xref: /linux/drivers/net/wireless/ath/ath6kl/sdio.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Copyright (c) 2004-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/mmc/card.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/mmc/host.h>
22 #include <linux/mmc/sdio_func.h>
23 #include <linux/mmc/sdio_ids.h>
24 #include <linux/mmc/sdio.h>
25 #include <linux/mmc/sd.h>
26 #include "hif.h"
27 #include "hif-ops.h"
28 #include "target.h"
29 #include "debug.h"
30 #include "cfg80211.h"
31 #include "trace.h"
32 
33 struct ath6kl_sdio {
34 	struct sdio_func *func;
35 
36 	/* protects access to bus_req_freeq */
37 	spinlock_t lock;
38 
39 	/* free list */
40 	struct list_head bus_req_freeq;
41 
42 	/* available bus requests */
43 	struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
44 
45 	struct ath6kl *ar;
46 
47 	u8 *dma_buffer;
48 
49 	/* protects access to dma_buffer */
50 	struct mutex dma_buffer_mutex;
51 
52 	/* scatter request list head */
53 	struct list_head scat_req;
54 
55 	atomic_t irq_handling;
56 	wait_queue_head_t irq_wq;
57 
58 	/* protects access to scat_req */
59 	spinlock_t scat_lock;
60 
61 	bool scatter_enabled;
62 
63 	bool is_disabled;
64 	const struct sdio_device_id *id;
65 	struct work_struct wr_async_work;
66 	struct list_head wr_asyncq;
67 
68 	/* protects access to wr_asyncq */
69 	spinlock_t wr_async_lock;
70 };
71 
72 #define CMD53_ARG_READ          0
73 #define CMD53_ARG_WRITE         1
74 #define CMD53_ARG_BLOCK_BASIS   1
75 #define CMD53_ARG_FIXED_ADDRESS 0
76 #define CMD53_ARG_INCR_ADDRESS  1
77 
78 static int ath6kl_sdio_config(struct ath6kl *ar);
79 
80 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
81 {
82 	return ar->hif_priv;
83 }
84 
85 /*
86  * Macro to check if DMA buffer is WORD-aligned and DMA-able.
87  * Most host controllers assume the buffer is DMA'able and will
88  * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
89  * check fails on stack memory.
90  */
91 static inline bool buf_needs_bounce(u8 *buf)
92 {
93 	return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
94 }
95 
96 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
97 {
98 	struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
99 
100 	/* EP1 has an extended range */
101 	mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
102 	mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
103 	mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
104 	mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
105 	mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
106 	mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
107 }
108 
109 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
110 					     u8 mode, u8 opcode, u32 addr,
111 					     u16 blksz)
112 {
113 	*arg = (((rw & 1) << 31) |
114 		((func & 0x7) << 28) |
115 		((mode & 1) << 27) |
116 		((opcode & 1) << 26) |
117 		((addr & 0x1FFFF) << 9) |
118 		(blksz & 0x1FF));
119 }
120 
121 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
122 					     unsigned int address,
123 					     unsigned char val)
124 {
125 	const u8 func = 0;
126 
127 	*arg = ((write & 1) << 31) |
128 	       ((func & 0x7) << 28) |
129 	       ((raw & 1) << 27) |
130 	       (1 << 26) |
131 	       ((address & 0x1FFFF) << 9) |
132 	       (1 << 8) |
133 	       (val & 0xFF);
134 }
135 
136 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
137 					   unsigned int address,
138 					   unsigned char byte)
139 {
140 	struct mmc_command io_cmd;
141 
142 	memset(&io_cmd, 0, sizeof(io_cmd));
143 	ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
144 	io_cmd.opcode = SD_IO_RW_DIRECT;
145 	io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
146 
147 	return mmc_wait_for_cmd(card->host, &io_cmd, 0);
148 }
149 
150 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
151 			  u8 *buf, u32 len)
152 {
153 	int ret = 0;
154 
155 	sdio_claim_host(func);
156 
157 	if (request & HIF_WRITE) {
158 		/* FIXME: looks like ugly workaround for something */
159 		if (addr >= HIF_MBOX_BASE_ADDR &&
160 		    addr <= HIF_MBOX_END_ADDR)
161 			addr += (HIF_MBOX_WIDTH - len);
162 
163 		/* FIXME: this also looks like ugly workaround */
164 		if (addr == HIF_MBOX0_EXT_BASE_ADDR)
165 			addr += HIF_MBOX0_EXT_WIDTH - len;
166 
167 		if (request & HIF_FIXED_ADDRESS)
168 			ret = sdio_writesb(func, addr, buf, len);
169 		else
170 			ret = sdio_memcpy_toio(func, addr, buf, len);
171 	} else {
172 		if (request & HIF_FIXED_ADDRESS)
173 			ret = sdio_readsb(func, buf, addr, len);
174 		else
175 			ret = sdio_memcpy_fromio(func, buf, addr, len);
176 	}
177 
178 	sdio_release_host(func);
179 
180 	ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
181 		   request & HIF_WRITE ? "wr" : "rd", addr,
182 		   request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
183 	ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
184 
