xref: /linux/drivers/net/wireless/ath/ath9k/eeprom.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 
19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
20 {
21         REG_WRITE(ah, reg, val);
22 
23         if (ah->config.analog_shiftreg)
24 		udelay(100);
25 }
26 
27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 			       u32 shift, u32 val)
29 {
30 	REG_RMW(ah, reg, ((val << shift) & mask), mask);
31 
32 	if (ah->config.analog_shiftreg)
33 		udelay(100);
34 }
35 
36 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
37 			     int16_t targetLeft, int16_t targetRight)
38 {
39 	int16_t rv;
40 
41 	if (srcRight == srcLeft) {
42 		rv = targetLeft;
43 	} else {
44 		rv = (int16_t) (((target - srcLeft) * targetRight +
45 				 (srcRight - target) * targetLeft) /
46 				(srcRight - srcLeft));
47 	}
48 	return rv;
49 }
50 
51 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
52 				    u16 *indexL, u16 *indexR)
53 {
54 	u16 i;
55 
56 	if (target <= pList[0]) {
57 		*indexL = *indexR = 0;
58 		return true;
59 	}
60 	if (target >= pList[listSize - 1]) {
61 		*indexL = *indexR = (u16) (listSize - 1);
62 		return true;
63 	}
64 
65 	for (i = 0; i < listSize - 1; i++) {
66 		if (pList[i] == target) {
67 			*indexL = *indexR = i;
68 			return true;
69 		}
70 		if (target < pList[i + 1]) {
71 			*indexL = i;
72 			*indexR = (u16) (i + 1);
73 			return false;
74 		}
75 	}
76 	return false;
77 }
78 
79 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
80 				  int eep_start_loc, int size)
81 {
82 	int i = 0, j, addr;
83 	u32 addrdata[8];
84 	u32 data[8];
85 
86 	for (addr = 0; addr < size; addr++) {
87 		addrdata[i] = AR5416_EEPROM_OFFSET +
88 			((addr + eep_start_loc) << AR5416_EEPROM_S);
89 		i++;
90 		if (i == 8) {
91 			REG_READ_MULTI(ah, addrdata, data, i);
92 
93 			for (j = 0; j < i; j++) {
94 				*eep_data = data[j];
95 				eep_data++;
96 			}
97 			i = 0;
98 		}
99 	}
100 
101 	if (i != 0) {
102 		REG_READ_MULTI(ah, addrdata, data, i);
103 
104 		for (j = 0; j < i; j++) {
105 			*eep_data = data[j];
106 			eep_data++;
107 		}
108 	}
109 }
110 
111 static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
112 				     u16 *data)
113 {
114 	u16 *blob_data;
115 
116 	if (off * sizeof(u16) > ah->eeprom_blob->size)
117 		return false;
118 
119 	blob_data = (u16 *)ah->eeprom_blob->data;
120 	*data =  blob_data[off];
121 	return true;
122 }
123 
124 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
125 {
126 	struct ath_common *common = ath9k_hw_common(ah);
127 	bool ret;
128 
129 	if (ah->eeprom_blob)
130 		ret = ath9k_hw_nvram_read_blob(ah, off, data);
131 	else
132 		ret = common->bus_ops->eeprom_read(common, off, data);
133 
134 	if (!ret)
135 		ath_dbg(common, EEPROM,
136 			"unable to read eeprom region at offset %u\n", off);
137 
138 	return ret;
139 }
140 
141 int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
142 {
143 	u16 magic;
144 	u16 *eepdata;
145 	int i;
146 	struct ath_common *common = ath9k_hw_common(ah);
147 
148 	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
149 		ath_err(common, "Reading Magic # failed\n");
150 		return -EIO;
151 	}
152 
153 	*swap_needed = false;
154 	if (swab16(magic) == AR5416_EEPROM_MAGIC) {
155 		if (ah->ah_flags & AH_NO_EEP_SWAP) {
156 			ath_info(common,
157 				 "Ignoring endianness difference in EEPROM magic bytes.\n");
158 		} else {
159 			*swap_needed = true;
160 		}
161 	} else if (magic != AR5416_EEPROM_MAGIC) {
162 		if (ath9k_hw_use_flash(ah))
163 			return 0;
164 
165 		ath_err(common,
166 			"Invalid EEPROM Magic (0x%04x).\n", magic);
167 		return -EINVAL;
168 	}
169 
170 	eepdata = (u16 *)(&ah->eeprom);
171 
172 	if (*swap_needed) {
173 		ath_dbg(common, EEPROM,
174 			"EEPROM Endianness is not native.. Changing.\n");
175 
176 		for (i = 0; i < size; i++)
177 			eepdata[i] = swab16(eepdata[i]);
178 	}
179 
180 	return 0;
181 }
182 
183 bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
184 {
185 	u32 i, sum = 0;
186 	u16 *eepdata = (u16 *)(&ah->eeprom);
187 	struct ath_common *common = ath9k_hw_common(ah);
188 
189 	for (i = 0; i < size; i++)
190 		sum ^= eepdata[i];
191 
192 	if (sum != 0xffff) {
193 		ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
194 		return false;
195 	}
196 
197 	return true;
198 }
199 
200 bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
201 {
202 	struct ath_common *common = ath9k_hw_common(ah);
203 
204 	if (ah->eep_ops->get_eeprom_ver(ah) != version ||
205 	    ah->eep_ops->get_eeprom_rev(ah) < minrev) {
206 		ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
