xref: /linux/drivers/net/wireless/ath/ath9k/ar9003_eeprom.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21 
22 #define COMP_HDR_LEN 4
23 #define COMP_CKSUM_LEN 2
24 
25 #define LE16(x) __constant_cpu_to_le16(x)
26 #define LE32(x) __constant_cpu_to_le32(x)
27 
28 /* Local defines to distinguish between extension and control CTL's */
29 #define EXT_ADDITIVE (0x8000)
30 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
31 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
32 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
33 
34 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
35 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
36 
37 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
38 
39 #define EEPROM_DATA_LEN_9485	1088
40 
41 static int ar9003_hw_power_interpolate(int32_t x,
42 				       int32_t *px, int32_t *py, u_int16_t np);
43 
44 
45 static const struct ar9300_eeprom ar9300_default = {
46 	.eepromVersion = 2,
47 	.templateVersion = 2,
48 	.macAddr = {0, 2, 3, 4, 5, 6},
49 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
50 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
51 	.baseEepHeader = {
52 		.regDmn = { LE16(0), LE16(0x1f) },
53 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
54 		.opCapFlags = {
55 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
56 			.eepMisc = 0,
57 		},
58 		.rfSilent = 0,
59 		.blueToothOptions = 0,
60 		.deviceCap = 0,
61 		.deviceType = 5, /* takes lower byte in eeprom location */
62 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
63 		.params_for_tuning_caps = {0, 0},
64 		.featureEnable = 0x0c,
65 		 /*
66 		  * bit0 - enable tx temp comp - disabled
67 		  * bit1 - enable tx volt comp - disabled
68 		  * bit2 - enable fastClock - enabled
69 		  * bit3 - enable doubling - enabled
70 		  * bit4 - enable internal regulator - disabled
71 		  * bit5 - enable pa predistortion - disabled
72 		  */
73 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
74 		.eepromWriteEnableGpio = 3,
75 		.wlanDisableGpio = 0,
76 		.wlanLedGpio = 8,
77 		.rxBandSelectGpio = 0xff,
78 		.txrxgain = 0,
79 		.swreg = 0,
80 	 },
81 	.modalHeader2G = {
82 	/* ar9300_modal_eep_header  2g */
83 		/* 4 idle,t1,t2,b(4 bits per setting) */
84 		.antCtrlCommon = LE32(0x110),
85 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
86 		.antCtrlCommon2 = LE32(0x22222),
87 
88 		/*
89 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
90 		 * rx1, rx12, b (2 bits each)
91 		 */
92 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
93 
94 		/*
95 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
96 		 * for ar9280 (0xa20c/b20c 5:0)
97 		 */
98 		.xatten1DB = {0, 0, 0},
99 
100 		/*
101 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
102 		 * for ar9280 (0xa20c/b20c 16:12
103 		 */
104 		.xatten1Margin = {0, 0, 0},
105 		.tempSlope = 36,
106 		.voltSlope = 0,
107 
108 		/*
109 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
110 		 * channels in usual fbin coding format
111 		 */
112 		.spurChans = {0, 0, 0, 0, 0},
113 
114 		/*
115 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
116 		 * if the register is per chain
117 		 */
118 		.noiseFloorThreshCh = {-1, 0, 0},
119 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
120 		.quick_drop = 0,
121 		.xpaBiasLvl = 0,
122 		.txFrameToDataStart = 0x0e,
123 		.txFrameToPaOn = 0x0e,
124 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
125 		.antennaGain = 0,
126 		.switchSettling = 0x2c,
127 		.adcDesiredSize = -30,
128 		.txEndToXpaOff = 0,
129 		.txEndToRxOn = 0x2,
130 		.txFrameToXpaOn = 0xe,
131 		.thresh62 = 28,
132 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
133 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
134 		.xlna_bias_strength = 0,
135 		.futureModal = {
136 			0, 0, 0, 0, 0, 0, 0,
137 		},
138 	 },
139 	.base_ext1 = {
140 		.ant_div_control = 0,
141 		.future = {0, 0, 0},
142 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
143 	},
144 	.calFreqPier2G = {
145 		FREQ2FBIN(2412, 1),
146 		FREQ2FBIN(2437, 1),
147 		FREQ2FBIN(2472, 1),
148 	 },
149 	/* ar9300_cal_data_per_freq_op_loop 2g */
150 	.calPierData2G = {
151 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
152 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
153 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
154 	 },
155 	.calTarget_freqbin_Cck = {
156 		FREQ2FBIN(2412, 1),
157 		FREQ2FBIN(2484, 1),
158 	 },
159 	.calTarget_freqbin_2G = {
160 		FREQ2FBIN(2412, 1),
161 		FREQ2FBIN(2437, 1),
162 		FREQ2FBIN(2472, 1)
163 	 },
164 	.calTarget_freqbin_2GHT20 = {
165 		FREQ2FBIN(2412, 1),
166 		FREQ2FBIN(2437, 1),
167 		FREQ2FBIN(2472, 1)
168 	 },
169 	.calTarget_freqbin_2GHT40 = {
170 		FREQ2FBIN(2412, 1),
171 		FREQ2FBIN(2437, 1),
172 		FREQ2FBIN(2472, 1)
173 	 },
174 	.calTargetPowerCck = {
175 		 /* 1L-5L,5S,11L,11S */
176 		 { {36, 36, 36, 36} },
177 		 { {36, 36, 36, 36} },
178 	},
179 	.calTargetPower2G = {
180 		 /* 6-24,36,48,54 */
181 		 { {32, 32, 28, 24} },
182 		 { {32, 32, 28, 24} },
183 		 { {32, 32, 28, 24} },
184 	},
185 	.calTargetPower2GHT20 = {
186 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
187 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
188 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
189 	},
190 	.calTargetPower2GHT40 = {
191 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
192 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
193 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
194 	},
195 	.ctlIndex_2G =  {
196 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
197 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
198 	},
199 	.ctl_freqbin_2G = {
200 		{
201 			FREQ2FBIN(2412, 1),
202 			FREQ2FBIN(2417, 1),
203 			FREQ2FBIN(2457, 1),
204 			FREQ2FBIN(2462, 1)
205 		},
206 		{
207 			FREQ2FBIN(2412, 1),
208 			FREQ2FBIN(2417, 1),
209 			FREQ2FBIN(2462, 1),
210 			0xFF,
211 		},
212 
213 		{
214 			FREQ2FBIN(2412, 1),
215 			FREQ2FBIN(2417, 1),
216 			FREQ2FBIN(2462, 1),
217 			0xFF,
218 		},
219 		{
220 			FREQ2FBIN(2422, 1),
221 			FREQ2FBIN(2427, 1),
222 			FREQ2FBIN(2447, 1),
223 			FREQ2FBIN(2452, 1)
224 		},
225 
226 		{
227 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
228 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
229 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
230 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
231 		},
232 
233 		{
234 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
235 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
236 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
237 			0,
238 		},
239 
240 		{
241 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
242 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
243 			FREQ2FBIN(2472, 1),
244 			0,
245 		},
246 
247 		{
248 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
249 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
250 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
251 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
252 		},
253 
254 		{
255 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
256 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
257 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
258 		},
259 
260 		{
261 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
262 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
263 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
264 			0
265 		},
266 
267 		{
268 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
269 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
270 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
271 			0
272 		},
273 
274 		{
275 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
276 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
277 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
278 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
279 		}
280 	 },
281 	.ctlPowerData_2G = {
282 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
283 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
284 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
285 
286 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
287 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
288 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
289 
290 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
291 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
292 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
293 
294 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
295 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
296 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
297 	 },
298 	.modalHeader5G = {
299 		/* 4 idle,t1,t2,b (4 bits per setting) */
300 		.antCtrlCommon = LE32(0x110),
301 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
302 		.antCtrlCommon2 = LE32(0x22222),
303 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
304 		.antCtrlChain = {
305 			LE16(0x000), LE16(0x000), LE16(0x000),
306 		},
307 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
308 		.xatten1DB = {0, 0, 0},
309 
310 		/*
311 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
312 		 * for merlin (0xa20c/b20c 16:12
313 		 */
314 		.xatten1Margin = {0, 0, 0},
315 		.tempSlope = 68,
316 		.voltSlope = 0,
317 		/* spurChans spur channels in usual fbin coding format */
318 		.spurChans = {0, 0, 0, 0, 0},
319 		/* noiseFloorThreshCh Check if the register is per chain */
320 		.noiseFloorThreshCh = {-1, 0, 0},
321 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
322 		.quick_drop = 0,
323 		.xpaBiasLvl = 0,
324 		.txFrameToDataStart = 0x0e,
325 		.txFrameToPaOn = 0x0e,
326 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
327 		.antennaGain = 0,
328 		.switchSettling = 0x2d,
329 		.adcDesiredSize = -30,
330 		.txEndToXpaOff = 0,
331 		.txEndToRxOn = 0x2,
332 		.txFrameToXpaOn = 0xe,
333 		.thresh62 = 28,
334 		.papdRateMaskHt20 = LE32(0x0c80c080),
335 		.papdRateMaskHt40 = LE32(0x0080c080),
336 		.xlna_bias_strength = 0,
337 		.futureModal = {
338 			0, 0, 0, 0, 0, 0, 0,
339 		},
340 	 },
341 	.base_ext2 = {
342 		.tempSlopeLow = 0,
343 		.tempSlopeHigh = 0,
344 		.xatten1DBLow = {0, 0, 0},
345 		.xatten1MarginLow = {0, 0, 0},
346 		.xatten1DBHigh = {0, 0, 0},
347 		.xatten1MarginHigh = {0, 0, 0}
348 	},
349 	.calFreqPier5G = {
350 		FREQ2FBIN(5180, 0),
351 		FREQ2FBIN(5220, 0),
352 		FREQ2FBIN(5320, 0),
353 		FREQ2FBIN(5400, 0),
354 		FREQ2FBIN(5500, 0),
355 		FREQ2FBIN(5600, 0),
356 		FREQ2FBIN(5725, 0),
357 		FREQ2FBIN(5825, 0)
358 	},
359 	.calPierData5G = {
360 			{
361 				{0, 0, 0, 0, 0},
362 				{0, 0, 0, 0, 0},
363 				{0, 0, 0, 0, 0},
364 				{0, 0, 0, 0, 0},
365 				{0, 0, 0, 0, 0},
366 				{0, 0, 0, 0, 0},
367 				{0, 0, 0, 0, 0},
368 				{0, 0, 0, 0, 0},
369 			},
370 			{
371 				{0, 0, 0, 0, 0},
372 				{0, 0, 0, 0, 0},
373 				{0, 0, 0, 0, 0},
374 				{0, 0, 0, 0, 0},
375 				{0, 0, 0, 0, 0},
376 				{0, 0, 0, 0, 0},
377 				{0, 0, 0, 0, 0},
378 				{0, 0, 0, 0, 0},
379 			},
380 			{
381 				{0, 0, 0, 0, 0},
382 				{0, 0, 0, 0, 0},
383 				{0, 0, 0, 0, 0},
384 				{0, 0, 0, 0, 0},
385 				{0, 0, 0, 0, 0},
386 				{0, 0, 0, 0, 0},
387 				{0, 0, 0, 0, 0},
388 				{0, 0, 0, 0, 0},
389 			},
390 
391 	},
392 	.calTarget_freqbin_5G = {
393 		FREQ2FBIN(5180, 0),
394 		FREQ2FBIN(5220, 0),
395 		FREQ2FBIN(5320, 0),
396 		FREQ2FBIN(5400, 0),
397 		FREQ2FBIN(5500, 0),
398 		FREQ2FBIN(5600, 0),
399 		FREQ2FBIN(5725, 0),
400 		FREQ2FBIN(5825, 0)
401 	},
402 	.calTarget_freqbin_5GHT20 = {
403 		FREQ2FBIN(5180, 0),
404 		FREQ2FBIN(5240, 0),
405 		FREQ2FBIN(5320, 0),
406 		FREQ2FBIN(5500, 0),
407 		FREQ2FBIN(5700, 0),
408 		FREQ2FBIN(5745, 0),
409 		FREQ2FBIN(5725, 0),
410 		FREQ2FBIN(5825, 0)
411 	},
412 	.calTarget_freqbin_5GHT40 = {
413 		FREQ2FBIN(5180, 0),
414 		FREQ2FBIN(5240, 0),
415 		FREQ2FBIN(5320, 0),
416 		FREQ2FBIN(5500, 0),
417 		FREQ2FBIN(5700, 0),
418 		FREQ2FBIN(5745, 0),
419 		FREQ2FBIN(5725, 0),
420 		FREQ2FBIN(5825, 0)
421 	 },
422 	.calTargetPower5G = {
423 		/* 6-24,36,48,54 */
424 		{ {20, 20, 20, 10} },
425 		{ {20, 20, 20, 10} },
426 		{ {20, 20, 20, 10} },
427 		{ {20, 20, 20, 10} },
428 		{ {20, 20, 20, 10} },
429 		{ {20, 20, 20, 10} },
430 		{ {20, 20, 20, 10} },
431 		{ {20, 20, 20, 10} },
432 	 },
433 	.calTargetPower5GHT20 = {
434 		/*
435 		 * 0_8_16,1-3_9-11_17-19,
436 		 * 4,5,6,7,12,13,14,15,20,21,22,23
437 		 */
438 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
439 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
440 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
444 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 	 },
447 	.calTargetPower5GHT40 =  {
448 		/*
449 		 * 0_8_16,1-3_9-11_17-19,
450 		 * 4,5,6,7,12,13,14,15,20,21,22,23
451 		 */
452 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
453 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
454 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
458 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 	 },
461 	.ctlIndex_5G =  {
462 		0x10, 0x16, 0x18, 0x40, 0x46,
463 		0x48, 0x30, 0x36, 0x38
464 	},
465 	.ctl_freqbin_5G =  {
466 		{
467 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
468 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
469 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
470 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
471 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
472 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
473 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
474 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
475 		},
476 		{
477 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
478 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
479 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
480 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
481 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
482 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
483 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
484 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
485 		},
486 
487 		{
488 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
489 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
490 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
491 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
492 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
493 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
494 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
495 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
496 		},
497 
498 		{
499 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
500 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
501 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
502 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
503 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
504 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
505 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
506 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
507 		},
508 
509 		{
510 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
511 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
512 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
513 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
514 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
515 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
516 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
517 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
518 		},
519 
520 		{
521 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
522 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
523 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
524 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
525 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
526 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
527 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
528 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
529 		},
530 
531 		{
532 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
533 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
534 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
535 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
536 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
537 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
538 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
539 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
540 		},
541 
542 		{
543 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
544 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
545 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
546 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
547 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
548 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
549 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
550 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
551 		},
552 
553 		{
554 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
555 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
556 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
557 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
558 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
559 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
560 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
561 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
562 		}
563 	 },
564 	.ctlPowerData_5G = {
565 		{
566 			{
567 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
568 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
569 			}
570 		},
571 		{
572 			{
573 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
574 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
575 			}
576 		},
577 		{
578 			{
579 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
580 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
581 			}
582 		},
583 		{
584 			{
585 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
586 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
587 			}
588 		},
589 		{
590 			{
591 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
592 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
593 			}
594 		},
595 		{
596 			{
597 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
598 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
599 			}
600 		},
601 		{
602 			{
603 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
604 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
605 			}
606 		},
607 		{
608 			{
609 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
610 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
611 			}
612 		},
613 		{
614 			{
615 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
616 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
617 			}
618 		},
619 	 }
620 };
621 
622 static const struct ar9300_eeprom ar9300_x113 = {
623 	.eepromVersion = 2,
624 	.templateVersion = 6,
625 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
626 	.custData = {"x113-023-f0000"},
627 	.baseEepHeader = {
628 		.regDmn = { LE16(0), LE16(0x1f) },
629 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
630 		.opCapFlags = {
631 			.opFlags = AR5416_OPFLAGS_11A,
632 			.eepMisc = 0,
633 		},
634 		.rfSilent = 0,
635 		.blueToothOptions = 0,
636 		.deviceCap = 0,
637 		.deviceType = 5, /* takes lower byte in eeprom location */
638 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
639 		.params_for_tuning_caps = {0, 0},
640 		.featureEnable = 0x0d,
641 		 /*
642 		  * bit0 - enable tx temp comp - disabled
643 		  * bit1 - enable tx volt comp - disabled
644 		  * bit2 - enable fastClock - enabled
645 		  * bit3 - enable doubling - enabled
646 		  * bit4 - enable internal regulator - disabled
647 		  * bit5 - enable pa predistortion - disabled
648 		  */
649 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
650 		.eepromWriteEnableGpio = 6,
651 		.wlanDisableGpio = 0,
652 		.wlanLedGpio = 8,
653 		.rxBandSelectGpio = 0xff,
654 		.txrxgain = 0x21,
655 		.swreg = 0,
656 	 },
657 	.modalHeader2G = {
658 	/* ar9300_modal_eep_header  2g */
659 		/* 4 idle,t1,t2,b(4 bits per setting) */
660 		.antCtrlCommon = LE32(0x110),
661 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
662 		.antCtrlCommon2 = LE32(0x44444),
663 
664 		/*
665 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
666 		 * rx1, rx12, b (2 bits each)
667 		 */
668 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
669 
670 		/*
671 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
672 		 * for ar9280 (0xa20c/b20c 5:0)
673 		 */
674 		.xatten1DB = {0, 0, 0},
675 
676 		/*
677 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
678 		 * for ar9280 (0xa20c/b20c 16:12
679 		 */
680 		.xatten1Margin = {0, 0, 0},
681 		.tempSlope = 25,
682 		.voltSlope = 0,
683 
684 		/*
685 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
686 		 * channels in usual fbin coding format
687 		 */
688 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
689 
690 		/*
691 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
692 		 * if the register is per chain
693 		 */
694 		.noiseFloorThreshCh = {-1, 0, 0},
695 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
696 		.quick_drop = 0,
697 		.xpaBiasLvl = 0,