185 	trace_ath6kl_sdio(addr, request, buf, len);
186 
187 	return ret;
188 }
189 
190 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
191 {
192 	struct bus_request *bus_req;
193 
194 	spin_lock_bh(&ar_sdio->lock);
195 
196 	if (list_empty(&ar_sdio->bus_req_freeq)) {
197 		spin_unlock_bh(&ar_sdio->lock);
198 		return NULL;
199 	}
200 
201 	bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
202 				   struct bus_request, list);
203 	list_del(&bus_req->list);
204 
205 	spin_unlock_bh(&ar_sdio->lock);
206 	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
207 		   __func__, bus_req);
208 
209 	return bus_req;
210 }
211 
212 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
213 				     struct bus_request *bus_req)
214 {
215 	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
216 		   __func__, bus_req);
217 
218 	spin_lock_bh(&ar_sdio->lock);
219 	list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
220 	spin_unlock_bh(&ar_sdio->lock);
221 }
222 
223 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
224 					struct mmc_data *data)
225 {
226 	struct scatterlist *sg;
227 	int i;
228 
229 	data->blksz = HIF_MBOX_BLOCK_SIZE;
230 	data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
231 
232 	ath6kl_dbg(ATH6KL_DBG_SCATTER,
233 		   "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
234 		   (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
235 		   data->blksz, data->blocks, scat_req->len,
236 		   scat_req->scat_entries);
237 
238 	data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
239 						    MMC_DATA_READ;
240 
241 	/* fill SG entries */
242 	sg = scat_req->sgentries;
243 	sg_init_table(sg, scat_req->scat_entries);
244 
245 	/* assemble SG list */
246 	for (i = 0; i < scat_req->scat_entries; i++, sg++) {
247 		ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
248 			   i, scat_req->scat_list[i].buf,
249 			   scat_req->scat_list[i].len);
250 
251 		sg_set_buf(sg, scat_req->scat_list[i].buf,
252 			   scat_req->scat_list[i].len);
253 	}
254 
255 	/* set scatter-gather table for request */
256 	data->sg = scat_req->sgentries;
257 	data->sg_len = scat_req->scat_entries;
258 }
259 
260 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
261 			       struct bus_request *req)
262 {
263 	struct mmc_request mmc_req;
264 	struct mmc_command cmd;
265 	struct mmc_data data;
266 	struct hif_scatter_req *scat_req;
267 	u8 opcode, rw;
268 	int status, len;
269 
270 	scat_req = req->scat_req;
271 
272 	if (scat_req->virt_scat) {
273 		len = scat_req->len;
274 		if (scat_req->req & HIF_BLOCK_BASIS)
275 			len = round_down(len, HIF_MBOX_BLOCK_SIZE);
276 
277 		status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
278 					scat_req->addr, scat_req->virt_dma_buf,
279 					len);
280 		goto scat_complete;
281 	}
282 
283 	memset(&mmc_req, 0, sizeof(struct mmc_request));
284 	memset(&cmd, 0, sizeof(struct mmc_command));
285 	memset(&data, 0, sizeof(struct mmc_data));
286 
287 	ath6kl_sdio_setup_scat_data(scat_req, &data);
288 
289 	opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
290 		  CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
291 
292 	rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
293 
294 	/* Fixup the address so that the last byte will fall on MBOX EOM */
295 	if (scat_req->req & HIF_WRITE) {
296 		if (scat_req->addr == HIF_MBOX_BASE_ADDR)
297 			scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
298 		else
299 			/* Uses extended address range */
300 			scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
301 	}
302 
303 	/* set command argument */
304 	ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
305 				  CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
306 				  data.blocks);
307 
308 	cmd.opcode = SD_IO_RW_EXTENDED;
309 	cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
310 
311 	mmc_req.cmd = &cmd;
312 	mmc_req.data = &data;
313 
314 	sdio_claim_host(ar_sdio->func);
315 
316 	mmc_set_data_timeout(&data, ar_sdio->func->card);
317 
318 	trace_ath6kl_sdio_scat(scat_req->addr,
319 			       scat_req->req,
320 			       scat_req->len,
321 			       scat_req->scat_entries,
322 			       scat_req->scat_list);
323 
324 	/* synchronous call to process request */
325 	mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
326 
327 	sdio_release_host(ar_sdio->func);
328 
329 	status = cmd.error ? cmd.error : data.error;
330 
331 scat_complete:
332 	scat_req->status = status;
333 
334 	if (scat_req->status)
335 		ath6kl_err("Scatter write request failed:%d\n",
336 			   scat_req->status);
337 
338 	if (scat_req->req & HIF_ASYNCHRONOUS)
339 		scat_req->complete(ar_sdio->ar->htc_target, scat_req);
340 
341 	return status;
342 }
343 
344 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
345 					   int n_scat_entry, int n_scat_req,
346 					   bool virt_scat)
347 {
348 	struct hif_scatter_req *s_req;