207 			ah->eep_ops->get_eeprom_ver(ah),
208 			ah->eep_ops->get_eeprom_rev(ah));
209 		return false;
210 	}
211 
212 	return true;
213 }
214 
215 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
216 			     u8 *pVpdList, u16 numIntercepts,
217 			     u8 *pRetVpdList)
218 {
219 	u16 i, k;
220 	u8 currPwr = pwrMin;
221 	u16 idxL = 0, idxR = 0;
222 
223 	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
224 		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
225 					       numIntercepts, &(idxL),
226 					       &(idxR));
227 		if (idxR < 1)
228 			idxR = 1;
229 		if (idxL == numIntercepts - 1)
230 			idxL = (u16) (numIntercepts - 2);
231 		if (pPwrList[idxL] == pPwrList[idxR])
232 			k = pVpdList[idxL];
233 		else
234 			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
235 				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
236 				  (pPwrList[idxR] - pPwrList[idxL]));
237 		pRetVpdList[i] = (u8) k;
238 		currPwr += 2;
239 	}
240 }
241 
242 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
243 				       struct ath9k_channel *chan,
244 				       struct cal_target_power_leg *powInfo,
245 				       u16 numChannels,
246 				       struct cal_target_power_leg *pNewPower,
247 				       u16 numRates, bool isExtTarget)
248 {
249 	struct chan_centers centers;
250 	u16 clo, chi;
251 	int i;
252 	int matchIndex = -1, lowIndex = -1;
253 	u16 freq;
254 
255 	ath9k_hw_get_channel_centers(ah, chan, &centers);
256 	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
257 
258 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
259 				       IS_CHAN_2GHZ(chan))) {
260 		matchIndex = 0;
261 	} else {
262 		for (i = 0; (i < numChannels) &&
263 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
264 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
265 						       IS_CHAN_2GHZ(chan))) {
266 				matchIndex = i;
267 				break;
268 			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
269 						IS_CHAN_2GHZ(chan)) && i > 0 &&
270 				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
271 						IS_CHAN_2GHZ(chan))) {
272 				lowIndex = i - 1;
273 				break;
274 			}
275 		}
276 		if ((matchIndex == -1) && (lowIndex == -1))
277 			matchIndex = i - 1;
278 	}
279 
280 	if (matchIndex != -1) {
281 		*pNewPower = powInfo[matchIndex];
282 	} else {
283 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
284 					 IS_CHAN_2GHZ(chan));
285 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
286 					 IS_CHAN_2GHZ(chan));
287 
288 		for (i = 0; i < numRates; i++) {
289 			pNewPower->tPow2x[i] =
290 				(u8)ath9k_hw_interpolate(freq, clo, chi,
291 						powInfo[lowIndex].tPow2x[i],
292 						powInfo[lowIndex + 1].tPow2x[i]);
293 		}
294 	}
295 }
296 
297 void ath9k_hw_get_target_powers(struct ath_hw *ah,
298 				struct ath9k_channel *chan,
299 				struct cal_target_power_ht *powInfo,
300 				u16 numChannels,
301 				struct cal_target_power_ht *pNewPower,
302 				u16 numRates, bool isHt40Target)
303 {
304 	struct chan_centers centers;
305 	u16 clo, chi;
306 	int i;
307 	int matchIndex = -1, lowIndex = -1;
308 	u16 freq;
309 
310 	ath9k_hw_get_channel_centers(ah, chan, &centers);
311 	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
312 
313 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
314 		matchIndex = 0;
315 	} else {
316 		for (i = 0; (i < numChannels) &&
317 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
318 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
319 						       IS_CHAN_2GHZ(chan))) {
320 				matchIndex = i;
321 				break;
322 			} else
323 				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
324 						IS_CHAN_2GHZ(chan)) && i > 0 &&
325 				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
326 						IS_CHAN_2GHZ(chan))) {
327 					lowIndex = i - 1;
328 					break;
329 				}
330 		}
331 		if ((matchIndex == -1) && (lowIndex == -1))
332 			matchIndex = i - 1;
333 	}
334 
335 	if (matchIndex != -1) {
336 		*pNewPower = powInfo[matchIndex];
337 	} else {
338 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
339 					 IS_CHAN_2GHZ(chan));
340 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
341 					 IS_CHAN_2GHZ(chan));
342 
343 		for (i = 0; i < numRates; i++) {
344 			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
345 						clo, chi,
346 						powInfo[lowIndex].tPow2x[i],
347 						powInfo[lowIndex + 1].tPow2x[i]);
348 		}
349 	}
350 }
351 
352 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
353 				bool is2GHz, int num_band_edges)
354 {
355 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
356 	int i;
