xref: /linux/drivers/net/wireless/ath/ath6kl/sdio.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (c) 2004-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/mmc/card.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/mmc/host.h>
22 #include <linux/mmc/sdio_func.h>
23 #include <linux/mmc/sdio_ids.h>
24 #include <linux/mmc/sdio.h>
25 #include <linux/mmc/sd.h>
26 #include "hif.h"
27 #include "hif-ops.h"
28 #include "target.h"
29 #include "debug.h"
30 #include "cfg80211.h"
31 #include "trace.h"
32 
33 struct ath6kl_sdio {
34 	struct sdio_func *func;
35 
36 	/* protects access to bus_req_freeq */
37 	spinlock_t lock;
38 
39 	/* free list */
40 	struct list_head bus_req_freeq;
41 
42 	/* available bus requests */
43 	struct bus_request bus_req[BUS_REQUEST_MAX_NUM];
44 
45 	struct ath6kl *ar;
46 
47 	u8 *dma_buffer;
48 
49 	/* protects access to dma_buffer */
50 	struct mutex dma_buffer_mutex;
51 
52 	/* scatter request list head */
53 	struct list_head scat_req;
54 
55 	atomic_t irq_handling;
56 	wait_queue_head_t irq_wq;
57 
58 	/* protects access to scat_req */
59 	spinlock_t scat_lock;
60 
61 	bool scatter_enabled;
62 
63 	bool is_disabled;
64 	const struct sdio_device_id *id;
65 	struct work_struct wr_async_work;
66 	struct list_head wr_asyncq;
67 
68 	/* protects access to wr_asyncq */
69 	spinlock_t wr_async_lock;
70 };
71 
72 #define CMD53_ARG_READ          0
73 #define CMD53_ARG_WRITE         1
74 #define CMD53_ARG_BLOCK_BASIS   1
75 #define CMD53_ARG_FIXED_ADDRESS 0
76 #define CMD53_ARG_INCR_ADDRESS  1
77 
78 static inline struct ath6kl_sdio *ath6kl_sdio_priv(struct ath6kl *ar)
79 {
80 	return ar->hif_priv;
81 }
82 
83 /*
84  * Macro to check if DMA buffer is WORD-aligned and DMA-able.
85  * Most host controllers assume the buffer is DMA'able and will
86  * bug-check otherwise (i.e. buffers on the stack). virt_addr_valid
87  * check fails on stack memory.
88  */
89 static inline bool buf_needs_bounce(u8 *buf)
90 {
91 	return ((unsigned long) buf & 0x3) || !virt_addr_valid(buf);
92 }
93 
94 static void ath6kl_sdio_set_mbox_info(struct ath6kl *ar)
95 {
96 	struct ath6kl_mbox_info *mbox_info = &ar->mbox_info;
97 
98 	/* EP1 has an extended range */
99 	mbox_info->htc_addr = HIF_MBOX_BASE_ADDR;
100 	mbox_info->htc_ext_addr = HIF_MBOX0_EXT_BASE_ADDR;
101 	mbox_info->htc_ext_sz = HIF_MBOX0_EXT_WIDTH;
102 	mbox_info->block_size = HIF_MBOX_BLOCK_SIZE;
103 	mbox_info->gmbox_addr = HIF_GMBOX_BASE_ADDR;
104 	mbox_info->gmbox_sz = HIF_GMBOX_WIDTH;
105 }
106 
107 static inline void ath6kl_sdio_set_cmd53_arg(u32 *arg, u8 rw, u8 func,
108 					     u8 mode, u8 opcode, u32 addr,
109 					     u16 blksz)
110 {
111 	*arg = (((rw & 1) << 31) |
112 		((func & 0x7) << 28) |
113 		((mode & 1) << 27) |
114 		((opcode & 1) << 26) |
115 		((addr & 0x1FFFF) << 9) |
116 		(blksz & 0x1FF));
117 }
118 
119 static inline void ath6kl_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw,
120 					     unsigned int address,
121 					     unsigned char val)
122 {
123 	const u8 func = 0;
124 
125 	*arg = ((write & 1) << 31) |
126 	       ((func & 0x7) << 28) |
127 	       ((raw & 1) << 27) |
128 	       (1 << 26) |
129 	       ((address & 0x1FFFF) << 9) |
130 	       (1 << 8) |
131 	       (val & 0xFF);
