xref: /linux/drivers/net/wireless/ath/ath6kl/sdio.c (revision b889fcf63cb62e7fdb7816565e28f44dbe4a76a5)
1 /*
2  * Copyright (c) 2004-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/mmc/card.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/mmc/host.h>
22 #include <linux/mmc/sdio_func.h>
23 #include <linux/mmc/sdio_ids.h>
24 #include <linux/mmc/sdio.h>
25 #include <linux/mmc/sd.h>
26 #include "hif.h"
27 #include "hif-ops.h"
28 #include "target.h"
29 #include "debug.h"
30 #include "cfg80211.h"
31 
32 struct ath6kl_sdio {
33 	struct sdio_func *func;
34 
35 	/* protects access to bus_req_freeq */
36 	spinlock_t lock;
37 
38 	/* free list */
39 	struct list_head bus_req_freeq;
40 
41 	/* available bus requests */
42 	struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
43 
44 	struct ath6kl *ar;
45 
46 	u8 *dma_buffer;
47 
48 	/* protects access to dma_buffer */
49 	struct mutex dma_buffer_mutex;
50 
51 	/* scatter request list head */
52 	struct list_head scat_req;
53 
54 	atomic_t irq_handling;
55 	wait_queue_head_t irq_wq;
56 
57 	/* protects access to scat_req */
58 	spinlock_t scat_lock;
59 
60 	bool scatter_enabled;
61 
62 	bool is_disabled;
63 	const struct sdio_device_id *id;
64 	struct work_struct wr_async_work;
65 	struct list_head wr_asyncq;
66 
67 	/* protects access to wr_asyncq */
68 	spinlock_t wr_async_lock;
69 };
70 
71 #define CMD53_ARG_READ          0
72 #define CMD53_ARG_WRITE         1
73 #define CMD53_ARG_BLOCK_BASIS   1
74 #define CMD53_ARG_FIXED_ADDRESS 0
75 #define CMD53_ARG_INCR_ADDRESS  1
76 
77 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
78 {
79 	return ar->hif_priv;
80 }
81 
82 /*
83  * Macro to check if DMA buffer is WORD-aligned and DMA-able.
84  * Most host controllers assume the buffer is DMA'able and will
85  * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
86  * check fails on stack memory.
87  */
88 static inline bool buf_needs_bounce(u8 *buf)
89 {
90 	return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
91 }
92 
93 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
94 {
95 	struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
96 
97 	/* EP1 has an extended range */
98 	mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
99 	mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
100 	mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
101 	mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
102 	mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
103 	mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
104 }
105 
106 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
107 					     u8 mode, u8 opcode, u32 addr,
108 					     u16 blksz)
109 {
110 	*arg = (((rw & 1) << 31) |
111 		((func & 0x7) << 28) |
112 		((mode & 1) << 27) |
113 		((opcode & 1) << 26) |
114 		((addr & 0x1FFFF) << 9) |
115 		(blksz & 0x1FF));
116 }
117 
118 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
119 					     unsigned int address,
120 					     unsigned char val)
121 {
122 	const u8 func = 0;
123 
124 	*arg = ((write & 1) << 31) |
125 	       ((func & 0x7) << 28) |
126 	       ((raw & 1) << 27) |
127 	       (1 << 26) |
128 	       ((address & 0x1FFFF) << 9) |
129 	       (1 << 8) |
130 	       (val & 0xFF);
131 }
132 
133 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
134 					   unsigned int address,
135 					   unsigned char byte)
136 {
137 	struct mmc_command io_cmd;
138 
139 	memset(&io_cmd, 0, sizeof(io_cmd));
140 	ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
141 	io_cmd.opcode = SD_IO_RW_DIRECT;
142 	io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
143 
144 	return mmc_wait_for_cmd(card->host, &io_cmd, 0);
145 }
146 
147 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
148 			  u8 *buf, u32 len)
149 {
150 	int ret = 0;
151 
152 	sdio_claim_host(func);
153 
154 	if (request & HIF_WRITE) {
155 		/* FIXME: looks like ugly workaround for something */
156 		if (addr >= HIF_MBOX_BASE_ADDR &&
157 		    addr <= HIF_MBOX_END_ADDR)
158 			addr += (HIF_MBOX_WIDTH - len);
159 
160 		/* FIXME: this also looks like ugly workaround */
161 		if (addr == HIF_MBOX0_EXT_BASE_ADDR)
162 			addr += HIF_MBOX0_EXT_WIDTH - len;
163 
164 		if (request & HIF_FIXED_ADDRESS)
165 			ret = sdio_writesb(func, addr, buf, len);
166 		else
167 			ret = sdio_memcpy_toio(func, addr, buf, len);
168 	} else {
169 		if (request & HIF_FIXED_ADDRESS)
170 			ret = sdio_readsb(func, buf, addr, len);
171 		else
172 			ret = sdio_memcpy_fromio(func, buf, addr, len);
173 	}
174 
175 	sdio_release_host(func);
176 
177 	ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
178 		   request & HIF_WRITE ? "wr" : "rd", addr,
179 		   request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
180 	ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