349 	struct bus_request *bus_req;
350 	int i, scat_req_sz, scat_list_sz, size;
351 	u8 *virt_buf;
352 
353 	scat_list_sz = n_scat_entry * sizeof(struct hif_scatter_item);
354 	scat_req_sz = sizeof(*s_req) + scat_list_sz;
355 
356 	if (!virt_scat)
357 		size = sizeof(struct scatterlist) * n_scat_entry;
358 	else
359 		size =  2 * L1_CACHE_BYTES +
360 			ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
361 
362 	for (i = 0; i < n_scat_req; i++) {
363 		/* allocate the scatter request */
364 		s_req = kzalloc(scat_req_sz, GFP_KERNEL);
365 		if (!s_req)
366 			return -ENOMEM;
367 
368 		if (virt_scat) {
369 			virt_buf = kzalloc(size, GFP_KERNEL);
370 			if (!virt_buf) {
371 				kfree(s_req);
372 				return -ENOMEM;
373 			}
374 
375 			s_req->virt_dma_buf =
376 				(u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
377 		} else {
378 			/* allocate sglist */
379 			s_req->sgentries = kzalloc(size, GFP_KERNEL);
380 
381 			if (!s_req->sgentries) {
382 				kfree(s_req);
383 				return -ENOMEM;
384 			}
385 		}
386 
387 		/* allocate a bus request for this scatter request */
388 		bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
389 		if (!bus_req) {
390 			kfree(s_req->sgentries);
391 			kfree(s_req->virt_dma_buf);
392 			kfree(s_req);
393 			return -ENOMEM;
394 		}
395 
396 		/* assign the scatter request to this bus request */
397 		bus_req->scat_req = s_req;
398 		s_req->busrequest = bus_req;
399 
400 		s_req->virt_scat = virt_scat;
401 
402 		/* add it to the scatter pool */
403 		hif_scatter_req_add(ar_sdio->ar, s_req);
404 	}
405 
406 	return 0;
407 }
408 
409 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
410 				       u32 len, u32 request)
411 {
412 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
413 	u8  *tbuf = NULL;
414 	int ret;
415 	bool bounced = false;
416 
417 	if (request & HIF_BLOCK_BASIS)
418 		len = round_down(len, HIF_MBOX_BLOCK_SIZE);
419 
420 	if (buf_needs_bounce(buf)) {
421 		if (!ar_sdio->dma_buffer)
422 			return -ENOMEM;
423 		mutex_lock(&ar_sdio->dma_buffer_mutex);
424 		tbuf = ar_sdio->dma_buffer;
425 
426 		if (request & HIF_WRITE)
427 			memcpy(tbuf, buf, len);
428 
429 		bounced = true;
430 	} else {
431 		tbuf = buf;
432 	}
433 
434 	ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
435 	if ((request & HIF_READ) && bounced)
436 		memcpy(buf, tbuf, len);
437 
438 	if (bounced)
439 		mutex_unlock(&ar_sdio->dma_buffer_mutex);
440 
441 	return ret;
442 }
443 
444 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
445 				      struct bus_request *req)
446 {
447 	if (req->scat_req) {
448 		ath6kl_sdio_scat_rw(ar_sdio, req);
449 	} else {
450 		void *context;
451 		int status;
452 
453 		status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
454 						     req->buffer, req->length,
455 						     req->request);
456 		context = req->packet;
457 		ath6kl_sdio_free_bus_req(ar_sdio, req);
458 		ath6kl_hif_rw_comp_handler(context, status);
459 	}
460 }
461 
462 static void ath6kl_sdio_write_async_work(struct work_struct *work)
463 {
464 	struct ath6kl_sdio *ar_sdio;
465 	struct bus_request *req, *tmp_req;
466 
467 	ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
468 
469 	spin_lock_bh(&ar_sdio->wr_async_lock);
470 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
471 		list_del(&req->list);
472 		spin_unlock_bh(&ar_sdio->wr_async_lock);
473 		__ath6kl_sdio_write_async(ar_sdio, req);
474 		spin_lock_bh(&ar_sdio->wr_async_lock);
475 	}
476 	spin_unlock_bh(&ar_sdio->wr_async_lock);
477 }
478 
479 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
480 {
481 	int status;
482 	struct ath6kl_sdio *ar_sdio;
483 
484 	ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
485 
486 	ar_sdio = sdio_get_drvdata(func);
487 	atomic_set(&ar_sdio->irq_handling, 1);
488 	/*
489 	 * Release the host during interrups so we can pick it back up when
490 	 * we process commands.
491 	 */
492 	sdio_release_host(ar_sdio->func);
493 
494 	status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
495 	sdio_claim_host(ar_sdio->func);
496 
497 	atomic_set(&ar_sdio->irq_handling, 0);
498 	wake_up(&ar_sdio->irq_wq);
499 
500 	WARN_ON(status && status != -ECANCELED);
501 }
502 
503 static int ath6kl_sdio_power_on(struct ath6kl *ar)
504 {
505 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
506 	struct sdio_func *func = ar_sdio->func;
507 	int ret = 0;
508 
509 	if (!ar_sdio->is_disabled)
510 		return 0;
511 
512 	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
513 
514 	sdio_claim_host(func);
515 
516 	ret = sdio_enable_func(func);
517 	if (ret) {
518 		ath6kl_err("Unable to enable sdio func: %d)\n", ret);
519 		sdio_release_host(func);
520 		return ret;
521 	}
522 
523 	sdio_release_host(func);
524 
525 	/*
526 	 * Wait for hardware to initialise. It should take a lot less than
527 	 * 10 ms but let's be conservative here.