132 }
133 
134 static int ath6kl_sdio_func0_cmd52_wr_byte(struct mmc_card *card,
135 					   unsigned int address,
136 					   unsigned char byte)
137 {
138 	struct mmc_command io_cmd;
139 
140 	memset(&io_cmd, 0, sizeof(io_cmd));
141 	ath6kl_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte);
142 	io_cmd.opcode = SD_IO_RW_DIRECT;
143 	io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC;
144 
145 	return mmc_wait_for_cmd(card->host, &io_cmd, 0);
146 }
147 
148 static int ath6kl_sdio_io(struct sdio_func *func, u32 request, u32 addr,
149 			  u8 *buf, u32 len)
150 {
151 	int ret = 0;
152 
153 	sdio_claim_host(func);
154 
155 	if (request & HIF_WRITE) {
156 		/* FIXME: looks like ugly workaround for something */
157 		if (addr >= HIF_MBOX_BASE_ADDR &&
158 		    addr <= HIF_MBOX_END_ADDR)
159 			addr += (HIF_MBOX_WIDTH - len);
160 
161 		/* FIXME: this also looks like ugly workaround */
162 		if (addr == HIF_MBOX0_EXT_BASE_ADDR)
163 			addr += HIF_MBOX0_EXT_WIDTH - len;
164 
165 		if (request & HIF_FIXED_ADDRESS)
166 			ret = sdio_writesb(func, addr, buf, len);
167 		else
168 			ret = sdio_memcpy_toio(func, addr, buf, len);
169 	} else {
170 		if (request & HIF_FIXED_ADDRESS)
171 			ret = sdio_readsb(func, buf, addr, len);
172 		else
173 			ret = sdio_memcpy_fromio(func, buf, addr, len);
174 	}
175 
176 	sdio_release_host(func);
177 
178 	ath6kl_dbg(ATH6KL_DBG_SDIO, "%s addr 0x%x%s buf 0x%p len %d\n",
179 		   request & HIF_WRITE ? "wr" : "rd", addr,
180 		   request & HIF_FIXED_ADDRESS ? " (fixed)" : "", buf, len);
181 	ath6kl_dbg_dump(ATH6KL_DBG_SDIO_DUMP, NULL, "sdio ", buf, len);
182 
183 	trace_ath6kl_sdio(addr, request, buf, len);
184 
185 	return ret;
186 }
187 
188 static struct bus_request *ath6kl_sdio_alloc_busreq(struct ath6kl_sdio *ar_sdio)
189 {
190 	struct bus_request *bus_req;
191 
192 	spin_lock_bh(&ar_sdio->lock);
193 
194 	if (list_empty(&ar_sdio->bus_req_freeq)) {
195 		spin_unlock_bh(&ar_sdio->lock);
196 		return NULL;
197 	}
198 
199 	bus_req = list_first_entry(&ar_sdio->bus_req_freeq,
200 				   struct bus_request, list);
201 	list_del(&bus_req->list);
202 
203 	spin_unlock_bh(&ar_sdio->lock);
204 	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
205 		   __func__, bus_req);
206 
207 	return bus_req;
208 }
209 
210 static void ath6kl_sdio_free_bus_req(struct ath6kl_sdio *ar_sdio,
211 				     struct bus_request *bus_req)
212 {
213 	ath6kl_dbg(ATH6KL_DBG_SCATTER, "%s: bus request 0x%p\n",
214 		   __func__, bus_req);
215 
216 	spin_lock_bh(&ar_sdio->lock);
217 	list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq);
218 	spin_unlock_bh(&ar_sdio->lock);
219 }
220 
221 static void ath6kl_sdio_setup_scat_data(struct hif_scatter_req *scat_req,
222 					struct mmc_data *data)
223 {
224 	struct scatterlist *sg;
225 	int i;
226 
227 	data->blksz = HIF_MBOX_BLOCK_SIZE;
228 	data->blocks = scat_req->len / HIF_MBOX_BLOCK_SIZE;
229 
230 	ath6kl_dbg(ATH6KL_DBG_SCATTER,
231 		   "hif-scatter: (%s) addr: 0x%X, (block len: %d, block count: %d) , (tot:%d,sg:%d)\n",
232 		   (scat_req->req & HIF_WRITE) ? "WR" : "RD", scat_req->addr,
233 		   data->blksz, data->blocks, scat_req->len,
234 		   scat_req->scat_entries);
235 
236 	data->flags = (scat_req->req & HIF_WRITE) ? MMC_DATA_WRITE :
