xref: /linux/drivers/net/wireless/ath/ath9k/eeprom.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 
19 void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
20 {
21         REG_WRITE(ah, reg, val);
22 
23         if (ah->config.analog_shiftreg)
24 		udelay(100);
25 }
26 
27 void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
28 			       u32 shift, u32 val)
29 {
30 	REG_RMW(ah, reg, ((val << shift) & mask), mask);
31 
32 	if (ah->config.analog_shiftreg)
33 		udelay(100);
34 }
35 
36 int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
37 			     int16_t targetLeft, int16_t targetRight)
38 {
39 	int16_t rv;
40 
41 	if (srcRight == srcLeft) {
42 		rv = targetLeft;
43 	} else {
44 		rv = (int16_t) (((target - srcLeft) * targetRight +
45 				 (srcRight - target) * targetLeft) /
46 				(srcRight - srcLeft));
47 	}
48 	return rv;
49 }
50 
51 bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
52 				    u16 *indexL, u16 *indexR)
53 {
54 	u16 i;
55 
56 	if (target <= pList[0]) {
57 		*indexL = *indexR = 0;
58 		return true;
59 	}
60 	if (target >= pList[listSize - 1]) {
61 		*indexL = *indexR = (u16) (listSize - 1);
62 		return true;
63 	}
64 
65 	for (i = 0; i < listSize - 1; i++) {
66 		if (pList[i] == target) {
67 			*indexL = *indexR = i;
68 			return true;
69 		}
70 		if (target < pList[i + 1]) {
71 			*indexL = i;
72 			*indexR = (u16) (i + 1);
73 			return false;
74 		}
75 	}
76 	return false;
77 }
78 
79 void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
80 				  int eep_start_loc, int size)
81 {
82 	int i = 0, j, addr;
83 	u32 addrdata[8];
84 	u32 data[8];
85 
86 	for (addr = 0; addr < size; addr++) {
87 		addrdata[i] = AR5416_EEPROM_OFFSET +
88 			((addr + eep_start_loc) << AR5416_EEPROM_S);
89 		i++;
90 		if (i == 8) {
91 			REG_READ_MULTI(ah, addrdata, data, i);
92 
93 			for (j = 0; j < i; j++) {
94 				*eep_data = data[j];
95 				eep_data++;
96 			}
97 			i = 0;
98 		}
99 	}
100 
101 	if (i != 0) {
102 		REG_READ_MULTI(ah, addrdata, data, i);
103 
104 		for (j = 0; j < i; j++) {
105 			*eep_data = data[j];
106 			eep_data++;
107 		}
108 	}
109 }
110 
111 static bool ath9k_hw_nvram_read_blob(struct ath_hw *ah, u32 off,
112 				     u16 *data)
113 {
114 	u16 *blob_data;
115 
116 	if (off * sizeof(u16) > ah->eeprom_blob->size)
117 		return false;
118 
119 	blob_data = (u16 *)ah->eeprom_blob->data;
120 	*data =  blob_data[off];
121 	return true;
122 }
123 
124 bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
125 {
126 	struct ath_common *common = ath9k_hw_common(ah);
127 	bool ret;
128 
129 	if (ah->eeprom_blob)
130 		ret = ath9k_hw_nvram_read_blob(ah, off, data);
131 	else
132 		ret = common->bus_ops->eeprom_read(common, off, data);
133 
134 	if (!ret)
135 		ath_dbg(common, EEPROM,
136 			"unable to read eeprom region at offset %u\n", off);
137 
138 	return ret;
139 }
140 
141 void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
142 			     u8 *pVpdList, u16 numIntercepts,
143 			     u8 *pRetVpdList)
144 {
145 	u16 i, k;
146 	u8 currPwr = pwrMin;
147 	u16 idxL = 0, idxR = 0;
148 
149 	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
150 		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
151 					       numIntercepts, &(idxL),
152 					       &(idxR));
153 		if (idxR < 1)
154 			idxR = 1;
155 		if (idxL == numIntercepts - 1)
156 			idxL = (u16) (numIntercepts - 2);
157 		if (pPwrList[idxL] == pPwrList[idxR])
158 			k = pVpdList[idxL];
159 		else
160 			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
161 				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
162 				  (pPwrList[idxR] - pPwrList[idxL]));
163 		pRetVpdList[i] = (u8) k;
164 		currPwr += 2;
165 	}
166 }
167 
168 void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
169 				       struct ath9k_channel *chan,
170 				       struct cal_target_power_leg *powInfo,
171 				       u16 numChannels,
172 				       struct cal_target_power_leg *pNewPower,
173 				       u16 numRates, bool isExtTarget)
174 {
175 	struct chan_centers centers;
176 	u16 clo, chi;
177 	int i;
178 	int matchIndex = -1, lowIndex = -1;
179 	u16 freq;
180 
