xref: /linux/drivers/net/wireless/ath/ath9k/ar5008_phy.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include "../regd.h"
20 #include "ar9002_phy.h"
21 #include "ar5008_initvals.h"
22 
23 /* All code below is for AR5008, AR9001, AR9002 */
24 
25 static const int firstep_table[] =
26 /* level:  0   1   2   3   4   5   6   7   8  */
27 	{ -4, -2,  0,  2,  4,  6,  8, 10, 12 }; /* lvl 0-8, default 2 */
28 
29 /*
30  * register values to turn OFDM weak signal detection OFF
31  */
32 static const int m1ThreshLow_off = 127;
33 static const int m2ThreshLow_off = 127;
34 static const int m1Thresh_off = 127;
35 static const int m2Thresh_off = 127;
36 static const int m2CountThr_off =  31;
37 static const int m2CountThrLow_off =  63;
38 static const int m1ThreshLowExt_off = 127;
39 static const int m2ThreshLowExt_off = 127;
40 static const int m1ThreshExt_off = 127;
41 static const int m2ThreshExt_off = 127;
42 
43 static const struct ar5416IniArray bank0 = STATIC_INI_ARRAY(ar5416Bank0);
44 static const struct ar5416IniArray bank1 = STATIC_INI_ARRAY(ar5416Bank1);
45 static const struct ar5416IniArray bank2 = STATIC_INI_ARRAY(ar5416Bank2);
46 static const struct ar5416IniArray bank3 = STATIC_INI_ARRAY(ar5416Bank3);
47 static const struct ar5416IniArray bank7 = STATIC_INI_ARRAY(ar5416Bank7);
48 
49 static void ar5008_write_bank6(struct ath_hw *ah, unsigned int *writecnt)
50 {
51 	struct ar5416IniArray *array = &ah->iniBank6;
52 	u32 *data = ah->analogBank6Data;
53 	int r;
54 
55 	ENABLE_REGWRITE_BUFFER(ah);
56 
57 	for (r = 0; r < array->ia_rows; r++) {
58 		REG_WRITE(ah, INI_RA(array, r, 0), data[r]);
59 		DO_DELAY(*writecnt);
60 	}
61 
62 	REGWRITE_BUFFER_FLUSH(ah);
63 }
64 
65 /**
66  * ar5008_hw_phy_modify_rx_buffer() - perform analog swizzling of parameters
67  * @rfbuf:
68  * @reg32:
69  * @numBits:
70  * @firstBit:
71  * @column:
72  *
73  * Performs analog "swizzling" of parameters into their location.
74  * Used on external AR2133/AR5133 radios.
75  */
76 static void ar5008_hw_phy_modify_rx_buffer(u32 *rfBuf, u32 reg32,
77 					   u32 numBits, u32 firstBit,
78 					   u32 column)
79 {
80 	u32 tmp32, mask, arrayEntry, lastBit;
81 	int32_t bitPosition, bitsLeft;
82 
83 	tmp32 = ath9k_hw_reverse_bits(reg32, numBits);
84 	arrayEntry = (firstBit - 1) / 8;
85 	bitPosition = (firstBit - 1) % 8;
86 	bitsLeft = numBits;
87 	while (bitsLeft > 0) {
88 		lastBit = (bitPosition + bitsLeft > 8) ?
89 		    8 : bitPosition + bitsLeft;
90 		mask = (((1 << lastBit) - 1) ^ ((1 << bitPosition) - 1)) <<
91 		    (column * 8);
92 		rfBuf[arrayEntry] &= ~mask;
93 		rfBuf[arrayEntry] |= ((tmp32 << bitPosition) <<
94 				      (column * 8)) & mask;
95 		bitsLeft -= 8 - bitPosition;
96 		tmp32 = tmp32 >> (8 - bitPosition);
97 		bitPosition = 0;
98 		arrayEntry++;
99 	}
100 }
101 
102 /*
103  * Fix on 2.4 GHz band for orientation sensitivity issue by increasing
104  * rf_pwd_icsyndiv.
105  *
106  * Theoretical Rules:
107  *   if 2 GHz band
108  *      if forceBiasAuto
109  *         if synth_freq < 2412
110  *            bias = 0
111  *         else if 2412 <= synth_freq <= 2422
112  *            bias = 1
113  *         else // synth_freq > 2422
114  *            bias = 2
115  *      else if forceBias > 0
116  *         bias = forceBias & 7
117  *      else
118  *         no change, use value from ini file
119  *   else
120  *      no change, invalid band
121  *
122  *  1st Mod:
123  *    2422 also uses value of 2
124  *    <approved>
125  *
126  *  2nd Mod:
127  *    Less than 2412 uses value of 0, 2412 and above uses value of 2
128  */
129 static void ar5008_hw_force_bias(struct ath_hw *ah, u16 synth_freq)
130 {
131 	struct ath_common *common = ath9k_hw_common(ah);
132 	u32 tmp_reg;
133 	int reg_writes = 0;
134 	u32 new_bias = 0;
135 
136 	if (!AR_SREV_5416(ah) || synth_freq >= 3000)
137 		return;
138 
139 	BUG_ON(AR_SREV_9280_20_OR_LATER(ah));
140 
141 	if (synth_freq < 2412)
142 		new_bias = 0;
143 	else if (synth_freq < 2422)
144 		new_bias = 1;
145 	else
146 		new_bias = 2;
147 
148 	/* pre-reverse this field */
149 	tmp_reg = ath9k_hw_reverse_bits(new_bias, 3);
150 
151 	ath_dbg(common, CONFIG, "Force rf_pwd_icsyndiv to %1d on %4d\n",
152 		new_bias, synth_freq);
153 
154 	/* swizzle rf_pwd_icsyndiv */
155 	ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data, tmp_reg, 3, 181, 3);
156 
157 	/* write Bank 6 with new params */
158 	ar5008_write_bank6(ah, &reg_writes);
159 }
160 
161 /**
162  * ar5008_hw_set_channel - tune to a channel on the external AR2133/AR5133 radios
163  * @ah: atheros hardware structure
164  * @chan:
165  *
166  * For the external AR2133/AR5133 radios, takes the MHz channel value and set
167  * the channel value. Assumes writes enabled to analog bus and bank6 register
168  * cache in ah->analogBank6Data.
