xref: /linux/drivers/net/wireless/ath/ath9k/ar9003_eeprom.c (revision a508da6cc0093171833efb8376b00473f24221b9)
1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9003_phy.h"
20 #include "ar9003_eeprom.h"
21 
22 #define COMP_HDR_LEN 4
23 #define COMP_CKSUM_LEN 2
24 
25 #define LE16(x) __constant_cpu_to_le16(x)
26 #define LE32(x) __constant_cpu_to_le32(x)
27 
28 /* Local defines to distinguish between extension and control CTL's */
29 #define EXT_ADDITIVE (0x8000)
30 #define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
31 #define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
32 #define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
33 
34 #define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
35 #define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
36 
37 #define CTL(_tpower, _flag) ((_tpower) | ((_flag) << 6))
38 
39 #define EEPROM_DATA_LEN_9485	1088
40 
41 static int ar9003_hw_power_interpolate(int32_t x,
42 				       int32_t *px, int32_t *py, u_int16_t np);
43 
44 
45 static const struct ar9300_eeprom ar9300_default = {
46 	.eepromVersion = 2,
47 	.templateVersion = 2,
48 	.macAddr = {0, 2, 3, 4, 5, 6},
49 	.custData = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
50 		     0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
51 	.baseEepHeader = {
52 		.regDmn = { LE16(0), LE16(0x1f) },
53 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
54 		.opCapFlags = {
55 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
56 			.eepMisc = 0,
57 		},
58 		.rfSilent = 0,
59 		.blueToothOptions = 0,
60 		.deviceCap = 0,
61 		.deviceType = 5, /* takes lower byte in eeprom location */
62 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
63 		.params_for_tuning_caps = {0, 0},
64 		.featureEnable = 0x0c,
65 		 /*
66 		  * bit0 - enable tx temp comp - disabled
67 		  * bit1 - enable tx volt comp - disabled
68 		  * bit2 - enable fastClock - enabled
69 		  * bit3 - enable doubling - enabled
70 		  * bit4 - enable internal regulator - disabled
71 		  * bit5 - enable pa predistortion - disabled
72 		  */
73 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
74 		.eepromWriteEnableGpio = 3,
75 		.wlanDisableGpio = 0,
76 		.wlanLedGpio = 8,
77 		.rxBandSelectGpio = 0xff,
78 		.txrxgain = 0,
79 		.swreg = 0,
80 	 },
81 	.modalHeader2G = {
82 	/* ar9300_modal_eep_header  2g */
83 		/* 4 idle,t1,t2,b(4 bits per setting) */
84 		.antCtrlCommon = LE32(0x110),
85 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
86 		.antCtrlCommon2 = LE32(0x22222),
87 
88 		/*
89 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
90 		 * rx1, rx12, b (2 bits each)
91 		 */
92 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
93 
94 		/*
95 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
96 		 * for ar9280 (0xa20c/b20c 5:0)
97 		 */
98 		.xatten1DB = {0, 0, 0},
99 
100 		/*
101 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
102 		 * for ar9280 (0xa20c/b20c 16:12
103 		 */
104 		.xatten1Margin = {0, 0, 0},
105 		.tempSlope = 36,
106 		.voltSlope = 0,
107 
108 		/*
109 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
110 		 * channels in usual fbin coding format
111 		 */
112 		.spurChans = {0, 0, 0, 0, 0},
113 
114 		/*
115 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
116 		 * if the register is per chain
117 		 */
118 		.noiseFloorThreshCh = {-1, 0, 0},
119 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
120 		.quick_drop = 0,
121 		.xpaBiasLvl = 0,
122 		.txFrameToDataStart = 0x0e,
123 		.txFrameToPaOn = 0x0e,
124 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
125 		.antennaGain = 0,
126 		.switchSettling = 0x2c,
127 		.adcDesiredSize = -30,
128 		.txEndToXpaOff = 0,
129 		.txEndToRxOn = 0x2,
130 		.txFrameToXpaOn = 0xe,
131 		.thresh62 = 28,
132 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
133 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
134 		.futureModal = {
135 			0, 0, 0, 0, 0, 0, 0, 0,
136 		},
137 	 },
138 	.base_ext1 = {
139 		.ant_div_control = 0,
140 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
141 	},
142 	.calFreqPier2G = {
143 		FREQ2FBIN(2412, 1),
144 		FREQ2FBIN(2437, 1),
145 		FREQ2FBIN(2472, 1),
146 	 },
147 	/* ar9300_cal_data_per_freq_op_loop 2g */
148 	.calPierData2G = {
149 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
150 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
151 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
152 	 },
153 	.calTarget_freqbin_Cck = {
154 		FREQ2FBIN(2412, 1),
155 		FREQ2FBIN(2484, 1),
156 	 },
157 	.calTarget_freqbin_2G = {
158 		FREQ2FBIN(2412, 1),
159 		FREQ2FBIN(2437, 1),
160 		FREQ2FBIN(2472, 1)
161 	 },
162 	.calTarget_freqbin_2GHT20 = {
163 		FREQ2FBIN(2412, 1),
164 		FREQ2FBIN(2437, 1),
165 		FREQ2FBIN(2472, 1)
166 	 },
167 	.calTarget_freqbin_2GHT40 = {
168 		FREQ2FBIN(2412, 1),
169 		FREQ2FBIN(2437, 1),
170 		FREQ2FBIN(2472, 1)
171 	 },
172 	.calTargetPowerCck = {
173 		 /* 1L-5L,5S,11L,11S */
174 		 { {36, 36, 36, 36} },
175 		 { {36, 36, 36, 36} },
176 	},
177 	.calTargetPower2G = {
178 		 /* 6-24,36,48,54 */
179 		 { {32, 32, 28, 24} },
180 		 { {32, 32, 28, 24} },
181 		 { {32, 32, 28, 24} },
182 	},
183 	.calTargetPower2GHT20 = {
184 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
185 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
186 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
187 	},
188 	.calTargetPower2GHT40 = {
189 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
190 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
191 		{ {32, 32, 32, 32, 28, 20, 32, 32, 28, 20, 32, 32, 28, 20} },
192 	},
193 	.ctlIndex_2G =  {
194 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
195 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
196 	},
197 	.ctl_freqbin_2G = {
198 		{
199 			FREQ2FBIN(2412, 1),
200 			FREQ2FBIN(2417, 1),
201 			FREQ2FBIN(2457, 1),
202 			FREQ2FBIN(2462, 1)
203 		},
204 		{
205 			FREQ2FBIN(2412, 1),
206 			FREQ2FBIN(2417, 1),
207 			FREQ2FBIN(2462, 1),
208 			0xFF,
209 		},
210 
211 		{
212 			FREQ2FBIN(2412, 1),
213 			FREQ2FBIN(2417, 1),
214 			FREQ2FBIN(2462, 1),
215 			0xFF,
216 		},
217 		{
218 			FREQ2FBIN(2422, 1),
219 			FREQ2FBIN(2427, 1),
220 			FREQ2FBIN(2447, 1),
221 			FREQ2FBIN(2452, 1)
222 		},
223 
224 		{
225 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
226 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
227 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
228 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
229 		},
230 
231 		{
232 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
233 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
234 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
235 			0,
236 		},
237 
238 		{
239 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
240 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
241 			FREQ2FBIN(2472, 1),
242 			0,
243 		},
244 
245 		{
246 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
247 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
248 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
249 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
250 		},
251 
252 		{
253 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
254 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
255 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
256 		},
257 
258 		{
259 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
260 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
261 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
262 			0
263 		},
264 
265 		{
266 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
267 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
268 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
269 			0
270 		},
271 
272 		{
273 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
274 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
275 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
276 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
277 		}
278 	 },
279 	.ctlPowerData_2G = {
280 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
281 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
282 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
283 
284 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
285 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
286 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
287 
288 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
289 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
290 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
291 
292 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
293 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
294 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
295 	 },
296 	.modalHeader5G = {
297 		/* 4 idle,t1,t2,b (4 bits per setting) */
298 		.antCtrlCommon = LE32(0x110),
299 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
300 		.antCtrlCommon2 = LE32(0x22222),
301 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
302 		.antCtrlChain = {
303 			LE16(0x000), LE16(0x000), LE16(0x000),
304 		},
305 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
306 		.xatten1DB = {0, 0, 0},
307 
308 		/*
309 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
310 		 * for merlin (0xa20c/b20c 16:12
311 		 */
312 		.xatten1Margin = {0, 0, 0},
313 		.tempSlope = 68,
314 		.voltSlope = 0,
315 		/* spurChans spur channels in usual fbin coding format */
316 		.spurChans = {0, 0, 0, 0, 0},
317 		/* noiseFloorThreshCh Check if the register is per chain */
318 		.noiseFloorThreshCh = {-1, 0, 0},
319 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
320 		.quick_drop = 0,
321 		.xpaBiasLvl = 0,
322 		.txFrameToDataStart = 0x0e,
323 		.txFrameToPaOn = 0x0e,
324 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
325 		.antennaGain = 0,
326 		.switchSettling = 0x2d,
327 		.adcDesiredSize = -30,
328 		.txEndToXpaOff = 0,
329 		.txEndToRxOn = 0x2,
330 		.txFrameToXpaOn = 0xe,
331 		.thresh62 = 28,
332 		.papdRateMaskHt20 = LE32(0x0c80c080),
333 		.papdRateMaskHt40 = LE32(0x0080c080),
334 		.futureModal = {
335 			0, 0, 0, 0, 0, 0, 0, 0,
336 		},
337 	 },
338 	.base_ext2 = {
339 		.tempSlopeLow = 0,
340 		.tempSlopeHigh = 0,
341 		.xatten1DBLow = {0, 0, 0},
342 		.xatten1MarginLow = {0, 0, 0},
343 		.xatten1DBHigh = {0, 0, 0},
344 		.xatten1MarginHigh = {0, 0, 0}
345 	},
346 	.calFreqPier5G = {
347 		FREQ2FBIN(5180, 0),
348 		FREQ2FBIN(5220, 0),
349 		FREQ2FBIN(5320, 0),
350 		FREQ2FBIN(5400, 0),
351 		FREQ2FBIN(5500, 0),
352 		FREQ2FBIN(5600, 0),
353 		FREQ2FBIN(5725, 0),
354 		FREQ2FBIN(5825, 0)
355 	},
356 	.calPierData5G = {
357 			{
358 				{0, 0, 0, 0, 0},
359 				{0, 0, 0, 0, 0},
360 				{0, 0, 0, 0, 0},
361 				{0, 0, 0, 0, 0},
362 				{0, 0, 0, 0, 0},
363 				{0, 0, 0, 0, 0},
364 				{0, 0, 0, 0, 0},
365 				{0, 0, 0, 0, 0},
366 			},
367 			{
368 				{0, 0, 0, 0, 0},
369 				{0, 0, 0, 0, 0},
370 				{0, 0, 0, 0, 0},
371 				{0, 0, 0, 0, 0},
372 				{0, 0, 0, 0, 0},
373 				{0, 0, 0, 0, 0},
374 				{0, 0, 0, 0, 0},
375 				{0, 0, 0, 0, 0},
376 			},
377 			{
378 				{0, 0, 0, 0, 0},
379 				{0, 0, 0, 0, 0},
380 				{0, 0, 0, 0, 0},
381 				{0, 0, 0, 0, 0},
382 				{0, 0, 0, 0, 0},
383 				{0, 0, 0, 0, 0},
384 				{0, 0, 0, 0, 0},
385 				{0, 0, 0, 0, 0},
386 			},
387 
388 	},
389 	.calTarget_freqbin_5G = {
390 		FREQ2FBIN(5180, 0),
391 		FREQ2FBIN(5220, 0),
392 		FREQ2FBIN(5320, 0),
393 		FREQ2FBIN(5400, 0),
394 		FREQ2FBIN(5500, 0),
395 		FREQ2FBIN(5600, 0),
396 		FREQ2FBIN(5725, 0),
397 		FREQ2FBIN(5825, 0)
398 	},
399 	.calTarget_freqbin_5GHT20 = {
400 		FREQ2FBIN(5180, 0),
401 		FREQ2FBIN(5240, 0),
402 		FREQ2FBIN(5320, 0),
403 		FREQ2FBIN(5500, 0),
404 		FREQ2FBIN(5700, 0),
405 		FREQ2FBIN(5745, 0),
406 		FREQ2FBIN(5725, 0),
407 		FREQ2FBIN(5825, 0)
408 	},
409 	.calTarget_freqbin_5GHT40 = {
410 		FREQ2FBIN(5180, 0),
411 		FREQ2FBIN(5240, 0),
412 		FREQ2FBIN(5320, 0),
413 		FREQ2FBIN(5500, 0),
414 		FREQ2FBIN(5700, 0),
415 		FREQ2FBIN(5745, 0),
416 		FREQ2FBIN(5725, 0),
417 		FREQ2FBIN(5825, 0)
418 	 },
419 	.calTargetPower5G = {
420 		/* 6-24,36,48,54 */
421 		{ {20, 20, 20, 10} },
422 		{ {20, 20, 20, 10} },
423 		{ {20, 20, 20, 10} },
424 		{ {20, 20, 20, 10} },
425 		{ {20, 20, 20, 10} },
426 		{ {20, 20, 20, 10} },
427 		{ {20, 20, 20, 10} },
428 		{ {20, 20, 20, 10} },
429 	 },
430 	.calTargetPower5GHT20 = {
431 		/*
432 		 * 0_8_16,1-3_9-11_17-19,
433 		 * 4,5,6,7,12,13,14,15,20,21,22,23
434 		 */
435 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
436 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
437 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
438 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
439 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
440 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
441 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
442 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
443 	 },
444 	.calTargetPower5GHT40 =  {
445 		/*
446 		 * 0_8_16,1-3_9-11_17-19,
447 		 * 4,5,6,7,12,13,14,15,20,21,22,23
448 		 */
449 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
450 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
451 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
452 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
453 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
454 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
455 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
456 		{ {20, 20, 10, 10, 0, 0, 10, 10, 0, 0, 10, 10, 0, 0} },
457 	 },
458 	.ctlIndex_5G =  {
459 		0x10, 0x16, 0x18, 0x40, 0x46,
460 		0x48, 0x30, 0x36, 0x38
461 	},
462 	.ctl_freqbin_5G =  {
463 		{
464 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
465 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
466 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
467 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
468 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
469 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
470 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
471 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
472 		},
473 		{
474 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
475 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
476 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
477 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
478 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
479 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
480 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
481 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
482 		},
483 
484 		{
485 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
486 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
487 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
488 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
489 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
490 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
491 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
492 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
493 		},
494 
495 		{
496 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
497 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
498 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
499 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
500 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
501 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
502 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
503 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
504 		},
505 
506 		{
507 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
508 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
509 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
510 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
511 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
512 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
513 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
514 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
515 		},
516 
517 		{
518 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
519 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
520 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
521 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
522 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
523 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
524 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
525 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
526 		},
527 
528 		{
529 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
530 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
531 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
532 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
533 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
534 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
535 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
536 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
537 		},
538 
539 		{
540 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
541 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
542 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
543 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
544 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
545 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
546 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
547 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
548 		},
549 
550 		{
551 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
552 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
553 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
554 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
555 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
556 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
557 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
558 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
559 		}
560 	 },
561 	.ctlPowerData_5G = {
562 		{
563 			{
564 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
565 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
566 			}
567 		},
568 		{
569 			{
570 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
571 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
572 			}
573 		},
574 		{
575 			{
576 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
577 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
578 			}
579 		},
580 		{
581 			{
582 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
583 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
584 			}
585 		},
586 		{
587 			{
588 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
589 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
590 			}
591 		},
592 		{
593 			{
594 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
595 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
596 			}
597 		},
598 		{
599 			{
600 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
601 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
602 			}
603 		},
604 		{
605 			{
606 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
607 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
608 			}
609 		},
610 		{
611 			{
612 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
613 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
614 			}
615 		},
616 	 }
617 };
618 
619 static const struct ar9300_eeprom ar9300_x113 = {
620 	.eepromVersion = 2,
621 	.templateVersion = 6,
622 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
623 	.custData = {"x113-023-f0000"},
624 	.baseEepHeader = {
625 		.regDmn = { LE16(0), LE16(0x1f) },
626 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
627 		.opCapFlags = {
628 			.opFlags = AR5416_OPFLAGS_11A,
629 			.eepMisc = 0,
630 		},
631 		.rfSilent = 0,
632 		.blueToothOptions = 0,
633 		.deviceCap = 0,
634 		.deviceType = 5, /* takes lower byte in eeprom location */
635 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
636 		.params_for_tuning_caps = {0, 0},
637 		.featureEnable = 0x0d,
638 		 /*
639 		  * bit0 - enable tx temp comp - disabled
640 		  * bit1 - enable tx volt comp - disabled
641 		  * bit2 - enable fastClock - enabled
642 		  * bit3 - enable doubling - enabled
643 		  * bit4 - enable internal regulator - disabled
644 		  * bit5 - enable pa predistortion - disabled
645 		  */
646 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
647 		.eepromWriteEnableGpio = 6,
648 		.wlanDisableGpio = 0,
649 		.wlanLedGpio = 8,
650 		.rxBandSelectGpio = 0xff,
651 		.txrxgain = 0x21,
652 		.swreg = 0,
653 	 },
654 	.modalHeader2G = {
655 	/* ar9300_modal_eep_header  2g */
656 		/* 4 idle,t1,t2,b(4 bits per setting) */
657 		.antCtrlCommon = LE32(0x110),
658 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
659 		.antCtrlCommon2 = LE32(0x44444),
660 
661 		/*
662 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
663 		 * rx1, rx12, b (2 bits each)
664 		 */
665 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
666 
667 		/*
668 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
669 		 * for ar9280 (0xa20c/b20c 5:0)
670 		 */
671 		.xatten1DB = {0, 0, 0},
672 
673 		/*
674 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
675 		 * for ar9280 (0xa20c/b20c 16:12
676 		 */
677 		.xatten1Margin = {0, 0, 0},
678 		.tempSlope = 25,
679 		.voltSlope = 0,
680 
681 		/*
682 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
683 		 * channels in usual fbin coding format
684 		 */
685 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
686 
687 		/*
688 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
689 		 * if the register is per chain
690 		 */
691 		.noiseFloorThreshCh = {-1, 0, 0},
692 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
693 		.quick_drop = 0,
694 		.xpaBiasLvl = 0,
695 		.txFrameToDataStart = 0x0e,
696 		.txFrameToPaOn = 0x0e,
697 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
698 		.antennaGain = 0,
699 		.switchSettling = 0x2c,
700 		.adcDesiredSize = -30,
701 		.txEndToXpaOff = 0,
702 		.txEndToRxOn = 0x2,
703 		.txFrameToXpaOn = 0xe,
704 		.thresh62 = 28,
705 		.papdRateMaskHt20 = LE32(0x0c80c080),
706 		.papdRateMaskHt40 = LE32(0x0080c080),
707 		.futureModal = {
708 			0, 0, 0, 0, 0, 0, 0, 0,
709 		},
710 	 },
711 	 .base_ext1 = {
712 		.ant_div_control = 0,
713 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
714 	 },
715 	.calFreqPier2G = {
716 		FREQ2FBIN(2412, 1),
717 		FREQ2FBIN(2437, 1),
718 		FREQ2FBIN(2472, 1),
719 	 },
720 	/* ar9300_cal_data_per_freq_op_loop 2g */
721 	.calPierData2G = {
722 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
723 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
724 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
725 	 },
726 	.calTarget_freqbin_Cck = {
727 		FREQ2FBIN(2412, 1),
728 		FREQ2FBIN(2472, 1),
729 	 },
730 	.calTarget_freqbin_2G = {
731 		FREQ2FBIN(2412, 1),
732 		FREQ2FBIN(2437, 1),
733 		FREQ2FBIN(2472, 1)
734 	 },
735 	.calTarget_freqbin_2GHT20 = {
736 		FREQ2FBIN(2412, 1),
737 		FREQ2FBIN(2437, 1),
738 		FREQ2FBIN(2472, 1)
739 	 },
740 	.calTarget_freqbin_2GHT40 = {
741 		FREQ2FBIN(2412, 1),
742 		FREQ2FBIN(2437, 1),
743 		FREQ2FBIN(2472, 1)
744 	 },
745 	.calTargetPowerCck = {
746 		 /* 1L-5L,5S,11L,11S */
747 		 { {34, 34, 34, 34} },
748 		 { {34, 34, 34, 34} },
749 	},
750 	.calTargetPower2G = {
751 		 /* 6-24,36,48,54 */
752 		 { {34, 34, 32, 32} },
753 		 { {34, 34, 32, 32} },
754 		 { {34, 34, 32, 32} },
755 	},
756 	.calTargetPower2GHT20 = {
757 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
758 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