181 	ath9k_hw_get_channel_centers(ah, chan, &centers);
182 	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
183 
184 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
185 				       IS_CHAN_2GHZ(chan))) {
186 		matchIndex = 0;
187 	} else {
188 		for (i = 0; (i < numChannels) &&
189 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
190 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
191 						       IS_CHAN_2GHZ(chan))) {
192 				matchIndex = i;
193 				break;
194 			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
195 						IS_CHAN_2GHZ(chan)) && i > 0 &&
196 				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
197 						IS_CHAN_2GHZ(chan))) {
198 				lowIndex = i - 1;
199 				break;
200 			}
201 		}
202 		if ((matchIndex == -1) && (lowIndex == -1))
203 			matchIndex = i - 1;
204 	}
205 
206 	if (matchIndex != -1) {
207 		*pNewPower = powInfo[matchIndex];
208 	} else {
209 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
210 					 IS_CHAN_2GHZ(chan));
211 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
212 					 IS_CHAN_2GHZ(chan));
213 
214 		for (i = 0; i < numRates; i++) {
215 			pNewPower->tPow2x[i] =
216 				(u8)ath9k_hw_interpolate(freq, clo, chi,
217 						powInfo[lowIndex].tPow2x[i],
218 						powInfo[lowIndex + 1].tPow2x[i]);
219 		}
220 	}
221 }
222 
223 void ath9k_hw_get_target_powers(struct ath_hw *ah,
224 				struct ath9k_channel *chan,
225 				struct cal_target_power_ht *powInfo,
226 				u16 numChannels,
227 				struct cal_target_power_ht *pNewPower,
228 				u16 numRates, bool isHt40Target)
229 {
230 	struct chan_centers centers;
231 	u16 clo, chi;
232 	int i;
233 	int matchIndex = -1, lowIndex = -1;
234 	u16 freq;
235 
236 	ath9k_hw_get_channel_centers(ah, chan, &centers);
237 	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
238 
239 	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
240 		matchIndex = 0;
241 	} else {
242 		for (i = 0; (i < numChannels) &&
243 			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
244 			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
245 						       IS_CHAN_2GHZ(chan))) {
246 				matchIndex = i;
247 				break;
248 			} else
249 				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
250 						IS_CHAN_2GHZ(chan)) && i > 0 &&
251 				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
252 						IS_CHAN_2GHZ(chan))) {
253 					lowIndex = i - 1;
254 					break;
255 				}
256 		}
257 		if ((matchIndex == -1) && (lowIndex == -1))
258 			matchIndex = i - 1;
259 	}
260 
261 	if (matchIndex != -1) {
262 		*pNewPower = powInfo[matchIndex];
263 	} else {
264 		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
265 					 IS_CHAN_2GHZ(chan));
266 		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
267 					 IS_CHAN_2GHZ(chan));
268 
269 		for (i = 0; i < numRates; i++) {
270 			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
271 						clo, chi,
272 						powInfo[lowIndex].tPow2x[i],
273 						powInfo[lowIndex + 1].tPow2x[i]);
274 		}
275 	}
276 }
277 
278 u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
279 				bool is2GHz, int num_band_edges)
280 {
281 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
282 	int i;
283 
284 	for (i = 0; (i < num_band_edges) &&
285 		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
286 		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
287 			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
288 			break;
289 		} else if ((i > 0) &&
290 			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
291 						      is2GHz))) {
292 			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
293 					       is2GHz) < freq &&
294 			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
295 				twiceMaxEdgePower =
296 					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
297 			}
298 			break;
299 		}
300 	}
301 
302 	return twiceMaxEdgePower;
303 }
304 
305 u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
306 			      u8 antenna_reduction)
307 {
308 	u16 reduction = antenna_reduction;
309 
310 	/*
311 	 * Reduce scaled Power by number of chains active
312 	 * to get the per chain tx power level.