169  */
170 static int ar5008_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
171 {
172 	struct ath_common *common = ath9k_hw_common(ah);
173 	u32 channelSel = 0;
174 	u32 bModeSynth = 0;
175 	u32 aModeRefSel = 0;
176 	u32 reg32 = 0;
177 	u16 freq;
178 	struct chan_centers centers;
179 
180 	ath9k_hw_get_channel_centers(ah, chan, &centers);
181 	freq = centers.synth_center;
182 
183 	if (freq < 4800) {
184 		u32 txctl;
185 
186 		if (((freq - 2192) % 5) == 0) {
187 			channelSel = ((freq - 672) * 2 - 3040) / 10;
188 			bModeSynth = 0;
189 		} else if (((freq - 2224) % 5) == 0) {
190 			channelSel = ((freq - 704) * 2 - 3040) / 10;
191 			bModeSynth = 1;
192 		} else {
193 			ath_err(common, "Invalid channel %u MHz\n", freq);
194 			return -EINVAL;
195 		}
196 
197 		channelSel = (channelSel << 2) & 0xff;
198 		channelSel = ath9k_hw_reverse_bits(channelSel, 8);
199 
200 		txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL);
201 		if (freq == 2484) {
202 
203 			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
204 				  txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
205 		} else {
206 			REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
207 				  txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN);
208 		}
209 
210 	} else if ((freq % 20) == 0 && freq >= 5120) {
211 		channelSel =
212 		    ath9k_hw_reverse_bits(((freq - 4800) / 20 << 2), 8);
213 		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
214 	} else if ((freq % 10) == 0) {
215 		channelSel =
216 		    ath9k_hw_reverse_bits(((freq - 4800) / 10 << 1), 8);
217 		if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
218 			aModeRefSel = ath9k_hw_reverse_bits(2, 2);
219 		else
220 			aModeRefSel = ath9k_hw_reverse_bits(1, 2);
221 	} else if ((freq % 5) == 0) {
222 		channelSel = ath9k_hw_reverse_bits((freq - 4800) / 5, 8);
223 		aModeRefSel = ath9k_hw_reverse_bits(1, 2);
224 	} else {
225 		ath_err(common, "Invalid channel %u MHz\n", freq);
226 		return -EINVAL;
227 	}
228 
229 	ar5008_hw_force_bias(ah, freq);
230 
231 	reg32 =
232 	    (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
233 	    (1 << 5) | 0x1;
234 
235 	REG_WRITE(ah, AR_PHY(0x37), reg32);
236 
237 	ah->curchan = chan;
238 
239 	return 0;
240 }
241 
242 /**
243  * ar5008_hw_spur_mitigate - convert baseband spur frequency for external radios
244  * @ah: atheros hardware structure
245  * @chan:
246  *
247  * For non single-chip solutions. Converts to baseband spur frequency given the
248  * input channel frequency and compute register settings below.
249  */
250 static void ar5008_hw_spur_mitigate(struct ath_hw *ah,
251 				    struct ath9k_channel *chan)
252 {
253 	int bb_spur = AR_NO_SPUR;
254 	int bin, cur_bin;
255 	int spur_freq_sd;
256 	int spur_delta_phase;
257 	int denominator;
258 	int upper, lower, cur_vit_mask;
259 	int tmp, new;
260 	int i;
261 	static int pilot_mask_reg[4] = {
262 		AR_PHY_TIMING7, AR_PHY_TIMING8,
263 		AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
264 	};
265 	static int chan_mask_reg[4] = {
266 		AR_PHY_TIMING9, AR_PHY_TIMING10,
267 		AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
268 	};
269 	static int inc[4] = { 0, 100, 0, 0 };
270 
271 	int8_t mask_m[123];
272 	int8_t mask_p[123];
273 	int8_t mask_amt;
274 	int tmp_mask;
275 	int cur_bb_spur;
276 	bool is2GHz = IS_CHAN_2GHZ(chan);
277 
278 	memset(&mask_m, 0, sizeof(int8_t) * 123);
279 	memset(&mask_p, 0, sizeof(int8_t) * 123);
280 
281 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
282 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
283 		if (AR_NO_SPUR == cur_bb_spur)
284 			break;
285 		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
286 		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
287 			bb_spur = cur_bb_spur;
288 			break;
289 		}
290 	}
291 
292 	if (AR_NO_SPUR == bb_spur)
293 		return;
294 
295 	bin = bb_spur * 32;
296 
297 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
298 	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
299 		     AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
300 		     AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
301 		     AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
302 
303 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
304 
305 	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
306 	       AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
307 	       AR_PHY_SPUR_REG_MASK_RATE_SELECT |
308 	       AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
309 	       SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
310 	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
311 
312 	spur_delta_phase = ((bb_spur * 524288) / 100) &
313 		AR_PHY_TIMING11_SPUR_DELTA_PHASE;
314 
315 	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
316 	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
317 
318 	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
319 	       SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
320 	       SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
321 	REG_WRITE(ah, AR_PHY_TIMING11, new);
322 
323 	cur_bin = -6000;
324 	upper = bin + 100;
325 	lower = bin - 100;
326 
327 	for (i = 0; i < 4; i++) {
