1 /* 2 * Copyright (c) 2004-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/mmc/card.h> 20 #include <linux/mmc/mmc.h> 21 #include <linux/mmc/host.h> 22 #include <linux/mmc/sdio_func.h> 23 #include <linux/mmc/sdio_ids.h> 24 #include <linux/mmc/sdio.h> 25 #include <linux/mmc/sd.h> 26 #include "hif.h" 27 #include "hif-ops.h" 28 #include "target.h" 29 #include "debug.h" 30 #include "cfg80211.h" 31 32 struct ath6kl_sdio { 33 struct sdio_func *func; 34 35 spinlock_t lock; 36 37 /* free list */ 38 struct list_head bus_req_freeq; 39 40 /* available bus requests */ 41 struct bus_request bus_req[BUS_REQUEST_MAX_NUM]; 42 43 struct ath6kl *ar; 44 45 u8 *dma_buffer; 46 47 /* protects access to dma_buffer */ 48 struct mutex dma_buffer_mutex; 49 50 /* scatter request list head */ 51 struct list_head scat_req; 52 53 /* Avoids disabling irq while the interrupts being handled */ 54 struct mutex mtx_irq; 55 56 spinlock_t scat_lock; 57 bool scatter_enabled; 58 59 bool is_disabled; 60 const struct sdio_device_id *id; 61 struct work_struct wr_async_work; 62 struct list_head wr_asyncq; 63 spinlock_t wr_async_lock; 64 }; 65 66 #define CMD53_ARG_READ 0 67 #define CMD53_ARG_WRITE 1 68 #define CMD53_ARG_BLOCK_BASIS 1 69 #define CMD53_ARG_FIXED_ADDRESS 0 70 #define CMD53_ARG_INCR_ADDRESS 1 71 72 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar) 73 { 74 return ar->hif_priv; 75 } 76 77 /* 78 * Macro to check if DMA buffer is WORD-aligned and DMA-able. 79 * Most host controllers assume the buffer is DMA'able and will 80 * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid 81 * check fails on stack memory. 82 */ 83 static inline bool buf_needs_bounce(u8 *buf) 84 { 85 return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf); 86 } 87 88 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar) 89 { 90 struct ath6kl_mbox_info *mbox_info = &ar->mbox_info; 91 92 /* EP1 has an extended range */ 93 mbox_info->htc_addr = HIF_MBOX_BASE_ADDR; 94 mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR; 95 mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH; 96 mbox_info->block_size = HIF_MBOX_BLOCK_SIZE; 97 mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR; 98 mbox_info->gmbox_sz = HIF_GMBOX_WIDTH; 99 } 100 101 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func, 102 u8 mode, u8 opcode, u32 addr, 103 u16 blksz) 104 { 105 *arg = (((rw & 1) << 31) | 106 ((func & 0x7) << 28) | 107 ((mode & 1) << 27) | 108 ((opcode & 1) << 26) | 109 ((addr & 0x1FFFF) << 9) | 110 (blksz & 0x1FF)); 111 } 112 113 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 114 unsigned int address, 115 unsigned char val) 116 { 117 const u8 func = 0; 118 119 *arg = ((write & 1) << 31) | 120 ((func & 0x7) << 28) | 121 ((raw & 1) << 27) | 122 (1 << 26) | 123 ((address & 0x1FFFF) << 9) | 124 (1 << 8) | 125 (val & 0xFF); 126 } 127 128 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 129 unsigned int address, 130 unsigned char byte) 131 { 132 struct mmc_command io_cmd; 133 134 memset(&io_cmd, 0, sizeof(io_cmd)); 135 ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 136 io_cmd.opcode = SD_IO_RW_DIRECT; 137 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 138 139 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 140 } 141 142 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr, 143 u8 *buf, u32 len) 144 { 145 int ret = 0; 146 147 sdio_claim_host(func); 148 149 if (request & HIF_WRITE) { 150 /* FIXME: looks like ugly workaround for something */ 151 if (addr >= HIF_MBOX_BASE_ADDR && 152 addr <= HIF_MBOX_END_ADDR) 153 addr += (HIF_MBOX_WIDTH - len); 154 155 /* FIXME: this also looks like ugly workaround */ 156 if (addr == HIF_MBOX0_EXT_BASE_ADDR) 157 addr += HIF_MBOX0_EXT_WIDTH - len; 158 159 if (request & HIF_FIXED_ADDRESS) 160 ret = sdio_writesb(func, addr, buf, len); 161 else 162 ret = sdio_memcpy_toio(func, addr, buf, len); 163 } else { 164 if (request & HIF_FIXED_ADDRESS) 165 ret = sdio_readsb(func, buf, addr, len); 166 else 167 ret = sdio_memcpy_fromio(func, buf, addr, len); 168 } 169 170 sdio_release_host(func); 171 172 ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n", 173 request & HIF_WRITE ? "wr" : "rd", addr, 174 request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len); 175 ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len); 176 177 return ret; 178 } 179 180 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio) 181 { 182 struct bus_request *bus_req; 183 184 spin_lock_bh(&ar_sdio->lock); 185 186 if (list_empty(&ar_sdio->bus_req_freeq)) { 187 spin_unlock_bh(&ar_sdio->lock); 188 return NULL; 189 } 190 191 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 192 struct bus_request, list); 193 list_del(&bus_req->list); 194 195 spin_unlock_bh(&ar_sdio->lock); 196 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n", 197 __func__, bus_req); 198 199 return bus_req; 200 } 201 202 