759 		{ {32, 32, 32, 32, 32, 28, 32, 32, 30, 28, 0, 0, 0, 0} },
760 	},
761 	.calTargetPower2GHT40 = {
762 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
763 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
764 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
765 	},
766 	.ctlIndex_2G =  {
767 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
768 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
769 	},
770 	.ctl_freqbin_2G = {
771 		{
772 			FREQ2FBIN(2412, 1),
773 			FREQ2FBIN(2417, 1),
774 			FREQ2FBIN(2457, 1),
775 			FREQ2FBIN(2462, 1)
776 		},
777 		{
778 			FREQ2FBIN(2412, 1),
779 			FREQ2FBIN(2417, 1),
780 			FREQ2FBIN(2462, 1),
781 			0xFF,
782 		},
783 
784 		{
785 			FREQ2FBIN(2412, 1),
786 			FREQ2FBIN(2417, 1),
787 			FREQ2FBIN(2462, 1),
788 			0xFF,
789 		},
790 		{
791 			FREQ2FBIN(2422, 1),
792 			FREQ2FBIN(2427, 1),
793 			FREQ2FBIN(2447, 1),
794 			FREQ2FBIN(2452, 1)
795 		},
796 
797 		{
798 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
799 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
800 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
801 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
802 		},
803 
804 		{
805 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
806 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
807 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
808 			0,
809 		},
810 
811 		{
812 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
813 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
814 			FREQ2FBIN(2472, 1),
815 			0,
816 		},
817 
818 		{
819 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
820 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
821 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
822 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
823 		},
824 
825 		{
826 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
827 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
828 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
829 		},
830 
831 		{
832 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
833 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
834 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
835 			0
836 		},
837 
838 		{
839 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
840 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
841 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
842 			0
843 		},
844 
845 		{
846 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
847 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
848 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
849 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
850 		}
851 	 },
852 	.ctlPowerData_2G = {
853 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
854 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
855 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
856 
857 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
858 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
859 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
860 
861 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
862 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
863 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
864 
865 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
866 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
867 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
868 	 },
869 	.modalHeader5G = {
870 		/* 4 idle,t1,t2,b (4 bits per setting) */
871 		.antCtrlCommon = LE32(0x220),
872 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
873 		.antCtrlCommon2 = LE32(0x11111),
874 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
875 		.antCtrlChain = {
876 			LE16(0x150), LE16(0x150), LE16(0x150),
877 		},
878 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
879 		.xatten1DB = {0, 0, 0},
880 
881 		/*
882 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
883 		 * for merlin (0xa20c/b20c 16:12
884 		 */
885 		.xatten1Margin = {0, 0, 0},
886 		.tempSlope = 68,
887 		.voltSlope = 0,
888 		/* spurChans spur channels in usual fbin coding format */
889 		.spurChans = {FREQ2FBIN(5500, 0), 0, 0, 0, 0},
890 		/* noiseFloorThreshCh Check if the register is per chain */
891 		.noiseFloorThreshCh = {-1, 0, 0},
892 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
893 		.quick_drop = 0,
894 		.xpaBiasLvl = 0xf,
895 		.txFrameToDataStart = 0x0e,
896 		.txFrameToPaOn = 0x0e,
897 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
898 		.antennaGain = 0,
899 		.switchSettling = 0x2d,
900 		.adcDesiredSize = -30,
901 		.txEndToXpaOff = 0,
902 		.txEndToRxOn = 0x2,
903 		.txFrameToXpaOn = 0xe,
904 		.thresh62 = 28,
905 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
906 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
907 		.futureModal = {
908 			0, 0, 0, 0, 0, 0, 0, 0,
909 		},
910 	 },
911 	.base_ext2 = {
912 		.tempSlopeLow = 72,
913 		.tempSlopeHigh = 105,
914 		.xatten1DBLow = {0, 0, 0},
915 		.xatten1MarginLow = {0, 0, 0},
916 		.xatten1DBHigh = {0, 0, 0},
917 		.xatten1MarginHigh = {0, 0, 0}
918 	 },
919 	.calFreqPier5G = {
920 		FREQ2FBIN(5180, 0),
921 		FREQ2FBIN(5240, 0),
922 		FREQ2FBIN(5320, 0),
923 		FREQ2FBIN(5400, 0),
924 		FREQ2FBIN(5500, 0),
925 		FREQ2FBIN(5600, 0),
926 		FREQ2FBIN(5745, 0),
927 		FREQ2FBIN(5785, 0)
928 	},
929 	.calPierData5G = {
930 			{
931 				{0, 0, 0, 0, 0},
932 				{0, 0, 0, 0, 0},
933 				{0, 0, 0, 0, 0},
934 				{0, 0, 0, 0, 0},
935 				{0, 0, 0, 0, 0},
936 				{0, 0, 0, 0, 0},
937 				{0, 0, 0, 0, 0},
938 				{0, 0, 0, 0, 0},
939 			},
940 			{
941 				{0, 0, 0, 0, 0},
942 				{0, 0, 0, 0, 0},
943 				{0, 0, 0, 0, 0},
944 				{0, 0, 0, 0, 0},
945 				{0, 0, 0, 0, 0},
946 				{0, 0, 0, 0, 0},
947 				{0, 0, 0, 0, 0},
948 				{0, 0, 0, 0, 0},
949 			},
950 			{
951 				{0, 0, 0, 0, 0},
952 				{0, 0, 0, 0, 0},
953 				{0, 0, 0, 0, 0},
954 				{0, 0, 0, 0, 0},
955 				{0, 0, 0, 0, 0},
956 				{0, 0, 0, 0, 0},
957 				{0, 0, 0, 0, 0},
958 				{0, 0, 0, 0, 0},
959 			},
960 
961 	},
962 	.calTarget_freqbin_5G = {
963 		FREQ2FBIN(5180, 0),
964 		FREQ2FBIN(5220, 0),
965 		FREQ2FBIN(5320, 0),
966 		FREQ2FBIN(5400, 0),
967 		FREQ2FBIN(5500, 0),
968 		FREQ2FBIN(5600, 0),
969 		FREQ2FBIN(5745, 0),
970 		FREQ2FBIN(5785, 0)
971 	},
972 	.calTarget_freqbin_5GHT20 = {
973 		FREQ2FBIN(5180, 0),
974 		FREQ2FBIN(5240, 0),
975 		FREQ2FBIN(5320, 0),
976 		FREQ2FBIN(5400, 0),
977 		FREQ2FBIN(5500, 0),
978 		FREQ2FBIN(5700, 0),
979 		FREQ2FBIN(5745, 0),
980 		FREQ2FBIN(5825, 0)
981 	},
982 	.calTarget_freqbin_5GHT40 = {
983 		FREQ2FBIN(5190, 0),
984 		FREQ2FBIN(5230, 0),
985 		FREQ2FBIN(5320, 0),
986 		FREQ2FBIN(5410, 0),
987 		FREQ2FBIN(5510, 0),
988 		FREQ2FBIN(5670, 0),
989 		FREQ2FBIN(5755, 0),
990 		FREQ2FBIN(5825, 0)
991 	 },
992 	.calTargetPower5G = {
993 		/* 6-24,36,48,54 */
994 		{ {42, 40, 40, 34} },
995 		{ {42, 40, 40, 34} },
996 		{ {42, 40, 40, 34} },
997 		{ {42, 40, 40, 34} },
998 		{ {42, 40, 40, 34} },
999 		{ {42, 40, 40, 34} },
1000 		{ {42, 40, 40, 34} },
1001 		{ {42, 40, 40, 34} },
1002 	 },
1003 	.calTargetPower5GHT20 = {
1004 		/*
1005 		 * 0_8_16,1-3_9-11_17-19,
1006 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1007 		 */
1008 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1009 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1010 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1011 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1012 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1013 		{ {40, 40, 40, 40, 32, 28, 40, 40, 32, 28, 40, 40, 32, 20} },
1014 		{ {38, 38, 38, 38, 32, 28, 38, 38, 32, 28, 38, 38, 32, 26} },
1015 		{ {36, 36, 36, 36, 32, 28, 36, 36, 32, 28, 36, 36, 32, 26} },
1016 	 },
1017 	.calTargetPower5GHT40 =  {
1018 		/*
1019 		 * 0_8_16,1-3_9-11_17-19,
1020 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1021 		 */
1022 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1023 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1024 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1025 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1026 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1027 		{ {40, 40, 40, 38, 30, 26, 40, 40, 30, 26, 40, 40, 30, 24} },
1028 		{ {36, 36, 36, 36, 30, 26, 36, 36, 30, 26, 36, 36, 30, 24} },
1029 		{ {34, 34, 34, 34, 30, 26, 34, 34, 30, 26, 34, 34, 30, 24} },
1030 	 },
1031 	.ctlIndex_5G =  {
1032 		0x10, 0x16, 0x18, 0x40, 0x46,
1033 		0x48, 0x30, 0x36, 0x38
1034 	},
1035 	.ctl_freqbin_5G =  {
1036 		{
1037 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1038 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1039 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1040 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1041 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1042 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1043 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1044 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1045 		},
1046 		{
1047 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1048 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1049 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1050 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1051 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1052 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1053 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1054 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1055 		},
1056 
1057 		{
1058 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1059 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1060 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1061 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1062 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1063 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1064 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1065 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1066 		},
1067 
1068 		{
1069 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1070 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1071 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1072 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1073 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1074 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1075 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1076 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1077 		},
1078 
1079 		{
1080 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1081 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1082 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1083 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1084 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1085 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1086 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1087 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1088 		},
1089 
1090 		{
1091 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1092 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1093 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1094 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1095 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1096 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1097 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1098 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1099 		},
1100 
1101 		{
1102 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1103 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1104 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1105 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1106 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1107 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1108 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1109 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1110 		},
1111 
1112 		{
1113 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1114 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1115 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1116 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1117 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1118 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1119 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1120 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1121 		},
1122 
1123 		{
1124 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1125 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1126 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1127 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1128 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1129 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1130 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1131 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1132 		}
1133 	 },
1134 	.ctlPowerData_5G = {
1135 		{
1136 			{
1137 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1138 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1139 			}
1140 		},
1141 		{
1142 			{
1143 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1144 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1145 			}
1146 		},
1147 		{
1148 			{
1149 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1150 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1151 			}
1152 		},
1153 		{
1154 			{
1155 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1156 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1157 			}
1158 		},
1159 		{
1160 			{
1161 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1162 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1163 			}
1164 		},
1165 		{
1166 			{
1167 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1168 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1169 			}
1170 		},
1171 		{
1172 			{
1173 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1174 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1175 			}
1176 		},
1177 		{
1178 			{
1179 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1180 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1181 			}
1182 		},
1183 		{
1184 			{
1185 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1186 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1187 			}
1188 		},
1189 	 }
1190 };
1191 
1192 
1193 static const struct ar9300_eeprom ar9300_h112 = {
1194 	.eepromVersion = 2,
1195 	.templateVersion = 3,
1196 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1197 	.custData = {"h112-241-f0000"},
1198 	.baseEepHeader = {
1199 		.regDmn = { LE16(0), LE16(0x1f) },
1200 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1201 		.opCapFlags = {
1202 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1203 			.eepMisc = 0,
1204 		},
1205 		.rfSilent = 0,
1206 		.blueToothOptions = 0,
1207 		.deviceCap = 0,
1208 		.deviceType = 5, /* takes lower byte in eeprom location */
1209 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1210 		.params_for_tuning_caps = {0, 0},
1211 		.featureEnable = 0x0d,
1212 		/*
1213 		 * bit0 - enable tx temp comp - disabled
1214 		 * bit1 - enable tx volt comp - disabled
1215 		 * bit2 - enable fastClock - enabled
1216 		 * bit3 - enable doubling - enabled
1217 		 * bit4 - enable internal regulator - disabled
1218 		 * bit5 - enable pa predistortion - disabled
1219 		 */
1220 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1221 		.eepromWriteEnableGpio = 6,
1222 		.wlanDisableGpio = 0,
1223 		.wlanLedGpio = 8,
1224 		.rxBandSelectGpio = 0xff,
1225 		.txrxgain = 0x10,
1226 		.swreg = 0,
1227 	},
1228 	.modalHeader2G = {
1229 		/* ar9300_modal_eep_header  2g */
1230 		/* 4 idle,t1,t2,b(4 bits per setting) */
1231 		.antCtrlCommon = LE32(0x110),
1232 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1233 		.antCtrlCommon2 = LE32(0x44444),
1234 
1235 		/*
1236 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
1237 		 * rx1, rx12, b (2 bits each)
1238 		 */
1239 		.antCtrlChain = { LE16(0x150), LE16(0x150), LE16(0x150) },
1240 
1241 		/*
1242 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
1243 		 * for ar9280 (0xa20c/b20c 5:0)
1244 		 */
1245 		.xatten1DB = {0, 0, 0},
1246 
1247 		/*
1248 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1249 		 * for ar9280 (0xa20c/b20c 16:12
1250 		 */
1251 		.xatten1Margin = {0, 0, 0},
1252 		.tempSlope = 25,
1253 		.voltSlope = 0,
1254 
1255 		/*
1256 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
1257 		 * channels in usual fbin coding format
1258 		 */
1259 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1260 
1261 		/*
1262 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
1263 		 * if the register is per chain
1264 		 */
1265 		.noiseFloorThreshCh = {-1, 0, 0},
1266 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1267 		.quick_drop = 0,
1268 		.xpaBiasLvl = 0,
1269 		.txFrameToDataStart = 0x0e,
1270 		.txFrameToPaOn = 0x0e,
1271 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1272 		.antennaGain = 0,
1273 		.switchSettling = 0x2c,
1274 		.adcDesiredSize = -30,
1275 		.txEndToXpaOff = 0,
1276 		.txEndToRxOn = 0x2,
1277 		.txFrameToXpaOn = 0xe,
1278 		.thresh62 = 28,
1279 		.papdRateMaskHt20 = LE32(0x0c80c080),
1280 		.papdRateMaskHt40 = LE32(0x0080c080),
1281 		.futureModal = {
1282 			0, 0, 0, 0, 0, 0, 0, 0,
1283 		},
1284 	},
1285 	.base_ext1 = {
1286 		.ant_div_control = 0,
1287 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1288 	},
1289 	.calFreqPier2G = {
1290 		FREQ2FBIN(2412, 1),
1291 		FREQ2FBIN(2437, 1),
1292 		FREQ2FBIN(2462, 1),
1293 	},
1294 	/* ar9300_cal_data_per_freq_op_loop 2g */
1295 	.calPierData2G = {
1296 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1297 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1298 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1299 	},
1300 	.calTarget_freqbin_Cck = {
1301 		FREQ2FBIN(2412, 1),
1302 		FREQ2FBIN(2472, 1),
1303 	},
1304 	.calTarget_freqbin_2G = {
1305 		FREQ2FBIN(2412, 1),
1306 		FREQ2FBIN(2437, 1),
1307 		FREQ2FBIN(2472, 1)
1308 	},
1309 	.calTarget_freqbin_2GHT20 = {
1310 		FREQ2FBIN(2412, 1),
1311 		FREQ2FBIN(2437, 1),
1312 		FREQ2FBIN(2472, 1)
1313 	},
1314 	.calTarget_freqbin_2GHT40 = {
1315 		FREQ2FBIN(2412, 1),
1316 		FREQ2FBIN(2437, 1),
1317 		FREQ2FBIN(2472, 1)
1318 	},
1319 	.calTargetPowerCck = {
1320 		/* 1L-5L,5S,11L,11S */
1321 		{ {34, 34, 34, 34} },
1322 		{ {34, 34, 34, 34} },
1323 	},
1324 	.calTargetPower2G = {
1325 		/* 6-24,36,48,54 */
1326 		{ {34, 34, 32, 32} },
1327 		{ {34, 34, 32, 32} },
1328 		{ {34, 34, 32, 32} },
1329 	},
1330 	.calTargetPower2GHT20 = {
1331 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1332 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1333 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 28, 28, 28, 24} },
1334 	},
1335 	.calTargetPower2GHT40 = {
1336 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1337 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1338 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 26, 26, 26, 22} },
1339 	},
1340 	.ctlIndex_2G =  {
1341 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1342 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1343 	},
1344 	.ctl_freqbin_2G = {
1345 		{
1346 			FREQ2FBIN(2412, 1),
1347 			FREQ2FBIN(2417, 1),
1348 			FREQ2FBIN(2457, 1),
1349 			FREQ2FBIN(2462, 1)
1350 		},
1351 		{
1352 			FREQ2FBIN(2412, 1),
1353 			FREQ2FBIN(2417, 1),
1354 			FREQ2FBIN(2462, 1),
1355 			0xFF,
1356 		},
1357 
1358 		{
1359 			FREQ2FBIN(2412, 1),
1360 			FREQ2FBIN(2417, 1),
1361 			FREQ2FBIN(2462, 1),
1362 			0xFF,
1363 		},
1364 		{
1365 			FREQ2FBIN(2422, 1),
1366 			FREQ2FBIN(2427, 1),
1367 			FREQ2FBIN(2447, 1),
1368 			FREQ2FBIN(2452, 1)
1369 		},
1370 
1371 		{
1372 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1373 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1374 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1375 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
1376 		},
1377 
1378 		{
1379 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1380 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1381 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1382 			0,
1383 		},
1384 
1385 		{
1386 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1387 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1388 			FREQ2FBIN(2472, 1),
1389 			0,
1390 		},
1391 
1392 		{
1393 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1394 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1395 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1396 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1397 		},
1398 
1399 		{
1400 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1401 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1402 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1403 		},
1404 
1405 		{
1406 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1407 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1408 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1409 			0
1410 		},
1411 
1412 		{
1413 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
1414 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
1415 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
1416 			0
1417 		},
1418 
1419 		{
1420 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
1421 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
1422 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
1423 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
1424 		}
1425 	},
1426 	.ctlPowerData_2G = {
1427 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1428 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1429 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
1430 
1431 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
1432 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1433 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1434 
1435 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
1436 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1437 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1438 
1439 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
1440 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1441 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
1442 	},
1443 	.modalHeader5G = {
1444 		/* 4 idle,t1,t2,b (4 bits per setting) */
1445 		.antCtrlCommon = LE32(0x220),
1446 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
1447 		.antCtrlCommon2 = LE32(0x44444),
1448 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
1449 		.antCtrlChain = {
1450 			LE16(0x150), LE16(0x150), LE16(0x150),
1451 		},
1452 		/* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
1453 		.xatten1DB = {0, 0, 0},
1454 
1455 		/*
1456 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
1457 		 * for merlin (0xa20c/b20c 16:12
1458 		 */
1459 		.xatten1Margin = {0, 0, 0},
1460 		.tempSlope = 45,
1461 		.voltSlope = 0,
1462 		/* spurChans spur channels in usual fbin coding format */
1463 		.spurChans = {0, 0, 0, 0, 0},
1464 		/* noiseFloorThreshCh Check if the register is per chain */
1465 		.noiseFloorThreshCh = {-1, 0, 0},
1466 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1467 		.quick_drop = 0,
1468 		.xpaBiasLvl = 0,
1469 		.txFrameToDataStart = 0x0e,
1470 		.txFrameToPaOn = 0x0e,
1471 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1472 		.antennaGain = 0,
1473 		.switchSettling = 0x2d,
1474 		.adcDesiredSize = -30,
1475 		.txEndToXpaOff = 0,
1476 		.txEndToRxOn = 0x2,
1477 		.txFrameToXpaOn = 0xe,
1478 		.thresh62 = 28,
1479 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
1480 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
1481 		.futureModal = {