328 		int pilot_mask = 0;
329 		int chan_mask = 0;
330 		int bp = 0;
331 		for (bp = 0; bp < 30; bp++) {
332 			if ((cur_bin > lower) && (cur_bin < upper)) {
333 				pilot_mask = pilot_mask | 0x1 << bp;
334 				chan_mask = chan_mask | 0x1 << bp;
335 			}
336 			cur_bin += 100;
337 		}
338 		cur_bin += inc[i];
339 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
340 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
341 	}
342 
343 	cur_vit_mask = 6100;
344 	upper = bin + 120;
345 	lower = bin - 120;
346 
347 	for (i = 0; i < 123; i++) {
348 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
349 
350 			/* workaround for gcc bug #37014 */
351 			volatile int tmp_v = abs(cur_vit_mask - bin);
352 
353 			if (tmp_v < 75)
354 				mask_amt = 1;
355 			else
356 				mask_amt = 0;
357 			if (cur_vit_mask < 0)
358 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
359 			else
360 				mask_p[cur_vit_mask / 100] = mask_amt;
361 		}
362 		cur_vit_mask -= 100;
363 	}
364 
365 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
366 		| (mask_m[48] << 26) | (mask_m[49] << 24)
367 		| (mask_m[50] << 22) | (mask_m[51] << 20)
368 		| (mask_m[52] << 18) | (mask_m[53] << 16)
369 		| (mask_m[54] << 14) | (mask_m[55] << 12)
370 		| (mask_m[56] << 10) | (mask_m[57] << 8)
371 		| (mask_m[58] << 6) | (mask_m[59] << 4)
372 		| (mask_m[60] << 2) | (mask_m[61] << 0);
373 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
374 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
375 
376 	tmp_mask = (mask_m[31] << 28)
377 		| (mask_m[32] << 26) | (mask_m[33] << 24)
378 		| (mask_m[34] << 22) | (mask_m[35] << 20)
379 		| (mask_m[36] << 18) | (mask_m[37] << 16)
380 		| (mask_m[48] << 14) | (mask_m[39] << 12)
381 		| (mask_m[40] << 10) | (mask_m[41] << 8)
382 		| (mask_m[42] << 6) | (mask_m[43] << 4)
383 		| (mask_m[44] << 2) | (mask_m[45] << 0);
384 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
385 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
386 
387 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
388 		| (mask_m[18] << 26) | (mask_m[18] << 24)
389 		| (mask_m[20] << 22) | (mask_m[20] << 20)
390 		| (mask_m[22] << 18) | (mask_m[22] << 16)
391 		| (mask_m[24] << 14) | (mask_m[24] << 12)
392 		| (mask_m[25] << 10) | (mask_m[26] << 8)
393 		| (mask_m[27] << 6) | (mask_m[28] << 4)
394 		| (mask_m[29] << 2) | (mask_m[30] << 0);
395 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
396 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
397 
398 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
399 		| (mask_m[2] << 26) | (mask_m[3] << 24)
400 		| (mask_m[4] << 22) | (mask_m[5] << 20)
401 		| (mask_m[6] << 18) | (mask_m[7] << 16)
402 		| (mask_m[8] << 14) | (mask_m[9] << 12)
403 		| (mask_m[10] << 10) | (mask_m[11] << 8)
404 		| (mask_m[12] << 6) | (mask_m[13] << 4)
405 		| (mask_m[14] << 2) | (mask_m[15] << 0);
406 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
407 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
408 
409 	tmp_mask = (mask_p[15] << 28)
410 		| (mask_p[14] << 26) | (mask_p[13] << 24)
411 		| (mask_p[12] << 22) | (mask_p[11] << 20)
412 		| (mask_p[10] << 18) | (mask_p[9] << 16)
413 		| (mask_p[8] << 14) | (mask_p[7] << 12)
414 		| (mask_p[6] << 10) | (mask_p[5] << 8)
415 		| (mask_p[4] << 6) | (mask_p[3] << 4)
416 		| (mask_p[2] << 2) | (mask_p[1] << 0);
417 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
418 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
419 
420 	tmp_mask = (mask_p[30] << 28)
421 		| (mask_p[29] << 26) | (mask_p[28] << 24)
422 		| (mask_p[27] << 22) | (mask_p[26] << 20)
423 		| (mask_p[25] << 18) | (mask_p[24] << 16)
424 		| (mask_p[23] << 14) | (mask_p[22] << 12)
425 		| (mask_p[21] << 10) | (mask_p[20] << 8)
426 		| (mask_p[19] << 6) | (mask_p[18] << 4)
427 		| (mask_p[17] << 2) | (mask_p[16] << 0);
428 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
429 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
430 
431 	tmp_mask = (mask_p[45] << 28)
432 		| (mask_p[44] << 26) | (mask_p[43] << 24)
433 		| (mask_p[42] << 22) | (mask_p[41] << 20)
434 		| (mask_p[40] << 18) | (mask_p[39] << 16)
435 		| (mask_p[38] << 14) | (mask_p[37] << 12)
436 		| (mask_p[36] << 10) | (mask_p[35] << 8)
437 		| (mask_p[34] << 6) | (mask_p[33] << 4)
438 		| (mask_p[32] << 2) | (mask_p[31] << 0);
439 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
440 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
441 
442 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
443 		| (mask_p[59] << 26) | (mask_p[58] << 24)
444 		| (mask_p[57] << 22) | (mask_p[56] << 20)
445 		| (mask_p[55] << 18) | (mask_p[54] << 16)
446 		| (mask_p[53] << 14) | (mask_p[52] << 12)
447 		| (mask_p[51] << 10) | (mask_p[50] << 8)
448 		| (mask_p[49] << 6) | (mask_p[48] << 4)
449 		| (mask_p[47] << 2) | (mask_p[46] << 0);
450 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
451 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
452 }
453 
454 /**
455  * ar5008_hw_rf_alloc_ext_banks - allocates banks for external radio programming
456  * @ah: atheros hardware structure
457  *
458  * Only required for older devices with external AR2133/AR5133 radios.