237 						    MMC_DATA_READ;
238 
239 	/* fill SG entries */
240 	sg = scat_req->sgentries;
241 	sg_init_table(sg, scat_req->scat_entries);
242 
243 	/* assemble SG list */
244 	for (i = 0; i < scat_req->scat_entries; i++, sg++) {
245 		ath6kl_dbg(ATH6KL_DBG_SCATTER, "%d: addr:0x%p, len:%d\n",
246 			   i, scat_req->scat_list[i].buf,
247 			   scat_req->scat_list[i].len);
248 
249 		sg_set_buf(sg, scat_req->scat_list[i].buf,
250 			   scat_req->scat_list[i].len);
251 	}
252 
253 	/* set scatter-gather table for request */
254 	data->sg = scat_req->sgentries;
255 	data->sg_len = scat_req->scat_entries;
256 }
257 
258 static int ath6kl_sdio_scat_rw(struct ath6kl_sdio *ar_sdio,
259 			       struct bus_request *req)
260 {
261 	struct mmc_request mmc_req;
262 	struct mmc_command cmd;
263 	struct mmc_data data;
264 	struct hif_scatter_req *scat_req;
265 	u8 opcode, rw;
266 	int status, len;
267 
268 	scat_req = req->scat_req;
269 
270 	if (scat_req->virt_scat) {
271 		len = scat_req->len;
272 		if (scat_req->req & HIF_BLOCK_BASIS)
273 			len = round_down(len, HIF_MBOX_BLOCK_SIZE);
274 
275 		status = ath6kl_sdio_io(ar_sdio->func, scat_req->req,
276 					scat_req->addr, scat_req->virt_dma_buf,
277 					len);
278 		goto scat_complete;
279 	}
280 
281 	memset(&mmc_req, 0, sizeof(struct mmc_request));
282 	memset(&cmd, 0, sizeof(struct mmc_command));
283 	memset(&data, 0, sizeof(struct mmc_data));
284 
285 	ath6kl_sdio_setup_scat_data(scat_req, &data);
286 
287 	opcode = (scat_req->req & HIF_FIXED_ADDRESS) ?
288 		  CMD53_ARG_FIXED_ADDRESS : CMD53_ARG_INCR_ADDRESS;
289 
290 	rw = (scat_req->req & HIF_WRITE) ? CMD53_ARG_WRITE : CMD53_ARG_READ;
291 
292 	/* Fixup the address so that the last byte will fall on MBOX EOM */
293 	if (scat_req->req & HIF_WRITE) {
294 		if (scat_req->addr == HIF_MBOX_BASE_ADDR)
295 			scat_req->addr += HIF_MBOX_WIDTH - scat_req->len;
296 		else
297 			/* Uses extended address range */
298 			scat_req->addr += HIF_MBOX0_EXT_WIDTH - scat_req->len;
299 	}
300 
301 	/* set command argument */
302 	ath6kl_sdio_set_cmd53_arg(&cmd.arg, rw, ar_sdio->func->num,
303 				  CMD53_ARG_BLOCK_BASIS, opcode, scat_req->addr,
304 				  data.blocks);
305 
306 	cmd.opcode = SD_IO_RW_EXTENDED;
307 	cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC;
308 
309 	mmc_req.cmd = &cmd;
310 	mmc_req.data = &data;
311 
312 	sdio_claim_host(ar_sdio->func);
313 
314 	mmc_set_data_timeout(&data, ar_sdio->func->card);
315 
316 	trace_ath6kl_sdio_scat(scat_req->addr,
317 			       scat_req->req,
318 			       scat_req->len,
319 			       scat_req->scat_entries,
320 			       scat_req->scat_list);
321 
322 	/* synchronous call to process request */
323 	mmc_wait_for_req(ar_sdio->func->card->host, &mmc_req);
324 
325 	sdio_release_host(ar_sdio->func);
326 
327 	status = cmd.error ? cmd.error : data.error;
328 
329 scat_complete:
330 	scat_req->status = status;
331 
332 	if (scat_req->status)
333 		ath6kl_err("Scatter write request failed:%d\n",
334 			   scat_req->status);
335 
336 	if (scat_req->req & HIF_ASYNCHRONOUS)
337 		scat_req->complete(ar_sdio->ar->htc_target, scat_req);
338 
339 	return status;
340 }
341 
342 static int ath6kl_sdio_alloc_prep_scat_req(struct ath6kl_sdio *ar_sdio,