698 		.txFrameToDataStart = 0x0e,
699 		.txFrameToPaOn = 0x0e,
700 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
701 		.antennaGain = 0,
702 		.switchSettling = 0x2c,
703 		.adcDesiredSize = -30,
704 		.txEndToXpaOff = 0,
705 		.txEndToRxOn = 0x2,
706 		.txFrameToXpaOn = 0xe,
707 		.thresh62 = 28,
708 		.papdRateMaskHt20 = LE32(0x0c80c080),
709 		.papdRateMaskHt40 = LE32(0x0080c080),
710 		.xlna_bias_strength = 0,
711 		.futureModal = {
712 			0, 0, 0, 0, 0, 0, 0,
713 		},
714 	 },
715 	 .base_ext1 = {
716 		.ant_div_control = 0,
717 		.future = {0, 0, 0},
718 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
719 	 },
720 	.calFreqPier2G = {
721 		FREQ2FBIN(2412, 1),
722 		FREQ2FBIN(2437, 1),
723 		FREQ2FBIN(2472, 1),
724 	 },
725 	/* ar9300_cal_data_per_freq_op_loop 2g */
726 	.calPierData2G = {
727 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
728 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
729 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
730 	 },
731 	.calTarget_freqbin_Cck = {
732 		FREQ2FBIN(2412, 1),
733 		FREQ2FBIN(2472, 1),
734 	 },
735 	.calTarget_freqbin_2G = {
736 		FREQ2FBIN(2412, 1),
737 		FREQ2FBIN(2437, 1),
738 		FREQ2FBIN(2472, 1)
739 	 },
740 	.calTarget_freqbin_2GHT20 = {
741 		FREQ2FBIN(2412, 1),
742 		FREQ2FBIN(2437, 1),
743 		FREQ2FBIN(2472, 1)
744 	 },
745 	.calTarget_freqbin_2GHT40 = {
746 		FREQ2FBIN(2412, 1),
747 		FREQ2FBIN(2437, 1),
748 		FREQ2FBIN(2472, 1)
749 	 },
750 	.calTargetPowerCck = {
751 		 /* 1L-5L,5S,11L,11S */
752 		 { {34, 34, 34, 34} },
753 		 { {34, 34, 34, 34} },
754 	},
755 	.calTargetPower2G = {
756 		 /* 6-24,36,48,54 */
757 		 { {34, 34, 32, 32} },
758 		 { {34, 34, 32, 32} },
759 		 { {34, 34, 32, 32} },
760 	},
761 	.calTargetPower2GHT20 = {
762 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
763 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
764 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
765 	},
766 	.calTargetPower2GHT40 = {
767 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
768 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
769 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
770 	},
771 	.ctlIndex_2G =  {
772 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
773 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
774 	},
775 	.ctl_freqbin_2G = {
776 		{
777 			FREQ2FBIN(2412, 1),
778 			FREQ2FBIN(2417, 1),
779 			FREQ2FBIN(2457, 1),
780 			FREQ2FBIN(2462, 1)
781 		},
782 		{
783 			FREQ2FBIN(2412, 1),
784 			FREQ2FBIN(2417, 1),
785 			FREQ2FBIN(2462, 1),
786 			0xFF,
787 		},
788 
789 		{
790 			FREQ2FBIN(2412, 1),
791 			FREQ2FBIN(2417, 1),
792 			FREQ2FBIN(2462, 1),
793 			0xFF,
794 		},
795 		{
796 			FREQ2FBIN(2422, 1),
797 			FREQ2FBIN(2427, 1),
798 			FREQ2FBIN(2447, 1),
799 			FREQ2FBIN(2452, 1)
800 		},
801 
802 		{
803 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
804 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
805 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
806 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
807 		},
808 
809 		{
810 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
811 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
812 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
813 			0,
814 		},
815 
816 		{
817 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
818 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
819 			FREQ2FBIN(2472, 1),
820 			0,
821 		},
822 
823 		{
824 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
825 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
826 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
827 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
828 		},
829 
830 		{
831 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
832 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
833 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
834 		},
835 
836 		{
837 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
838 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
839 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
840 			0
841 		},
842 
843 		{
844 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
845 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
846 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
847 			0
848 		},
849 
850 		{
851 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
852 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
853 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
854 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
855 		}
856 	 },
857 	.ctlPowerData_2G = {
858 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
859 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
860 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
861 
862 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
863 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
865 
866 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
867 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
868 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
869 
870 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
872 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
873 	 },
874 	.modalHeader5G = {
875 		/* 4 idle,t1,t2,b (4 bits per setting) */
876 		.antCtrlCommon = LE32(0x220),
877 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
878 		.antCtrlCommon2 = LE32(0x11111),
879 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
880 		.antCtrlChain = {
881 			LE16(0x150), LE16(0x150), LE16(0x150),
882 		},
883 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
884 		.xatten1DB = {0, 0, 0},
885 
886 		/*
887 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
888 		 * for merlin (0xa20c/b20c 16:12
889 		 */
890 		.xatten1Margin = {0, 0, 0},
891 		.tempSlope = 68,
892 		.voltSlope = 0,
893 		/* spurChans spur channels in usual fbin coding format */
894 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
895 		/* noiseFloorThreshCh Check if the register is per chain */
896 		.noiseFloorThreshCh = {-1, 0, 0},
897 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
898 		.quick_drop = 0,
899 		.xpaBiasLvl = 0xf,
900 		.txFrameToDataStart = 0x0e,
901 		.txFrameToPaOn = 0x0e,
902 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
903 		.antennaGain = 0,
904 		.switchSettling = 0x2d,
905 		.adcDesiredSize = -30,
906 		.txEndToXpaOff = 0,
907 		.txEndToRxOn = 0x2,
908 		.txFrameToXpaOn = 0xe,
909 		.thresh62 = 28,
910 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
911 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
912 		.xlna_bias_strength = 0,
913 		.futureModal = {
914 			0, 0, 0, 0, 0, 0, 0,
915 		},
916 	 },
917 	.base_ext2 = {
918 		.tempSlopeLow = 72,
919 		.tempSlopeHigh = 105,
920 		.xatten1DBLow = {0, 0, 0},
921 		.xatten1MarginLow = {0, 0, 0},
922 		.xatten1DBHigh = {0, 0, 0},
923 		.xatten1MarginHigh = {0, 0, 0}
924 	 },
925 	.calFreqPier5G = {
926 		FREQ2FBIN(5180, 0),
927 		FREQ2FBIN(5240, 0),
928 		FREQ2FBIN(5320, 0),
929 		FREQ2FBIN(5400, 0),
930 		FREQ2FBIN(5500, 0),
931 		FREQ2FBIN(5600, 0),
932 		FREQ2FBIN(5745, 0),
933 		FREQ2FBIN(5785, 0)
934 	},
935 	.calPierData5G = {
936 			{
937 				{0, 0, 0, 0, 0},
938 				{0, 0, 0, 0, 0},
939 				{0, 0, 0, 0, 0},
940 				{0, 0, 0, 0, 0},
941 				{0, 0, 0, 0, 0},
942 				{0, 0, 0, 0, 0},
943 				{0, 0, 0, 0, 0},
944 				{0, 0, 0, 0, 0},
945 			},
946 			{
947 				{0, 0, 0, 0, 0},
948 				{0, 0, 0, 0, 0},
949 				{0, 0, 0, 0, 0},
950 				{0, 0, 0, 0, 0},
951 				{0, 0, 0, 0, 0},
952 				{0, 0, 0, 0, 0},
953 				{0, 0, 0, 0, 0},
954 				{0, 0, 0, 0, 0},
955 			},
956 			{
957 				{0, 0, 0, 0, 0},
958 				{0, 0, 0, 0, 0},
959 				{0, 0, 0, 0, 0},
960 				{0, 0, 0, 0, 0},
961 				{0, 0, 0, 0, 0},
962 				{0, 0, 0, 0, 0},
963 				{0, 0, 0, 0, 0},
964 				{0, 0, 0, 0, 0},
965 			},
966 
967 	},
968 	.calTarget_freqbin_5G = {
969 		FREQ2FBIN(5180, 0),
970 		FREQ2FBIN(5220, 0),
971 		FREQ2FBIN(5320, 0),
972 		FREQ2FBIN(5400, 0),
973 		FREQ2FBIN(5500, 0),
974 		FREQ2FBIN(5600, 0),
975 		FREQ2FBIN(5745, 0),
976 		FREQ2FBIN(5785, 0)
977 	},
978 	.calTarget_freqbin_5GHT20 = {
979 		FREQ2FBIN(5180, 0),
980 		FREQ2FBIN(5240, 0),
981 		FREQ2FBIN(5320, 0),
982 		FREQ2FBIN(5400, 0),
983 		FREQ2FBIN(5500, 0),
984 		FREQ2FBIN(5700, 0),
985 		FREQ2FBIN(5745, 0),
986 		FREQ2FBIN(5825, 0)
987 	},
988 	.calTarget_freqbin_5GHT40 = {
989 		FREQ2FBIN(5190, 0),
990 		FREQ2FBIN(5230, 0),
991 		FREQ2FBIN(5320, 0),
992 		FREQ2FBIN(5410, 0),
993 		FREQ2FBIN(5510, 0),
994 		FREQ2FBIN(5670, 0),
995 		FREQ2FBIN(5755, 0),
996 		FREQ2FBIN(5825, 0)
997 	 },
998 	.calTargetPower5G = {
999 		/* 6-24,36,48,54 */
1000 		{ {42, 40, 40, 34} },
1001 		{ {42, 40, 40, 34} },
1002 		{ {42, 40, 40, 34} },
1003 		{ {42, 40, 40, 34} },
1004 		{ {42, 40, 40, 34} },
1005 		{ {42, 40, 40, 34} },
1006 		{ {42, 40, 40, 34} },
1007 		{ {42, 40, 40, 34} },
1008 	 },
1009 	.calTargetPower5GHT20 = {
1010 		/*
1011 		 * 0_8_16,1-3_9-11_17-19,
1012 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1013 		 */
1014 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1015 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1016 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1017 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1018 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1019 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1020 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1021 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1022 	 },
1023 	.calTargetPower5GHT40 =  {
1024 		/*
1025 		 * 0_8_16,1-3_9-11_17-19,
1026 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1027 		 */
1028 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1029 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1030 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1031 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1032 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1033 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1034 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1035 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1036 	 },
1037 	.ctlIndex_5G =  {
1038 		0x10, 0x16, 0x18, 0x40, 0x46,
1039 		0x48, 0x30, 0x36, 0x38
1040 	},
1041 	.ctl_freqbin_5G =  {
1042 		{
1043 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1044 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1045 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1046 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1047 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1048 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1049 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1050 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1051 		},
1052 		{
1053 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1054 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1055 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1056 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1057 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1058 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1059 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1060 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1061 		},
1062 
1063 		{
1064 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1065 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1066 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1067 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1068 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1069 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1070 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1071 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1072 		},
1073 
1074 		{
1075 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1076 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1077 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1078 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1079 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1080 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1081 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1082 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1083 		},
1084 
1085 		{
1086 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1087 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1088 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1089 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1090 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1091 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1092 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1093 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1094 		},
1095 
1096 		{
1097 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1098 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1099 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1100 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1101 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1102 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1103 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1104 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1105 		},
1106 
1107 		{
1108 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1109 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1110 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1111 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1112 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1113 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1114 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1115 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1116 		},
1117 
1118 		{
1119 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1120 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1121 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1122 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1123 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1124 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1125 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1126 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1127 		},
1128 
1129 		{
1130 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1131 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1132 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1133 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1134 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1135 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1136 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1137 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1138 		}
1139 	 },
1140 	.ctlPowerData_5G = {
1141 		{
1142 			{
1143 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1144 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1145 			}
1146 		},
1147 		{
1148 			{
1149 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1150 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1151 			}
1152 		},
1153 		{
1154 			{
1155 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1156 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1157 			}
1158 		},
1159 		{
1160 			{
1161 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1162 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1163 			}
1164 		},
1165 		{
1166 			{
1167 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1168 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1169 			}
1170 		},
1171 		{
1172 			{
1173 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1174 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1175 			}
1176 		},
1177 		{
1178 			{
1179 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1180 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1181 			}
1182 		},
1183 		{
1184 			{
1185 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1186 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1187 			}
1188 		},
1189 		{
1190 			{
1191 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1192 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1193 			}
1194 		},
1195 	 }
1196 };
1197 
1198 
1199 static const struct ar9300_eeprom ar9300_h112 = {
1200 	.eepromVersion = 2,
1201 	.templateVersion = 3,
1202 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1203 	.custData = {"h112-241-f0000"},
1204 	.baseEepHeader = {
1205 		.regDmn = { LE16(0), LE16(0x1f) },
1206 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1207 		.opCapFlags = {
1208 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1209 			.eepMisc = 0,
1210 		},
1211 		.rfSilent = 0,
1212 		.blueToothOptions = 0,
1213 		.deviceCap = 0,
1214 		.deviceType = 5, /* takes lower byte in eeprom location */
1215 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1216 		.params_for_tuning_caps = {0, 0},
1217 		.featureEnable = 0x0d,
1218 		/*
1219 		 * bit0 - enable tx temp comp - disabled
1220 		 * bit1 - enable tx volt comp - disabled
1221 		 * bit2 - enable fastClock - enabled
1222 		 * bit3 - enable doubling - enabled
1223 		 * bit4 - enable internal regulator - disabled
1224 		 * bit5 - enable pa predistortion - disabled
1225 		 */
1226 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1227 		.eepromWriteEnableGpio = 6,
1228 		.wlanDisableGpio = 0,
1229 		.wlanLedGpio = 8,
1230 		.rxBandSelectGpio = 0xff,
1231 		.txrxgain = 0x10,
1232 		.swreg = 0,
1233 	},
1234 	.modalHeader2G = {
1235 		/* ar9300_modal_eep_header  2g */
1236 		/* 4 idle,t1,t2,b(4 bits per setting) */
1237 		.antCtrlCommon = LE32(0x110),
1238 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1239 		.antCtrlCommon2 = LE32(0x44444),
1240 
1241 		/*
1242 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1243 		 * rx1, rx12, b (2 bits each)
1244 		 */
1245 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1246 
1247 		/*
1248 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1249 		 * for ar9280 (0xa20c/b20c 5:0)
1250 		 */
1251 		.xatten1DB = {0, 0, 0},
1252 
1253 		/*
1254 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1255 		 * for ar9280 (0xa20c/b20c 16:12
1256 		 */
1257 		.xatten1Margin = {0, 0, 0},
1258 		.tempSlope = 25,
1259 		.voltSlope = 0,
1260 
1261 		/*
1262 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1263 		 * channels in usual fbin coding format
1264 		 */
1265 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1266 
1267 		/*
1268 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1269 		 * if the register is per chain
1270 		 */
1271 		.noiseFloorThreshCh = {-1, 0, 0},
1272 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1273 		.quick_drop = 0,
1274 		.xpaBiasLvl = 0,
1275 		.txFrameToDataStart = 0x0e,
1276 		.txFrameToPaOn = 0x0e,
1277 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1278 		.antennaGain = 0,
1279 		.switchSettling = 0x2c,
1280 		.adcDesiredSize = -30,
1281 		.txEndToXpaOff = 0,
1282 		.txEndToRxOn = 0x2,
1283 		.txFrameToXpaOn = 0xe,
1284 		.thresh62 = 28,
1285 		.papdRateMaskHt20 = LE32(0x0c80c080),
1286 		.papdRateMaskHt40 = LE32(0x0080c080),
1287 		.xlna_bias_strength = 0,
1288 		.futureModal = {
1289 			0, 0, 0, 0, 0, 0, 0,
1290 		},
1291 	},
1292 	.base_ext1 = {
1293 		.ant_div_control = 0,
1294 		.future = {0, 0, 0},
1295 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1296 	},
1297 	.calFreqPier2G = {
1298 		FREQ2FBIN(2412, 1),
1299 		FREQ2FBIN(2437, 1),
1300 		FREQ2FBIN(2462, 1),
1301 	},
1302 	/* ar9300_cal_data_per_freq_op_loop 2g */
1303 	.calPierData2G = {
1304 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1305 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1306 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1307 	},
1308 	.calTarget_freqbin_Cck = {
1309 		FREQ2FBIN(2412, 1),
1310 		FREQ2FBIN(2472, 1),
1311 	},
1312 	.calTarget_freqbin_2G = {
1313 		FREQ2FBIN(2412, 1),
1314 		FREQ2FBIN(2437, 1),
1315 		FREQ2FBIN(2472, 1)
1316 	},
1317 	.calTarget_freqbin_2GHT20 = {
1318 		FREQ2FBIN(2412, 1),
1319 		FREQ2FBIN(2437, 1),
1320 		FREQ2FBIN(2472, 1)
1321 	},
1322 	.calTarget_freqbin_2GHT40 = {
1323 		FREQ2FBIN(2412, 1),
1324 		FREQ2FBIN(2437, 1),
1325 		FREQ2FBIN(2472, 1)
1326 	},
1327 	.calTargetPowerCck = {
1328 		/* 1L-5L,5S,11L,11S */
1329 		{ {34, 34, 34, 34} },
1330 		{ {34, 34, 34, 34} },
1331 	},
1332 	.calTargetPower2G = {
1333 		/* 6-24,36,48,54 */
1334 		{ {34, 34, 32, 32} },
1335 		{ {34, 34, 32, 32} },
1336 		{ {34, 34, 32, 32} },
1337 	},
1338 	.calTargetPower2GHT20 = {
1339 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1340 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1341 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1342 	},
1343 	.calTargetPower2GHT40 = {
1344 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1345 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1346 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1347 	},
1348 	.ctlIndex_2G =  {
1349 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1350 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1351 	},
1352 	.ctl_freqbin_2G = {
1353 		{
1354 			FREQ2FBIN(2412, 1),
1355 			FREQ2FBIN(2417, 1),
1356 			FREQ2FBIN(2457, 1),
1357 			FREQ2FBIN(2462, 1)
1358 		},
1359 		{
1360 			FREQ2FBIN(2412, 1),
1361 			FREQ2FBIN(2417, 1),
1362 			FREQ2FBIN(2462, 1),
1363 			0xFF,
1364 		},
1365 
1366 		{
1367 			FREQ2FBIN(2412, 1),
1368 			FREQ2FBIN(2417, 1),
1369 			FREQ2FBIN(2462, 1),
