xref: /linux/drivers/net/wireless/ath/ath9k/ar9003_eeprom.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21 
22 #define COMP_HDR_LEN 4
23 #define COMP_CKSUM_LEN 2
24 
25 #define LE16(x) __constant_cpu_to_le16(x)
26 #define LE32(x) __constant_cpu_to_le32(x)
27 
28 /* Local defines to distinguish between extension and control CTL's */
29 #define EXT_ADDITIVE (0x8000)
30 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
31 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
32 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
33 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
34 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9  /* 10*log10(3)*2 */
35 #define PWRINCR_3_TO_1_CHAIN      9             /* 10*log(3)*2 */
36 #define PWRINCR_3_TO_2_CHAIN      3             /* floor(10*log(3/2)*2) */
37 #define PWRINCR_2_TO_1_CHAIN      6             /* 10*log(2)*2 */
38 
39 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
40 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
41 
42 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
43 
44 #define EEPROM_DATA_LEN_9485	1088
45 
46 static int ar9003_hw_power_interpolate(int32_t x,
47 				       int32_t *px, int32_t *py, u_int16_t np);
48 
49 
50 static const struct ar9300_eeprom ar9300_default = {
51 	.eepromVersion = 2,
52 	.templateVersion = 2,
53 	.macAddr = {0, 2, 3, 4, 5, 6},
54 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
55 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
56 	.baseEepHeader = {
57 		.regDmn = { LE16(0), LE16(0x1f) },
58 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
59 		.opCapFlags = {
60 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
61 			.eepMisc = 0,
62 		},
63 		.rfSilent = 0,
64 		.blueToothOptions = 0,
65 		.deviceCap = 0,
66 		.deviceType = 5, /* takes lower byte in eeprom location */
67 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
68 		.params_for_tuning_caps = {0, 0},
69 		.featureEnable = 0x0c,
70 		 /*
71 		  * bit0 - enable tx temp comp - disabled
72 		  * bit1 - enable tx volt comp - disabled
73 		  * bit2 - enable fastClock - enabled
74 		  * bit3 - enable doubling - enabled
75 		  * bit4 - enable internal regulator - disabled
76 		  * bit5 - enable pa predistortion - disabled
77 		  */
78 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
79 		.eepromWriteEnableGpio = 3,
80 		.wlanDisableGpio = 0,
81 		.wlanLedGpio = 8,
82 		.rxBandSelectGpio = 0xff,
83 		.txrxgain = 0,
84 		.swreg = 0,
85 	 },
86 	.modalHeader2G = {
87 	/* ar9300_modal_eep_header  2g */
88 		/* 4 idle,t1,t2,b(4 bits per setting) */
89 		.antCtrlCommon = LE32(0x110),
90 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
91 		.antCtrlCommon2 = LE32(0x22222),
92 
93 		/*
94 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
95 		 * rx1, rx12, b (2 bits each)
96 		 */
97 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
98 
99 		/*
100 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
101 		 * for ar9280 (0xa20c/b20c 5:0)
102 		 */
103 		.xatten1DB = {0, 0, 0},
104 
105 		/*
106 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
107 		 * for ar9280 (0xa20c/b20c 16:12
108 		 */
109 		.xatten1Margin = {0, 0, 0},
110 		.tempSlope = 36,
111 		.voltSlope = 0,
112 
113 		/*
114 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
115 		 * channels in usual fbin coding format
116 		 */
117 		.spurChans = {0, 0, 0, 0, 0},
118 
119 		/*
120 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
121 		 * if the register is per chain
122 		 */
123 		.noiseFloorThreshCh = {-1, 0, 0},
124 		.ob = {1, 1, 1},/* 3 chain */
125 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
126 		.db_stage3 = {0, 0, 0},
127 		.db_stage4 = {0, 0, 0},
128 		.xpaBiasLvl = 0,
129 		.txFrameToDataStart = 0x0e,
130 		.txFrameToPaOn = 0x0e,
131 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
132 		.antennaGain = 0,
133 		.switchSettling = 0x2c,
134 		.adcDesiredSize = -30,
135 		.txEndToXpaOff = 0,
136 		.txEndToRxOn = 0x2,
137 		.txFrameToXpaOn = 0xe,
138 		.thresh62 = 28,
139 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
140 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
141 		.futureModal = {
142 			0, 0, 0, 0, 0, 0, 0, 0,
143 		},
144 	 },
145 	.base_ext1 = {
146 		.ant_div_control = 0,
147 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
148 	},
149 	.calFreqPier2G = {
150 		FREQ2FBIN(2412, 1),
151 		FREQ2FBIN(2437, 1),
152 		FREQ2FBIN(2472, 1),
153 	 },
154 	/* ar9300_cal_data_per_freq_op_loop 2g */
155 	.calPierData2G = {
156 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
157 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
158 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
159 	 },
160 	.calTarget_freqbin_Cck = {
161 		FREQ2FBIN(2412, 1),
162 		FREQ2FBIN(2484, 1),
163 	 },
164 	.calTarget_freqbin_2G = {
165 		FREQ2FBIN(2412, 1),
166 		FREQ2FBIN(2437, 1),
167 		FREQ2FBIN(2472, 1)
168 	 },
169 	.calTarget_freqbin_2GHT20 = {
170 		FREQ2FBIN(2412, 1),
171 		FREQ2FBIN(2437, 1),
172 		FREQ2FBIN(2472, 1)
173 	 },
174 	.calTarget_freqbin_2GHT40 = {
175 		FREQ2FBIN(2412, 1),
176 		FREQ2FBIN(2437, 1),
177 		FREQ2FBIN(2472, 1)
178 	 },
179 	.calTargetPowerCck = {
180 		 /* 1L-5L,5S,11L,11S */
181 		 { {36, 36, 36, 36} },
182 		 { {36, 36, 36, 36} },
183 	},
184 	.calTargetPower2G = {
185 		 /* 6-24,36,48,54 */
186 		 { {32, 32, 28, 24} },
187 		 { {32, 32, 28, 24} },
188 		 { {32, 32, 28, 24} },
189 	},
190 	.calTargetPower2GHT20 = {
191 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
192 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
193 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
194 	},
195 	.calTargetPower2GHT40 = {
196 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
197 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
198 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
199 	},
200 	.ctlIndex_2G =  {
201 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
202 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
203 	},
204 	.ctl_freqbin_2G = {
205 		{
206 			FREQ2FBIN(2412, 1),
207 			FREQ2FBIN(2417, 1),
208 			FREQ2FBIN(2457, 1),
209 			FREQ2FBIN(2462, 1)
210 		},
211 		{
212 			FREQ2FBIN(2412, 1),
213 			FREQ2FBIN(2417, 1),
214 			FREQ2FBIN(2462, 1),
215 			0xFF,
216 		},
217 
218 		{
219 			FREQ2FBIN(2412, 1),
220 			FREQ2FBIN(2417, 1),
221 			FREQ2FBIN(2462, 1),
222 			0xFF,
223 		},
224 		{
225 			FREQ2FBIN(2422, 1),
226 			FREQ2FBIN(2427, 1),
227 			FREQ2FBIN(2447, 1),
228 			FREQ2FBIN(2452, 1)
229 		},
230 
231 		{
232 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
233 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
234 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
235 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
236 		},
237 
238 		{
239 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
240 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
241 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
242 			0,
243 		},
244 
245 		{
246 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
247 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
248 			FREQ2FBIN(2472, 1),
249 			0,
250 		},
251 
252 		{
253 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
254 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
255 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
256 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
257 		},
258 
259 		{
260 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
261 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
262 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
263 		},
264 
265 		{
266 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
267 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
268 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
269 			0
270 		},
271 
272 		{
273 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
274 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
275 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
276 			0
277 		},
278 
279 		{
280 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
281 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
282 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
283 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
284 		}
285 	 },
286 	.ctlPowerData_2G = {
287 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
288 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
289 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
290 
291 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
292 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
293 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
294 
295 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
296 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
297 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
298 
299 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
300 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
301 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
302 	 },
303 	.modalHeader5G = {
304 		/* 4 idle,t1,t2,b (4 bits per setting) */
305 		.antCtrlCommon = LE32(0x110),
306 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
307 		.antCtrlCommon2 = LE32(0x22222),
308 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
309 		.antCtrlChain = {
310 			LE16(0x000), LE16(0x000), LE16(0x000),
311 		},
312 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
313 		.xatten1DB = {0, 0, 0},
314 
315 		/*
316 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
317 		 * for merlin (0xa20c/b20c 16:12
318 		 */
319 		.xatten1Margin = {0, 0, 0},
320 		.tempSlope = 68,
321 		.voltSlope = 0,
322 		/* spurChans spur channels in usual fbin coding format */
323 		.spurChans = {0, 0, 0, 0, 0},
324 		/* noiseFloorThreshCh Check if the register is per chain */
325 		.noiseFloorThreshCh = {-1, 0, 0},
326 		.ob = {3, 3, 3}, /* 3 chain */
327 		.db_stage2 = {3, 3, 3}, /* 3 chain */
328 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
329 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
330 		.xpaBiasLvl = 0,
331 		.txFrameToDataStart = 0x0e,
332 		.txFrameToPaOn = 0x0e,
333 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
334 		.antennaGain = 0,
335 		.switchSettling = 0x2d,
336 		.adcDesiredSize = -30,
337 		.txEndToXpaOff = 0,
338 		.txEndToRxOn = 0x2,
339 		.txFrameToXpaOn = 0xe,
340 		.thresh62 = 28,
341 		.papdRateMaskHt20 = LE32(0x0c80c080),
342 		.papdRateMaskHt40 = LE32(0x0080c080),
343 		.futureModal = {
344 			0, 0, 0, 0, 0, 0, 0, 0,
345 		},
346 	 },
347 	.base_ext2 = {
348 		.tempSlopeLow = 0,
349 		.tempSlopeHigh = 0,
350 		.xatten1DBLow = {0, 0, 0},
351 		.xatten1MarginLow = {0, 0, 0},
352 		.xatten1DBHigh = {0, 0, 0},
353 		.xatten1MarginHigh = {0, 0, 0}
354 	},
355 	.calFreqPier5G = {
356 		FREQ2FBIN(5180, 0),
357 		FREQ2FBIN(5220, 0),
358 		FREQ2FBIN(5320, 0),
359 		FREQ2FBIN(5400, 0),
360 		FREQ2FBIN(5500, 0),
361 		FREQ2FBIN(5600, 0),
362 		FREQ2FBIN(5725, 0),
363 		FREQ2FBIN(5825, 0)
364 	},
365 	.calPierData5G = {
366 			{
367 				{0, 0, 0, 0, 0},
368 				{0, 0, 0, 0, 0},
369 				{0, 0, 0, 0, 0},
370 				{0, 0, 0, 0, 0},
371 				{0, 0, 0, 0, 0},
372 				{0, 0, 0, 0, 0},
373 				{0, 0, 0, 0, 0},
374 				{0, 0, 0, 0, 0},
375 			},
376 			{
377 				{0, 0, 0, 0, 0},
378 				{0, 0, 0, 0, 0},
379 				{0, 0, 0, 0, 0},
380 				{0, 0, 0, 0, 0},
381 				{0, 0, 0, 0, 0},
382 				{0, 0, 0, 0, 0},
383 				{0, 0, 0, 0, 0},
384 				{0, 0, 0, 0, 0},
385 			},
386 			{
387 				{0, 0, 0, 0, 0},
388 				{0, 0, 0, 0, 0},
389 				{0, 0, 0, 0, 0},
390 				{0, 0, 0, 0, 0},
391 				{0, 0, 0, 0, 0},
392 				{0, 0, 0, 0, 0},
393 				{0, 0, 0, 0, 0},
394 				{0, 0, 0, 0, 0},
395 			},
396 
397 	},
398 	.calTarget_freqbin_5G = {
399 		FREQ2FBIN(5180, 0),
400 		FREQ2FBIN(5220, 0),
401 		FREQ2FBIN(5320, 0),
402 		FREQ2FBIN(5400, 0),
403 		FREQ2FBIN(5500, 0),
404 		FREQ2FBIN(5600, 0),
405 		FREQ2FBIN(5725, 0),
406 		FREQ2FBIN(5825, 0)
407 	},
408 	.calTarget_freqbin_5GHT20 = {
409 		FREQ2FBIN(5180, 0),
410 		FREQ2FBIN(5240, 0),
411 		FREQ2FBIN(5320, 0),
412 		FREQ2FBIN(5500, 0),
413 		FREQ2FBIN(5700, 0),
414 		FREQ2FBIN(5745, 0),
415 		FREQ2FBIN(5725, 0),
416 		FREQ2FBIN(5825, 0)
417 	},
418 	.calTarget_freqbin_5GHT40 = {
419 		FREQ2FBIN(5180, 0),
420 		FREQ2FBIN(5240, 0),
421 		FREQ2FBIN(5320, 0),
422 		FREQ2FBIN(5500, 0),
423 		FREQ2FBIN(5700, 0),
424 		FREQ2FBIN(5745, 0),
425 		FREQ2FBIN(5725, 0),
426 		FREQ2FBIN(5825, 0)
427 	 },
428 	.calTargetPower5G = {
429 		/* 6-24,36,48,54 */
430 		{ {20, 20, 20, 10} },
431 		{ {20, 20, 20, 10} },
432 		{ {20, 20, 20, 10} },
433 		{ {20, 20, 20, 10} },
434 		{ {20, 20, 20, 10} },
435 		{ {20, 20, 20, 10} },
436 		{ {20, 20, 20, 10} },
437 		{ {20, 20, 20, 10} },
438 	 },
439 	.calTargetPower5GHT20 = {
440 		/*
441 		 * 0_8_16,1-3_9-11_17-19,
442 		 * 4,5,6,7,12,13,14,15,20,21,22,23
443 		 */
444 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
445 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
446 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
447 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
448 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
449 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
450 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
451 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
452 	 },
453 	.calTargetPower5GHT40 =  {
454 		/*
455 		 * 0_8_16,1-3_9-11_17-19,
456 		 * 4,5,6,7,12,13,14,15,20,21,22,23
457 		 */
458 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
459 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
460 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
461 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
462 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
463 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
464 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
465 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
466 	 },
467 	.ctlIndex_5G =  {
468 		0x10, 0x16, 0x18, 0x40, 0x46,
469 		0x48, 0x30, 0x36, 0x38
470 	},
471 	.ctl_freqbin_5G =  {
472 		{
473 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
474 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
475 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
476 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
477 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
478 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
479 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
480 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
481 		},
482 		{
483 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
484 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
485 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
486 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
487 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
488 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
489 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
490 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
491 		},
492 
493 		{
494 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
495 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
496 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
497 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
498 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
499 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
500 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
501 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
502 		},
503 
504 		{
505 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
506 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
507 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
508 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
509 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
510 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
511 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
512 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
513 		},
514 
515 		{
516 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
517 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
518 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
519 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
520 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
521 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
522 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
523 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
524 		},
525 
526 		{
527 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
528 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
529 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
530 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
531 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
532 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
533 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
534 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
535 		},
536 
537 		{
538 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
539 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
540 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
541 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
542 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
543 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
544 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
545 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
546 		},
547 
548 		{
549 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
550 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
551 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
552 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
553 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
554 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
555 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
556 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
557 		},
558 
559 		{
560 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
561 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
562 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
563 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
564 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
565 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
566 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
567 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
568 		}
569 	 },
570 	.ctlPowerData_5G = {
571 		{
572 			{
573 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
574 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
575 			}
576 		},
577 		{
578 			{
579 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
580 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
581 			}
582 		},
583 		{
584 			{
585 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
586 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
587 			}
588 		},
589 		{
590 			{
591 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
592 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
593 			}
594 		},
595 		{
596 			{
597 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
598 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
599 			}
600 		},
601 		{
602 			{
603 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
604 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
605 			}
606 		},
607 		{
608 			{
609 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
610 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
611 			}
612 		},
613 		{
614 			{
615 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
616 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
617 			}
618 		},
619 		{
620 			{
621 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
622 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
623 			}
624 		},
625 	 }
626 };
627 
628 static const struct ar9300_eeprom ar9300_x113 = {
629 	.eepromVersion = 2,
630 	.templateVersion = 6,
631 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
632 	.custData = {"x113-023-f0000"},
633 	.baseEepHeader = {
634 		.regDmn = { LE16(0), LE16(0x1f) },
635 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
636 		.opCapFlags = {
637 			.opFlags = AR5416_OPFLAGS_11A,
638 			.eepMisc = 0,
639 		},
640 		.rfSilent = 0,
641 		.blueToothOptions = 0,
642 		.deviceCap = 0,
643 		.deviceType = 5, /* takes lower byte in eeprom location */
644 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
645 		.params_for_tuning_caps = {0, 0},
646 		.featureEnable = 0x0d,
647 		 /*
648 		  * bit0 - enable tx temp comp - disabled
649 		  * bit1 - enable tx volt comp - disabled
650 		  * bit2 - enable fastClock - enabled
651 		  * bit3 - enable doubling - enabled
652 		  * bit4 - enable internal regulator - disabled
653 		  * bit5 - enable pa predistortion - disabled
654 		  */
655 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
656 		.eepromWriteEnableGpio = 6,
657 		.wlanDisableGpio = 0,
658 		.wlanLedGpio = 8,
659 		.rxBandSelectGpio = 0xff,
660 		.txrxgain = 0x21,
661 		.swreg = 0,
662 	 },