1482 			0, 0, 0, 0, 0, 0, 0, 0,
1483 		},
1484 	},
1485 	.base_ext2 = {
1486 		.tempSlopeLow = 40,
1487 		.tempSlopeHigh = 50,
1488 		.xatten1DBLow = {0, 0, 0},
1489 		.xatten1MarginLow = {0, 0, 0},
1490 		.xatten1DBHigh = {0, 0, 0},
1491 		.xatten1MarginHigh = {0, 0, 0}
1492 	},
1493 	.calFreqPier5G = {
1494 		FREQ2FBIN(5180, 0),
1495 		FREQ2FBIN(5220, 0),
1496 		FREQ2FBIN(5320, 0),
1497 		FREQ2FBIN(5400, 0),
1498 		FREQ2FBIN(5500, 0),
1499 		FREQ2FBIN(5600, 0),
1500 		FREQ2FBIN(5700, 0),
1501 		FREQ2FBIN(5785, 0)
1502 	},
1503 	.calPierData5G = {
1504 		{
1505 			{0, 0, 0, 0, 0},
1506 			{0, 0, 0, 0, 0},
1507 			{0, 0, 0, 0, 0},
1508 			{0, 0, 0, 0, 0},
1509 			{0, 0, 0, 0, 0},
1510 			{0, 0, 0, 0, 0},
1511 			{0, 0, 0, 0, 0},
1512 			{0, 0, 0, 0, 0},
1513 		},
1514 		{
1515 			{0, 0, 0, 0, 0},
1516 			{0, 0, 0, 0, 0},
1517 			{0, 0, 0, 0, 0},
1518 			{0, 0, 0, 0, 0},
1519 			{0, 0, 0, 0, 0},
1520 			{0, 0, 0, 0, 0},
1521 			{0, 0, 0, 0, 0},
1522 			{0, 0, 0, 0, 0},
1523 		},
1524 		{
1525 			{0, 0, 0, 0, 0},
1526 			{0, 0, 0, 0, 0},
1527 			{0, 0, 0, 0, 0},
1528 			{0, 0, 0, 0, 0},
1529 			{0, 0, 0, 0, 0},
1530 			{0, 0, 0, 0, 0},
1531 			{0, 0, 0, 0, 0},
1532 			{0, 0, 0, 0, 0},
1533 		},
1534 
1535 	},
1536 	.calTarget_freqbin_5G = {
1537 		FREQ2FBIN(5180, 0),
1538 		FREQ2FBIN(5240, 0),
1539 		FREQ2FBIN(5320, 0),
1540 		FREQ2FBIN(5400, 0),
1541 		FREQ2FBIN(5500, 0),
1542 		FREQ2FBIN(5600, 0),
1543 		FREQ2FBIN(5700, 0),
1544 		FREQ2FBIN(5825, 0)
1545 	},
1546 	.calTarget_freqbin_5GHT20 = {
1547 		FREQ2FBIN(5180, 0),
1548 		FREQ2FBIN(5240, 0),
1549 		FREQ2FBIN(5320, 0),
1550 		FREQ2FBIN(5400, 0),
1551 		FREQ2FBIN(5500, 0),
1552 		FREQ2FBIN(5700, 0),
1553 		FREQ2FBIN(5745, 0),
1554 		FREQ2FBIN(5825, 0)
1555 	},
1556 	.calTarget_freqbin_5GHT40 = {
1557 		FREQ2FBIN(5180, 0),
1558 		FREQ2FBIN(5240, 0),
1559 		FREQ2FBIN(5320, 0),
1560 		FREQ2FBIN(5400, 0),
1561 		FREQ2FBIN(5500, 0),
1562 		FREQ2FBIN(5700, 0),
1563 		FREQ2FBIN(5745, 0),
1564 		FREQ2FBIN(5825, 0)
1565 	},
1566 	.calTargetPower5G = {
1567 		/* 6-24,36,48,54 */
1568 		{ {30, 30, 28, 24} },
1569 		{ {30, 30, 28, 24} },
1570 		{ {30, 30, 28, 24} },
1571 		{ {30, 30, 28, 24} },
1572 		{ {30, 30, 28, 24} },
1573 		{ {30, 30, 28, 24} },
1574 		{ {30, 30, 28, 24} },
1575 		{ {30, 30, 28, 24} },
1576 	},
1577 	.calTargetPower5GHT20 = {
1578 		/*
1579 		 * 0_8_16,1-3_9-11_17-19,
1580 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1581 		 */
1582 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1583 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 20, 20, 20, 16} },
1584 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1585 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 18, 18, 18, 16} },
1586 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1587 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 16, 16, 16, 14} },
1588 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1589 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 14, 14, 14, 12} },
1590 	},
1591 	.calTargetPower5GHT40 =  {
1592 		/*
1593 		 * 0_8_16,1-3_9-11_17-19,
1594 		 * 4,5,6,7,12,13,14,15,20,21,22,23
1595 		 */
1596 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1597 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 18, 18, 18, 14} },
1598 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1599 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 16, 16, 16, 12} },
1600 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1601 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 14, 14, 14, 10} },
1602 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1603 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 12, 12, 12, 8} },
1604 	},
1605 	.ctlIndex_5G =  {
1606 		0x10, 0x16, 0x18, 0x40, 0x46,
1607 		0x48, 0x30, 0x36, 0x38
1608 	},
1609 	.ctl_freqbin_5G =  {
1610 		{
1611 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1612 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1613 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1614 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1615 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
1616 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1617 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1618 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1619 		},
1620 		{
1621 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1622 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1623 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
1624 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1625 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
1626 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1627 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1628 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1629 		},
1630 
1631 		{
1632 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1633 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1634 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1635 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
1636 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
1637 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
1638 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
1639 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
1640 		},
1641 
1642 		{
1643 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1644 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1645 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
1646 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
1647 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1648 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1649 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
1650 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
1651 		},
1652 
1653 		{
1654 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1655 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1656 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
1657 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
1658 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
1659 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
1660 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
1661 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
1662 		},
1663 
1664 		{
1665 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1666 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
1667 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
1668 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1669 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
1670 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1671 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
1672 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
1673 		},
1674 
1675 		{
1676 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1677 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
1678 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
1679 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
1680 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
1681 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
1682 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
1683 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
1684 		},
1685 
1686 		{
1687 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
1688 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
1689 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
1690 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
1691 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
1692 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
1693 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
1694 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
1695 		},
1696 
1697 		{
1698 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
1699 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
1700 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
1701 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
1702 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
1703 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
1704 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
1705 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
1706 		}
1707 	},
1708 	.ctlPowerData_5G = {
1709 		{
1710 			{
1711 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1712 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1713 			}
1714 		},
1715 		{
1716 			{
1717 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1718 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1719 			}
1720 		},
1721 		{
1722 			{
1723 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1724 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1725 			}
1726 		},
1727 		{
1728 			{
1729 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1730 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1731 			}
1732 		},
1733 		{
1734 			{
1735 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1736 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1737 			}
1738 		},
1739 		{
1740 			{
1741 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1742 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
1743 			}
1744 		},
1745 		{
1746 			{
1747 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1748 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
1749 			}
1750 		},
1751 		{
1752 			{
1753 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1754 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
1755 			}
1756 		},
1757 		{
1758 			{
1759 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
1760 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
1761 			}
1762 		},
1763 	}
1764 };
1765 
1766 
1767 static const struct ar9300_eeprom ar9300_x112 = {
1768 	.eepromVersion = 2,
1769 	.templateVersion = 5,
1770 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
1771 	.custData = {"x112-041-f0000"},
1772 	.baseEepHeader = {
1773 		.regDmn = { LE16(0), LE16(0x1f) },
1774 		.txrxMask =  0x77, /* 4 bits tx and 4 bits rx */
1775 		.opCapFlags = {
1776 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
1777 			.eepMisc = 0,
1778 		},
1779 		.rfSilent = 0,
1780 		.blueToothOptions = 0,
1781 		.deviceCap = 0,
1782 		.deviceType = 5, /* takes lower byte in eeprom location */
1783 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
1784 		.params_for_tuning_caps = {0, 0},
1785 		.featureEnable = 0x0d,
1786 		/*
1787 		 * bit0 - enable tx temp comp - disabled
1788 		 * bit1 - enable tx volt comp - disabled
1789 		 * bit2 - enable fastclock - enabled
1790 		 * bit3 - enable doubling - enabled
1791 		 * bit4 - enable internal regulator - disabled
1792 		 * bit5 - enable pa predistortion - disabled
1793 		 */
1794 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
1795 		.eepromWriteEnableGpio = 6,
1796 		.wlanDisableGpio = 0,
1797 		.wlanLedGpio = 8,
1798 		.rxBandSelectGpio = 0xff,
1799 		.txrxgain = 0x0,
1800 		.swreg = 0,
1801 	},
1802 	.modalHeader2G = {
1803 		/* ar9300_modal_eep_header  2g */
1804 		/* 4 idle,t1,t2,b(4 bits per setting) */
1805 		.antCtrlCommon = LE32(0x110),
1806 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
1807 		.antCtrlCommon2 = LE32(0x22222),
1808 
1809 		/*
1810 		 * antCtrlChain[ar9300_max_chains]; 6 idle, t, r,
1811 		 * rx1, rx12, b (2 bits each)
1812 		 */
1813 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
1814 
1815 		/*
1816 		 * xatten1DB[AR9300_max_chains];  3 xatten1_db
1817 		 * for ar9280 (0xa20c/b20c 5:0)
1818 		 */
1819 		.xatten1DB = {0x1b, 0x1b, 0x1b},
1820 
1821 		/*
1822 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
1823 		 * for ar9280 (0xa20c/b20c 16:12
1824 		 */
1825 		.xatten1Margin = {0x15, 0x15, 0x15},
1826 		.tempSlope = 50,
1827 		.voltSlope = 0,
1828 
1829 		/*
1830 		 * spurChans[OSPrey_eeprom_modal_sPURS]; spur
1831 		 * channels in usual fbin coding format
1832 		 */
1833 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
1834 
1835 		/*
1836 		 * noiseFloorThreshch[ar9300_max_cHAINS]; 3 Check
1837 		 * if the register is per chain
1838 		 */
1839 		.noiseFloorThreshCh = {-1, 0, 0},
1840 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
1841 		.quick_drop = 0,
1842 		.xpaBiasLvl = 0,
1843 		.txFrameToDataStart = 0x0e,
1844 		.txFrameToPaOn = 0x0e,
1845 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
1846 		.antennaGain = 0,
1847 		.switchSettling = 0x2c,
1848 		.adcDesiredSize = -30,
1849 		.txEndToXpaOff = 0,
1850 		.txEndToRxOn = 0x2,
1851 		.txFrameToXpaOn = 0xe,
1852 		.thresh62 = 28,
1853 		.papdRateMaskHt20 = LE32(0x0c80c080),
1854 		.papdRateMaskHt40 = LE32(0x0080c080),
1855 		.futureModal = {
1856 			0, 0, 0, 0, 0, 0, 0, 0,
1857 		},
1858 	},
1859 	.base_ext1 = {
1860 		.ant_div_control = 0,
1861 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
1862 	},
1863 	.calFreqPier2G = {
1864 		FREQ2FBIN(2412, 1),
1865 		FREQ2FBIN(2437, 1),
1866 		FREQ2FBIN(2472, 1),
1867 	},
1868 	/* ar9300_cal_data_per_freq_op_loop 2g */
1869 	.calPierData2G = {
1870 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1871 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1872 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
1873 	},
1874 	.calTarget_freqbin_Cck = {
1875 		FREQ2FBIN(2412, 1),
1876 		FREQ2FBIN(2472, 1),
1877 	},
1878 	.calTarget_freqbin_2G = {
1879 		FREQ2FBIN(2412, 1),
1880 		FREQ2FBIN(2437, 1),
1881 		FREQ2FBIN(2472, 1)
1882 	},
1883 	.calTarget_freqbin_2GHT20 = {
1884 		FREQ2FBIN(2412, 1),
1885 		FREQ2FBIN(2437, 1),
1886 		FREQ2FBIN(2472, 1)
1887 	},
1888 	.calTarget_freqbin_2GHT40 = {
1889 		FREQ2FBIN(2412, 1),
1890 		FREQ2FBIN(2437, 1),
1891 		FREQ2FBIN(2472, 1)
1892 	},
1893 	.calTargetPowerCck = {
1894 		/* 1L-5L,5S,11L,11s */
1895 		{ {38, 38, 38, 38} },
1896 		{ {38, 38, 38, 38} },
1897 	},
1898 	.calTargetPower2G = {
1899 		/* 6-24,36,48,54 */
1900 		{ {38, 38, 36, 34} },
1901 		{ {38, 38, 36, 34} },
1902 		{ {38, 38, 34, 32} },
1903 	},
1904 	.calTargetPower2GHT20 = {
1905 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1906 		{ {36, 36, 36, 36, 36, 34, 36, 34, 32, 30, 30, 30, 28, 26} },
1907 		{ {36, 36, 36, 36, 36, 34, 34, 32, 30, 28, 28, 28, 28, 26} },
1908 	},
1909 	.calTargetPower2GHT40 = {
1910 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1911 		{ {36, 36, 36, 36, 34, 32, 34, 32, 30, 28, 28, 28, 28, 24} },
1912 		{ {36, 36, 36, 36, 34, 32, 32, 30, 28, 26, 26, 26, 26, 24} },
1913 	},
1914 	.ctlIndex_2G =  {
1915 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
1916 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
1917 	},
1918 	.ctl_freqbin_2G = {
1919 		{
1920 			FREQ2FBIN(2412, 1),
1921 			FREQ2FBIN(2417, 1),
1922 			FREQ2FBIN(2457, 1),
1923 			FREQ2FBIN(2462, 1)
1924 		},
1925 		{
1926 			FREQ2FBIN(2412, 1),
1927 			FREQ2FBIN(2417, 1),
1928 			FREQ2FBIN(2462, 1),
1929 			0xFF,
1930 		},
1931 
1932 		{
1933 			FREQ2FBIN(2412, 1),
1934 			FREQ2FBIN(2417, 1),
1935 			FREQ2FBIN(2462, 1),
1936 			0xFF,
1937 		},
1938 		{
1939 			FREQ2FBIN(2422, 1),
1940 			FREQ2FBIN(2427, 1),
1941 			FREQ2FBIN(2447, 1),
1942 			FREQ2FBIN(2452, 1)
1943 		},
1944 
1945 		{
1946 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1947 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1948 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1949 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(2484, 1),
1950 		},
1951 
1952 		{
1953 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1954 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1955 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1956 			0,
1957 		},
1958 
1959 		{
1960 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1961 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1962 			FREQ2FBIN(2472, 1),
1963 			0,
1964 		},
1965 
1966 		{
1967 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1968 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1969 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1970 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1971 		},
1972 
1973 		{
1974 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1975 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1976 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1977 		},
1978 
1979 		{
1980 			/* Data[9].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1981 			/* Data[9].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1982 			/* Data[9].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1983 			0
1984 		},
1985 
1986 		{
1987 			/* Data[10].ctledges[0].bchannel */ FREQ2FBIN(2412, 1),
1988 			/* Data[10].ctledges[1].bchannel */ FREQ2FBIN(2417, 1),
1989 			/* Data[10].ctledges[2].bchannel */ FREQ2FBIN(2472, 1),
1990 			0
1991 		},
1992 
1993 		{
1994 			/* Data[11].ctledges[0].bchannel */ FREQ2FBIN(2422, 1),
1995 			/* Data[11].ctledges[1].bchannel */ FREQ2FBIN(2427, 1),
1996 			/* Data[11].ctledges[2].bchannel */ FREQ2FBIN(2447, 1),
1997 			/* Data[11].ctledges[3].bchannel */ FREQ2FBIN(2462, 1),
1998 		}
1999 	},
2000 	.ctlPowerData_2G = {
2001 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2002 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2003 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2004 
2005 		{ { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2006 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2007 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2008 
2009 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2010 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2011 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2012 
2013 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2014 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2015 		{ { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2016 	},
2017 	.modalHeader5G = {
2018 		/* 4 idle,t1,t2,b (4 bits per setting) */
2019 		.antCtrlCommon = LE32(0x110),
2020 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2021 		.antCtrlCommon2 = LE32(0x22222),
2022 		/* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2023 		.antCtrlChain = {
2024 			LE16(0x0), LE16(0x0), LE16(0x0),
2025 		},
2026 		/* xatten1DB 3 xatten1_db for ar9280 (0xa20c/b20c 5:0) */
2027 		.xatten1DB = {0x13, 0x19, 0x17},
2028 
2029 		/*
2030 		 * xatten1Margin[ar9300_max_chains]; 3 xatten1_margin
2031 		 * for merlin (0xa20c/b20c 16:12
2032 		 */
2033 		.xatten1Margin = {0x19, 0x19, 0x19},
2034 		.tempSlope = 70,
2035 		.voltSlope = 15,
2036 		/* spurChans spur channels in usual fbin coding format */
2037 		.spurChans = {0, 0, 0, 0, 0},
2038 		/* noiseFloorThreshch check if the register is per chain */
2039 		.noiseFloorThreshCh = {-1, 0, 0},
2040 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2041 		.quick_drop = 0,
2042 		.xpaBiasLvl = 0,
2043 		.txFrameToDataStart = 0x0e,
2044 		.txFrameToPaOn = 0x0e,
2045 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2046 		.antennaGain = 0,
2047 		.switchSettling = 0x2d,
2048 		.adcDesiredSize = -30,
2049 		.txEndToXpaOff = 0,
2050 		.txEndToRxOn = 0x2,
2051 		.txFrameToXpaOn = 0xe,
2052 		.thresh62 = 28,
2053 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2054 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2055 		.futureModal = {
2056 			0, 0, 0, 0, 0, 0, 0, 0,
2057 		},
2058 	},
2059 	.base_ext2 = {
2060 		.tempSlopeLow = 72,
2061 		.tempSlopeHigh = 105,
2062 		.xatten1DBLow = {0x10, 0x14, 0x10},
2063 		.xatten1MarginLow = {0x19, 0x19 , 0x19},
2064 		.xatten1DBHigh = {0x1d, 0x20, 0x24},
2065 		.xatten1MarginHigh = {0x10, 0x10, 0x10}
2066 	},
2067 	.calFreqPier5G = {
2068 		FREQ2FBIN(5180, 0),
2069 		FREQ2FBIN(5220, 0),
2070 		FREQ2FBIN(5320, 0),
2071 		FREQ2FBIN(5400, 0),
2072 		FREQ2FBIN(5500, 0),
2073 		FREQ2FBIN(5600, 0),
2074 		FREQ2FBIN(5700, 0),
2075 		FREQ2FBIN(5785, 0)
2076 	},
2077 	.calPierData5G = {
2078 		{
2079 			{0, 0, 0, 0, 0},
2080 			{0, 0, 0, 0, 0},
2081 			{0, 0, 0, 0, 0},
2082 			{0, 0, 0, 0, 0},
2083 			{0, 0, 0, 0, 0},
2084 			{0, 0, 0, 0, 0},
2085 			{0, 0, 0, 0, 0},
2086 			{0, 0, 0, 0, 0},
2087 		},
2088 		{
2089 			{0, 0, 0, 0, 0},
2090 			{0, 0, 0, 0, 0},
2091 			{0, 0, 0, 0, 0},
2092 			{0, 0, 0, 0, 0},
2093 			{0, 0, 0, 0, 0},
2094 			{0, 0, 0, 0, 0},
2095 			{0, 0, 0, 0, 0},
2096 			{0, 0, 0, 0, 0},
2097 		},
2098 		{
2099 			{0, 0, 0, 0, 0},
2100 			{0, 0, 0, 0, 0},
2101 			{0, 0, 0, 0, 0},
2102 			{0, 0, 0, 0, 0},
2103 			{0, 0, 0, 0, 0},
2104 			{0, 0, 0, 0, 0},
2105 			{0, 0, 0, 0, 0},
2106 			{0, 0, 0, 0, 0},
2107 		},
2108 
2109 	},
2110 	.calTarget_freqbin_5G = {
2111 		FREQ2FBIN(5180, 0),
2112 		FREQ2FBIN(5220, 0),
2113 		FREQ2FBIN(5320, 0),
2114 		FREQ2FBIN(5400, 0),
2115 		FREQ2FBIN(5500, 0),
2116 		FREQ2FBIN(5600, 0),
2117 		FREQ2FBIN(5725, 0),
2118 		FREQ2FBIN(5825, 0)
2119 	},
2120 	.calTarget_freqbin_5GHT20 = {
2121 		FREQ2FBIN(5180, 0),
2122 		FREQ2FBIN(5220, 0),
2123 		FREQ2FBIN(5320, 0),
2124 		FREQ2FBIN(5400, 0),
2125 		FREQ2FBIN(5500, 0),
2126 		FREQ2FBIN(5600, 0),
2127 		FREQ2FBIN(5725, 0),
2128 		FREQ2FBIN(5825, 0)
2129 	},
2130 	.calTarget_freqbin_5GHT40 = {
2131 		FREQ2FBIN(5180, 0),
2132 		FREQ2FBIN(5220, 0),
2133 		FREQ2FBIN(5320, 0),
2134 		FREQ2FBIN(5400, 0),
2135 		FREQ2FBIN(5500, 0),
2136 		FREQ2FBIN(5600, 0),
2137 		FREQ2FBIN(5725, 0),
2138 		FREQ2FBIN(5825, 0)
2139 	},
2140 	.calTargetPower5G = {
2141 		/* 6-24,36,48,54 */
2142 		{ {32, 32, 28, 26} },
2143 		{ {32, 32, 28, 26} },
2144 		{ {32, 32, 28, 26} },
2145 		{ {32, 32, 26, 24} },
2146 		{ {32, 32, 26, 24} },
2147 		{ {32, 32, 24, 22} },
2148 		{ {30, 30, 24, 22} },
2149 		{ {30, 30, 24, 22} },
2150 	},
2151 	.calTargetPower5GHT20 = {
2152 		/*
2153 		 * 0_8_16,1-3_9-11_17-19,
2154 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2155 		 */
2156 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2157 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2158 		{ {32, 32, 32, 32, 28, 26, 32, 28, 26, 24, 24, 24, 22, 22} },
2159 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 22, 22, 20, 20} },
2160 		{ {32, 32, 32, 32, 28, 26, 32, 26, 24, 22, 20, 18, 16, 16} },
2161 		{ {32, 32, 32, 32, 28, 26, 32, 24, 20, 16, 18, 16, 14, 14} },
2162 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2163 		{ {30, 30, 30, 30, 28, 26, 30, 24, 20, 16, 18, 16, 14, 14} },
2164 	},
2165 	.calTargetPower5GHT40 =  {
2166 		/*
2167 		 * 0_8_16,1-3_9-11_17-19,
2168 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2169 		 */
2170 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2171 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2172 		{ {32, 32, 32, 30, 28, 26, 30, 28, 26, 24, 24, 24, 22, 22} },
2173 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 22, 22, 20, 20} },
2174 		{ {32, 32, 32, 30, 28, 26, 30, 26, 24, 22, 20, 18, 16, 16} },
2175 		{ {32, 32, 32, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2176 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2177 		{ {30, 30, 30, 30, 28, 26, 30, 22, 20, 16, 18, 16, 14, 14} },
2178 	},
2179 	.ctlIndex_5G =  {
2180 		0x10, 0x16, 0x18, 0x40, 0x46,
2181 		0x48, 0x30, 0x36, 0x38
2182 	},
2183 	.ctl_freqbin_5G =  {
2184 		{
2185 			/* Data[0].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2186 			/* Data[0].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2187 			/* Data[0].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2188 			/* Data[0].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2189 			/* Data[0].ctledges[4].bchannel */ FREQ2FBIN(5600, 0),
2190 			/* Data[0].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2191 			/* Data[0].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2192 			/* Data[0].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2193 		},
2194 		{