181 
182 	return ret;
183 }
184 
185 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
186 {
187 	struct bus_request *bus_req;
188 
189 	spin_lock_bh(&ar_sdio->lock);
190 
191 	if (list_empty(&ar_sdio->bus_req_freeq)) {
192 		spin_unlock_bh(&ar_sdio->lock);
193 		return NULL;
194 	}
195 
196 	bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
197 				   struct bus_request, list);
198 	list_del(&bus_req->list);
199 
200 	spin_unlock_bh(&ar_sdio->lock);
201 	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
202 		   __func__, bus_req);
203 
204 	return bus_req;
205 }
206 
207 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
208 				     struct bus_request *bus_req)
209 {
210 	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
211 		   __func__, bus_req);
212 
213 	spin_lock_bh(&ar_sdio->lock);
214 	list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
215 	spin_unlock_bh(&ar_sdio->lock);
216 }
217 
218 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
219 					struct mmc_data *data)
220 {
221 	struct scatterlist *sg;
222 	int i;
223 
224 	data->blksz = HIF_MBOX_BLOCK_SIZE;
225 	data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
226 
227 	ath6kl_dbg(ATH6KL_DBG_SCATTER,
228 		   "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
229 		   (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
230 		   data->blksz, data->blocks, scat_req->len,
231 		   scat_req->scat_entries);
232 
233 	data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
234 						    MMC_DATA_READ;
235 
236 	/* fill SG entries */
237 	sg = scat_req->sgentries;
238 	sg_init_table(sg, scat_req->scat_entries);
239 
240 	/* assemble SG list */
241 	for (i = 0; i < scat_req->scat_entries; i++, sg++) {
242 		ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
243 			   i, scat_req->scat_list[i].buf,
244 			   scat_req->scat_list[i].len);
245 
246 		sg_set_buf(sg, scat_req->scat_list[i].buf,
247 			   scat_req->scat_list[i].len);
248 	}
249 
250 	/* set scatter-gather table for request */
251 	data->sg = scat_req->sgentries;
252 	data->sg_len = scat_req->scat_entries;
253 }
254 
255 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
256 			       struct bus_request *req)
257 {
258 	struct mmc_request mmc_req;
259 	struct mmc_command cmd;
260 	struct mmc_data data;
261 	struct hif_scatter_req *scat_req;
262 	u8 opcode, rw;
263 	int status, len;
264 
265 	scat_req = req->scat_req;
266 
267 	if (scat_req->virt_scat) {
268 		len = scat_req->len;
269 		if (scat_req->req & HIF_BLOCK_BASIS)
270 			len = round_down(len, HIF_MBOX_BLOCK_SIZE);
271 
272 		status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
273 					scat_req->addr, scat_req->virt_dma_buf,
274 					len);
275 		goto scat_complete;
276 	}
277 
278 	memset(&mmc_req, 0, sizeof(struct mmc_request));
279 	memset(&cmd, 0, sizeof(struct mmc_command));
280 	memset(&data, 0, sizeof(struct mmc_data));
281 
282 	ath6kl_sdio_setup_scat_data(scat_req, &data);
283 
284 	opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
285 		  CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
286 
287 	rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
288 
289 	/* Fixup the address so that the last byte will fall on MBOX EOM */
290 	if (scat_req->req & HIF_WRITE) {
291 		if (scat_req->addr == HIF_MBOX_BASE_ADDR)
292 			scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
293 		else
294 			/* Uses extended address range */
295 			scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
296 	}
297 
298 	/* set command argument */
299 	ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
300 				  CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
301 				  data.blocks);
302 
303 	cmd.opcode = SD_IO_RW_EXTENDED;
304 	cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
305 
306 	mmc_req.cmd = &cmd;
307 	mmc_req.data = &data;
308 
309 	sdio_claim_host(ar_sdio->func);
310 
311 	mmc_set_data_timeout(&data, ar_sdio->func->card);
312 	/* synchronous call to process request */
313 	mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
314 
315 	sdio_release_host(ar_sdio->func);
316 
317 	status = cmd.error ? cmd.error : data.error;
318 
319 scat_complete:
320 	scat_req->status = status;
321 
322 	if (scat_req->status)
323 		ath6kl_err("Scatter write request failed:%d\n",
324 			   scat_req->status);
325 
326 	if (scat_req->req & HIF_ASYNCHRONOUS)
327 		scat_req->complete(ar_sdio->ar->htc_target, scat_req);
328 
329 	return status;
330 }
331 
332 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
333 					   int n_scat_entry, int n_scat_req,
334 					   bool virt_scat)
335 {
336 	struct hif_scatter_req *s_req;
337 	struct bus_request *bus_req;
338 	int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz;
339 	u8 *virt_buf;