663 	.modalHeader2G = {
664 	/* ar9300_modal_eep_header  2g */
665 		/* 4 idle,t1,t2,b(4 bits per setting) */
666 		.antCtrlCommon = LE32(0x110),
667 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
668 		.antCtrlCommon2 = LE32(0x44444),
669 
670 		/*
671 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
672 		 * rx1, rx12, b (2 bits each)
673 		 */
674 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
675 
676 		/*
677 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
678 		 * for ar9280 (0xa20c/b20c 5:0)
679 		 */
680 		.xatten1DB = {0, 0, 0},
681 
682 		/*
683 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
684 		 * for ar9280 (0xa20c/b20c 16:12
685 		 */
686 		.xatten1Margin = {0, 0, 0},
687 		.tempSlope = 25,
688 		.voltSlope = 0,
689 
690 		/*
691 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
692 		 * channels in usual fbin coding format
693 		 */
694 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
695 
696 		/*
697 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
698 		 * if the register is per chain
699 		 */
700 		.noiseFloorThreshCh = {-1, 0, 0},
701 		.ob = {1, 1, 1},/* 3 chain */
702 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
703 		.db_stage3 = {0, 0, 0},
704 		.db_stage4 = {0, 0, 0},
705 		.xpaBiasLvl = 0,
706 		.txFrameToDataStart = 0x0e,
707 		.txFrameToPaOn = 0x0e,
708 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
709 		.antennaGain = 0,
710 		.switchSettling = 0x2c,
711 		.adcDesiredSize = -30,
712 		.txEndToXpaOff = 0,
713 		.txEndToRxOn = 0x2,
714 		.txFrameToXpaOn = 0xe,
715 		.thresh62 = 28,
716 		.papdRateMaskHt20 = LE32(0x0c80c080),
717 		.papdRateMaskHt40 = LE32(0x0080c080),
718 		.futureModal = {
719 			0, 0, 0, 0, 0, 0, 0, 0,
720 		},
721 	 },
722 	 .base_ext1 = {
723 		.ant_div_control = 0,
724 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
725 	 },
726 	.calFreqPier2G = {
727 		FREQ2FBIN(2412, 1),
728 		FREQ2FBIN(2437, 1),
729 		FREQ2FBIN(2472, 1),
730 	 },
731 	/* ar9300_cal_data_per_freq_op_loop 2g */
732 	.calPierData2G = {
733 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
734 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
735 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
736 	 },
737 	.calTarget_freqbin_Cck = {
738 		FREQ2FBIN(2412, 1),
739 		FREQ2FBIN(2472, 1),
740 	 },
741 	.calTarget_freqbin_2G = {
742 		FREQ2FBIN(2412, 1),
743 		FREQ2FBIN(2437, 1),
744 		FREQ2FBIN(2472, 1)
745 	 },
746 	.calTarget_freqbin_2GHT20 = {
747 		FREQ2FBIN(2412, 1),
748 		FREQ2FBIN(2437, 1),
749 		FREQ2FBIN(2472, 1)
750 	 },
751 	.calTarget_freqbin_2GHT40 = {
752 		FREQ2FBIN(2412, 1),
753 		FREQ2FBIN(2437, 1),
754 		FREQ2FBIN(2472, 1)
755 	 },
756 	.calTargetPowerCck = {
757 		 /* 1L-5L,5S,11L,11S */
758 		 { {34, 34, 34, 34} },
759 		 { {34, 34, 34, 34} },
760 	},
761 	.calTargetPower2G = {
762 		 /* 6-24,36,48,54 */
763 		 { {34, 34, 32, 32} },
764 		 { {34, 34, 32, 32} },
765 		 { {34, 34, 32, 32} },
766 	},
767 	.calTargetPower2GHT20 = {
768 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
769 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
770 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
771 	},
772 	.calTargetPower2GHT40 = {
773 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
774 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
775 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
776 	},
777 	.ctlIndex_2G =  {
778 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
779 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
780 	},
781 	.ctl_freqbin_2G = {
782 		{
783 			FREQ2FBIN(2412, 1),
784 			FREQ2FBIN(2417, 1),
785 			FREQ2FBIN(2457, 1),
786 			FREQ2FBIN(2462, 1)
787 		},
788 		{
789 			FREQ2FBIN(2412, 1),
790 			FREQ2FBIN(2417, 1),
791 			FREQ2FBIN(2462, 1),
792 			0xFF,
793 		},
794 
795 		{
796 			FREQ2FBIN(2412, 1),
797 			FREQ2FBIN(2417, 1),
798 			FREQ2FBIN(2462, 1),
799 			0xFF,
800 		},
801 		{
802 			FREQ2FBIN(2422, 1),
803 			FREQ2FBIN(2427, 1),
804 			FREQ2FBIN(2447, 1),
805 			FREQ2FBIN(2452, 1)
806 		},
807 
808 		{
809 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
810 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
811 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
812 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
813 		},
814 
815 		{
816 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
817 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
818 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
819 			0,
820 		},
821 
822 		{
823 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
824 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
825 			FREQ2FBIN(2472, 1),
826 			0,
827 		},
828 
829 		{
830 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
831 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
832 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
833 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
834 		},
835 
836 		{
837 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
838 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
839 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
840 		},
841 
842 		{
843 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
844 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
845 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
846 			0
847 		},
848 
849 		{
850 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
851 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
852 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
853 			0
854 		},
855 
856 		{
857 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
858 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
859 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
860 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
861 		}
862 	 },
863 	.ctlPowerData_2G = {
864 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
865 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
866 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
867 
868 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
869 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
870 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
871 
872 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
873 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
874 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
875 
876 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
877 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
878 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
879 	 },
880 	.modalHeader5G = {
881 		/* 4 idle,t1,t2,b (4 bits per setting) */
882 		.antCtrlCommon = LE32(0x220),
883 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
884 		.antCtrlCommon2 = LE32(0x11111),
885 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
886 		.antCtrlChain = {
887 			LE16(0x150), LE16(0x150), LE16(0x150),
888 		},
889 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
890 		.xatten1DB = {0, 0, 0},
891 
892 		/*
893 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
894 		 * for merlin (0xa20c/b20c 16:12
895 		 */
896 		.xatten1Margin = {0, 0, 0},
897 		.tempSlope = 68,
898 		.voltSlope = 0,
899 		/* spurChans spur channels in usual fbin coding format */
900 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
901 		/* noiseFloorThreshCh Check if the register is per chain */
902 		.noiseFloorThreshCh = {-1, 0, 0},
903 		.ob = {3, 3, 3}, /* 3 chain */
904 		.db_stage2 = {3, 3, 3}, /* 3 chain */
905 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
906 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
907 		.xpaBiasLvl = 0xf,
908 		.txFrameToDataStart = 0x0e,
909 		.txFrameToPaOn = 0x0e,
910 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
911 		.antennaGain = 0,
912 		.switchSettling = 0x2d,
913 		.adcDesiredSize = -30,
914 		.txEndToXpaOff = 0,
915 		.txEndToRxOn = 0x2,
916 		.txFrameToXpaOn = 0xe,
917 		.thresh62 = 28,
918 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
919 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
920 		.futureModal = {
921 			0, 0, 0, 0, 0, 0, 0, 0,
922 		},
923 	 },
924 	.base_ext2 = {
925 		.tempSlopeLow = 72,
926 		.tempSlopeHigh = 105,
927 		.xatten1DBLow = {0, 0, 0},
928 		.xatten1MarginLow = {0, 0, 0},
929 		.xatten1DBHigh = {0, 0, 0},
930 		.xatten1MarginHigh = {0, 0, 0}
931 	 },
932 	.calFreqPier5G = {
933 		FREQ2FBIN(5180, 0),
934 		FREQ2FBIN(5240, 0),
935 		FREQ2FBIN(5320, 0),
936 		FREQ2FBIN(5400, 0),
937 		FREQ2FBIN(5500, 0),
938 		FREQ2FBIN(5600, 0),
939 		FREQ2FBIN(5745, 0),
940 		FREQ2FBIN(5785, 0)
941 	},
942 	.calPierData5G = {
943 			{
944 				{0, 0, 0, 0, 0},
945 				{0, 0, 0, 0, 0},
946 				{0, 0, 0, 0, 0},
947 				{0, 0, 0, 0, 0},
948 				{0, 0, 0, 0, 0},
949 				{0, 0, 0, 0, 0},
950 				{0, 0, 0, 0, 0},
951 				{0, 0, 0, 0, 0},
952 			},
953 			{
954 				{0, 0, 0, 0, 0},
955 				{0, 0, 0, 0, 0},
956 				{0, 0, 0, 0, 0},
957 				{0, 0, 0, 0, 0},
958 				{0, 0, 0, 0, 0},
959 				{0, 0, 0, 0, 0},
960 				{0, 0, 0, 0, 0},
961 				{0, 0, 0, 0, 0},
962 			},
963 			{
964 				{0, 0, 0, 0, 0},
965 				{0, 0, 0, 0, 0},
966 				{0, 0, 0, 0, 0},
967 				{0, 0, 0, 0, 0},
968 				{0, 0, 0, 0, 0},
969 				{0, 0, 0, 0, 0},
970 				{0, 0, 0, 0, 0},
971 				{0, 0, 0, 0, 0},
972 			},
973 
974 	},
975 	.calTarget_freqbin_5G = {
976 		FREQ2FBIN(5180, 0),
977 		FREQ2FBIN(5220, 0),
978 		FREQ2FBIN(5320, 0),
979 		FREQ2FBIN(5400, 0),
980 		FREQ2FBIN(5500, 0),
981 		FREQ2FBIN(5600, 0),
982 		FREQ2FBIN(5745, 0),
983 		FREQ2FBIN(5785, 0)
984 	},
985 	.calTarget_freqbin_5GHT20 = {
986 		FREQ2FBIN(5180, 0),
987 		FREQ2FBIN(5240, 0),
988 		FREQ2FBIN(5320, 0),
989 		FREQ2FBIN(5400, 0),
990 		FREQ2FBIN(5500, 0),
991 		FREQ2FBIN(5700, 0),
992 		FREQ2FBIN(5745, 0),
993 		FREQ2FBIN(5825, 0)
994 	},
995 	.calTarget_freqbin_5GHT40 = {
996 		FREQ2FBIN(5190, 0),
997 		FREQ2FBIN(5230, 0),
998 		FREQ2FBIN(5320, 0),
999 		FREQ2FBIN(5410, 0),
1000 		FREQ2FBIN(5510, 0),
1001 		FREQ2FBIN(5670, 0),
1002 		FREQ2FBIN(5755, 0),
1003 		FREQ2FBIN(5825, 0)
1004 	 },
1005 	.calTargetPower5G = {
1006 		/* 6-24,36,48,54 */
1007 		{ {42, 40, 40, 34} },
1008 		{ {42, 40, 40, 34} },
1009 		{ {42, 40, 40, 34} },
1010 		{ {42, 40, 40, 34} },
1011 		{ {42, 40, 40, 34} },
1012 		{ {42, 40, 40, 34} },
1013 		{ {42, 40, 40, 34} },
1014 		{ {42, 40, 40, 34} },
1015 	 },
1016 	.calTargetPower5GHT20 = {
1017 		/*
1018 		 * 0_8_16,1-3_9-11_17-19,
1019 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1020 		 */
1021 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1022 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1023 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1024 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1025 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1026 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1027 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1028 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1029 	 },
1030 	.calTargetPower5GHT40 =  {
1031 		/*
1032 		 * 0_8_16,1-3_9-11_17-19,
1033 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1034 		 */
1035 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1036 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1037 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1038 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1039 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1040 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1041 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1042 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1043 	 },
1044 	.ctlIndex_5G =  {
1045 		0x10, 0x16, 0x18, 0x40, 0x46,
1046 		0x48, 0x30, 0x36, 0x38
1047 	},
1048 	.ctl_freqbin_5G =  {
1049 		{
1050 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1051 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1052 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1053 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1054 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1055 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1056 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1057 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1058 		},
1059 		{
1060 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1061 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1062 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1063 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1064 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1065 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1066 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1067 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1068 		},
1069 
1070 		{
1071 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1072 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1073 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1074 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1075 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1076 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1077 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1078 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1079 		},
1080 
1081 		{
1082 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1083 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1084 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1085 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1086 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1087 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1088 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1089 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1090 		},
1091 
1092 		{
1093 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1094 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1095 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1096 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1097 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1098 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1099 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1100 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1101 		},
1102 
1103 		{
1104 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1105 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1106 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1107 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1108 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1109 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1110 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1111 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1112 		},
1113 
1114 		{
1115 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1116 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1117 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1118 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1119 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1120 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1121 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1122 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1123 		},
1124 
1125 		{
1126 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1127 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1128 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1129 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1130 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1131 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1132 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1133 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1134 		},
1135 
1136 		{
1137 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1138 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1139 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1140 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1141 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1142 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1143 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1144 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1145 		}
1146 	 },
1147 	.ctlPowerData_5G = {
1148 		{
1149 			{
1150 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1151 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1152 			}
1153 		},
1154 		{
1155 			{
1156 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1157 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1158 			}
1159 		},
1160 		{
1161 			{
1162 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1163 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1164 			}
1165 		},
1166 		{
1167 			{
1168 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1169 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1170 			}
1171 		},
1172 		{
1173 			{
1174 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1175 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1176 			}
1177 		},
1178 		{
1179 			{
1180 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1181 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1182 			}
1183 		},
1184 		{
1185 			{
1186 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1187 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1188 			}
1189 		},
1190 		{
1191 			{
1192 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1193 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1194 			}
1195 		},
1196 		{
1197 			{
1198 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1199 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1200 			}
1201 		},
1202 	 }
1203 };
1204 
1205 
1206 static const struct ar9300_eeprom ar9300_h112 = {
1207 	.eepromVersion = 2,
1208 	.templateVersion = 3,
1209 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1210 	.custData = {"h112-241-f0000"},
1211 	.baseEepHeader = {
1212 		.regDmn = { LE16(0), LE16(0x1f) },
1213 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1214 		.opCapFlags = {
1215 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1216 			.eepMisc = 0,
1217 		},
1218 		.rfSilent = 0,
1219 		.blueToothOptions = 0,
1220 		.deviceCap = 0,
1221 		.deviceType = 5, /* takes lower byte in eeprom location */
1222 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1223 		.params_for_tuning_caps = {0, 0},
1224 		.featureEnable = 0x0d,
1225 		/*
1226 		 * bit0 - enable tx temp comp - disabled
1227 		 * bit1 - enable tx volt comp - disabled
1228 		 * bit2 - enable fastClock - enabled
1229 		 * bit3 - enable doubling - enabled
1230 		 * bit4 - enable internal regulator - disabled
1231 		 * bit5 - enable pa predistortion - disabled
1232 		 */
1233 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1234 		.eepromWriteEnableGpio = 6,
1235 		.wlanDisableGpio = 0,
1236 		.wlanLedGpio = 8,
1237 		.rxBandSelectGpio = 0xff,
1238 		.txrxgain = 0x10,
1239 		.swreg = 0,
1240 	},
1241 	.modalHeader2G = {
1242 		/* ar9300_modal_eep_header  2g */
1243 		/* 4 idle,t1,t2,b(4 bits per setting) */
1244 		.antCtrlCommon = LE32(0x110),
1245 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1246 		.antCtrlCommon2 = LE32(0x44444),
1247 
1248 		/*
1249 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1250 		 * rx1, rx12, b (2 bits each)
1251 		 */
1252 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1253 
1254 		/*
1255 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1256 		 * for ar9280 (0xa20c/b20c 5:0)
1257 		 */
1258 		.xatten1DB = {0, 0, 0},
1259 
1260 		/*
1261 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1262 		 * for ar9280 (0xa20c/b20c 16:12
1263 		 */
1264 		.xatten1Margin = {0, 0, 0},
1265 		.tempSlope = 25,
1266 		.voltSlope = 0,
1267 
1268 		/*
1269 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1270 		 * channels in usual fbin coding format
1271 		 */
1272 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1273 
1274 		/*
1275 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1276 		 * if the register is per chain
1277 		 */
1278 		.noiseFloorThreshCh = {-1, 0, 0},
1279 		.ob = {1, 1, 1},/* 3 chain */
1280 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
1281 		.db_stage3 = {0, 0, 0},
1282 		.db_stage4 = {0, 0, 0},
1283 		.xpaBiasLvl = 0,
1284 		.txFrameToDataStart = 0x0e,
1285 		.txFrameToPaOn = 0x0e,
1286 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1287 		.antennaGain = 0,
1288 		.switchSettling = 0x2c,
1289 		.adcDesiredSize = -30,
1290 		.txEndToXpaOff = 0,
1291 		.txEndToRxOn = 0x2,
1292 		.txFrameToXpaOn = 0xe,
1293 		.thresh62 = 28,
1294 		.papdRateMaskHt20 = LE32(0x80c080),
1295 		.papdRateMaskHt40 = LE32(0x80c080),
1296 		.futureModal = {
1297 			0, 0, 0, 0, 0, 0, 0, 0,
1298 		},
1299 	},
1300 	.base_ext1 = {
1301 		.ant_div_control = 0,
1302 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1303 	},
1304 	.calFreqPier2G = {
1305 		FREQ2FBIN(2412, 1),
1306 		FREQ2FBIN(2437, 1),
1307 		FREQ2FBIN(2472, 1),
1308 	},
1309 	/* ar9300_cal_data_per_freq_op_loop 2g */
1310 	.calPierData2G = {
1311 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1312 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1313 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1314 	},