313 	 */
314 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
315 	case 1:
316 		break;
317 	case 2:
318 		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
319 		break;
320 	case 3:
321 		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
322 		break;
323 	}
324 
325 	if (power_limit > reduction)
326 		power_limit -= reduction;
327 	else
328 		power_limit = 0;
329 
330 	return power_limit;
331 }
332 
333 void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
334 {
335 	struct ath_common *common = ath9k_hw_common(ah);
336 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
337 
338 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
339 	case 1:
340 		break;
341 	case 2:
342 		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
343 		break;
344 	case 3:
345 		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
346 		break;
347 	default:
348 		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
349 		break;
350 	}
351 }
352 
353 void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
354 				struct ath9k_channel *chan,
355 				void *pRawDataSet,
356 				u8 *bChans, u16 availPiers,
357 				u16 tPdGainOverlap,
358 				u16 *pPdGainBoundaries, u8 *pPDADCValues,
359 				u16 numXpdGains)
360 {
361 	int i, j, k;
362 	int16_t ss;
363 	u16 idxL = 0, idxR = 0, numPiers;
364 	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
365 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
366 	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
367 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
368 	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
369 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
370 
371 	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
372 	u8 minPwrT4[AR5416_NUM_PD_GAINS];
373 	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
374 	int16_t vpdStep;
375 	int16_t tmpVal;
376 	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
377 	bool match;
378 	int16_t minDelta = 0;
379 	struct chan_centers centers;
380 	int pdgain_boundary_default;
381 	struct cal_data_per_freq *data_def = pRawDataSet;
382 	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
383 	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
384 	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
385 	int intercepts;
386 
387 	if (AR_SREV_9287(ah))
388 		intercepts = AR9287_PD_GAIN_ICEPTS;
389 	else
390 		intercepts = AR5416_PD_GAIN_ICEPTS;
391 
392 	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
393 	ath9k_hw_get_channel_centers(ah, chan, &centers);
394 
395 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
396 		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
397 			break;
398 	}
399 
400 	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
401 							     IS_CHAN_2GHZ(chan)),
402 					       bChans, numPiers, &idxL, &idxR);
403 
404 	if (match) {
405 		if (AR_SREV_9287(ah)) {
406 			/* FIXME: array overrun? */
407 			for (i = 0; i < numXpdGains; i++) {
408 				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
409 				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][4];
410 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
411 						data_9287[idxL].pwrPdg[i],
412 						data_9287[idxL].vpdPdg[i],
413 						intercepts,
414 						vpdTableI[i]);
415 			}
416 		} else if (eeprom_4k) {
417 			for (i = 0; i < numXpdGains; i++) {
418 				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
419 				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][4];
420 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
421 						data_4k[idxL].pwrPdg[i],
422 						data_4k[idxL].vpdPdg[i],
423 						intercepts,
424 						vpdTableI[i]);
425 			}
426 		} else {
427 			for (i = 0; i < numXpdGains; i++) {
428 				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
429 				maxPwrT4[i] = data_def[idxL].pwrPdg[i][4];
430 				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
431 						data_def[idxL].pwrPdg[i],
432 						data_def[idxL].vpdPdg[i],
433 						intercepts,
434 						vpdTableI[i]);
435 			}
436 		}
437 	} else {
438 		for (i = 0; i < numXpdGains; i++) {
439 			if (AR_SREV_9287(ah)) {
440 				pVpdL = data_9287[idxL].vpdPdg[i];
441 				pPwrL = data_9287[idxL].pwrPdg[i];
442 				pVpdR = data_9287[idxR].vpdPdg[i];
443 				pPwrR = data_9287[idxR].pwrPdg[i];
444 			} else if (eeprom_4k) {
445 				pVpdL = data_4k[idxL].vpdPdg[i];
446 				pPwrL = data_4k[idxL].pwrPdg[i];
447 				pVpdR = data_4k[idxR].vpdPdg[i];
448 				pPwrR = data_4k[idxR].pwrPdg[i];
449 			} else {
450 				pVpdL = data_def[idxL].vpdPdg[i];
451 				pPwrL = data_def[idxL].pwrPdg[i];
452 				pVpdR = data_def[idxR].vpdPdg[i];
453 				pPwrR = data_def[idxR].pwrPdg[i];
454 			}
455 
456 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
457 
458 			maxPwrT4[i] =
459 				min(pPwrL[intercepts - 1],
460 				    pPwrR[intercepts - 1]);
461 
462 
463 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
464 						pPwrL, pVpdL,
465 						intercepts,
466 						vpdTableL[i]);
467 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
468 						pPwrR, pVpdR,
469 						intercepts,
470 						vpdTableR[i]);
471 
472 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
473 				vpdTableI[i][j] =
474 					(u8)(ath9k_hw_interpolate((u16)