459  */
460 static int ar5008_hw_rf_alloc_ext_banks(struct ath_hw *ah)
461 {
462 	int size = ah->iniBank6.ia_rows * sizeof(u32);
463 
464 	if (AR_SREV_9280_20_OR_LATER(ah))
465 	    return 0;
466 
467 	ah->analogBank6Data = devm_kzalloc(ah->dev, size, GFP_KERNEL);
468 	if (!ah->analogBank6Data)
469 		return -ENOMEM;
470 
471 	return 0;
472 }
473 
474 
475 /* *
476  * ar5008_hw_set_rf_regs - programs rf registers based on EEPROM
477  * @ah: atheros hardware structure
478  * @chan:
479  * @modesIndex:
480  *
481  * Used for the external AR2133/AR5133 radios.
482  *
483  * Reads the EEPROM header info from the device structure and programs
484  * all rf registers. This routine requires access to the analog
485  * rf device. This is not required for single-chip devices.
486  */
487 static bool ar5008_hw_set_rf_regs(struct ath_hw *ah,
488 				  struct ath9k_channel *chan,
489 				  u16 modesIndex)
490 {
491 	u32 eepMinorRev;
492 	u32 ob5GHz = 0, db5GHz = 0;
493 	u32 ob2GHz = 0, db2GHz = 0;
494 	int regWrites = 0;
495 	int i;
496 
497 	/*
498 	 * Software does not need to program bank data
499 	 * for single chip devices, that is AR9280 or anything
500 	 * after that.
501 	 */
502 	if (AR_SREV_9280_20_OR_LATER(ah))
503 		return true;
504 
505 	/* Setup rf parameters */
506 	eepMinorRev = ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV);
507 
508 	for (i = 0; i < ah->iniBank6.ia_rows; i++)
509 		ah->analogBank6Data[i] = INI_RA(&ah->iniBank6, i, modesIndex);
510 
511 	/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
512 	if (eepMinorRev >= 2) {
513 		if (IS_CHAN_2GHZ(chan)) {
514 			ob2GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_2);
515 			db2GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_2);
516 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
517 						       ob2GHz, 3, 197, 0);
518 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
519 						       db2GHz, 3, 194, 0);
520 		} else {
521 			ob5GHz = ah->eep_ops->get_eeprom(ah, EEP_OB_5);
522 			db5GHz = ah->eep_ops->get_eeprom(ah, EEP_DB_5);
523 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
524 						       ob5GHz, 3, 203, 0);
525 			ar5008_hw_phy_modify_rx_buffer(ah->analogBank6Data,
526 						       db5GHz, 3, 200, 0);
527 		}
528 	}
529 
530 	/* Write Analog registers */
531 	REG_WRITE_ARRAY(&bank0, 1, regWrites);
532 	REG_WRITE_ARRAY(&bank1, 1, regWrites);
533 	REG_WRITE_ARRAY(&bank2, 1, regWrites);
534 	REG_WRITE_ARRAY(&bank3, modesIndex, regWrites);
535 	ar5008_write_bank6(ah, &regWrites);
536 	REG_WRITE_ARRAY(&bank7, 1, regWrites);
537 
538 	return true;
539 }
540 
541 static void ar5008_hw_init_bb(struct ath_hw *ah,
542 			      struct ath9k_channel *chan)
543 {
544 	u32 synthDelay;
545 
546 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
547 
548 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
549 
550 	ath9k_hw_synth_delay(ah, chan, synthDelay);
551 }
552 
553 static void ar5008_hw_init_chain_masks(struct ath_hw *ah)
554 {
555 	int rx_chainmask, tx_chainmask;
556 
557 	rx_chainmask = ah->rxchainmask;
558 	tx_chainmask = ah->txchainmask;
559 
560 
561 	switch (rx_chainmask) {
562 	case 0x5:
563 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
564 			    AR_PHY_SWAP_ALT_CHAIN);
565 	case 0x3:
566 		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
567 			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
568 			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
569 			break;
570 		}
571 	case 0x1:
572 	case 0x2:
573 	case 0x7:
574 		ENABLE_REGWRITE_BUFFER(ah);
575 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
576 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
577 		break;
578 	default:
579 		ENABLE_REGWRITE_BUFFER(ah);
580 		break;
581 	}
582 
583 	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
584 
585 	REGWRITE_BUFFER_FLUSH(ah);
586 
587 	if (tx_chainmask == 0x5) {
588 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
589 			    AR_PHY_SWAP_ALT_CHAIN);
590 	}
591 	if (AR_SREV_9100(ah))
592 		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
593 			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
594 }
595 
596 static void ar5008_hw_override_ini(struct ath_hw *ah,
597 				   struct ath9k_channel *chan)
598 {
599 	u32 val;
600 
601 	/*
602 	 * Set the RX_ABORT and RX_DIS and clear if off only after
603 	 * RXE is set for MAC. This prevents frames with corrupted
604 	 * descriptor status.
605 	 */
606 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
607 
608 	if (AR_SREV_9280_20_OR_LATER(ah)) {
609 		/*
610 		 * For AR9280 and above, there is a new feature that allows
611 		 * Multicast search based on both MAC Address and Key ID.
612 		 * By default, this feature is enabled. But since the driver
613 		 * is not using this feature, we switch it off; otherwise
614 		 * multicast search based on MAC addr only will fail.