1315 	.calTarget_freqbin_Cck = {
1316 		FREQ2FBIN(2412, 1),
1317 		FREQ2FBIN(2484, 1),
1318 	},
1319 	.calTarget_freqbin_2G = {
1320 		FREQ2FBIN(2412, 1),
1321 		FREQ2FBIN(2437, 1),
1322 		FREQ2FBIN(2472, 1)
1323 	},
1324 	.calTarget_freqbin_2GHT20 = {
1325 		FREQ2FBIN(2412, 1),
1326 		FREQ2FBIN(2437, 1),
1327 		FREQ2FBIN(2472, 1)
1328 	},
1329 	.calTarget_freqbin_2GHT40 = {
1330 		FREQ2FBIN(2412, 1),
1331 		FREQ2FBIN(2437, 1),
1332 		FREQ2FBIN(2472, 1)
1333 	},
1334 	.calTargetPowerCck = {
1335 		/* 1L-5L,5S,11L,11S */
1336 		{ {34, 34, 34, 34} },
1337 		{ {34, 34, 34, 34} },
1338 	},
1339 	.calTargetPower2G = {
1340 		/* 6-24,36,48,54 */
1341 		{ {34, 34, 32, 32} },
1342 		{ {34, 34, 32, 32} },
1343 		{ {34, 34, 32, 32} },
1344 	},
1345 	.calTargetPower2GHT20 = {
1346 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1347 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1348 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1349 	},
1350 	.calTargetPower2GHT40 = {
1351 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1352 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1353 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1354 	},
1355 	.ctlIndex_2G =  {
1356 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1357 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1358 	},
1359 	.ctl_freqbin_2G = {
1360 		{
1361 			FREQ2FBIN(2412, 1),
1362 			FREQ2FBIN(2417, 1),
1363 			FREQ2FBIN(2457, 1),
1364 			FREQ2FBIN(2462, 1)
1365 		},
1366 		{
1367 			FREQ2FBIN(2412, 1),
1368 			FREQ2FBIN(2417, 1),
1369 			FREQ2FBIN(2462, 1),
1370 			0xFF,
1371 		},
1372 
1373 		{
1374 			FREQ2FBIN(2412, 1),
1375 			FREQ2FBIN(2417, 1),
1376 			FREQ2FBIN(2462, 1),
1377 			0xFF,
1378 		},
1379 		{
1380 			FREQ2FBIN(2422, 1),
1381 			FREQ2FBIN(2427, 1),
1382 			FREQ2FBIN(2447, 1),
1383 			FREQ2FBIN(2452, 1)
1384 		},
1385 
1386 		{
1387 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1388 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1389 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1390 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1391 		},
1392 
1393 		{
1394 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1395 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1396 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1397 			0,
1398 		},
1399 
1400 		{
1401 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1402 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1403 			FREQ2FBIN(2472, 1),
1404 			0,
1405 		},
1406 
1407 		{
1408 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1409 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1410 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1411 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1412 		},
1413 
1414 		{
1415 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1416 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1417 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1418 		},
1419 
1420 		{
1421 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1422 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1423 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1424 			0
1425 		},
1426 
1427 		{
1428 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1429 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1430 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1431 			0
1432 		},
1433 
1434 		{
1435 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1436 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1437 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1438 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1439 		}
1440 	},
1441 	.ctlPowerData_2G = {
1442 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1443 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1444 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1445 
1446 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1447 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1448 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1449 
1450 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1451 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1452 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1453 
1454 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1455 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1456 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1457 	},
1458 	.modalHeader5G = {
1459 		/* 4 idle,t1,t2,b (4 bits per setting) */
1460 		.antCtrlCommon = LE32(0x220),
1461 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1462 		.antCtrlCommon2 = LE32(0x44444),
1463 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1464 		.antCtrlChain = {
1465 			LE16(0x150), LE16(0x150), LE16(0x150),
1466 		},
1467 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1468 		.xatten1DB = {0, 0, 0},
1469 
1470 		/*
1471 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1472 		 * for merlin (0xa20c/b20c 16:12
1473 		 */
1474 		.xatten1Margin = {0, 0, 0},
1475 		.tempSlope = 45,
1476 		.voltSlope = 0,
1477 		/* spurChans spur channels in usual fbin coding format */
1478 		.spurChans = {0, 0, 0, 0, 0},
1479 		/* noiseFloorThreshCh Check if the register is per chain */
1480 		.noiseFloorThreshCh = {-1, 0, 0},
1481 		.ob = {3, 3, 3}, /* 3 chain */
1482 		.db_stage2 = {3, 3, 3}, /* 3 chain */
1483 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
1484 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
1485 		.xpaBiasLvl = 0,
1486 		.txFrameToDataStart = 0x0e,
1487 		.txFrameToPaOn = 0x0e,
1488 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1489 		.antennaGain = 0,
1490 		.switchSettling = 0x2d,
1491 		.adcDesiredSize = -30,
1492 		.txEndToXpaOff = 0,
1493 		.txEndToRxOn = 0x2,
1494 		.txFrameToXpaOn = 0xe,
1495 		.thresh62 = 28,
1496 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1497 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1498 		.futureModal = {
1499 			0, 0, 0, 0, 0, 0, 0, 0,
1500 		},
1501 	},
1502 	.base_ext2 = {
1503 		.tempSlopeLow = 40,
1504 		.tempSlopeHigh = 50,
1505 		.xatten1DBLow = {0, 0, 0},
1506 		.xatten1MarginLow = {0, 0, 0},
1507 		.xatten1DBHigh = {0, 0, 0},
1508 		.xatten1MarginHigh = {0, 0, 0}
1509 	},
1510 	.calFreqPier5G = {
1511 		FREQ2FBIN(5180, 0),
1512 		FREQ2FBIN(5220, 0),
1513 		FREQ2FBIN(5320, 0),
1514 		FREQ2FBIN(5400, 0),
1515 		FREQ2FBIN(5500, 0),
1516 		FREQ2FBIN(5600, 0),
1517 		FREQ2FBIN(5700, 0),
1518 		FREQ2FBIN(5825, 0)
1519 	},
1520 	.calPierData5G = {
1521 		{
1522 			{0, 0, 0, 0, 0},
1523 			{0, 0, 0, 0, 0},
1524 			{0, 0, 0, 0, 0},
1525 			{0, 0, 0, 0, 0},
1526 			{0, 0, 0, 0, 0},
1527 			{0, 0, 0, 0, 0},
1528 			{0, 0, 0, 0, 0},
1529 			{0, 0, 0, 0, 0},
1530 		},
1531 		{
1532 			{0, 0, 0, 0, 0},
1533 			{0, 0, 0, 0, 0},
1534 			{0, 0, 0, 0, 0},
1535 			{0, 0, 0, 0, 0},
1536 			{0, 0, 0, 0, 0},
1537 			{0, 0, 0, 0, 0},
1538 			{0, 0, 0, 0, 0},
1539 			{0, 0, 0, 0, 0},
1540 		},
1541 		{
1542 			{0, 0, 0, 0, 0},
1543 			{0, 0, 0, 0, 0},
1544 			{0, 0, 0, 0, 0},
1545 			{0, 0, 0, 0, 0},
1546 			{0, 0, 0, 0, 0},
1547 			{0, 0, 0, 0, 0},
1548 			{0, 0, 0, 0, 0},
1549 			{0, 0, 0, 0, 0},
1550 		},
1551 
1552 	},
1553 	.calTarget_freqbin_5G = {
1554 		FREQ2FBIN(5180, 0),
1555 		FREQ2FBIN(5240, 0),
1556 		FREQ2FBIN(5320, 0),
1557 		FREQ2FBIN(5400, 0),
1558 		FREQ2FBIN(5500, 0),
1559 		FREQ2FBIN(5600, 0),
1560 		FREQ2FBIN(5700, 0),
1561 		FREQ2FBIN(5825, 0)
1562 	},
1563 	.calTarget_freqbin_5GHT20 = {
1564 		FREQ2FBIN(5180, 0),
1565 		FREQ2FBIN(5240, 0),
1566 		FREQ2FBIN(5320, 0),
1567 		FREQ2FBIN(5400, 0),
1568 		FREQ2FBIN(5500, 0),
1569 		FREQ2FBIN(5700, 0),
1570 		FREQ2FBIN(5745, 0),
1571 		FREQ2FBIN(5825, 0)
1572 	},
1573 	.calTarget_freqbin_5GHT40 = {
1574 		FREQ2FBIN(5180, 0),
1575 		FREQ2FBIN(5240, 0),
1576 		FREQ2FBIN(5320, 0),
1577 		FREQ2FBIN(5400, 0),
1578 		FREQ2FBIN(5500, 0),
1579 		FREQ2FBIN(5700, 0),
1580 		FREQ2FBIN(5745, 0),
1581 		FREQ2FBIN(5825, 0)
1582 	},
1583 	.calTargetPower5G = {
1584 		/* 6-24,36,48,54 */
1585 		{ {30, 30, 28, 24} },
1586 		{ {30, 30, 28, 24} },
1587 		{ {30, 30, 28, 24} },
1588 		{ {30, 30, 28, 24} },
1589 		{ {30, 30, 28, 24} },
1590 		{ {30, 30, 28, 24} },
1591 		{ {30, 30, 28, 24} },
1592 		{ {30, 30, 28, 24} },
1593 	},
1594 	.calTargetPower5GHT20 = {
1595 		/*
1596 		 * 0_8_16,1-3_9-11_17-19,
1597 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1598 		 */
1599 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1600 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1601 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1602 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1603 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1604 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1605 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1606 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1607 	},
1608 	.calTargetPower5GHT40 =  {
1609 		/*
1610 		 * 0_8_16,1-3_9-11_17-19,
1611 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1612 		 */
1613 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1614 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1615 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1616 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1617 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1618 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1619 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1620 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1621 	},
1622 	.ctlIndex_5G =  {
1623 		0x10, 0x16, 0x18, 0x40, 0x46,
1624 		0x48, 0x30, 0x36, 0x38
1625 	},
1626 	.ctl_freqbin_5G =  {
1627 		{
1628 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1629 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1630 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1631 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1632 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1633 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1634 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1635 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1636 		},
1637 		{
1638 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1639 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1640 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1641 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1642 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1643 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1644 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1645 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1646 		},
1647 
1648 		{
1649 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1650 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1651 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1652 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1653 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1654 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1655 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1656 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1657 		},
1658 
1659 		{
1660 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1661 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1662 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1663 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1664 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1665 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1666 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1667 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1668 		},
1669 
1670 		{
1671 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1672 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1673 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1674 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1675 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1676 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1677 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1678 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1679 		},
1680 
1681 		{
1682 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1683 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1684 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1685 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1686 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1687 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1688 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1689 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1690 		},
1691 
1692 		{
1693 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1694 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1695 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1696 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1697 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1698 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1699 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1700 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1701 		},
1702 
1703 		{
1704 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1705 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1706 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1707 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1708 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1709 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1710 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1711 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1712 		},
1713 
1714 		{
1715 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1716 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1717 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1718 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1719 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1720 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1721 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1722 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1723 		}
1724 	},
1725 	.ctlPowerData_5G = {
1726 		{
1727 			{
1728 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1729 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1730 			}
1731 		},
1732 		{
1733 			{
1734 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1735 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1736 			}
1737 		},
1738 		{
1739 			{
1740 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1741 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1742 			}
1743 		},
1744 		{
1745 			{
1746 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1747 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1748 			}
1749 		},
1750 		{
1751 			{
1752 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1753 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1754 			}
1755 		},
1756 		{
1757 			{
1758 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1759 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1760 			}
1761 		},
1762 		{
1763 			{
1764 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1765 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1766 			}
1767 		},
1768 		{
1769 			{
1770 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1771 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1772 			}
1773 		},
1774 		{
1775 			{
1776 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1777 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1778 			}
1779 		},
1780 	}
1781 };
1782 
1783 
1784 static const struct ar9300_eeprom ar9300_x112 = {
1785 	.eepromVersion = 2,
1786 	.templateVersion = 5,
1787 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1788 	.custData = {"x112-041-f0000"},
1789 	.baseEepHeader = {
1790 		.regDmn = { LE16(0), LE16(0x1f) },
1791 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1792 		.opCapFlags = {
1793 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1794 			.eepMisc = 0,
1795 		},
1796 		.rfSilent = 0,
1797 		.blueToothOptions = 0,
1798 		.deviceCap = 0,
1799 		.deviceType = 5, /* takes lower byte in eeprom location */
1800 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1801 		.params_for_tuning_caps = {0, 0},
1802 		.featureEnable = 0x0d,
1803 		/*
1804 		 * bit0 - enable tx temp comp - disabled
1805 		 * bit1 - enable tx volt comp - disabled
1806 		 * bit2 - enable fastclock - enabled
1807 		 * bit3 - enable doubling - enabled
1808 		 * bit4 - enable internal regulator - disabled
1809 		 * bit5 - enable pa predistortion - disabled
1810 		 */
1811 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1812 		.eepromWriteEnableGpio = 6,
1813 		.wlanDisableGpio = 0,
1814 		.wlanLedGpio = 8,
1815 		.rxBandSelectGpio = 0xff,
1816 		.txrxgain = 0x0,
1817 		.swreg = 0,
1818 	},
1819 	.modalHeader2G = {
1820 		/* ar9300_modal_eep_header  2g */
1821 		/* 4 idle,t1,t2,b(4 bits per setting) */
1822 		.antCtrlCommon = LE32(0x110),
1823 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1824 		.antCtrlCommon2 = LE32(0x22222),
1825 
1826 		/*
1827 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1828 		 * rx1, rx12, b (2 bits each)
1829 		 */
1830 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1831 
1832 		/*
1833 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1834 		 * for ar9280 (0xa20c/b20c 5:0)
1835 		 */
1836 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1837 
1838 		/*
1839 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1840 		 * for ar9280 (0xa20c/b20c 16:12
1841 		 */
1842 		.xatten1Margin = {0x15, 0x15, 0x15},
1843 		.tempSlope = 50,
1844 		.voltSlope = 0,
1845 
1846 		/*
1847 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1848 		 * channels in usual fbin coding format
1849 		 */
1850 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1851 
1852 		/*
1853 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1854 		 * if the register is per chain
1855 		 */
1856 		.noiseFloorThreshCh = {-1, 0, 0},
1857 		.ob = {1, 1, 1},/* 3 chain */
1858 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
1859 		.db_stage3 = {0, 0, 0},
1860 		.db_stage4 = {0, 0, 0},
1861 		.xpaBiasLvl = 0,
1862 		.txFrameToDataStart = 0x0e,
1863 		.txFrameToPaOn = 0x0e,
1864 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1865 		.antennaGain = 0,
1866 		.switchSettling = 0x2c,
1867 		.adcDesiredSize = -30,
1868 		.txEndToXpaOff = 0,
1869 		.txEndToRxOn = 0x2,
1870 		.txFrameToXpaOn = 0xe,
1871 		.thresh62 = 28,
1872 		.papdRateMaskHt20 = LE32(0x0c80c080),
1873 		.papdRateMaskHt40 = LE32(0x0080c080),
1874 		.futureModal = {
1875 			0, 0, 0, 0, 0, 0, 0, 0,
1876 		},
1877 	},
1878 	.base_ext1 = {
1879 		.ant_div_control = 0,
1880 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1881 	},
1882 	.calFreqPier2G = {
1883 		FREQ2FBIN(2412, 1),
1884 		FREQ2FBIN(2437, 1),
1885 		FREQ2FBIN(2472, 1),
1886 	},
1887 	/* ar9300_cal_data_per_freq_op_loop 2g */
1888 	.calPierData2G = {
1889 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1890 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1891 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1892 	},
1893 	.calTarget_freqbin_Cck = {
1894 		FREQ2FBIN(2412, 1),
1895 		FREQ2FBIN(2472, 1),
1896 	},
1897 	.calTarget_freqbin_2G = {
1898 		FREQ2FBIN(2412, 1),
1899 		FREQ2FBIN(2437, 1),
1900 		FREQ2FBIN(2472, 1)
1901 	},
1902 	.calTarget_freqbin_2GHT20 = {
1903 		FREQ2FBIN(2412, 1),
1904 		FREQ2FBIN(2437, 1),
1905 		FREQ2FBIN(2472, 1)
1906 	},
1907 	.calTarget_freqbin_2GHT40 = {
1908 		FREQ2FBIN(2412, 1),
1909 		FREQ2FBIN(2437, 1),
1910 		FREQ2FBIN(2472, 1)
1911 	},
1912 	.calTargetPowerCck = {
1913 		/* 1L-5L,5S,11L,11s */
1914 		{ {38, 38, 38, 38} },
1915 		{ {38, 38, 38, 38} },
1916 	},
1917 	.calTargetPower2G = {
1918 		/* 6-24,36,48,54 */
1919 		{ {38, 38, 36, 34} },
1920 		{ {38, 38, 36, 34} },
1921 		{ {38, 38, 34, 32} },
1922 	},
1923 	.calTargetPower2GHT20 = {
1924 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1925 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1926 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1927 	},
1928 	.calTargetPower2GHT40 = {
1929 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1930 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1931 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1932 	},
1933 	.ctlIndex_2G =  {
1934 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1935 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1936 	},
1937 	.ctl_freqbin_2G = {
1938 		{
1939 			FREQ2FBIN(2412, 1),
1940 			FREQ2FBIN(2417, 1),
1941 			FREQ2FBIN(2457, 1),
1942 			FREQ2FBIN(2462, 1)
1943 		},
1944 		{
1945 			FREQ2FBIN(2412, 1),
1946 			FREQ2FBIN(2417, 1),
1947 			FREQ2FBIN(2462, 1),
1948 			0xFF,
1949 		},
1950 
1951 		{
1952 			FREQ2FBIN(2412, 1),
1953 			FREQ2FBIN(2417, 1),
1954 			FREQ2FBIN(2462, 1),
1955 			0xFF,
1956 		},
1957 		{
1958 			FREQ2FBIN(2422, 1),
1959 			FREQ2FBIN(2427, 1),
1960 			FREQ2FBIN(2447, 1),
1961 			FREQ2FBIN(2452, 1)
1962 		},
1963 
1964 		{