2195 			/* Data[1].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2196 			/* Data[1].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2197 			/* Data[1].ctledges[2].bchannel */ FREQ2FBIN(5280, 0),
2198 			/* Data[1].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2199 			/* Data[1].ctledges[4].bchannel */ FREQ2FBIN(5520, 0),
2200 			/* Data[1].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2201 			/* Data[1].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2202 			/* Data[1].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2203 		},
2204 
2205 		{
2206 			/* Data[2].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2207 			/* Data[2].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2208 			/* Data[2].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2209 			/* Data[2].ctledges[3].bchannel */ FREQ2FBIN(5310, 0),
2210 			/* Data[2].ctledges[4].bchannel */ FREQ2FBIN(5510, 0),
2211 			/* Data[2].ctledges[5].bchannel */ FREQ2FBIN(5550, 0),
2212 			/* Data[2].ctledges[6].bchannel */ FREQ2FBIN(5670, 0),
2213 			/* Data[2].ctledges[7].bchannel */ FREQ2FBIN(5755, 0)
2214 		},
2215 
2216 		{
2217 			/* Data[3].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2218 			/* Data[3].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2219 			/* Data[3].ctledges[2].bchannel */ FREQ2FBIN(5260, 0),
2220 			/* Data[3].ctledges[3].bchannel */ FREQ2FBIN(5320, 0),
2221 			/* Data[3].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2222 			/* Data[3].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2223 			/* Data[3].ctledges[6].bchannel */ 0xFF,
2224 			/* Data[3].ctledges[7].bchannel */ 0xFF,
2225 		},
2226 
2227 		{
2228 			/* Data[4].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2229 			/* Data[4].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2230 			/* Data[4].ctledges[2].bchannel */ FREQ2FBIN(5500, 0),
2231 			/* Data[4].ctledges[3].bchannel */ FREQ2FBIN(5700, 0),
2232 			/* Data[4].ctledges[4].bchannel */ 0xFF,
2233 			/* Data[4].ctledges[5].bchannel */ 0xFF,
2234 			/* Data[4].ctledges[6].bchannel */ 0xFF,
2235 			/* Data[4].ctledges[7].bchannel */ 0xFF,
2236 		},
2237 
2238 		{
2239 			/* Data[5].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2240 			/* Data[5].ctledges[1].bchannel */ FREQ2FBIN(5270, 0),
2241 			/* Data[5].ctledges[2].bchannel */ FREQ2FBIN(5310, 0),
2242 			/* Data[5].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2243 			/* Data[5].ctledges[4].bchannel */ FREQ2FBIN(5590, 0),
2244 			/* Data[5].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2245 			/* Data[5].ctledges[6].bchannel */ 0xFF,
2246 			/* Data[5].ctledges[7].bchannel */ 0xFF
2247 		},
2248 
2249 		{
2250 			/* Data[6].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2251 			/* Data[6].ctledges[1].bchannel */ FREQ2FBIN(5200, 0),
2252 			/* Data[6].ctledges[2].bchannel */ FREQ2FBIN(5220, 0),
2253 			/* Data[6].ctledges[3].bchannel */ FREQ2FBIN(5260, 0),
2254 			/* Data[6].ctledges[4].bchannel */ FREQ2FBIN(5500, 0),
2255 			/* Data[6].ctledges[5].bchannel */ FREQ2FBIN(5600, 0),
2256 			/* Data[6].ctledges[6].bchannel */ FREQ2FBIN(5700, 0),
2257 			/* Data[6].ctledges[7].bchannel */ FREQ2FBIN(5745, 0)
2258 		},
2259 
2260 		{
2261 			/* Data[7].ctledges[0].bchannel */ FREQ2FBIN(5180, 0),
2262 			/* Data[7].ctledges[1].bchannel */ FREQ2FBIN(5260, 0),
2263 			/* Data[7].ctledges[2].bchannel */ FREQ2FBIN(5320, 0),
2264 			/* Data[7].ctledges[3].bchannel */ FREQ2FBIN(5500, 0),
2265 			/* Data[7].ctledges[4].bchannel */ FREQ2FBIN(5560, 0),
2266 			/* Data[7].ctledges[5].bchannel */ FREQ2FBIN(5700, 0),
2267 			/* Data[7].ctledges[6].bchannel */ FREQ2FBIN(5745, 0),
2268 			/* Data[7].ctledges[7].bchannel */ FREQ2FBIN(5825, 0)
2269 		},
2270 
2271 		{
2272 			/* Data[8].ctledges[0].bchannel */ FREQ2FBIN(5190, 0),
2273 			/* Data[8].ctledges[1].bchannel */ FREQ2FBIN(5230, 0),
2274 			/* Data[8].ctledges[2].bchannel */ FREQ2FBIN(5270, 0),
2275 			/* Data[8].ctledges[3].bchannel */ FREQ2FBIN(5510, 0),
2276 			/* Data[8].ctledges[4].bchannel */ FREQ2FBIN(5550, 0),
2277 			/* Data[8].ctledges[5].bchannel */ FREQ2FBIN(5670, 0),
2278 			/* Data[8].ctledges[6].bchannel */ FREQ2FBIN(5755, 0),
2279 			/* Data[8].ctledges[7].bchannel */ FREQ2FBIN(5795, 0)
2280 		}
2281 	},
2282 	.ctlPowerData_5G = {
2283 		{
2284 			{
2285 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2286 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2287 			}
2288 		},
2289 		{
2290 			{
2291 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2292 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2293 			}
2294 		},
2295 		{
2296 			{
2297 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2298 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2299 			}
2300 		},
2301 		{
2302 			{
2303 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2304 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2305 			}
2306 		},
2307 		{
2308 			{
2309 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2310 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2311 			}
2312 		},
2313 		{
2314 			{
2315 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2316 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2317 			}
2318 		},
2319 		{
2320 			{
2321 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2322 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2323 			}
2324 		},
2325 		{
2326 			{
2327 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2328 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2329 			}
2330 		},
2331 		{
2332 			{
2333 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2334 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2335 			}
2336 		},
2337 	}
2338 };
2339 
2340 static const struct ar9300_eeprom ar9300_h116 = {
2341 	.eepromVersion = 2,
2342 	.templateVersion = 4,
2343 	.macAddr = {0x00, 0x03, 0x7f, 0x0, 0x0, 0x0},
2344 	.custData = {"h116-041-f0000"},
2345 	.baseEepHeader = {
2346 		.regDmn = { LE16(0), LE16(0x1f) },
2347 		.txrxMask =  0x33, /* 4 bits tx and 4 bits rx */
2348 		.opCapFlags = {
2349 			.opFlags = AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A,
2350 			.eepMisc = 0,
2351 		},
2352 		.rfSilent = 0,
2353 		.blueToothOptions = 0,
2354 		.deviceCap = 0,
2355 		.deviceType = 5, /* takes lower byte in eeprom location */
2356 		.pwrTableOffset = AR9300_PWR_TABLE_OFFSET,
2357 		.params_for_tuning_caps = {0, 0},
2358 		.featureEnable = 0x0d,
2359 		 /*
2360 		  * bit0 - enable tx temp comp - disabled
2361 		  * bit1 - enable tx volt comp - disabled
2362 		  * bit2 - enable fastClock - enabled
2363 		  * bit3 - enable doubling - enabled
2364 		  * bit4 - enable internal regulator - disabled
2365 		  * bit5 - enable pa predistortion - disabled
2366 		  */
2367 		.miscConfiguration = 0, /* bit0 - turn down drivestrength */
2368 		.eepromWriteEnableGpio = 6,
2369 		.wlanDisableGpio = 0,
2370 		.wlanLedGpio = 8,
2371 		.rxBandSelectGpio = 0xff,
2372 		.txrxgain = 0x10,
2373 		.swreg = 0,
2374 	 },
2375 	.modalHeader2G = {
2376 	/* ar9300_modal_eep_header  2g */
2377 		/* 4 idle,t1,t2,b(4 bits per setting) */
2378 		.antCtrlCommon = LE32(0x110),
2379 		/* 4 ra1l1, ra2l1, ra1l2, ra2l2, ra12 */
2380 		.antCtrlCommon2 = LE32(0x44444),
2381 
2382 		/*
2383 		 * antCtrlChain[AR9300_MAX_CHAINS]; 6 idle, t, r,
2384 		 * rx1, rx12, b (2 bits each)
2385 		 */
2386 		.antCtrlChain = { LE16(0x10), LE16(0x10), LE16(0x10) },
2387 
2388 		/*
2389 		 * xatten1DB[AR9300_MAX_CHAINS];  3 xatten1_db
2390 		 * for ar9280 (0xa20c/b20c 5:0)
2391 		 */
2392 		.xatten1DB = {0x1f, 0x1f, 0x1f},
2393 
2394 		/*
2395 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2396 		 * for ar9280 (0xa20c/b20c 16:12
2397 		 */
2398 		.xatten1Margin = {0x12, 0x12, 0x12},
2399 		.tempSlope = 25,
2400 		.voltSlope = 0,
2401 
2402 		/*
2403 		 * spurChans[OSPREY_EEPROM_MODAL_SPURS]; spur
2404 		 * channels in usual fbin coding format
2405 		 */
2406 		.spurChans = {FREQ2FBIN(2464, 1), 0, 0, 0, 0},
2407 
2408 		/*
2409 		 * noiseFloorThreshCh[AR9300_MAX_CHAINS]; 3 Check
2410 		 * if the register is per chain
2411 		 */
2412 		.noiseFloorThreshCh = {-1, 0, 0},
2413 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2414 		.quick_drop = 0,
2415 		.xpaBiasLvl = 0,
2416 		.txFrameToDataStart = 0x0e,
2417 		.txFrameToPaOn = 0x0e,
2418 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2419 		.antennaGain = 0,
2420 		.switchSettling = 0x2c,
2421 		.adcDesiredSize = -30,
2422 		.txEndToXpaOff = 0,
2423 		.txEndToRxOn = 0x2,
2424 		.txFrameToXpaOn = 0xe,
2425 		.thresh62 = 28,
2426 		.papdRateMaskHt20 = LE32(0x0c80C080),
2427 		.papdRateMaskHt40 = LE32(0x0080C080),
2428 		.futureModal = {
2429 			0, 0, 0, 0, 0, 0, 0, 0,
2430 		},
2431 	 },
2432 	 .base_ext1 = {
2433 		.ant_div_control = 0,
2434 		.future = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
2435 	 },
2436 	.calFreqPier2G = {
2437 		FREQ2FBIN(2412, 1),
2438 		FREQ2FBIN(2437, 1),
2439 		FREQ2FBIN(2462, 1),
2440 	 },
2441 	/* ar9300_cal_data_per_freq_op_loop 2g */
2442 	.calPierData2G = {
2443 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2444 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2445 		{ {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0} },
2446 	 },
2447 	.calTarget_freqbin_Cck = {
2448 		FREQ2FBIN(2412, 1),
2449 		FREQ2FBIN(2472, 1),
2450 	 },
2451 	.calTarget_freqbin_2G = {
2452 		FREQ2FBIN(2412, 1),
2453 		FREQ2FBIN(2437, 1),
2454 		FREQ2FBIN(2472, 1)
2455 	 },
2456 	.calTarget_freqbin_2GHT20 = {
2457 		FREQ2FBIN(2412, 1),
2458 		FREQ2FBIN(2437, 1),
2459 		FREQ2FBIN(2472, 1)
2460 	 },
2461 	.calTarget_freqbin_2GHT40 = {
2462 		FREQ2FBIN(2412, 1),
2463 		FREQ2FBIN(2437, 1),
2464 		FREQ2FBIN(2472, 1)
2465 	 },
2466 	.calTargetPowerCck = {
2467 		 /* 1L-5L,5S,11L,11S */
2468 		 { {34, 34, 34, 34} },
2469 		 { {34, 34, 34, 34} },
2470 	},
2471 	.calTargetPower2G = {
2472 		 /* 6-24,36,48,54 */
2473 		 { {34, 34, 32, 32} },
2474 		 { {34, 34, 32, 32} },
2475 		 { {34, 34, 32, 32} },
2476 	},
2477 	.calTargetPower2GHT20 = {
2478 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2479 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2480 		{ {32, 32, 32, 32, 32, 30, 32, 32, 30, 28, 0, 0, 0, 0} },
2481 	},
2482 	.calTargetPower2GHT40 = {
2483 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2484 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2485 		{ {30, 30, 30, 30, 30, 28, 30, 30, 28, 26, 0, 0, 0, 0} },
2486 	},
2487 	.ctlIndex_2G =  {
2488 		0x11, 0x12, 0x15, 0x17, 0x41, 0x42,
2489 		0x45, 0x47, 0x31, 0x32, 0x35, 0x37,
2490 	},
2491 	.ctl_freqbin_2G = {
2492 		{
2493 			FREQ2FBIN(2412, 1),
2494 			FREQ2FBIN(2417, 1),
2495 			FREQ2FBIN(2457, 1),
2496 			FREQ2FBIN(2462, 1)
2497 		},
2498 		{
2499 			FREQ2FBIN(2412, 1),
2500 			FREQ2FBIN(2417, 1),
2501 			FREQ2FBIN(2462, 1),
2502 			0xFF,
2503 		},
2504 
2505 		{
2506 			FREQ2FBIN(2412, 1),
2507 			FREQ2FBIN(2417, 1),
2508 			FREQ2FBIN(2462, 1),
2509 			0xFF,
2510 		},
2511 		{
2512 			FREQ2FBIN(2422, 1),
2513 			FREQ2FBIN(2427, 1),
2514 			FREQ2FBIN(2447, 1),
2515 			FREQ2FBIN(2452, 1)
2516 		},
2517 
2518 		{
2519 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2520 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2521 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2522 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(2484, 1),
2523 		},
2524 
2525 		{
2526 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2527 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2528 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2529 			0,
2530 		},
2531 
2532 		{
2533 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2534 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2535 			FREQ2FBIN(2472, 1),
2536 			0,
2537 		},
2538 
2539 		{
2540 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2541 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2542 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2543 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2544 		},
2545 
2546 		{
2547 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2548 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2549 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2550 		},
2551 
2552 		{
2553 			/* Data[9].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2554 			/* Data[9].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2555 			/* Data[9].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2556 			0
2557 		},
2558 
2559 		{
2560 			/* Data[10].ctlEdges[0].bChannel */ FREQ2FBIN(2412, 1),
2561 			/* Data[10].ctlEdges[1].bChannel */ FREQ2FBIN(2417, 1),
2562 			/* Data[10].ctlEdges[2].bChannel */ FREQ2FBIN(2472, 1),
2563 			0
2564 		},
2565 
2566 		{
2567 			/* Data[11].ctlEdges[0].bChannel */ FREQ2FBIN(2422, 1),
2568 			/* Data[11].ctlEdges[1].bChannel */ FREQ2FBIN(2427, 1),
2569 			/* Data[11].ctlEdges[2].bChannel */ FREQ2FBIN(2447, 1),
2570 			/* Data[11].ctlEdges[3].bChannel */ FREQ2FBIN(2462, 1),
2571 		}
2572 	 },
2573 	.ctlPowerData_2G = {
2574 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2575 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2576 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 1) } },
2577 
2578 		 { { CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0) } },
2579 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2580 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2581 
2582 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0) } },
2583 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2584 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2585 
2586 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 0) } },
2587 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2588 		 { { CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 1) } },
2589 	 },
2590 	.modalHeader5G = {
2591 		/* 4 idle,t1,t2,b (4 bits per setting) */
2592 		.antCtrlCommon = LE32(0x220),
2593 		/* 4 ra1l1, ra2l1, ra1l2,ra2l2,ra12 */
2594 		.antCtrlCommon2 = LE32(0x44444),
2595 		 /* antCtrlChain 6 idle, t,r,rx1,rx12,b (2 bits each) */
2596 		.antCtrlChain = {
2597 			LE16(0x150), LE16(0x150), LE16(0x150),
2598 		},
2599 		 /* xatten1DB 3 xatten1_db for AR9280 (0xa20c/b20c 5:0) */
2600 		.xatten1DB = {0x19, 0x19, 0x19},
2601 
2602 		/*
2603 		 * xatten1Margin[AR9300_MAX_CHAINS]; 3 xatten1_margin
2604 		 * for merlin (0xa20c/b20c 16:12
2605 		 */
2606 		.xatten1Margin = {0x14, 0x14, 0x14},
2607 		.tempSlope = 70,
2608 		.voltSlope = 0,
2609 		/* spurChans spur channels in usual fbin coding format */
2610 		.spurChans = {0, 0, 0, 0, 0},
2611 		/* noiseFloorThreshCh Check if the register is per chain */
2612 		.noiseFloorThreshCh = {-1, 0, 0},
2613 		.reserved = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
2614 		.quick_drop = 0,
2615 		.xpaBiasLvl = 0,
2616 		.txFrameToDataStart = 0x0e,
2617 		.txFrameToPaOn = 0x0e,
2618 		.txClip = 3, /* 4 bits tx_clip, 4 bits dac_scale_cck */
2619 		.antennaGain = 0,
2620 		.switchSettling = 0x2d,
2621 		.adcDesiredSize = -30,
2622 		.txEndToXpaOff = 0,
2623 		.txEndToRxOn = 0x2,
2624 		.txFrameToXpaOn = 0xe,
2625 		.thresh62 = 28,
2626 		.papdRateMaskHt20 = LE32(0x0cf0e0e0),
2627 		.papdRateMaskHt40 = LE32(0x6cf0e0e0),
2628 		.futureModal = {
2629 			0, 0, 0, 0, 0, 0, 0, 0,
2630 		},
2631 	 },
2632 	.base_ext2 = {
2633 		.tempSlopeLow = 35,
2634 		.tempSlopeHigh = 50,
2635 		.xatten1DBLow = {0, 0, 0},
2636 		.xatten1MarginLow = {0, 0, 0},
2637 		.xatten1DBHigh = {0, 0, 0},
2638 		.xatten1MarginHigh = {0, 0, 0}
2639 	 },
2640 	.calFreqPier5G = {
2641 		FREQ2FBIN(5160, 0),
2642 		FREQ2FBIN(5220, 0),
2643 		FREQ2FBIN(5320, 0),
2644 		FREQ2FBIN(5400, 0),
2645 		FREQ2FBIN(5500, 0),
2646 		FREQ2FBIN(5600, 0),
2647 		FREQ2FBIN(5700, 0),
2648 		FREQ2FBIN(5785, 0)
2649 	},
2650 	.calPierData5G = {
2651 			{
2652 				{0, 0, 0, 0, 0},
2653 				{0, 0, 0, 0, 0},
2654 				{0, 0, 0, 0, 0},
2655 				{0, 0, 0, 0, 0},
2656 				{0, 0, 0, 0, 0},
2657 				{0, 0, 0, 0, 0},
2658 				{0, 0, 0, 0, 0},
2659 				{0, 0, 0, 0, 0},
2660 			},
2661 			{
2662 				{0, 0, 0, 0, 0},
2663 				{0, 0, 0, 0, 0},
2664 				{0, 0, 0, 0, 0},
2665 				{0, 0, 0, 0, 0},
2666 				{0, 0, 0, 0, 0},
2667 				{0, 0, 0, 0, 0},
2668 				{0, 0, 0, 0, 0},
2669 				{0, 0, 0, 0, 0},
2670 			},
2671 			{
2672 				{0, 0, 0, 0, 0},
2673 				{0, 0, 0, 0, 0},
2674 				{0, 0, 0, 0, 0},
2675 				{0, 0, 0, 0, 0},
2676 				{0, 0, 0, 0, 0},
2677 				{0, 0, 0, 0, 0},
2678 				{0, 0, 0, 0, 0},
2679 				{0, 0, 0, 0, 0},
2680 			},
2681 
2682 	},
2683 	.calTarget_freqbin_5G = {
2684 		FREQ2FBIN(5180, 0),
2685 		FREQ2FBIN(5240, 0),
2686 		FREQ2FBIN(5320, 0),
2687 		FREQ2FBIN(5400, 0),
2688 		FREQ2FBIN(5500, 0),
2689 		FREQ2FBIN(5600, 0),
2690 		FREQ2FBIN(5700, 0),
2691 		FREQ2FBIN(5825, 0)
2692 	},
2693 	.calTarget_freqbin_5GHT20 = {
2694 		FREQ2FBIN(5180, 0),
2695 		FREQ2FBIN(5240, 0),
2696 		FREQ2FBIN(5320, 0),
2697 		FREQ2FBIN(5400, 0),
2698 		FREQ2FBIN(5500, 0),
2699 		FREQ2FBIN(5700, 0),
2700 		FREQ2FBIN(5745, 0),
2701 		FREQ2FBIN(5825, 0)
2702 	},
2703 	.calTarget_freqbin_5GHT40 = {
2704 		FREQ2FBIN(5180, 0),
2705 		FREQ2FBIN(5240, 0),
2706 		FREQ2FBIN(5320, 0),
2707 		FREQ2FBIN(5400, 0),
2708 		FREQ2FBIN(5500, 0),
2709 		FREQ2FBIN(5700, 0),
2710 		FREQ2FBIN(5745, 0),
2711 		FREQ2FBIN(5825, 0)
2712 	 },
2713 	.calTargetPower5G = {
2714 		/* 6-24,36,48,54 */
2715 		{ {30, 30, 28, 24} },
2716 		{ {30, 30, 28, 24} },
2717 		{ {30, 30, 28, 24} },
2718 		{ {30, 30, 28, 24} },
2719 		{ {30, 30, 28, 24} },
2720 		{ {30, 30, 28, 24} },
2721 		{ {30, 30, 28, 24} },
2722 		{ {30, 30, 28, 24} },
2723 	 },
2724 	.calTargetPower5GHT20 = {
2725 		/*
2726 		 * 0_8_16,1-3_9-11_17-19,
2727 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2728 		 */
2729 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2730 		{ {30, 30, 30, 28, 24, 20, 30, 28, 24, 20, 0, 0, 0, 0} },
2731 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2732 		{ {30, 30, 30, 26, 22, 18, 30, 26, 22, 18, 0, 0, 0, 0} },
2733 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2734 		{ {30, 30, 30, 24, 20, 16, 30, 24, 20, 16, 0, 0, 0, 0} },
2735 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2736 		{ {30, 30, 30, 22, 18, 14, 30, 22, 18, 14, 0, 0, 0, 0} },
2737 	 },
2738 	.calTargetPower5GHT40 =  {
2739 		/*
2740 		 * 0_8_16,1-3_9-11_17-19,
2741 		 * 4,5,6,7,12,13,14,15,20,21,22,23
2742 		 */
2743 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2744 		{ {28, 28, 28, 26, 22, 18, 28, 26, 22, 18, 0, 0, 0, 0} },
2745 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2746 		{ {28, 28, 28, 24, 20, 16, 28, 24, 20, 16, 0, 0, 0, 0} },
2747 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2748 		{ {28, 28, 28, 22, 18, 14, 28, 22, 18, 14, 0, 0, 0, 0} },
2749 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2750 		{ {28, 28, 28, 20, 16, 12, 28, 20, 16, 12, 0, 0, 0, 0} },
2751 	 },
2752 	.ctlIndex_5G =  {
2753 		0x10, 0x16, 0x18, 0x40, 0x46,
2754 		0x48, 0x30, 0x36, 0x38
2755 	},
2756 	.ctl_freqbin_5G =  {
2757 		{
2758 			/* Data[0].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2759 			/* Data[0].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2760 			/* Data[0].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2761 			/* Data[0].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2762 			/* Data[0].ctlEdges[4].bChannel */ FREQ2FBIN(5600, 0),
2763 			/* Data[0].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2764 			/* Data[0].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2765 			/* Data[0].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2766 		},
2767 		{
2768 			/* Data[1].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2769 			/* Data[1].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2770 			/* Data[1].ctlEdges[2].bChannel */ FREQ2FBIN(5280, 0),
2771 			/* Data[1].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2772 			/* Data[1].ctlEdges[4].bChannel */ FREQ2FBIN(5520, 0),
2773 			/* Data[1].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2774 			/* Data[1].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2775 			/* Data[1].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2776 		},
2777 
2778 		{
2779 			/* Data[2].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2780 			/* Data[2].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2781 			/* Data[2].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2782 			/* Data[2].ctlEdges[3].bChannel */ FREQ2FBIN(5310, 0),
2783 			/* Data[2].ctlEdges[4].bChannel */ FREQ2FBIN(5510, 0),
2784 			/* Data[2].ctlEdges[5].bChannel */ FREQ2FBIN(5550, 0),
2785 			/* Data[2].ctlEdges[6].bChannel */ FREQ2FBIN(5670, 0),
2786 			/* Data[2].ctlEdges[7].bChannel */ FREQ2FBIN(5755, 0)
2787 		},
2788 
2789 		{
2790 			/* Data[3].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2791 			/* Data[3].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2792 			/* Data[3].ctlEdges[2].bChannel */ FREQ2FBIN(5260, 0),
2793 			/* Data[3].ctlEdges[3].bChannel */ FREQ2FBIN(5320, 0),
2794 			/* Data[3].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2795 			/* Data[3].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2796 			/* Data[3].ctlEdges[6].bChannel */ 0xFF,
2797 			/* Data[3].ctlEdges[7].bChannel */ 0xFF,
2798 		},
2799 
2800 		{
2801 			/* Data[4].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2802 			/* Data[4].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2803 			/* Data[4].ctlEdges[2].bChannel */ FREQ2FBIN(5500, 0),
2804 			/* Data[4].ctlEdges[3].bChannel */ FREQ2FBIN(5700, 0),
2805 			/* Data[4].ctlEdges[4].bChannel */ 0xFF,
2806 			/* Data[4].ctlEdges[5].bChannel */ 0xFF,
2807 			/* Data[4].ctlEdges[6].bChannel */ 0xFF,
2808 			/* Data[4].ctlEdges[7].bChannel */ 0xFF,
2809 		},
2810 
2811 		{
2812 			/* Data[5].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2813 			/* Data[5].ctlEdges[1].bChannel */ FREQ2FBIN(5270, 0),
2814 			/* Data[5].ctlEdges[2].bChannel */ FREQ2FBIN(5310, 0),
2815 			/* Data[5].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2816 			/* Data[5].ctlEdges[4].bChannel */ FREQ2FBIN(5590, 0),
2817 			/* Data[5].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2818 			/* Data[5].ctlEdges[6].bChannel */ 0xFF,
2819 			/* Data[5].ctlEdges[7].bChannel */ 0xFF
2820 		},
2821 
2822 		{
2823 			/* Data[6].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2824 			/* Data[6].ctlEdges[1].bChannel */ FREQ2FBIN(5200, 0),
2825 			/* Data[6].ctlEdges[2].bChannel */ FREQ2FBIN(5220, 0),
2826 			/* Data[6].ctlEdges[3].bChannel */ FREQ2FBIN(5260, 0),
2827 			/* Data[6].ctlEdges[4].bChannel */ FREQ2FBIN(5500, 0),
2828 			/* Data[6].ctlEdges[5].bChannel */ FREQ2FBIN(5600, 0),
2829 			/* Data[6].ctlEdges[6].bChannel */ FREQ2FBIN(5700, 0),
2830 			/* Data[6].ctlEdges[7].bChannel */ FREQ2FBIN(5745, 0)
2831 		},
2832 
2833 		{
2834 			/* Data[7].ctlEdges[0].bChannel */ FREQ2FBIN(5180, 0),
2835 			/* Data[7].ctlEdges[1].bChannel */ FREQ2FBIN(5260, 0),
2836 			/* Data[7].ctlEdges[2].bChannel */ FREQ2FBIN(5320, 0),
2837 			/* Data[7].ctlEdges[3].bChannel */ FREQ2FBIN(5500, 0),
2838 			/* Data[7].ctlEdges[4].bChannel */ FREQ2FBIN(5560, 0),
2839 			/* Data[7].ctlEdges[5].bChannel */ FREQ2FBIN(5700, 0),
2840 			/* Data[7].ctlEdges[6].bChannel */ FREQ2FBIN(5745, 0),
2841 			/* Data[7].ctlEdges[7].bChannel */ FREQ2FBIN(5825, 0)
2842 		},
2843 
2844 		{
2845 			/* Data[8].ctlEdges[0].bChannel */ FREQ2FBIN(5190, 0),
2846 			/* Data[8].ctlEdges[1].bChannel */ FREQ2FBIN(5230, 0),
2847 			/* Data[8].ctlEdges[2].bChannel */ FREQ2FBIN(5270, 0),
2848 			/* Data[8].ctlEdges[3].bChannel */ FREQ2FBIN(5510, 0),
2849 			/* Data[8].ctlEdges[4].bChannel */ FREQ2FBIN(5550, 0),
2850 			/* Data[8].ctlEdges[5].bChannel */ FREQ2FBIN(5670, 0),
2851 			/* Data[8].ctlEdges[6].bChannel */ FREQ2FBIN(5755, 0),
2852 			/* Data[8].ctlEdges[7].bChannel */ FREQ2FBIN(5795, 0)