528 	 */
529 	msleep(10);
530 
531 	ret = ath6kl_sdio_config(ar);
532 	if (ret) {
533 		ath6kl_err("Failed to config sdio: %d\n", ret);
534 		goto out;
535 	}
536 
537 	ar_sdio->is_disabled = false;
538 
539 out:
540 	return ret;
541 }
542 
543 static int ath6kl_sdio_power_off(struct ath6kl *ar)
544 {
545 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
546 	int ret;
547 
548 	if (ar_sdio->is_disabled)
549 		return 0;
550 
551 	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
552 
553 	/* Disable the card */
554 	sdio_claim_host(ar_sdio->func);
555 	ret = sdio_disable_func(ar_sdio->func);
556 	sdio_release_host(ar_sdio->func);
557 
558 	if (ret)
559 		return ret;
560 
561 	ar_sdio->is_disabled = true;
562 
563 	return ret;
564 }
565 
566 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
567 				   u32 length, u32 request,
568 				   struct htc_packet *packet)
569 {
570 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
571 	struct bus_request *bus_req;
572 
573 	bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
574 
575 	if (WARN_ON_ONCE(!bus_req))
576 		return -ENOMEM;
577 
578 	bus_req->address = address;
579 	bus_req->buffer = buffer;
580 	bus_req->length = length;
581 	bus_req->request = request;
582 	bus_req->packet = packet;
583 
584 	spin_lock_bh(&ar_sdio->wr_async_lock);
585 	list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
586 	spin_unlock_bh(&ar_sdio->wr_async_lock);
587 	queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
588 
589 	return 0;
590 }
591 
592 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
593 {
594 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
595 	int ret;
596 
597 	sdio_claim_host(ar_sdio->func);
598 
599 	/* Register the isr */
600 	ret =  sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
601 	if (ret)
602 		ath6kl_err("Failed to claim sdio irq: %d\n", ret);
603 
604 	sdio_release_host(ar_sdio->func);
605 }
606 
607 static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
608 {
609 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
610 
611 	return !atomic_read(&ar_sdio->irq_handling);
612 }
613 
614 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
615 {
616 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
617 	int ret;
618 
619 	sdio_claim_host(ar_sdio->func);
620 
621 	if (atomic_read(&ar_sdio->irq_handling)) {
622 		sdio_release_host(ar_sdio->func);
623 
624 		ret = wait_event_interruptible(ar_sdio->irq_wq,
625 					       ath6kl_sdio_is_on_irq(ar));
626 		if (ret)
627 			return;
628 
629 		sdio_claim_host(ar_sdio->func);
630 	}
631 
632 	ret = sdio_release_irq(ar_sdio->func);
633 	if (ret)
634 		ath6kl_err("Failed to release sdio irq: %d\n", ret);
635 
636 	sdio_release_host(ar_sdio->func);
637 }
638 
639 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
640 {
641 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
642 	struct hif_scatter_req *node = NULL;
643 
644 	spin_lock_bh(&ar_sdio->scat_lock);
645 
646 	if (!list_empty(&ar_sdio->scat_req)) {
647 		node = list_first_entry(&ar_sdio->scat_req,
648 					struct hif_scatter_req, list);
649 		list_del(&node->list);
650 
651 		node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
652 	}
653 
654 	spin_unlock_bh(&ar_sdio->scat_lock);
655 
656 	return node;
657 }
658 
659 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
660 					struct hif_scatter_req *s_req)
661 {
662 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
663 
664 	spin_lock_bh(&ar_sdio->scat_lock);
665 
666 	list_add_tail(&s_req->list, &ar_sdio->scat_req);
667 
668 	spin_unlock_bh(&ar_sdio->scat_lock);
669 }
670 
671 /* scatter gather read write request */
672 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
673 					struct hif_scatter_req *scat_req)
674 {
675 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
676 	u32 request = scat_req->req;
677 	int status = 0;
678 
679 	if (!scat_req->len)
680 		return -EINVAL;
681 
682 	ath6kl_dbg(ATH6KL_DBG_SCATTER,
683 		   "hif-scatter: total len: %d scatter entries: %d\n",
684 		   scat_req->len, scat_req->scat_entries);
685 
686 	if (request & HIF_SYNCHRONOUS) {
687 		status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
688 	} else {
689 		spin_lock_bh(&ar_sdio->wr_async_lock);
690 		list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
691 		spin_unlock_bh(&ar_sdio->wr_async_lock);
692 		queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
693 	}
694 
695 	return status;
696 }
697 
698 /* clean up scatter support */
699 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
700 {
701 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
702 	struct hif_scatter_req *s_req, *tmp_req;
703 
704 	/* empty the free list */
705 	spin_lock_bh(&ar_sdio->scat_lock);
706 	list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
707 		list_del(&s_req->list);
708 		spin_unlock_bh(&ar_sdio->scat_lock);
709 
710 		/*
711 		 * FIXME: should we also call completion handler with
712 		 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
713 		 * that the packet is properly freed?