340 
341 	scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item);
342 	scat_req_sz = sizeof(*s_req) + scat_list_sz;
343 
344 	if (!virt_scat)
345 		sg_sz = sizeof(struct scatterlist) * n_scat_entry;
346 	else
347 		buf_sz =  2 * L1_CACHE_BYTES +
348 			  ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
349 
350 	for (i = 0; i < n_scat_req; i++) {
351 		/* allocate the scatter request */
352 		s_req = kzalloc(scat_req_sz, GFP_KERNEL);
353 		if (!s_req)
354 			return -ENOMEM;
355 
356 		if (virt_scat) {
357 			virt_buf = kzalloc(buf_sz, GFP_KERNEL);
358 			if (!virt_buf) {
359 				kfree(s_req);
360 				return -ENOMEM;
361 			}
362 
363 			s_req->virt_dma_buf =
364 				(u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
365 		} else {
366 			/* allocate sglist */
367 			s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL);
368 
369 			if (!s_req->sgentries) {
370 				kfree(s_req);
371 				return -ENOMEM;
372 			}
373 		}
374 
375 		/* allocate a bus request for this scatter request */
376 		bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
377 		if (!bus_req) {
378 			kfree(s_req->sgentries);
379 			kfree(s_req->virt_dma_buf);
380 			kfree(s_req);
381 			return -ENOMEM;
382 		}
383 
384 		/* assign the scatter request to this bus request */
385 		bus_req->scat_req = s_req;
386 		s_req->busrequest = bus_req;
387 
388 		s_req->virt_scat = virt_scat;
389 
390 		/* add it to the scatter pool */
391 		hif_scatter_req_add(ar_sdio->ar, s_req);
392 	}
393 
394 	return 0;
395 }
396 
397 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
398 				       u32 len, u32 request)
399 {
400 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
401 	u8  *tbuf = NULL;
402 	int ret;
403 	bool bounced = false;
404 
405 	if (request & HIF_BLOCK_BASIS)
406 		len = round_down(len, HIF_MBOX_BLOCK_SIZE);
407 
408 	if (buf_needs_bounce(buf)) {
409 		if (!ar_sdio->dma_buffer)
410 			return -ENOMEM;
411 		mutex_lock(&ar_sdio->dma_buffer_mutex);
412 		tbuf = ar_sdio->dma_buffer;
413 
414 		if (request & HIF_WRITE)
415 			memcpy(tbuf, buf, len);
416 
417 		bounced = true;
418 	} else
419 		tbuf = buf;
420 
421 	ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
422 	if ((request & HIF_READ) && bounced)
423 		memcpy(buf, tbuf, len);
424 
425 	if (bounced)
426 		mutex_unlock(&ar_sdio->dma_buffer_mutex);
427 
428 	return ret;
429 }
430 
431 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
432 				      struct bus_request *req)
433 {
434 	if (req->scat_req)
435 		ath6kl_sdio_scat_rw(ar_sdio, req);
436 	else {
437 		void *context;
438 		int status;
439 
440 		status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
441 						     req->buffer, req->length,
442 						     req->request);
443 		context = req->packet;
444 		ath6kl_sdio_free_bus_req(ar_sdio, req);
445 		ath6kl_hif_rw_comp_handler(context, status);
446 	}
447 }
448 
449 static void ath6kl_sdio_write_async_work(struct work_struct *work)
450 {
451 	struct ath6kl_sdio *ar_sdio;
452 	struct bus_request *req, *tmp_req;
453 
454 	ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
455 
456 	spin_lock_bh(&ar_sdio->wr_async_lock);
457 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
458 		list_del(&req->list);
459 		spin_unlock_bh(&ar_sdio->wr_async_lock);
460 		__ath6kl_sdio_write_async(ar_sdio, req);
461 		spin_lock_bh(&ar_sdio->wr_async_lock);
462 	}
463 	spin_unlock_bh(&ar_sdio->wr_async_lock);
464 }
465 
466 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
467 {
468 	int status;
469 	struct ath6kl_sdio *ar_sdio;
470 
471 	ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
472 
473 	ar_sdio = sdio_get_drvdata(func);
474 	atomic_set(&ar_sdio->irq_handling, 1);
475 	/*
476 	 * Release the host during interrups so we can pick it back up when
477 	 * we process commands.
478 	 */
479 	sdio_release_host(ar_sdio->func);
480 
481 	status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
482 	sdio_claim_host(ar_sdio->func);
483 
484 	atomic_set(&ar_sdio->irq_handling, 0);
485 	wake_up(&ar_sdio->irq_wq);
486 
487 	WARN_ON(status && status != -ECANCELED);
488 }
489 
490 static int ath6kl_sdio_power_on(struct ath6kl *ar)
491 {
492 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
493 	struct sdio_func *func = ar_sdio->func;
494 	int ret = 0;
495 
496 	if (!ar_sdio->is_disabled)
497 		return 0;
498 
499 	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
500 
501 	sdio_claim_host(func);
502 
503 	ret = sdio_enable_func(func);
504 	if (ret) {
505 		ath6kl_err("Unable to enable sdio func: %d)\n", ret);
506 		sdio_release_host(func);
507 		return ret;
508 	}
509 
510 	sdio_release_host(func);
511 
512 	/*
513 	 * Wait for hardware to initialise. It should take a lot less than
514 	 * 10 ms but let's be conservative here.