615 		 */
616 		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
617 			(~AR_ADHOC_MCAST_KEYID_ENABLE);
618 
619 		if (!AR_SREV_9271(ah))
620 			val &= ~AR_PCU_MISC_MODE2_HWWAR1;
621 
622 		if (AR_SREV_9287_11_OR_LATER(ah))
623 			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
624 
625 		val |= AR_PCU_MISC_MODE2_CFP_IGNORE;
626 
627 		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
628 	}
629 
630 	if (AR_SREV_9280_20_OR_LATER(ah))
631 		return;
632 	/*
633 	 * Disable BB clock gating
634 	 * Necessary to avoid issues on AR5416 2.0
635 	 */
636 	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
637 
638 	/*
639 	 * Disable RIFS search on some chips to avoid baseband
640 	 * hang issues.
641 	 */
642 	if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
643 		val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
644 		val &= ~AR_PHY_RIFS_INIT_DELAY;
645 		REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
646 	}
647 }
648 
649 static void ar5008_hw_set_channel_regs(struct ath_hw *ah,
650 				       struct ath9k_channel *chan)
651 {
652 	u32 phymode;
653 	u32 enableDacFifo = 0;
654 
655 	if (AR_SREV_9285_12_OR_LATER(ah))
656 		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
657 					 AR_PHY_FC_ENABLE_DAC_FIFO);
658 
659 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
660 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
661 
662 	if (IS_CHAN_HT40(chan)) {
663 		phymode |= AR_PHY_FC_DYN2040_EN;
664 
665 		if (IS_CHAN_HT40PLUS(chan))
666 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
667 
668 	}
669 	REG_WRITE(ah, AR_PHY_TURBO, phymode);
670 
671 	ath9k_hw_set11nmac2040(ah, chan);
672 
673 	ENABLE_REGWRITE_BUFFER(ah);
674 
675 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
676 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
677 
678 	REGWRITE_BUFFER_FLUSH(ah);
679 }
680 
681 
682 static int ar5008_hw_process_ini(struct ath_hw *ah,
683 				 struct ath9k_channel *chan)
684 {
685 	struct ath_common *common = ath9k_hw_common(ah);
686 	int i, regWrites = 0;
687 	u32 modesIndex, freqIndex;
688 
689 	if (IS_CHAN_5GHZ(chan)) {
690 		freqIndex = 1;
691 		modesIndex = IS_CHAN_HT40(chan) ? 2 : 1;
692 	} else {
693 		freqIndex = 2;
694 		modesIndex = IS_CHAN_HT40(chan) ? 3 : 4;
695 	}
696 
697 	/*
698 	 * Set correct baseband to analog shift setting to
699 	 * access analog chips.
700 	 */
701 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
702 
703 	/* Write ADDAC shifts */
704 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
705 	if (ah->eep_ops->set_addac)
706 		ah->eep_ops->set_addac(ah, chan);
707 
708 	REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
709 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
710 
711 	ENABLE_REGWRITE_BUFFER(ah);
712 
713 	for (i = 0; i < ah->iniModes.ia_rows; i++) {
714 		u32 reg = INI_RA(&ah->iniModes, i, 0);
715 		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
716 
717 		if (reg == AR_AN_TOP2 && ah->need_an_top2_fixup)
718 			val &= ~AR_AN_TOP2_PWDCLKIND;
719 
720 		REG_WRITE(ah, reg, val);
721 
722 		if (reg >= 0x7800 && reg < 0x78a0
723 		    && ah->config.analog_shiftreg
724 		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
725 			udelay(100);
726 		}
727 
728 		DO_DELAY(regWrites);
729 	}
730 
731 	REGWRITE_BUFFER_FLUSH(ah);
732 
733 	if (AR_SREV_9280(ah) || AR_SREV_9287_11_OR_LATER(ah))
734 		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
735 
736 	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
737 	    AR_SREV_9287_11_OR_LATER(ah))
738 		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
739 
740 	if (AR_SREV_9271_10(ah)) {
741 		REG_SET_BIT(ah, AR_PHY_SPECTRAL_SCAN, AR_PHY_SPECTRAL_SCAN_ENA);
742 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_ADC_ON, 0xa);
743 	}
744 
745 	ENABLE_REGWRITE_BUFFER(ah);
746 
747 	/* Write common array parameters */
748 	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
749 		u32 reg = INI_RA(&ah->iniCommon, i, 0);
750 		u32 val = INI_RA(&ah->iniCommon, i, 1);
751 
752 		REG_WRITE(ah, reg, val);
753 
754 		if (reg >= 0x7800 && reg < 0x78a0
755 		    && ah->config.analog_shiftreg
756 		    && (common->bus_ops->ath_bus_type != ATH_USB)) {
757 			udelay(100);
758 		}
759 
760 		DO_DELAY(regWrites);
761 	}
762 
763 	REGWRITE_BUFFER_FLUSH(ah);
764 
765 	REG_WRITE_ARRAY(&ah->iniBB_RfGain, freqIndex, regWrites);
766 
767 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
768 		REG_WRITE_ARRAY(&ah->iniModesFastClock, modesIndex,
769 				regWrites);
770 
771 	ar5008_hw_override_ini(ah, chan);
772 	ar5008_hw_set_channel_regs(ah, chan);
773 	ar5008_hw_init_chain_masks(ah);
774 	ath9k_olc_init(ah);
775 	ath9k_hw_apply_txpower(ah, chan, false);
776 
777 	/* Write analog registers */
778 	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
779 		ath_err(ath9k_hw_common(ah), "ar5416SetRfRegs failed\n");
780 		return -EIO;
781 	}
782 
783 	return 0;
784 }
785 
786 static void ar5008_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
787 {
788 	u32 rfMode = 0;
789 
790 	if (chan == NULL)
791 		return;
792 
793 	if (IS_CHAN_2GHZ(chan))
794 		rfMode |= AR_PHY_MODE_DYNAMIC;
795 	else
796 		rfMode |= AR_PHY_MODE_OFDM;
797 
798 	if (!AR_SREV_9280_20_OR_LATER(ah))
799 		rfMode |= (IS_CHAN_5GHZ(chan)) ?