1370 			0xFF,
1371 		},
1372 		{
1373 			FREQ2FBIN(2422, 1),
1374 			FREQ2FBIN(2427, 1),
1375 			FREQ2FBIN(2447, 1),
1376 			FREQ2FBIN(2452, 1)
1377 		},
1378 
1379 		{
1380 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1381 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1382 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1383 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1384 		},
1385 
1386 		{
1387 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1388 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1389 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1390 			0,
1391 		},
1392 
1393 		{
1394 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1395 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1396 			FREQ2FBIN(2472, 1),
1397 			0,
1398 		},
1399 
1400 		{
1401 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1402 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1403 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1404 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1405 		},
1406 
1407 		{
1408 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1409 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1410 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1411 		},
1412 
1413 		{
1414 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1415 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1416 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1417 			0
1418 		},
1419 
1420 		{
1421 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1422 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1423 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1424 			0
1425 		},
1426 
1427 		{
1428 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1429 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1430 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1431 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1432 		}
1433 	},
1434 	.ctlPowerData_2G = {
1435 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1436 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1437 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1438 
1439 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1440 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1441 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1442 
1443 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1444 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1445 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1446 
1447 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1448 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1449 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1450 	},
1451 	.modalHeader5G = {
1452 		/* 4 idle,t1,t2,b (4 bits per setting) */
1453 		.antCtrlCommon = LE32(0x220),
1454 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1455 		.antCtrlCommon2 = LE32(0x44444),
1456 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1457 		.antCtrlChain = {
1458 			LE16(0x150), LE16(0x150), LE16(0x150),
1459 		},
1460 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1461 		.xatten1DB = {0, 0, 0},
1462 
1463 		/*
1464 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1465 		 * for merlin (0xa20c/b20c 16:12
1466 		 */
1467 		.xatten1Margin = {0, 0, 0},
1468 		.tempSlope = 45,
1469 		.voltSlope = 0,
1470 		/* spurChans spur channels in usual fbin coding format */
1471 		.spurChans = {0, 0, 0, 0, 0},
1472 		/* noiseFloorThreshCh Check if the register is per chain */
1473 		.noiseFloorThreshCh = {-1, 0, 0},
1474 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1475 		.quick_drop = 0,
1476 		.xpaBiasLvl = 0,
1477 		.txFrameToDataStart = 0x0e,
1478 		.txFrameToPaOn = 0x0e,
1479 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1480 		.antennaGain = 0,
1481 		.switchSettling = 0x2d,
1482 		.adcDesiredSize = -30,
1483 		.txEndToXpaOff = 0,
1484 		.txEndToRxOn = 0x2,
1485 		.txFrameToXpaOn = 0xe,
1486 		.thresh62 = 28,
1487 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1488 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1489 		.xlna_bias_strength = 0,
1490 		.futureModal = {
1491 			0, 0, 0, 0, 0, 0, 0,
1492 		},
1493 	},
1494 	.base_ext2 = {
1495 		.tempSlopeLow = 40,
1496 		.tempSlopeHigh = 50,
1497 		.xatten1DBLow = {0, 0, 0},
1498 		.xatten1MarginLow = {0, 0, 0},
1499 		.xatten1DBHigh = {0, 0, 0},
1500 		.xatten1MarginHigh = {0, 0, 0}
1501 	},
1502 	.calFreqPier5G = {
1503 		FREQ2FBIN(5180, 0),
1504 		FREQ2FBIN(5220, 0),
1505 		FREQ2FBIN(5320, 0),
1506 		FREQ2FBIN(5400, 0),
1507 		FREQ2FBIN(5500, 0),
1508 		FREQ2FBIN(5600, 0),
1509 		FREQ2FBIN(5700, 0),
1510 		FREQ2FBIN(5785, 0)
1511 	},
1512 	.calPierData5G = {
1513 		{
1514 			{0, 0, 0, 0, 0},
1515 			{0, 0, 0, 0, 0},
1516 			{0, 0, 0, 0, 0},
1517 			{0, 0, 0, 0, 0},
1518 			{0, 0, 0, 0, 0},
1519 			{0, 0, 0, 0, 0},
1520 			{0, 0, 0, 0, 0},
1521 			{0, 0, 0, 0, 0},
1522 		},
1523 		{
1524 			{0, 0, 0, 0, 0},
1525 			{0, 0, 0, 0, 0},
1526 			{0, 0, 0, 0, 0},
1527 			{0, 0, 0, 0, 0},
1528 			{0, 0, 0, 0, 0},
1529 			{0, 0, 0, 0, 0},
1530 			{0, 0, 0, 0, 0},
1531 			{0, 0, 0, 0, 0},
1532 		},
1533 		{
1534 			{0, 0, 0, 0, 0},
1535 			{0, 0, 0, 0, 0},
1536 			{0, 0, 0, 0, 0},
1537 			{0, 0, 0, 0, 0},
1538 			{0, 0, 0, 0, 0},
1539 			{0, 0, 0, 0, 0},
1540 			{0, 0, 0, 0, 0},
1541 			{0, 0, 0, 0, 0},
1542 		},
1543 
1544 	},
1545 	.calTarget_freqbin_5G = {
1546 		FREQ2FBIN(5180, 0),
1547 		FREQ2FBIN(5240, 0),
1548 		FREQ2FBIN(5320, 0),
1549 		FREQ2FBIN(5400, 0),
1550 		FREQ2FBIN(5500, 0),
1551 		FREQ2FBIN(5600, 0),
1552 		FREQ2FBIN(5700, 0),
1553 		FREQ2FBIN(5825, 0)
1554 	},
1555 	.calTarget_freqbin_5GHT20 = {
1556 		FREQ2FBIN(5180, 0),
1557 		FREQ2FBIN(5240, 0),
1558 		FREQ2FBIN(5320, 0),
1559 		FREQ2FBIN(5400, 0),
1560 		FREQ2FBIN(5500, 0),
1561 		FREQ2FBIN(5700, 0),
1562 		FREQ2FBIN(5745, 0),
1563 		FREQ2FBIN(5825, 0)
1564 	},
1565 	.calTarget_freqbin_5GHT40 = {
1566 		FREQ2FBIN(5180, 0),
1567 		FREQ2FBIN(5240, 0),
1568 		FREQ2FBIN(5320, 0),
1569 		FREQ2FBIN(5400, 0),
1570 		FREQ2FBIN(5500, 0),
1571 		FREQ2FBIN(5700, 0),
1572 		FREQ2FBIN(5745, 0),
1573 		FREQ2FBIN(5825, 0)
1574 	},
1575 	.calTargetPower5G = {
1576 		/* 6-24,36,48,54 */
1577 		{ {30, 30, 28, 24} },
1578 		{ {30, 30, 28, 24} },
1579 		{ {30, 30, 28, 24} },
1580 		{ {30, 30, 28, 24} },
1581 		{ {30, 30, 28, 24} },
1582 		{ {30, 30, 28, 24} },
1583 		{ {30, 30, 28, 24} },
1584 		{ {30, 30, 28, 24} },
1585 	},
1586 	.calTargetPower5GHT20 = {
1587 		/*
1588 		 * 0_8_16,1-3_9-11_17-19,
1589 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1590 		 */
1591 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1592 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1593 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1594 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1595 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1596 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1597 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1598 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1599 	},
1600 	.calTargetPower5GHT40 =  {
1601 		/*
1602 		 * 0_8_16,1-3_9-11_17-19,
1603 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1604 		 */
1605 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1606 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1607 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1608 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1609 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1610 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1611 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1612 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1613 	},
1614 	.ctlIndex_5G =  {
1615 		0x10, 0x16, 0x18, 0x40, 0x46,
1616 		0x48, 0x30, 0x36, 0x38
1617 	},
1618 	.ctl_freqbin_5G =  {
1619 		{
1620 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1621 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1622 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1623 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1624 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1625 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1626 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1627 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1628 		},
1629 		{
1630 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1631 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1632 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1633 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1634 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1635 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1636 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1637 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1638 		},
1639 
1640 		{
1641 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1642 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1643 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1644 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1645 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1646 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1647 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1648 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1649 		},
1650 
1651 		{
1652 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1653 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1654 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1655 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1656 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1657 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1658 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1659 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1660 		},
1661 
1662 		{
1663 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1664 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1665 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1666 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1667 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1668 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1669 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1670 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1671 		},
1672 
1673 		{
1674 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1675 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1676 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1677 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1678 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1679 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1680 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1681 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1682 		},
1683 
1684 		{
1685 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1686 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1687 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1688 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1689 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1690 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1691 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1692 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1693 		},
1694 
1695 		{
1696 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1697 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1698 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1699 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1700 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1701 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1702 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1703 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1704 		},
1705 
1706 		{
1707 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1708 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1709 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1710 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1711 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1712 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1713 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1714 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1715 		}
1716 	},
1717 	.ctlPowerData_5G = {
1718 		{
1719 			{
1720 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1721 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1722 			}
1723 		},
1724 		{
1725 			{
1726 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1727 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1728 			}
1729 		},
1730 		{
1731 			{
1732 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1733 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1734 			}
1735 		},
1736 		{
1737 			{
1738 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1739 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1740 			}
1741 		},
1742 		{
1743 			{
1744 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1745 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1746 			}
1747 		},
1748 		{
1749 			{
1750 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1751 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1752 			}
1753 		},
1754 		{
1755 			{
1756 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1757 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1758 			}
1759 		},
1760 		{
1761 			{
1762 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1763 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1764 			}
1765 		},
1766 		{
1767 			{
1768 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1769 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1770 			}
1771 		},
1772 	}
1773 };
1774 
1775 
1776 static const struct ar9300_eeprom ar9300_x112 = {
1777 	.eepromVersion = 2,
1778 	.templateVersion = 5,
1779 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1780 	.custData = {"x112-041-f0000"},
1781 	.baseEepHeader = {
1782 		.regDmn = { LE16(0), LE16(0x1f) },
1783 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1784 		.opCapFlags = {
1785 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1786 			.eepMisc = 0,
1787 		},
1788 		.rfSilent = 0,
1789 		.blueToothOptions = 0,
1790 		.deviceCap = 0,
1791 		.deviceType = 5, /* takes lower byte in eeprom location */
1792 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1793 		.params_for_tuning_caps = {0, 0},
1794 		.featureEnable = 0x0d,
1795 		/*
1796 		 * bit0 - enable tx temp comp - disabled
1797 		 * bit1 - enable tx volt comp - disabled
1798 		 * bit2 - enable fastclock - enabled
1799 		 * bit3 - enable doubling - enabled
1800 		 * bit4 - enable internal regulator - disabled
1801 		 * bit5 - enable pa predistortion - disabled
1802 		 */
1803 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1804 		.eepromWriteEnableGpio = 6,
1805 		.wlanDisableGpio = 0,
1806 		.wlanLedGpio = 8,
1807 		.rxBandSelectGpio = 0xff,
1808 		.txrxgain = 0x0,
1809 		.swreg = 0,
1810 	},
1811 	.modalHeader2G = {
1812 		/* ar9300_modal_eep_header  2g */
1813 		/* 4 idle,t1,t2,b(4 bits per setting) */
1814 		.antCtrlCommon = LE32(0x110),
1815 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1816 		.antCtrlCommon2 = LE32(0x22222),
1817 
1818 		/*
1819 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1820 		 * rx1, rx12, b (2 bits each)
1821 		 */
1822 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1823 
1824 		/*
1825 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1826 		 * for ar9280 (0xa20c/b20c 5:0)
1827 		 */
1828 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1829 
1830 		/*
1831 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1832 		 * for ar9280 (0xa20c/b20c 16:12
1833 		 */
1834 		.xatten1Margin = {0x15, 0x15, 0x15},
1835 		.tempSlope = 50,
1836 		.voltSlope = 0,
1837 
1838 		/*
1839 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1840 		 * channels in usual fbin coding format
1841 		 */
1842 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1843 
1844 		/*
1845 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1846 		 * if the register is per chain
1847 		 */
1848 		.noiseFloorThreshCh = {-1, 0, 0},
1849 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1850 		.quick_drop = 0,
1851 		.xpaBiasLvl = 0,
1852 		.txFrameToDataStart = 0x0e,
1853 		.txFrameToPaOn = 0x0e,
1854 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1855 		.antennaGain = 0,
1856 		.switchSettling = 0x2c,
1857 		.adcDesiredSize = -30,
1858 		.txEndToXpaOff = 0,
1859 		.txEndToRxOn = 0x2,
1860 		.txFrameToXpaOn = 0xe,
1861 		.thresh62 = 28,
1862 		.papdRateMaskHt20 = LE32(0x0c80c080),
1863 		.papdRateMaskHt40 = LE32(0x0080c080),
1864 		.xlna_bias_strength = 0,
1865 		.futureModal = {
1866 			0, 0, 0, 0, 0, 0, 0,
1867 		},
1868 	},
1869 	.base_ext1 = {
1870 		.ant_div_control = 0,
1871 		.future = {0, 0, 0},
1872 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
1873 	},
1874 	.calFreqPier2G = {
1875 		FREQ2FBIN(2412, 1),
1876 		FREQ2FBIN(2437, 1),
1877 		FREQ2FBIN(2472, 1),
1878 	},
1879 	/* ar9300_cal_data_per_freq_op_loop 2g */
1880 	.calPierData2G = {
1881 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1882 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1883 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1884 	},
1885 	.calTarget_freqbin_Cck = {
1886 		FREQ2FBIN(2412, 1),
1887 		FREQ2FBIN(2472, 1),
1888 	},
1889 	.calTarget_freqbin_2G = {
1890 		FREQ2FBIN(2412, 1),
1891 		FREQ2FBIN(2437, 1),
1892 		FREQ2FBIN(2472, 1)
1893 	},
1894 	.calTarget_freqbin_2GHT20 = {
1895 		FREQ2FBIN(2412, 1),
1896 		FREQ2FBIN(2437, 1),
1897 		FREQ2FBIN(2472, 1)
1898 	},
1899 	.calTarget_freqbin_2GHT40 = {
1900 		FREQ2FBIN(2412, 1),
1901 		FREQ2FBIN(2437, 1),
1902 		FREQ2FBIN(2472, 1)
1903 	},
1904 	.calTargetPowerCck = {
1905 		/* 1L-5L,5S,11L,11s */
1906 		{ {38, 38, 38, 38} },
1907 		{ {38, 38, 38, 38} },
1908 	},
1909 	.calTargetPower2G = {
1910 		/* 6-24,36,48,54 */
1911 		{ {38, 38, 36, 34} },
1912 		{ {38, 38, 36, 34} },
1913 		{ {38, 38, 34, 32} },
1914 	},
1915 	.calTargetPower2GHT20 = {
1916 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1917 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1918 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1919 	},
1920 	.calTargetPower2GHT40 = {
1921 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1922 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1923 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1924 	},
1925 	.ctlIndex_2G =  {
1926 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1927 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1928 	},
1929 	.ctl_freqbin_2G = {
1930 		{
1931 			FREQ2FBIN(2412, 1),
1932 			FREQ2FBIN(2417, 1),
1933 			FREQ2FBIN(2457, 1),
1934 			FREQ2FBIN(2462, 1)
1935 		},
1936 		{
1937 			FREQ2FBIN(2412, 1),
1938 			FREQ2FBIN(2417, 1),
1939 			FREQ2FBIN(2462, 1),
1940 			0xFF,
1941 		},
1942 
1943 		{
1944 			FREQ2FBIN(2412, 1),
1945 			FREQ2FBIN(2417, 1),
1946 			FREQ2FBIN(2462, 1),
1947 			0xFF,
1948 		},
1949 		{
1950 			FREQ2FBIN(2422, 1),
1951 			FREQ2FBIN(2427, 1),
1952 			FREQ2FBIN(2447, 1),
1953 			FREQ2FBIN(2452, 1)
1954 		},
1955 
1956 		{
1957 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1958 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1959 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1960 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1961 		},
1962 
1963 		{
1964 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1965 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1966 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1967 			0,
1968 		},
1969 
1970 		{
1971 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1972 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1973 			FREQ2FBIN(2472, 1),
1974 			0,
1975 		},
1976 
1977 		{
1978 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1979 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1980 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1981 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1982 		},
1983 
1984 		{
1985 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1986 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1987 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1988 		},
1989 
1990 		{
1991 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1992 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1993 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1994 			0
1995 		},
1996 
1997 		{
1998 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1999 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2000 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2001 			0
2002 		},
2003 
2004 		{
2005 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2006 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2007 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2008 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2009 		}
2010 	},
2011 	.ctlPowerData_2G = {
2012 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2013 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2014 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2015 
2016 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2017 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2018 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2019 