714 		 */
715 		if (s_req->busrequest) {
716 			s_req->busrequest->scat_req = NULL;
717 			ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
718 		}
719 		kfree(s_req->virt_dma_buf);
720 		kfree(s_req->sgentries);
721 		kfree(s_req);
722 
723 		spin_lock_bh(&ar_sdio->scat_lock);
724 	}
725 	spin_unlock_bh(&ar_sdio->scat_lock);
726 
727 	ar_sdio->scatter_enabled = false;
728 }
729 
730 /* setup of HIF scatter resources */
731 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
732 {
733 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
734 	struct htc_target *target = ar->htc_target;
735 	int ret = 0;
736 	bool virt_scat = false;
737 
738 	if (ar_sdio->scatter_enabled)
739 		return 0;
740 
741 	ar_sdio->scatter_enabled = true;
742 
743 	/* check if host supports scatter and it meets our requirements */
744 	if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
745 		ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
746 			   ar_sdio->func->card->host->max_segs,
747 			   MAX_SCATTER_ENTRIES_PER_REQ);
748 		virt_scat = true;
749 	}
750 
751 	if (!virt_scat) {
752 		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
753 				MAX_SCATTER_ENTRIES_PER_REQ,
754 				MAX_SCATTER_REQUESTS, virt_scat);
755 
756 		if (!ret) {
757 			ath6kl_dbg(ATH6KL_DBG_BOOT,
758 				   "hif-scatter enabled requests %d entries %d\n",
759 				   MAX_SCATTER_REQUESTS,
760 				   MAX_SCATTER_ENTRIES_PER_REQ);
761 
762 			target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
763 			target->max_xfer_szper_scatreq =
764 						MAX_SCATTER_REQ_TRANSFER_SIZE;
765 		} else {
766 			ath6kl_sdio_cleanup_scatter(ar);
767 			ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
768 		}
769 	}
770 
771 	if (virt_scat || ret) {
772 		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
773 				ATH6KL_SCATTER_ENTRIES_PER_REQ,
774 				ATH6KL_SCATTER_REQS, virt_scat);
775 
776 		if (ret) {
777 			ath6kl_err("failed to alloc virtual scatter resources !\n");
778 			ath6kl_sdio_cleanup_scatter(ar);
779 			return ret;
780 		}
781 
782 		ath6kl_dbg(ATH6KL_DBG_BOOT,
783 			   "virtual scatter enabled requests %d entries %d\n",
784 			   ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
785 
786 		target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
787 		target->max_xfer_szper_scatreq =
788 					ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
789 	}
790 
791 	return 0;
792 }
793 
794 static int ath6kl_sdio_config(struct ath6kl *ar)
795 {
796 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
797 	struct sdio_func *func = ar_sdio->func;
798 	int ret;
799 
800 	sdio_claim_host(func);
801 
802 	if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
803 	    MANUFACTURER_ID_AR6003_BASE) {
804 		/* enable 4-bit ASYNC interrupt on AR6003 or later */
805 		ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
806 						CCCR_SDIO_IRQ_MODE_REG,
807 						SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
808 		if (ret) {
809 			ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
810 				   ret);
811 			goto out;
812 		}
813 
814 		ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
815 	}
816 
817 	/* give us some time to enable, in ms */
818 	func->enable_timeout = 100;
819 
820 	ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
821 	if (ret) {
822 		ath6kl_err("Set sdio block size %d failed: %d)\n",
823 			   HIF_MBOX_BLOCK_SIZE, ret);
824 		goto out;
825 	}
826 
827 out:
828 	sdio_release_host(func);
829 
830 	return ret;
831 }
832 
833 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
834 {
835 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
836 	struct sdio_func *func = ar_sdio->func;
837 	mmc_pm_flag_t flags;
838 	int ret;
839 
840 	flags = sdio_get_host_pm_caps(func);
841 
842 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
843 
844 	if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
845 	    !(flags & MMC_PM_KEEP_POWER))
846 		return -EINVAL;
847 
848 	ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
849 	if (ret) {
850 		ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
851 		return ret;
852 	}
853 
854 	/* sdio irq wakes up host */
855 	ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
856 	if (ret)
857 		ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
858 
859 	return ret;
860 }
861 
862 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
863 {
864 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
865 	struct sdio_func *func = ar_sdio->func;
866 	mmc_pm_flag_t flags;
867 	bool try_deepsleep = false;
868 	int ret;
869 
870 	if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
871 	    (!ar->suspend_mode && wow)) {
872 		ret = ath6kl_set_sdio_pm_caps(ar);
873 		if (ret)
874 			goto cut_pwr;
875 
876 		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
877 		if (ret && ret != -ENOTCONN)
878 			ath6kl_err("wow suspend failed: %d\n", ret);
879 
880 		if (ret &&
881 		    (!ar->wow_suspend_mode ||
882 		     ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
883 			try_deepsleep = true;
884 		else if (ret &&
885 			 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
886 			goto cut_pwr;
887 		if (!ret)
888 			return 0;
889 	}
890 
891 	if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
892 	    !ar->suspend_mode || try_deepsleep) {
893 		flags = sdio_get_host_pm_caps(func);
894 		if (!(flags & MMC_PM_KEEP_POWER))
895 			goto cut_pwr;
896 
897 		ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
898 		if (ret)
899 			goto cut_pwr;
900 
901 		/*
902 		 * Workaround to support Deep Sleep with MSM, set the host pm
903 		 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
904 		 * the sdc2_clock and internally allows MSM to enter
905 		 * TCXO shutdown properly.
906 		 */
907 		if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
908 			ret = sdio_set_host_pm_flags(func,
909 						MMC_PM_WAKE_SDIO_IRQ);
910 			if (ret)
911 				goto cut_pwr;
912 		}
913 
914 		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
915 					      NULL);
916 		if (ret)
917 			goto cut_pwr;
918 
919 		return 0;
920 	}
921 
922 cut_pwr:
923 	if (func->card && func->card->host)
924 		func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
925 
926 	return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
927 }
928 
929 static int ath6kl_sdio_resume(struct ath6kl *ar)
930 {
931 	switch (ar->state) {
932 	case ATH6KL_STATE_OFF:
933 	case ATH6KL_STATE_CUTPOWER:
934 		ath6kl_dbg(ATH6KL_DBG_SUSPEND,
935 			   "sdio resume configuring sdio\n");
936 
937 		/* need to set sdio settings after power is cut from sdio */
938 		ath6kl_sdio_config(ar);
939 		break;
940 
941 	case ATH6KL_STATE_ON:
942 		break;
943 
944 	case ATH6KL_STATE_DEEPSLEEP:
945 		break;
946 
947 	case ATH6KL_STATE_WOW:
948 		break;
949 
950 	case ATH6KL_STATE_SUSPENDING:
951 		break;
952 
953 	case ATH6KL_STATE_RESUMING:
954 		break;
955 
956 	case ATH6KL_STATE_RECOVERY:
957 		break;
958 	}
959 
960 	ath6kl_cfg80211_resume(ar);
961 
962 	return 0;
963 }
964 
965 /* set the window address register (using 4-byte register access ). */
966 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
967 {
968 	int status;
969 	u8 addr_val[4];
970 	s32 i;
971 
972 	/*
973 	 * Write bytes 1,2,3 of the register to set the upper address bytes,
974 	 * the LSB is written last to initiate the access cycle
975 	 */
976 
977 	for (i = 1; i <= 3; i++) {
978 		/*
979 		 * Fill the buffer with the address byte value we want to
980 		 * hit 4 times.