800 			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
801 
802 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
803 		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
804 
805 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
806 }
807 
808 static void ar5008_hw_mark_phy_inactive(struct ath_hw *ah)
809 {
810 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
811 }
812 
813 static void ar5008_hw_set_delta_slope(struct ath_hw *ah,
814 				      struct ath9k_channel *chan)
815 {
816 	u32 coef_scaled, ds_coef_exp, ds_coef_man;
817 	u32 clockMhzScaled = 0x64000000;
818 	struct chan_centers centers;
819 
820 	if (IS_CHAN_HALF_RATE(chan))
821 		clockMhzScaled = clockMhzScaled >> 1;
822 	else if (IS_CHAN_QUARTER_RATE(chan))
823 		clockMhzScaled = clockMhzScaled >> 2;
824 
825 	ath9k_hw_get_channel_centers(ah, chan, &centers);
826 	coef_scaled = clockMhzScaled / centers.synth_center;
827 
828 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
829 				      &ds_coef_exp);
830 
831 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
832 		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
833 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
834 		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
835 
836 	coef_scaled = (9 * coef_scaled) / 10;
837 
838 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
839 				      &ds_coef_exp);
840 
841 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
842 		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
843 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
844 		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
845 }
846 
847 static bool ar5008_hw_rfbus_req(struct ath_hw *ah)
848 {
849 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
850 	return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
851 			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
852 }
853 
854 static void ar5008_hw_rfbus_done(struct ath_hw *ah)
855 {
856 	u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
857 
858 	ath9k_hw_synth_delay(ah, ah->curchan, synthDelay);
859 
860 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
861 }
862 
863 static void ar5008_restore_chainmask(struct ath_hw *ah)
864 {
865 	int rx_chainmask = ah->rxchainmask;
866 
867 	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
868 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
869 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
870 	}
871 }
872 
873 static u32 ar9160_hw_compute_pll_control(struct ath_hw *ah,
874 					 struct ath9k_channel *chan)
875 {
876 	u32 pll;
877 
878 	pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
879 
880 	if (chan && IS_CHAN_HALF_RATE(chan))
881 		pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
882 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
883 		pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
884 
885 	if (chan && IS_CHAN_5GHZ(chan))
886 		pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
887 	else
888 		pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
889 
890 	return pll;
891 }
892 
893 static u32 ar5008_hw_compute_pll_control(struct ath_hw *ah,
894 					 struct ath9k_channel *chan)
895 {
896 	u32 pll;
897 
898 	pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
899 
900 	if (chan && IS_CHAN_HALF_RATE(chan))
901 		pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
902 	else if (chan && IS_CHAN_QUARTER_RATE(chan))
903 		pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
904 
905 	if (chan && IS_CHAN_5GHZ(chan))
906 		pll |= SM(0xa, AR_RTC_PLL_DIV);
907 	else
908 		pll |= SM(0xb, AR_RTC_PLL_DIV);
909 
910 	return pll;
911 }
912 
913 static bool ar5008_hw_ani_control_new(struct ath_hw *ah,
914 				      enum ath9k_ani_cmd cmd,
915 				      int param)
916 {
917 	struct ath_common *common = ath9k_hw_common(ah);
918 	struct ath9k_channel *chan = ah->curchan;
919 	struct ar5416AniState *aniState = &ah->ani;
920 	s32 value;
921 
922 	switch (cmd & ah->ani_function) {
923 	case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
924 		/*
925 		 * on == 1 means ofdm weak signal detection is ON
926 		 * on == 1 is the default, for less noise immunity
927 		 *
928 		 * on == 0 means ofdm weak signal detection is OFF
929 		 * on == 0 means more noise imm
930 		 */
931 		u32 on = param ? 1 : 0;
932 		/*
933 		 * make register setting for default
934 		 * (weak sig detect ON) come from INI file
935 		 */
936 		int m1ThreshLow = on ?
937 			aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
938 		int m2ThreshLow = on ?
939 			aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
940 		int m1Thresh = on ?
941 			aniState->iniDef.m1Thresh : m1Thresh_off;
942 		int m2Thresh = on ?
943 			aniState->iniDef.m2Thresh : m2Thresh_off;
944 		int m2CountThr = on ?
945 			aniState->iniDef.m2CountThr : m2CountThr_off;
946 		int m2CountThrLow = on ?
947 			aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
948 		int m1ThreshLowExt = on ?
949 			aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
950 		int m2ThreshLowExt = on ?
951 			aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
952 		int m1ThreshExt = on ?
953 			aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
954 		int m2ThreshExt = on ?
955 			aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
956 
957 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
958 			      AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
959 			      m1ThreshLow);
960 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
961 			      AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
962 			      m2ThreshLow);
963 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
964 			      AR_PHY_SFCORR_M1_THRESH, m1Thresh);
965 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
966 			      AR_PHY_SFCORR_M2_THRESH, m2Thresh);
967 		REG_RMW_FIELD(ah, AR_PHY_SFCORR,
968 			      AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
969 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
970 			      AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
971 			      m2CountThrLow);
972 
973 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
974 			      AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
975 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
976 			      AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
977 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
978 			      AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
979 		REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
980 			      AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
981 
982 		if (on)
983 			REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
984 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
985 		else
986 			REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
987 				    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
988 
989 		if (on != aniState->ofdmWeakSigDetect) {
990 			ath_dbg(common, ANI,
991 				"** ch %d: ofdm weak signal: %s=>%s\n",
992 				chan->channel,
993 				aniState->ofdmWeakSigDetect ?