515 	 */
516 	msleep(10);
517 
518 	ar_sdio->is_disabled = false;
519 
520 	return ret;
521 }
522 
523 static int ath6kl_sdio_power_off(struct ath6kl *ar)
524 {
525 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
526 	int ret;
527 
528 	if (ar_sdio->is_disabled)
529 		return 0;
530 
531 	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
532 
533 	/* Disable the card */
534 	sdio_claim_host(ar_sdio->func);
535 	ret = sdio_disable_func(ar_sdio->func);
536 	sdio_release_host(ar_sdio->func);
537 
538 	if (ret)
539 		return ret;
540 
541 	ar_sdio->is_disabled = true;
542 
543 	return ret;
544 }
545 
546 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
547 				   u32 length, u32 request,
548 				   struct htc_packet *packet)
549 {
550 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
551 	struct bus_request *bus_req;
552 
553 	bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
554 
555 	if (WARN_ON_ONCE(!bus_req))
556 		return -ENOMEM;
557 
558 	bus_req->address = address;
559 	bus_req->buffer = buffer;
560 	bus_req->length = length;
561 	bus_req->request = request;
562 	bus_req->packet = packet;
563 
564 	spin_lock_bh(&ar_sdio->wr_async_lock);
565 	list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
566 	spin_unlock_bh(&ar_sdio->wr_async_lock);
567 	queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
568 
569 	return 0;
570 }
571 
572 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
573 {
574 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
575 	int ret;
576 
577 	sdio_claim_host(ar_sdio->func);
578 
579 	/* Register the isr */
580 	ret =  sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
581 	if (ret)
582 		ath6kl_err("Failed to claim sdio irq: %d\n", ret);
583 
584 	sdio_release_host(ar_sdio->func);
585 }
586 
587 static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
588 {
589 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
590 
591 	return !atomic_read(&ar_sdio->irq_handling);
592 }
593 
594 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
595 {
596 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
597 	int ret;
598 
599 	sdio_claim_host(ar_sdio->func);
600 
601 	if (atomic_read(&ar_sdio->irq_handling)) {
602 		sdio_release_host(ar_sdio->func);
603 
604 		ret = wait_event_interruptible(ar_sdio->irq_wq,
605 					       ath6kl_sdio_is_on_irq(ar));
606 		if (ret)
607 			return;
608 
609 		sdio_claim_host(ar_sdio->func);
610 	}
611 
612 	ret = sdio_release_irq(ar_sdio->func);
613 	if (ret)
614 		ath6kl_err("Failed to release sdio irq: %d\n", ret);
615 
616 	sdio_release_host(ar_sdio->func);
617 }
618 
619 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
620 {
621 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
622 	struct hif_scatter_req *node = NULL;
623 
624 	spin_lock_bh(&ar_sdio->scat_lock);
625 
626 	if (!list_empty(&ar_sdio->scat_req)) {
627 		node = list_first_entry(&ar_sdio->scat_req,
628 					struct hif_scatter_req, list);
629 		list_del(&node->list);
630 
631 		node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
632 	}
633 
634 	spin_unlock_bh(&ar_sdio->scat_lock);
635 
636 	return node;
637 }
638 
639 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
640 					struct hif_scatter_req *s_req)
641 {
642 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
643 
644 	spin_lock_bh(&ar_sdio->scat_lock);
645 
646 	list_add_tail(&s_req->list, &ar_sdio->scat_req);
647 
648 	spin_unlock_bh(&ar_sdio->scat_lock);
649 
650 }
651 
652 /* scatter gather read write request */
653 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
654 					struct hif_scatter_req *scat_req)
655 {
656 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
657 	u32 request = scat_req->req;
658 	int status = 0;
659 
660 	if (!scat_req->len)
661 		return -EINVAL;
662 
663 	ath6kl_dbg(ATH6KL_DBG_SCATTER,
664 		   "hif-scatter: total len: %d scatter entries: %d\n",
665 		   scat_req->len, scat_req->scat_entries);
666 
667 	if (request & HIF_SYNCHRONOUS)
668 		status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
669 	else {
670 		spin_lock_bh(&ar_sdio->wr_async_lock);
671 		list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
672 		spin_unlock_bh(&ar_sdio->wr_async_lock);
673 		queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
674 	}
675 
676 	return status;
677 }
678 
679 /* clean up scatter support */
680 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
681 {
682 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
683 	struct hif_scatter_req *s_req, *tmp_req;
684 
685 	/* empty the free list */
686 	spin_lock_bh(&ar_sdio->scat_lock);
687 	list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
688 		list_del(&s_req->list);
689 		spin_unlock_bh(&ar_sdio->scat_lock);
690 
691 		/*
692 		 * FIXME: should we also call completion handler with
693 		 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
694 		 * that the packet is properly freed?
695 		 */
696 		if (s_req->busrequest)
697 			ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
698 		kfree(s_req->virt_dma_buf);
699 		kfree(s_req->sgentries);
700 		kfree(s_req);
701 
702 		spin_lock_bh(&ar_sdio->scat_lock);
703 	}
704 	spin_unlock_bh(&ar_sdio->scat_lock);
705 }
706 
707 /* setup of HIF scatter resources */
708 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
709 {
710 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
711 	struct htc_target *target = ar->htc_target;
712 	int ret = 0;
713 	bool virt_scat = false;
714 
715 	if (ar_sdio->scatter_enabled)
716 		return 0;
717 
718 	ar_sdio->scatter_enabled = true;
719 
720 	/* check if host supports scatter and it meets our requirements */
721 	if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
722 		ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
723 			   ar_sdio->func->card->host->max_segs,
724 			   MAX_SCATTER_ENTRIES_PER_REQ);
725 		virt_scat = true;
726 	}
727 
728 	if (!virt_scat) {
729 		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
730 				MAX_SCATTER_ENTRIES_PER_REQ,
731 				MAX_SCATTER_REQUESTS, virt_scat);
732 
733 		if (!ret) {
734 			ath6kl_dbg(ATH6KL_DBG_BOOT,
735 				   "hif-scatter enabled requests %d entries %d\n",