981 		 */
982 		memset(addr_val, ((u8 *)&addr)[i], 4);
983 
984 		/*
985 		 * Hit each byte of the register address with a 4-byte
986 		 * write operation to the same address, this is a harmless
987 		 * operation.
988 		 */
989 		status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
990 					     4, HIF_WR_SYNC_BYTE_FIX);
991 		if (status)
992 			break;
993 	}
994 
995 	if (status) {
996 		ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
997 			   __func__, addr, reg_addr);
998 		return status;
999 	}
1000 
1001 	/*
1002 	 * Write the address register again, this time write the whole
1003 	 * 4-byte value. The effect here is that the LSB write causes the
1004 	 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
1005 	 * effect since we are writing the same values again
1006 	 */
1007 	status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
1008 				     4, HIF_WR_SYNC_BYTE_INC);
1009 
1010 	if (status) {
1011 		ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
1012 			   __func__, addr, reg_addr);
1013 		return status;
1014 	}
1015 
1016 	return 0;
1017 }
1018 
1019 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1020 {
1021 	int status;
1022 
1023 	/* set window register to start read cycle */
1024 	status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1025 					address);
1026 
1027 	if (status)
1028 		return status;
1029 
1030 	/* read the data */
1031 	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1032 				(u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1033 	if (status) {
1034 		ath6kl_err("%s: failed to read from window data addr\n",
1035 			   __func__);
1036 		return status;
1037 	}
1038 
1039 	return status;
1040 }
1041 
1042 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1043 				    __le32 data)
1044 {
1045 	int status;
1046 	u32 val = (__force u32) data;
1047 
1048 	/* set write data */
1049 	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1050 				(u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1051 	if (status) {
1052 		ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1053 			   __func__, data);
1054 		return status;
1055 	}
1056 
1057 	/* set window register, which starts the write cycle */
1058 	return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1059 				      address);
1060 }
1061 
1062 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1063 {
1064 	u32 addr;
1065 	unsigned long timeout;
1066 	int ret;
1067 
1068 	ar->bmi.cmd_credits = 0;
1069 
1070 	/* Read the counter register to get the command credits */
1071 	addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1072 
1073 	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1074 	while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1075 		/*
1076 		 * Hit the credit counter with a 4-byte access, the first byte
1077 		 * read will hit the counter and cause a decrement, while the
1078 		 * remaining 3 bytes has no effect. The rationale behind this
1079 		 * is to make all HIF accesses 4-byte aligned.
1080 		 */
1081 		ret = ath6kl_sdio_read_write_sync(ar, addr,
1082 					 (u8 *)&ar->bmi.cmd_credits, 4,
1083 					 HIF_RD_SYNC_BYTE_INC);
1084 		if (ret) {
1085 			ath6kl_err("Unable to decrement the command credit count register: %d\n",
1086 				   ret);
1087 			return ret;
1088 		}
1089 
1090 		/* The counter is only 8 bits.
1091 		 * Ignore anything in the upper 3 bytes
1092 		 */
1093 		ar->bmi.cmd_credits &= 0xFF;
1094 	}
1095 
1096 	if (!ar->bmi.cmd_credits) {
1097 		ath6kl_err("bmi communication timeout\n");
1098 		return -ETIMEDOUT;
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1105 {
1106 	unsigned long timeout;
1107 	u32 rx_word = 0;
1108 	int ret = 0;
1109 
1110 	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1111 	while ((time_before(jiffies, timeout)) && !rx_word) {
1112 		ret = ath6kl_sdio_read_write_sync(ar,
1113 					RX_LOOKAHEAD_VALID_ADDRESS,
1114 					(u8 *)&rx_word, sizeof(rx_word),
1115 					HIF_RD_SYNC_BYTE_INC);
1116 		if (ret) {
1117 			ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1118 			return ret;
1119 		}
1120 
1121 		 /* all we really want is one bit */
1122 		rx_word &= (1 << ENDPOINT1);
1123 	}
1124 
1125 	if (!rx_word) {
1126 		ath6kl_err("bmi_recv_buf FIFO empty\n");
1127 		return -EINVAL;
1128 	}
1129 
1130 	return ret;
1131 }
1132 
1133 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1134 {
1135 	int ret;
1136 	u32 addr;
1137 
1138 	ret = ath6kl_sdio_bmi_credits(ar);
1139 	if (ret)
1140 		return ret;
1141 
1142 	addr = ar->mbox_info.htc_addr;
1143 
1144 	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1145 					  HIF_WR_SYNC_BYTE_INC);
1146 	if (ret) {
1147 		ath6kl_err("unable to send the bmi data to the device\n");
1148 		return ret;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
1154 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1155 {
1156 	int ret;
1157 	u32 addr;
1158 
1159 	/*
1160 	 * During normal bootup, small reads may be required.
1161 	 * Rather than issue an HIF Read and then wait as the Target
1162 	 * adds successive bytes to the FIFO, we wait here until
1163 	 * we know that response data is available.