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio, 203 struct bus_request *bus_req) 204 { 205 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n", 206 __func__, bus_req); 207 208 spin_lock_bh(&ar_sdio->lock); 209 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 210 spin_unlock_bh(&ar_sdio->lock); 211 } 212 213 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req, 214 struct mmc_data *data) 215 { 216 struct scatterlist *sg; 217 int i; 218 219 data->blksz = HIF_MBOX_BLOCK_SIZE; 220 data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE; 221 222 ath6kl_dbg(ATH6KL_DBG_SCATTER, 223 "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n", 224 (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr, 225 data->blksz, data->blocks, scat_req->len, 226 scat_req->scat_entries); 227 228 data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE : 229 MMC_DATA_READ; 230 231 /* fill SG entries */ 232 sg = scat_req->sgentries; 233 sg_init_table(sg, scat_req->scat_entries); 234 235 /* assemble SG list */ 236 for (i = 0; i < scat_req->scat_entries; i++, sg++) { 237 ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n", 238 i, scat_req->scat_list[i].buf, 239 scat_req->scat_list[i].len); 240 241 sg_set_buf(sg, scat_req->scat_list[i].buf, 242 scat_req->scat_list[i].len); 243 } 244 245 /* set scatter-gather table for request */ 246 data->sg = scat_req->sgentries; 247 data->sg_len = scat_req->scat_entries; 248 } 249 250 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio, 251 struct bus_request *req) 252 { 253 struct mmc_request mmc_req; 254 struct mmc_command cmd; 255 struct mmc_data data; 256 struct hif_scatter_req *scat_req; 257 u8 opcode, rw; 258 int status, len; 259 260 scat_req = req->scat_req; 261 262 if (scat_req->virt_scat) { 263 len = scat_req->len; 264 if (scat_req->req & HIF_BLOCK_BASIS) 265 len = round_down(len, HIF_MBOX_BLOCK_SIZE); 266 267 status = ath6kl_sdio_io(ar_sdio->func, scat_req->req, 268 scat_req->addr, scat_req->virt_dma_buf, 269 len); 270 goto scat_complete; 271 } 272 273 memset(&mmc_req, 0, sizeof(struct mmc_request)); 274 memset(&cmd, 0, sizeof(struct mmc_command)); 275 memset(&data, 0, sizeof(struct mmc_data)); 276 277 ath6kl_sdio_setup_scat_data(scat_req, &data); 278 279 opcode = (scat_req->req & HIF_FIXED_ADDRESS) ? 280 CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS; 281 282 rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ; 283 284 /* Fixup the address so that the last byte will fall on MBOX EOM */ 285 if (scat_req->req & HIF_WRITE) { 286 if (scat_req->addr == HIF_MBOX_BASE_ADDR) 287 scat_req->addr += HIF_MBOX_WIDTH - scat_req->len; 288 else 289 /* Uses extended address range */ 290 scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len; 291 } 292 293 /* set command argument */ 294 ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num, 295 CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr, 296 data.blocks); 297 298 cmd.opcode = SD_IO_RW_EXTENDED; 299 cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC; 300 301 mmc_req.cmd = &cmd; 302 mmc_req.data = &data; 303 304 sdio_claim_host(ar_sdio->func); 305 306 mmc_set_data_timeout(&data, ar_sdio->func->card); 307 /* synchronous call to process request */ 308 mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req); 309 310 sdio_release_host(ar_sdio->func); 311 312 status = cmd.error ? cmd.error : data.error; 313 314 scat_complete: 315 scat_req->status = status; 316 317 if (scat_req->status) 318 ath6kl_err("Scatter write request failed:%d\n", 319 scat_req->status); 320 321 if (scat_req->req & HIF_ASYNCHRONOUS) 322 scat_req->complete(ar_sdio->ar->htc_target, scat_req); 323 324 return status; 325 } 326 327 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio, 328 int n_scat_entry, int n_scat_req, 329 bool virt_scat) 330 { 331 struct hif_scatter_req *s_req; 332 struct bus_request *bus_req; 333 int i, scat_req_sz, scat_list_sz, sg_sz, buf_sz; 334 u8 *virt_buf; 335 336 scat_list_sz = (n_scat_entry - 1) * sizeof(struct hif_scatter_item); 337 scat_req_sz = sizeof(*s_req) + scat_list_sz; 338 339 if (!virt_scat) 340 sg_sz = sizeof(struct scatterlist) * n_scat_entry; 341 else 342 buf_sz = 2 * L1_CACHE_BYTES + 343 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER; 344 345 for (i = 0; i < n_scat_req; i++) { 346 /* allocate the scatter request */ 347 s_req = kzalloc(scat_req_sz, GFP_KERNEL); 348 if (!s_req) 349 return -ENOMEM; 350 351 if (virt_scat) { 352 virt_buf = kzalloc(buf_sz, GFP_KERNEL); 353 if (!virt_buf) { 354 kfree(s_req); 355 return -ENOMEM; 356 } 357 358 s_req->virt_dma_buf = 359 (u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf); 360 } else { 361 /* allocate sglist */ 362 s_req->sgentries = kzalloc(sg_sz, GFP_KERNEL); 363 364 if (!s_req->sgentries) { 365 kfree(s_req); 366 return -ENOMEM; 367 } 368 } 369 370 /* allocate a bus request for this scatter request */ 371 