736 				   MAX_SCATTER_REQUESTS,
737 				   MAX_SCATTER_ENTRIES_PER_REQ);
738 
739 			target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
740 			target->max_xfer_szper_scatreq =
741 						MAX_SCATTER_REQ_TRANSFER_SIZE;
742 		} else {
743 			ath6kl_sdio_cleanup_scatter(ar);
744 			ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
745 		}
746 	}
747 
748 	if (virt_scat || ret) {
749 		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
750 				ATH6KL_SCATTER_ENTRIES_PER_REQ,
751 				ATH6KL_SCATTER_REQS, virt_scat);
752 
753 		if (ret) {
754 			ath6kl_err("failed to alloc virtual scatter resources !\n");
755 			ath6kl_sdio_cleanup_scatter(ar);
756 			return ret;
757 		}
758 
759 		ath6kl_dbg(ATH6KL_DBG_BOOT,
760 			   "virtual scatter enabled requests %d entries %d\n",
761 			   ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
762 
763 		target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
764 		target->max_xfer_szper_scatreq =
765 					ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
766 	}
767 
768 	return 0;
769 }
770 
771 static int ath6kl_sdio_config(struct ath6kl *ar)
772 {
773 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
774 	struct sdio_func *func = ar_sdio->func;
775 	int ret;
776 
777 	sdio_claim_host(func);
778 
779 	if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
780 	    MANUFACTURER_ID_AR6003_BASE) {
781 		/* enable 4-bit ASYNC interrupt on AR6003 or later */
782 		ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
783 						CCCR_SDIO_IRQ_MODE_REG,
784 						SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
785 		if (ret) {
786 			ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
787 				   ret);
788 			goto out;
789 		}
790 
791 		ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
792 	}
793 
794 	/* give us some time to enable, in ms */
795 	func->enable_timeout = 100;
796 
797 	ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
798 	if (ret) {
799 		ath6kl_err("Set sdio block size %d failed: %d)\n",
800 			   HIF_MBOX_BLOCK_SIZE, ret);
801 		goto out;
802 	}
803 
804 out:
805 	sdio_release_host(func);
806 
807 	return ret;
808 }
809 
810 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
811 {
812 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
813 	struct sdio_func *func = ar_sdio->func;
814 	mmc_pm_flag_t flags;
815 	int ret;
816 
817 	flags = sdio_get_host_pm_caps(func);
818 
819 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
820 
821 	if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
822 	    !(flags & MMC_PM_KEEP_POWER))
823 		return -EINVAL;
824 
825 	ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
826 	if (ret) {
827 		ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
828 		return ret;
829 	}
830 
831 	/* sdio irq wakes up host */
832 	ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
833 	if (ret)
834 		ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
835 
836 	return ret;
837 }
838 
839 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
840 {
841 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
842 	struct sdio_func *func = ar_sdio->func;
843 	mmc_pm_flag_t flags;
844 	bool try_deepsleep = false;
845 	int ret;
846 
847 	if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
848 	    (!ar->suspend_mode && wow)) {
849 
850 		ret = ath6kl_set_sdio_pm_caps(ar);
851 		if (ret)
852 			goto cut_pwr;
853 
854 		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
855 		if (ret && ret != -ENOTCONN)
856 			ath6kl_err("wow suspend failed: %d\n", ret);
857 
858 		if (ret &&
859 		    (!ar->wow_suspend_mode ||
860 		     ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
861 			try_deepsleep = true;
862 		else if (ret &&
863 			 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
864 			goto cut_pwr;
865 		if (!ret)
866 			return 0;
867 	}
868 
869 	if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
870 	    !ar->suspend_mode || try_deepsleep) {
871 
872 		flags = sdio_get_host_pm_caps(func);
873 		if (!(flags & MMC_PM_KEEP_POWER))
874 			goto cut_pwr;
875 
876 		ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
877 		if (ret)
878 			goto cut_pwr;
879 
880 		/*
881 		 * Workaround to support Deep Sleep with MSM, set the host pm
882 		 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
883 		 * the sdc2_clock and internally allows MSM to enter
884 		 * TCXO shutdown properly.
885 		 */
886 		if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
887 			ret = sdio_set_host_pm_flags(func,
888 						MMC_PM_WAKE_SDIO_IRQ);
889 			if (ret)
890 				goto cut_pwr;
891 		}
892 
893 		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
894 					      NULL);
895 		if (ret)
896 			goto cut_pwr;
897 
898 		return 0;
899 	}
900 
901 cut_pwr:
902 	if (func->card && func->card->host)
903 		func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
904 
905 	return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
906 }
907 
908 static int ath6kl_sdio_resume(struct ath6kl *ar)
909 {
910 	switch (ar->state) {
911 	case ATH6KL_STATE_OFF:
912 	case ATH6KL_STATE_CUTPOWER:
913 		ath6kl_dbg(ATH6KL_DBG_SUSPEND,
914 			   "sdio resume configuring sdio\n");
915 
916 		/* need to set sdio settings after power is cut from sdio */
917 		ath6kl_sdio_config(ar);
918 		break;
919 
920 	case ATH6KL_STATE_ON:
921 		break;
922 
923 	case ATH6KL_STATE_DEEPSLEEP:
924 		break;
925 
926 	case ATH6KL_STATE_WOW:
927 		break;
928 
929 	case ATH6KL_STATE_SUSPENDING:
930 		break;
931 
932 	case ATH6KL_STATE_RESUMING:
933 		break;
934 
935 	case ATH6KL_STATE_RECOVERY:
936 		break;
937 	}
938 
939 	ath6kl_cfg80211_resume(ar);
940 
941 	return 0;
942 }
943 
944 /* set the window address register (using 4-byte register access ). */
945 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
946 {
947 	int status;
948 	u8 addr_val[4];
949 	s32 i;
950 
951 	/*
952 	 * Write bytes 1,2,3 of the register to set the upper address bytes,
953 	 * the LSB is written last to initiate the access cycle
954 	 */
955 
956 	for (i = 1; i <= 3; i++) {
957 		/*
958 		 * Fill the buffer with the address byte value we want to
959 		 * hit 4 times.