2020 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2021 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2022 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2023 
2024 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2025 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2026 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2027 	},
2028 	.modalHeader5G = {
2029 		/* 4 idle,t1,t2,b (4 bits per setting) */
2030 		.antCtrlCommon = LE32(0x110),
2031 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2032 		.antCtrlCommon2 = LE32(0x22222),
2033 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2034 		.antCtrlChain = {
2035 			LE16(0x0), LE16(0x0), LE16(0x0),
2036 		},
2037 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2038 		.xatten1DB = {0x13, 0x19, 0x17},
2039 
2040 		/*
2041 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2042 		 * for merlin (0xa20c/b20c 16:12
2043 		 */
2044 		.xatten1Margin = {0x19, 0x19, 0x19},
2045 		.tempSlope = 70,
2046 		.voltSlope = 15,
2047 		/* spurChans spur channels in usual fbin coding format */
2048 		.spurChans = {0, 0, 0, 0, 0},
2049 		/* noiseFloorThreshch check if the register is per chain */
2050 		.noiseFloorThreshCh = {-1, 0, 0},
2051 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2052 		.quick_drop = 0,
2053 		.xpaBiasLvl = 0,
2054 		.txFrameToDataStart = 0x0e,
2055 		.txFrameToPaOn = 0x0e,
2056 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2057 		.antennaGain = 0,
2058 		.switchSettling = 0x2d,
2059 		.adcDesiredSize = -30,
2060 		.txEndToXpaOff = 0,
2061 		.txEndToRxOn = 0x2,
2062 		.txFrameToXpaOn = 0xe,
2063 		.thresh62 = 28,
2064 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2065 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2066 		.xlna_bias_strength = 0,
2067 		.futureModal = {
2068 			0, 0, 0, 0, 0, 0, 0,
2069 		},
2070 	},
2071 	.base_ext2 = {
2072 		.tempSlopeLow = 72,
2073 		.tempSlopeHigh = 105,
2074 		.xatten1DBLow = {0x10, 0x14, 0x10},
2075 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2076 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2077 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2078 	},
2079 	.calFreqPier5G = {
2080 		FREQ2FBIN(5180, 0),
2081 		FREQ2FBIN(5220, 0),
2082 		FREQ2FBIN(5320, 0),
2083 		FREQ2FBIN(5400, 0),
2084 		FREQ2FBIN(5500, 0),
2085 		FREQ2FBIN(5600, 0),
2086 		FREQ2FBIN(5700, 0),
2087 		FREQ2FBIN(5785, 0)
2088 	},
2089 	.calPierData5G = {
2090 		{
2091 			{0, 0, 0, 0, 0},
2092 			{0, 0, 0, 0, 0},
2093 			{0, 0, 0, 0, 0},
2094 			{0, 0, 0, 0, 0},
2095 			{0, 0, 0, 0, 0},
2096 			{0, 0, 0, 0, 0},
2097 			{0, 0, 0, 0, 0},
2098 			{0, 0, 0, 0, 0},
2099 		},
2100 		{
2101 			{0, 0, 0, 0, 0},
2102 			{0, 0, 0, 0, 0},
2103 			{0, 0, 0, 0, 0},
2104 			{0, 0, 0, 0, 0},
2105 			{0, 0, 0, 0, 0},
2106 			{0, 0, 0, 0, 0},
2107 			{0, 0, 0, 0, 0},
2108 			{0, 0, 0, 0, 0},
2109 		},
2110 		{
2111 			{0, 0, 0, 0, 0},
2112 			{0, 0, 0, 0, 0},
2113 			{0, 0, 0, 0, 0},
2114 			{0, 0, 0, 0, 0},
2115 			{0, 0, 0, 0, 0},
2116 			{0, 0, 0, 0, 0},
2117 			{0, 0, 0, 0, 0},
2118 			{0, 0, 0, 0, 0},
2119 		},
2120 
2121 	},
2122 	.calTarget_freqbin_5G = {
2123 		FREQ2FBIN(5180, 0),
2124 		FREQ2FBIN(5220, 0),
2125 		FREQ2FBIN(5320, 0),
2126 		FREQ2FBIN(5400, 0),
2127 		FREQ2FBIN(5500, 0),
2128 		FREQ2FBIN(5600, 0),
2129 		FREQ2FBIN(5725, 0),
2130 		FREQ2FBIN(5825, 0)
2131 	},
2132 	.calTarget_freqbin_5GHT20 = {
2133 		FREQ2FBIN(5180, 0),
2134 		FREQ2FBIN(5220, 0),
2135 		FREQ2FBIN(5320, 0),
2136 		FREQ2FBIN(5400, 0),
2137 		FREQ2FBIN(5500, 0),
2138 		FREQ2FBIN(5600, 0),
2139 		FREQ2FBIN(5725, 0),
2140 		FREQ2FBIN(5825, 0)
2141 	},
2142 	.calTarget_freqbin_5GHT40 = {
2143 		FREQ2FBIN(5180, 0),
2144 		FREQ2FBIN(5220, 0),
2145 		FREQ2FBIN(5320, 0),
2146 		FREQ2FBIN(5400, 0),
2147 		FREQ2FBIN(5500, 0),
2148 		FREQ2FBIN(5600, 0),
2149 		FREQ2FBIN(5725, 0),
2150 		FREQ2FBIN(5825, 0)
2151 	},
2152 	.calTargetPower5G = {
2153 		/* 6-24,36,48,54 */
2154 		{ {32, 32, 28, 26} },
2155 		{ {32, 32, 28, 26} },
2156 		{ {32, 32, 28, 26} },
2157 		{ {32, 32, 26, 24} },
2158 		{ {32, 32, 26, 24} },
2159 		{ {32, 32, 24, 22} },
2160 		{ {30, 30, 24, 22} },
2161 		{ {30, 30, 24, 22} },
2162 	},
2163 	.calTargetPower5GHT20 = {
2164 		/*
2165 		 * 0_8_16,1-3_9-11_17-19,
2166 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2167 		 */
2168 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2169 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2170 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2171 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2172 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2173 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2174 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2175 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2176 	},
2177 	.calTargetPower5GHT40 =  {
2178 		/*
2179 		 * 0_8_16,1-3_9-11_17-19,
2180 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2181 		 */
2182 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2183 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2184 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2185 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2186 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2187 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2188 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2189 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2190 	},
2191 	.ctlIndex_5G =  {
2192 		0x10, 0x16, 0x18, 0x40, 0x46,
2193 		0x48, 0x30, 0x36, 0x38
2194 	},
2195 	.ctl_freqbin_5G =  {
2196 		{
2197 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2198 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2199 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2200 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2201 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2202 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2203 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2204 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2205 		},
2206 		{
2207 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2208 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2209 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2210 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2211 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2212 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2213 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2214 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2215 		},
2216 
2217 		{
2218 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2219 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2220 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2221 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2222 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2223 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2224 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2225 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2226 		},
2227 
2228 		{
2229 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2230 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2231 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2232 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2233 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2234 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2235 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2236 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2237 		},
2238 
2239 		{
2240 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2241 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2242 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2243 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2244 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2245 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2246 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2247 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2248 		},
2249 
2250 		{
2251 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2252 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2253 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2254 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2255 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2256 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2257 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2258 			/* Data[5].ctledges[7].bchannel */ 0xFF
2259 		},
2260 
2261 		{
2262 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2263 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2264 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2265 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2266 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2267 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2268 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2269 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2270 		},
2271 
2272 		{
2273 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2274 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2275 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2276 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2277 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2278 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2279 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2280 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2281 		},
2282 
2283 		{
2284 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2285 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2286 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2287 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2288 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2289 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2290 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2291 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2292 		}
2293 	},
2294 	.ctlPowerData_5G = {
2295 		{
2296 			{
2297 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2298 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2299 			}
2300 		},
2301 		{
2302 			{
2303 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2304 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2305 			}
2306 		},
2307 		{
2308 			{
2309 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2310 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2311 			}
2312 		},
2313 		{
2314 			{
2315 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2316 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2317 			}
2318 		},
2319 		{
2320 			{
2321 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2322 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2323 			}
2324 		},
2325 		{
2326 			{
2327 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2328 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2329 			}
2330 		},
2331 		{
2332 			{
2333 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2334 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2335 			}
2336 		},
2337 		{
2338 			{
2339 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2340 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2341 			}
2342 		},
2343 		{
2344 			{
2345 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2346 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2347 			}
2348 		},
2349 	}
2350 };
2351 
2352 static const struct ar9300_eeprom ar9300_h116 = {
2353 	.eepromVersion = 2,
2354 	.templateVersion = 4,
2355 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2356 	.custData = {"h116-041-f0000"},
2357 	.baseEepHeader = {
2358 		.regDmn = { LE16(0), LE16(0x1f) },
2359 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2360 		.opCapFlags = {
2361 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2362 			.eepMisc = 0,
2363 		},
2364 		.rfSilent = 0,
2365 		.blueToothOptions = 0,
2366 		.deviceCap = 0,
2367 		.deviceType = 5, /* takes lower byte in eeprom location */
2368 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2369 		.params_for_tuning_caps = {0, 0},
2370 		.featureEnable = 0x0d,
2371 		 /*
2372 		  * bit0 - enable tx temp comp - disabled
2373 		  * bit1 - enable tx volt comp - disabled
2374 		  * bit2 - enable fastClock - enabled
2375 		  * bit3 - enable doubling - enabled
2376 		  * bit4 - enable internal regulator - disabled
2377 		  * bit5 - enable pa predistortion - disabled
2378 		  */
2379 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2380 		.eepromWriteEnableGpio = 6,
2381 		.wlanDisableGpio = 0,
2382 		.wlanLedGpio = 8,
2383 		.rxBandSelectGpio = 0xff,
2384 		.txrxgain = 0x10,
2385 		.swreg = 0,
2386 	 },
2387 	.modalHeader2G = {
2388 	/* ar9300_modal_eep_header  2g */
2389 		/* 4 idle,t1,t2,b(4 bits per setting) */
2390 		.antCtrlCommon = LE32(0x110),
2391 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2392 		.antCtrlCommon2 = LE32(0x44444),
2393 
2394 		/*
2395 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2396 		 * rx1, rx12, b (2 bits each)
2397 		 */
2398 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2399 
2400 		/*
2401 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2402 		 * for ar9280 (0xa20c/b20c 5:0)
2403 		 */
2404 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2405 
2406 		/*
2407 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2408 		 * for ar9280 (0xa20c/b20c 16:12
2409 		 */
2410 		.xatten1Margin = {0x12, 0x12, 0x12},
2411 		.tempSlope = 25,
2412 		.voltSlope = 0,
2413 
2414 		/*
2415 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2416 		 * channels in usual fbin coding format
2417 		 */
2418 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2419 
2420 		/*
2421 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2422 		 * if the register is per chain
2423 		 */
2424 		.noiseFloorThreshCh = {-1, 0, 0},
2425 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2426 		.quick_drop = 0,
2427 		.xpaBiasLvl = 0,
2428 		.txFrameToDataStart = 0x0e,
2429 		.txFrameToPaOn = 0x0e,
2430 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2431 		.antennaGain = 0,
2432 		.switchSettling = 0x2c,
2433 		.adcDesiredSize = -30,
2434 		.txEndToXpaOff = 0,
2435 		.txEndToRxOn = 0x2,
2436 		.txFrameToXpaOn = 0xe,
2437 		.thresh62 = 28,
2438 		.papdRateMaskHt20 = LE32(0x0c80C080),
2439 		.papdRateMaskHt40 = LE32(0x0080C080),
2440 		.xlna_bias_strength = 0,
2441 		.futureModal = {
2442 			0, 0, 0, 0, 0, 0, 0,
2443 		},
2444 	 },
2445 	 .base_ext1 = {
2446 		.ant_div_control = 0,
2447 		.future = {0, 0, 0},
2448 		.tempslopextension = {0, 0, 0, 0, 0, 0, 0, 0}
2449 	 },
2450 	.calFreqPier2G = {
2451 		FREQ2FBIN(2412, 1),
2452 		FREQ2FBIN(2437, 1),
2453 		FREQ2FBIN(2462, 1),
2454 	 },
2455 	/* ar9300_cal_data_per_freq_op_loop 2g */
2456 	.calPierData2G = {
2457 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2458 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2459 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2460 	 },
2461 	.calTarget_freqbin_Cck = {
2462 		FREQ2FBIN(2412, 1),
2463 		FREQ2FBIN(2472, 1),
2464 	 },
2465 	.calTarget_freqbin_2G = {
2466 		FREQ2FBIN(2412, 1),
2467 		FREQ2FBIN(2437, 1),
2468 		FREQ2FBIN(2472, 1)
2469 	 },
2470 	.calTarget_freqbin_2GHT20 = {
2471 		FREQ2FBIN(2412, 1),
2472 		FREQ2FBIN(2437, 1),
2473 		FREQ2FBIN(2472, 1)
2474 	 },
2475 	.calTarget_freqbin_2GHT40 = {
2476 		FREQ2FBIN(2412, 1),
2477 		FREQ2FBIN(2437, 1),
2478 		FREQ2FBIN(2472, 1)
2479 	 },
2480 	.calTargetPowerCck = {
2481 		 /* 1L-5L,5S,11L,11S */
2482 		 { {34, 34, 34, 34} },
2483 		 { {34, 34, 34, 34} },
2484 	},
2485 	.calTargetPower2G = {
2486 		 /* 6-24,36,48,54 */
2487 		 { {34, 34, 32, 32} },
2488 		 { {34, 34, 32, 32} },
2489 		 { {34, 34, 32, 32} },
2490 	},
2491 	.calTargetPower2GHT20 = {
2492 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2493 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2494 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2495 	},
2496 	.calTargetPower2GHT40 = {
2497 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2498 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2499 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2500 	},
2501 	.ctlIndex_2G =  {
2502 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2503 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2504 	},
2505 	.ctl_freqbin_2G = {
2506 		{
2507 			FREQ2FBIN(2412, 1),
2508 			FREQ2FBIN(2417, 1),
2509 			FREQ2FBIN(2457, 1),
2510 			FREQ2FBIN(2462, 1)
2511 		},
2512 		{
2513 			FREQ2FBIN(2412, 1),
2514 			FREQ2FBIN(2417, 1),
2515 			FREQ2FBIN(2462, 1),
2516 			0xFF,
2517 		},
2518 
2519 		{
2520 			FREQ2FBIN(2412, 1),
2521 			FREQ2FBIN(2417, 1),
2522 			FREQ2FBIN(2462, 1),
2523 			0xFF,
2524 		},
2525 		{
2526 			FREQ2FBIN(2422, 1),
2527 			FREQ2FBIN(2427, 1),
2528 			FREQ2FBIN(2447, 1),
2529 			FREQ2FBIN(2452, 1)
2530 		},
2531 
2532 		{
2533 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2534 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2535 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2536 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2537 		},
2538 
2539 		{
2540 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2541 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2542 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2543 			0,
2544 		},
2545 
2546 		{
2547 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2548 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2549 			FREQ2FBIN(2472, 1),
2550 			0,
2551 		},
2552 
2553 		{
2554 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2555 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2556 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2557 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2558 		},
2559 
2560 		{
2561 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2562 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2563 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2564 		},
2565 
2566 		{
2567 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2568 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2569 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2570 			0
2571 		},
2572 
2573 		{
2574 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2575 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2576 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2577 			0
2578 		},
2579 
2580 		{
2581 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2582 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2583 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2584 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2585 		}
2586 	 },
2587 	.ctlPowerData_2G = {
2588 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2589 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2590 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2591 
2592 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2593 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2594 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2595 
2596 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2597 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2598 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2599 
2600 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2601 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2602 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2603 	 },
2604 	.modalHeader5G = {
2605 		/* 4 idle,t1,t2,b (4 bits per setting) */
2606 		.antCtrlCommon = LE32(0x220),
2607 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2608 		.antCtrlCommon2 = LE32(0x44444),
2609 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2610 		.antCtrlChain = {
2611 			LE16(0x150), LE16(0x150), LE16(0x150),
2612 		},
2613 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2614 		.xatten1DB = {0x19, 0x19, 0x19},
2615 
2616 		/*
2617 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2618 		 * for merlin (0xa20c/b20c 16:12
2619 		 */
2620 		.xatten1Margin = {0x14, 0x14, 0x14},
2621 		.tempSlope = 70,
2622 		.voltSlope = 0,
2623 		/* spurChans spur channels in usual fbin coding format */
2624 		.spurChans = {0, 0, 0, 0, 0},
2625 		/* noiseFloorThreshCh Check if the register is per chain */
2626 		.noiseFloorThreshCh = {-1, 0, 0},
2627 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2628 		.quick_drop = 0,
2629 		.xpaBiasLvl = 0,
2630 		.txFrameToDataStart = 0x0e,
2631 		.txFrameToPaOn = 0x0e,
2632 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2633 		.antennaGain = 0,
2634 		.switchSettling = 0x2d,
2635 		.adcDesiredSize = -30,
2636 		.txEndToXpaOff = 0,
2637 		.txEndToRxOn = 0x2,
2638 		.txFrameToXpaOn = 0xe,
2639 		.thresh62 = 28,
2640 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2641 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2642 		.xlna_bias_strength = 0,
2643 		.futureModal = {
2644 			0, 0, 0, 0, 0, 0, 0,
2645 		},
2646 	 },
2647 	.base_ext2 = {
2648 		.tempSlopeLow = 35,
2649 		.tempSlopeHigh = 50,
2650 		.xatten1DBLow = {0, 0, 0},
2651 		.xatten1MarginLow = {0, 0, 0},
2652 		.xatten1DBHigh = {0, 0, 0},
2653 		.xatten1MarginHigh = {0, 0, 0}
2654 	 },
2655 	.calFreqPier5G = {
2656 		FREQ2FBIN(5160, 0),
2657 		FREQ2FBIN(5220, 0),
2658 		FREQ2FBIN(5320, 0),
2659 		FREQ2FBIN(5400, 0),
2660 		FREQ2FBIN(5500, 0),
2661 		FREQ2FBIN(5600, 0),
2662 		FREQ2FBIN(5700, 0),
2663 		FREQ2FBIN(5785, 0)
2664 	},
2665 	.calPierData5G = {