994 				"on" : "off",
995 				on ? "on" : "off");
996 			if (on)
997 				ah->stats.ast_ani_ofdmon++;
998 			else
999 				ah->stats.ast_ani_ofdmoff++;
1000 			aniState->ofdmWeakSigDetect = on;
1001 		}
1002 		break;
1003 	}
1004 	case ATH9K_ANI_FIRSTEP_LEVEL:{
1005 		u32 level = param;
1006 
1007 		value = level;
1008 		REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
1009 			      AR_PHY_FIND_SIG_FIRSTEP, value);
1010 
1011 		if (level != aniState->firstepLevel) {
1012 			ath_dbg(common, ANI,
1013 				"** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
1014 				chan->channel,
1015 				aniState->firstepLevel,
1016 				level,
1017 				ATH9K_ANI_FIRSTEP_LVL,
1018 				value,
1019 				aniState->iniDef.firstep);
1020 			ath_dbg(common, ANI,
1021 				"** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
1022 				chan->channel,
1023 				aniState->firstepLevel,
1024 				level,
1025 				ATH9K_ANI_FIRSTEP_LVL,
1026 				value,
1027 				aniState->iniDef.firstepLow);
1028 			if (level > aniState->firstepLevel)
1029 				ah->stats.ast_ani_stepup++;
1030 			else if (level < aniState->firstepLevel)
1031 				ah->stats.ast_ani_stepdown++;
1032 			aniState->firstepLevel = level;
1033 		}
1034 		break;
1035 	}
1036 	case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
1037 		u32 level = param;
1038 
1039 		value = (level + 1) * 2;
1040 		REG_RMW_FIELD(ah, AR_PHY_TIMING5,
1041 			      AR_PHY_TIMING5_CYCPWR_THR1, value);
1042 
1043 		if (IS_CHAN_HT40(ah->curchan))
1044 			REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1045 				      AR_PHY_EXT_TIMING5_CYCPWR_THR1, value);
1046 
1047 		if (level != aniState->spurImmunityLevel) {
1048 			ath_dbg(common, ANI,
1049 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1050 				chan->channel,
1051 				aniState->spurImmunityLevel,
1052 				level,
1053 				ATH9K_ANI_SPUR_IMMUNE_LVL,
1054 				value,
1055 				aniState->iniDef.cycpwrThr1);
1056 			ath_dbg(common, ANI,
1057 				"** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1058 				chan->channel,
1059 				aniState->spurImmunityLevel,
1060 				level,
1061 				ATH9K_ANI_SPUR_IMMUNE_LVL,
1062 				value,
1063 				aniState->iniDef.cycpwrThr1Ext);
1064 			if (level > aniState->spurImmunityLevel)
1065 				ah->stats.ast_ani_spurup++;
1066 			else if (level < aniState->spurImmunityLevel)
1067 				ah->stats.ast_ani_spurdown++;
1068 			aniState->spurImmunityLevel = level;
1069 		}
1070 		break;
1071 	}
1072 	case ATH9K_ANI_MRC_CCK:
1073 		/*
1074 		 * You should not see this as AR5008, AR9001, AR9002
1075 		 * does not have hardware support for MRC CCK.
1076 		 */
1077 		WARN_ON(1);
1078 		break;
1079 	default:
1080 		ath_dbg(common, ANI, "invalid cmd %u\n", cmd);
1081 		return false;
1082 	}
1083 
1084 	ath_dbg(common, ANI,
1085 		"ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1086 		aniState->spurImmunityLevel,
1087 		aniState->ofdmWeakSigDetect ? "on" : "off",
1088 		aniState->firstepLevel,
1089 		aniState->mrcCCK ? "on" : "off",
1090 		aniState->listenTime,
1091 		aniState->ofdmPhyErrCount,
1092 		aniState->cckPhyErrCount);
1093 	return true;
1094 }
1095 
1096 static void ar5008_hw_do_getnf(struct ath_hw *ah,
1097 			      int16_t nfarray[NUM_NF_READINGS])
1098 {
1099 	int16_t nf;
1100 
1101 	nf = MS(REG_READ(ah, AR_PHY_CCA), AR_PHY_MINCCA_PWR);
1102 	nfarray[0] = sign_extend32(nf, 8);
1103 
1104 	nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR_PHY_CH1_MINCCA_PWR);
1105 	nfarray[1] = sign_extend32(nf, 8);
1106 
1107 	nf = MS(REG_READ(ah, AR_PHY_CH2_CCA), AR_PHY_CH2_MINCCA_PWR);
1108 	nfarray[2] = sign_extend32(nf, 8);
1109 
1110 	if (!IS_CHAN_HT40(ah->curchan))
1111 		return;
1112 
1113 	nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR_PHY_EXT_MINCCA_PWR);
1114 	nfarray[3] = sign_extend32(nf, 8);
1115 
1116 	nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR_PHY_CH1_EXT_MINCCA_PWR);
1117 	nfarray[4] = sign_extend32(nf, 8);
1118 
1119 	nf = MS(REG_READ(ah, AR_PHY_CH2_EXT_CCA), AR_PHY_CH2_EXT_MINCCA_PWR);
1120 	nfarray[5] = sign_extend32(nf, 8);
1121 }
1122 
1123 /*
1124  * Initialize the ANI register values with default (ini) values.
1125  * This routine is called during a (full) hardware reset after
1126  * all the registers are initialised from the INI.