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio); 372 if (!bus_req) { 373 kfree(s_req->sgentries); 374 kfree(s_req->virt_dma_buf); 375 kfree(s_req); 376 return -ENOMEM; 377 } 378 379 /* assign the scatter request to this bus request */ 380 bus_req->scat_req = s_req; 381 s_req->busrequest = bus_req; 382 383 s_req->virt_scat = virt_scat; 384 385 /* add it to the scatter pool */ 386 hif_scatter_req_add(ar_sdio->ar, s_req); 387 } 388 389 return 0; 390 } 391 392 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf, 393 u32 len, u32 request) 394 { 395 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 396 u8 *tbuf = NULL; 397 int ret; 398 bool bounced = false; 399 400 if (request & HIF_BLOCK_BASIS) 401 len = round_down(len, HIF_MBOX_BLOCK_SIZE); 402 403 if (buf_needs_bounce(buf)) { 404 if (!ar_sdio->dma_buffer) 405 return -ENOMEM; 406 mutex_lock(&ar_sdio->dma_buffer_mutex); 407 tbuf = ar_sdio->dma_buffer; 408 memcpy(tbuf, buf, len); 409 bounced = true; 410 } else 411 tbuf = buf; 412 413 ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len); 414 if ((request & HIF_READ) && bounced) 415 memcpy(buf, tbuf, len); 416 417 if (bounced) 418 mutex_unlock(&ar_sdio->dma_buffer_mutex); 419 420 return ret; 421 } 422 423 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio, 424 struct bus_request *req) 425 { 426 if (req->scat_req) 427 ath6kl_sdio_scat_rw(ar_sdio, req); 428 else { 429 void *context; 430 int status; 431 432 status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address, 433 req->buffer, req->length, 434 req->request); 435 context = req->packet; 436 ath6kl_sdio_free_bus_req(ar_sdio, req); 437 ath6kl_hif_rw_comp_handler(context, status); 438 } 439 } 440 441 static void ath6kl_sdio_write_async_work(struct work_struct *work) 442 { 443 struct ath6kl_sdio *ar_sdio; 444 struct bus_request *req, *tmp_req; 445 446 ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work); 447 448 spin_lock_bh(&ar_sdio->wr_async_lock); 449 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 450 list_del(&req->list); 451 spin_unlock_bh(&ar_sdio->wr_async_lock); 452 __ath6kl_sdio_write_async(ar_sdio, req); 453 spin_lock_bh(&ar_sdio->wr_async_lock); 454 } 455 spin_unlock_bh(&ar_sdio->wr_async_lock); 456 } 457 458 static void ath6kl_sdio_irq_handler(struct sdio_func *func) 459 { 460 int status; 461 struct ath6kl_sdio *ar_sdio; 462 463 ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n"); 464 465 ar_sdio = sdio_get_drvdata(func); 466 mutex_lock(&ar_sdio->mtx_irq); 467 /* 468 * Release the host during interrups so we can pick it back up when 469 * we process commands. 470 */ 471 sdio_release_host(ar_sdio->func); 472 473 status = ath6kl_hif_intr_bh_handler(ar_sdio->ar); 474 sdio_claim_host(ar_sdio->func); 475 mutex_unlock(&ar_sdio->mtx_irq); 476 WARN_ON(status && status != -ECANCELED); 477 } 478 479 static int ath6kl_sdio_power_on(struct ath6kl *ar) 480 { 481 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 482 struct sdio_func *func = ar_sdio->func; 483 int ret = 0; 484 485 if (!ar_sdio->is_disabled) 486 return 0; 487 488 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n"); 489 490 sdio_claim_host(func); 491 492 ret = sdio_enable_func(func); 493 if (ret) { 494 ath6kl_err("Unable to enable sdio func: %d)\n", ret); 495 sdio_release_host(func); 496 return ret; 497 } 498 499 sdio_release_host(func); 500 501 /* 502 * Wait for hardware to initialise. It should take a lot less than 503 * 10 ms but let's be conservative here. 504 */ 505 msleep(10); 506 507 ar_sdio->is_disabled = false; 508 509 return ret; 510 } 511 512 static int ath6kl_sdio_power_off(struct ath6kl *ar) 513 { 514 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 515 int ret; 516 517 if (ar_sdio->is_disabled) 518 return 0; 519 520 ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n"); 521 522 /* Disable the card */ 523 sdio_claim_host(ar_sdio->func); 524 ret = sdio_disable_func(ar_sdio->func); 525 sdio_release_host(ar_sdio->func); 526 527 if (ret) 528 return ret; 529 530 ar_sdio->is_disabled = true; 531 532 return ret; 533 } 534 535 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer, 536 u32 length, u32 request, 537 struct htc_packet *packet) 538 { 539 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 540 struct bus_request *bus_req; 541 542 bus_req = ath6kl_sdio_alloc_busreq(ar_sdio); 543 544 if (!bus_req) 545 return -ENOMEM; 546 547 bus_req->address = address; 548 bus_req->buffer = buffer; 549 bus_req->length = length; 550 bus_req->request = request; 551 bus_req->packet = packet; 552 553 spin_lock_bh(&ar_sdio->wr_async_lock); 554 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 555 spin_unlock_bh(&ar_sdio->wr_async_lock); 556 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work); 557 558 return 0; 559 } 560 561 static void ath6kl_sdio_irq_enable(struct ath6kl *ar) 562 { 563 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 