2666 			{
2667 				{0, 0, 0, 0, 0},
2668 				{0, 0, 0, 0, 0},
2669 				{0, 0, 0, 0, 0},
2670 				{0, 0, 0, 0, 0},
2671 				{0, 0, 0, 0, 0},
2672 				{0, 0, 0, 0, 0},
2673 				{0, 0, 0, 0, 0},
2674 				{0, 0, 0, 0, 0},
2675 			},
2676 			{
2677 				{0, 0, 0, 0, 0},
2678 				{0, 0, 0, 0, 0},
2679 				{0, 0, 0, 0, 0},
2680 				{0, 0, 0, 0, 0},
2681 				{0, 0, 0, 0, 0},
2682 				{0, 0, 0, 0, 0},
2683 				{0, 0, 0, 0, 0},
2684 				{0, 0, 0, 0, 0},
2685 			},
2686 			{
2687 				{0, 0, 0, 0, 0},
2688 				{0, 0, 0, 0, 0},
2689 				{0, 0, 0, 0, 0},
2690 				{0, 0, 0, 0, 0},
2691 				{0, 0, 0, 0, 0},
2692 				{0, 0, 0, 0, 0},
2693 				{0, 0, 0, 0, 0},
2694 				{0, 0, 0, 0, 0},
2695 			},
2696 
2697 	},
2698 	.calTarget_freqbin_5G = {
2699 		FREQ2FBIN(5180, 0),
2700 		FREQ2FBIN(5240, 0),
2701 		FREQ2FBIN(5320, 0),
2702 		FREQ2FBIN(5400, 0),
2703 		FREQ2FBIN(5500, 0),
2704 		FREQ2FBIN(5600, 0),
2705 		FREQ2FBIN(5700, 0),
2706 		FREQ2FBIN(5825, 0)
2707 	},
2708 	.calTarget_freqbin_5GHT20 = {
2709 		FREQ2FBIN(5180, 0),
2710 		FREQ2FBIN(5240, 0),
2711 		FREQ2FBIN(5320, 0),
2712 		FREQ2FBIN(5400, 0),
2713 		FREQ2FBIN(5500, 0),
2714 		FREQ2FBIN(5700, 0),
2715 		FREQ2FBIN(5745, 0),
2716 		FREQ2FBIN(5825, 0)
2717 	},
2718 	.calTarget_freqbin_5GHT40 = {
2719 		FREQ2FBIN(5180, 0),
2720 		FREQ2FBIN(5240, 0),
2721 		FREQ2FBIN(5320, 0),
2722 		FREQ2FBIN(5400, 0),
2723 		FREQ2FBIN(5500, 0),
2724 		FREQ2FBIN(5700, 0),
2725 		FREQ2FBIN(5745, 0),
2726 		FREQ2FBIN(5825, 0)
2727 	 },
2728 	.calTargetPower5G = {
2729 		/* 6-24,36,48,54 */
2730 		{ {30, 30, 28, 24} },
2731 		{ {30, 30, 28, 24} },
2732 		{ {30, 30, 28, 24} },
2733 		{ {30, 30, 28, 24} },
2734 		{ {30, 30, 28, 24} },
2735 		{ {30, 30, 28, 24} },
2736 		{ {30, 30, 28, 24} },
2737 		{ {30, 30, 28, 24} },
2738 	 },
2739 	.calTargetPower5GHT20 = {
2740 		/*
2741 		 * 0_8_16,1-3_9-11_17-19,
2742 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2743 		 */
2744 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2745 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2746 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2747 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2748 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2749 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2750 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2751 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2752 	 },
2753 	.calTargetPower5GHT40 =  {
2754 		/*
2755 		 * 0_8_16,1-3_9-11_17-19,
2756 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2757 		 */
2758 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2759 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2760 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2761 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2762 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2763 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2764 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2765 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2766 	 },
2767 	.ctlIndex_5G =  {
2768 		0x10, 0x16, 0x18, 0x40, 0x46,
2769 		0x48, 0x30, 0x36, 0x38
2770 	},
2771 	.ctl_freqbin_5G =  {
2772 		{
2773 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2774 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2775 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2776 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2777 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2778 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2779 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2780 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2781 		},
2782 		{
2783 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2784 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2785 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2786 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2787 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2788 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2789 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2790 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2791 		},
2792 
2793 		{
2794 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2795 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2796 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2797 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2798 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2799 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2800 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2801 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2802 		},
2803 
2804 		{
2805 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2806 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2807 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2808 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2809 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2810 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2811 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2812 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2813 		},
2814 
2815 		{
2816 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2817 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2818 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2819 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2820 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2821 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2822 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2823 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2824 		},
2825 
2826 		{
2827 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2828 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2829 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2830 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2831 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2832 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2833 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2834 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2835 		},
2836 
2837 		{
2838 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2839 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2840 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2841 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2842 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2843 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2844 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2845 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2846 		},
2847 
2848 		{
2849 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2850 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2851 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2852 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2853 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2854 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2855 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2856 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2857 		},
2858 
2859 		{
2860 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2861 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2862 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2863 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2864 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2865 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2866 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2867 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2868 		}
2869 	 },
2870 	.ctlPowerData_5G = {
2871 		{
2872 			{
2873 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2874 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2875 			}
2876 		},
2877 		{
2878 			{
2879 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2880 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2881 			}
2882 		},
2883 		{
2884 			{
2885 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2886 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2887 			}
2888 		},
2889 		{
2890 			{
2891 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2892 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2893 			}
2894 		},
2895 		{
2896 			{
2897 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2898 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2899 			}
2900 		},
2901 		{
2902 			{
2903 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2904 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2905 			}
2906 		},
2907 		{
2908 			{
2909 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2910 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2911 			}
2912 		},
2913 		{
2914 			{
2915 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2916 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2917 			}
2918 		},
2919 		{
2920 			{
2921 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2922 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2923 			}
2924 		},
2925 	 }
2926 };
2927 
2928 
2929 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2930 	&ar9300_default,
2931 	&ar9300_x112,
2932 	&ar9300_h116,
2933 	&ar9300_h112,
2934 	&ar9300_x113,
2935 };
2936 
2937 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2938 {
2939 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2940 	int it;
2941 
2942 	for (it = 0; it < N_LOOP; it++)
2943 		if (ar9300_eep_templates[it]->templateVersion == id)
2944 			return ar9300_eep_templates[it];
2945 	return NULL;
2946 #undef N_LOOP
2947 }
2948 
2949 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2950 {
2951 	return 0;
2952 }
2953 
2954 static int interpolate(int x, int xa, int xb, int ya, int yb)
2955 {
2956 	int bf, factor, plus;
2957 
2958 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2959 	factor = bf / 2;
2960 	plus = bf % 2;
2961 	return ya + factor + plus;
2962 }
2963 
2964 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2965 				      enum eeprom_param param)
2966 {
2967 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2968 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2969 
2970 	switch (param) {
2971 	case EEP_MAC_LSW:
2972 		return get_unaligned_be16(eep->macAddr);
2973 	case EEP_MAC_MID:
2974 		return get_unaligned_be16(eep->macAddr + 2);
2975 	case EEP_MAC_MSW:
2976 		return get_unaligned_be16(eep->macAddr + 4);
2977 	case EEP_REG_0:
2978 		return le16_to_cpu(pBase->regDmn[0]);
2979 	case EEP_OP_CAP:
2980 		return pBase->deviceCap;
2981 	case EEP_OP_MODE:
2982 		return pBase->opCapFlags.opFlags;
2983 	case EEP_RF_SILENT:
2984 		return pBase->rfSilent;
2985 	case EEP_TX_MASK:
2986 		return (pBase->txrxMask >> 4) & 0xf;
2987 	case EEP_RX_MASK:
2988 		return pBase->txrxMask & 0xf;
2989 	case EEP_PAPRD:
2990 		if (AR_SREV_9462(ah))
2991 			return false;
2992 		if (!ah->config.enable_paprd);
2993 			return false;
2994 		return !!(pBase->featureEnable & BIT(5));
2995 	case EEP_CHAIN_MASK_REDUCE:
2996 		return (pBase->miscConfiguration >> 0x3) & 0x1;
2997 	case EEP_ANT_DIV_CTL1:
2998 		return eep->base_ext1.ant_div_control;
2999 	case EEP_ANTENNA_GAIN_5G:
3000 		return eep->modalHeader5G.antennaGain;
3001 	case EEP_ANTENNA_GAIN_2G:
3002 		return eep->modalHeader2G.antennaGain;
3003 	default:
3004 		return 0;
3005 	}
3006 }
3007 
3008 static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3009 				    u8 *buffer)
3010 {
3011 	u16 val;
3012 
3013 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3014 		return false;
3015 
3016 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3017 	return true;
3018 }
3019 
3020 static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3021 				    u8 *buffer)
3022 {
3023 	u16 val;
3024 
3025 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3026 		return false;
3027 
3028 	buffer[0] = val >> 8;
3029 	buffer[1] = val & 0xff;
3030 
3031 	return true;
3032 }
3033 
3034 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3035 			       int count)
3036 {
3037 	struct ath_common *common = ath9k_hw_common(ah);
3038 	int i;
3039 
3040 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3041 		ath_dbg(common, EEPROM, "eeprom address not in range\n");
3042 		return false;
3043 	}
3044 
3045 	/*
3046 	 * Since we're reading the bytes in reverse order from a little-endian
3047 	 * word stream, an even address means we only use the lower half of
3048 	 * the 16-bit word at that address
3049 	 */
3050 	if (address % 2 == 0) {
3051 		if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3052 			goto error;
3053 
3054 		count--;
3055 	}
3056 
3057 	for (i = 0; i < count / 2; i++) {
3058 		if (!ar9300_eeprom_read_word(common, address, buffer))
3059 			goto error;
3060 
3061 		address -= 2;
3062 		buffer += 2;
3063 	}
3064 
3065 	if (count % 2)
3066 		if (!ar9300_eeprom_read_byte(common, address, buffer))
3067 			goto error;
3068 
3069 	return true;
3070 
3071 error:
3072 	ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3073 		address);
3074 	return false;
3075 }
3076 
3077 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3078 {
3079 	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3080 
3081 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3082 			   AR9300_OTP_STATUS_VALID, 1000))
3083 		return false;
3084 
3085 	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3086 	return true;
3087 }
3088 
3089 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3090 			    int count)
3091 {
3092 	u32 data;
3093 	int i;
3094 
3095 	for (i = 0; i < count; i++) {
3096 		int offset = 8 * ((address - i) % 4);
3097 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3098 			return false;
3099 
3100 		buffer[i] = (data >> offset) & 0xff;
3101 	}
3102 
3103 	return true;
3104 }
3105 
3106 
3107 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3108 				   int *length, int *major, int *minor)
3109 {
3110 	unsigned long value[4];
3111 
3112 	value[0] = best[0];
3113 	value[1] = best[1];
3114 	value[2] = best[2];
3115 	value[3] = best[3];
3116 	*code = ((value[0] >> 5) & 0x0007);
3117 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3118 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3119 	*major = (value[2] & 0x000f);
3120 	*minor = (value[3] & 0x00ff);
3121 }
3122 
3123 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3124 {
3125 	int it, checksum = 0;
3126 
3127 	for (it = 0; it < dsize; it++) {
3128 		checksum += data[it];
3129 		checksum &= 0xffff;
3130 	}
3131 
3132 	return checksum;
3133 }
3134 
3135 static bool ar9300_uncompress_block(struct ath_hw *ah,
3136 				    u8 *mptr,
3137 				    int mdataSize,
3138 				    u8 *block,
3139 				    int size)
3140 {
3141 	int it;
3142 	int spot;
3143 	int offset;
3144 	int length;
3145 	struct ath_common *common = ath9k_hw_common(ah);
3146 
3147 	spot = 0;
3148 
3149 	for (it = 0; it < size; it += (length+2)) {
3150 		offset = block[it];
3151 		offset &= 0xff;
3152 		spot += offset;
3153 		length = block[it+1];
3154 		length &= 0xff;
3155 
3156 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3157 			ath_dbg(common, EEPROM,
3158 				"Restore at %d: spot=%d offset=%d length=%d\n",
3159 				it, spot, offset, length);
3160 			memcpy(&mptr[spot], &block[it+2], length);
3161 			spot += length;
3162 		} else if (length > 0) {
3163 			ath_dbg(common, EEPROM,
3164 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3165 				it, spot, offset, length);
3166 			return false;
3167 		}
3168 	}
3169 	return true;
3170 }
3171 
3172 static int ar9300_compress_decision(struct ath_hw *ah,
3173 				    int it,
3174 				    int code,
3175 				    int reference,
3176 				    u8 *mptr,
3177 				    u8 *word, int length, int mdata_size)
3178 {
3179 	struct ath_common *common = ath9k_hw_common(ah);
3180 	const struct ar9300_eeprom *eep = NULL;
3181 
3182 	switch (code) {
3183 	case _CompressNone:
3184 		if (length != mdata_size) {
3185 			ath_dbg(common, EEPROM,
3186 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3187 				mdata_size, length);
3188 			return -1;
3189 		}
3190 		memcpy(mptr, word + COMP_HDR_LEN, length);
3191 		ath_dbg(common, EEPROM,
3192 			"restored eeprom %d: uncompressed, length %d\n",
3193 			it, length);
3194 		break;
3195 	case _CompressBlock:
3196 		if (reference == 0) {
3197 		} else {
3198 			eep = ar9003_eeprom_struct_find_by_id(reference);
3199 			if (eep == NULL) {
3200 				ath_dbg(common, EEPROM,
3201 					"can't find reference eeprom struct %d\n",
3202 					reference);
3203 				return -1;
3204 			}
3205 			memcpy(mptr, eep, mdata_size);
3206 		}
3207 		ath_dbg(common, EEPROM,
3208 			"restore eeprom %d: block, reference %d, length %d\n",
3209 			it, reference, length);
3210 		ar9300_uncompress_block(ah, mptr, mdata_size,
3211 					(word + COMP_HDR_LEN), length);
3212 		break;
3213 	default:
3214 		ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3215 		return -1;
3216 	}
3217 	return 0;
3218 }
3219 
3220 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3221 			       int count);
3222 
3223 static bool ar9300_check_header(void *data)
3224 {
3225 	u32 *word = data;
3226 	return !(*word == 0 || *word == ~0);
3227 }
3228 
3229 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3230 				       int base_addr)
3231 {
3232 	u8 header[4];
3233 
3234 	if (!read(ah, base_addr, header, 4))
3235 		return false;
3236 
3237 	return ar9300_check_header(header);
3238 }
3239 
3240 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3241 				       int mdata_size)
3242 {
3243 	struct ath_common *common = ath9k_hw_common(ah);
3244 	u16 *data = (u16 *) mptr;
3245 	int i;
3246 
3247 	for (i = 0; i < mdata_size / 2; i++, data++)
3248 		ath9k_hw_nvram_read(common, i, data);
3249 
3250 	return 0;
3251 }
3252 /*
3253  * Read the configuration data from the eeprom.
3254  * The data can be put in any specified memory buffer.
3255  *
3256  * Returns -1 on error.
3257  * Returns address of next memory location on success.
3258  */
3259 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3260 					  u8 *mptr, int mdata_size)
3261 {
3262 #define MDEFAULT 15
3263 #define MSTATE 100
3264 	int cptr;
3265 	u8 *word;
3266 	int code;
3267 	int reference, length, major, minor;
3268 	int osize;
3269 	int it;
3270 	u16 checksum, mchecksum;
3271 	struct ath_common *common = ath9k_hw_common(ah);
3272 	struct ar9300_eeprom *eep;
3273 	eeprom_read_op read;
3274 
3275 	if (ath9k_hw_use_flash(ah)) {
3276 		u8 txrx;
3277 
3278 		ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3279 
3280 		/* check if eeprom contains valid data */
3281 		eep = (struct ar9300_eeprom *) mptr;
3282 		txrx = eep->baseEepHeader.txrxMask;
3283 		if (txrx != 0 && txrx != 0xff)
3284 			return 0;
3285 	}
3286 
3287 	word = kzalloc(2048, GFP_KERNEL);
3288 	if (!word)
3289 		return -ENOMEM;
3290 
3291 	memcpy(mptr, &ar9300_default, mdata_size);
3292 
3293 	read = ar9300_read_eeprom;
3294 	if (AR_SREV_9485(ah))
3295 		cptr = AR9300_BASE_ADDR_4K;
3296 	else if (AR_SREV_9330(ah))
3297 		cptr = AR9300_BASE_ADDR_512;
3298 	else
3299 		cptr = AR9300_BASE_ADDR;
3300 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3301 		cptr);
3302 	if (ar9300_check_eeprom_header(ah, read, cptr))
3303 		goto found;
3304 
3305 	cptr = AR9300_BASE_ADDR_512;
3306 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3307 		cptr);
3308 	if (ar9300_check_eeprom_header(ah, read, cptr))
3309 		goto found;
3310 
3311 	read = ar9300_read_otp;
3312 	cptr = AR9300_BASE_ADDR;
3313 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3314 	if (ar9300_check_eeprom_header(ah, read, cptr))
3315 		goto found;
3316 
3317 	cptr = AR9300_BASE_ADDR_512;
3318 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3319 	if (ar9300_check_eeprom_header(ah, read, cptr))
3320 		goto found;
3321 
3322 	goto fail;
3323 
3324 found:
3325 	ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3326 
3327 	for (it = 0; it < MSTATE; it++) {
3328 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3329 			goto fail;
3330 
3331 		if (!ar9300_check_header(word))
3332 			break;
3333 
3334 		ar9300_comp_hdr_unpack(word, &code, &reference,
3335 				       &length, &major, &minor);
3336 		ath_dbg(common, EEPROM,
3337 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3338 			cptr, code, reference, length, major, minor);
3339 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3340 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3341 			ath_dbg(common, EEPROM, "Skipping bad header\n");
3342 			cptr -= COMP_HDR_LEN;
3343 			continue;
3344 		}
3345 
3346 		osize = length;
3347 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3348 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3349 		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3350 		ath_dbg(common, EEPROM, "checksum %x %x\n",
3351 			checksum, mchecksum);
3352 		if (checksum == mchecksum) {
3353 			ar9300_compress_decision(ah, it, code, reference, mptr,
3354 						 word, length, mdata_size);
3355 		} else {
3356 			ath_dbg(common, EEPROM,
3357 				"skipping block with bad checksum\n");
3358 		}
3359 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3360 	}
3361 
3362 	kfree(word);
3363 	return cptr;
3364 
3365 fail:
3366 	kfree(word);
3367 	return -1;
3368 }
3369 
3370 /*
3371  * Restore the configuration structure by reading the eeprom.
3372  * This function destroys any existing in-memory structure
3373  * content.