343 					   int n_scat_entry, int n_scat_req,
344 					   bool virt_scat)
345 {
346 	struct hif_scatter_req *s_req;
347 	struct bus_request *bus_req;
348 	int i, scat_req_sz, scat_list_sz, size;
349 	u8 *virt_buf;
350 
351 	scat_list_sz = n_scat_entry * sizeof(struct hif_scatter_item);
352 	scat_req_sz = sizeof(*s_req) + scat_list_sz;
353 
354 	if (!virt_scat)
355 		size = sizeof(struct scatterlist) * n_scat_entry;
356 	else
357 		size =  2 * L1_CACHE_BYTES +
358 			ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
359 
360 	for (i = 0; i < n_scat_req; i++) {
361 		/* allocate the scatter request */
362 		s_req = kzalloc(scat_req_sz, GFP_KERNEL);
363 		if (!s_req)
364 			return -ENOMEM;
365 
366 		if (virt_scat) {
367 			virt_buf = kzalloc(size, GFP_KERNEL);
368 			if (!virt_buf) {
369 				kfree(s_req);
370 				return -ENOMEM;
371 			}
372 
373 			s_req->virt_dma_buf =
374 				(u8 *)L1_CACHE_ALIGN((unsigned long)virt_buf);
375 		} else {
376 			/* allocate sglist */
377 			s_req->sgentries = kzalloc(size, GFP_KERNEL);
378 
379 			if (!s_req->sgentries) {
380 				kfree(s_req);
381 				return -ENOMEM;
382 			}
383 		}
384 
385 		/* allocate a bus request for this scatter request */
386 		bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
387 		if (!bus_req) {
388 			kfree(s_req->sgentries);
389 			kfree(s_req->virt_dma_buf);
390 			kfree(s_req);
391 			return -ENOMEM;
392 		}
393 
394 		/* assign the scatter request to this bus request */
395 		bus_req->scat_req = s_req;
396 		s_req->busrequest = bus_req;
397 
398 		s_req->virt_scat = virt_scat;
399 
400 		/* add it to the scatter pool */
401 		hif_scatter_req_add(ar_sdio->ar, s_req);
402 	}
403 
404 	return 0;
405 }
406 
407 static int ath6kl_sdio_read_write_sync(struct ath6kl *ar, u32 addr, u8 *buf,
408 				       u32 len, u32 request)
409 {
410 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
411 	u8  *tbuf = NULL;
412 	int ret;
413 	bool bounced = false;
414 
415 	if (request & HIF_BLOCK_BASIS)
416 		len = round_down(len, HIF_MBOX_BLOCK_SIZE);
417 
418 	if (buf_needs_bounce(buf)) {
419 		if (!ar_sdio->dma_buffer)
420 			return -ENOMEM;
421 		mutex_lock(&ar_sdio->dma_buffer_mutex);
422 		tbuf = ar_sdio->dma_buffer;
423 
424 		if (request & HIF_WRITE)
425 			memcpy(tbuf, buf, len);
426 
427 		bounced = true;
428 	} else {
429 		tbuf = buf;
430 	}
431 
432 	ret = ath6kl_sdio_io(ar_sdio->func, request, addr, tbuf, len);
433 	if ((request & HIF_READ) && bounced)
434 		memcpy(buf, tbuf, len);
435 
436 	if (bounced)
437 		mutex_unlock(&ar_sdio->dma_buffer_mutex);
438 
439 	return ret;
440 }
441 
442 static void __ath6kl_sdio_write_async(struct ath6kl_sdio *ar_sdio,
443 				      struct bus_request *req)
444 {
445 	if (req->scat_req) {
446 		ath6kl_sdio_scat_rw(ar_sdio, req);
447 	} else {
448 		void *context;
449 		int status;
450 
451 		status = ath6kl_sdio_read_write_sync(ar_sdio->ar, req->address,
452 						     req->buffer, req->length,
453 						     req->request);
454 		context = req->packet;
455 		ath6kl_sdio_free_bus_req(ar_sdio, req);
456 		ath6kl_hif_rw_comp_handler(context, status);
457 	}
458 }
459 
460 static void ath6kl_sdio_write_async_work(struct work_struct *work)
461 {