1164 	 *
1165 	 * This allows us to cleanly timeout on an unexpected
1166 	 * Target failure rather than risk problems at the HIF level.
1167 	 * In particular, this avoids SDIO timeouts and possibly garbage
1168 	 * data on some host controllers.  And on an interconnect
1169 	 * such as Compact Flash (as well as some SDIO masters) which
1170 	 * does not provide any indication on data timeout, it avoids
1171 	 * a potential hang or garbage response.
1172 	 *
1173 	 * Synchronization is more difficult for reads larger than the
1174 	 * size of the MBOX FIFO (128B), because the Target is unable
1175 	 * to push the 129th byte of data until AFTER the Host posts an
1176 	 * HIF Read and removes some FIFO data.  So for large reads the
1177 	 * Host proceeds to post an HIF Read BEFORE all the data is
1178 	 * actually available to read.  Fortunately, large BMI reads do
1179 	 * not occur in practice -- they're supported for debug/development.
1180 	 *
1181 	 * So Host/Target BMI synchronization is divided into these cases:
1182 	 *  CASE 1: length < 4
1183 	 *        Should not happen
1184 	 *
1185 	 *  CASE 2: 4 <= length <= 128
1186 	 *        Wait for first 4 bytes to be in FIFO
1187 	 *        If CONSERVATIVE_BMI_READ is enabled, also wait for
1188 	 *        a BMI command credit, which indicates that the ENTIRE
1189 	 *        response is available in the the FIFO
1190 	 *
1191 	 *  CASE 3: length > 128
1192 	 *        Wait for the first 4 bytes to be in FIFO
1193 	 *
1194 	 * For most uses, a small timeout should be sufficient and we will
1195 	 * usually see a response quickly; but there may be some unusual
1196 	 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1197 	 * For now, we use an unbounded busy loop while waiting for
1198 	 * BMI_EXECUTE.
1199 	 *
1200 	 * If BMI_EXECUTE ever needs to support longer-latency execution,
1201 	 * especially in production, this code needs to be enhanced to sleep
1202 	 * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
1203 	 * a function of Host processor speed.
1204 	 */
1205 	if (len >= 4) { /* NB: Currently, always true */
1206 		ret = ath6kl_bmi_get_rx_lkahd(ar);
1207 		if (ret)
1208 			return ret;
1209 	}
1210 
1211 	addr = ar->mbox_info.htc_addr;
1212 	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1213 				  HIF_RD_SYNC_BYTE_INC);
1214 	if (ret) {
1215 		ath6kl_err("Unable to read the bmi data from the device: %d\n",
1216 			   ret);
1217 		return ret;
1218 	}
1219 
1220 	return 0;
1221 }
1222 
1223 static void ath6kl_sdio_stop(struct ath6kl *ar)
1224 {
1225 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1226 	struct bus_request *req, *tmp_req;
1227 	void *context;
1228 
1229 	/* FIXME: make sure that wq is not queued again */
1230 
1231 	cancel_work_sync(&ar_sdio->wr_async_work);
1232 
1233 	spin_lock_bh(&ar_sdio->wr_async_lock);
1234 
1235 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1236 		list_del(&req->list);
1237 
1238 		if (req->scat_req) {
1239 			/* this is a scatter gather request */
1240 			req->scat_req->status = -ECANCELED;
1241 			req->scat_req->complete(ar_sdio->ar->htc_target,
1242 						req->scat_req);
1243 		} else {
1244 			context = req->packet;
1245 			ath6kl_sdio_free_bus_req(ar_sdio, req);
1246 			ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1247 		}
1248 	}
1249 
1250 	spin_unlock_bh(&ar_sdio->wr_async_lock);
1251 
1252 	WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1253 }
1254 
1255 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1256 	.read_write_sync = ath6kl_sdio_read_write_sync,
1257 	.write_async = ath6kl_sdio_write_async,
1258 	.irq_enable = ath6kl_sdio_irq_enable,
1259 	.irq_disable = ath6kl_sdio_irq_disable,
1260 	.scatter_req_get = ath6kl_sdio_scatter_req_get,
1261 	.scatter_req_add = ath6kl_sdio_scatter_req_add,
1262 	.enable_scatter = ath6kl_sdio_enable_scatter,
1263 	.scat_req_rw = ath6kl_sdio_async_rw_scatter,
1264 	.cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1265 	.suspend = ath6kl_sdio_suspend,
1266 	.resume = ath6kl_sdio_resume,
1267 	.diag_read32 = ath6kl_sdio_diag_read32,
1268 	.diag_write32 = ath6kl_sdio_diag_write32,
1269 	.bmi_read = ath6kl_sdio_bmi_read,
1270 	.bmi_write = ath6kl_sdio_bmi_write,
1271 	.power_on = ath6kl_sdio_power_on,
1272 	.power_off = ath6kl_sdio_power_off,
1273 	.stop = ath6kl_sdio_stop,
1274 };
1275 
1276 #ifdef CONFIG_PM_SLEEP
1277 
1278 /*
1279  * Empty handlers so that mmc subsystem doesn't remove us entirely during
1280  * suspend. We instead follow cfg80211 suspend/resume handlers.