564 int ret; 565 566 sdio_claim_host(ar_sdio->func); 567 568 /* Register the isr */ 569 ret = sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler); 570 if (ret) 571 ath6kl_err("Failed to claim sdio irq: %d\n", ret); 572 573 sdio_release_host(ar_sdio->func); 574 } 575 576 static void ath6kl_sdio_irq_disable(struct ath6kl *ar) 577 { 578 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 579 int ret; 580 581 sdio_claim_host(ar_sdio->func); 582 583 mutex_lock(&ar_sdio->mtx_irq); 584 585 ret = sdio_release_irq(ar_sdio->func); 586 if (ret) 587 ath6kl_err("Failed to release sdio irq: %d\n", ret); 588 589 mutex_unlock(&ar_sdio->mtx_irq); 590 591 sdio_release_host(ar_sdio->func); 592 } 593 594 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar) 595 { 596 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 597 struct hif_scatter_req *node = NULL; 598 599 spin_lock_bh(&ar_sdio->scat_lock); 600 601 if (!list_empty(&ar_sdio->scat_req)) { 602 node = list_first_entry(&ar_sdio->scat_req, 603 struct hif_scatter_req, list); 604 list_del(&node->list); 605 } 606 607 spin_unlock_bh(&ar_sdio->scat_lock); 608 609 return node; 610 } 611 612 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar, 613 struct hif_scatter_req *s_req) 614 { 615 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 616 617 spin_lock_bh(&ar_sdio->scat_lock); 618 619 list_add_tail(&s_req->list, &ar_sdio->scat_req); 620 621 spin_unlock_bh(&ar_sdio->scat_lock); 622 623 } 624 625 /* scatter gather read write request */ 626 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar, 627 struct hif_scatter_req *scat_req) 628 { 629 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 630 u32 request = scat_req->req; 631 int status = 0; 632 633 if (!scat_req->len) 634 return -EINVAL; 635 636 ath6kl_dbg(ATH6KL_DBG_SCATTER, 637 "hif-scatter: total len: %d scatter entries: %d\n", 638 scat_req->len, scat_req->scat_entries); 639 640 if (request & HIF_SYNCHRONOUS) 641 status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest); 642 else { 643 spin_lock_bh(&ar_sdio->wr_async_lock); 644 list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq); 645 spin_unlock_bh(&ar_sdio->wr_async_lock); 646 queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work); 647 } 648 649 return status; 650 } 651 652 /* clean up scatter support */ 653 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar) 654 { 655 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 656 struct hif_scatter_req *s_req, *tmp_req; 657 658 /* empty the free list */ 659 spin_lock_bh(&ar_sdio->scat_lock); 660 list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) { 661 list_del(&s_req->list); 662 spin_unlock_bh(&ar_sdio->scat_lock); 663 664 /* 665 * FIXME: should we also call completion handler with 666 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so 667 * that the packet is properly freed? 668 */ 669 if (s_req->busrequest) 670 ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest); 671 kfree(s_req->virt_dma_buf); 672 kfree(s_req->sgentries); 673 kfree(s_req); 674 675 spin_lock_bh(&ar_sdio->scat_lock); 676 } 677 spin_unlock_bh(&ar_sdio->scat_lock); 678 } 679 680 /* setup of HIF scatter resources */ 681 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar) 682 { 683 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 684 struct htc_target *target = ar->htc_target; 685 int ret; 686 bool virt_scat = false; 687 688 if (ar_sdio->scatter_enabled) 689 return 0; 690 691 ar_sdio->scatter_enabled = true; 692 693 /* check if host supports scatter and it meets our requirements */ 694 if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) { 695 ath6kl_err("host only supports scatter of :%d entries, need: %d\n", 696 ar_sdio->func->card->host->max_segs, 697 MAX_SCATTER_ENTRIES_PER_REQ); 698 virt_scat = true; 699 } 700 701 if (!virt_scat) { 702 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio, 703 MAX_SCATTER_ENTRIES_PER_REQ, 704 MAX_SCATTER_REQUESTS, virt_scat); 705 706 if (!ret) { 707 ath6kl_dbg(ATH6KL_DBG_BOOT, 708 "hif-scatter enabled requests %d entries %d\n", 709 MAX_SCATTER_REQUESTS, 710 MAX_SCATTER_ENTRIES_PER_REQ); 711 712 target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ; 713 target->max_xfer_szper_scatreq = 714 MAX_SCATTER_REQ_TRANSFER_SIZE; 715 } else { 716 ath6kl_sdio_cleanup_scatter(ar); 717 ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n"); 718 } 719 } 720 721 if (virt_scat || ret) { 722 ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio, 723 ATH6KL_SCATTER_ENTRIES_PER_REQ, 724 ATH6KL_SCATTER_REQS, virt_scat); 725 726 if (ret) { 727 ath6kl_err("failed to alloc virtual scatter resources !