357 
358 	for (i = 0; (i < num_band_edges) &&
359 		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
360 		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
361 			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
362 			break;
363 		} else if ((i > 0) &&
364 			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
365 						      is2GHz))) {
366 			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
367 					       is2GHz) < freq &&
368 			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
369 				twiceMaxEdgePower =
370 					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
371 			}
372 			break;
373 		}
374 	}
375 
376 	return twiceMaxEdgePower;
377 }
378 
379 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
380 			      u8 antenna_reduction)
381 {
382 	u16 reduction = antenna_reduction;
383 
384 	/*
385 	 * Reduce scaled Power by number of chains active
386 	 * to get the per chain tx power level.
387 	 */
388 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
389 	case 1:
390 		break;
391 	case 2:
392 		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
393 		break;
394 	case 3:
395 		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
396 		break;
397 	}
398 
399 	if (power_limit > reduction)
400 		power_limit -= reduction;
401 	else
402 		power_limit = 0;
403 
404 	return power_limit;
405 }
406 
407 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
408 {
409 	struct ath_common *common = ath9k_hw_common(ah);
410 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
411 
412 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
413 	case 1:
414 		break;
415 	case 2:
416 		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
417 		break;
418 	case 3:
419 		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
420 		break;
421 	default:
422 		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
423 		break;
424 	}
425 }
426 
427 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
428 				struct ath9k_channel *chan,
429 				void *pRawDataSet,
430 				u8 *bChans, u16 availPiers,
431 				u16 tPdGainOverlap,
432 				u16 *pPdGainBoundaries, u8 *pPDADCValues,
433 				u16 numXpdGains)
434 {
435 	int i, j, k;
436 	int16_t ss;
437 	u16 idxL = 0, idxR = 0, numPiers;
438 	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
439 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
440 	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
441 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
442 	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
443 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
444 
445 	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
446 	u8 minPwrT4[AR5416_NUM_PD_GAINS];
447 	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
448 	int16_t vpdStep;
449 	int16_t tmpVal;
450 	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
451 	bool match;
452 	int16_t minDelta = 0;
453 	struct chan_centers centers;
454 	int pdgain_boundary_default;
455 	struct cal_data_per_freq *data_def = pRawDataSet;
456 	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
457 	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
458 	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
459 	int intercepts;
460 
461 	if (AR_SREV_9287(ah))
462 		intercepts = AR9287_PD_GAIN_ICEPTS;
463 	else
464 		intercepts = AR5416_PD_GAIN_ICEPTS;
465 
466 	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
467 	ath9k_hw_get_channel_centers(ah, chan, &centers);
468 
469 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
470 		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
471 			break;
472 	}
473 
474 	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
475 							     IS_CHAN_2GHZ(chan)),
476 					       bChans, numPiers, &idxL, &idxR);
477 
478 	if (match) {
479 		if (AR_SREV_9287(ah)) {
480 			for (i = 0; i < numXpdGains; i++) {
481 				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
482 				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
483 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
484 						data_9287[idxL].pwrPdg[i],
485 						data_9287[idxL].vpdPdg[i],
486 						intercepts,
487 						vpdTableI[i]);
488 			}
489 		} else if (eeprom_4k) {
490 			for (i = 0; i < numXpdGains; i++) {
491 				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
492 				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
493 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
494 						data_4k[idxL].pwrPdg[i],
495 						data_4k[idxL].vpdPdg[i],
496 						intercepts,
497 						vpdTableI[i]);
498 			}
499 		} else {