3374  */
3375 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3376 {
3377 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3378 
3379 	if (ar9300_eeprom_restore_internal(ah, mptr,
3380 			sizeof(struct ar9300_eeprom)) < 0)
3381 		return false;
3382 
3383 	return true;
3384 }
3385 
3386 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3387 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3388 				    struct ar9300_modal_eep_header *modal_hdr)
3389 {
3390 	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3391 	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3392 	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3393 	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3394 	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3395 	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3396 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
3397 	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3398 	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3399 	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3400 	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3401 	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3402 	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3403 	PR_EEP("Temp Slope", modal_hdr->tempSlope);
3404 	PR_EEP("Volt Slope", modal_hdr->voltSlope);
3405 	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3406 	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3407 	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3408 	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3409 	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3410 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3411 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3412 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3413 	PR_EEP("Quick Drop", modal_hdr->quick_drop);
3414 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3415 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3416 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3417 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3418 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3419 	PR_EEP("txClip", modal_hdr->txClip);
3420 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3421 
3422 	return len;
3423 }
3424 
3425 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3426 				       u8 *buf, u32 len, u32 size)
3427 {
3428 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3429 	struct ar9300_base_eep_hdr *pBase;
3430 
3431 	if (!dump_base_hdr) {
3432 		len += snprintf(buf + len, size - len,
3433 				"%20s :\n", "2GHz modal Header");
3434 		len = ar9003_dump_modal_eeprom(buf, len, size,
3435 						&eep->modalHeader2G);
3436 		len += snprintf(buf + len, size - len,
3437 				"%20s :\n", "5GHz modal Header");
3438 		len = ar9003_dump_modal_eeprom(buf, len, size,
3439 						&eep->modalHeader5G);
3440 		goto out;
3441 	}
3442 
3443 	pBase = &eep->baseEepHeader;
3444 
3445 	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3446 	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3447 	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3448 	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3449 	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3450 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3451 				AR5416_OPFLAGS_11A));
3452 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3453 				AR5416_OPFLAGS_11G));
3454 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3455 					AR5416_OPFLAGS_N_2G_HT20));
3456 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3457 					AR5416_OPFLAGS_N_2G_HT40));
3458 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3459 					AR5416_OPFLAGS_N_5G_HT20));
3460 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3461 					AR5416_OPFLAGS_N_5G_HT40));
3462 	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3463 	PR_EEP("RF Silent", pBase->rfSilent);
3464 	PR_EEP("BT option", pBase->blueToothOptions);
3465 	PR_EEP("Device Cap", pBase->deviceCap);
3466 	PR_EEP("Device Type", pBase->deviceType);
3467 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3468 	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3469 	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3470 	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3471 	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3472 	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3473 	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3474 	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3475 	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3476 	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3477 	PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3478 	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3479 	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3480 	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3481 	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3482 	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3483 	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3484 	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3485 	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3486 
3487 	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3488 			ah->eeprom.ar9300_eep.macAddr);
3489 out:
3490 	if (len > size)
3491 		len = size;
3492 
3493 	return len;
3494 }
3495 #else
3496 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3497 				       u8 *buf, u32 len, u32 size)
3498 {
3499 	return 0;
3500 }
3501 #endif
3502 
3503 /* XXX: review hardware docs */
3504 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3505 {
3506 	return ah->eeprom.ar9300_eep.eepromVersion;
3507 }
3508 
3509 /* XXX: could be read from the eepromVersion, not sure yet */
3510 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3511 {
3512 	return 0;
3513 }
3514 
3515 static struct ar9300_modal_eep_header *ar9003_modal_header(struct ath_hw *ah,
3516 							   bool is2ghz)
3517 {
3518 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3519 
3520 	if (is2ghz)
3521 		return &eep->modalHeader2G;
3522 	else
3523 		return &eep->modalHeader5G;
3524 }
3525 
3526 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3527 {
3528 	int bias = ar9003_modal_header(ah, is2ghz)->xpaBiasLvl;
3529 
3530 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3531 		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3532 	else if (AR_SREV_9462(ah) || AR_SREV_9550(ah) || AR_SREV_9565(ah))
3533 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3534 	else {
3535 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3536 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3537 				AR_CH0_THERM_XPABIASLVL_MSB,
3538 				bias >> 2);
3539 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3540 				AR_CH0_THERM_XPASHORT2GND, 1);
3541 	}
3542 }
3543 
3544 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is2ghz)
3545 {
3546 	return le16_to_cpu(ar9003_modal_header(ah, is2ghz)->switchcomspdt);
3547 }
3548 
3549 
3550 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3551 {
3552 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon);
3553 }
3554 
3555 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3556 {
3557 	return le32_to_cpu(ar9003_modal_header(ah, is2ghz)->antCtrlCommon2);
3558 }
3559 
3560 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah, int chain,
3561 					bool is2ghz)
3562 {
3563 	__le16 val = ar9003_modal_header(ah, is2ghz)->antCtrlChain[chain];
3564 	return le16_to_cpu(val);
3565 }
3566 
3567 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3568 {
3569 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3570 	int chain;
3571 	u32 regval;
3572 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3573 			AR_PHY_SWITCH_CHAIN_0,
3574 			AR_PHY_SWITCH_CHAIN_1,
3575 			AR_PHY_SWITCH_CHAIN_2,
3576 	};
3577 
3578 	u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3579 
3580 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3581 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3582 				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3583 	} else if (AR_SREV_9550(ah)) {
3584 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3585 				AR_SWITCH_TABLE_COM_AR9550_ALL, value);
3586 	} else
3587 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3588 			      AR_SWITCH_TABLE_COM_ALL, value);
3589 
3590 
3591 	/*
3592 	 *   AR9462 defines new switch table for BT/WLAN,
3593 	 *       here's new field name in XXX.ref for both 2G and 5G.
3594 	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3595 	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
3596 	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3597 	 *
3598 	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
3599 	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3600 	 *
3601 	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3602 	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3603 	 */
3604 	if (AR_SREV_9462_20_OR_LATER(ah)) {
3605 		value = ar9003_switch_com_spdt_get(ah, is2ghz);
3606 		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3607 				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3608 		REG_SET_BIT(ah, AR_PHY_GLB_CONTROL, AR_BTCOEX_CTRL_SPDT_ENABLE);
3609 	}
3610 
3611 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3612 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3613 
3614 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3615 		if ((ah->rxchainmask & BIT(chain)) ||
3616 		    (ah->txchainmask & BIT(chain))) {
3617 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3618 							     is2ghz);
3619 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3620 				      AR_SWITCH_TABLE_ALL, value);
3621 		}
3622 	}
3623 
3624 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
3625 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3626 		/*
3627 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3628 		 * are the fields present
3629 		 */
3630 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3631 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3632 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3633 		/* enable_lnadiv */
3634 		regval &= (~AR_PHY_ANT_DIV_LNADIV);
3635 		regval |= ((value >> 6) & 0x1) << AR_PHY_ANT_DIV_LNADIV_S;
3636 
3637 		if (AR_SREV_9565(ah)) {
3638 			if (ah->shared_chain_lnadiv) {
3639 				regval |= (1 << AR_PHY_ANT_SW_RX_PROT_S);
3640 			} else {
3641 				regval &= ~(1 << AR_PHY_ANT_DIV_LNADIV_S);
3642 				regval &= ~(1 << AR_PHY_ANT_SW_RX_PROT_S);
3643 			}
3644 		}
3645 
3646 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3647 
3648 		/*enable fast_div */
3649 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3650 		regval &= (~AR_FAST_DIV_ENABLE);
3651 		regval |= ((value >> 7) & 0x1) << AR_FAST_DIV_ENABLE_S;
3652 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3653 
3654 		if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
3655 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3656 			/*
3657 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3658 			 * main_tb, alt_tb
3659 			 */
3660 			regval &= (~(AR_PHY_ANT_DIV_MAIN_LNACONF |
3661 				     AR_PHY_ANT_DIV_ALT_LNACONF |
3662 				     AR_PHY_ANT_DIV_ALT_GAINTB |
3663 				     AR_PHY_ANT_DIV_MAIN_GAINTB));
3664 			/* by default use LNA1 for the main antenna */
3665 			regval |= (AR_PHY_ANT_DIV_LNA1 <<
3666 				   AR_PHY_ANT_DIV_MAIN_LNACONF_S);
3667 			regval |= (AR_PHY_ANT_DIV_LNA2 <<
3668 				   AR_PHY_ANT_DIV_ALT_LNACONF_S);
3669 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3670 		}
3671 	}
3672 }
3673 
3674 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3675 {
3676 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3677 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3678 	int drive_strength;
3679 	unsigned long reg;
3680 
3681 	drive_strength = pBase->miscConfiguration & BIT(0);
3682 	if (!drive_strength)
3683 		return;
3684 
3685 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3686 	reg &= ~0x00ffffc0;
3687 	reg |= 0x5 << 21;
3688 	reg |= 0x5 << 18;
3689 	reg |= 0x5 << 15;
3690 	reg |= 0x5 << 12;
3691 	reg |= 0x5 << 9;
3692 	reg |= 0x5 << 6;
3693 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3694 
3695 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3696 	reg &= ~0xffffffe0;
3697 	reg |= 0x5 << 29;
3698 	reg |= 0x5 << 26;
3699 	reg |= 0x5 << 23;
3700 	reg |= 0x5 << 20;
3701 	reg |= 0x5 << 17;
3702 	reg |= 0x5 << 14;
3703 	reg |= 0x5 << 11;
3704 	reg |= 0x5 << 8;
3705 	reg |= 0x5 << 5;
3706 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3707 
3708 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3709 	reg &= ~0xff800000;
3710 	reg |= 0x5 << 29;
3711 	reg |= 0x5 << 26;
3712 	reg |= 0x5 << 23;
3713 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3714 }
3715 
3716 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3717 				     struct ath9k_channel *chan)
3718 {
3719 	int f[3], t[3];
3720 	u16 value;
3721 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3722 
3723 	if (chain >= 0 && chain < 3) {
3724 		if (IS_CHAN_2GHZ(chan))
3725 			return eep->modalHeader2G.xatten1DB[chain];
3726 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3727 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3728 			f[0] = 5180;
3729 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3730 			f[1] = 5500;
3731 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3732 			f[2] = 5785;
3733 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3734 							    f, t, 3);
3735 			return value;
3736 		} else
3737 			return eep->modalHeader5G.xatten1DB[chain];
3738 	}
3739 
3740 	return 0;
3741 }
3742 
3743 
3744 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3745 					    struct ath9k_channel *chan)
3746 {
3747 	int f[3], t[3];
3748 	u16 value;
3749 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3750 
3751 	if (chain >= 0 && chain < 3) {
3752 		if (IS_CHAN_2GHZ(chan))
3753 			return eep->modalHeader2G.xatten1Margin[chain];
3754 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3755 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3756 			f[0] = 5180;
3757 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3758 			f[1] = 5500;
3759 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3760 			f[2] = 5785;
3761 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3762 							    f, t, 3);
3763 			return value;
3764 		} else
3765 			return eep->modalHeader5G.xatten1Margin[chain];
3766 	}
3767 
3768 	return 0;
3769 }
3770 
3771 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3772 {
3773 	int i;
3774 	u16 value;
3775 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3776 					  AR_PHY_EXT_ATTEN_CTL_1,
3777 					  AR_PHY_EXT_ATTEN_CTL_2,
3778 					 };
3779 
3780 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3781 	for (i = 0; i < 3; i++) {
3782 		if (ah->txchainmask & BIT(i)) {
3783 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3784 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3785 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3786 
3787 			value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3788 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3789 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3790 				      value);
3791 		}
3792 	}
3793 }
3794 
3795 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3796 {
3797 	int timeout = 100;
3798 
3799 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3800 		if (timeout-- == 0)
3801 			return false;
3802 		REG_WRITE(ah, pmu_reg, pmu_set);
3803 		udelay(10);
3804 	}
3805 
3806 	return true;
3807 }
3808 
3809 void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3810 {
3811 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3812 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3813 	u32 reg_val;
3814 
3815 	if (pBase->featureEnable & BIT(4)) {
3816 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3817 			int reg_pmu_set;
3818 
3819 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3820 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3821 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3822 				return;
3823 
3824 			if (AR_SREV_9330(ah)) {
3825 				if (ah->is_clk_25mhz) {
3826 					reg_pmu_set = (3 << 1) | (8 << 4) |
3827 						      (3 << 8) | (1 << 14) |
3828 						      (6 << 17) | (1 << 20) |
3829 						      (3 << 24);
3830 				} else {
3831 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3832 						      (3 << 8)  | (1 << 14) |
3833 						      (6 << 17) | (1 << 20) |
3834 						      (3 << 24);
3835 				}
3836 			} else {
3837 				reg_pmu_set = (5 << 1) | (7 << 4) |
3838 					      (2 << 8) | (2 << 14) |
3839 					      (6 << 17) | (1 << 20) |
3840 					      (3 << 24) | (1 << 28);
3841 			}
3842 
3843 			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3844 			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3845 				return;
3846 
3847 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3848 					| (4 << 26);
3849 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3850 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3851 				return;
3852 
3853 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3854 					| (1 << 21);
3855 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3856 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3857 				return;
3858 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3859 			reg_val = le32_to_cpu(pBase->swreg);
3860 			REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3861 		} else {
3862 			/* Internal regulator is ON. Write swreg register. */
3863 			reg_val = le32_to_cpu(pBase->swreg);
3864 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3865 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
3866 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3867 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3868 			/* Set REG_CONTROL1.SWREG_PROGRAM */
3869 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3870 				  REG_READ(ah,
3871 					   AR_RTC_REG_CONTROL1) |
3872 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3873 		}
3874 	} else {
3875 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3876 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3877 			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3878 						AR_PHY_PMU2_PGM))
3879 				udelay(10);
3880 
3881 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3882 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3883 						AR_PHY_PMU1_PWD))
3884 				udelay(10);
3885 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3886 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3887 						AR_PHY_PMU2_PGM))
3888 				udelay(10);
3889 		} else if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
3890 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3891 		else {
3892 			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3893 				AR_RTC_FORCE_SWREG_PRD;
3894 			REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3895 		}
3896 	}
3897 
3898 }
3899 
3900 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3901 {
3902 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3903 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3904 
3905 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3906 		return;
3907 
3908 	if (eep->baseEepHeader.featureEnable & 0x40) {
3909 		tuning_caps_param &= 0x7f;
3910 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3911 			      tuning_caps_param);
3912 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3913 			      tuning_caps_param);
3914 	}
3915 }
3916 
3917 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3918 {
3919 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3920 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3921 	int quick_drop;
3922 	s32 t[3], f[3] = {5180, 5500, 5785};
3923 
3924 	if (!(pBase->miscConfiguration & BIT(1)))
3925 		return;
3926 
3927 	if (freq < 4000)
3928 		quick_drop = eep->modalHeader2G.quick_drop;
3929 	else {
3930 		t[0] = eep->base_ext1.quick_drop_low;
3931 		t[1] = eep->modalHeader5G.quick_drop;
3932 		t[2] = eep->base_ext1.quick_drop_high;
3933 		quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
3934 	}
3935 	REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
3936 }
3937 
3938 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, bool is2ghz)
3939 {
3940 	u32 value;
3941 
3942 	value = ar9003_modal_header(ah, is2ghz)->txEndToXpaOff;
3943 
3944 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3945 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
3946 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3947 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
3948 }
3949 
3950 static void ar9003_hw_xpa_timing_control_apply(struct ath_hw *ah, bool is2ghz)
3951 {
3952 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3953 	u8 xpa_ctl;
3954 
3955 	if (!(eep->baseEepHeader.featureEnable & 0x80))
3956 		return;
3957 
3958 	if (!AR_SREV_9300(ah) && !AR_SREV_9340(ah) && !AR_SREV_9580(ah))
3959 		return;
3960 
3961 	xpa_ctl = ar9003_modal_header(ah, is2ghz)->txFrameToXpaOn;
3962 	if (is2ghz)
3963 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3964 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON, xpa_ctl);
3965 	else
3966 		REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3967 			      AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON, xpa_ctl);
3968 }
3969 
3970 static void ar9003_hw_xlna_bias_strength_apply(struct ath_hw *ah, bool is2ghz)
3971 {
3972 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3973 	u8 bias;
3974 
3975 	if (!(eep->baseEepHeader.featureEnable & 0x40))
3976 		return;
3977 
3978 	if (!AR_SREV_9300(ah))
3979 		return;
3980 
3981 	bias = ar9003_modal_header(ah, is2ghz)->xlna_bias_strength;
3982 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
3983 		      bias & 0x3);
3984 	bias >>= 2;
3985 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
3986 		      bias & 0x3);
3987 	bias >>= 2;
3988 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS,
3989 		      bias & 0x3);
3990 }
3991 
3992 static int ar9003_hw_get_thermometer(struct ath_hw *ah)
3993 {
3994 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3995 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
3996 	int thermometer =  (pBase->miscConfiguration >> 1) & 0x3;
3997 
3998 	return --thermometer;
3999 }
4000 
4001 static void ar9003_hw_thermometer_apply(struct ath_hw *ah)
4002 {
4003 	int thermometer = ar9003_hw_get_thermometer(ah);
4004 	u8 therm_on = (thermometer < 0) ? 0 : 1;
4005 
4006 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4007 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4008 	if (ah->caps.tx_chainmask & BIT(1))
4009 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4010 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4011 	if (ah->caps.tx_chainmask & BIT(2))
4012 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4013 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, therm_on);
4014 
4015 	therm_on = (thermometer < 0) ? 0 : (thermometer == 0);
4016 	REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX4,
4017 		      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4018 	if (ah->caps.tx_chainmask & BIT(1)) {
4019 		therm_on = (thermometer < 0) ? 0 : (thermometer == 1);
4020 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX4,
4021 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4022 	}
4023 	if (ah->caps.tx_chainmask & BIT(2)) {
4024 		therm_on = (thermometer < 0) ? 0 : (thermometer == 2);
4025 		REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4026 			      AR_PHY_65NM_CH0_RXTX4_THERM_ON, therm_on);
4027 	}
4028 }
4029 
4030 static void ar9003_hw_thermo_cal_apply(struct ath_hw *ah)
4031 {
4032 	u32 data, ko, kg;
4033 
4034 	if (!AR_SREV_9462_20(ah))
4035 		return;
4036 	ar9300_otp_read_word(ah, 1, &data);
4037 	ko = data & 0xff;
4038 	kg = (data >> 8) & 0xff;
4039 	if (ko || kg) {
4040 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4041 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_OFFSET, ko);
4042 		REG_RMW_FIELD(ah, AR_PHY_BB_THERM_ADC_3,
4043 			      AR_PHY_BB_THERM_ADC_3_THERM_ADC_SCALE_GAIN,
4044 			      kg + 256);
4045 	}
4046 }
4047 
4048 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
4049 					     struct ath9k_channel *chan)
4050 {
4051 	bool is2ghz = IS_CHAN_2GHZ(chan);
4052 	ar9003_hw_xpa_timing_control_apply(ah, is2ghz);
4053 	ar9003_hw_xpa_bias_level_apply(ah, is2ghz);
4054 	ar9003_hw_ant_ctrl_apply(ah, is2ghz);
4055 	ar9003_hw_drive_strength_apply(ah);
4056 	ar9003_hw_xlna_bias_strength_apply(ah, is2ghz);
4057 	ar9003_hw_atten_apply(ah, chan);
4058 	ar9003_hw_quick_drop_apply(ah, chan->channel);
4059 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah) && !AR_SREV_9550(ah))
4060 		ar9003_hw_internal_regulator_apply(ah);
4061 	ar9003_hw_apply_tuning_caps(ah);
4062 	ar9003_hw_txend_to_xpa_off_apply(ah, is2ghz);
4063 	ar9003_hw_thermometer_apply(ah);
4064 	ar9003_hw_thermo_cal_apply(ah);
4065 }
4066 
4067 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
4068 				      struct ath9k_channel *chan)
4069 {
4070 }
4071 
4072 /*
4073  * Returns the interpolated y value corresponding to the specified x value
4074  * from the np ordered pairs of data (px,py).