1127  */
1128 static void ar5008_hw_ani_cache_ini_regs(struct ath_hw *ah)
1129 {
1130 	struct ath_common *common = ath9k_hw_common(ah);
1131 	struct ath9k_channel *chan = ah->curchan;
1132 	struct ar5416AniState *aniState = &ah->ani;
1133 	struct ath9k_ani_default *iniDef;
1134 	u32 val;
1135 
1136 	iniDef = &aniState->iniDef;
1137 
1138 	ath_dbg(common, ANI, "ver %d.%d opmode %u chan %d Mhz\n",
1139 		ah->hw_version.macVersion,
1140 		ah->hw_version.macRev,
1141 		ah->opmode,
1142 		chan->channel);
1143 
1144 	val = REG_READ(ah, AR_PHY_SFCORR);
1145 	iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1146 	iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1147 	iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1148 
1149 	val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1150 	iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1151 	iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1152 	iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1153 
1154 	val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1155 	iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1156 	iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1157 	iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1158 	iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1159 	iniDef->firstep = REG_READ_FIELD(ah,
1160 					 AR_PHY_FIND_SIG,
1161 					 AR_PHY_FIND_SIG_FIRSTEP);
1162 	iniDef->firstepLow = REG_READ_FIELD(ah,
1163 					    AR_PHY_FIND_SIG_LOW,
1164 					    AR_PHY_FIND_SIG_FIRSTEP_LOW);
1165 	iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1166 					    AR_PHY_TIMING5,
1167 					    AR_PHY_TIMING5_CYCPWR_THR1);
1168 	iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1169 					       AR_PHY_EXT_CCA,
1170 					       AR_PHY_EXT_TIMING5_CYCPWR_THR1);
1171 
1172 	/* these levels just got reset to defaults by the INI */
1173 	aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL;
1174 	aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL;
1175 	aniState->ofdmWeakSigDetect = true;
1176 	aniState->mrcCCK = false; /* not available on pre AR9003 */
1177 }
1178 
1179 static void ar5008_hw_set_nf_limits(struct ath_hw *ah)
1180 {
1181 	ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_2GHZ;
1182 	ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_2GHZ;
1183 	ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_5416_2GHZ;
1184 	ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_5416_5GHZ;
1185 	ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_5416_5GHZ;
1186 	ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_5416_5GHZ;
1187 }
1188 
1189 static void ar5008_hw_set_radar_params(struct ath_hw *ah,
1190 				       struct ath_hw_radar_conf *conf)
1191 {
1192 	u32 radar_0 = 0, radar_1 = 0;
1193 
1194 	if (!conf) {
1195 		REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1196 		return;
1197 	}
1198 
1199 	radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1200 	radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1201 	radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1202 	radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1203 	radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1204 	radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1205 
1206 	radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1207 	radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1208 	radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1209 	radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1210 	radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1211 
1212 	REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1213 	REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1214 	if (conf->ext_channel)
1215 		REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1216 	else
1217 		REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1218 }
1219 
1220 static void ar5008_hw_set_radar_conf(struct ath_hw *ah)
1221 {
1222 	struct ath_hw_radar_conf *conf = &ah->radar_conf;
1223 
1224 	conf->fir_power = -33;
1225 	conf->radar_rssi = 20;
1226 	conf->pulse_height = 10;
1227 	conf->pulse_rssi = 24;
1228 	conf->pulse_inband = 15;
1229 	conf->pulse_maxlen = 255;
1230 	conf->pulse_inband_step = 12;
1231 	conf->radar_inband = 8;
1232 }
1233 
1234 int ar5008_hw_attach_phy_ops(struct ath_hw *ah)
1235 {
1236 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1237 	static const u32 ar5416_cca_regs[6] = {
1238 		AR_PHY_CCA,
1239 		AR_PHY_CH1_CCA,
1240 		AR_PHY_CH2_CCA,
1241 		AR_PHY_EXT_CCA,
1242 		AR_PHY_CH1_EXT_CCA,
1243 		AR_PHY_CH2_EXT_CCA
1244 	};
1245 	int ret;
1246 
1247 	ret = ar5008_hw_rf_alloc_ext_banks(ah);
1248 	if (ret)
1249 	    return ret;
1250 
1251 	priv_ops->rf_set_freq = ar5008_hw_set_channel;
1252 	priv_ops->spur_mitigate_freq = ar5008_hw_spur_mitigate;
1253 
1254 	priv_ops->set_rf_regs = ar5008_hw_set_rf_regs;
1255 	priv_ops->set_channel_regs = ar5008_hw_set_channel_regs;
1256 	priv_ops->init_bb = ar5008_hw_init_bb;
1257 	priv_ops->process_ini = ar5008_hw_process_ini;
1258 	priv_ops->set_rfmode = ar5008_hw_set_rfmode;
1259 	priv_ops->mark_phy_inactive = ar5008_hw_mark_phy_inactive;
1260 	priv_ops->set_delta_slope = ar5008_hw_set_delta_slope;
1261 	priv_ops->rfbus_req = ar5008_hw_rfbus_req;
1262 	priv_ops->rfbus_done = ar5008_hw_rfbus_done;
1263 	priv_ops->restore_chainmask = ar5008_restore_chainmask;
1264 	priv_ops->do_getnf = ar5008_hw_do_getnf;
1265 	priv_ops->set_radar_params = ar5008_hw_set_radar_params;
1266 
1267 	priv_ops->ani_control = ar5008_hw_ani_control_new;
1268 	priv_ops->ani_cache_ini_regs = ar5008_hw_ani_cache_ini_regs;
1269 
1270 	if (AR_SREV_9100(ah) || AR_SREV_9160_10_OR_LATER(ah))
1271 		priv_ops->compute_pll_control = ar9160_hw_compute_pll_control;
1272 	else
1273 		priv_ops->compute_pll_control = ar5008_hw_compute_pll_control;
1274 
1275 	ar5008_hw_set_nf_limits(ah);
1276 	ar5008_hw_set_radar_conf(ah);
1277 	memcpy(ah->nf_regs, ar5416_cca_regs, sizeof(ah->nf_regs));
1278 	return 0;
1279 }
1280