1965 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1966 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1967 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1968 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1969 		},
1970 
1971 		{
1972 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1973 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1974 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1975 			0,
1976 		},
1977 
1978 		{
1979 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1980 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1981 			FREQ2FBIN(2472, 1),
1982 			0,
1983 		},
1984 
1985 		{
1986 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1987 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1988 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1989 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1990 		},
1991 
1992 		{
1993 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1994 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1995 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1996 		},
1997 
1998 		{
1999 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2000 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2001 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2002 			0
2003 		},
2004 
2005 		{
2006 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
2007 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
2008 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
2009 			0
2010 		},
2011 
2012 		{
2013 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
2014 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
2015 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
2016 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
2017 		}
2018 	},
2019 	.ctlPowerData_2G = {
2020 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2021 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2022 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2023 
2024 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2025 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2026 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2027 
2028 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2029 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2030 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2031 
2032 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2033 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2034 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2035 	},
2036 	.modalHeader5G = {
2037 		/* 4 idle,t1,t2,b (4 bits per setting) */
2038 		.antCtrlCommon = LE32(0x110),
2039 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2040 		.antCtrlCommon2 = LE32(0x22222),
2041 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2042 		.antCtrlChain = {
2043 			LE16(0x0), LE16(0x0), LE16(0x0),
2044 		},
2045 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2046 		.xatten1DB = {0x13, 0x19, 0x17},
2047 
2048 		/*
2049 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2050 		 * for merlin (0xa20c/b20c 16:12
2051 		 */
2052 		.xatten1Margin = {0x19, 0x19, 0x19},
2053 		.tempSlope = 70,
2054 		.voltSlope = 15,
2055 		/* spurChans spur channels in usual fbin coding format */
2056 		.spurChans = {0, 0, 0, 0, 0},
2057 		/* noiseFloorThreshch check if the register is per chain */
2058 		.noiseFloorThreshCh = {-1, 0, 0},
2059 		.ob = {3, 3, 3}, /* 3 chain */
2060 		.db_stage2 = {3, 3, 3}, /* 3 chain */
2061 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2062 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
2063 		.xpaBiasLvl = 0,
2064 		.txFrameToDataStart = 0x0e,
2065 		.txFrameToPaOn = 0x0e,
2066 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2067 		.antennaGain = 0,
2068 		.switchSettling = 0x2d,
2069 		.adcDesiredSize = -30,
2070 		.txEndToXpaOff = 0,
2071 		.txEndToRxOn = 0x2,
2072 		.txFrameToXpaOn = 0xe,
2073 		.thresh62 = 28,
2074 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2075 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2076 		.futureModal = {
2077 			0, 0, 0, 0, 0, 0, 0, 0,
2078 		},
2079 	},
2080 	.base_ext2 = {
2081 		.tempSlopeLow = 72,
2082 		.tempSlopeHigh = 105,
2083 		.xatten1DBLow = {0x10, 0x14, 0x10},
2084 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2085 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2086 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2087 	},
2088 	.calFreqPier5G = {
2089 		FREQ2FBIN(5180, 0),
2090 		FREQ2FBIN(5220, 0),
2091 		FREQ2FBIN(5320, 0),
2092 		FREQ2FBIN(5400, 0),
2093 		FREQ2FBIN(5500, 0),
2094 		FREQ2FBIN(5600, 0),
2095 		FREQ2FBIN(5700, 0),
2096 		FREQ2FBIN(5785, 0)
2097 	},
2098 	.calPierData5G = {
2099 		{
2100 			{0, 0, 0, 0, 0},
2101 			{0, 0, 0, 0, 0},
2102 			{0, 0, 0, 0, 0},
2103 			{0, 0, 0, 0, 0},
2104 			{0, 0, 0, 0, 0},
2105 			{0, 0, 0, 0, 0},
2106 			{0, 0, 0, 0, 0},
2107 			{0, 0, 0, 0, 0},
2108 		},
2109 		{
2110 			{0, 0, 0, 0, 0},
2111 			{0, 0, 0, 0, 0},
2112 			{0, 0, 0, 0, 0},
2113 			{0, 0, 0, 0, 0},
2114 			{0, 0, 0, 0, 0},
2115 			{0, 0, 0, 0, 0},
2116 			{0, 0, 0, 0, 0},
2117 			{0, 0, 0, 0, 0},
2118 		},
2119 		{
2120 			{0, 0, 0, 0, 0},
2121 			{0, 0, 0, 0, 0},
2122 			{0, 0, 0, 0, 0},
2123 			{0, 0, 0, 0, 0},
2124 			{0, 0, 0, 0, 0},
2125 			{0, 0, 0, 0, 0},
2126 			{0, 0, 0, 0, 0},
2127 			{0, 0, 0, 0, 0},
2128 		},
2129 
2130 	},
2131 	.calTarget_freqbin_5G = {
2132 		FREQ2FBIN(5180, 0),
2133 		FREQ2FBIN(5220, 0),
2134 		FREQ2FBIN(5320, 0),
2135 		FREQ2FBIN(5400, 0),
2136 		FREQ2FBIN(5500, 0),
2137 		FREQ2FBIN(5600, 0),
2138 		FREQ2FBIN(5725, 0),
2139 		FREQ2FBIN(5825, 0)
2140 	},
2141 	.calTarget_freqbin_5GHT20 = {
2142 		FREQ2FBIN(5180, 0),
2143 		FREQ2FBIN(5220, 0),
2144 		FREQ2FBIN(5320, 0),
2145 		FREQ2FBIN(5400, 0),
2146 		FREQ2FBIN(5500, 0),
2147 		FREQ2FBIN(5600, 0),
2148 		FREQ2FBIN(5725, 0),
2149 		FREQ2FBIN(5825, 0)
2150 	},
2151 	.calTarget_freqbin_5GHT40 = {
2152 		FREQ2FBIN(5180, 0),
2153 		FREQ2FBIN(5220, 0),
2154 		FREQ2FBIN(5320, 0),
2155 		FREQ2FBIN(5400, 0),
2156 		FREQ2FBIN(5500, 0),
2157 		FREQ2FBIN(5600, 0),
2158 		FREQ2FBIN(5725, 0),
2159 		FREQ2FBIN(5825, 0)
2160 	},
2161 	.calTargetPower5G = {
2162 		/* 6-24,36,48,54 */
2163 		{ {32, 32, 28, 26} },
2164 		{ {32, 32, 28, 26} },
2165 		{ {32, 32, 28, 26} },
2166 		{ {32, 32, 26, 24} },
2167 		{ {32, 32, 26, 24} },
2168 		{ {32, 32, 24, 22} },
2169 		{ {30, 30, 24, 22} },
2170 		{ {30, 30, 24, 22} },
2171 	},
2172 	.calTargetPower5GHT20 = {
2173 		/*
2174 		 * 0_8_16,1-3_9-11_17-19,
2175 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2176 		 */
2177 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2178 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2179 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2180 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2181 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2182 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2183 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2184 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2185 	},
2186 	.calTargetPower5GHT40 =  {
2187 		/*
2188 		 * 0_8_16,1-3_9-11_17-19,
2189 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2190 		 */
2191 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2192 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2193 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2194 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2195 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2196 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2197 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2198 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2199 	},
2200 	.ctlIndex_5G =  {
2201 		0x10, 0x16, 0x18, 0x40, 0x46,
2202 		0x48, 0x30, 0x36, 0x38
2203 	},
2204 	.ctl_freqbin_5G =  {
2205 		{
2206 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2207 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2208 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2209 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2210 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2211 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2212 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2213 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2214 		},
2215 		{
2216 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2217 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2218 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2219 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2220 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2221 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2222 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2223 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2224 		},
2225 
2226 		{
2227 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2228 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2229 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2230 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2231 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2232 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2233 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2234 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2235 		},
2236 
2237 		{
2238 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2239 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2240 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2241 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2242 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2243 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2244 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2245 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2246 		},
2247 
2248 		{
2249 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2250 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2251 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2252 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2253 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2254 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2255 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2256 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2257 		},
2258 
2259 		{
2260 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2261 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2262 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2263 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2264 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2265 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2266 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2267 			/* Data[5].ctledges[7].bchannel */ 0xFF
2268 		},
2269 
2270 		{
2271 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2272 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2273 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2274 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2275 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2276 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2277 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2278 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2279 		},
2280 
2281 		{
2282 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2283 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2284 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2285 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2286 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2287 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2288 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2289 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2290 		},
2291 
2292 		{
2293 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2294 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2295 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2296 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2297 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2298 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2299 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2300 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2301 		}
2302 	},
2303 	.ctlPowerData_5G = {
2304 		{
2305 			{
2306 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2307 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2308 			}
2309 		},
2310 		{
2311 			{
2312 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2313 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2314 			}
2315 		},
2316 		{
2317 			{
2318 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2319 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2320 			}
2321 		},
2322 		{
2323 			{
2324 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2325 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2326 			}
2327 		},
2328 		{
2329 			{
2330 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2331 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2332 			}
2333 		},
2334 		{
2335 			{
2336 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2337 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2338 			}
2339 		},
2340 		{
2341 			{
2342 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2343 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2344 			}
2345 		},
2346 		{
2347 			{
2348 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2349 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2350 			}
2351 		},
2352 		{
2353 			{
2354 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2355 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2356 			}
2357 		},
2358 	}
2359 };
2360 
2361 static const struct ar9300_eeprom ar9300_h116 = {
2362 	.eepromVersion = 2,
2363 	.templateVersion = 4,
2364 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2365 	.custData = {"h116-041-f0000"},
2366 	.baseEepHeader = {
2367 		.regDmn = { LE16(0), LE16(0x1f) },
2368 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2369 		.opCapFlags = {
2370 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2371 			.eepMisc = 0,
2372 		},
2373 		.rfSilent = 0,
2374 		.blueToothOptions = 0,
2375 		.deviceCap = 0,
2376 		.deviceType = 5, /* takes lower byte in eeprom location */
2377 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2378 		.params_for_tuning_caps = {0, 0},
2379 		.featureEnable = 0x0d,
2380 		 /*
2381 		  * bit0 - enable tx temp comp - disabled
2382 		  * bit1 - enable tx volt comp - disabled
2383 		  * bit2 - enable fastClock - enabled
2384 		  * bit3 - enable doubling - enabled
2385 		  * bit4 - enable internal regulator - disabled
2386 		  * bit5 - enable pa predistortion - disabled
2387 		  */
2388 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2389 		.eepromWriteEnableGpio = 6,
2390 		.wlanDisableGpio = 0,
2391 		.wlanLedGpio = 8,
2392 		.rxBandSelectGpio = 0xff,
2393 		.txrxgain = 0x10,
2394 		.swreg = 0,
2395 	 },
2396 	.modalHeader2G = {
2397 	/* ar9300_modal_eep_header  2g */
2398 		/* 4 idle,t1,t2,b(4 bits per setting) */
2399 		.antCtrlCommon = LE32(0x110),
2400 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2401 		.antCtrlCommon2 = LE32(0x44444),
2402 
2403 		/*
2404 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2405 		 * rx1, rx12, b (2 bits each)
2406 		 */
2407 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2408 
2409 		/*
2410 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2411 		 * for ar9280 (0xa20c/b20c 5:0)
2412 		 */
2413 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2414 
2415 		/*
2416 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2417 		 * for ar9280 (0xa20c/b20c 16:12
2418 		 */
2419 		.xatten1Margin = {0x12, 0x12, 0x12},
2420 		.tempSlope = 25,
2421 		.voltSlope = 0,
2422 
2423 		/*
2424 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2425 		 * channels in usual fbin coding format
2426 		 */
2427 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2428 
2429 		/*
2430 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2431 		 * if the register is per chain
2432 		 */
2433 		.noiseFloorThreshCh = {-1, 0, 0},
2434 		.ob = {1, 1, 1},/* 3 chain */
2435 		.db_stage2 = {1, 1, 1}, /* 3 chain  */
2436 		.db_stage3 = {0, 0, 0},
2437 		.db_stage4 = {0, 0, 0},
2438 		.xpaBiasLvl = 0,
2439 		.txFrameToDataStart = 0x0e,
2440 		.txFrameToPaOn = 0x0e,
2441 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2442 		.antennaGain = 0,
2443 		.switchSettling = 0x2c,
2444 		.adcDesiredSize = -30,
2445 		.txEndToXpaOff = 0,
2446 		.txEndToRxOn = 0x2,
2447 		.txFrameToXpaOn = 0xe,
2448 		.thresh62 = 28,
2449 		.papdRateMaskHt20 = LE32(0x0c80C080),
2450 		.papdRateMaskHt40 = LE32(0x0080C080),
2451 		.futureModal = {
2452 			0, 0, 0, 0, 0, 0, 0, 0,
2453 		},
2454 	 },
2455 	 .base_ext1 = {
2456 		.ant_div_control = 0,
2457 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2458 	 },
2459 	.calFreqPier2G = {
2460 		FREQ2FBIN(2412, 1),
2461 		FREQ2FBIN(2437, 1),
2462 		FREQ2FBIN(2472, 1),
2463 	 },
2464 	/* ar9300_cal_data_per_freq_op_loop 2g */
2465 	.calPierData2G = {
2466 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2467 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2468 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2469 	 },
2470 	.calTarget_freqbin_Cck = {
2471 		FREQ2FBIN(2412, 1),
2472 		FREQ2FBIN(2472, 1),
2473 	 },
2474 	.calTarget_freqbin_2G = {
2475 		FREQ2FBIN(2412, 1),
2476 		FREQ2FBIN(2437, 1),
2477 		FREQ2FBIN(2472, 1)
2478 	 },
2479 	.calTarget_freqbin_2GHT20 = {
2480 		FREQ2FBIN(2412, 1),
2481 		FREQ2FBIN(2437, 1),
2482 		FREQ2FBIN(2472, 1)
2483 	 },
2484 	.calTarget_freqbin_2GHT40 = {
2485 		FREQ2FBIN(2412, 1),
2486 		FREQ2FBIN(2437, 1),
2487 		FREQ2FBIN(2472, 1)
2488 	 },
2489 	.calTargetPowerCck = {
2490 		 /* 1L-5L,5S,11L,11S */
2491 		 { {34, 34, 34, 34} },
2492 		 { {34, 34, 34, 34} },
2493 	},
2494 	.calTargetPower2G = {
2495 		 /* 6-24,36,48,54 */
2496 		 { {34, 34, 32, 32} },
2497 		 { {34, 34, 32, 32} },
2498 		 { {34, 34, 32, 32} },
2499 	},
2500 	.calTargetPower2GHT20 = {
2501 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2502 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2503 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2504 	},
2505 	.calTargetPower2GHT40 = {
2506 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2507 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2508 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2509 	},
2510 	.ctlIndex_2G =  {
2511 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2512 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2513 	},
2514 	.ctl_freqbin_2G = {
2515 		{
2516 			FREQ2FBIN(2412, 1),
2517 			FREQ2FBIN(2417, 1),
2518 			FREQ2FBIN(2457, 1),
2519 			FREQ2FBIN(2462, 1)
2520 		},
2521 		{
2522 			FREQ2FBIN(2412, 1),
2523 			FREQ2FBIN(2417, 1),
2524 			FREQ2FBIN(2462, 1),
2525 			0xFF,
2526 		},
2527 
2528 		{
2529 			FREQ2FBIN(2412, 1),
2530 			FREQ2FBIN(2417, 1),
2531 			FREQ2FBIN(2462, 1),
2532 			0xFF,
2533 		},
2534 		{
2535 			FREQ2FBIN(2422, 1),
2536 			FREQ2FBIN(2427, 1),
2537 			FREQ2FBIN(2447, 1),
2538 			FREQ2FBIN(2452, 1)
2539 		},
2540 
2541 		{
2542 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2543 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2544 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2545 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2546 		},
2547 
2548 		{
2549 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2550 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2551 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2552 			0,
2553 		},
2554 
2555 		{
2556 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2557 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2558 			FREQ2FBIN(2472, 1),
2559 			0,
2560 		},
2561 
2562 		{
2563 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2564 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2565 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2566 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2567 		},
2568 
2569 		{
2570 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2571 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2572 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2573 		},
2574 
2575 		{
2576 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2577 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2578 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2579 			0
2580 		},
2581 
2582 		{
2583 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2584 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2585 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2586 			0
2587 		},
2588 
2589 		{
2590 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2591 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2592 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2593 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2594 		}
2595 	 },
2596 	.ctlPowerData_2G = {
2597 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2598 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2599 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2600 