4075  * The pairs do not have to be in any order.
4076  * If the specified x value is less than any of the px,
4077  * the returned y value is equal to the py for the lowest px.
4078  * If the specified x value is greater than any of the px,
4079  * the returned y value is equal to the py for the highest px.
4080  */
4081 static int ar9003_hw_power_interpolate(int32_t x,
4082 				       int32_t *px, int32_t *py, u_int16_t np)
4083 {
4084 	int ip = 0;
4085 	int lx = 0, ly = 0, lhave = 0;
4086 	int hx = 0, hy = 0, hhave = 0;
4087 	int dx = 0;
4088 	int y = 0;
4089 
4090 	lhave = 0;
4091 	hhave = 0;
4092 
4093 	/* identify best lower and higher x calibration measurement */
4094 	for (ip = 0; ip < np; ip++) {
4095 		dx = x - px[ip];
4096 
4097 		/* this measurement is higher than our desired x */
4098 		if (dx <= 0) {
4099 			if (!hhave || dx > (x - hx)) {
4100 				/* new best higher x measurement */
4101 				hx = px[ip];
4102 				hy = py[ip];
4103 				hhave = 1;
4104 			}
4105 		}
4106 		/* this measurement is lower than our desired x */
4107 		if (dx >= 0) {
4108 			if (!lhave || dx < (x - lx)) {
4109 				/* new best lower x measurement */
4110 				lx = px[ip];
4111 				ly = py[ip];
4112 				lhave = 1;
4113 			}
4114 		}
4115 	}
4116 
4117 	/* the low x is good */
4118 	if (lhave) {
4119 		/* so is the high x */
4120 		if (hhave) {
4121 			/* they're the same, so just pick one */
4122 			if (hx == lx)
4123 				y = ly;
4124 			else	/* interpolate  */
4125 				y = interpolate(x, lx, hx, ly, hy);
4126 		} else		/* only low is good, use it */
4127 			y = ly;
4128 	} else if (hhave)	/* only high is good, use it */
4129 		y = hy;
4130 	else /* nothing is good,this should never happen unless np=0, ???? */
4131 		y = -(1 << 30);
4132 	return y;
4133 }
4134 
4135 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4136 				       u16 rateIndex, u16 freq, bool is2GHz)
4137 {
4138 	u16 numPiers, i;
4139 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4140 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4141 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4142 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
4143 	u8 *pFreqBin;
4144 
4145 	if (is2GHz) {
4146 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4147 		pEepromTargetPwr = eep->calTargetPower2G;
4148 		pFreqBin = eep->calTarget_freqbin_2G;
4149 	} else {
4150 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4151 		pEepromTargetPwr = eep->calTargetPower5G;
4152 		pFreqBin = eep->calTarget_freqbin_5G;
4153 	}
4154 
4155 	/*
4156 	 * create array of channels and targetpower from
4157 	 * targetpower piers stored on eeprom
4158 	 */
4159 	for (i = 0; i < numPiers; i++) {
4160 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4161 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4162 	}
4163 
4164 	/* interpolate to get target power for given frequency */
4165 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4166 						 freqArray,
4167 						 targetPowerArray, numPiers);
4168 }
4169 
4170 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4171 					    u16 rateIndex,
4172 					    u16 freq, bool is2GHz)
4173 {
4174 	u16 numPiers, i;
4175 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4176 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4177 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4178 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4179 	u8 *pFreqBin;
4180 
4181 	if (is2GHz) {
4182 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4183 		pEepromTargetPwr = eep->calTargetPower2GHT20;
4184 		pFreqBin = eep->calTarget_freqbin_2GHT20;
4185 	} else {
4186 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4187 		pEepromTargetPwr = eep->calTargetPower5GHT20;
4188 		pFreqBin = eep->calTarget_freqbin_5GHT20;
4189 	}
4190 
4191 	/*
4192 	 * create array of channels and targetpower
4193 	 * from targetpower piers stored on eeprom
4194 	 */
4195 	for (i = 0; i < numPiers; i++) {
4196 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4197 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4198 	}
4199 
4200 	/* interpolate to get target power for given frequency */
4201 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4202 						 freqArray,
4203 						 targetPowerArray, numPiers);
4204 }
4205 
4206 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4207 					    u16 rateIndex,
4208 					    u16 freq, bool is2GHz)
4209 {
4210 	u16 numPiers, i;
4211 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4212 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4213 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4214 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4215 	u8 *pFreqBin;
4216 
4217 	if (is2GHz) {
4218 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4219 		pEepromTargetPwr = eep->calTargetPower2GHT40;
4220 		pFreqBin = eep->calTarget_freqbin_2GHT40;
4221 	} else {
4222 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4223 		pEepromTargetPwr = eep->calTargetPower5GHT40;
4224 		pFreqBin = eep->calTarget_freqbin_5GHT40;
4225 	}
4226 
4227 	/*
4228 	 * create array of channels and targetpower from
4229 	 * targetpower piers stored on eeprom
4230 	 */
4231 	for (i = 0; i < numPiers; i++) {
4232 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4233 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4234 	}
4235 
4236 	/* interpolate to get target power for given frequency */
4237 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4238 						 freqArray,
4239 						 targetPowerArray, numPiers);
4240 }
4241 
4242 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4243 					   u16 rateIndex, u16 freq)
4244 {
4245 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4246 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4247 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4248 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4249 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4250 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4251 
4252 	/*
4253 	 * create array of channels and targetpower from
4254 	 * targetpower piers stored on eeprom
4255 	 */
4256 	for (i = 0; i < numPiers; i++) {
4257 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4258 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4259 	}
4260 
4261 	/* interpolate to get target power for given frequency */
4262 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4263 						 freqArray,
4264 						 targetPowerArray, numPiers);
4265 }
4266 
4267 /* Set tx power registers to array of values passed in */
4268 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4269 {
4270 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4271 	/* make sure forced gain is not set */
4272 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4273 
4274 	/* Write the OFDM power per rate set */
4275 
4276 	/* 6 (LSB), 9, 12, 18 (MSB) */
4277 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4278 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4279 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4280 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4281 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4282 
4283 	/* 24 (LSB), 36, 48, 54 (MSB) */
4284 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4285 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4286 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4287 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4288 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4289 
4290 	/* Write the CCK power per rate set */
4291 
4292 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4293 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4294 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4295 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4296 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4297 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4298 
4299 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4300 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4301 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4302 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4303 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4304 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4305 	    );
4306 
4307         /* Write the power for duplicated frames - HT40 */
4308 
4309         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4310 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4311 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4312 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4313 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4314 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4315 	    );
4316 
4317 	/* Write the HT20 power per rate set */
4318 
4319 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4320 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4321 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4322 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4323 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4324 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4325 	    );
4326 
4327 	/* 6 (LSB), 7, 12, 13 (MSB) */
4328 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4329 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4330 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4331 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4332 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4333 	    );
4334 
4335 	/* 14 (LSB), 15, 20, 21 */
4336 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4337 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4338 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4339 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4340 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4341 	    );
4342 
4343 	/* Mixed HT20 and HT40 rates */
4344 
4345 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4346 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4347 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4348 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4349 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4350 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4351 	    );
4352 
4353 	/*
4354 	 * Write the HT40 power per rate set
4355 	 * correct PAR difference between HT40 and HT20/LEGACY
4356 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4357 	 */
4358 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4359 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4360 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4361 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4362 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4363 	    );
4364 
4365 	/* 6 (LSB), 7, 12, 13 (MSB) */
4366 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4367 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4368 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4369 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4370 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4371 	    );
4372 
4373 	/* 14 (LSB), 15, 20, 21 */
4374 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4375 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4376 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4377 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4378 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4379 	    );
4380 
4381 	return 0;
4382 #undef POW_SM
4383 }
4384 
4385 static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4386 					       u8 *targetPowerValT2,
4387 					       bool is2GHz)
4388 {
4389 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4390 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4391 					 is2GHz);
4392 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4393 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4394 					 is2GHz);
4395 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4396 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4397 					 is2GHz);
4398 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4399 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4400 					 is2GHz);
4401 }
4402 
4403 static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4404 					    u8 *targetPowerValT2)
4405 {
4406 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4407 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4408 					     freq);
4409 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4410 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4411 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4412 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4413 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4414 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4415 }
4416 
4417 static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4418 					     u8 *targetPowerValT2, bool is2GHz)
4419 {
4420 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4421 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4422 					      is2GHz);
4423 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4424 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4425 					      freq, is2GHz);
4426 	targetPowerValT2[ALL_TARGET_HT20_4] =
4427 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4428 					      is2GHz);
4429 	targetPowerValT2[ALL_TARGET_HT20_5] =
4430 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4431 					      is2GHz);
4432 	targetPowerValT2[ALL_TARGET_HT20_6] =
4433 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4434 					      is2GHz);
4435 	targetPowerValT2[ALL_TARGET_HT20_7] =
4436 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4437 					      is2GHz);
4438 	targetPowerValT2[ALL_TARGET_HT20_12] =
4439 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4440 					      is2GHz);
4441 	targetPowerValT2[ALL_TARGET_HT20_13] =
4442 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4443 					      is2GHz);
4444 	targetPowerValT2[ALL_TARGET_HT20_14] =
4445 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4446 					      is2GHz);
4447 	targetPowerValT2[ALL_TARGET_HT20_15] =
4448 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4449 					      is2GHz);
4450 	targetPowerValT2[ALL_TARGET_HT20_20] =
4451 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4452 					      is2GHz);
4453 	targetPowerValT2[ALL_TARGET_HT20_21] =
4454 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4455 					      is2GHz);
4456 	targetPowerValT2[ALL_TARGET_HT20_22] =
4457 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4458 					      is2GHz);
4459 	targetPowerValT2[ALL_TARGET_HT20_23] =
4460 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4461 					      is2GHz);
4462 }
4463 
4464 static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4465 						   u16 freq,
4466 						   u8 *targetPowerValT2,
4467 						   bool is2GHz)
4468 {
4469 	/* XXX: hard code for now, need to get from eeprom struct */
4470 	u8 ht40PowerIncForPdadc = 0;
4471 
4472 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4473 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4474 					      is2GHz) + ht40PowerIncForPdadc;
4475 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4476 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4477 					      freq,
4478 					      is2GHz) + ht40PowerIncForPdadc;
4479 	targetPowerValT2[ALL_TARGET_HT40_4] =
4480 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4481 					      is2GHz) + ht40PowerIncForPdadc;
4482 	targetPowerValT2[ALL_TARGET_HT40_5] =
4483 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4484 					      is2GHz) + ht40PowerIncForPdadc;
4485 	targetPowerValT2[ALL_TARGET_HT40_6] =
4486 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4487 					      is2GHz) + ht40PowerIncForPdadc;
4488 	targetPowerValT2[ALL_TARGET_HT40_7] =
4489 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4490 					      is2GHz) + ht40PowerIncForPdadc;
4491 	targetPowerValT2[ALL_TARGET_HT40_12] =
4492 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4493 					      is2GHz) + ht40PowerIncForPdadc;
4494 	targetPowerValT2[ALL_TARGET_HT40_13] =
4495 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4496 					      is2GHz) + ht40PowerIncForPdadc;
4497 	targetPowerValT2[ALL_TARGET_HT40_14] =
4498 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4499 					      is2GHz) + ht40PowerIncForPdadc;
4500 	targetPowerValT2[ALL_TARGET_HT40_15] =
4501 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4502 					      is2GHz) + ht40PowerIncForPdadc;
4503 	targetPowerValT2[ALL_TARGET_HT40_20] =
4504 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4505 					      is2GHz) + ht40PowerIncForPdadc;
4506 	targetPowerValT2[ALL_TARGET_HT40_21] =
4507 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4508 					      is2GHz) + ht40PowerIncForPdadc;
4509 	targetPowerValT2[ALL_TARGET_HT40_22] =
4510 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4511 					      is2GHz) + ht40PowerIncForPdadc;
4512 	targetPowerValT2[ALL_TARGET_HT40_23] =
4513 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4514 					      is2GHz) + ht40PowerIncForPdadc;
4515 }
4516 
4517 static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4518 					      struct ath9k_channel *chan,
4519 					      u8 *targetPowerValT2)
4520 {
4521 	bool is2GHz = IS_CHAN_2GHZ(chan);
4522 	unsigned int i = 0;
4523 	struct ath_common *common = ath9k_hw_common(ah);
4524 	u16 freq = chan->channel;
4525 
4526 	if (is2GHz)
4527 		ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4528 
4529 	ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4530 	ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4531 
4532 	if (IS_CHAN_HT40(chan))
4533 		ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4534 						 is2GHz);
4535 
4536 	for (i = 0; i < ar9300RateSize; i++) {
4537 		ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
4538 			i, targetPowerValT2[i]);
4539 	}
4540 }
4541 
4542 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4543 				  int mode,
4544 				  int ipier,
4545 				  int ichain,
4546 				  int *pfrequency,
4547 				  int *pcorrection,
4548 				  int *ptemperature, int *pvoltage)
4549 {
4550 	u8 *pCalPier;
4551 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4552 	int is2GHz;
4553 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4554 	struct ath_common *common = ath9k_hw_common(ah);
4555 
4556 	if (ichain >= AR9300_MAX_CHAINS) {
4557 		ath_dbg(common, EEPROM,
4558 			"Invalid chain index, must be less than %d\n",
4559 			AR9300_MAX_CHAINS);
4560 		return -1;
4561 	}
4562 
4563 	if (mode) {		/* 5GHz */
4564 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4565 			ath_dbg(common, EEPROM,
4566 				"Invalid 5GHz cal pier index, must be less than %d\n",
4567 				AR9300_NUM_5G_CAL_PIERS);
4568 			return -1;
4569 		}
4570 		pCalPier = &(eep->calFreqPier5G[ipier]);
4571 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4572 		is2GHz = 0;
4573 	} else {
4574 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4575 			ath_dbg(common, EEPROM,
4576 				"Invalid 2GHz cal pier index, must be less than %d\n",
4577 				AR9300_NUM_2G_CAL_PIERS);
4578 			return -1;
4579 		}
4580 
4581 		pCalPier = &(eep->calFreqPier2G[ipier]);
4582 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4583 		is2GHz = 1;
4584 	}
4585 
4586 	*pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
4587 	*pcorrection = pCalPierStruct->refPower;
4588 	*ptemperature = pCalPierStruct->tempMeas;
4589 	*pvoltage = pCalPierStruct->voltMeas;
4590 
4591 	return 0;
4592 }
4593 
4594 static int ar9003_hw_power_control_override(struct ath_hw *ah,
4595 					    int frequency,
4596 					    int *correction,
4597 					    int *voltage, int *temperature)
4598 {
4599 	int tempSlope = 0;
4600 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4601 	int f[8], t[8], i;
4602 
4603 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4604 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4605 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4606 	if (ah->caps.tx_chainmask & BIT(1))
4607 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4608 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4609 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4610 	if (ah->caps.tx_chainmask & BIT(2))
4611 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4612 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4613 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4614 
4615 	/* enable open loop power control on chip */
4616 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4617 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4618 		AR_PHY_TPC_6_ERROR_EST_MODE);
4619 	if (ah->caps.tx_chainmask & BIT(1))
4620 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4621 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4622 			AR_PHY_TPC_6_ERROR_EST_MODE);
4623 	if (ah->caps.tx_chainmask & BIT(2))
4624 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4625 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4626 			AR_PHY_TPC_6_ERROR_EST_MODE);
4627 
4628 	/*
4629 	 * enable temperature compensation
4630 	 * Need to use register names
4631 	 */
4632 	if (frequency < 4000)
4633 		tempSlope = eep->modalHeader2G.tempSlope;
4634 	else if ((eep->baseEepHeader.miscConfiguration & 0x20) != 0) {
4635 		for (i = 0; i < 8; i++) {
4636 			t[i] = eep->base_ext1.tempslopextension[i];
4637 			f[i] = FBIN2FREQ(eep->calFreqPier5G[i], 0);
4638 		}
4639 		tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4640 							f, t, 8);
4641 	} else if (eep->base_ext2.tempSlopeLow != 0) {
4642 		t[0] = eep->base_ext2.tempSlopeLow;
4643 		f[0] = 5180;
4644 		t[1] = eep->modalHeader5G.tempSlope;
4645 		f[1] = 5500;
4646 		t[2] = eep->base_ext2.tempSlopeHigh;
4647 		f[2] = 5785;
4648 		tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4649 							f, t, 3);
4650 	} else
4651 		tempSlope = eep->modalHeader5G.tempSlope;
4652 
4653 	REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4654 
4655 	if (AR_SREV_9462_20(ah))
4656 		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4657 			      AR_PHY_TPC_19_B1_ALPHA_THERM, tempSlope);
4658 
4659 
4660 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4661 		      temperature[0]);
4662 
4663 	return 0;
4664 }
4665 
4666 /* Apply the recorded correction values. */
4667 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4668 {
4669 	int ichain, ipier, npier;
4670 	int mode;
4671 	int lfrequency[AR9300_MAX_CHAINS],
4672 	    lcorrection[AR9300_MAX_CHAINS],
4673 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4674 	int hfrequency[AR9300_MAX_CHAINS],
4675 	    hcorrection[AR9300_MAX_CHAINS],
4676 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4677 	int fdiff;
4678 	int correction[AR9300_MAX_CHAINS],
4679 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4680 	int pfrequency, pcorrection, ptemperature, pvoltage;
4681 	struct ath_common *common = ath9k_hw_common(ah);
4682 
4683 	mode = (frequency >= 4000);
4684 	if (mode)
4685 		npier = AR9300_NUM_5G_CAL_PIERS;
4686 	else
4687 		npier = AR9300_NUM_2G_CAL_PIERS;
4688 
4689 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4690 		lfrequency[ichain] = 0;
4691 		hfrequency[ichain] = 100000;
4692 	}
4693 	/* identify best lower and higher frequency calibration measurement */
4694 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4695 		for (ipier = 0; ipier < npier; ipier++) {
4696 			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4697 						    &pfrequency, &pcorrection,
4698 						    &ptemperature, &pvoltage)) {
4699 				fdiff = frequency - pfrequency;
4700 
4701 				/*
4702 				 * this measurement is higher than
4703 				 * our desired frequency
4704 				 */
4705 				if (fdiff <= 0) {
4706 					if (hfrequency[ichain] <= 0 ||
4707 					    hfrequency[ichain] >= 100000 ||
4708 					    fdiff >
4709 					    (frequency - hfrequency[ichain])) {
4710 						/*
4711 						 * new best higher
4712 						 * frequency measurement
4713 						 */
4714 						hfrequency[ichain] = pfrequency;
4715 						hcorrection[ichain] =
4716 						    pcorrection;
4717 						htemperature[ichain] =
4718 						    ptemperature;
4719 						hvoltage[ichain] = pvoltage;
4720 					}
4721 				}
4722 				if (fdiff >= 0) {
4723 					if (lfrequency[ichain] <= 0
4724 					    || fdiff <
4725 					    (frequency - lfrequency[ichain])) {
4726 						/*
4727 						 * new best lower
4728 						 * frequency measurement
4729 						 */
4730 						lfrequency[ichain] = pfrequency;
4731 						lcorrection[ichain] =
4732 						    pcorrection;
4733 						ltemperature[ichain] =
4734 						    ptemperature;
4735 						lvoltage[ichain] = pvoltage;
4736 					}
4737 				}
4738 			}
4739 		}
4740 	}
4741 
4742 	/* interpolate  */
4743 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4744 		ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4745 			ichain, frequency, lfrequency[ichain],
4746 			lcorrection[ichain], hfrequency[ichain],
4747 			hcorrection[ichain]);
4748 		/* they're the same, so just pick one */
4749 		if (hfrequency[ichain] == lfrequency[ichain]) {
4750 			correction[ichain] = lcorrection[ichain];
4751 			voltage[ichain] = lvoltage[ichain];
4752 			temperature[ichain] = ltemperature[ichain];
4753 		}
4754 		/* the low frequency is good */
4755 		else if (frequency - lfrequency[ichain] < 1000) {
4756 			/* so is the high frequency, interpolate */
4757 			if (hfrequency[ichain] - frequency < 1000) {
4758 
4759 				correction[ichain] = interpolate(frequency,
4760 						lfrequency[ichain],
4761 						hfrequency[ichain],
4762 						lcorrection[ichain],
4763 						hcorrection[ichain]);
4764 
4765 				temperature[ichain] = interpolate(frequency,
4766 						lfrequency[ichain],
4767 						hfrequency[ichain],
4768 						ltemperature[ichain],
4769 						htemperature[ichain]);
4770 
4771 				voltage[ichain] = interpolate(frequency,
4772 						lfrequency[ichain],
4773 						hfrequency[ichain],
4774 						lvoltage[ichain],
4775 						hvoltage[ichain]);
4776 			}
4777 			/* only low is good, use it */
4778 			else {
4779 				correction[ichain] = lcorrection[ichain];
4780 				temperature[ichain] = ltemperature[ichain];
4781 				voltage[ichain] = lvoltage[ichain];
4782 			}
4783 		}
4784 		/* only high is good, use it */
4785 		else if (hfrequency[ichain] - frequency < 1000) {
4786 			correction[ichain] = hcorrection[ichain];
4787 			temperature[ichain] = htemperature[ichain];
4788 			voltage[ichain] = hvoltage[ichain];
4789 		} else {	/* nothing is good, presume 0???? */
4790 			correction[ichain] = 0;
4791 			temperature[ichain] = 0;
4792 			voltage[ichain] = 0;
4793 		}
4794 	}
4795 
4796 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4797 					 temperature);
4798 
4799 	ath_dbg(common, EEPROM,
4800 		"for frequency=%d, calibration correction = %d %d %d\n",
4801 		frequency, correction[0], correction[1], correction[2]);
4802 
4803 	return 0;
4804 }
4805 
4806 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4807 					   int idx,
4808 					   int edge,
4809 					   bool is2GHz)
4810 {
4811 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4812 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4813 
4814 	if (is2GHz)
4815 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4816 	else
4817 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4818 }
4819 
4820 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4821 					     int idx,
4822 					     unsigned int edge,
4823 					     u16 freq,
4824 					     bool is2GHz)
4825 {
4826 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4827 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4828 
4829 	u8 *ctl_freqbin = is2GHz ?