\n"); 728 ath6kl_sdio_cleanup_scatter(ar); 729 return ret; 730 } 731 732 ath6kl_dbg(ATH6KL_DBG_BOOT, 733 "virtual scatter enabled requests %d entries %d\n", 734 ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ); 735 736 target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ; 737 target->max_xfer_szper_scatreq = 738 ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER; 739 } 740 741 return 0; 742 } 743 744 static int ath6kl_sdio_config(struct ath6kl *ar) 745 { 746 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 747 struct sdio_func *func = ar_sdio->func; 748 int ret; 749 750 sdio_claim_host(func); 751 752 if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >= 753 MANUFACTURER_ID_AR6003_BASE) { 754 /* enable 4-bit ASYNC interrupt on AR6003 or later */ 755 ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card, 756 CCCR_SDIO_IRQ_MODE_REG, 757 SDIO_IRQ_MODE_ASYNC_4BIT_IRQ); 758 if (ret) { 759 ath6kl_err("Failed to enable 4-bit async irq mode %d\n", 760 ret); 761 goto out; 762 } 763 764 ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n"); 765 } 766 767 /* give us some time to enable, in ms */ 768 func->enable_timeout = 100; 769 770 ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE); 771 if (ret) { 772 ath6kl_err("Set sdio block size %d failed: %d)\n", 773 HIF_MBOX_BLOCK_SIZE, ret); 774 goto out; 775 } 776 777 out: 778 sdio_release_host(func); 779 780 return ret; 781 } 782 783 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar) 784 { 785 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 786 struct sdio_func *func = ar_sdio->func; 787 mmc_pm_flag_t flags; 788 int ret; 789 790 flags = sdio_get_host_pm_caps(func); 791 792 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags); 793 794 if (!(flags & MMC_PM_WAKE_SDIO_IRQ) || 795 !(flags & MMC_PM_KEEP_POWER)) 796 return -EINVAL; 797 798 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); 799 if (ret) { 800 ath6kl_err("set sdio keep pwr flag failed: %d\n", ret); 801 return ret; 802 } 803 804 /* sdio irq wakes up host */ 805 ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ); 806 if (ret) 807 ath6kl_err("set sdio wake irq flag failed: %d\n", ret); 808 809 return ret; 810 } 811 812 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow) 813 { 814 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 815 struct sdio_func *func = ar_sdio->func; 816 mmc_pm_flag_t flags; 817 int ret; 818 819 if (ar->state == ATH6KL_STATE_SCHED_SCAN) { 820 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sched scan is in progress\n"); 821 822 ret = ath6kl_set_sdio_pm_caps(ar); 823 if (ret) 824 goto cut_pwr; 825 826 ret = ath6kl_cfg80211_suspend(ar, 827 ATH6KL_CFG_SUSPEND_SCHED_SCAN, 828 NULL); 829 if (ret) 830 goto cut_pwr; 831 832 return 0; 833 } 834 835 if (ar->suspend_mode == WLAN_POWER_STATE_WOW || 836 (!ar->suspend_mode && wow)) { 837 838 ret = ath6kl_set_sdio_pm_caps(ar); 839 if (ret) 840 goto cut_pwr; 841 842 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow); 843 if (ret) 844 goto cut_pwr; 845 846 return 0; 847 } 848 849 if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP || 850 !ar->suspend_mode) { 851 852 flags = sdio_get_host_pm_caps(func); 853 if (!(flags & MMC_PM_KEEP_POWER)) 854 goto cut_pwr; 855 856 ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); 857 if (ret) 858 goto cut_pwr; 859 860 /* 861 * Workaround to support Deep Sleep with MSM, set the host pm 862 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable 863 * the sdc2_clock and internally allows MSM to enter 864 * TCXO shutdown properly. 865 */ 866 if ((flags & MMC_PM_WAKE_SDIO_IRQ)) { 867 ret = sdio_set_host_pm_flags(func, 868 MMC_PM_WAKE_SDIO_IRQ); 869 if (ret) 870 goto cut_pwr; 871 } 872 873 ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP, 874 NULL); 875 if (ret) 876 goto cut_pwr; 877 878 return 0; 879 } 880 881 cut_pwr: 882 return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL); 883 } 884 885 static int ath6kl_sdio_resume(struct ath6kl *ar) 886 { 887 switch (ar->state) { 888 case ATH6KL_STATE_OFF: 889 case ATH6KL_STATE_CUTPOWER: 890 ath6kl_dbg(ATH6KL_DBG_SUSPEND, 891 "sdio resume configuring sdio\n"); 892 893 /* need to set sdio settings after power is cut from sdio */ 894 ath6kl_sdio_config(ar); 895 break; 896 897 case ATH6KL_STATE_ON: 898 break; 899 900 case ATH6KL_STATE_DEEPSLEEP: 901 break; 902 903 case ATH6KL_STATE_WOW: 904 break; 905 case ATH6KL_STATE_SCHED_SCAN: 906 break; 907 } 908 909 ath6kl_cfg80211_resume(ar); 910 911 return 0; 912 } 913 914 /* set the window address register (using 4-byte register access ). */ 915 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr) 916 { 917 int status; 918 u8 addr_val[4]; 919 s32 i; 920 921 /* 922 * Write bytes 1,2,3 of the register to set the upper address bytes, 923 * the LSB is written last to initiate the access cycle 924 */ 925 926 for (i = 1; i <= 3; i++) { 927 /* 928 * Fill the buffer with the address byte value we want to 929 * hit 4 times. 930 */ 931 memset(addr_val, ((u8 *)&addr)[i], 4); 932 933 /* 934 * Hit each byte of the register address with a 4-byte 935 * write operation to the same address, this is a harmless 936 * operation. 