2601 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2602 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2603 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2604 
2605 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2606 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2607 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2608 
2609 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2610 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2611 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2612 	 },
2613 	.modalHeader5G = {
2614 		/* 4 idle,t1,t2,b (4 bits per setting) */
2615 		.antCtrlCommon = LE32(0x220),
2616 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2617 		.antCtrlCommon2 = LE32(0x44444),
2618 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2619 		.antCtrlChain = {
2620 			LE16(0x150), LE16(0x150), LE16(0x150),
2621 		},
2622 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2623 		.xatten1DB = {0x19, 0x19, 0x19},
2624 
2625 		/*
2626 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2627 		 * for merlin (0xa20c/b20c 16:12
2628 		 */
2629 		.xatten1Margin = {0x14, 0x14, 0x14},
2630 		.tempSlope = 70,
2631 		.voltSlope = 0,
2632 		/* spurChans spur channels in usual fbin coding format */
2633 		.spurChans = {0, 0, 0, 0, 0},
2634 		/* noiseFloorThreshCh Check if the register is per chain */
2635 		.noiseFloorThreshCh = {-1, 0, 0},
2636 		.ob = {3, 3, 3}, /* 3 chain */
2637 		.db_stage2 = {3, 3, 3}, /* 3 chain */
2638 		.db_stage3 = {3, 3, 3}, /* doesn't exist for 2G */
2639 		.db_stage4 = {3, 3, 3},	 /* don't exist for 2G */
2640 		.xpaBiasLvl = 0,
2641 		.txFrameToDataStart = 0x0e,
2642 		.txFrameToPaOn = 0x0e,
2643 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2644 		.antennaGain = 0,
2645 		.switchSettling = 0x2d,
2646 		.adcDesiredSize = -30,
2647 		.txEndToXpaOff = 0,
2648 		.txEndToRxOn = 0x2,
2649 		.txFrameToXpaOn = 0xe,
2650 		.thresh62 = 28,
2651 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2652 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2653 		.futureModal = {
2654 			0, 0, 0, 0, 0, 0, 0, 0,
2655 		},
2656 	 },
2657 	.base_ext2 = {
2658 		.tempSlopeLow = 35,
2659 		.tempSlopeHigh = 50,
2660 		.xatten1DBLow = {0, 0, 0},
2661 		.xatten1MarginLow = {0, 0, 0},
2662 		.xatten1DBHigh = {0, 0, 0},
2663 		.xatten1MarginHigh = {0, 0, 0}
2664 	 },
2665 	.calFreqPier5G = {
2666 		FREQ2FBIN(5180, 0),
2667 		FREQ2FBIN(5220, 0),
2668 		FREQ2FBIN(5320, 0),
2669 		FREQ2FBIN(5400, 0),
2670 		FREQ2FBIN(5500, 0),
2671 		FREQ2FBIN(5600, 0),
2672 		FREQ2FBIN(5700, 0),
2673 		FREQ2FBIN(5785, 0)
2674 	},
2675 	.calPierData5G = {
2676 			{
2677 				{0, 0, 0, 0, 0},
2678 				{0, 0, 0, 0, 0},
2679 				{0, 0, 0, 0, 0},
2680 				{0, 0, 0, 0, 0},
2681 				{0, 0, 0, 0, 0},
2682 				{0, 0, 0, 0, 0},
2683 				{0, 0, 0, 0, 0},
2684 				{0, 0, 0, 0, 0},
2685 			},
2686 			{
2687 				{0, 0, 0, 0, 0},
2688 				{0, 0, 0, 0, 0},
2689 				{0, 0, 0, 0, 0},
2690 				{0, 0, 0, 0, 0},
2691 				{0, 0, 0, 0, 0},
2692 				{0, 0, 0, 0, 0},
2693 				{0, 0, 0, 0, 0},
2694 				{0, 0, 0, 0, 0},
2695 			},
2696 			{
2697 				{0, 0, 0, 0, 0},
2698 				{0, 0, 0, 0, 0},
2699 				{0, 0, 0, 0, 0},
2700 				{0, 0, 0, 0, 0},
2701 				{0, 0, 0, 0, 0},
2702 				{0, 0, 0, 0, 0},
2703 				{0, 0, 0, 0, 0},
2704 				{0, 0, 0, 0, 0},
2705 			},
2706 
2707 	},
2708 	.calTarget_freqbin_5G = {
2709 		FREQ2FBIN(5180, 0),
2710 		FREQ2FBIN(5240, 0),
2711 		FREQ2FBIN(5320, 0),
2712 		FREQ2FBIN(5400, 0),
2713 		FREQ2FBIN(5500, 0),
2714 		FREQ2FBIN(5600, 0),
2715 		FREQ2FBIN(5700, 0),
2716 		FREQ2FBIN(5825, 0)
2717 	},
2718 	.calTarget_freqbin_5GHT20 = {
2719 		FREQ2FBIN(5180, 0),
2720 		FREQ2FBIN(5240, 0),
2721 		FREQ2FBIN(5320, 0),
2722 		FREQ2FBIN(5400, 0),
2723 		FREQ2FBIN(5500, 0),
2724 		FREQ2FBIN(5700, 0),
2725 		FREQ2FBIN(5745, 0),
2726 		FREQ2FBIN(5825, 0)
2727 	},
2728 	.calTarget_freqbin_5GHT40 = {
2729 		FREQ2FBIN(5180, 0),
2730 		FREQ2FBIN(5240, 0),
2731 		FREQ2FBIN(5320, 0),
2732 		FREQ2FBIN(5400, 0),
2733 		FREQ2FBIN(5500, 0),
2734 		FREQ2FBIN(5700, 0),
2735 		FREQ2FBIN(5745, 0),
2736 		FREQ2FBIN(5825, 0)
2737 	 },
2738 	.calTargetPower5G = {
2739 		/* 6-24,36,48,54 */
2740 		{ {30, 30, 28, 24} },
2741 		{ {30, 30, 28, 24} },
2742 		{ {30, 30, 28, 24} },
2743 		{ {30, 30, 28, 24} },
2744 		{ {30, 30, 28, 24} },
2745 		{ {30, 30, 28, 24} },
2746 		{ {30, 30, 28, 24} },
2747 		{ {30, 30, 28, 24} },
2748 	 },
2749 	.calTargetPower5GHT20 = {
2750 		/*
2751 		 * 0_8_16,1-3_9-11_17-19,
2752 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2753 		 */
2754 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2755 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2756 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2757 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2758 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2759 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2760 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2761 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2762 	 },
2763 	.calTargetPower5GHT40 =  {
2764 		/*
2765 		 * 0_8_16,1-3_9-11_17-19,
2766 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2767 		 */
2768 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2769 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2770 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2771 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2772 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2773 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2774 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2775 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2776 	 },
2777 	.ctlIndex_5G =  {
2778 		0x10, 0x16, 0x18, 0x40, 0x46,
2779 		0x48, 0x30, 0x36, 0x38
2780 	},
2781 	.ctl_freqbin_5G =  {
2782 		{
2783 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2784 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2785 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2786 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2787 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2788 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2789 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2790 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2791 		},
2792 		{
2793 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2794 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2795 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2796 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2797 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2798 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2799 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2800 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2801 		},
2802 
2803 		{
2804 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2805 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2806 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2807 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2808 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2809 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2810 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2811 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2812 		},
2813 
2814 		{
2815 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2816 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2817 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2818 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2819 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2820 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2821 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2822 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2823 		},
2824 
2825 		{
2826 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2827 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2828 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2829 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2830 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2831 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2832 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2833 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2834 		},
2835 
2836 		{
2837 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2838 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2839 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2840 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2841 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2842 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2843 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2844 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2845 		},
2846 
2847 		{
2848 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2849 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2850 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2851 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2852 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2853 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2854 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2855 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2856 		},
2857 
2858 		{
2859 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2860 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2861 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2862 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2863 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2864 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2865 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2866 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2867 		},
2868 
2869 		{
2870 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2871 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2872 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2873 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2874 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2875 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2876 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2877 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2878 		}
2879 	 },
2880 	.ctlPowerData_5G = {
2881 		{
2882 			{
2883 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2884 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2885 			}
2886 		},
2887 		{
2888 			{
2889 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2890 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2891 			}
2892 		},
2893 		{
2894 			{
2895 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2896 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2897 			}
2898 		},
2899 		{
2900 			{
2901 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2902 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2903 			}
2904 		},
2905 		{
2906 			{
2907 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2908 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2909 			}
2910 		},
2911 		{
2912 			{
2913 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2914 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2915 			}
2916 		},
2917 		{
2918 			{
2919 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2920 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2921 			}
2922 		},
2923 		{
2924 			{
2925 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2926 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2927 			}
2928 		},
2929 		{
2930 			{
2931 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2932 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2933 			}
2934 		},
2935 	 }
2936 };
2937 
2938 
2939 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2940 	&ar9300_default,
2941 	&ar9300_x112,
2942 	&ar9300_h116,
2943 	&ar9300_h112,
2944 	&ar9300_x113,
2945 };
2946 
2947 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2948 {
2949 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2950 	int it;
2951 
2952 	for (it = 0; it < N_LOOP; it++)
2953 		if (ar9300_eep_templates[it]->templateVersion == id)
2954 			return ar9300_eep_templates[it];
2955 	return NULL;
2956 #undef N_LOOP
2957 }
2958 
2959 
2960 static u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
2961 {
2962 	if (fbin == AR5416_BCHAN_UNUSED)
2963 		return fbin;
2964 
2965 	return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2966 }
2967 
2968 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2969 {
2970 	return 0;
2971 }
2972 
2973 static int interpolate(int x, int xa, int xb, int ya, int yb)
2974 {
2975 	int bf, factor, plus;
2976 
2977 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2978 	factor = bf / 2;
2979 	plus = bf % 2;
2980 	return ya + factor + plus;
2981 }
2982 
2983 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2984 				      enum eeprom_param param)
2985 {
2986 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2987 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2988 
2989 	switch (param) {
2990 	case EEP_MAC_LSW:
2991 		return get_unaligned_be16(eep->macAddr);
2992 	case EEP_MAC_MID:
2993 		return get_unaligned_be16(eep->macAddr + 2);
2994 	case EEP_MAC_MSW:
2995 		return get_unaligned_be16(eep->macAddr + 4);
2996 	case EEP_REG_0:
2997 		return le16_to_cpu(pBase->regDmn[0]);
2998 	case EEP_OP_CAP:
2999 		return pBase->deviceCap;
3000 	case EEP_OP_MODE:
3001 		return pBase->opCapFlags.opFlags;
3002 	case EEP_RF_SILENT:
3003 		return pBase->rfSilent;
3004 	case EEP_TX_MASK:
3005 		return (pBase->txrxMask >> 4) & 0xf;
3006 	case EEP_RX_MASK:
3007 		return pBase->txrxMask & 0xf;
3008 	case EEP_DRIVE_STRENGTH:
3009 #define AR9300_EEP_BASE_DRIV_STRENGTH	0x1
3010 		return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
3011 	case EEP_INTERNAL_REGULATOR:
3012 		/* Bit 4 is internal regulator flag */
3013 		return (pBase->featureEnable & 0x10) >> 4;
3014 	case EEP_SWREG:
3015 		return le32_to_cpu(pBase->swreg);
3016 	case EEP_PAPRD:
3017 		return !!(pBase->featureEnable & BIT(5));
3018 	case EEP_CHAIN_MASK_REDUCE:
3019 		return (pBase->miscConfiguration >> 0x3) & 0x1;
3020 	case EEP_ANT_DIV_CTL1:
3021 		return eep->base_ext1.ant_div_control;
3022 	case EEP_ANTENNA_GAIN_5G:
3023 		return eep->modalHeader5G.antennaGain;
3024 	case EEP_ANTENNA_GAIN_2G:
3025 		return eep->modalHeader2G.antennaGain;
3026 	default:
3027 		return 0;
3028 	}
3029 }
3030 
3031 static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3032 				    u8 *buffer)
3033 {
3034 	u16 val;
3035 
3036 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3037 		return false;
3038 
3039 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3040 	return true;
3041 }
3042 
3043 static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3044 				    u8 *buffer)
3045 {
3046 	u16 val;
3047 
3048 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3049 		return false;
3050 
3051 	buffer[0] = val >> 8;
3052 	buffer[1] = val & 0xff;
3053 
3054 	return true;
3055 }
3056 
3057 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3058 			       int count)
3059 {
3060 	struct ath_common *common = ath9k_hw_common(ah);
3061 	int i;
3062 
3063 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3064 		ath_dbg(common, ATH_DBG_EEPROM,
3065 			"eeprom address not in range\n");
3066 		return false;
3067 	}
3068 
3069 	/*
3070 	 * Since we're reading the bytes in reverse order from a little-endian
3071 	 * word stream, an even address means we only use the lower half of
3072 	 * the 16-bit word at that address
3073 	 */
3074 	if (address % 2 == 0) {
3075 		if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3076 			goto error;
3077 
3078 		count--;
3079 	}
3080 
3081 	for (i = 0; i < count / 2; i++) {
3082 		if (!ar9300_eeprom_read_word(common, address, buffer))
3083 			goto error;
3084 
3085 		address -= 2;
3086 		buffer += 2;
3087 	}
3088 
3089 	if (count % 2)
3090 		if (!ar9300_eeprom_read_byte(common, address, buffer))
3091 			goto error;
3092 
3093 	return true;
3094 
3095 error:
3096 	ath_dbg(common, ATH_DBG_EEPROM,
3097 		"unable to read eeprom region at offset %d\n", address);
3098 	return false;
3099 }
3100 
3101 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3102 {
3103 	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3104 
3105 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3106 			   AR9300_OTP_STATUS_VALID, 1000))
3107 		return false;
3108 
3109 	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3110 	return true;
3111 }
3112 
3113 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3114 			    int count)
3115 {
3116 	u32 data;
3117 	int i;
3118 
3119 	for (i = 0; i < count; i++) {
3120 		int offset = 8 * ((address - i) % 4);
3121 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3122 			return false;
3123 
3124 		buffer[i] = (data >> offset) & 0xff;
3125 	}
3126 
3127 	return true;
3128 }
3129 
3130 
3131 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3132 				   int *length, int *major, int *minor)
3133 {
3134 	unsigned long value[4];
3135 
3136 	value[0] = best[0];
3137 	value[1] = best[1];
3138 	value[2] = best[2];
3139 	value[3] = best[3];
3140 	*code = ((value[0] >> 5) & 0x0007);
3141 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3142 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3143 	*major = (value[2] & 0x000f);
3144 	*minor = (value[3] & 0x00ff);
3145 }
3146 
3147 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3148 {
3149 	int it, checksum = 0;
3150 
3151 	for (it = 0; it < dsize; it++) {
3152 		checksum += data[it];
3153 		checksum &= 0xffff;
3154 	}
3155 
3156 	return checksum;
3157 }
3158 
3159 static bool ar9300_uncompress_block(struct ath_hw *ah,
3160 				    u8 *mptr,
3161 				    int mdataSize,
3162 				    u8 *block,
3163 				    int size)
3164 {
3165 	int it;
3166 	int spot;
3167 	int offset;
3168 	int length;
3169 	struct ath_common *common = ath9k_hw_common(ah);
3170 
3171 	spot = 0;
3172 
3173 	for (it = 0; it < size; it += (length+2)) {
3174 		offset = block[it];
3175 		offset &= 0xff;
3176 		spot += offset;
3177 		length = block[it+1];
3178 		length &= 0xff;
3179 
3180 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3181 			ath_dbg(common, ATH_DBG_EEPROM,
3182 				"Restore at %d: spot=%d offset=%d length=%d\n",
3183 				it, spot, offset, length);
3184 			memcpy(&mptr[spot], &block[it+2], length);
3185 			spot += length;
3186 		} else if (length > 0) {
3187 			ath_dbg(common, ATH_DBG_EEPROM,
3188 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3189 				it, spot, offset, length);
3190 			return false;
3191 		}
3192 	}
3193 	return true;
3194 }
3195 
3196 static int ar9300_compress_decision(struct ath_hw *ah,
3197 				    int it,
3198 				    int code,
3199 				    int reference,
3200 				    u8 *mptr,
3201 				    u8 *word, int length, int mdata_size)
3202 {
3203 	struct ath_common *common = ath9k_hw_common(ah);
3204 	const struct ar9300_eeprom *eep = NULL;
3205 
3206 	switch (code) {
3207 	case _CompressNone:
3208 		if (length != mdata_size) {
3209 			ath_dbg(common, ATH_DBG_EEPROM,
3210 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3211 				mdata_size, length);
3212 			return -1;
3213 		}
3214 		memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
3215 		ath_dbg(common, ATH_DBG_EEPROM,
3216 			"restored eeprom %d: uncompressed, length %d\n",
3217 			it, length);
3218 		break;
3219 	case _CompressBlock:
3220 		if (reference == 0) {
3221 		} else {
3222 			eep = ar9003_eeprom_struct_find_by_id(reference);
3223 			if (eep == NULL) {
3224 				ath_dbg(common, ATH_DBG_EEPROM,
3225 					"can't find reference eeprom struct %d\n",
3226 					reference);
3227 				return -1;
3228 			}
3229 			memcpy(mptr, eep, mdata_size);
3230 		}
3231 		ath_dbg(common, ATH_DBG_EEPROM,
3232 			"restore eeprom %d: block, reference %d, length %d\n",
3233 			it, reference, length);
3234 		ar9300_uncompress_block(ah, mptr, mdata_size,
3235 					(u8 *) (word + COMP_HDR_LEN), length);
3236 		break;
3237 	default:
3238 		ath_dbg(common, ATH_DBG_EEPROM,
3239 			"unknown compression code %d\n", code);
3240 		return -1;
3241 	}
3242 	return 0;
3243 }
3244 
3245 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3246 			       int count);
3247 
3248 static bool ar9300_check_header(void *data)
3249 {
3250 	u32 *word = data;
3251 	return !(*word == 0 || *word == ~0);
3252 }
3253 
3254 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3255 				       int base_addr)
3256 {
3257 	u8 header[4];
3258 
3259 	if (!read(ah, base_addr, header, 4))
3260 		return false;
3261 
3262 	return ar9300_check_header(header);
3263 }
3264 
3265 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3266 				       int mdata_size)
3267 {
3268 	struct ath_common *common = ath9k_hw_common(ah);
3269 	u16 *data = (u16 *) mptr;
3270 	int i;
3271 
3272 	for (i = 0; i < mdata_size / 2; i++, data++)
3273 		ath9k_hw_nvram_read(common, i, data);
3274 
3275 	return 0;
3276 }
3277 /*
3278  * Read the configuration data from the eeprom.
3279  * The data can be put in any specified memory buffer.
3280  *
3281  * Returns -1 on error.
3282  * Returns address of next memory location on success.