960 		 */
961 		memset(addr_val, ((u8 *)&addr)[i], 4);
962 
963 		/*
964 		 * Hit each byte of the register address with a 4-byte
965 		 * write operation to the same address, this is a harmless
966 		 * operation.
967 		 */
968 		status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
969 					     4, HIF_WR_SYNC_BYTE_FIX);
970 		if (status)
971 			break;
972 	}
973 
974 	if (status) {
975 		ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
976 			   __func__, addr, reg_addr);
977 		return status;
978 	}
979 
980 	/*
981 	 * Write the address register again, this time write the whole
982 	 * 4-byte value. The effect here is that the LSB write causes the
983 	 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
984 	 * effect since we are writing the same values again
985 	 */
986 	status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
987 				     4, HIF_WR_SYNC_BYTE_INC);
988 
989 	if (status) {
990 		ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
991 			   __func__, addr, reg_addr);
992 		return status;
993 	}
994 
995 	return 0;
996 }
997 
998 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
999 {
1000 	int status;
1001 
1002 	/* set window register to start read cycle */
1003 	status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1004 					address);
1005 
1006 	if (status)
1007 		return status;
1008 
1009 	/* read the data */
1010 	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1011 				(u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1012 	if (status) {
1013 		ath6kl_err("%s: failed to read from window data addr\n",
1014 			   __func__);
1015 		return status;
1016 	}
1017 
1018 	return status;
1019 }
1020 
1021 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1022 				    __le32 data)
1023 {
1024 	int status;
1025 	u32 val = (__force u32) data;
1026 
1027 	/* set write data */
1028 	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1029 				(u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1030 	if (status) {
1031 		ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1032 			   __func__, data);
1033 		return status;
1034 	}
1035 
1036 	/* set window register, which starts the write cycle */
1037 	return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1038 				      address);
1039 }
1040 
1041 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1042 {
1043 	u32 addr;
1044 	unsigned long timeout;
1045 	int ret;
1046 
1047 	ar->bmi.cmd_credits = 0;
1048 
1049 	/* Read the counter register to get the command credits */
1050 	addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1051 
1052 	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1053 	while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1054 
1055 		/*
1056 		 * Hit the credit counter with a 4-byte access, the first byte
1057 		 * read will hit the counter and cause a decrement, while the
1058 		 * remaining 3 bytes has no effect. The rationale behind this
1059 		 * is to make all HIF accesses 4-byte aligned.
1060 		 */
1061 		ret = ath6kl_sdio_read_write_sync(ar, addr,
1062 					 (u8 *)&ar->bmi.cmd_credits, 4,
1063 					 HIF_RD_SYNC_BYTE_INC);
1064 		if (ret) {
1065 			ath6kl_err("Unable to decrement the command credit count register: %d\n",
1066 				   ret);
1067 			return ret;
1068 		}
1069 
1070 		/* The counter is only 8 bits.
1071 		 * Ignore anything in the upper 3 bytes
1072 		 */
1073 		ar->bmi.cmd_credits &= 0xFF;
1074 	}
1075 
1076 	if (!ar->bmi.cmd_credits) {
1077 		ath6kl_err("bmi communication timeout\n");
1078 		return -ETIMEDOUT;
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1085 {
1086 	unsigned long timeout;
1087 	u32 rx_word = 0;
1088 	int ret = 0;
1089 
1090 	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1091 	while ((time_before(jiffies, timeout)) && !rx_word) {
1092 		ret = ath6kl_sdio_read_write_sync(ar,
1093 					RX_LOOKAHEAD_VALID_ADDRESS,
1094 					(u8 *)&rx_word, sizeof(rx_word),
1095 					HIF_RD_SYNC_BYTE_INC);
1096 		if (ret) {
1097 			ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1098 			return ret;
1099 		}
1100 
1101 		 /* all we really want is one bit */
1102 		rx_word &= (1 << ENDPOINT1);
1103 	}
1104 
1105 	if (!rx_word) {
1106 		ath6kl_err("bmi_recv_buf FIFO empty\n");
1107 		return -EINVAL;
1108 	}
1109 
1110 	return ret;
1111 }
1112 
1113 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1114 {
1115 	int ret;
1116 	u32 addr;
1117 
1118 	ret = ath6kl_sdio_bmi_credits(ar);
1119 	if (ret)
1120 		return ret;
1121 
1122 	addr = ar->mbox_info.htc_addr;
1123 
1124 	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1125 					  HIF_WR_SYNC_BYTE_INC);
1126 	if (ret)
1127 		ath6kl_err("unable to send the bmi data to the device\n");
1128 
1129 	return ret;
1130 }
1131 
1132 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1133 {
1134 	int ret;
1135 	u32 addr;
1136 
1137 	/*
1138 	 * During normal bootup, small reads may be required.
1139 	 * Rather than issue an HIF Read and then wait as the Target
1140 	 * adds successive bytes to the FIFO, we wait here until
1141 	 * we know that response data is available.
1142 	 *
1143 	 * This allows us to cleanly timeout on an unexpected
1144 	 * Target failure rather than risk problems at the HIF level.