1281  */
1282 static int ath6kl_sdio_pm_suspend(struct device *device)
1283 {
1284 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1285 
1286 	return 0;
1287 }
1288 
1289 static int ath6kl_sdio_pm_resume(struct device *device)
1290 {
1291 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1292 
1293 	return 0;
1294 }
1295 
1296 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1297 			 ath6kl_sdio_pm_resume);
1298 
1299 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1300 
1301 #else
1302 
1303 #define ATH6KL_SDIO_PM_OPS NULL
1304 
1305 #endif /* CONFIG_PM_SLEEP */
1306 
1307 static int ath6kl_sdio_probe(struct sdio_func *func,
1308 			     const struct sdio_device_id *id)
1309 {
1310 	int ret;
1311 	struct ath6kl_sdio *ar_sdio;
1312 	struct ath6kl *ar;
1313 	int count;
1314 
1315 	ath6kl_dbg(ATH6KL_DBG_BOOT,
1316 		   "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1317 		   func->num, func->vendor, func->device,
1318 		   func->max_blksize, func->cur_blksize);
1319 
1320 	ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1321 	if (!ar_sdio)
1322 		return -ENOMEM;
1323 
1324 	ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1325 	if (!ar_sdio->dma_buffer) {
1326 		ret = -ENOMEM;
1327 		goto err_hif;
1328 	}
1329 
1330 	ar_sdio->func = func;
1331 	sdio_set_drvdata(func, ar_sdio);
1332 
1333 	ar_sdio->id = id;
1334 	ar_sdio->is_disabled = true;
1335 
1336 	spin_lock_init(&ar_sdio->lock);
1337 	spin_lock_init(&ar_sdio->scat_lock);
1338 	spin_lock_init(&ar_sdio->wr_async_lock);
1339 	mutex_init(&ar_sdio->dma_buffer_mutex);
1340 
1341 	INIT_LIST_HEAD(&ar_sdio->scat_req);
1342 	INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1343 	INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1344 
1345 	INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1346 
1347 	init_waitqueue_head(&ar_sdio->irq_wq);
1348 
1349 	for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1350 		ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1351 
1352 	ar = ath6kl_core_create(&ar_sdio->func->dev);
1353 	if (!ar) {
1354 		ath6kl_err("Failed to alloc ath6kl core\n");
1355 		ret = -ENOMEM;
1356 		goto err_dma;
1357 	}
1358 
1359 	ar_sdio->ar = ar;
1360 	ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1361 	ar->hif_priv = ar_sdio;
1362 	ar->hif_ops = &ath6kl_sdio_ops;
1363 	ar->bmi.max_data_size = 256;
1364 
1365 	ath6kl_sdio_set_mbox_info(ar);
1366 
1367 	ret = ath6kl_sdio_config(ar);
1368 	if (ret) {
1369 		ath6kl_err("Failed to config sdio: %d\n", ret);
1370 		goto err_core_alloc;
1371 	}
1372 
1373 	ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1374 	if (ret) {
1375 		ath6kl_err("Failed to init ath6kl core\n");
1376 		goto err_core_alloc;
1377 	}
1378 
1379 	return ret;
1380 
1381 err_core_alloc:
1382 	ath6kl_core_destroy(ar_sdio->ar);
1383 err_dma:
1384 	kfree(ar_sdio->dma_buffer);
1385 err_hif:
1386 	kfree(ar_sdio);
1387 
1388 	return ret;
1389 }
1390 
1391 static void ath6kl_sdio_remove(struct sdio_func *func)
1392 {
1393 	struct ath6kl_sdio *ar_sdio;
1394 
1395 	ath6kl_dbg(ATH6KL_DBG_BOOT,
1396 		   "sdio removed func %d vendor 0x%x device 0x%x\n",
1397 		   func->num, func->vendor, func->device);
1398 
1399 	ar_sdio = sdio_get_drvdata(func);
1400 
1401 	ath6kl_stop_txrx(ar_sdio->ar);
1402 	cancel_work_sync(&ar_sdio->wr_async_work);
1403 
1404 	ath6kl_core_cleanup(ar_sdio->ar);
1405 	ath6kl_core_destroy(ar_sdio->ar);
1406 
1407 	kfree(ar_sdio->dma_buffer);
1408 	kfree(ar_sdio);
1409 }
1410 
1411 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1412 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1413 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1414 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1415 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1416 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x2))},
1417 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x18))},
1418 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x19))},
1419 	{},
1420 };
1421 
1422 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1423 
1424 static struct sdio_driver ath6kl_sdio_driver = {
1425 	.name = "ath6kl_sdio",
1426 	.id_table = ath6kl_sdio_devices,
1427 	.probe = ath6kl_sdio_probe,
1428 	.remove = ath6kl_sdio_remove,
1429 	.drv.pm = ATH6KL_SDIO_PM_OPS,
1430 };
1431 
1432 static int __init ath6kl_sdio_init(void)
1433 {
1434 	int ret;
1435 
1436 	ret = sdio_register_driver(&ath6kl_sdio_driver);
1437 	if (ret)
1438 		ath6kl_err("sdio driver registration failed: %d\n", ret);
1439 
1440 	return ret;
1441 }
1442 
1443 static void __exit ath6kl_sdio_exit(void)
1444 {
1445 	sdio_unregister_driver(&ath6kl_sdio_driver);
1446 }
1447 
1448 module_init(ath6kl_sdio_init);
1449 module_exit(ath6kl_sdio_exit);
1450 
1451 MODULE_AUTHOR("Atheros Communications, Inc.");
1452 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1453 MODULE_LICENSE("Dual BSD/GPL");
1454 
1455 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1456 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1457 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1458 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1459 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1460 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1461 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1462 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1463 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1464 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1465 MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1466 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1467 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1468 MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1469 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1470 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1471 MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1472 MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1473 MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);
1474 MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE);
1475 MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE);
1476 MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE);
1477