2853 		}
2854 	 },
2855 	.ctlPowerData_5G = {
2856 		{
2857 			{
2858 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2859 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2860 			}
2861 		},
2862 		{
2863 			{
2864 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2865 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2866 			}
2867 		},
2868 		{
2869 			{
2870 				CTL(60, 0), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2871 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2872 			}
2873 		},
2874 		{
2875 			{
2876 				CTL(60, 0), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2877 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2878 			}
2879 		},
2880 		{
2881 			{
2882 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2883 				CTL(60, 0), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2884 			}
2885 		},
2886 		{
2887 			{
2888 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2889 				CTL(60, 1), CTL(60, 0), CTL(60, 0), CTL(60, 0),
2890 			}
2891 		},
2892 		{
2893 			{
2894 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2895 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 1),
2896 			}
2897 		},
2898 		{
2899 			{
2900 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2901 				CTL(60, 1), CTL(60, 1), CTL(60, 1), CTL(60, 0),
2902 			}
2903 		},
2904 		{
2905 			{
2906 				CTL(60, 1), CTL(60, 0), CTL(60, 1), CTL(60, 1),
2907 				CTL(60, 1), CTL(60, 1), CTL(60, 0), CTL(60, 1),
2908 			}
2909 		},
2910 	 }
2911 };
2912 
2913 
2914 static const struct ar9300_eeprom *ar9300_eep_templates[] = {
2915 	&ar9300_default,
2916 	&ar9300_x112,
2917 	&ar9300_h116,
2918 	&ar9300_h112,
2919 	&ar9300_x113,
2920 };
2921 
2922 static const struct ar9300_eeprom *ar9003_eeprom_struct_find_by_id(int id)
2923 {
2924 #define N_LOOP (sizeof(ar9300_eep_templates) / sizeof(ar9300_eep_templates[0]))
2925 	int it;
2926 
2927 	for (it = 0; it < N_LOOP; it++)
2928 		if (ar9300_eep_templates[it]->templateVersion == id)
2929 			return ar9300_eep_templates[it];
2930 	return NULL;
2931 #undef N_LOOP
2932 }
2933 
2934 static int ath9k_hw_ar9300_check_eeprom(struct ath_hw *ah)
2935 {
2936 	return 0;
2937 }
2938 
2939 static int interpolate(int x, int xa, int xb, int ya, int yb)
2940 {
2941 	int bf, factor, plus;
2942 
2943 	bf = 2 * (yb - ya) * (x - xa) / (xb - xa);
2944 	factor = bf / 2;
2945 	plus = bf % 2;
2946 	return ya + factor + plus;
2947 }
2948 
2949 static u32 ath9k_hw_ar9300_get_eeprom(struct ath_hw *ah,
2950 				      enum eeprom_param param)
2951 {
2952 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
2953 	struct ar9300_base_eep_hdr *pBase = &eep->baseEepHeader;
2954 
2955 	switch (param) {
2956 	case EEP_MAC_LSW:
2957 		return get_unaligned_be16(eep->macAddr);
2958 	case EEP_MAC_MID:
2959 		return get_unaligned_be16(eep->macAddr + 2);
2960 	case EEP_MAC_MSW:
2961 		return get_unaligned_be16(eep->macAddr + 4);
2962 	case EEP_REG_0:
2963 		return le16_to_cpu(pBase->regDmn[0]);
2964 	case EEP_OP_CAP:
2965 		return pBase->deviceCap;
2966 	case EEP_OP_MODE:
2967 		return pBase->opCapFlags.opFlags;
2968 	case EEP_RF_SILENT:
2969 		return pBase->rfSilent;
2970 	case EEP_TX_MASK:
2971 		return (pBase->txrxMask >> 4) & 0xf;
2972 	case EEP_RX_MASK:
2973 		return pBase->txrxMask & 0xf;
2974 	case EEP_DRIVE_STRENGTH:
2975 #define AR9300_EEP_BASE_DRIV_STRENGTH	0x1
2976 		return pBase->miscConfiguration & AR9300_EEP_BASE_DRIV_STRENGTH;
2977 	case EEP_INTERNAL_REGULATOR:
2978 		/* Bit 4 is internal regulator flag */
2979 		return (pBase->featureEnable & 0x10) >> 4;
2980 	case EEP_SWREG:
2981 		return le32_to_cpu(pBase->swreg);
2982 	case EEP_PAPRD:
2983 		return !!(pBase->featureEnable & BIT(5));
2984 	case EEP_CHAIN_MASK_REDUCE:
2985 		return (pBase->miscConfiguration >> 0x3) & 0x1;
2986 	case EEP_ANT_DIV_CTL1:
2987 		return eep->base_ext1.ant_div_control;
2988 	case EEP_ANTENNA_GAIN_5G:
2989 		return eep->modalHeader5G.antennaGain;
2990 	case EEP_ANTENNA_GAIN_2G:
2991 		return eep->modalHeader2G.antennaGain;
2992 	case EEP_QUICK_DROP:
2993 		return pBase->miscConfiguration & BIT(1);
2994 	default:
2995 		return 0;
2996 	}
2997 }
2998 
2999 static bool ar9300_eeprom_read_byte(struct ath_common *common, int address,
3000 				    u8 *buffer)
3001 {
3002 	u16 val;
3003 
3004 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3005 		return false;
3006 
3007 	*buffer = (val >> (8 * (address % 2))) & 0xff;
3008 	return true;
3009 }
3010 
3011 static bool ar9300_eeprom_read_word(struct ath_common *common, int address,
3012 				    u8 *buffer)
3013 {
3014 	u16 val;
3015 
3016 	if (unlikely(!ath9k_hw_nvram_read(common, address / 2, &val)))
3017 		return false;
3018 
3019 	buffer[0] = val >> 8;
3020 	buffer[1] = val & 0xff;
3021 
3022 	return true;
3023 }
3024 
3025 static bool ar9300_read_eeprom(struct ath_hw *ah, int address, u8 *buffer,
3026 			       int count)
3027 {
3028 	struct ath_common *common = ath9k_hw_common(ah);
3029 	int i;
3030 
3031 	if ((address < 0) || ((address + count) / 2 > AR9300_EEPROM_SIZE - 1)) {
3032 		ath_dbg(common, EEPROM, "eeprom address not in range\n");
3033 		return false;
3034 	}
3035 
3036 	/*
3037 	 * Since we're reading the bytes in reverse order from a little-endian
3038 	 * word stream, an even address means we only use the lower half of
3039 	 * the 16-bit word at that address
3040 	 */
3041 	if (address % 2 == 0) {
3042 		if (!ar9300_eeprom_read_byte(common, address--, buffer++))
3043 			goto error;
3044 
3045 		count--;
3046 	}
3047 
3048 	for (i = 0; i < count / 2; i++) {
3049 		if (!ar9300_eeprom_read_word(common, address, buffer))
3050 			goto error;
3051 
3052 		address -= 2;
3053 		buffer += 2;
3054 	}
3055 
3056 	if (count % 2)
3057 		if (!ar9300_eeprom_read_byte(common, address, buffer))
3058 			goto error;
3059 
3060 	return true;
3061 
3062 error:
3063 	ath_dbg(common, EEPROM, "unable to read eeprom region at offset %d\n",
3064 		address);
3065 	return false;
3066 }
3067 
3068 static bool ar9300_otp_read_word(struct ath_hw *ah, int addr, u32 *data)
3069 {
3070 	REG_READ(ah, AR9300_OTP_BASE + (4 * addr));
3071 
3072 	if (!ath9k_hw_wait(ah, AR9300_OTP_STATUS, AR9300_OTP_STATUS_TYPE,
3073 			   AR9300_OTP_STATUS_VALID, 1000))
3074 		return false;
3075 
3076 	*data = REG_READ(ah, AR9300_OTP_READ_DATA);
3077 	return true;
3078 }
3079 
3080 static bool ar9300_read_otp(struct ath_hw *ah, int address, u8 *buffer,
3081 			    int count)
3082 {
3083 	u32 data;
3084 	int i;
3085 
3086 	for (i = 0; i < count; i++) {
3087 		int offset = 8 * ((address - i) % 4);
3088 		if (!ar9300_otp_read_word(ah, (address - i) / 4, &data))
3089 			return false;
3090 
3091 		buffer[i] = (data >> offset) & 0xff;
3092 	}
3093 
3094 	return true;
3095 }
3096 
3097 
3098 static void ar9300_comp_hdr_unpack(u8 *best, int *code, int *reference,
3099 				   int *length, int *major, int *minor)
3100 {
3101 	unsigned long value[4];
3102 
3103 	value[0] = best[0];
3104 	value[1] = best[1];
3105 	value[2] = best[2];
3106 	value[3] = best[3];
3107 	*code = ((value[0] >> 5) & 0x0007);
3108 	*reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3109 	*length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3110 	*major = (value[2] & 0x000f);
3111 	*minor = (value[3] & 0x00ff);
3112 }
3113 
3114 static u16 ar9300_comp_cksum(u8 *data, int dsize)
3115 {
3116 	int it, checksum = 0;
3117 
3118 	for (it = 0; it < dsize; it++) {
3119 		checksum += data[it];
3120 		checksum &= 0xffff;
3121 	}
3122 
3123 	return checksum;
3124 }
3125 
3126 static bool ar9300_uncompress_block(struct ath_hw *ah,
3127 				    u8 *mptr,
3128 				    int mdataSize,
3129 				    u8 *block,
3130 				    int size)
3131 {
3132 	int it;
3133 	int spot;
3134 	int offset;
3135 	int length;
3136 	struct ath_common *common = ath9k_hw_common(ah);
3137 
3138 	spot = 0;
3139 
3140 	for (it = 0; it < size; it += (length+2)) {
3141 		offset = block[it];
3142 		offset &= 0xff;
3143 		spot += offset;
3144 		length = block[it+1];
3145 		length &= 0xff;
3146 
3147 		if (length > 0 && spot >= 0 && spot+length <= mdataSize) {
3148 			ath_dbg(common, EEPROM,
3149 				"Restore at %d: spot=%d offset=%d length=%d\n",
3150 				it, spot, offset, length);
3151 			memcpy(&mptr[spot], &block[it+2], length);
3152 			spot += length;
3153 		} else if (length > 0) {
3154 			ath_dbg(common, EEPROM,
3155 				"Bad restore at %d: spot=%d offset=%d length=%d\n",
3156 				it, spot, offset, length);
3157 			return false;
3158 		}
3159 	}
3160 	return true;
3161 }
3162 
3163 static int ar9300_compress_decision(struct ath_hw *ah,
3164 				    int it,
3165 				    int code,
3166 				    int reference,
3167 				    u8 *mptr,
3168 				    u8 *word, int length, int mdata_size)
3169 {
3170 	struct ath_common *common = ath9k_hw_common(ah);
3171 	const struct ar9300_eeprom *eep = NULL;
3172 
3173 	switch (code) {
3174 	case _CompressNone:
3175 		if (length != mdata_size) {
3176 			ath_dbg(common, EEPROM,
3177 				"EEPROM structure size mismatch memory=%d eeprom=%d\n",
3178 				mdata_size, length);
3179 			return -1;
3180 		}
3181 		memcpy(mptr, (u8 *) (word + COMP_HDR_LEN), length);
3182 		ath_dbg(common, EEPROM,
3183 			"restored eeprom %d: uncompressed, length %d\n",
3184 			it, length);
3185 		break;
3186 	case _CompressBlock:
3187 		if (reference == 0) {
3188 		} else {
3189 			eep = ar9003_eeprom_struct_find_by_id(reference);
3190 			if (eep == NULL) {
3191 				ath_dbg(common, EEPROM,
3192 					"can't find reference eeprom struct %d\n",
3193 					reference);
3194 				return -1;
3195 			}
3196 			memcpy(mptr, eep, mdata_size);
3197 		}
3198 		ath_dbg(common, EEPROM,
3199 			"restore eeprom %d: block, reference %d, length %d\n",
3200 			it, reference, length);
3201 		ar9300_uncompress_block(ah, mptr, mdata_size,
3202 					(u8 *) (word + COMP_HDR_LEN), length);
3203 		break;
3204 	default:
3205 		ath_dbg(common, EEPROM, "unknown compression code %d\n", code);
3206 		return -1;
3207 	}
3208 	return 0;
3209 }
3210 
3211 typedef bool (*eeprom_read_op)(struct ath_hw *ah, int address, u8 *buffer,
3212 			       int count);
3213 
3214 static bool ar9300_check_header(void *data)
3215 {
3216 	u32 *word = data;
3217 	return !(*word == 0 || *word == ~0);
3218 }
3219 
3220 static bool ar9300_check_eeprom_header(struct ath_hw *ah, eeprom_read_op read,
3221 				       int base_addr)
3222 {
3223 	u8 header[4];
3224 
3225 	if (!read(ah, base_addr, header, 4))
3226 		return false;
3227 
3228 	return ar9300_check_header(header);
3229 }
3230 
3231 static int ar9300_eeprom_restore_flash(struct ath_hw *ah, u8 *mptr,
3232 				       int mdata_size)
3233 {
3234 	struct ath_common *common = ath9k_hw_common(ah);
3235 	u16 *data = (u16 *) mptr;
3236 	int i;
3237 
3238 	for (i = 0; i < mdata_size / 2; i++, data++)
3239 		ath9k_hw_nvram_read(common, i, data);
3240 
3241 	return 0;
3242 }
3243 /*
3244  * Read the configuration data from the eeprom.
3245  * The data can be put in any specified memory buffer.
3246  *
3247  * Returns -1 on error.
3248  * Returns address of next memory location on success.
3249  */
3250 static int ar9300_eeprom_restore_internal(struct ath_hw *ah,
3251 					  u8 *mptr, int mdata_size)
3252 {
3253 #define MDEFAULT 15
3254 #define MSTATE 100
3255 	int cptr;
3256 	u8 *word;
3257 	int code;
3258 	int reference, length, major, minor;
3259 	int osize;
3260 	int it;
3261 	u16 checksum, mchecksum;
3262 	struct ath_common *common = ath9k_hw_common(ah);
3263 	eeprom_read_op read;
3264 
3265 	if (ath9k_hw_use_flash(ah))
3266 		return ar9300_eeprom_restore_flash(ah, mptr, mdata_size);
3267 
3268 	word = kzalloc(2048, GFP_KERNEL);
3269 	if (!word)
3270 		return -ENOMEM;
3271 
3272 	memcpy(mptr, &ar9300_default, mdata_size);
3273 
3274 	read = ar9300_read_eeprom;
3275 	if (AR_SREV_9485(ah))
3276 		cptr = AR9300_BASE_ADDR_4K;
3277 	else if (AR_SREV_9330(ah))
3278 		cptr = AR9300_BASE_ADDR_512;
3279 	else
3280 		cptr = AR9300_BASE_ADDR;
3281 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3282 		cptr);
3283 	if (ar9300_check_eeprom_header(ah, read, cptr))
3284 		goto found;
3285 
3286 	cptr = AR9300_BASE_ADDR_512;
3287 	ath_dbg(common, EEPROM, "Trying EEPROM access at Address 0x%04x\n",
3288 		cptr);
3289 	if (ar9300_check_eeprom_header(ah, read, cptr))
3290 		goto found;
3291 
3292 	read = ar9300_read_otp;
3293 	cptr = AR9300_BASE_ADDR;
3294 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3295 	if (ar9300_check_eeprom_header(ah, read, cptr))
3296 		goto found;
3297 
3298 	cptr = AR9300_BASE_ADDR_512;
3299 	ath_dbg(common, EEPROM, "Trying OTP access at Address 0x%04x\n", cptr);
3300 	if (ar9300_check_eeprom_header(ah, read, cptr))
3301 		goto found;
3302 
3303 	goto fail;
3304 
3305 found:
3306 	ath_dbg(common, EEPROM, "Found valid EEPROM data\n");
3307 
3308 	for (it = 0; it < MSTATE; it++) {
3309 		if (!read(ah, cptr, word, COMP_HDR_LEN))
3310 			goto fail;
3311 
3312 		if (!ar9300_check_header(word))
3313 			break;
3314 
3315 		ar9300_comp_hdr_unpack(word, &code, &reference,
3316 				       &length, &major, &minor);
3317 		ath_dbg(common, EEPROM,
3318 			"Found block at %x: code=%d ref=%d length=%d major=%d minor=%d\n",
3319 			cptr, code, reference, length, major, minor);
3320 		if ((!AR_SREV_9485(ah) && length >= 1024) ||
3321 		    (AR_SREV_9485(ah) && length > EEPROM_DATA_LEN_9485)) {
3322 			ath_dbg(common, EEPROM, "Skipping bad header\n");
3323 			cptr -= COMP_HDR_LEN;
3324 			continue;
3325 		}
3326 
3327 		osize = length;
3328 		read(ah, cptr, word, COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3329 		checksum = ar9300_comp_cksum(&word[COMP_HDR_LEN], length);
3330 		mchecksum = get_unaligned_le16(&word[COMP_HDR_LEN + osize]);
3331 		ath_dbg(common, EEPROM, "checksum %x %x\n",
3332 			checksum, mchecksum);
3333 		if (checksum == mchecksum) {
3334 			ar9300_compress_decision(ah, it, code, reference, mptr,
3335 						 word, length, mdata_size);
3336 		} else {
3337 			ath_dbg(common, EEPROM,
3338 				"skipping block with bad checksum\n");
3339 		}
3340 		cptr -= (COMP_HDR_LEN + osize + COMP_CKSUM_LEN);
3341 	}
3342 
3343 	kfree(word);
3344 	return cptr;
3345 
3346 fail:
3347 	kfree(word);
3348 	return -1;
3349 }
3350 
3351 /*
3352  * Restore the configuration structure by reading the eeprom.
3353  * This function destroys any existing in-memory structure
3354  * content.
3355  */
3356 static bool ath9k_hw_ar9300_fill_eeprom(struct ath_hw *ah)
3357 {
3358 	u8 *mptr = (u8 *) &ah->eeprom.ar9300_eep;
3359 
3360 	if (ar9300_eeprom_restore_internal(ah, mptr,
3361 			sizeof(struct ar9300_eeprom)) < 0)
3362 		return false;
3363 
3364 	return true;
3365 }
3366 
3367 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
3368 static u32 ar9003_dump_modal_eeprom(char *buf, u32 len, u32 size,
3369 				    struct ar9300_modal_eep_header *modal_hdr)
3370 {
3371 	PR_EEP("Chain0 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[0]));
3372 	PR_EEP("Chain1 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[1]));
3373 	PR_EEP("Chain2 Ant. Control", le16_to_cpu(modal_hdr->antCtrlChain[2]));
3374 	PR_EEP("Ant. Common Control", le32_to_cpu(modal_hdr->antCtrlCommon));
3375 	PR_EEP("Ant. Common Control2", le32_to_cpu(modal_hdr->antCtrlCommon2));
3376 	PR_EEP("Ant. Gain", modal_hdr->antennaGain);
3377 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
3378 	PR_EEP("Chain0 xatten1DB", modal_hdr->xatten1DB[0]);
3379 	PR_EEP("Chain1 xatten1DB", modal_hdr->xatten1DB[1]);
3380 	PR_EEP("Chain2 xatten1DB", modal_hdr->xatten1DB[2]);
3381 	PR_EEP("Chain0 xatten1Margin", modal_hdr->xatten1Margin[0]);
3382 	PR_EEP("Chain1 xatten1Margin", modal_hdr->xatten1Margin[1]);
3383 	PR_EEP("Chain2 xatten1Margin", modal_hdr->xatten1Margin[2]);
3384 	PR_EEP("Temp Slope", modal_hdr->tempSlope);
3385 	PR_EEP("Volt Slope", modal_hdr->voltSlope);
3386 	PR_EEP("spur Channels0", modal_hdr->spurChans[0]);
3387 	PR_EEP("spur Channels1", modal_hdr->spurChans[1]);
3388 	PR_EEP("spur Channels2", modal_hdr->spurChans[2]);
3389 	PR_EEP("spur Channels3", modal_hdr->spurChans[3]);
3390 	PR_EEP("spur Channels4", modal_hdr->spurChans[4]);
3391 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
3392 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
3393 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
3394 	PR_EEP("Quick Drop", modal_hdr->quick_drop);
3395 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
3396 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
3397 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
3398 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
3399 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
3400 	PR_EEP("txClip", modal_hdr->txClip);
3401 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
3402 
3403 	return len;
3404 }
3405 
3406 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3407 				       u8 *buf, u32 len, u32 size)
3408 {
3409 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3410 	struct ar9300_base_eep_hdr *pBase;
3411 
3412 	if (!dump_base_hdr) {
3413 		len += snprintf(buf + len, size - len,
3414 				"%20s :\n", "2GHz modal Header");
3415 		len += ar9003_dump_modal_eeprom(buf, len, size,
3416 						&eep->modalHeader2G);
3417 		len += snprintf(buf + len, size - len,
3418 				"%20s :\n", "5GHz modal Header");
3419 		len += ar9003_dump_modal_eeprom(buf, len, size,
3420 						&eep->modalHeader5G);
3421 		goto out;
3422 	}
3423 
3424 	pBase = &eep->baseEepHeader;
3425 
3426 	PR_EEP("EEPROM Version", ah->eeprom.ar9300_eep.eepromVersion);
3427 	PR_EEP("RegDomain1", le16_to_cpu(pBase->regDmn[0]));
3428 	PR_EEP("RegDomain2", le16_to_cpu(pBase->regDmn[1]));
3429 	PR_EEP("TX Mask", (pBase->txrxMask >> 4));
3430 	PR_EEP("RX Mask", (pBase->txrxMask & 0x0f));
3431 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags.opFlags &
3432 				AR5416_OPFLAGS_11A));
3433 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags.opFlags &
3434 				AR5416_OPFLAGS_11G));
3435 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags.opFlags &
3436 					AR5416_OPFLAGS_N_2G_HT20));
3437 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags.opFlags &
3438 					AR5416_OPFLAGS_N_2G_HT40));
3439 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags.opFlags &
3440 					AR5416_OPFLAGS_N_5G_HT20));
3441 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags.opFlags &
3442 					AR5416_OPFLAGS_N_5G_HT40));
3443 	PR_EEP("Big Endian", !!(pBase->opCapFlags.eepMisc & 0x01));
3444 	PR_EEP("RF Silent", pBase->rfSilent);
3445 	PR_EEP("BT option", pBase->blueToothOptions);
3446 	PR_EEP("Device Cap", pBase->deviceCap);
3447 	PR_EEP("Device Type", pBase->deviceType);
3448 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
3449 	PR_EEP("Tuning Caps1", pBase->params_for_tuning_caps[0]);
3450 	PR_EEP("Tuning Caps2", pBase->params_for_tuning_caps[1]);
3451 	PR_EEP("Enable Tx Temp Comp", !!(pBase->featureEnable & BIT(0)));
3452 	PR_EEP("Enable Tx Volt Comp", !!(pBase->featureEnable & BIT(1)));
3453 	PR_EEP("Enable fast clock", !!(pBase->featureEnable & BIT(2)));
3454 	PR_EEP("Enable doubling", !!(pBase->featureEnable & BIT(3)));
3455 	PR_EEP("Internal regulator", !!(pBase->featureEnable & BIT(4)));
3456 	PR_EEP("Enable Paprd", !!(pBase->featureEnable & BIT(5)));
3457 	PR_EEP("Driver Strength", !!(pBase->miscConfiguration & BIT(0)));
3458 	PR_EEP("Quick Drop", !!(pBase->miscConfiguration & BIT(1)));
3459 	PR_EEP("Chain mask Reduce", (pBase->miscConfiguration >> 0x3) & 0x1);
3460 	PR_EEP("Write enable Gpio", pBase->eepromWriteEnableGpio);
3461 	PR_EEP("WLAN Disable Gpio", pBase->wlanDisableGpio);
3462 	PR_EEP("WLAN LED Gpio", pBase->wlanLedGpio);
3463 	PR_EEP("Rx Band Select Gpio", pBase->rxBandSelectGpio);
3464 	PR_EEP("Tx Gain", pBase->txrxgain >> 4);
3465 	PR_EEP("Rx Gain", pBase->txrxgain & 0xf);
3466 	PR_EEP("SW Reg", le32_to_cpu(pBase->swreg));
3467 
3468 	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
3469 			ah->eeprom.ar9300_eep.macAddr);
3470 out:
3471 	if (len > size)
3472 		len = size;
3473 
3474 	return len;
3475 }
3476 #else
3477 static u32 ath9k_hw_ar9003_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
3478 				       u8 *buf, u32 len, u32 size)
3479 {
3480 	return 0;
3481 }
3482 #endif
3483 
3484 /* XXX: review hardware docs */
3485 static int ath9k_hw_ar9300_get_eeprom_ver(struct ath_hw *ah)
3486 {
3487 	return ah->eeprom.ar9300_eep.eepromVersion;
3488 }
3489 
3490 /* XXX: could be read from the eepromVersion, not sure yet */
3491 static int ath9k_hw_ar9300_get_eeprom_rev(struct ath_hw *ah)
3492 {
3493 	return 0;
3494 }
3495 
3496 static s32 ar9003_hw_xpa_bias_level_get(struct ath_hw *ah, bool is2ghz)
3497 {
3498 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3499 
3500 	if (is2ghz)
3501 		return eep->modalHeader2G.xpaBiasLvl;
3502 	else
3503 		return eep->modalHeader5G.xpaBiasLvl;
3504 }
3505 
3506 static void ar9003_hw_xpa_bias_level_apply(struct ath_hw *ah, bool is2ghz)
3507 {
3508 	int bias = ar9003_hw_xpa_bias_level_get(ah, is2ghz);
3509 
3510 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3511 		REG_RMW_FIELD(ah, AR_CH0_TOP2, AR_CH0_TOP2_XPABIASLVL, bias);
3512 	else if (AR_SREV_9462(ah))
3513 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3514 	else {
3515 		REG_RMW_FIELD(ah, AR_CH0_TOP, AR_CH0_TOP_XPABIASLVL, bias);
3516 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3517 				AR_CH0_THERM_XPABIASLVL_MSB,
3518 				bias >> 2);
3519 		REG_RMW_FIELD(ah, AR_CH0_THERM,
3520 				AR_CH0_THERM_XPASHORT2GND, 1);
3521 	}
3522 }
3523 
3524 static u16 ar9003_switch_com_spdt_get(struct ath_hw *ah, bool is_2ghz)
3525 {
3526 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3527 	__le16 val;
3528 
3529 	if (is_2ghz)
3530 		val = eep->modalHeader2G.switchcomspdt;
3531 	else
3532 		val = eep->modalHeader5G.switchcomspdt;
3533 	return le16_to_cpu(val);
3534 }
3535 
3536 
3537 static u32 ar9003_hw_ant_ctrl_common_get(struct ath_hw *ah, bool is2ghz)
3538 {
3539 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3540 	__le32 val;
3541 
3542 	if (is2ghz)
3543 		val = eep->modalHeader2G.antCtrlCommon;
3544 	else
3545 		val = eep->modalHeader5G.antCtrlCommon;
3546 	return le32_to_cpu(val);
3547 }
3548 
3549 static u32 ar9003_hw_ant_ctrl_common_2_get(struct ath_hw *ah, bool is2ghz)
3550 {
3551 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3552 	__le32 val;
3553 
3554 	if (is2ghz)
3555 		val = eep->modalHeader2G.antCtrlCommon2;
3556 	else
3557 		val = eep->modalHeader5G.antCtrlCommon2;
3558 	return le32_to_cpu(val);
3559 }
3560 
3561 static u16 ar9003_hw_ant_ctrl_chain_get(struct ath_hw *ah,
3562 					int chain,
3563 					bool is2ghz)
3564 {
3565 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3566 	__le16 val = 0;
3567 
3568 	if (chain >= 0 && chain < AR9300_MAX_CHAINS) {
3569 		if (is2ghz)
3570 			val = eep->modalHeader2G.antCtrlChain[chain];
3571 		else
3572 			val = eep->modalHeader5G.antCtrlChain[chain];
3573 	}
3574 
3575 	return le16_to_cpu(val);
3576 }
3577 
3578 static void ar9003_hw_ant_ctrl_apply(struct ath_hw *ah, bool is2ghz)
3579 {
3580 	int chain;
3581 	u32 regval;
3582 	u32 ant_div_ctl1;
3583 	static const u32 switch_chain_reg[AR9300_MAX_CHAINS] = {
3584 			AR_PHY_SWITCH_CHAIN_0,
3585 			AR_PHY_SWITCH_CHAIN_1,
3586 			AR_PHY_SWITCH_CHAIN_2,
3587 	};
3588 
3589 	u32 value = ar9003_hw_ant_ctrl_common_get(ah, is2ghz);
3590 
3591 	if (AR_SREV_9462(ah)) {
3592 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3593 				AR_SWITCH_TABLE_COM_AR9462_ALL, value);
3594 	} else
3595 		REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
3596 			      AR_SWITCH_TABLE_COM_ALL, value);
3597 
3598 
3599 	/*
3600 	 *   AR9462 defines new switch table for BT/WLAN,
3601 	 *       here's new field name in XXX.ref for both 2G and 5G.