3283  */
3284 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3285 					  u8 *mptr, int mdata_size)
3286 {
3287 #define MDEFAULT 15
3288 #define MSTATE 100
3289 	int cptr;
3290 	u8 *word;
3291 	int code;
3292 	int reference, length, major, minor;
3293 	int osize;
3294 	int it;
3295 	u16 checksum, mchecksum;
3296 	struct ath_common *common = ath9k_hw_common(ah);
3297 	eeprom_read_op read;
3298 
3299 	if (ath9k_hw_use_flash(ah))
3300 		return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3301 
3302 	word = kzalloc(2048, GFP_KERNEL);
3303 	if (!word)
3304 		return -ENOMEM;
3305 
3306 	memcpy(mptr, &ar9300_default, mdata_size);
3307 
3308 	read = ar9300_read_eeprom;
3309 	if (AR_SREV_9485(ah))
3310 		cptr = AR9300_BASE_ADDR_4K;
3311 	else if (AR_SREV_9330(ah))
3312 		cptr = AR9300_BASE_ADDR_512;
3313 	else
3314 		cptr = AR9300_BASE_ADDR;
3315 	ath_dbg(common, ATH_DBG_EEPROM,
3316 		"Trying EEPROM access at Address 0x%04x\n", cptr);
3317 	if (ar9300_check_eeprom_header(ah, read, cptr))
3318 		goto found;
3319 
3320 	cptr = AR9300_BASE_ADDR_512;
3321 	ath_dbg(common, ATH_DBG_EEPROM,
3322 		"Trying EEPROM access at Address 0x%04x\n", cptr);
3323 	if (ar9300_check_eeprom_header(ah, read, cptr))
3324 		goto found;
3325 
3326 	read = ar9300_read_otp;
3327 	cptr = AR9300_BASE_ADDR;
3328 	ath_dbg(common, ATH_DBG_EEPROM,
3329 		"Trying OTP access at Address 0x%04x\n", cptr);
3330 	if (ar9300_check_eeprom_header(ah, read, cptr))
3331 		goto found;
3332 
3333 	cptr = AR9300_BASE_ADDR_512;
3334 	ath_dbg(common, ATH_DBG_EEPROM,
3335 		"Trying OTP access at Address 0x%04x\n", cptr);
3336 	if (ar9300_check_eeprom_header(ah, read, cptr))
3337 		goto found;
3338 
3339 	goto fail;
3340 
3341 found:
3342 	ath_dbg(common, ATH_DBG_EEPROM, "Found valid EEPROM data\n");
3343 
3344 	for (it = 0; it < MSTATE; it++) {
3345 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3346 			goto fail;
3347 
3348 		if (!ar9300_check_header(word))
3349 			break;
3350 
3351 		ar9300_comp_hdr_unpack(word, &code, &reference,
3352 				       &length, &major, &minor);
3353 		ath_dbg(common, ATH_DBG_EEPROM,
3354 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3355 			cptr, code, reference, length, major, minor);
3356 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3357 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3358 			ath_dbg(common, ATH_DBG_EEPROM,
3359 				"Skipping bad header\n");
3360 			cptr -= COMP_HDR_LEN;
3361 			continue;
3362 		}
3363 
3364 		osize = length;
3365 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3366 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3367 		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3368 		ath_dbg(common, ATH_DBG_EEPROM,
3369 			"checksum %x %x\n", checksum, mchecksum);
3370 		if (checksum == mchecksum) {
3371 			ar9300_compress_decision(ah, it, code, reference, mptr,
3372 						 word, length, mdata_size);
3373 		} else {
3374 			ath_dbg(common, ATH_DBG_EEPROM,
3375 				"skipping block with bad checksum\n");
3376 		}
3377 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3378 	}
3379 
3380 	kfree(word);
3381 	return cptr;
3382 
3383 fail:
3384 	kfree(word);
3385 	return -1;
3386 }
3387 
3388 /*
3389  * Restore the configuration structure by reading the eeprom.
3390  * This function destroys any existing in-memory structure
3391  * content.
3392  */
3393 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3394 {
3395 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3396 
3397 	if (ar9300_eeprom_restore_internal(ah, mptr,
3398 			sizeof(struct ar9300_eeprom)) < 0)
3399 		return false;
3400 
3401 	return true;
3402 }
3403 
3404 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3405 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3406 				    struct ar9300_modal_eep_header *modal_hdr)
3407 {
3408 	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3409 	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3410 	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3411 	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3412 	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3413 	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3414 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
3415 	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3416 	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3417 	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3418 	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3419 	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3420 	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3421 	PR_EEP("Temp Slope", modal_hdr->tempSlope);
3422 	PR_EEP("Volt Slope", modal_hdr->voltSlope);
3423 	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3424 	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3425 	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3426 	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3427 	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3428 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3429 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3430 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3431 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3432 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3433 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3434 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3435 	PR_EEP("txClip", modal_hdr->txClip);
3436 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3437 	PR_EEP("Chain0 ob", modal_hdr->ob[0]);
3438 	PR_EEP("Chain1 ob", modal_hdr->ob[1]);
3439 	PR_EEP("Chain2 ob", modal_hdr->ob[2]);
3440 
3441 	PR_EEP("Chain0 db_stage2", modal_hdr->db_stage2[0]);
3442 	PR_EEP("Chain1 db_stage2", modal_hdr->db_stage2[1]);
3443 	PR_EEP("Chain2 db_stage2", modal_hdr->db_stage2[2]);
3444 	PR_EEP("Chain0 db_stage3", modal_hdr->db_stage3[0]);
3445 	PR_EEP("Chain1 db_stage3", modal_hdr->db_stage3[1]);
3446 	PR_EEP("Chain2 db_stage3", modal_hdr->db_stage3[2]);
3447 	PR_EEP("Chain0 db_stage4", modal_hdr->db_stage4[0]);
3448 	PR_EEP("Chain1 db_stage4", modal_hdr->db_stage4[1]);
3449 	PR_EEP("Chain2 db_stage4", modal_hdr->db_stage4[2]);
3450 
3451 	return len;
3452 }
3453 
3454 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3455 				       u8 *buf, u32 len, u32 size)
3456 {
3457 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3458 	struct ar9300_base_eep_hdr *pBase;
3459 
3460 	if (!dump_base_hdr) {
3461 		len += snprintf(buf + len, size - len,
3462 				"%20s :\n", "2GHz modal Header");
3463 		len += ar9003_dump_modal_eeprom(buf, len, size,
3464 						&eep->modalHeader2G);
3465 		len += snprintf(buf + len, size - len,
3466 				"%20s :\n", "5GHz modal Header");
3467 		len += ar9003_dump_modal_eeprom(buf, len, size,
3468 						&eep->modalHeader5G);
3469 		goto out;
3470 	}
3471 
3472 	pBase = &eep->baseEepHeader;
3473 
3474 	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3475 	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3476 	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3477 	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3478 	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3479 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3480 				AR5416_OPFLAGS_11A));
3481 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3482 				AR5416_OPFLAGS_11G));
3483 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3484 					AR5416_OPFLAGS_N_2G_HT20));
3485 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3486 					AR5416_OPFLAGS_N_2G_HT40));
3487 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3488 					AR5416_OPFLAGS_N_5G_HT20));
3489 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3490 					AR5416_OPFLAGS_N_5G_HT40));
3491 	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3492 	PR_EEP("RF Silent", pBase->rfSilent);
3493 	PR_EEP("BT option", pBase->blueToothOptions);
3494 	PR_EEP("Device Cap", pBase->deviceCap);
3495 	PR_EEP("Device Type", pBase->deviceType);
3496 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3497 	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3498 	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3499 	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3500 	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3501 	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3502 	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3503 	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3504 	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3505 	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3506 	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3507 	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3508 	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3509 	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3510 	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3511 	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3512 	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3513 	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3514 
3515 	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3516 			ah->eeprom.ar9300_eep.macAddr);
3517 out:
3518 	if (len > size)
3519 		len = size;
3520 
3521 	return len;
3522 }
3523 #else
3524 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3525 				       u8 *buf, u32 len, u32 size)
3526 {
3527 	return 0;
3528 }
3529 #endif
3530 
3531 /* XXX: review hardware docs */
3532 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3533 {
3534 	return ah->eeprom.ar9300_eep.eepromVersion;
3535 }
3536 
3537 /* XXX: could be read from the eepromVersion, not sure yet */
3538 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3539 {
3540 	return 0;
3541 }
3542 
3543 static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
3544 {
3545 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3546 
3547 	if (is2ghz)
3548 		return eep->modalHeader2G.xpaBiasLvl;
3549 	else
3550 		return eep->modalHeader5G.xpaBiasLvl;
3551 }
3552 
3553 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3554 {
3555 	int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
3556 
3557 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3558 		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3559 	else if (AR_SREV_9462(ah))
3560 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3561 	else {
3562 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3563 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3564 				AR_CH0_THERM_XPABIASLVL_MSB,
3565 				bias >> 2);
3566 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3567 				AR_CH0_THERM_XPASHORT2GND, 1);
3568 	}
3569 }
3570 
3571 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is_2ghz)
3572 {
3573 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3574 	__le32 val;
3575 
3576 	if (is_2ghz)
3577 		val = eep->modalHeader2G.switchcomspdt;
3578 	else
3579 		val = eep->modalHeader5G.switchcomspdt;
3580 	return le32_to_cpu(val);
3581 }
3582 
3583 
3584 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3585 {
3586 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3587 	__le32 val;
3588 
3589 	if (is2ghz)
3590 		val = eep->modalHeader2G.antCtrlCommon;
3591 	else
3592 		val = eep->modalHeader5G.antCtrlCommon;
3593 	return le32_to_cpu(val);
3594 }
3595 
3596 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3597 {
3598 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3599 	__le32 val;
3600 
3601 	if (is2ghz)
3602 		val = eep->modalHeader2G.antCtrlCommon2;
3603 	else
3604 		val = eep->modalHeader5G.antCtrlCommon2;
3605 	return le32_to_cpu(val);
3606 }
3607 
3608 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
3609 					int chain,
3610 					bool is2ghz)
3611 {
3612 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3613 	__le16 val = 0;
3614 
3615 	if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
3616 		if (is2ghz)
3617 			val = eep->modalHeader2G.antCtrlChain[chain];
3618 		else
3619 			val = eep->modalHeader5G.antCtrlChain[chain];
3620 	}
3621 
3622 	return le16_to_cpu(val);
3623 }
3624 
3625 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3626 {
3627 	int chain;
3628 	u32 regval;
3629 	u32 ant_div_ctl1;
3630 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3631 			AR_PHY_SWITCH_CHAIN_0,
3632 			AR_PHY_SWITCH_CHAIN_1,
3633 			AR_PHY_SWITCH_CHAIN_2,
3634 	};
3635 
3636 	u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3637 
3638 	if (AR_SREV_9462(ah)) {
3639 		if (AR_SREV_9462_10(ah)) {
3640 			value &= ~AR_SWITCH_TABLE_COM_SPDT;
3641 			value |= 0x00100000;
3642 		}
3643 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3644 				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3645 	} else
3646 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3647 			      AR_SWITCH_TABLE_COM_ALL, value);
3648 
3649 
3650 	/*
3651 	 *   AR9462 defines new switch table for BT/WLAN,
3652 	 *       here's new field name in XXX.ref for both 2G and 5G.
3653 	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3654 	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
3655 	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3656 	 *
3657 	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
3658 	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3659 	 *
3660 	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3661 	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3662 	 */
3663 	if (AR_SREV_9462_20_OR_LATER(ah)) {
3664 		value = ar9003_switch_com_spdt_get(ah, is2ghz);
3665 		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3666 				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3667 	}
3668 
3669 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3670 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3671 
3672 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3673 		if ((ah->rxchainmask & BIT(chain)) ||
3674 		    (ah->txchainmask & BIT(chain))) {
3675 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3676 							     is2ghz);
3677 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3678 				      AR_SWITCH_TABLE_ALL, value);
3679 		}
3680 	}
3681 
3682 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3683 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3684 		/*
3685 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3686 		 * are the fields present
3687 		 */
3688 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3689 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3690 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3691 		/* enable_lnadiv */
3692 		regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
3693 		regval |= ((value >> 6) & 0x1) <<
3694 				AR_PHY_9485_ANT_DIV_LNADIV_S;
3695 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3696 
3697 		/*enable fast_div */
3698 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3699 		regval &= (~AR_FAST_DIV_ENABLE);
3700 		regval |= ((value >> 7) & 0x1) <<
3701 				AR_FAST_DIV_ENABLE_S;
3702 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3703 		ant_div_ctl1 =
3704 			ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
3705 		/* check whether antenna diversity is enabled */
3706 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
3707 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3708 			/*
3709 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3710 			 * main_tb, alt_tb
3711 			 */
3712 			regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
3713 					AR_PHY_9485_ANT_DIV_ALT_LNACONF |
3714 					AR_PHY_9485_ANT_DIV_ALT_GAINTB |
3715 					AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
3716 			/* by default use LNA1 for the main antenna */
3717 			regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
3718 					AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
3719 			regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
3720 					AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
3721 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3722 		}
3723 
3724 
3725 	}
3726 
3727 }
3728 
3729 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3730 {
3731 	int drive_strength;
3732 	unsigned long reg;
3733 
3734 	drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
3735 
3736 	if (!drive_strength)
3737 		return;
3738 
3739 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3740 	reg &= ~0x00ffffc0;
3741 	reg |= 0x5 << 21;
3742 	reg |= 0x5 << 18;
3743 	reg |= 0x5 << 15;
3744 	reg |= 0x5 << 12;
3745 	reg |= 0x5 << 9;
3746 	reg |= 0x5 << 6;
3747 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3748 
3749 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3750 	reg &= ~0xffffffe0;
3751 	reg |= 0x5 << 29;
3752 	reg |= 0x5 << 26;
3753 	reg |= 0x5 << 23;
3754 	reg |= 0x5 << 20;
3755 	reg |= 0x5 << 17;
3756 	reg |= 0x5 << 14;
3757 	reg |= 0x5 << 11;
3758 	reg |= 0x5 << 8;
3759 	reg |= 0x5 << 5;
3760 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3761 
3762 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3763 	reg &= ~0xff800000;
3764 	reg |= 0x5 << 29;
3765 	reg |= 0x5 << 26;
3766 	reg |= 0x5 << 23;
3767 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3768 }
3769 
3770 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3771 				     struct ath9k_channel *chan)
3772 {
3773 	int f[3], t[3];
3774 	u16 value;
3775 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3776 
3777 	if (chain >= 0 && chain < 3) {
3778 		if (IS_CHAN_2GHZ(chan))
3779 			return eep->modalHeader2G.xatten1DB[chain];
3780 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3781 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3782 			f[0] = 5180;
3783 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3784 			f[1] = 5500;
3785 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3786 			f[2] = 5785;
3787 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3788 							    f, t, 3);
3789 			return value;
3790 		} else
3791 			return eep->modalHeader5G.xatten1DB[chain];
3792 	}
3793 
3794 	return 0;
3795 }
3796 
3797 
3798 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3799 					    struct ath9k_channel *chan)
3800 {
3801 	int f[3], t[3];
3802 	u16 value;
3803 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3804 
3805 	if (chain >= 0 && chain < 3) {
3806 		if (IS_CHAN_2GHZ(chan))
3807 			return eep->modalHeader2G.xatten1Margin[chain];
3808 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3809 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3810 			f[0] = 5180;
3811 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3812 			f[1] = 5500;
3813 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3814 			f[2] = 5785;
3815 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3816 							    f, t, 3);
3817 			return value;
3818 		} else
3819 			return eep->modalHeader5G.xatten1Margin[chain];
3820 	}
3821 
3822 	return 0;
3823 }
3824 
3825 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3826 {
3827 	int i;
3828 	u16 value;
3829 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3830 					  AR_PHY_EXT_ATTEN_CTL_1,
3831 					  AR_PHY_EXT_ATTEN_CTL_2,
3832 					 };
3833 
3834 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3835 	for (i = 0; i < 3; i++) {
3836 		if (ah->txchainmask & BIT(i)) {
3837 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3838 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3839 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3840 
3841 			value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3842 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3843 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3844 				      value);
3845 		}
3846 	}
3847 }
3848 
3849 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3850 {
3851 	int timeout = 100;
3852 
3853 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3854 		if (timeout-- == 0)
3855 			return false;
3856 		REG_WRITE(ah, pmu_reg, pmu_set);
3857 		udelay(10);
3858 	}
3859 
3860 	return true;
3861 }
3862 
3863 static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3864 {
3865 	int internal_regulator =
3866 		ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
3867 	u32 reg_val;
3868 
3869 	if (internal_regulator) {
3870 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3871 			int reg_pmu_set;
3872 
3873 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3874 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3875 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3876 				return;
3877 
3878 			if (AR_SREV_9330(ah)) {
3879 				if (ah->is_clk_25mhz) {
3880 					reg_pmu_set = (3 << 1) | (8 << 4) |
3881 						      (3 << 8) | (1 << 14) |
3882 						      (6 << 17) | (1 << 20) |
3883 						      (3 << 24);
3884 				} else {
3885 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3886 						      (3 << 8)  | (1 << 14) |
3887 						      (6 << 17) | (1 << 20) |
3888 						      (3 << 24);
3889 				}
3890 			} else {
3891 				reg_pmu_set = (5 << 1) | (7 << 4) |
3892 					      (2 << 8) | (2 << 14) |
3893 					      (6 << 17) | (1 << 20) |
3894 					      (3 << 24) | (1 << 28);
3895 			}
3896 
3897 			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3898 			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3899 				return;
3900 
3901 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3902 					| (4 << 26);
3903 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3904 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3905 				return;
3906 
3907 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3908 					| (1 << 21);
3909 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3910 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3911 				return;
3912 		} else if (AR_SREV_9462(ah)) {
3913 			reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3914 			REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3915 		} else {
3916 			/* Internal regulator is ON. Write swreg register. */
3917 			reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3918 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3919 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
3920 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3921 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3922 			/* Set REG_CONTROL1.SWREG_PROGRAM */
3923 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3924 				  REG_READ(ah,
3925 					   AR_RTC_REG_CONTROL1) |
3926 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3927 		}
3928 	} else {
3929 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3930 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3931 			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3932 						AR_PHY_PMU2_PGM))
3933 				udelay(10);
3934 
3935 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3936 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3937 						AR_PHY_PMU1_PWD))
3938 				udelay(10);
3939 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3940 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3941 						AR_PHY_PMU2_PGM))
3942 				udelay(10);
3943 		} else if (AR_SREV_9462(ah))
3944 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3945 		else {
3946 			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3947 				AR_RTC_FORCE_SWREG_PRD;
3948 			REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3949 		}
3950 	}
3951 
3952 }
3953 
3954 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3955 {
3956 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3957 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3958 
3959 	if (eep->baseEepHeader.featureEnable & 0x40) {
3960 		tuning_caps_param &= 0x7f;
3961 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3962 			      tuning_caps_param);
3963 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3964 			      tuning_caps_param);
3965 	}
3966 }
3967 
3968 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
3969 					     struct ath9k_channel *chan)
3970 {
3971 	ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
3972 	ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
3973 	ar9003_hw_drive_strength_apply(ah);
3974 	ar9003_hw_atten_apply(ah, chan);
3975 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah))
3976 		ar9003_hw_internal_regulator_apply(ah);
3977 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3978 		ar9003_hw_apply_tuning_caps(ah);
3979 }
3980 
3981 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
3982 				      struct ath9k_channel *chan)
3983 {
3984 }
3985 
3986 /*
3987  * Returns the interpolated y value corresponding to the specified x value
3988  * from the np ordered pairs of data (px,py).
3989  * The pairs do not have to be in any order.
3990  * If the specified x value is less than any of the px,
3991  * the returned y value is equal to the py for the lowest px.