1145 	 * In particular, this avoids SDIO timeouts and possibly garbage
1146 	 * data on some host controllers.  And on an interconnect
1147 	 * such as Compact Flash (as well as some SDIO masters) which
1148 	 * does not provide any indication on data timeout, it avoids
1149 	 * a potential hang or garbage response.
1150 	 *
1151 	 * Synchronization is more difficult for reads larger than the
1152 	 * size of the MBOX FIFO (128B), because the Target is unable
1153 	 * to push the 129th byte of data until AFTER the Host posts an
1154 	 * HIF Read and removes some FIFO data.  So for large reads the
1155 	 * Host proceeds to post an HIF Read BEFORE all the data is
1156 	 * actually available to read.  Fortunately, large BMI reads do
1157 	 * not occur in practice -- they're supported for debug/development.
1158 	 *
1159 	 * So Host/Target BMI synchronization is divided into these cases:
1160 	 *  CASE 1: length < 4
1161 	 *        Should not happen
1162 	 *
1163 	 *  CASE 2: 4 <= length <= 128
1164 	 *        Wait for first 4 bytes to be in FIFO
1165 	 *        If CONSERVATIVE_BMI_READ is enabled, also wait for
1166 	 *        a BMI command credit, which indicates that the ENTIRE
1167 	 *        response is available in the the FIFO
1168 	 *
1169 	 *  CASE 3: length > 128
1170 	 *        Wait for the first 4 bytes to be in FIFO
1171 	 *
1172 	 * For most uses, a small timeout should be sufficient and we will
1173 	 * usually see a response quickly; but there may be some unusual
1174 	 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1175 	 * For now, we use an unbounded busy loop while waiting for
1176 	 * BMI_EXECUTE.
1177 	 *
1178 	 * If BMI_EXECUTE ever needs to support longer-latency execution,
1179 	 * especially in production, this code needs to be enhanced to sleep
1180 	 * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
1181 	 * a function of Host processor speed.
1182 	 */
1183 	if (len >= 4) { /* NB: Currently, always true */
1184 		ret = ath6kl_bmi_get_rx_lkahd(ar);
1185 		if (ret)
1186 			return ret;
1187 	}
1188 
1189 	addr = ar->mbox_info.htc_addr;
1190 	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1191 				  HIF_RD_SYNC_BYTE_INC);
1192 	if (ret) {
1193 		ath6kl_err("Unable to read the bmi data from the device: %d\n",
1194 			   ret);
1195 		return ret;
1196 	}
1197 
1198 	return 0;
1199 }
1200 
1201 static void ath6kl_sdio_stop(struct ath6kl *ar)
1202 {
1203 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1204 	struct bus_request *req, *tmp_req;
1205 	void *context;
1206 
1207 	/* FIXME: make sure that wq is not queued again */
1208 
1209 	cancel_work_sync(&ar_sdio->wr_async_work);
1210 
1211 	spin_lock_bh(&ar_sdio->wr_async_lock);
1212 
1213 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1214 		list_del(&req->list);
1215 
1216 		if (req->scat_req) {
1217 			/* this is a scatter gather request */
1218 			req->scat_req->status = -ECANCELED;
1219 			req->scat_req->complete(ar_sdio->ar->htc_target,
1220 						req->scat_req);
1221 		} else {
1222 			context = req->packet;
1223 			ath6kl_sdio_free_bus_req(ar_sdio, req);
1224 			ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1225 		}
1226 	}
1227 
1228 	spin_unlock_bh(&ar_sdio->wr_async_lock);
1229 
1230 	WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1231 }
1232 
1233 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1234 	.read_write_sync = ath6kl_sdio_read_write_sync,
1235 	.write_async = ath6kl_sdio_write_async,
1236 	.irq_enable = ath6kl_sdio_irq_enable,
1237 	.irq_disable = ath6kl_sdio_irq_disable,
1238 	.scatter_req_get = ath6kl_sdio_scatter_req_get,
1239 	.scatter_req_add = ath6kl_sdio_scatter_req_add,
1240 	.enable_scatter = ath6kl_sdio_enable_scatter,
1241 	.scat_req_rw = ath6kl_sdio_async_rw_scatter,
1242 	.cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1243 	.suspend = ath6kl_sdio_suspend,
1244 	.resume = ath6kl_sdio_resume,
1245 	.diag_read32 = ath6kl_sdio_diag_read32,
1246 	.diag_write32 = ath6kl_sdio_diag_write32,
1247 	.bmi_read = ath6kl_sdio_bmi_read,
1248 	.bmi_write = ath6kl_sdio_bmi_write,
1249 	.power_on = ath6kl_sdio_power_on,
1250 	.power_off = ath6kl_sdio_power_off,
1251 	.stop = ath6kl_sdio_stop,
1252 };
1253 
1254 #ifdef CONFIG_PM_SLEEP
1255 
1256 /*
1257  * Empty handlers so that mmc subsystem doesn't remove us entirely during
1258  * suspend. We instead follow cfg80211 suspend/resume handlers.