3602 	 *   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
3603 	 *   15:12   R/W     SWITCH_TABLE_COM_SPDT_WLAN_RX
3604 	 * SWITCH_TABLE_COM_SPDT_WLAN_RX
3605 	 *
3606 	 *   11:8     R/W     SWITCH_TABLE_COM_SPDT_WLAN_TX
3607 	 * SWITCH_TABLE_COM_SPDT_WLAN_TX
3608 	 *
3609 	 *   7:4 R/W  SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3610 	 * SWITCH_TABLE_COM_SPDT_WLAN_IDLE
3611 	 */
3612 	if (AR_SREV_9462_20_OR_LATER(ah)) {
3613 		value = ar9003_switch_com_spdt_get(ah, is2ghz);
3614 		REG_RMW_FIELD(ah, AR_PHY_GLB_CONTROL,
3615 				AR_SWITCH_TABLE_COM_SPDT_ALL, value);
3616 	}
3617 
3618 	value = ar9003_hw_ant_ctrl_common_2_get(ah, is2ghz);
3619 	REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
3620 
3621 	for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) {
3622 		if ((ah->rxchainmask & BIT(chain)) ||
3623 		    (ah->txchainmask & BIT(chain))) {
3624 			value = ar9003_hw_ant_ctrl_chain_get(ah, chain,
3625 							     is2ghz);
3626 			REG_RMW_FIELD(ah, switch_chain_reg[chain],
3627 				      AR_SWITCH_TABLE_ALL, value);
3628 		}
3629 	}
3630 
3631 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3632 		value = ath9k_hw_ar9300_get_eeprom(ah, EEP_ANT_DIV_CTL1);
3633 		/*
3634 		 * main_lnaconf, alt_lnaconf, main_tb, alt_tb
3635 		 * are the fields present
3636 		 */
3637 		regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3638 		regval &= (~AR_ANT_DIV_CTRL_ALL);
3639 		regval |= (value & 0x3f) << AR_ANT_DIV_CTRL_ALL_S;
3640 		/* enable_lnadiv */
3641 		regval &= (~AR_PHY_9485_ANT_DIV_LNADIV);
3642 		regval |= ((value >> 6) & 0x1) <<
3643 				AR_PHY_9485_ANT_DIV_LNADIV_S;
3644 		REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3645 
3646 		/*enable fast_div */
3647 		regval = REG_READ(ah, AR_PHY_CCK_DETECT);
3648 		regval &= (~AR_FAST_DIV_ENABLE);
3649 		regval |= ((value >> 7) & 0x1) <<
3650 				AR_FAST_DIV_ENABLE_S;
3651 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
3652 		ant_div_ctl1 =
3653 			ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
3654 		/* check whether antenna diversity is enabled */
3655 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
3656 			regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
3657 			/*
3658 			 * clear bits 25-30 main_lnaconf, alt_lnaconf,
3659 			 * main_tb, alt_tb
3660 			 */
3661 			regval &= (~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
3662 					AR_PHY_9485_ANT_DIV_ALT_LNACONF |
3663 					AR_PHY_9485_ANT_DIV_ALT_GAINTB |
3664 					AR_PHY_9485_ANT_DIV_MAIN_GAINTB));
3665 			/* by default use LNA1 for the main antenna */
3666 			regval |= (AR_PHY_9485_ANT_DIV_LNA1 <<
3667 					AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S);
3668 			regval |= (AR_PHY_9485_ANT_DIV_LNA2 <<
3669 					AR_PHY_9485_ANT_DIV_ALT_LNACONF_S);
3670 			REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
3671 		}
3672 
3673 
3674 	}
3675 
3676 }
3677 
3678 static void ar9003_hw_drive_strength_apply(struct ath_hw *ah)
3679 {
3680 	int drive_strength;
3681 	unsigned long reg;
3682 
3683 	drive_strength = ath9k_hw_ar9300_get_eeprom(ah, EEP_DRIVE_STRENGTH);
3684 
3685 	if (!drive_strength)
3686 		return;
3687 
3688 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
3689 	reg &= ~0x00ffffc0;
3690 	reg |= 0x5 << 21;
3691 	reg |= 0x5 << 18;
3692 	reg |= 0x5 << 15;
3693 	reg |= 0x5 << 12;
3694 	reg |= 0x5 << 9;
3695 	reg |= 0x5 << 6;
3696 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
3697 
3698 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
3699 	reg &= ~0xffffffe0;
3700 	reg |= 0x5 << 29;
3701 	reg |= 0x5 << 26;
3702 	reg |= 0x5 << 23;
3703 	reg |= 0x5 << 20;
3704 	reg |= 0x5 << 17;
3705 	reg |= 0x5 << 14;
3706 	reg |= 0x5 << 11;
3707 	reg |= 0x5 << 8;
3708 	reg |= 0x5 << 5;
3709 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
3710 
3711 	reg = REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
3712 	reg &= ~0xff800000;
3713 	reg |= 0x5 << 29;
3714 	reg |= 0x5 << 26;
3715 	reg |= 0x5 << 23;
3716 	REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
3717 }
3718 
3719 static u16 ar9003_hw_atten_chain_get(struct ath_hw *ah, int chain,
3720 				     struct ath9k_channel *chan)
3721 {
3722 	int f[3], t[3];
3723 	u16 value;
3724 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3725 
3726 	if (chain >= 0 && chain < 3) {
3727 		if (IS_CHAN_2GHZ(chan))
3728 			return eep->modalHeader2G.xatten1DB[chain];
3729 		else if (eep->base_ext2.xatten1DBLow[chain] != 0) {
3730 			t[0] = eep->base_ext2.xatten1DBLow[chain];
3731 			f[0] = 5180;
3732 			t[1] = eep->modalHeader5G.xatten1DB[chain];
3733 			f[1] = 5500;
3734 			t[2] = eep->base_ext2.xatten1DBHigh[chain];
3735 			f[2] = 5785;
3736 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3737 							    f, t, 3);
3738 			return value;
3739 		} else
3740 			return eep->modalHeader5G.xatten1DB[chain];
3741 	}
3742 
3743 	return 0;
3744 }
3745 
3746 
3747 static u16 ar9003_hw_atten_chain_get_margin(struct ath_hw *ah, int chain,
3748 					    struct ath9k_channel *chan)
3749 {
3750 	int f[3], t[3];
3751 	u16 value;
3752 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3753 
3754 	if (chain >= 0 && chain < 3) {
3755 		if (IS_CHAN_2GHZ(chan))
3756 			return eep->modalHeader2G.xatten1Margin[chain];
3757 		else if (eep->base_ext2.xatten1MarginLow[chain] != 0) {
3758 			t[0] = eep->base_ext2.xatten1MarginLow[chain];
3759 			f[0] = 5180;
3760 			t[1] = eep->modalHeader5G.xatten1Margin[chain];
3761 			f[1] = 5500;
3762 			t[2] = eep->base_ext2.xatten1MarginHigh[chain];
3763 			f[2] = 5785;
3764 			value = ar9003_hw_power_interpolate((s32) chan->channel,
3765 							    f, t, 3);
3766 			return value;
3767 		} else
3768 			return eep->modalHeader5G.xatten1Margin[chain];
3769 	}
3770 
3771 	return 0;
3772 }
3773 
3774 static void ar9003_hw_atten_apply(struct ath_hw *ah, struct ath9k_channel *chan)
3775 {
3776 	int i;
3777 	u16 value;
3778 	unsigned long ext_atten_reg[3] = {AR_PHY_EXT_ATTEN_CTL_0,
3779 					  AR_PHY_EXT_ATTEN_CTL_1,
3780 					  AR_PHY_EXT_ATTEN_CTL_2,
3781 					 };
3782 
3783 	/* Test value. if 0 then attenuation is unused. Don't load anything. */
3784 	for (i = 0; i < 3; i++) {
3785 		if (ah->txchainmask & BIT(i)) {
3786 			value = ar9003_hw_atten_chain_get(ah, i, chan);
3787 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3788 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
3789 
3790 			value = ar9003_hw_atten_chain_get_margin(ah, i, chan);
3791 			REG_RMW_FIELD(ah, ext_atten_reg[i],
3792 				      AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
3793 				      value);
3794 		}
3795 	}
3796 }
3797 
3798 static bool is_pmu_set(struct ath_hw *ah, u32 pmu_reg, int pmu_set)
3799 {
3800 	int timeout = 100;
3801 
3802 	while (pmu_set != REG_READ(ah, pmu_reg)) {
3803 		if (timeout-- == 0)
3804 			return false;
3805 		REG_WRITE(ah, pmu_reg, pmu_set);
3806 		udelay(10);
3807 	}
3808 
3809 	return true;
3810 }
3811 
3812 static void ar9003_hw_internal_regulator_apply(struct ath_hw *ah)
3813 {
3814 	int internal_regulator =
3815 		ath9k_hw_ar9300_get_eeprom(ah, EEP_INTERNAL_REGULATOR);
3816 	u32 reg_val;
3817 
3818 	if (internal_regulator) {
3819 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3820 			int reg_pmu_set;
3821 
3822 			reg_pmu_set = REG_READ(ah, AR_PHY_PMU2) & ~AR_PHY_PMU2_PGM;
3823 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3824 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3825 				return;
3826 
3827 			if (AR_SREV_9330(ah)) {
3828 				if (ah->is_clk_25mhz) {
3829 					reg_pmu_set = (3 << 1) | (8 << 4) |
3830 						      (3 << 8) | (1 << 14) |
3831 						      (6 << 17) | (1 << 20) |
3832 						      (3 << 24);
3833 				} else {
3834 					reg_pmu_set = (4 << 1)  | (7 << 4) |
3835 						      (3 << 8)  | (1 << 14) |
3836 						      (6 << 17) | (1 << 20) |
3837 						      (3 << 24);
3838 				}
3839 			} else {
3840 				reg_pmu_set = (5 << 1) | (7 << 4) |
3841 					      (2 << 8) | (2 << 14) |
3842 					      (6 << 17) | (1 << 20) |
3843 					      (3 << 24) | (1 << 28);
3844 			}
3845 
3846 			REG_WRITE(ah, AR_PHY_PMU1, reg_pmu_set);
3847 			if (!is_pmu_set(ah, AR_PHY_PMU1, reg_pmu_set))
3848 				return;
3849 
3850 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0xFFC00000)
3851 					| (4 << 26);
3852 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3853 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3854 				return;
3855 
3856 			reg_pmu_set = (REG_READ(ah, AR_PHY_PMU2) & ~0x00200000)
3857 					| (1 << 21);
3858 			REG_WRITE(ah, AR_PHY_PMU2, reg_pmu_set);
3859 			if (!is_pmu_set(ah, AR_PHY_PMU2, reg_pmu_set))
3860 				return;
3861 		} else if (AR_SREV_9462(ah)) {
3862 			reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3863 			REG_WRITE(ah, AR_PHY_PMU1, reg_val);
3864 		} else {
3865 			/* Internal regulator is ON. Write swreg register. */
3866 			reg_val = ath9k_hw_ar9300_get_eeprom(ah, EEP_SWREG);
3867 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3868 				  REG_READ(ah, AR_RTC_REG_CONTROL1) &
3869 				  (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
3870 			REG_WRITE(ah, AR_RTC_REG_CONTROL0, reg_val);
3871 			/* Set REG_CONTROL1.SWREG_PROGRAM */
3872 			REG_WRITE(ah, AR_RTC_REG_CONTROL1,
3873 				  REG_READ(ah,
3874 					   AR_RTC_REG_CONTROL1) |
3875 					   AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
3876 		}
3877 	} else {
3878 		if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
3879 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0);
3880 			while (REG_READ_FIELD(ah, AR_PHY_PMU2,
3881 						AR_PHY_PMU2_PGM))
3882 				udelay(10);
3883 
3884 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3885 			while (!REG_READ_FIELD(ah, AR_PHY_PMU1,
3886 						AR_PHY_PMU1_PWD))
3887 				udelay(10);
3888 			REG_RMW_FIELD(ah, AR_PHY_PMU2, AR_PHY_PMU2_PGM, 0x1);
3889 			while (!REG_READ_FIELD(ah, AR_PHY_PMU2,
3890 						AR_PHY_PMU2_PGM))
3891 				udelay(10);
3892 		} else if (AR_SREV_9462(ah))
3893 			REG_RMW_FIELD(ah, AR_PHY_PMU1, AR_PHY_PMU1_PWD, 0x1);
3894 		else {
3895 			reg_val = REG_READ(ah, AR_RTC_SLEEP_CLK) |
3896 				AR_RTC_FORCE_SWREG_PRD;
3897 			REG_WRITE(ah, AR_RTC_SLEEP_CLK, reg_val);
3898 		}
3899 	}
3900 
3901 }
3902 
3903 static void ar9003_hw_apply_tuning_caps(struct ath_hw *ah)
3904 {
3905 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3906 	u8 tuning_caps_param = eep->baseEepHeader.params_for_tuning_caps[0];
3907 
3908 	if (eep->baseEepHeader.featureEnable & 0x40) {
3909 		tuning_caps_param &= 0x7f;
3910 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPINDAC,
3911 			      tuning_caps_param);
3912 		REG_RMW_FIELD(ah, AR_CH0_XTAL, AR_CH0_XTAL_CAPOUTDAC,
3913 			      tuning_caps_param);
3914 	}
3915 }
3916 
3917 static void ar9003_hw_quick_drop_apply(struct ath_hw *ah, u16 freq)
3918 {
3919 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3920 	int quick_drop = ath9k_hw_ar9300_get_eeprom(ah, EEP_QUICK_DROP);
3921 	s32 t[3], f[3] = {5180, 5500, 5785};
3922 
3923 	if (!quick_drop)
3924 		return;
3925 
3926 	if (freq < 4000)
3927 		quick_drop = eep->modalHeader2G.quick_drop;
3928 	else {
3929 		t[0] = eep->base_ext1.quick_drop_low;
3930 		t[1] = eep->modalHeader5G.quick_drop;
3931 		t[2] = eep->base_ext1.quick_drop_high;
3932 		quick_drop = ar9003_hw_power_interpolate(freq, f, t, 3);
3933 	}
3934 	REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, quick_drop);
3935 }
3936 
3937 static void ar9003_hw_txend_to_xpa_off_apply(struct ath_hw *ah, u16 freq)
3938 {
3939 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
3940 	u32 value;
3941 
3942 	value = (freq < 4000) ? eep->modalHeader2G.txEndToXpaOff :
3943 				eep->modalHeader5G.txEndToXpaOff;
3944 
3945 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3946 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
3947 	REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
3948 		      AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
3949 }
3950 
3951 static void ath9k_hw_ar9300_set_board_values(struct ath_hw *ah,
3952 					     struct ath9k_channel *chan)
3953 {
3954 	ar9003_hw_xpa_bias_level_apply(ah, IS_CHAN_2GHZ(chan));
3955 	ar9003_hw_ant_ctrl_apply(ah, IS_CHAN_2GHZ(chan));
3956 	ar9003_hw_drive_strength_apply(ah);
3957 	ar9003_hw_atten_apply(ah, chan);
3958 	ar9003_hw_quick_drop_apply(ah, chan->channel);
3959 	if (!AR_SREV_9330(ah) && !AR_SREV_9340(ah))
3960 		ar9003_hw_internal_regulator_apply(ah);
3961 	if (AR_SREV_9485(ah) || AR_SREV_9330(ah) || AR_SREV_9340(ah))
3962 		ar9003_hw_apply_tuning_caps(ah);
3963 	ar9003_hw_txend_to_xpa_off_apply(ah, chan->channel);
3964 }
3965 
3966 static void ath9k_hw_ar9300_set_addac(struct ath_hw *ah,
3967 				      struct ath9k_channel *chan)
3968 {
3969 }
3970 
3971 /*
3972  * Returns the interpolated y value corresponding to the specified x value
3973  * from the np ordered pairs of data (px,py).
3974  * The pairs do not have to be in any order.
3975  * If the specified x value is less than any of the px,
3976  * the returned y value is equal to the py for the lowest px.
3977  * If the specified x value is greater than any of the px,
3978  * the returned y value is equal to the py for the highest px.