4830 		&eep->ctl_freqbin_2G[idx][0] :
4831 		&eep->ctl_freqbin_5G[idx][0];
4832 
4833 	if (is2GHz) {
4834 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4835 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4836 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4837 	} else {
4838 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4839 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4840 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4841 	}
4842 
4843 	return MAX_RATE_POWER;
4844 }
4845 
4846 /*
4847  * Find the maximum conformance test limit for the given channel and CTL info
4848  */
4849 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4850 					u16 freq, int idx, bool is2GHz)
4851 {
4852 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4853 	u8 *ctl_freqbin = is2GHz ?
4854 		&eep->ctl_freqbin_2G[idx][0] :
4855 		&eep->ctl_freqbin_5G[idx][0];
4856 	u16 num_edges = is2GHz ?
4857 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4858 	unsigned int edge;
4859 
4860 	/* Get the edge power */
4861 	for (edge = 0;
4862 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4863 	     edge++) {
4864 		/*
4865 		 * If there's an exact channel match or an inband flag set
4866 		 * on the lower channel use the given rdEdgePower
4867 		 */
4868 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4869 			twiceMaxEdgePower =
4870 				ar9003_hw_get_direct_edge_power(eep, idx,
4871 								edge, is2GHz);
4872 			break;
4873 		} else if ((edge > 0) &&
4874 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4875 						      is2GHz))) {
4876 			twiceMaxEdgePower =
4877 				ar9003_hw_get_indirect_edge_power(eep, idx,
4878 								  edge, freq,
4879 								  is2GHz);
4880 			/*
4881 			 * Leave loop - no more affecting edges possible in
4882 			 * this monotonic increasing list
4883 			 */
4884 			break;
4885 		}
4886 	}
4887 	return twiceMaxEdgePower;
4888 }
4889 
4890 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4891 					       struct ath9k_channel *chan,
4892 					       u8 *pPwrArray, u16 cfgCtl,
4893 					       u8 antenna_reduction,
4894 					       u16 powerLimit)
4895 {
4896 	struct ath_common *common = ath9k_hw_common(ah);
4897 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4898 	u16 twiceMaxEdgePower;
4899 	int i;
4900 	u16 scaledPower = 0, minCtlPower;
4901 	static const u16 ctlModesFor11a[] = {
4902 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4903 	};
4904 	static const u16 ctlModesFor11g[] = {
4905 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4906 		CTL_11G_EXT, CTL_2GHT40
4907 	};
4908 	u16 numCtlModes;
4909 	const u16 *pCtlMode;
4910 	u16 ctlMode, freq;
4911 	struct chan_centers centers;
4912 	u8 *ctlIndex;
4913 	u8 ctlNum;
4914 	u16 twiceMinEdgePower;
4915 	bool is2ghz = IS_CHAN_2GHZ(chan);
4916 
4917 	ath9k_hw_get_channel_centers(ah, chan, &centers);
4918 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
4919 						antenna_reduction);
4920 
4921 	if (is2ghz) {
4922 		/* Setup for CTL modes */
4923 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
4924 		numCtlModes =
4925 			ARRAY_SIZE(ctlModesFor11g) -
4926 				   SUB_NUM_CTL_MODES_AT_2G_40;
4927 		pCtlMode = ctlModesFor11g;
4928 		if (IS_CHAN_HT40(chan))
4929 			/* All 2G CTL's */
4930 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4931 	} else {
4932 		/* Setup for CTL modes */
4933 		/* CTL_11A, CTL_5GHT20 */
4934 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4935 					 SUB_NUM_CTL_MODES_AT_5G_40;
4936 		pCtlMode = ctlModesFor11a;
4937 		if (IS_CHAN_HT40(chan))
4938 			/* All 5G CTL's */
4939 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4940 	}
4941 
4942 	/*
4943 	 * For MIMO, need to apply regulatory caps individually across
4944 	 * dynamically running modes: CCK, OFDM, HT20, HT40
4945 	 *
4946 	 * The outer loop walks through each possible applicable runtime mode.
4947 	 * The inner loop walks through each ctlIndex entry in EEPROM.
4948 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4949 	 */
4950 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4951 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4952 			(pCtlMode[ctlMode] == CTL_2GHT40);
4953 		if (isHt40CtlMode)
4954 			freq = centers.synth_center;
4955 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4956 			freq = centers.ext_center;
4957 		else
4958 			freq = centers.ctl_center;
4959 
4960 		ath_dbg(common, REGULATORY,
4961 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4962 			ctlMode, numCtlModes, isHt40CtlMode,
4963 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
4964 
4965 		/* walk through each CTL index stored in EEPROM */
4966 		if (is2ghz) {
4967 			ctlIndex = pEepData->ctlIndex_2G;
4968 			ctlNum = AR9300_NUM_CTLS_2G;
4969 		} else {
4970 			ctlIndex = pEepData->ctlIndex_5G;
4971 			ctlNum = AR9300_NUM_CTLS_5G;
4972 		}
4973 
4974 		twiceMaxEdgePower = MAX_RATE_POWER;
4975 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4976 			ath_dbg(common, REGULATORY,
4977 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4978 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4979 				chan->channel);
4980 
4981 			/*
4982 			 * compare test group from regulatory
4983 			 * channel list with test mode from pCtlMode
4984 			 * list
4985 			 */
4986 			if ((((cfgCtl & ~CTL_MODE_M) |
4987 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4988 				ctlIndex[i]) ||
4989 			    (((cfgCtl & ~CTL_MODE_M) |
4990 			       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4991 			     ((ctlIndex[i] & CTL_MODE_M) |
4992 			       SD_NO_CTL))) {
4993 				twiceMinEdgePower =
4994 				  ar9003_hw_get_max_edge_power(pEepData,
4995 							       freq, i,
4996 							       is2ghz);
4997 
4998 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4999 					/*
5000 					 * Find the minimum of all CTL
5001 					 * edge powers that apply to
5002 					 * this channel
5003 					 */
5004 					twiceMaxEdgePower =
5005 						min(twiceMaxEdgePower,
5006 						    twiceMinEdgePower);
5007 				else {
5008 					/* specific */
5009 					twiceMaxEdgePower = twiceMinEdgePower;
5010 					break;
5011 				}
5012 			}
5013 		}
5014 
5015 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
5016 
5017 		ath_dbg(common, REGULATORY,
5018 			"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
5019 			ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
5020 			scaledPower, minCtlPower);
5021 
5022 		/* Apply ctl mode to correct target power set */
5023 		switch (pCtlMode[ctlMode]) {
5024 		case CTL_11B:
5025 			for (i = ALL_TARGET_LEGACY_1L_5L;
5026 			     i <= ALL_TARGET_LEGACY_11S; i++)
5027 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5028 						       minCtlPower);
5029 			break;
5030 		case CTL_11A:
5031 		case CTL_11G:
5032 			for (i = ALL_TARGET_LEGACY_6_24;
5033 			     i <= ALL_TARGET_LEGACY_54; i++)
5034 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5035 						       minCtlPower);
5036 			break;
5037 		case CTL_5GHT20:
5038 		case CTL_2GHT20:
5039 			for (i = ALL_TARGET_HT20_0_8_16;
5040 			     i <= ALL_TARGET_HT20_23; i++)
5041 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5042 						       minCtlPower);
5043 			break;
5044 		case CTL_5GHT40:
5045 		case CTL_2GHT40:
5046 			for (i = ALL_TARGET_HT40_0_8_16;
5047 			     i <= ALL_TARGET_HT40_23; i++)
5048 				pPwrArray[i] = (u8)min((u16)pPwrArray[i],
5049 						       minCtlPower);
5050 			break;
5051 		default:
5052 			break;
5053 		}
5054 	} /* end ctl mode checking */
5055 }
5056 
5057 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
5058 {
5059 	u8 mod_idx = mcs_idx % 8;
5060 
5061 	if (mod_idx <= 3)
5062 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
5063 	else
5064 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
5065 }
5066 
5067 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
5068 					struct ath9k_channel *chan, u16 cfgCtl,
5069 					u8 twiceAntennaReduction,
5070 					u8 powerLimit, bool test)
5071 {
5072 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
5073 	struct ath_common *common = ath9k_hw_common(ah);
5074 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5075 	struct ar9300_modal_eep_header *modal_hdr;
5076 	u8 targetPowerValT2[ar9300RateSize];
5077 	u8 target_power_val_t2_eep[ar9300RateSize];
5078 	unsigned int i = 0, paprd_scale_factor = 0;
5079 	u8 pwr_idx, min_pwridx = 0;
5080 
5081 	memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
5082 
5083 	/*
5084 	 * Get target powers from EEPROM - our baseline for TX Power
5085 	 */
5086 	ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
5087 
5088 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
5089 		if (IS_CHAN_2GHZ(chan))
5090 			modal_hdr = &eep->modalHeader2G;
5091 		else
5092 			modal_hdr = &eep->modalHeader5G;
5093 
5094 		ah->paprd_ratemask =
5095 			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5096 			AR9300_PAPRD_RATE_MASK;
5097 
5098 		ah->paprd_ratemask_ht40 =
5099 			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5100 			AR9300_PAPRD_RATE_MASK;
5101 
5102 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5103 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5104 						  ALL_TARGET_HT20_0_8_16;
5105 
5106 		if (!ah->paprd_table_write_done) {
5107 			memcpy(target_power_val_t2_eep, targetPowerValT2,
5108 			       sizeof(targetPowerValT2));
5109 			for (i = 0; i < 24; i++) {
5110 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5111 				if (ah->paprd_ratemask & (1 << i)) {
5112 					if (targetPowerValT2[pwr_idx] &&
5113 					    targetPowerValT2[pwr_idx] ==
5114 					    target_power_val_t2_eep[pwr_idx])
5115 						targetPowerValT2[pwr_idx] -=
5116 							paprd_scale_factor;
5117 				}
5118 			}
5119 		}
5120 		memcpy(target_power_val_t2_eep, targetPowerValT2,
5121 		       sizeof(targetPowerValT2));
5122 	}
5123 
5124 	ar9003_hw_set_power_per_rate_table(ah, chan,
5125 					   targetPowerValT2, cfgCtl,
5126 					   twiceAntennaReduction,
5127 					   powerLimit);
5128 
5129 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
5130 		for (i = 0; i < ar9300RateSize; i++) {
5131 			if ((ah->paprd_ratemask & (1 << i)) &&
5132 			    (abs(targetPowerValT2[i] -
5133 				target_power_val_t2_eep[i]) >
5134 			    paprd_scale_factor)) {
5135 				ah->paprd_ratemask &= ~(1 << i);
5136 				ath_dbg(common, EEPROM,
5137 					"paprd disabled for mcs %d\n", i);
5138 			}
5139 		}
5140 	}
5141 
5142 	regulatory->max_power_level = 0;
5143 	for (i = 0; i < ar9300RateSize; i++) {
5144 		if (targetPowerValT2[i] > regulatory->max_power_level)
5145 			regulatory->max_power_level = targetPowerValT2[i];
5146 	}
5147 
5148 	ath9k_hw_update_regulatory_maxpower(ah);
5149 
5150 	if (test)
5151 		return;
5152 
5153 	for (i = 0; i < ar9300RateSize; i++) {
5154 		ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
5155 			i, targetPowerValT2[i]);
5156 	}
5157 
5158 	/* Write target power array to registers */
5159 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5160 	ar9003_hw_calibration_apply(ah, chan->channel);
5161 
5162 	if (IS_CHAN_2GHZ(chan)) {
5163 		if (IS_CHAN_HT40(chan))
5164 			i = ALL_TARGET_HT40_0_8_16;
5165 		else
5166 			i = ALL_TARGET_HT20_0_8_16;
5167 	} else {
5168 		if (IS_CHAN_HT40(chan))
5169 			i = ALL_TARGET_HT40_7;
5170 		else
5171 			i = ALL_TARGET_HT20_7;
5172 	}
5173 	ah->paprd_target_power = targetPowerValT2[i];
5174 }
5175 
5176 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5177 					    u16 i, bool is2GHz)
5178 {
5179 	return AR_NO_SPUR;
5180 }
5181 
5182 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5183 {
5184 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5185 
5186 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5187 }
5188 
5189 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5190 {
5191 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5192 
5193 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5194 }
5195 
5196 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is2ghz)
5197 {
5198 	return ar9003_modal_header(ah, is2ghz)->spurChans;
5199 }
5200 
5201 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5202 					   struct ath9k_channel *chan)
5203 {
5204 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5205 
5206 	if (IS_CHAN_2GHZ(chan))
5207 		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5208 			  AR9300_PAPRD_SCALE_1);
5209 	else {
5210 		if (chan->channel >= 5700)
5211 		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5212 			  AR9300_PAPRD_SCALE_1);
5213 		else if (chan->channel >= 5400)
5214 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5215 				   AR9300_PAPRD_SCALE_2);
5216 		else
5217 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5218 				  AR9300_PAPRD_SCALE_1);
5219 	}
5220 }
5221 
5222 const struct eeprom_ops eep_ar9300_ops = {
5223 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5224 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5225 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5226 	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5227 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5228 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5229 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5230 	.set_addac = ath9k_hw_ar9300_set_addac,
5231 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5232 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5233 };
5234