937 */ 938 status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val, 939 4, HIF_WR_SYNC_BYTE_FIX); 940 if (status) 941 break; 942 } 943 944 if (status) { 945 ath6kl_err("%s: failed to write initial bytes of 0x%x " 946 "to window reg: 0x%X\n", __func__, 947 addr, reg_addr); 948 return status; 949 } 950 951 /* 952 * Write the address register again, this time write the whole 953 * 4-byte value. The effect here is that the LSB write causes the 954 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no 955 * effect since we are writing the same values again 956 */ 957 status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr), 958 4, HIF_WR_SYNC_BYTE_INC); 959 960 if (status) { 961 ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n", 962 __func__, addr, reg_addr); 963 return status; 964 } 965 966 return 0; 967 } 968 969 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data) 970 { 971 int status; 972 973 /* set window register to start read cycle */ 974 status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, 975 address); 976 977 if (status) 978 return status; 979 980 /* read the data */ 981 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS, 982 (u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC); 983 if (status) { 984 ath6kl_err("%s: failed to read from window data addr\n", 985 __func__); 986 return status; 987 } 988 989 return status; 990 } 991 992 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address, 993 __le32 data) 994 { 995 int status; 996 u32 val = (__force u32) data; 997 998 /* set write data */ 999 status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS, 1000 (u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC); 1001 if (status) { 1002 ath6kl_err("%s: failed to write 0x%x to window data addr\n", 1003 __func__, data); 1004 return status; 1005 } 1006 1007 /* set window register, which starts the write cycle */ 1008 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS, 1009 address); 1010 } 1011 1012 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar) 1013 { 1014 u32 addr; 1015 unsigned long timeout; 1016 int ret; 1017 1018 ar->bmi.cmd_credits = 0; 1019 1020 /* Read the counter register to get the command credits */ 1021 addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4; 1022 1023 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT); 1024 while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) { 1025 1026 /* 1027 * Hit the credit counter with a 4-byte access, the first byte 1028 * read will hit the counter and cause a decrement, while the 1029 * remaining 3 bytes has no effect. The rationale behind this 1030 * is to make all HIF accesses 4-byte aligned. 1031 */ 1032 ret = ath6kl_sdio_read_write_sync(ar, addr, 1033 (u8 *)&ar->bmi.cmd_credits, 4, 1034 HIF_RD_SYNC_BYTE_INC); 1035 if (ret) { 1036 ath6kl_err("Unable to decrement the command credit " 1037 "count register: %d\n", ret); 1038 return ret; 1039 } 1040 1041 /* The counter is only 8 bits. 1042 * Ignore anything in the upper 3 bytes 1043 */ 1044 ar->bmi.cmd_credits &= 0xFF; 1045 } 1046 1047 if (!ar->bmi.cmd_credits) { 1048 ath6kl_err("bmi communication timeout\n"); 1049 return -ETIMEDOUT; 1050 } 1051 1052 return 0; 1053 } 1054 1055 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar) 1056 { 1057 unsigned long timeout; 1058 u32 rx_word = 0; 1059 int ret = 0; 1060 1061 timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT); 1062 while ((time_before(jiffies, timeout)) && !rx_word) { 1063 ret = ath6kl_sdio_read_write_sync(ar, 1064 RX_LOOKAHEAD_VALID_ADDRESS, 1065 (u8 *)&rx_word, sizeof(rx_word), 1066 HIF_RD_SYNC_BYTE_INC); 1067 if (ret) { 1068 ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n"); 1069 return ret; 1070 } 1071 1072 /* all we really want is one bit */ 1073 rx_word &= (1 << ENDPOINT1); 1074 } 1075 1076 if (!rx_word) { 1077 ath6kl_err("bmi_recv_buf FIFO empty\n"); 1078 return -EINVAL; 1079 } 1080 1081 return ret; 1082 } 1083 1084 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len) 1085 { 1086 int ret; 1087 u32 addr; 1088 1089 ret = ath6kl_sdio_bmi_credits(ar); 1090 if (ret) 1091 return ret; 1092 1093 addr = ar->mbox_info.htc_addr; 1094 1095 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len, 1096 HIF_WR_SYNC_BYTE_INC); 1097 if (ret) 1098 ath6kl_err("unable to send the bmi data to the device\n"); 1099 1100 return ret; 1101 } 1102 1103 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len) 1104 { 1105 int ret; 1106 u32 addr; 1107 1108 /* 1109 * During normal bootup, small reads may be required. 1110 * Rather than issue an HIF Read and then wait as the Target 1111 * adds successive bytes to the FIFO, we wait here until 1112 * we know that response data is available. 1113 * 1114 * This allows us to cleanly timeout on an unexpected 1115 * Target failure rather than risk problems at the HIF level. 