500 			for (i = 0; i < numXpdGains; i++) {
501 				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
502 				maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
503 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
504 						data_def[idxL].pwrPdg[i],
505 						data_def[idxL].vpdPdg[i],
506 						intercepts,
507 						vpdTableI[i]);
508 			}
509 		}
510 	} else {
511 		for (i = 0; i < numXpdGains; i++) {
512 			if (AR_SREV_9287(ah)) {
513 				pVpdL = data_9287[idxL].vpdPdg[i];
514 				pPwrL = data_9287[idxL].pwrPdg[i];
515 				pVpdR = data_9287[idxR].vpdPdg[i];
516 				pPwrR = data_9287[idxR].pwrPdg[i];
517 			} else if (eeprom_4k) {
518 				pVpdL = data_4k[idxL].vpdPdg[i];
519 				pPwrL = data_4k[idxL].pwrPdg[i];
520 				pVpdR = data_4k[idxR].vpdPdg[i];
521 				pPwrR = data_4k[idxR].pwrPdg[i];
522 			} else {
523 				pVpdL = data_def[idxL].vpdPdg[i];
524 				pPwrL = data_def[idxL].pwrPdg[i];
525 				pVpdR = data_def[idxR].vpdPdg[i];
526 				pPwrR = data_def[idxR].pwrPdg[i];
527 			}
528 
529 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
530 
531 			maxPwrT4[i] =
532 				min(pPwrL[intercepts - 1],
533 				    pPwrR[intercepts - 1]);
534 
535 
536 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
537 						pPwrL, pVpdL,
538 						intercepts,
539 						vpdTableL[i]);
540 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
541 						pPwrR, pVpdR,
542 						intercepts,
543 						vpdTableR[i]);
544 
545 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
546 				vpdTableI[i][j] =
547 					(u8)(ath9k_hw_interpolate((u16)
548 					     FREQ2FBIN(centers.
549 						       synth_center,
550 						       IS_CHAN_2GHZ
551 						       (chan)),
552 					     bChans[idxL], bChans[idxR],
553 					     vpdTableL[i][j], vpdTableR[i][j]));
554 			}
555 		}
556 	}
557 
558 	k = 0;
559 
560 	for (i = 0; i < numXpdGains; i++) {
561 		if (i == (numXpdGains - 1))
562 			pPdGainBoundaries[i] =
563 				(u16)(maxPwrT4[i] / 2);
564 		else
565 			pPdGainBoundaries[i] =
566 				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
567 
568 		pPdGainBoundaries[i] =
569 			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
570 
571 		minDelta = 0;
572 
573 		if (i == 0) {
574 			if (AR_SREV_9280_20_OR_LATER(ah))
575 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
576 			else
577 				ss = 0;
578 		} else {
579 			ss = (int16_t)((pPdGainBoundaries[i - 1] -
580 					(minPwrT4[i] / 2)) -
581 				       tPdGainOverlap + 1 + minDelta);
582 		}
583 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
584 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
585 
586 		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
587 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
588 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
589 			ss++;
590 		}
591 
592 		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
593 		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
594 				(minPwrT4[i] / 2));
595 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
596 			tgtIndex : sizeCurrVpdTable;
597 
598 		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
599 			pPDADCValues[k++] = vpdTableI[i][ss++];
600 		}
601 
602 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
603 				    vpdTableI[i][sizeCurrVpdTable - 2]);
604 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
605 
606 		if (tgtIndex >= maxIndex) {
607 			while ((ss <= tgtIndex) &&
608 			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
609 				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
610 						    (ss - maxIndex + 1) * vpdStep));
611 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
612 							 255 : tmpVal);
613 				ss++;
614 			}
615 		}
616 	}
617 
618 	if (eeprom_4k)
619 		pdgain_boundary_default = 58;
620 	else
621 		pdgain_boundary_default = pPdGainBoundaries[i - 1];
622 
623 	while (i < AR5416_PD_GAINS_IN_MASK) {
624 		pPdGainBoundaries[i] = pdgain_boundary_default;
625 		i++;
626 	}
627 
628 	while (k < AR5416_NUM_PDADC_VALUES) {
629 		pPDADCValues[k] = pPDADCValues[k - 1];
630 		k++;
631 	}
632 }
633 
634 int ath9k_hw_eeprom_init(struct ath_hw *ah)
635 {
636 	int status;
637 
638 	if (AR_SREV_9300_20_OR_LATER(ah))
639 		ah->eep_ops = &eep_ar9300_ops;
640 	else if (AR_SREV_9287(ah)) {
641 		ah->eep_ops = &eep_ar9287_ops;
642 	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
643 		ah->eep_ops = &eep_4k_ops;
644 	} else {
645 		ah->eep_ops = &eep_def_ops;
646 	}
647 
648 	if (!ah->eep_ops->fill_eeprom(ah))
649 		return -EIO;
650 
651 	status = ah->eep_ops->check_eeprom(ah);
652 
653 	return status;
654 }
655