3979  */
3980 static int ar9003_hw_power_interpolate(int32_t x,
3981 				       int32_t *px, int32_t *py, u_int16_t np)
3982 {
3983 	int ip = 0;
3984 	int lx = 0, ly = 0, lhave = 0;
3985 	int hx = 0, hy = 0, hhave = 0;
3986 	int dx = 0;
3987 	int y = 0;
3988 
3989 	lhave = 0;
3990 	hhave = 0;
3991 
3992 	/* identify best lower and higher x calibration measurement */
3993 	for (ip = 0; ip < np; ip++) {
3994 		dx = x - px[ip];
3995 
3996 		/* this measurement is higher than our desired x */
3997 		if (dx <= 0) {
3998 			if (!hhave || dx > (x - hx)) {
3999 				/* new best higher x measurement */
4000 				hx = px[ip];
4001 				hy = py[ip];
4002 				hhave = 1;
4003 			}
4004 		}
4005 		/* this measurement is lower than our desired x */
4006 		if (dx >= 0) {
4007 			if (!lhave || dx < (x - lx)) {
4008 				/* new best lower x measurement */
4009 				lx = px[ip];
4010 				ly = py[ip];
4011 				lhave = 1;
4012 			}
4013 		}
4014 	}
4015 
4016 	/* the low x is good */
4017 	if (lhave) {
4018 		/* so is the high x */
4019 		if (hhave) {
4020 			/* they're the same, so just pick one */
4021 			if (hx == lx)
4022 				y = ly;
4023 			else	/* interpolate  */
4024 				y = interpolate(x, lx, hx, ly, hy);
4025 		} else		/* only low is good, use it */
4026 			y = ly;
4027 	} else if (hhave)	/* only high is good, use it */
4028 		y = hy;
4029 	else /* nothing is good,this should never happen unless np=0, ???? */
4030 		y = -(1 << 30);
4031 	return y;
4032 }
4033 
4034 static u8 ar9003_hw_eeprom_get_tgt_pwr(struct ath_hw *ah,
4035 				       u16 rateIndex, u16 freq, bool is2GHz)
4036 {
4037 	u16 numPiers, i;
4038 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4039 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4040 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4041 	struct cal_tgt_pow_legacy *pEepromTargetPwr;
4042 	u8 *pFreqBin;
4043 
4044 	if (is2GHz) {
4045 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4046 		pEepromTargetPwr = eep->calTargetPower2G;
4047 		pFreqBin = eep->calTarget_freqbin_2G;
4048 	} else {
4049 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4050 		pEepromTargetPwr = eep->calTargetPower5G;
4051 		pFreqBin = eep->calTarget_freqbin_5G;
4052 	}
4053 
4054 	/*
4055 	 * create array of channels and targetpower from
4056 	 * targetpower piers stored on eeprom
4057 	 */
4058 	for (i = 0; i < numPiers; i++) {
4059 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4060 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4061 	}
4062 
4063 	/* interpolate to get target power for given frequency */
4064 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4065 						 freqArray,
4066 						 targetPowerArray, numPiers);
4067 }
4068 
4069 static u8 ar9003_hw_eeprom_get_ht20_tgt_pwr(struct ath_hw *ah,
4070 					    u16 rateIndex,
4071 					    u16 freq, bool is2GHz)
4072 {
4073 	u16 numPiers, i;
4074 	s32 targetPowerArray[AR9300_NUM_5G_20_TARGET_POWERS];
4075 	s32 freqArray[AR9300_NUM_5G_20_TARGET_POWERS];
4076 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4077 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4078 	u8 *pFreqBin;
4079 
4080 	if (is2GHz) {
4081 		numPiers = AR9300_NUM_2G_20_TARGET_POWERS;
4082 		pEepromTargetPwr = eep->calTargetPower2GHT20;
4083 		pFreqBin = eep->calTarget_freqbin_2GHT20;
4084 	} else {
4085 		numPiers = AR9300_NUM_5G_20_TARGET_POWERS;
4086 		pEepromTargetPwr = eep->calTargetPower5GHT20;
4087 		pFreqBin = eep->calTarget_freqbin_5GHT20;
4088 	}
4089 
4090 	/*
4091 	 * create array of channels and targetpower
4092 	 * from targetpower piers stored on eeprom
4093 	 */
4094 	for (i = 0; i < numPiers; i++) {
4095 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4096 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4097 	}
4098 
4099 	/* interpolate to get target power for given frequency */
4100 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4101 						 freqArray,
4102 						 targetPowerArray, numPiers);
4103 }
4104 
4105 static u8 ar9003_hw_eeprom_get_ht40_tgt_pwr(struct ath_hw *ah,
4106 					    u16 rateIndex,
4107 					    u16 freq, bool is2GHz)
4108 {
4109 	u16 numPiers, i;
4110 	s32 targetPowerArray[AR9300_NUM_5G_40_TARGET_POWERS];
4111 	s32 freqArray[AR9300_NUM_5G_40_TARGET_POWERS];
4112 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4113 	struct cal_tgt_pow_ht *pEepromTargetPwr;
4114 	u8 *pFreqBin;
4115 
4116 	if (is2GHz) {
4117 		numPiers = AR9300_NUM_2G_40_TARGET_POWERS;
4118 		pEepromTargetPwr = eep->calTargetPower2GHT40;
4119 		pFreqBin = eep->calTarget_freqbin_2GHT40;
4120 	} else {
4121 		numPiers = AR9300_NUM_5G_40_TARGET_POWERS;
4122 		pEepromTargetPwr = eep->calTargetPower5GHT40;
4123 		pFreqBin = eep->calTarget_freqbin_5GHT40;
4124 	}
4125 
4126 	/*
4127 	 * create array of channels and targetpower from
4128 	 * targetpower piers stored on eeprom
4129 	 */
4130 	for (i = 0; i < numPiers; i++) {
4131 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], is2GHz);
4132 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4133 	}
4134 
4135 	/* interpolate to get target power for given frequency */
4136 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4137 						 freqArray,
4138 						 targetPowerArray, numPiers);
4139 }
4140 
4141 static u8 ar9003_hw_eeprom_get_cck_tgt_pwr(struct ath_hw *ah,
4142 					   u16 rateIndex, u16 freq)
4143 {
4144 	u16 numPiers = AR9300_NUM_2G_CCK_TARGET_POWERS, i;
4145 	s32 targetPowerArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4146 	s32 freqArray[AR9300_NUM_2G_CCK_TARGET_POWERS];
4147 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4148 	struct cal_tgt_pow_legacy *pEepromTargetPwr = eep->calTargetPowerCck;
4149 	u8 *pFreqBin = eep->calTarget_freqbin_Cck;
4150 
4151 	/*
4152 	 * create array of channels and targetpower from
4153 	 * targetpower piers stored on eeprom
4154 	 */
4155 	for (i = 0; i < numPiers; i++) {
4156 		freqArray[i] = ath9k_hw_fbin2freq(pFreqBin[i], 1);
4157 		targetPowerArray[i] = pEepromTargetPwr[i].tPow2x[rateIndex];
4158 	}
4159 
4160 	/* interpolate to get target power for given frequency */
4161 	return (u8) ar9003_hw_power_interpolate((s32) freq,
4162 						 freqArray,
4163 						 targetPowerArray, numPiers);
4164 }
4165 
4166 /* Set tx power registers to array of values passed in */
4167 static int ar9003_hw_tx_power_regwrite(struct ath_hw *ah, u8 * pPwrArray)
4168 {
4169 #define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
4170 	/* make sure forced gain is not set */
4171 	REG_WRITE(ah, AR_PHY_TX_FORCED_GAIN, 0);
4172 
4173 	/* Write the OFDM power per rate set */
4174 
4175 	/* 6 (LSB), 9, 12, 18 (MSB) */
4176 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(0),
4177 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4178 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 16) |
4179 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 8) |
4180 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4181 
4182 	/* 24 (LSB), 36, 48, 54 (MSB) */
4183 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(1),
4184 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_54], 24) |
4185 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_48], 16) |
4186 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_36], 8) |
4187 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 0));
4188 
4189 	/* Write the CCK power per rate set */
4190 
4191 	/* 1L (LSB), reserved, 2L, 2S (MSB) */
4192 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(2),
4193 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 24) |
4194 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4195 		  /* POW_SM(txPowerTimes2,  8) | this is reserved for AR9003 */
4196 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0));
4197 
4198 	/* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
4199 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(3),
4200 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11S], 24) |
4201 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_11L], 16) |
4202 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_5S], 8) |
4203 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 0)
4204 	    );
4205 
4206         /* Write the power for duplicated frames - HT40 */
4207 
4208         /* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm (MSB) */
4209 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(8),
4210 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24], 24) |
4211 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L], 16) |
4212 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_6_24],  8) |
4213 		  POW_SM(pPwrArray[ALL_TARGET_LEGACY_1L_5L],  0)
4214 	    );
4215 
4216 	/* Write the HT20 power per rate set */
4217 
4218 	/* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
4219 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(4),
4220 		  POW_SM(pPwrArray[ALL_TARGET_HT20_5], 24) |
4221 		  POW_SM(pPwrArray[ALL_TARGET_HT20_4], 16) |
4222 		  POW_SM(pPwrArray[ALL_TARGET_HT20_1_3_9_11_17_19], 8) |
4223 		  POW_SM(pPwrArray[ALL_TARGET_HT20_0_8_16], 0)
4224 	    );
4225 
4226 	/* 6 (LSB), 7, 12, 13 (MSB) */
4227 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(5),
4228 		  POW_SM(pPwrArray[ALL_TARGET_HT20_13], 24) |
4229 		  POW_SM(pPwrArray[ALL_TARGET_HT20_12], 16) |
4230 		  POW_SM(pPwrArray[ALL_TARGET_HT20_7], 8) |
4231 		  POW_SM(pPwrArray[ALL_TARGET_HT20_6], 0)
4232 	    );
4233 
4234 	/* 14 (LSB), 15, 20, 21 */
4235 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(9),
4236 		  POW_SM(pPwrArray[ALL_TARGET_HT20_21], 24) |
4237 		  POW_SM(pPwrArray[ALL_TARGET_HT20_20], 16) |
4238 		  POW_SM(pPwrArray[ALL_TARGET_HT20_15], 8) |
4239 		  POW_SM(pPwrArray[ALL_TARGET_HT20_14], 0)
4240 	    );
4241 
4242 	/* Mixed HT20 and HT40 rates */
4243 
4244 	/* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
4245 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(10),
4246 		  POW_SM(pPwrArray[ALL_TARGET_HT40_23], 24) |
4247 		  POW_SM(pPwrArray[ALL_TARGET_HT40_22], 16) |
4248 		  POW_SM(pPwrArray[ALL_TARGET_HT20_23], 8) |
4249 		  POW_SM(pPwrArray[ALL_TARGET_HT20_22], 0)
4250 	    );
4251 
4252 	/*
4253 	 * Write the HT40 power per rate set
4254 	 * correct PAR difference between HT40 and HT20/LEGACY
4255 	 * 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB)
4256 	 */
4257 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(6),
4258 		  POW_SM(pPwrArray[ALL_TARGET_HT40_5], 24) |
4259 		  POW_SM(pPwrArray[ALL_TARGET_HT40_4], 16) |
4260 		  POW_SM(pPwrArray[ALL_TARGET_HT40_1_3_9_11_17_19], 8) |
4261 		  POW_SM(pPwrArray[ALL_TARGET_HT40_0_8_16], 0)
4262 	    );
4263 
4264 	/* 6 (LSB), 7, 12, 13 (MSB) */
4265 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(7),
4266 		  POW_SM(pPwrArray[ALL_TARGET_HT40_13], 24) |
4267 		  POW_SM(pPwrArray[ALL_TARGET_HT40_12], 16) |
4268 		  POW_SM(pPwrArray[ALL_TARGET_HT40_7], 8) |
4269 		  POW_SM(pPwrArray[ALL_TARGET_HT40_6], 0)
4270 	    );
4271 
4272 	/* 14 (LSB), 15, 20, 21 */
4273 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE(11),
4274 		  POW_SM(pPwrArray[ALL_TARGET_HT40_21], 24) |
4275 		  POW_SM(pPwrArray[ALL_TARGET_HT40_20], 16) |
4276 		  POW_SM(pPwrArray[ALL_TARGET_HT40_15], 8) |
4277 		  POW_SM(pPwrArray[ALL_TARGET_HT40_14], 0)
4278 	    );
4279 
4280 	return 0;
4281 #undef POW_SM
4282 }
4283 
4284 static void ar9003_hw_get_legacy_target_powers(struct ath_hw *ah, u16 freq,
4285 					       u8 *targetPowerValT2,
4286 					       bool is2GHz)
4287 {
4288 	targetPowerValT2[ALL_TARGET_LEGACY_6_24] =
4289 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_6_24, freq,
4290 					 is2GHz);
4291 	targetPowerValT2[ALL_TARGET_LEGACY_36] =
4292 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_36, freq,
4293 					 is2GHz);
4294 	targetPowerValT2[ALL_TARGET_LEGACY_48] =
4295 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_48, freq,
4296 					 is2GHz);
4297 	targetPowerValT2[ALL_TARGET_LEGACY_54] =
4298 	    ar9003_hw_eeprom_get_tgt_pwr(ah, LEGACY_TARGET_RATE_54, freq,
4299 					 is2GHz);
4300 }
4301 
4302 static void ar9003_hw_get_cck_target_powers(struct ath_hw *ah, u16 freq,
4303 					    u8 *targetPowerValT2)
4304 {
4305 	targetPowerValT2[ALL_TARGET_LEGACY_1L_5L] =
4306 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_1L_5L,
4307 					     freq);
4308 	targetPowerValT2[ALL_TARGET_LEGACY_5S] =
4309 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_5S, freq);
4310 	targetPowerValT2[ALL_TARGET_LEGACY_11L] =
4311 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11L, freq);
4312 	targetPowerValT2[ALL_TARGET_LEGACY_11S] =
4313 	    ar9003_hw_eeprom_get_cck_tgt_pwr(ah, LEGACY_TARGET_RATE_11S, freq);
4314 }
4315 
4316 static void ar9003_hw_get_ht20_target_powers(struct ath_hw *ah, u16 freq,
4317 					     u8 *targetPowerValT2, bool is2GHz)
4318 {
4319 	targetPowerValT2[ALL_TARGET_HT20_0_8_16] =
4320 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4321 					      is2GHz);
4322 	targetPowerValT2[ALL_TARGET_HT20_1_3_9_11_17_19] =
4323 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4324 					      freq, is2GHz);
4325 	targetPowerValT2[ALL_TARGET_HT20_4] =
4326 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4327 					      is2GHz);
4328 	targetPowerValT2[ALL_TARGET_HT20_5] =
4329 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4330 					      is2GHz);
4331 	targetPowerValT2[ALL_TARGET_HT20_6] =
4332 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4333 					      is2GHz);
4334 	targetPowerValT2[ALL_TARGET_HT20_7] =
4335 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4336 					      is2GHz);
4337 	targetPowerValT2[ALL_TARGET_HT20_12] =
4338 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4339 					      is2GHz);
4340 	targetPowerValT2[ALL_TARGET_HT20_13] =
4341 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4342 					      is2GHz);
4343 	targetPowerValT2[ALL_TARGET_HT20_14] =
4344 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4345 					      is2GHz);
4346 	targetPowerValT2[ALL_TARGET_HT20_15] =
4347 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4348 					      is2GHz);
4349 	targetPowerValT2[ALL_TARGET_HT20_20] =
4350 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4351 					      is2GHz);
4352 	targetPowerValT2[ALL_TARGET_HT20_21] =
4353 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4354 					      is2GHz);
4355 	targetPowerValT2[ALL_TARGET_HT20_22] =
4356 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4357 					      is2GHz);
4358 	targetPowerValT2[ALL_TARGET_HT20_23] =
4359 	    ar9003_hw_eeprom_get_ht20_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4360 					      is2GHz);
4361 }
4362 
4363 static void ar9003_hw_get_ht40_target_powers(struct ath_hw *ah,
4364 						   u16 freq,
4365 						   u8 *targetPowerValT2,
4366 						   bool is2GHz)
4367 {
4368 	/* XXX: hard code for now, need to get from eeprom struct */
4369 	u8 ht40PowerIncForPdadc = 0;
4370 
4371 	targetPowerValT2[ALL_TARGET_HT40_0_8_16] =
4372 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_0_8_16, freq,
4373 					      is2GHz) + ht40PowerIncForPdadc;
4374 	targetPowerValT2[ALL_TARGET_HT40_1_3_9_11_17_19] =
4375 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_1_3_9_11_17_19,
4376 					      freq,
4377 					      is2GHz) + ht40PowerIncForPdadc;
4378 	targetPowerValT2[ALL_TARGET_HT40_4] =
4379 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_4, freq,
4380 					      is2GHz) + ht40PowerIncForPdadc;
4381 	targetPowerValT2[ALL_TARGET_HT40_5] =
4382 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_5, freq,
4383 					      is2GHz) + ht40PowerIncForPdadc;
4384 	targetPowerValT2[ALL_TARGET_HT40_6] =
4385 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_6, freq,
4386 					      is2GHz) + ht40PowerIncForPdadc;
4387 	targetPowerValT2[ALL_TARGET_HT40_7] =
4388 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_7, freq,
4389 					      is2GHz) + ht40PowerIncForPdadc;
4390 	targetPowerValT2[ALL_TARGET_HT40_12] =
4391 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_12, freq,
4392 					      is2GHz) + ht40PowerIncForPdadc;
4393 	targetPowerValT2[ALL_TARGET_HT40_13] =
4394 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_13, freq,
4395 					      is2GHz) + ht40PowerIncForPdadc;
4396 	targetPowerValT2[ALL_TARGET_HT40_14] =
4397 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_14, freq,
4398 					      is2GHz) + ht40PowerIncForPdadc;
4399 	targetPowerValT2[ALL_TARGET_HT40_15] =
4400 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_15, freq,
4401 					      is2GHz) + ht40PowerIncForPdadc;
4402 	targetPowerValT2[ALL_TARGET_HT40_20] =
4403 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_20, freq,
4404 					      is2GHz) + ht40PowerIncForPdadc;
4405 	targetPowerValT2[ALL_TARGET_HT40_21] =
4406 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_21, freq,
4407 					      is2GHz) + ht40PowerIncForPdadc;
4408 	targetPowerValT2[ALL_TARGET_HT40_22] =
4409 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_22, freq,
4410 					      is2GHz) + ht40PowerIncForPdadc;
4411 	targetPowerValT2[ALL_TARGET_HT40_23] =
4412 	    ar9003_hw_eeprom_get_ht40_tgt_pwr(ah, HT_TARGET_RATE_23, freq,
4413 					      is2GHz) + ht40PowerIncForPdadc;
4414 }
4415 
4416 static void ar9003_hw_get_target_power_eeprom(struct ath_hw *ah,
4417 					      struct ath9k_channel *chan,
4418 					      u8 *targetPowerValT2)
4419 {
4420 	bool is2GHz = IS_CHAN_2GHZ(chan);
4421 	unsigned int i = 0;
4422 	struct ath_common *common = ath9k_hw_common(ah);
4423 	u16 freq = chan->channel;
4424 
4425 	if (is2GHz)
4426 		ar9003_hw_get_cck_target_powers(ah, freq, targetPowerValT2);
4427 
4428 	ar9003_hw_get_legacy_target_powers(ah, freq, targetPowerValT2, is2GHz);
4429 	ar9003_hw_get_ht20_target_powers(ah, freq, targetPowerValT2, is2GHz);
4430 
4431 	if (IS_CHAN_HT40(chan))
4432 		ar9003_hw_get_ht40_target_powers(ah, freq, targetPowerValT2,
4433 						 is2GHz);
4434 
4435 	for (i = 0; i < ar9300RateSize; i++) {
4436 		ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
4437 			i, targetPowerValT2[i]);
4438 	}
4439 }
4440 
4441 static int ar9003_hw_cal_pier_get(struct ath_hw *ah,
4442 				  int mode,
4443 				  int ipier,
4444 				  int ichain,
4445 				  int *pfrequency,
4446 				  int *pcorrection,
4447 				  int *ptemperature, int *pvoltage)
4448 {
4449 	u8 *pCalPier;
4450 	struct ar9300_cal_data_per_freq_op_loop *pCalPierStruct;
4451 	int is2GHz;
4452 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4453 	struct ath_common *common = ath9k_hw_common(ah);
4454 
4455 	if (ichain >= AR9300_MAX_CHAINS) {
4456 		ath_dbg(common, EEPROM,
4457 			"Invalid chain index, must be less than %d\n",
4458 			AR9300_MAX_CHAINS);
4459 		return -1;
4460 	}
4461 
4462 	if (mode) {		/* 5GHz */
4463 		if (ipier >= AR9300_NUM_5G_CAL_PIERS) {
4464 			ath_dbg(common, EEPROM,
4465 				"Invalid 5GHz cal pier index, must be less than %d\n",
4466 				AR9300_NUM_5G_CAL_PIERS);
4467 			return -1;
4468 		}
4469 		pCalPier = &(eep->calFreqPier5G[ipier]);
4470 		pCalPierStruct = &(eep->calPierData5G[ichain][ipier]);
4471 		is2GHz = 0;
4472 	} else {
4473 		if (ipier >= AR9300_NUM_2G_CAL_PIERS) {
4474 			ath_dbg(common, EEPROM,
4475 				"Invalid 2GHz cal pier index, must be less than %d\n",
4476 				AR9300_NUM_2G_CAL_PIERS);
4477 			return -1;
4478 		}
4479 
4480 		pCalPier = &(eep->calFreqPier2G[ipier]);
4481 		pCalPierStruct = &(eep->calPierData2G[ichain][ipier]);
4482 		is2GHz = 1;
4483 	}
4484 
4485 	*pfrequency = ath9k_hw_fbin2freq(*pCalPier, is2GHz);
4486 	*pcorrection = pCalPierStruct->refPower;
4487 	*ptemperature = pCalPierStruct->tempMeas;
4488 	*pvoltage = pCalPierStruct->voltMeas;
4489 
4490 	return 0;
4491 }
4492 
4493 static int ar9003_hw_power_control_override(struct ath_hw *ah,
4494 					    int frequency,
4495 					    int *correction,
4496 					    int *voltage, int *temperature)
4497 {
4498 	int tempSlope = 0;
4499 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4500 	int f[3], t[3];
4501 
4502 	REG_RMW(ah, AR_PHY_TPC_11_B0,
4503 		(correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4504 		AR_PHY_TPC_OLPC_GAIN_DELTA);
4505 	if (ah->caps.tx_chainmask & BIT(1))
4506 		REG_RMW(ah, AR_PHY_TPC_11_B1,
4507 			(correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4508 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4509 	if (ah->caps.tx_chainmask & BIT(2))
4510 		REG_RMW(ah, AR_PHY_TPC_11_B2,
4511 			(correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
4512 			AR_PHY_TPC_OLPC_GAIN_DELTA);
4513 
4514 	/* enable open loop power control on chip */
4515 	REG_RMW(ah, AR_PHY_TPC_6_B0,
4516 		(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4517 		AR_PHY_TPC_6_ERROR_EST_MODE);
4518 	if (ah->caps.tx_chainmask & BIT(1))
4519 		REG_RMW(ah, AR_PHY_TPC_6_B1,
4520 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4521 			AR_PHY_TPC_6_ERROR_EST_MODE);
4522 	if (ah->caps.tx_chainmask & BIT(2))
4523 		REG_RMW(ah, AR_PHY_TPC_6_B2,
4524 			(3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
4525 			AR_PHY_TPC_6_ERROR_EST_MODE);
4526 
4527 	/*
4528 	 * enable temperature compensation
4529 	 * Need to use register names
4530 	 */
4531 	if (frequency < 4000)
4532 		tempSlope = eep->modalHeader2G.tempSlope;
4533 	else if (eep->base_ext2.tempSlopeLow != 0) {
4534 		t[0] = eep->base_ext2.tempSlopeLow;
4535 		f[0] = 5180;
4536 		t[1] = eep->modalHeader5G.tempSlope;
4537 		f[1] = 5500;
4538 		t[2] = eep->base_ext2.tempSlopeHigh;
4539 		f[2] = 5785;
4540 		tempSlope = ar9003_hw_power_interpolate((s32) frequency,
4541 							f, t, 3);
4542 	} else
4543 		tempSlope = eep->modalHeader5G.tempSlope;
4544 
4545 	REG_RMW_FIELD(ah, AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, tempSlope);
4546 
4547 	if (AR_SREV_9462_20(ah))
4548 		REG_RMW_FIELD(ah, AR_PHY_TPC_19_B1,
4549 			      AR_PHY_TPC_19_B1_ALPHA_THERM, tempSlope);
4550 
4551 
4552 	REG_RMW_FIELD(ah, AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE,
4553 		      temperature[0]);
4554 
4555 	return 0;
4556 }
4557 
4558 /* Apply the recorded correction values. */
4559 static int ar9003_hw_calibration_apply(struct ath_hw *ah, int frequency)
4560 {
4561 	int ichain, ipier, npier;
4562 	int mode;
4563 	int lfrequency[AR9300_MAX_CHAINS],
4564 	    lcorrection[AR9300_MAX_CHAINS],
4565 	    ltemperature[AR9300_MAX_CHAINS], lvoltage[AR9300_MAX_CHAINS];
4566 	int hfrequency[AR9300_MAX_CHAINS],
4567 	    hcorrection[AR9300_MAX_CHAINS],
4568 	    htemperature[AR9300_MAX_CHAINS], hvoltage[AR9300_MAX_CHAINS];
4569 	int fdiff;
4570 	int correction[AR9300_MAX_CHAINS],
4571 	    voltage[AR9300_MAX_CHAINS], temperature[AR9300_MAX_CHAINS];
4572 	int pfrequency, pcorrection, ptemperature, pvoltage;
4573 	struct ath_common *common = ath9k_hw_common(ah);
4574 
4575 	mode = (frequency >= 4000);
4576 	if (mode)
4577 		npier = AR9300_NUM_5G_CAL_PIERS;
4578 	else
4579 		npier = AR9300_NUM_2G_CAL_PIERS;
4580 
4581 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4582 		lfrequency[ichain] = 0;
4583 		hfrequency[ichain] = 100000;
4584 	}
4585 	/* identify best lower and higher frequency calibration measurement */
4586 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4587 		for (ipier = 0; ipier < npier; ipier++) {
4588 			if (!ar9003_hw_cal_pier_get(ah, mode, ipier, ichain,
4589 						    &pfrequency, &pcorrection,
4590 						    &ptemperature, &pvoltage)) {
4591 				fdiff = frequency - pfrequency;
4592 
4593 				/*
4594 				 * this measurement is higher than
4595 				 * our desired frequency
4596 				 */
4597 				if (fdiff <= 0) {
4598 					if (hfrequency[ichain] <= 0 ||
4599 					    hfrequency[ichain] >= 100000 ||
4600 					    fdiff >
4601 					    (frequency - hfrequency[ichain])) {
4602 						/*
4603 						 * new best higher
4604 						 * frequency measurement
4605 						 */
4606 						hfrequency[ichain] = pfrequency;
4607 						hcorrection[ichain] =
4608 						    pcorrection;
4609 						htemperature[ichain] =
4610 						    ptemperature;
4611 						hvoltage[ichain] = pvoltage;
4612 					}
4613 				}
4614 				if (fdiff >= 0) {
4615 					if (lfrequency[ichain] <= 0
4616 					    || fdiff <
4617 					    (frequency - lfrequency[ichain])) {
4618 						/*
4619 						 * new best lower
4620 						 * frequency measurement
4621 						 */
4622 						lfrequency[ichain] = pfrequency;
4623 						lcorrection[ichain] =
4624 						    pcorrection;
4625 						ltemperature[ichain] =
4626 						    ptemperature;
4627 						lvoltage[ichain] = pvoltage;
4628 					}
4629 				}
4630 			}
4631 		}
4632 	}
4633 
4634 	/* interpolate  */
4635 	for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
4636 		ath_dbg(common, EEPROM, "ch=%d f=%d low=%d %d h=%d %d\n",
4637 			ichain, frequency, lfrequency[ichain],
4638 			lcorrection[ichain], hfrequency[ichain],
4639 			hcorrection[ichain]);
4640 		/* they're the same, so just pick one */
4641 		if (hfrequency[ichain] == lfrequency[ichain]) {
4642 			correction[ichain] = lcorrection[ichain];
4643 			voltage[ichain] = lvoltage[ichain];
4644 			temperature[ichain] = ltemperature[ichain];
4645 		}
4646 		/* the low frequency is good */
4647 		else if (frequency - lfrequency[ichain] < 1000) {
4648 			/* so is the high frequency, interpolate */
4649 			if (hfrequency[ichain] - frequency < 1000) {
4650 
4651 				correction[ichain] = interpolate(frequency,
4652 						lfrequency[ichain],
4653 						hfrequency[ichain],
4654 						lcorrection[ichain],
4655 						hcorrection[ichain]);
4656 
4657 				temperature[ichain] = interpolate(frequency,
4658 						lfrequency[ichain],
4659 						hfrequency[ichain],
4660 						ltemperature[ichain],
4661 						htemperature[ichain]);
4662 
4663 				voltage[ichain] = interpolate(frequency,
4664 						lfrequency[ichain],
4665 						hfrequency[ichain],
4666 						lvoltage[ichain],
4667 						hvoltage[ichain]);
4668 			}
4669 			/* only low is good, use it */
4670 			else {
4671 				correction[ichain] = lcorrection[ichain];
4672 				temperature[ichain] = ltemperature[ichain];
4673 				voltage[ichain] = lvoltage[ichain];
4674 			}
4675 		}
4676 		/* only high is good, use it */
4677 		else if (hfrequency[ichain] - frequency < 1000) {
4678 			correction[ichain] = hcorrection[ichain];
4679 			temperature[ichain] = htemperature[ichain];
4680 			voltage[ichain] = hvoltage[ichain];
4681 		} else {	/* nothing is good, presume 0???? */
4682 			correction[ichain] = 0;
4683 			temperature[ichain] = 0;
4684 			voltage[ichain] = 0;
4685 		}
4686 	}
4687 
4688 	ar9003_hw_power_control_override(ah, frequency, correction, voltage,
4689 					 temperature);
4690 
4691 	ath_dbg(common, EEPROM,
4692 		"for frequency=%d, calibration correction = %d %d %d\n",
4693 		frequency, correction[0], correction[1], correction[2]);
4694 
4695 	return 0;
4696 }
4697 
4698 static u16 ar9003_hw_get_direct_edge_power(struct ar9300_eeprom *eep,
4699 					   int idx,
4700 					   int edge,
4701 					   bool is2GHz)
4702 {
4703 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4704 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4705 
4706 	if (is2GHz)
4707 		return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge]);
4708 	else
4709 		return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge]);
4710 }
4711 
4712 static u16 ar9003_hw_get_indirect_edge_power(struct ar9300_eeprom *eep,
4713 					     int idx,
4714 					     unsigned int edge,
4715 					     u16 freq,
4716 					     bool is2GHz)
4717 {
4718 	struct cal_ctl_data_2g *ctl_2g = eep->ctlPowerData_2G;
4719 	struct cal_ctl_data_5g *ctl_5g = eep->ctlPowerData_5G;
4720 
4721 	u8 *ctl_freqbin = is2GHz ?