475 					     FREQ2FBIN(centers.
476 						       synth_center,
477 						       IS_CHAN_2GHZ
478 						       (chan)),
479 					     bChans[idxL], bChans[idxR],
480 					     vpdTableL[i][j], vpdTableR[i][j]));
481 			}
482 		}
483 	}
484 
485 	k = 0;
486 
487 	for (i = 0; i < numXpdGains; i++) {
488 		if (i == (numXpdGains - 1))
489 			pPdGainBoundaries[i] =
490 				(u16)(maxPwrT4[i] / 2);
491 		else
492 			pPdGainBoundaries[i] =
493 				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
494 
495 		pPdGainBoundaries[i] =
496 			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
497 
498 		minDelta = 0;
499 
500 		if (i == 0) {
501 			if (AR_SREV_9280_20_OR_LATER(ah))
502 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
503 			else
504 				ss = 0;
505 		} else {
506 			ss = (int16_t)((pPdGainBoundaries[i - 1] -
507 					(minPwrT4[i] / 2)) -
508 				       tPdGainOverlap + 1 + minDelta);
509 		}
510 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
511 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
512 
513 		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
514 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
515 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
516 			ss++;
517 		}
518 
519 		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
520 		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
521 				(minPwrT4[i] / 2));
522 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
523 			tgtIndex : sizeCurrVpdTable;
524 
525 		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
526 			pPDADCValues[k++] = vpdTableI[i][ss++];
527 		}
528 
529 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
530 				    vpdTableI[i][sizeCurrVpdTable - 2]);
531 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
532 
533 		if (tgtIndex >= maxIndex) {
534 			while ((ss <= tgtIndex) &&
535 			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
536 				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
537 						    (ss - maxIndex + 1) * vpdStep));
538 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
539 							 255 : tmpVal);
540 				ss++;
541 			}
542 		}
543 	}
544 
545 	if (eeprom_4k)
546 		pdgain_boundary_default = 58;
547 	else
548 		pdgain_boundary_default = pPdGainBoundaries[i - 1];
549 
550 	while (i < AR5416_PD_GAINS_IN_MASK) {
551 		pPdGainBoundaries[i] = pdgain_boundary_default;
552 		i++;
553 	}
554 
555 	while (k < AR5416_NUM_PDADC_VALUES) {
556 		pPDADCValues[k] = pPDADCValues[k - 1];
557 		k++;
558 	}
559 }
560 
561 int ath9k_hw_eeprom_init(struct ath_hw *ah)
562 {
563 	int status;
564 
565 	if (AR_SREV_9300_20_OR_LATER(ah))
566 		ah->eep_ops = &eep_ar9300_ops;
567 	else if (AR_SREV_9287(ah)) {
568 		ah->eep_ops = &eep_ar9287_ops;
569 	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
570 		ah->eep_ops = &eep_4k_ops;
571 	} else {
572 		ah->eep_ops = &eep_def_ops;
573 	}
574 
575 	if (!ah->eep_ops->fill_eeprom(ah))
576 		return -EIO;
577 
578 	status = ah->eep_ops->check_eeprom(ah);
579 
580 	return status;
581 }
582