data_def[idxR].pwrPdg[i];
564 			}
565 
566 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
567 
568 			maxPwrT4[i] =
569 				min(pPwrL[intercepts - 1],
570 				    pPwrR[intercepts - 1]);
571 
572 
573 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
574 						pPwrL, pVpdL,
575 						intercepts,
576 						vpdTableL[i]);
577 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
578 						pPwrR, pVpdR,
579 						intercepts,
580 						vpdTableR[i]);
581 
582 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
583 				vpdTableI[i][j] =
584 					(u8)(ath9k_hw_interpolate((u16)
585 					     FREQ2FBIN(centers.
586 						       synth_center,
587 						       IS_CHAN_2GHZ
588 						       (chan)),
589 					     bChans[idxL], bChans[idxR],
590 					     vpdTableL[i][j], vpdTableR[i][j]));
591 			}
592 		}
593 	}
594 
595 	k = 0;
596 
597 	for (i = 0; i < numXpdGains; i++) {
598 		if (i == (numXpdGains - 1))
599 			pPdGainBoundaries[i] =
600 				(u16)(maxPwrT4[i] / 2);
601 		else
602 			pPdGainBoundaries[i] =
603 				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
604 
605 		pPdGainBoundaries[i] =
606 			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
607 
608 		minDelta = 0;
609 
610 		if (i == 0) {
611 			if (AR_SREV_9280_20_OR_LATER(ah))
612 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
613 			else
614 				ss = 0;
615 		} else {
616 			ss = (int16_t)((pPdGainBoundaries[i - 1] -
617 					(minPwrT4[i] / 2)) -
618 				       tPdGainOverlap + 1 + minDelta);
619 		}
620 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
621 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
622 
623 		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
624 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
625 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
626 			ss++;
627 		}
628 
629 		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
630 		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
631 				(minPwrT4[i] / 2));
632 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
633 			tgtIndex : sizeCurrVpdTable;
634 
635 		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
636 			pPDADCValues[k++] = vpdTableI[i][ss++];
637 		}
638 
639 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
640 				    vpdTableI[i][sizeCurrVpdTable - 2]);
641 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
642 
643 		if (tgtIndex >= maxIndex) {
644 			while ((ss <= tgtIndex) &&
645 			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
646 				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
647 						    (ss - maxIndex + 1) * vpdStep));
648 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
649 							 255 : tmpVal);
650 				ss++;
651 			}
652 		}
653 	}
654 
655 	if (eeprom_4k)
656 		pdgain_boundary_default = 58;
657 	else
658 		pdgain_boundary_default = pPdGainBoundaries[i - 1];
659 
660 	while (i < AR5416_PD_GAINS_IN_MASK) {
661 		pPdGainBoundaries[i] = pdgain_boundary_default;
662 		i++;
663 	}
664 
665 	while (k < AR5416_NUM_PDADC_VALUES) {
666 		pPDADCValues[k] = pPDADCValues[k - 1];
667 		k++;
668 	}
669 }
670 
671 int ath9k_hw_eeprom_init(struct ath_hw *ah)
672 {
673 	if (AR_SREV_9300_20_OR_LATER(ah))
674 		ah->eep_ops = &eep_ar9300_ops;
675 	else if (AR_SREV_9287(ah)) {
676 		ah->eep_ops = &eep_ar9287_ops;
677 	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
678 		ah->eep_ops = &eep_4k_ops;
679 	} else {
680 		ah->eep_ops = &eep_def_ops;
681 	}
682 
683 	if (!ah->eep_ops->fill_eeprom(ah))
684 		return -EIO;
685 
686 	return ah->eep_ops->check_eeprom(ah);
687 }
688