4722 		&eep->ctl_freqbin_2G[idx][0] :
4723 		&eep->ctl_freqbin_5G[idx][0];
4724 
4725 	if (is2GHz) {
4726 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 1) < freq &&
4727 		    CTL_EDGE_FLAGS(ctl_2g[idx].ctlEdges[edge - 1]))
4728 			return CTL_EDGE_TPOWER(ctl_2g[idx].ctlEdges[edge - 1]);
4729 	} else {
4730 		if (ath9k_hw_fbin2freq(ctl_freqbin[edge - 1], 0) < freq &&
4731 		    CTL_EDGE_FLAGS(ctl_5g[idx].ctlEdges[edge - 1]))
4732 			return CTL_EDGE_TPOWER(ctl_5g[idx].ctlEdges[edge - 1]);
4733 	}
4734 
4735 	return MAX_RATE_POWER;
4736 }
4737 
4738 /*
4739  * Find the maximum conformance test limit for the given channel and CTL info
4740  */
4741 static u16 ar9003_hw_get_max_edge_power(struct ar9300_eeprom *eep,
4742 					u16 freq, int idx, bool is2GHz)
4743 {
4744 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
4745 	u8 *ctl_freqbin = is2GHz ?
4746 		&eep->ctl_freqbin_2G[idx][0] :
4747 		&eep->ctl_freqbin_5G[idx][0];
4748 	u16 num_edges = is2GHz ?
4749 		AR9300_NUM_BAND_EDGES_2G : AR9300_NUM_BAND_EDGES_5G;
4750 	unsigned int edge;
4751 
4752 	/* Get the edge power */
4753 	for (edge = 0;
4754 	     (edge < num_edges) && (ctl_freqbin[edge] != AR5416_BCHAN_UNUSED);
4755 	     edge++) {
4756 		/*
4757 		 * If there's an exact channel match or an inband flag set
4758 		 * on the lower channel use the given rdEdgePower
4759 		 */
4760 		if (freq == ath9k_hw_fbin2freq(ctl_freqbin[edge], is2GHz)) {
4761 			twiceMaxEdgePower =
4762 				ar9003_hw_get_direct_edge_power(eep, idx,
4763 								edge, is2GHz);
4764 			break;
4765 		} else if ((edge > 0) &&
4766 			   (freq < ath9k_hw_fbin2freq(ctl_freqbin[edge],
4767 						      is2GHz))) {
4768 			twiceMaxEdgePower =
4769 				ar9003_hw_get_indirect_edge_power(eep, idx,
4770 								  edge, freq,
4771 								  is2GHz);
4772 			/*
4773 			 * Leave loop - no more affecting edges possible in
4774 			 * this monotonic increasing list
4775 			 */
4776 			break;
4777 		}
4778 	}
4779 	return twiceMaxEdgePower;
4780 }
4781 
4782 static void ar9003_hw_set_power_per_rate_table(struct ath_hw *ah,
4783 					       struct ath9k_channel *chan,
4784 					       u8 *pPwrArray, u16 cfgCtl,
4785 					       u8 antenna_reduction,
4786 					       u16 powerLimit)
4787 {
4788 	struct ath_common *common = ath9k_hw_common(ah);
4789 	struct ar9300_eeprom *pEepData = &ah->eeprom.ar9300_eep;
4790 	u16 twiceMaxEdgePower;
4791 	int i;
4792 	u16 scaledPower = 0, minCtlPower;
4793 	static const u16 ctlModesFor11a[] = {
4794 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
4795 	};
4796 	static const u16 ctlModesFor11g[] = {
4797 		CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT,
4798 		CTL_11G_EXT, CTL_2GHT40
4799 	};
4800 	u16 numCtlModes;
4801 	const u16 *pCtlMode;
4802 	u16 ctlMode, freq;
4803 	struct chan_centers centers;
4804 	u8 *ctlIndex;
4805 	u8 ctlNum;
4806 	u16 twiceMinEdgePower;
4807 	bool is2ghz = IS_CHAN_2GHZ(chan);
4808 
4809 	ath9k_hw_get_channel_centers(ah, chan, &centers);
4810 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
4811 						antenna_reduction);
4812 
4813 	if (is2ghz) {
4814 		/* Setup for CTL modes */
4815 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
4816 		numCtlModes =
4817 			ARRAY_SIZE(ctlModesFor11g) -
4818 				   SUB_NUM_CTL_MODES_AT_2G_40;
4819 		pCtlMode = ctlModesFor11g;
4820 		if (IS_CHAN_HT40(chan))
4821 			/* All 2G CTL's */
4822 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
4823 	} else {
4824 		/* Setup for CTL modes */
4825 		/* CTL_11A, CTL_5GHT20 */
4826 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
4827 					 SUB_NUM_CTL_MODES_AT_5G_40;
4828 		pCtlMode = ctlModesFor11a;
4829 		if (IS_CHAN_HT40(chan))
4830 			/* All 5G CTL's */
4831 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
4832 	}
4833 
4834 	/*
4835 	 * For MIMO, need to apply regulatory caps individually across
4836 	 * dynamically running modes: CCK, OFDM, HT20, HT40
4837 	 *
4838 	 * The outer loop walks through each possible applicable runtime mode.
4839 	 * The inner loop walks through each ctlIndex entry in EEPROM.
4840 	 * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
4841 	 */
4842 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
4843 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
4844 			(pCtlMode[ctlMode] == CTL_2GHT40);
4845 		if (isHt40CtlMode)
4846 			freq = centers.synth_center;
4847 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
4848 			freq = centers.ext_center;
4849 		else
4850 			freq = centers.ctl_center;
4851 
4852 		ath_dbg(common, REGULATORY,
4853 			"LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, EXT_ADDITIVE %d\n",
4854 			ctlMode, numCtlModes, isHt40CtlMode,
4855 			(pCtlMode[ctlMode] & EXT_ADDITIVE));
4856 
4857 		/* walk through each CTL index stored in EEPROM */
4858 		if (is2ghz) {
4859 			ctlIndex = pEepData->ctlIndex_2G;
4860 			ctlNum = AR9300_NUM_CTLS_2G;
4861 		} else {
4862 			ctlIndex = pEepData->ctlIndex_5G;
4863 			ctlNum = AR9300_NUM_CTLS_5G;
4864 		}
4865 
4866 		twiceMaxEdgePower = MAX_RATE_POWER;
4867 		for (i = 0; (i < ctlNum) && ctlIndex[i]; i++) {
4868 			ath_dbg(common, REGULATORY,
4869 				"LOOP-Ctlidx %d: cfgCtl 0x%2.2x pCtlMode 0x%2.2x ctlIndex 0x%2.2x chan %d\n",
4870 				i, cfgCtl, pCtlMode[ctlMode], ctlIndex[i],
4871 				chan->channel);
4872 
4873 				/*
4874 				 * compare test group from regulatory
4875 				 * channel list with test mode from pCtlMode
4876 				 * list
4877 				 */
4878 				if ((((cfgCtl & ~CTL_MODE_M) |
4879 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4880 					ctlIndex[i]) ||
4881 				    (((cfgCtl & ~CTL_MODE_M) |
4882 				       (pCtlMode[ctlMode] & CTL_MODE_M)) ==
4883 				     ((ctlIndex[i] & CTL_MODE_M) |
4884 				       SD_NO_CTL))) {
4885 					twiceMinEdgePower =
4886 					  ar9003_hw_get_max_edge_power(pEepData,
4887 								       freq, i,
4888 								       is2ghz);
4889 
4890 					if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL)
4891 						/*
4892 						 * Find the minimum of all CTL
4893 						 * edge powers that apply to
4894 						 * this channel
4895 						 */
4896 						twiceMaxEdgePower =
4897 							min(twiceMaxEdgePower,
4898 							    twiceMinEdgePower);
4899 						else {
4900 							/* specific */
4901 							twiceMaxEdgePower =
4902 							  twiceMinEdgePower;
4903 							break;
4904 						}
4905 				}
4906 			}
4907 
4908 			minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
4909 
4910 			ath_dbg(common, REGULATORY,
4911 				"SEL-Min ctlMode %d pCtlMode %d 2xMaxEdge %d sP %d minCtlPwr %d\n",
4912 				ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
4913 				scaledPower, minCtlPower);
4914 
4915 			/* Apply ctl mode to correct target power set */
4916 			switch (pCtlMode[ctlMode]) {
4917 			case CTL_11B:
4918 				for (i = ALL_TARGET_LEGACY_1L_5L;
4919 				     i <= ALL_TARGET_LEGACY_11S; i++)
4920 					pPwrArray[i] =
4921 					  (u8)min((u16)pPwrArray[i],
4922 						  minCtlPower);
4923 				break;
4924 			case CTL_11A:
4925 			case CTL_11G:
4926 				for (i = ALL_TARGET_LEGACY_6_24;
4927 				     i <= ALL_TARGET_LEGACY_54; i++)
4928 					pPwrArray[i] =
4929 					  (u8)min((u16)pPwrArray[i],
4930 						  minCtlPower);
4931 				break;
4932 			case CTL_5GHT20:
4933 			case CTL_2GHT20:
4934 				for (i = ALL_TARGET_HT20_0_8_16;
4935 				     i <= ALL_TARGET_HT20_21; i++)
4936 					pPwrArray[i] =
4937 					  (u8)min((u16)pPwrArray[i],
4938 						  minCtlPower);
4939 				pPwrArray[ALL_TARGET_HT20_22] =
4940 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_22],
4941 					  minCtlPower);
4942 				pPwrArray[ALL_TARGET_HT20_23] =
4943 				  (u8)min((u16)pPwrArray[ALL_TARGET_HT20_23],
4944 					   minCtlPower);
4945 				break;
4946 			case CTL_5GHT40:
4947 			case CTL_2GHT40:
4948 				for (i = ALL_TARGET_HT40_0_8_16;
4949 				     i <= ALL_TARGET_HT40_23; i++)
4950 					pPwrArray[i] =
4951 					  (u8)min((u16)pPwrArray[i],
4952 						  minCtlPower);
4953 				break;
4954 			default:
4955 			    break;
4956 			}
4957 	} /* end ctl mode checking */
4958 }
4959 
4960 static inline u8 mcsidx_to_tgtpwridx(unsigned int mcs_idx, u8 base_pwridx)
4961 {
4962 	u8 mod_idx = mcs_idx % 8;
4963 
4964 	if (mod_idx <= 3)
4965 		return mod_idx ? (base_pwridx + 1) : base_pwridx;
4966 	else
4967 		return base_pwridx + 4 * (mcs_idx / 8) + mod_idx - 2;
4968 }
4969 
4970 static void ath9k_hw_ar9300_set_txpower(struct ath_hw *ah,
4971 					struct ath9k_channel *chan, u16 cfgCtl,
4972 					u8 twiceAntennaReduction,
4973 					u8 powerLimit, bool test)
4974 {
4975 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
4976 	struct ath_common *common = ath9k_hw_common(ah);
4977 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
4978 	struct ar9300_modal_eep_header *modal_hdr;
4979 	u8 targetPowerValT2[ar9300RateSize];
4980 	u8 target_power_val_t2_eep[ar9300RateSize];
4981 	unsigned int i = 0, paprd_scale_factor = 0;
4982 	u8 pwr_idx, min_pwridx = 0;
4983 
4984 	memset(targetPowerValT2, 0 , sizeof(targetPowerValT2));
4985 
4986 	/*
4987 	 * Get target powers from EEPROM - our baseline for TX Power
4988 	 */
4989 	ar9003_hw_get_target_power_eeprom(ah, chan, targetPowerValT2);
4990 
4991 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
4992 		if (IS_CHAN_2GHZ(chan))
4993 			modal_hdr = &eep->modalHeader2G;
4994 		else
4995 			modal_hdr = &eep->modalHeader5G;
4996 
4997 		ah->paprd_ratemask =
4998 			le32_to_cpu(modal_hdr->papdRateMaskHt20) &
4999 			AR9300_PAPRD_RATE_MASK;
5000 
5001 		ah->paprd_ratemask_ht40 =
5002 			le32_to_cpu(modal_hdr->papdRateMaskHt40) &
5003 			AR9300_PAPRD_RATE_MASK;
5004 
5005 		paprd_scale_factor = ar9003_get_paprd_scale_factor(ah, chan);
5006 		min_pwridx = IS_CHAN_HT40(chan) ? ALL_TARGET_HT40_0_8_16 :
5007 						  ALL_TARGET_HT20_0_8_16;
5008 
5009 		if (!ah->paprd_table_write_done) {
5010 			memcpy(target_power_val_t2_eep, targetPowerValT2,
5011 			       sizeof(targetPowerValT2));
5012 			for (i = 0; i < 24; i++) {
5013 				pwr_idx = mcsidx_to_tgtpwridx(i, min_pwridx);
5014 				if (ah->paprd_ratemask & (1 << i)) {
5015 					if (targetPowerValT2[pwr_idx] &&
5016 					    targetPowerValT2[pwr_idx] ==
5017 					    target_power_val_t2_eep[pwr_idx])
5018 						targetPowerValT2[pwr_idx] -=
5019 							paprd_scale_factor;
5020 				}
5021 			}
5022 		}
5023 		memcpy(target_power_val_t2_eep, targetPowerValT2,
5024 		       sizeof(targetPowerValT2));
5025 	}
5026 
5027 	ar9003_hw_set_power_per_rate_table(ah, chan,
5028 					   targetPowerValT2, cfgCtl,
5029 					   twiceAntennaReduction,
5030 					   powerLimit);
5031 
5032 	if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) {
5033 		for (i = 0; i < ar9300RateSize; i++) {
5034 			if ((ah->paprd_ratemask & (1 << i)) &&
5035 			    (abs(targetPowerValT2[i] -
5036 				target_power_val_t2_eep[i]) >
5037 			    paprd_scale_factor)) {
5038 				ah->paprd_ratemask &= ~(1 << i);
5039 				ath_dbg(common, EEPROM,
5040 					"paprd disabled for mcs %d\n", i);
5041 			}
5042 		}
5043 	}
5044 
5045 	regulatory->max_power_level = 0;
5046 	for (i = 0; i < ar9300RateSize; i++) {
5047 		if (targetPowerValT2[i] > regulatory->max_power_level)
5048 			regulatory->max_power_level = targetPowerValT2[i];
5049 	}
5050 
5051 	ath9k_hw_update_regulatory_maxpower(ah);
5052 
5053 	if (test)
5054 		return;
5055 
5056 	for (i = 0; i < ar9300RateSize; i++) {
5057 		ath_dbg(common, EEPROM, "TPC[%02d] 0x%08x\n",
5058 			i, targetPowerValT2[i]);
5059 	}
5060 
5061 	/* Write target power array to registers */
5062 	ar9003_hw_tx_power_regwrite(ah, targetPowerValT2);
5063 	ar9003_hw_calibration_apply(ah, chan->channel);
5064 
5065 	if (IS_CHAN_2GHZ(chan)) {
5066 		if (IS_CHAN_HT40(chan))
5067 			i = ALL_TARGET_HT40_0_8_16;
5068 		else
5069 			i = ALL_TARGET_HT20_0_8_16;
5070 	} else {
5071 		if (IS_CHAN_HT40(chan))
5072 			i = ALL_TARGET_HT40_7;
5073 		else
5074 			i = ALL_TARGET_HT20_7;
5075 	}
5076 	ah->paprd_target_power = targetPowerValT2[i];
5077 }
5078 
5079 static u16 ath9k_hw_ar9300_get_spur_channel(struct ath_hw *ah,
5080 					    u16 i, bool is2GHz)
5081 {
5082 	return AR_NO_SPUR;
5083 }
5084 
5085 s32 ar9003_hw_get_tx_gain_idx(struct ath_hw *ah)
5086 {
5087 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5088 
5089 	return (eep->baseEepHeader.txrxgain >> 4) & 0xf; /* bits 7:4 */
5090 }
5091 
5092 s32 ar9003_hw_get_rx_gain_idx(struct ath_hw *ah)
5093 {
5094 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5095 
5096 	return (eep->baseEepHeader.txrxgain) & 0xf; /* bits 3:0 */
5097 }
5098 
5099 u8 *ar9003_get_spur_chan_ptr(struct ath_hw *ah, bool is_2ghz)
5100 {
5101 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5102 
5103 	if (is_2ghz)
5104 		return eep->modalHeader2G.spurChans;
5105 	else
5106 		return eep->modalHeader5G.spurChans;
5107 }
5108 
5109 unsigned int ar9003_get_paprd_scale_factor(struct ath_hw *ah,
5110 					   struct ath9k_channel *chan)
5111 {
5112 	struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
5113 
5114 	if (IS_CHAN_2GHZ(chan))
5115 		return MS(le32_to_cpu(eep->modalHeader2G.papdRateMaskHt20),
5116 			  AR9300_PAPRD_SCALE_1);
5117 	else {
5118 		if (chan->channel >= 5700)
5119 		return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20),
5120 			  AR9300_PAPRD_SCALE_1);
5121 		else if (chan->channel >= 5400)
5122 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5123 				   AR9300_PAPRD_SCALE_2);
5124 		else
5125 			return MS(le32_to_cpu(eep->modalHeader5G.papdRateMaskHt40),
5126 				  AR9300_PAPRD_SCALE_1);
5127 	}
5128 }
5129 
5130 const struct eeprom_ops eep_ar9300_ops = {
5131 	.check_eeprom = ath9k_hw_ar9300_check_eeprom,
5132 	.get_eeprom = ath9k_hw_ar9300_get_eeprom,
5133 	.fill_eeprom = ath9k_hw_ar9300_fill_eeprom,
5134 	.dump_eeprom = ath9k_hw_ar9003_dump_eeprom,
5135 	.get_eeprom_ver = ath9k_hw_ar9300_get_eeprom_ver,
5136 	.get_eeprom_rev = ath9k_hw_ar9300_get_eeprom_rev,
5137 	.set_board_values = ath9k_hw_ar9300_set_board_values,
5138 	.set_addac = ath9k_hw_ar9300_set_addac,
5139 	.set_txpower = ath9k_hw_ar9300_set_txpower,
5140 	.get_spur_channel = ath9k_hw_ar9300_get_spur_channel
5141 };
5142