3992  * If the specified x value is greater than any of the px,
3993  * the returned y value is equal to the py for the highest px.
3994  */
3995 static int ar9003_hw_power_interpolate(int32_t x,
3996 				       int32_t *px, int32_t *py, u_int16_t np)
3997 {
3998 	int ip = 0;
3999 	int lx = 0, ly = 0, lhave = 0;
4000 	int hx = 0, hy = 0, hhave = 0;
4001 	int dx = 0;
4002 	int y = 0;
4003 
4004 	lhave = 0;
4005 	hhave = 0;
4006 
4007 	/* identify best lower and higher x calibration measurement */
4008 	for (ip = 0; ip < np; ip++) {
4009 		dx = x - px[ip];
4010 
4011 		/* this measurement is higher than our desired x */
4012 		if (dx <= 0) {
4013 			if (!hhave || dx > (x - hx)) {
4014 				/* new best higher x measurement */
4015 				hx = px[ip];
4016 				hy = py[ip];
4017 				hhave = 1;
4018 			}
4019 		}
4020 		/* this measurement is lower than our desired x */
4021 		if (dx >= 0) {
4022 			if (!lhave || dx < (x - lx)) {
4023 				/* new best lower x measurement */
4024 				lx = px[ip];
4025 				ly = py[ip];
4026 				lhave = 1;
4027 			}
4028 		}
4029 	}
4030 
4031 	/* the low x is good */
4032 	if (lhave) {
4033 		/* so is the high x */
4034 		if (hhave) {
4035 			/* they're the same, so just pick one */
4036 			if (hx == lx)
4037 				y = ly;
4038 			else	/* interpolate  */
4039 				y = interpolate(x, lx, hx, ly, hy);
4040 		} else		/* only low is good, use it */
4041 			y = ly;
4042 	} else if (hhave)	/* only high is good, use it */
4043 		y = hy;
4044 	else /* nothing is good,this should never happen unless np=0, ???? */
4045 		y = -(1 << 30);
4046 	return y;
4047 }
4048 
4049 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4050 				       u16 rateIndex, u16 freq, bool is2GHz)
4051 {
4052 	u16 numPiers, i;
4053 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4054 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4055 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4056 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
4057 	u8 *pFreqBin;
4058 
4059 	if (is2GHz) {
4060 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4061 		pEepromTargetPwr = eep->calTargetPower2G;
4062 		pFreqBin = eep->calTarget_freqbin_2G;
4063 	} else {
4064 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4065 		pEepromTargetPwr = eep->calTargetPower5G;
4066 		pFreqBin = eep->calTarget_freqbin_5G;
4067 	}
4068 
4069 	/*
4070 	 * create array of channels and targetpower from
4071 	 * targetpower piers stored on eeprom
4072 	 */
4073 	for (i = 0; i < numPiers; i++) {
4074 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4075 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4076 	}
4077 
4078 	/* interpolate to get target power for given frequency */
4079 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4080 						 freqArray,
4081 						 targetPowerArray, numPiers);
4082 }
4083 
4084 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4085 					    u16 rateIndex,
4086 					    u16 freq, bool is2GHz)
4087 {
4088 	u16 numPiers, i;
4089 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4090 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4091 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4092 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4093 	u8 *pFreqBin;
4094 
4095 	if (is2GHz) {
4096 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4097 		pEepromTargetPwr = eep->calTargetPower2GHT20;
4098 		pFreqBin = eep->calTarget_freqbin_2GHT20;
4099 	} else {
4100 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4101 		pEepromTargetPwr = eep->calTargetPower5GHT20;
4102 		pFreqBin = eep->calTarget_freqbin_5GHT20;
4103 	}
4104 
4105 	/*
4106 	 * create array of channels and targetpower
4107 	 * from targetpower piers stored on eeprom
4108 	 */
4109 	for (i = 0; i < numPiers; i++) {
4110 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4111 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4112 	}
4113 
4114 	/* interpolate to get target power for given frequency */
4115 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4116 						 freqArray,
4117 						 targetPowerArray, numPiers);
4118 }
4119 
4120 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4121 					    u16 rateIndex,
4122 					    u16 freq, bool is2GHz)
4123 {
4124 	u16 numPiers, i;
4125 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4126 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4127 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4128 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4129 	u8 *pFreqBin;
4130 
4131 	if (is2GHz) {
4132 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4133 		pEepromTargetPwr = eep->calTargetPower2GHT40;
4134 		pFreqBin = eep->calTarget_freqbin_2GHT40;
4135 	} else {
4136 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4137 		pEepromTargetPwr = eep->calTargetPower5GHT40;
4138 		pFreqBin = eep->calTarget_freqbin_5GHT40;
4139 	}
4140 
4141 	/*
4142 	 * create array of channels and targetpower from
4143 	 * targetpower piers stored on eeprom
4144 	 */
4145 	for (i = 0; i < numPiers; i++) {
4146 		freqArray[i] = FBIN2FREQ(pFreqBin[i], is2GHz);
4147 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4148 	}
4149 
4150 	/* interpolate to get target power for given frequency */
4151 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4152 						 freqArray,
4153 						 targetPowerArray, numPiers);
4154 }
4155 
4156 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4157 					   u16 rateIndex, u16 freq)
4158 {
4159 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4160 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4161 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4162 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4163 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4164 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4165 
4166 	/*
4167 	 * create array of channels and targetpower from
4168 	 * targetpower piers stored on eeprom
4169 	 */
4170 	for (i = 0; i < numPiers; i++) {
4171 		freqArray[i] = FBIN2FREQ(pFreqBin[i], 1);
4172 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4173 	}
4174 
4175 	/* interpolate to get target power for given frequency */
4176 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4177 						 freqArray,
4178 						 targetPowerArray, numPiers);
4179 }
4180 
4181 /* Set tx power registers to array of values passed in */
4182 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4183 {
4184 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4185 	/* make sure forced gain is not set */
4186 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4187 
4188 	/* Write the OFDM power per rate set */
4189 
4190 	/* 6 (LSB), 9, 12, 18 (MSB) */
4191 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4192 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4193 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4194 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4195 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4196 
4197 	/* 24 (LSB), 36, 48, 54 (MSB) */
4198 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4199 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4200 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4201 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4202 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4203 
4204 	/* Write the CCK power per rate set */
4205 
4206 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4207 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4208 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4209 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4210 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4211 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4212 
4213 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4214 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4215 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4216 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4217 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4218 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4219 	    );
4220 
4221         /* Write the power for duplicated frames - HT40 */
4222 
4223         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4224 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4225 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4226 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4227 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4228 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4229 	    );
4230 
4231 	/* Write the HT20 power per rate set */
4232 
4233 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4234 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4235 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4236 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4237 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4238 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4239 	    );
4240 
4241 	/* 6 (LSB), 7, 12, 13 (MSB) */
4242 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4243 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4244 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4245 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4246 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4247 	    );
4248 
4249 	/* 14 (LSB), 15, 20, 21 */
4250 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4251 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4252 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4253 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4254 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4255 	    );
4256 
4257 	/* Mixed HT20 and HT40 rates */
4258 
4259 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4260 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4261 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4262 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4263 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4264 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4265 	    );
4266 
4267 	/*
4268 	 * Write the HT40 power per rate set
4269 	 * correct PAR difference between HT40 and HT20/LEGACY
4270 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4271 	 */
4272 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4273 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4274 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4275 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4276 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4277 	    );
4278 
4279 	/* 6 (LSB), 7, 12, 13 (MSB) */
4280 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4281 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4282 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4283 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4284 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4285 	    );
4286 
4287 	/* 14 (LSB), 15, 20, 21 */
4288 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4289 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4290 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4291 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4292 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4293 	    );
4294 
4295 	return 0;
4296 #undef POW_SM
4297 }
4298 
4299 static void ar9003_hw_set_target_power_eeprom(struct ath_hw *ah, u16 freq,
4300 					      u8 *targetPowerValT2)
4301 {
4302 	/* XXX: hard code for now, need to get from eeprom struct */
4303 	u8 ht40PowerIncForPdadc = 0;
4304 	bool is2GHz = false;
4305 	unsigned int i = 0;
4306 	struct ath_common *common = ath9k_hw_common(ah);
4307 
4308 	if (freq < 4000)
4309 		is2GHz = true;
4310 
4311 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4312 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4313 					 is2GHz);
4314 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4315 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4316 					 is2GHz);
4317 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4318 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4319 					 is2GHz);
4320 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4321 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4322 					 is2GHz);
4323 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4324 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4325 					     freq);
4326 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4327 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4328 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4329 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4330 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4331 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4332 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4333 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4334 					      is2GHz);
4335 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4336 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4337 					      freq, is2GHz);
4338 	targetPowerValT2[ALL_TARGET_HT20_4] =
4339 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4340 					      is2GHz);
4341 	targetPowerValT2[ALL_TARGET_HT20_5] =
4342 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4343 					      is2GHz);
4344 	targetPowerValT2[ALL_TARGET_HT20_6] =
4345 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4346 					      is2GHz);
4347 	targetPowerValT2[ALL_TARGET_HT20_7] =
4348 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4349 					      is2GHz);
4350 	targetPowerValT2[ALL_TARGET_HT20_12] =
4351 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4352 					      is2GHz);
4353 	targetPowerValT2[ALL_TARGET_HT20_13] =
4354 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4355 					      is2GHz);
4356 	targetPowerValT2[ALL_TARGET_HT20_14] =
4357 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4358 					      is2GHz);
4359 	targetPowerValT2[ALL_TARGET_HT20_15] =
4360 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4361 					      is2GHz);
4362 	targetPowerValT2[ALL_TARGET_HT20_20] =
4363 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4364 					      is2GHz);
4365 	targetPowerValT2[ALL_TARGET_HT20_21] =
4366 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4367 					      is2GHz);
4368 	targetPowerValT2[ALL_TARGET_HT20_22] =
4369 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4370 					      is2GHz);
4371 	targetPowerValT2[ALL_TARGET_HT20_23] =
4372 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4373 					      is2GHz);
4374 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4375 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4376 					      is2GHz) + ht40PowerIncForPdadc;
4377 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4378 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4379 					      freq,
4380 					      is2GHz) + ht40PowerIncForPdadc;
4381 	targetPowerValT2[ALL_TARGET_HT40_4] =
4382 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4383 					      is2GHz) + ht40PowerIncForPdadc;
4384 	targetPowerValT2[ALL_TARGET_HT40_5] =
4385 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4386 					      is2GHz) + ht40PowerIncForPdadc;
4387 	targetPowerValT2[ALL_TARGET_HT40_6] =
4388 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4389 					      is2GHz) + ht40PowerIncForPdadc;
4390 	targetPowerValT2[ALL_TARGET_HT40_7] =
4391 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4392 					      is2GHz) + ht40PowerIncForPdadc;
4393 	targetPowerValT2[ALL_TARGET_HT40_12] =
4394 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4395 					      is2GHz) + ht40PowerIncForPdadc;
4396 	targetPowerValT2[ALL_TARGET_HT40_13] =
4397 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4398 					      is2GHz) + ht40PowerIncForPdadc;
4399 	targetPowerValT2[ALL_TARGET_HT40_14] =
4400 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4401 					      is2GHz) + ht40PowerIncForPdadc;
4402 	targetPowerValT2[ALL_TARGET_HT40_15] =
4403 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4404 					      is2GHz) + ht40PowerIncForPdadc;
4405 	targetPowerValT2[ALL_TARGET_HT40_20] =
4406 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4407 					      is2GHz) + ht40PowerIncForPdadc;
4408 	targetPowerValT2[ALL_TARGET_HT40_21] =
4409 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4410 					      is2GHz) + ht40PowerIncForPdadc;
4411 	targetPowerValT2[ALL_TARGET_HT40_22] =
4412 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4413 					      is2GHz) + ht40PowerIncForPdadc;
4414 	targetPowerValT2[ALL_TARGET_HT40_23] =
4415 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4416 					      is2GHz) + ht40PowerIncForPdadc;
4417 
4418 	for (i = 0; i < ar9300RateSize; i++) {
4419 		ath_dbg(common, ATH_DBG_EEPROM,
4420 			"TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
4421 	}
4422 }
4423 
4424 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4425 				  int mode,
4426 				  int ipier,
4427 				  int ichain,
4428 				  int *pfrequency,
4429 				  int *pcorrection,
4430 				  int *ptemperature, int *pvoltage)
4431 {
4432 	u8 *pCalPier;
4433 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4434 	int is2GHz;
4435 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4436 	struct ath_common *common = ath9k_hw_common(ah);
4437 
4438 	if (ichain >= AR9300_MAX_CHAINS) {
4439 		ath_dbg(common, ATH_DBG_EEPROM,
4440 			"Invalid chain index, must be less than %d\n",
4441 			AR9300_MAX_CHAINS);
4442 		return -1;
4443 	}
4444 
4445 	if (mode) {		/* 5GHz */
4446 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4447 			ath_dbg(common, ATH_DBG_EEPROM,
4448 				"Invalid 5GHz cal pier index, must be less than %d\n",
4449 				AR9300_NUM_5G_CAL_PIERS);
4450 			return -1;
4451 		}
4452 		pCalPier = &(eep->calFreqPier5G[ipier]);
4453 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4454 		is2GHz = 0;
4455 	} else {
4456 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4457 			ath_dbg(common, ATH_DBG_EEPROM,
4458 				"Invalid 2GHz cal pier index, must be less than %d\n",
4459 				AR9300_NUM_2G_CAL_PIERS);
4460 			return -1;
4461 		}
4462 
4463 		pCalPier = &(eep->calFreqPier2G[ipier]);
4464 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4465 		is2GHz = 1;
4466 	}
4467 
4468 	*pfrequency = FBIN2FREQ(*pCalPier, is2GHz);
4469 	*pcorrection = pCalPierStruct->refPower;
4470 	*ptemperature = pCalPierStruct->tempMeas;
4471 	*pvoltage = pCalPierStruct->voltMeas;
4472 
4473 	return 0;
4474 }
4475 
4476 static int ar9003_hw_power_control_override(struct ath_hw *ah,
4477 					    int frequency,
4478 					    int *correction,
4479 					    int *voltage, int *temperature)
4480 {
4481 	int tempSlope = 0;
4482 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4483 	int f[3], t[3];
4484 
4485 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4486 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4487 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4488 	if (ah->caps.tx_chainmask & BIT(1))
4489 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4490 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4491 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4492 	if (ah->caps.tx_chainmask & BIT(2))
4493 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4494 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4495 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4496 
4497 	/* enable open loop power control on chip */
4498 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4499 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4500 		AR_PHY_TPC_6_ERROR_EST_MODE);
4501 	if (ah->caps.tx_chainmask & BIT(1))
4502 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4503 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4504 			AR_PHY_TPC_6_ERROR_EST_MODE);
4505 	if (ah->caps.tx_chainmask & BIT(2))
4506 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4507 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4508 			AR_PHY_TPC_6_ERROR_EST_MODE);
4509 
4510 	/*
4511 	 * enable temperature compensation
4512 	 * Need to use register names
4513 	 */
4514 	if (frequency < 4000)
4515 		tempSlope = eep->modalHeader2G.tempSlope;
4516 	else if (eep->base_ext2.tempSlopeLow != 0) {
4517 		t[0] = eep->base_ext2.tempSlopeLow;
4518 		f[0] = 5180;
4519 		t[1] = eep->modalHeader5G.tempSlope;
4520 		f[1] = 5500;
4521 		t[2] = eep->base_ext2.tempSlopeHigh;
4522 		f[2] = 5785;
4523 		tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4524 							f, t, 3);
4525 	} else
4526 		tempSlope = eep->modalHeader5G.tempSlope;
4527 
4528 	REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4529 
4530 	if (AR_SREV_9462_20(ah))
4531 		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4532 			      AR_PHY_TPC_19_B1_ALPHA_THERM, tempSlope);
4533 
4534 
4535 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4536 		      temperature[0]);
4537 
4538 	return 0;
4539 }
4540 
4541 /* Apply the recorded correction values. */
4542 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4543 {
4544 	int ichain, ipier, npier;
4545 	int mode;
4546 	int lfrequency[AR9300_MAX_CHAINS],
4547 	    lcorrection[AR9300_MAX_CHAINS],
4548 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4549 	int hfrequency[AR9300_MAX_CHAINS],
4550 	    hcorrection[AR9300_MAX_CHAINS],
4551 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4552 	int fdiff;
4553 	int correction[AR9300_MAX_CHAINS],
4554 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4555 	int pfrequency, pcorrection, ptemperature, pvoltage;
4556 	struct ath_common *common = ath9k_hw_common(ah);
4557 
4558 	mode = (frequency >= 4000);
4559 	if (mode)
4560 		npier = AR9300_NUM_5G_CAL_PIERS;
4561 	else
4562 		npier = AR9300_NUM_2G_CAL_PIERS;
4563 
4564 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4565 		lfrequency[ichain] = 0;
4566 		hfrequency[ichain] = 100000;
4567 	}
4568 	/* identify best lower and higher frequency calibration measurement */
4569 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4570 		for (ipier = 0; ipier < npier; ipier++) {
4571 			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4572 						    &pfrequency, &pcorrection,
4573 						    &ptemperature, &pvoltage)) {
4574 				fdiff = frequency - pfrequency;
4575 
4576 				/*
4577 				 * this measurement is higher than
4578 				 * our desired frequency
4579 				 */
4580 				if (fdiff <= 0) {
4581 					if (hfrequency[ichain] <= 0 ||
4582 					    hfrequency[ichain] >= 100000 ||
4583 					    fdiff >
4584 					    (frequency - hfrequency[ichain])) {
4585 						/*
4586 						 * new best higher
4587 						 * frequency measurement
4588 						 */
4589 						hfrequency[ichain] = pfrequency;
4590 						hcorrection[ichain] =
4591 						    pcorrection;
4592 						htemperature[ichain] =
4593 						    ptemperature;
4594 						hvoltage[ichain] = pvoltage;
4595 					}
4596 				}
4597 				if (fdiff >= 0) {
4598 					if (lfrequency[ichain] <= 0
4599 					    || fdiff <
4600 					    (frequency - lfrequency[ichain])) {
4601 						/*
4602 						 * new best lower
4603 						 * frequency measurement
4604 						 */
4605 						lfrequency[ichain] = pfrequency;
4606 						lcorrection[ichain] =
4607 						    pcorrection;
4608 						ltemperature[ichain] =
4609 						    ptemperature;
4610 						lvoltage[ichain] = pvoltage;
4611 					}
4612 				}
4613 			}
4614 		}
4615 	}
4616 
4617 	/* interpolate  */
4618 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4619 		ath_dbg(common, ATH_DBG_EEPROM,
4620 			"ch=%d f=%d low=%d %d h=%d %d\n",
4621 			ichain, frequency, lfrequency[ichain],
4622 			lcorrection[ichain], hfrequency[ichain],
4623 			hcorrection[ichain]);
4624 		/* they're the same, so just pick one */
4625 		if (hfrequency[ichain] == lfrequency[ichain]) {
4626 			correction[ichain] = lcorrection[ichain];
4627 			voltage[ichain] = lvoltage[ichain];
4628 			temperature[ichain] = ltemperature[ichain];
4629 		}
4630 		/* the low frequency is good */
4631 		else if (frequency - lfrequency[ichain] < 1000) {
4632 			/* so is the high frequency, interpolate */
4633 			if (hfrequency[ichain] - frequency < 1000) {
4634 
4635 				correction[ichain] = interpolate(frequency,
4636 						lfrequency[ichain],
4637 						hfrequency[ichain],
4638 						lcorrection[ichain],
4639 						hcorrection[ichain]);
4640 
4641 				temperature[ichain] = interpolate(frequency,
4642 						lfrequency[ichain],
4643 						hfrequency[ichain],
4644 						ltemperature[ichain],
4645 						htemperature[ichain]);
4646 
4647 				voltage[ichain] = interpolate(frequency,
4648 						lfrequency[ichain],
4649 						hfrequency[ichain],
4650 						lvoltage[ichain],
4651 						hvoltage[ichain]);
4652 			}
4653 			/* only low is good, use it */
4654 			else {
4655 				correction[ichain] = lcorrection[ichain];
4656 				temperature[ichain] = ltemperature[ichain];
4657 				voltage[ichain] = lvoltage[ichain];
4658 			}
4659 		}
4660 		/* only high is good, use it */
4661 		else if (hfrequency[ichain] - frequency < 1000) {
4662 			correction[ichain] = hcorrection[ichain];
4663 			temperature[ichain] = htemperature[ichain];
4664 			voltage[ichain] = hvoltage[ichain];
4665 		} else {	/* nothing is good, presume 0???? */
4666 			correction[ichain] = 0;
4667 			temperature[ichain] = 0;
4668 			voltage[ichain] = 0;
4669 		}
4670 	}
4671 
4672 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4673 					 temperature);
4674 
4675 	ath_dbg(common, ATH_DBG_EEPROM,
4676 		"for frequency=%d, calibration correction = %d %d %d\n",
4677 		frequency, correction[0], correction[1], correction[2]);
4678 
4679 	return 0;
4680 }
4681 
4682 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4683 					   int idx,
4684 					   int edge,
4685 					   bool is2GHz)
4686 {
4687 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4688 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4689 
4690 	if (is2GHz)
4691 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4692 	else
4693 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4694 }
4695 
4696 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4697 					     int idx,
4698 					     unsigned int edge,
4699 					     u16 freq,
4700 					     bool is2GHz)
4701 {
4702 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4703 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4704 
4705 	u8 *ctl_freqbin = is2GHz ?