1259  */
1260 static int ath6kl_sdio_pm_suspend(struct device *device)
1261 {
1262 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1263 
1264 	return 0;
1265 }
1266 
1267 static int ath6kl_sdio_pm_resume(struct device *device)
1268 {
1269 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1270 
1271 	return 0;
1272 }
1273 
1274 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1275 			 ath6kl_sdio_pm_resume);
1276 
1277 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1278 
1279 #else
1280 
1281 #define ATH6KL_SDIO_PM_OPS NULL
1282 
1283 #endif /* CONFIG_PM_SLEEP */
1284 
1285 static int ath6kl_sdio_probe(struct sdio_func *func,
1286 			     const struct sdio_device_id *id)
1287 {
1288 	int ret;
1289 	struct ath6kl_sdio *ar_sdio;
1290 	struct ath6kl *ar;
1291 	int count;
1292 
1293 	ath6kl_dbg(ATH6KL_DBG_BOOT,
1294 		   "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1295 		   func->num, func->vendor, func->device,
1296 		   func->max_blksize, func->cur_blksize);
1297 
1298 	ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1299 	if (!ar_sdio)
1300 		return -ENOMEM;
1301 
1302 	ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1303 	if (!ar_sdio->dma_buffer) {
1304 		ret = -ENOMEM;
1305 		goto err_hif;
1306 	}
1307 
1308 	ar_sdio->func = func;
1309 	sdio_set_drvdata(func, ar_sdio);
1310 
1311 	ar_sdio->id = id;
1312 	ar_sdio->is_disabled = true;
1313 
1314 	spin_lock_init(&ar_sdio->lock);
1315 	spin_lock_init(&ar_sdio->scat_lock);
1316 	spin_lock_init(&ar_sdio->wr_async_lock);
1317 	mutex_init(&ar_sdio->dma_buffer_mutex);
1318 
1319 	INIT_LIST_HEAD(&ar_sdio->scat_req);
1320 	INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1321 	INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1322 
1323 	INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1324 
1325 	init_waitqueue_head(&ar_sdio->irq_wq);
1326 
1327 	for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1328 		ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1329 
1330 	ar = ath6kl_core_create(&ar_sdio->func->dev);
1331 	if (!ar) {
1332 		ath6kl_err("Failed to alloc ath6kl core\n");
1333 		ret = -ENOMEM;
1334 		goto err_dma;
1335 	}
1336 
1337 	ar_sdio->ar = ar;
1338 	ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1339 	ar->hif_priv = ar_sdio;
1340 	ar->hif_ops = &ath6kl_sdio_ops;
1341 	ar->bmi.max_data_size = 256;
1342 
1343 	ath6kl_sdio_set_mbox_info(ar);
1344 
1345 	ret = ath6kl_sdio_config(ar);
1346 	if (ret) {
1347 		ath6kl_err("Failed to config sdio: %d\n", ret);
1348 		goto err_core_alloc;
1349 	}
1350 
1351 	ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1352 	if (ret) {
1353 		ath6kl_err("Failed to init ath6kl core\n");
1354 		goto err_core_alloc;
1355 	}
1356 
1357 	return ret;
1358 
1359 err_core_alloc:
1360 	ath6kl_core_destroy(ar_sdio->ar);
1361 err_dma:
1362 	kfree(ar_sdio->dma_buffer);
1363 err_hif:
1364 	kfree(ar_sdio);
1365 
1366 	return ret;
1367 }
1368 
1369 static void ath6kl_sdio_remove(struct sdio_func *func)
1370 {
1371 	struct ath6kl_sdio *ar_sdio;
1372 
1373 	ath6kl_dbg(ATH6KL_DBG_BOOT,
1374 		   "sdio removed func %d vendor 0x%x device 0x%x\n",
1375 		   func->num, func->vendor, func->device);
1376 
1377 	ar_sdio = sdio_get_drvdata(func);
1378 
1379 	ath6kl_stop_txrx(ar_sdio->ar);
1380 	cancel_work_sync(&ar_sdio->wr_async_work);
1381 
1382 	ath6kl_core_cleanup(ar_sdio->ar);
1383 	ath6kl_core_destroy(ar_sdio->ar);
1384 
1385 	kfree(ar_sdio->dma_buffer);
1386 	kfree(ar_sdio);
1387 }
1388 
1389 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1390 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1391 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1392 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1393 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1394 	{},
1395 };
1396 
1397 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1398 
1399 static struct sdio_driver ath6kl_sdio_driver = {
1400 	.name = "ath6kl_sdio",
1401 	.id_table = ath6kl_sdio_devices,
1402 	.probe = ath6kl_sdio_probe,
1403 	.remove = ath6kl_sdio_remove,
1404 	.drv.pm = ATH6KL_SDIO_PM_OPS,
1405 };
1406 
1407 static int __init ath6kl_sdio_init(void)
1408 {
1409 	int ret;
1410 
1411 	ret = sdio_register_driver(&ath6kl_sdio_driver);
1412 	if (ret)
1413 		ath6kl_err("sdio driver registration failed: %d\n", ret);
1414 
1415 	return ret;
1416 }
1417 
1418 static void __exit ath6kl_sdio_exit(void)
1419 {
1420 	sdio_unregister_driver(&ath6kl_sdio_driver);
1421 }
1422 
1423 module_init(ath6kl_sdio_init);
1424 module_exit(ath6kl_sdio_exit);
1425 
1426 MODULE_AUTHOR("Atheros Communications, Inc.");
1427 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1428 MODULE_LICENSE("Dual BSD/GPL");
1429 
1430 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1431 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1432 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1433 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1434 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1435 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1436 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1437 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1438 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1439 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1440 MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1441 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1442 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1443 MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1444 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1445 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1446 MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1447 MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1448 MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);
1449 MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE);
1450 MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE);
1451 MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE);
1452