1116 * In particular, this avoids SDIO timeouts and possibly garbage 1117 * data on some host controllers. And on an interconnect 1118 * such as Compact Flash (as well as some SDIO masters) which 1119 * does not provide any indication on data timeout, it avoids 1120 * a potential hang or garbage response. 1121 * 1122 * Synchronization is more difficult for reads larger than the 1123 * size of the MBOX FIFO (128B), because the Target is unable 1124 * to push the 129th byte of data until AFTER the Host posts an 1125 * HIF Read and removes some FIFO data. So for large reads the 1126 * Host proceeds to post an HIF Read BEFORE all the data is 1127 * actually available to read. Fortunately, large BMI reads do 1128 * not occur in practice -- they're supported for debug/development. 1129 * 1130 * So Host/Target BMI synchronization is divided into these cases: 1131 * CASE 1: length < 4 1132 * Should not happen 1133 * 1134 * CASE 2: 4 <= length <= 128 1135 * Wait for first 4 bytes to be in FIFO 1136 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1137 * a BMI command credit, which indicates that the ENTIRE 1138 * response is available in the the FIFO 1139 * 1140 * CASE 3: length > 128 1141 * Wait for the first 4 bytes to be in FIFO 1142 * 1143 * For most uses, a small timeout should be sufficient and we will 1144 * usually see a response quickly; but there may be some unusual 1145 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1146 * For now, we use an unbounded busy loop while waiting for 1147 * BMI_EXECUTE. 1148 * 1149 * If BMI_EXECUTE ever needs to support longer-latency execution, 1150 * especially in production, this code needs to be enhanced to sleep 1151 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1152 * a function of Host processor speed. 1153 */ 1154 if (len >= 4) { /* NB: Currently, always true */ 1155 ret = ath6kl_bmi_get_rx_lkahd(ar); 1156 if (ret) 1157 return ret; 1158 } 1159 1160 addr = ar->mbox_info.htc_addr; 1161 ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len, 1162 HIF_RD_SYNC_BYTE_INC); 1163 if (ret) { 1164 ath6kl_err("Unable to read the bmi data from the device: %d\n", 1165 ret); 1166 return ret; 1167 } 1168 1169 return 0; 1170 } 1171 1172 static void ath6kl_sdio_stop(struct ath6kl *ar) 1173 { 1174 struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar); 1175 struct bus_request *req, *tmp_req; 1176 void *context; 1177 1178 /* FIXME: make sure that wq is not queued again */ 1179 1180 cancel_work_sync(&ar_sdio->wr_async_work); 1181 1182 spin_lock_bh(&ar_sdio->wr_async_lock); 1183 1184 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1185 list_del(&req->list); 1186 1187 if (req->scat_req) { 1188 /* this is a scatter gather request */ 1189 req->scat_req->status = -ECANCELED; 1190 req->scat_req->complete(ar_sdio->ar->htc_target, 1191 req->scat_req); 1192 } else { 1193 context = req->packet; 1194 ath6kl_sdio_free_bus_req(ar_sdio, req); 1195 ath6kl_hif_rw_comp_handler(context, -ECANCELED); 1196 } 1197 } 1198 1199 spin_unlock_bh(&ar_sdio->wr_async_lock); 1200 1201 WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4); 1202 } 1203 1204 static const struct ath6kl_hif_ops ath6kl_sdio_ops = { 1205 .read_write_sync = ath6kl_sdio_read_write_sync, 1206 .write_async = ath6kl_sdio_write_async, 1207 .irq_enable = ath6kl_sdio_irq_enable, 1208 .irq_disable = ath6kl_sdio_irq_disable, 1209 .scatter_req_get = ath6kl_sdio_scatter_req_get, 1210 .scatter_req_add = ath6kl_sdio_scatter_req_add, 1211 .enable_scatter = ath6kl_sdio_enable_scatter, 1212 .scat_req_rw = ath6kl_sdio_async_rw_scatter, 1213 .cleanup_scatter = ath6kl_sdio_cleanup_scatter, 1214 .suspend = ath6kl_sdio_suspend, 1215 .resume = ath6kl_sdio_resume, 1216 .diag_read32 = ath6kl_sdio_diag_read32, 1217 .diag_write32 = ath6kl_sdio_diag_write32, 1218 .bmi_read = ath6kl_sdio_bmi_read, 1219 .bmi_write = ath6kl_sdio_bmi_write, 1220 .power_on = ath6kl_sdio_power_on, 1221 .power_off = ath6kl_sdio_power_off, 1222 .stop = ath6kl_sdio_stop, 1223 }; 1224 1225 #ifdef CONFIG_PM_SLEEP 1226 1227 /* 1228 * Empty handlers so that mmc subsystem doesn't remove us entirely during 1229 * suspend. We instead follow cfg80211 suspend/resume handlers. 