4706 		&eep->ctl_freqbin_2G[idx][0] :
4707 		&eep->ctl_freqbin_5G[idx][0];
4708 
4709 	if (is2GHz) {
4710 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4711 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4712 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4713 	} else {
4714 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4715 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4716 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4717 	}
4718 
4719 	return MAX_RATE_POWER;
4720 }
4721 
4722 /*
4723  * Find the maximum conformance test limit for the given channel and CTL info
4724  */
4725 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4726 					u16 freq, int idx, bool is2GHz)
4727 {
4728 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4729 	u8 *ctl_freqbin = is2GHz ?
4730 		&eep->ctl_freqbin_2G[idx][0] :
4731 		&eep->ctl_freqbin_5G[idx][0];
4732 	u16 num_edges = is2GHz ?
4733 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4734 	unsigned int edge;
4735 
4736 	/* Get the edge power */
4737 	for (edge = 0;
4738 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4739 	     edge++) {
4740 		/*
4741 		 * If there's an exact channel match or an inband flag set
4742 		 * on the lower channel use the given rdEdgePower
4743 		 */
4744 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4745 			twiceMaxEdgePower =
4746 				ar9003_hw_get_direct_edge_power(eep, idx,
4747 								edge, is2GHz);
4748 			break;
4749 		} else if ((edge > 0) &&
4750 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4751 						      is2GHz))) {
4752 			twiceMaxEdgePower =
4753 				ar9003_hw_get_indirect_edge_power(eep, idx,
4754 								  edge, freq,
4755 								  is2GHz);
4756 			/*
4757 			 * Leave loop - no more affecting edges possible in
4758 			 * this monotonic increasing list
4759 			 */
4760 			break;
4761 		}
4762 	}
4763 	return twiceMaxEdgePower;
4764 }
4765 
4766 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4767 					       struct ath9k_channel *chan,
4768 					       u8 *pPwrArray, u16 cfgCtl,
4769 					       u8 antenna_reduction,
4770 					       u16 powerLimit)
4771 {
4772 	struct ath_common *common = ath9k_hw_common(ah);
4773 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4774 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4775 	int i;
4776 	u16 scaledPower = 0, minCtlPower;
4777 	static const u16 ctlModesFor11a[] = {
4778 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4779 	};
4780 	static const u16 ctlModesFor11g[] = {
4781 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4782 		CTL_11G_EXT, CTL_2GHT40
4783 	};
4784 	u16 numCtlModes;
4785 	const u16 *pCtlMode;
4786 	u16 ctlMode, freq;
4787 	struct chan_centers centers;
4788 	u8 *ctlIndex;
4789 	u8 ctlNum;
4790 	u16 twiceMinEdgePower;
4791 	bool is2ghz = IS_CHAN_2GHZ(chan);
4792 
4793 	ath9k_hw_get_channel_centers(ah, chan, &centers);
4794 	scaledPower = powerLimit - antenna_reduction;
4795 
4796 	/*
4797 	 * Reduce scaled Power by number of chains active to get
4798 	 * to per chain tx power level
4799 	 */
4800 	switch (ar5416_get_ntxchains(ah->txchainmask)) {
4801 	case 1:
4802 		break;
4803 	case 2:
4804 		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
4805 			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
4806 		else
4807 			scaledPower = 0;
4808 		break;
4809 	case 3:
4810 		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
4811 			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
4812 		else
4813 			scaledPower = 0;
4814 		break;
4815 	}
4816 
4817 	scaledPower = max((u16)0, scaledPower);
4818 
4819 	/*
4820 	 * Get target powers from EEPROM - our baseline for TX Power
4821 	 */
4822 	if (is2ghz) {
4823 		/* Setup for CTL modes */
4824 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
4825 		numCtlModes =
4826 			ARRAY_SIZE(ctlModesFor11g) -
4827 				   SUB_NUM_CTL_MODES_AT_2G_40;
4828 		pCtlMode = ctlModesFor11g;
4829 		if (IS_CHAN_HT40(chan))
4830 			/* All 2G CTL's */
4831 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4832 	} else {
4833 		/* Setup for CTL modes */
4834 		/* CTL_11A, CTL_5GHT20 */
4835 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4836 					 SUB_NUM_CTL_MODES_AT_5G_40;
4837 		pCtlMode = ctlModesFor11a;
4838 		if (IS_CHAN_HT40(chan))
4839 			/* All 5G CTL's */
4840 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4841 	}
4842 
4843 	/*
4844 	 * For MIMO, need to apply regulatory caps individually across
4845 	 * dynamically running modes: CCK, OFDM, HT20, HT40
4846 	 *
4847 	 * The outer loop walks through each possible applicable runtime mode.
4848 	 * The inner loop walks through each ctlIndex entry in EEPROM.
4849 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4850 	 */
4851 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4852 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4853 			(pCtlMode[ctlMode] == CTL_2GHT40);
4854 		if (isHt40CtlMode)
4855 			freq = centers.synth_center;
4856 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4857 			freq = centers.ext_center;
4858 		else
4859 			freq = centers.ctl_center;
4860 
4861 		ath_dbg(common, ATH_DBG_REGULATORY,
4862 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4863 			ctlMode, numCtlModes, isHt40CtlMode,
4864 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
4865 
4866 		/* walk through each CTL index stored in EEPROM */
4867 		if (is2ghz) {
4868 			ctlIndex = pEepData->ctlIndex_2G;
4869 			ctlNum = AR9300_NUM_CTLS_2G;
4870 		} else {
4871 			ctlIndex = pEepData->ctlIndex_5G;
4872 			ctlNum = AR9300_NUM_CTLS_5G;
4873 		}
4874 
4875 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4876 			ath_dbg(common, ATH_DBG_REGULATORY,
4877 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4878 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4879 				chan->channel);
4880 
4881 				/*
4882 				 * compare test group from regulatory
4883 				 * channel list with test mode from pCtlMode
4884 				 * list
4885 				 */
4886 				if ((((cfgCtl & ~CTL_MODE_M) |
4887 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4888 					ctlIndex[i]) ||
4889 				    (((cfgCtl & ~CTL_MODE_M) |
4890 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4891 				     ((ctlIndex[i] & CTL_MODE_M) |
4892 				       SD_NO_CTL))) {
4893 					twiceMinEdgePower =
4894 					  ar9003_hw_get_max_edge_power(pEepData,
4895 								       freq, i,
4896 								       is2ghz);
4897 
4898 					if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4899 						/*
4900 						 * Find the minimum of all CTL
4901 						 * edge powers that apply to
4902 						 * this channel
4903 						 */
4904 						twiceMaxEdgePower =
4905 							min(twiceMaxEdgePower,
4906 							    twiceMinEdgePower);
4907 						else {
4908 							/* specific */
4909 							twiceMaxEdgePower =
4910 							  twiceMinEdgePower;
4911 							break;
4912 						}
4913 				}
4914 			}
4915 
4916 			minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4917 
4918 			ath_dbg(common, ATH_DBG_REGULATORY,
4919 				"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
4920 				ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4921 				scaledPower, minCtlPower);
4922 
4923 			/* Apply ctl mode to correct target power set */
4924 			switch (pCtlMode[ctlMode]) {
4925 			case CTL_11B:
4926 				for (i = ALL_TARGET_LEGACY_1L_5L;
4927 				     i <= ALL_TARGET_LEGACY_11S; i++)
4928 					pPwrArray[i] =
4929 					  (u8)min((u16)pPwrArray[i],
4930 						  minCtlPower);
4931 				break;
4932 			case CTL_11A:
4933 			case CTL_11G:
4934 				for (i = ALL_TARGET_LEGACY_6_24;
4935 				     i <= ALL_TARGET_LEGACY_54; i++)
4936 					pPwrArray[i] =
4937 					  (u8)min((u16)pPwrArray[i],
4938 						  minCtlPower);
4939 				break;
4940 			case CTL_5GHT20:
4941 			case CTL_2GHT20:
4942 				for (i = ALL_TARGET_HT20_0_8_16;
4943 				     i <= ALL_TARGET_HT20_21; i++)
4944 					pPwrArray[i] =
4945 					  (u8)min((u16)pPwrArray[i],
4946 						  minCtlPower);
4947 				pPwrArray[ALL_TARGET_HT20_22] =
4948 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
4949 					  minCtlPower);
4950 				pPwrArray[ALL_TARGET_HT20_23] =
4951 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
4952 					   minCtlPower);
4953 				break;
4954 			case CTL_5GHT40:
4955 			case CTL_2GHT40:
4956 				for (i = ALL_TARGET_HT40_0_8_16;
4957 				     i <= ALL_TARGET_HT40_23; i++)
4958 					pPwrArray[i] =
4959 					  (u8)min((u16)pPwrArray[i],
4960 						  minCtlPower);
4961 				break;
4962 			default:
4963 			    break;
4964 			}
4965 	} /* end ctl mode checking */
4966 }
4967 
4968 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
4969 {
4970 	u8 mod_idx = mcs_idx % 8;
4971 
4972 	if (mod_idx <= 3)
4973 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
4974 	else
4975 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
4976 }
4977 
4978 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
4979 					struct ath9k_channel *chan, u16 cfgCtl,
4980 					u8 twiceAntennaReduction,
4981 					u8 powerLimit, bool test)
4982 {
4983 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4984 	struct ath_common *common = ath9k_hw_common(ah);
4985 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4986 	struct ar9300_modal_eep_header *modal_hdr;
4987 	u8 targetPowerValT2[ar9300RateSize];
4988 	u8 target_power_val_t2_eep[ar9300RateSize];
4989 	unsigned int i = 0, paprd_scale_factor = 0;
4990 	u8 pwr_idx, min_pwridx = 0;
4991 
4992 	ar9003_hw_set_target_power_eeprom(ah, chan->channel, targetPowerValT2);
4993 
4994 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4995 		if (IS_CHAN_2GHZ(chan))
4996 			modal_hdr = &eep->modalHeader2G;
4997 		else
4998 			modal_hdr = &eep->modalHeader5G;
4999 
5000 		ah->paprd_ratemask =
5001 			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
5002 			AR9300_PAPRD_RATE_MASK;
5003 
5004 		ah->paprd_ratemask_ht40 =
5005 			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5006 			AR9300_PAPRD_RATE_MASK;
5007 
5008 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5009 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5010 						  ALL_TARGET_HT20_0_8_16;
5011 
5012 		if (!ah->paprd_table_write_done) {
5013 			memcpy(target_power_val_t2_eep, targetPowerValT2,
5014 			       sizeof(targetPowerValT2));
5015 			for (i = 0; i < 24; i++) {
5016 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5017 				if (ah->paprd_ratemask & (1 << i)) {
5018 					if (targetPowerValT2[pwr_idx] &&
5019 					    targetPowerValT2[pwr_idx] ==
5020 					    target_power_val_t2_eep[pwr_idx])
5021 						targetPowerValT2[pwr_idx] -=
5022 							paprd_scale_factor;
5023 				}
5024 			}
5025 		}
5026 		memcpy(target_power_val_t2_eep, targetPowerValT2,
5027 		       sizeof(targetPowerValT2));
5028 	}
5029 
5030 	ar9003_hw_set_power_per_rate_table(ah, chan,
5031 					   targetPowerValT2, cfgCtl,
5032 					   twiceAntennaReduction,
5033 					   powerLimit);
5034 
5035 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
5036 		for (i = 0; i < ar9300RateSize; i++) {
5037 			if ((ah->paprd_ratemask & (1 << i)) &&
5038 			    (abs(targetPowerValT2[i] -
5039 				target_power_val_t2_eep[i]) >
5040 			    paprd_scale_factor)) {
5041 				ah->paprd_ratemask &= ~(1 << i);
5042 				ath_dbg(common, ATH_DBG_EEPROM,
5043 					"paprd disabled for mcs %d\n", i);
5044 			}
5045 		}
5046 	}
5047 
5048 	regulatory->max_power_level = 0;
5049 	for (i = 0; i < ar9300RateSize; i++) {
5050 		if (targetPowerValT2[i] > regulatory->max_power_level)
5051 			regulatory->max_power_level = targetPowerValT2[i];
5052 	}
5053 
5054 	if (test)
5055 		return;
5056 
5057 	for (i = 0; i < ar9300RateSize; i++) {
5058 		ath_dbg(common, ATH_DBG_EEPROM,
5059 			"TPC[%02d] 0x%08x\n", i, targetPowerValT2[i]);
5060 	}
5061 
5062 	ah->txpower_limit = regulatory->max_power_level;
5063 
5064 	/* Write target power array to registers */
5065 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5066 	ar9003_hw_calibration_apply(ah, chan->channel);
5067 
5068 	if (IS_CHAN_2GHZ(chan)) {
5069 		if (IS_CHAN_HT40(chan))
5070 			i = ALL_TARGET_HT40_0_8_16;
5071 		else
5072 			i = ALL_TARGET_HT20_0_8_16;
5073 	} else {
5074 		if (IS_CHAN_HT40(chan))
5075 			i = ALL_TARGET_HT40_7;
5076 		else
5077 			i = ALL_TARGET_HT20_7;
5078 	}
5079 	ah->paprd_target_power = targetPowerValT2[i];
5080 }
5081 
5082 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5083 					    u16 i, bool is2GHz)
5084 {
5085 	return AR_NO_SPUR;
5086 }
5087 
5088 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5089 {
5090 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5091 
5092 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5093 }
5094 
5095 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5096 {
5097 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5098 
5099 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5100 }
5101 
5102 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
5103 {
5104 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5105 
5106 	if (is_2ghz)
5107 		return eep->modalHeader2G.spurChans;
5108 	else
5109 		return eep->modalHeader5G.spurChans;
5110 }
5111 
5112 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5113 					   struct ath9k_channel *chan)
5114 {
5115 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5116 
5117 	if (IS_CHAN_2GHZ(chan))
5118 		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5119 			  AR9300_PAPRD_SCALE_1);
5120 	else {
5121 		if (chan->channel >= 5700)
5122 		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5123 			  AR9300_PAPRD_SCALE_1);
5124 		else if (chan->channel >= 5400)
5125 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5126 				   AR9300_PAPRD_SCALE_2);
5127 		else
5128 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5129 				  AR9300_PAPRD_SCALE_1);
5130 	}
5131 }
5132 
5133 const struct eeprom_ops eep_ar9300_ops = {
5134 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5135 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5136 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5137 	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5138 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5139 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5140 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5141 	.set_addac = ath9k_hw_ar9300_set_addac,
5142 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5143 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5144 };
5145