1230 */ 1231 static int ath6kl_sdio_pm_suspend(struct device *device) 1232 { 1233 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n"); 1234 1235 return 0; 1236 } 1237 1238 static int ath6kl_sdio_pm_resume(struct device *device) 1239 { 1240 ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n"); 1241 1242 return 0; 1243 } 1244 1245 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend, 1246 ath6kl_sdio_pm_resume); 1247 1248 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops) 1249 1250 #else 1251 1252 #define ATH6KL_SDIO_PM_OPS NULL 1253 1254 #endif /* CONFIG_PM_SLEEP */ 1255 1256 static int ath6kl_sdio_probe(struct sdio_func *func, 1257 const struct sdio_device_id *id) 1258 { 1259 int ret; 1260 struct ath6kl_sdio *ar_sdio; 1261 struct ath6kl *ar; 1262 int count; 1263 1264 ath6kl_dbg(ATH6KL_DBG_BOOT, 1265 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 1266 func->num, func->vendor, func->device, 1267 func->max_blksize, func->cur_blksize); 1268 1269 ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL); 1270 if (!ar_sdio) 1271 return -ENOMEM; 1272 1273 ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL); 1274 if (!ar_sdio->dma_buffer) { 1275 ret = -ENOMEM; 1276 goto err_hif; 1277 } 1278 1279 ar_sdio->func = func; 1280 sdio_set_drvdata(func, ar_sdio); 1281 1282 ar_sdio->id = id; 1283 ar_sdio->is_disabled = true; 1284 1285 spin_lock_init(&ar_sdio->lock); 1286 spin_lock_init(&ar_sdio->scat_lock); 1287 spin_lock_init(&ar_sdio->wr_async_lock); 1288 mutex_init(&ar_sdio->dma_buffer_mutex); 1289 mutex_init(&ar_sdio->mtx_irq); 1290 1291 INIT_LIST_HEAD(&ar_sdio->scat_req); 1292 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 1293 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 1294 1295 INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work); 1296 1297 for (count = 0; count < BUS_REQUEST_MAX_NUM; count++) 1298 ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]); 1299 1300 ar = ath6kl_core_create(&ar_sdio->func->dev); 1301 if (!ar) { 1302 ath6kl_err("Failed to alloc ath6kl core\n"); 1303 ret = -ENOMEM; 1304 goto err_dma; 1305 } 1306 1307 ar_sdio->ar = ar; 1308 ar->hif_type = ATH6KL_HIF_TYPE_SDIO; 1309 ar->hif_priv = ar_sdio; 1310 ar->hif_ops = &ath6kl_sdio_ops; 1311 ar->bmi.max_data_size = 256; 1312 1313 ath6kl_sdio_set_mbox_info(ar); 1314 1315 ret = ath6kl_sdio_config(ar); 1316 if (ret) { 1317 ath6kl_err("Failed to config sdio: %d\n", ret); 1318 goto err_core_alloc; 1319 } 1320 1321 ret = ath6kl_core_init(ar); 1322 if (ret) { 1323 ath6kl_err("Failed to init ath6kl core\n"); 1324 goto err_core_alloc; 1325 } 1326 1327 return ret; 1328 1329 err_core_alloc: 1330 ath6kl_core_destroy(ar_sdio->ar); 1331 err_dma: 1332 kfree(ar_sdio->dma_buffer); 1333 err_hif: 1334 kfree(ar_sdio); 1335 1336 return ret; 1337 } 1338 1339 static void ath6kl_sdio_remove(struct sdio_func *func) 1340 { 1341 struct ath6kl_sdio *ar_sdio; 1342 1343 ath6kl_dbg(ATH6KL_DBG_BOOT, 1344 "sdio removed func %d vendor 0x%x device 0x%x\n", 1345 func->num, func->vendor, func->device); 1346 1347 ar_sdio = sdio_get_drvdata(func); 1348 1349 ath6kl_stop_txrx(ar_sdio->ar); 1350 cancel_work_sync(&ar_sdio->wr_async_work); 1351 1352 ath6kl_core_cleanup(ar_sdio->ar); 1353 ath6kl_core_destroy(ar_sdio->ar); 1354 1355 kfree(ar_sdio->dma_buffer); 1356 kfree(ar_sdio); 1357 } 1358 1359 static const struct sdio_device_id ath6kl_sdio_devices[] = { 1360 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))}, 1361 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))}, 1362 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))}, 1363 {SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))}, 1364 {}, 1365 }; 1366 1367 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices); 1368 1369 static struct sdio_driver ath6kl_sdio_driver = { 1370 .name = "ath6kl_sdio", 1371 .id_table = ath6kl_sdio_devices, 1372 .probe = ath6kl_sdio_probe, 1373 .remove = ath6kl_sdio_remove, 1374 .drv.pm = ATH6KL_SDIO_PM_OPS, 1375 }; 1376 1377 static int __init ath6kl_sdio_init(void) 1378 { 1379 int ret; 1380 1381 ret = sdio_register_driver(&ath6kl_sdio_driver); 1382 if (ret) 1383 ath6kl_err("sdio driver registration failed: %d\n", ret); 1384 1385 return ret; 1386 } 1387 1388 static void __exit ath6kl_sdio_exit(void) 1389 { 1390 sdio_unregister_driver(&ath6kl_sdio_driver); 1391 } 1392 1393 module_init(ath6kl_sdio_init); 1394 module_exit(ath6kl_sdio_exit); 1395 1396 MODULE_AUTHOR("Atheros Communications, Inc."); 1397 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices"); 1398 MODULE_LICENSE("Dual BSD/GPL"); 1399 1400 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE); 1401 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE); 1402 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE); 1403 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE); 1404 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE); 1405 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE); 1406 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE); 1407 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE); 1408 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE); 1409 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE); 1410 MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE); 1411 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE); 1412 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE); 1413 MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE); 1414 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE); 1415 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE); 1416