462 	struct ath6kl_sdio *ar_sdio;
463 	struct bus_request *req, *tmp_req;
464 
465 	ar_sdio = container_of(work, struct ath6kl_sdio, wr_async_work);
466 
467 	spin_lock_bh(&ar_sdio->wr_async_lock);
468 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
469 		list_del(&req->list);
470 		spin_unlock_bh(&ar_sdio->wr_async_lock);
471 		__ath6kl_sdio_write_async(ar_sdio, req);
472 		spin_lock_bh(&ar_sdio->wr_async_lock);
473 	}
474 	spin_unlock_bh(&ar_sdio->wr_async_lock);
475 }
476 
477 static void ath6kl_sdio_irq_handler(struct sdio_func *func)
478 {
479 	int status;
480 	struct ath6kl_sdio *ar_sdio;
481 
482 	ath6kl_dbg(ATH6KL_DBG_SDIO, "irq\n");
483 
484 	ar_sdio = sdio_get_drvdata(func);
485 	atomic_set(&ar_sdio->irq_handling, 1);
486 	/*
487 	 * Release the host during interrups so we can pick it back up when
488 	 * we process commands.
489 	 */
490 	sdio_release_host(ar_sdio->func);
491 
492 	status = ath6kl_hif_intr_bh_handler(ar_sdio->ar);
493 	sdio_claim_host(ar_sdio->func);
494 
495 	atomic_set(&ar_sdio->irq_handling, 0);
496 	wake_up(&ar_sdio->irq_wq);
497 
498 	WARN_ON(status && status != -ECANCELED);
499 }
500 
501 static int ath6kl_sdio_power_on(struct ath6kl *ar)
502 {
503 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
504 	struct sdio_func *func = ar_sdio->func;
505 	int ret = 0;
506 
507 	if (!ar_sdio->is_disabled)
508 		return 0;
509 
510 	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power on\n");
511 
512 	sdio_claim_host(func);
513 
514 	ret = sdio_enable_func(func);
515 	if (ret) {
516 		ath6kl_err("Unable to enable sdio func: %d)\n", ret);
517 		sdio_release_host(func);
518 		return ret;
519 	}
520 
521 	sdio_release_host(func);
522 
523 	/*
524 	 * Wait for hardware to initialise. It should take a lot less than
525 	 * 10 ms but let's be conservative here.
526 	 */
527 	msleep(10);
528 
529 	ar_sdio->is_disabled = false;
530 
531 	return ret;
532 }
533 
534 static int ath6kl_sdio_power_off(struct ath6kl *ar)
535 {
536 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
537 	int ret;
538 
539 	if (ar_sdio->is_disabled)
540 		return 0;
541 
542 	ath6kl_dbg(ATH6KL_DBG_BOOT, "sdio power off\n");
543 
544 	/* Disable the card */
545 	sdio_claim_host(ar_sdio->func);
546 	ret = sdio_disable_func(ar_sdio->func);
547 	sdio_release_host(ar_sdio->func);
548 
549 	if (ret)
550 		return ret;
551 
552 	ar_sdio->is_disabled = true;
553 
554 	return ret;
555 }
556 
557 static int ath6kl_sdio_write_async(struct ath6kl *ar, u32 address, u8 *buffer,
558 				   u32 length, u32 request,
559 				   struct htc_packet *packet)
560 {
561 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
562 	struct bus_request *bus_req;
563 
564 	bus_req = ath6kl_sdio_alloc_busreq(ar_sdio);
565 
566 	if (WARN_ON_ONCE(!bus_req))
567 		return -ENOMEM;
568 
569 	bus_req->address = address;
570 	bus_req->buffer = buffer;
571 	bus_req->length = length;
572 	bus_req->request = request;
573 	bus_req->packet = packet;
574 
575 	spin_lock_bh(&ar_sdio->wr_async_lock);
576 	list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq);
577 	spin_unlock_bh(&ar_sdio->wr_async_lock);
578 	queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
579 
580 	return 0;
581 }
582 
583 static void ath6kl_sdio_irq_enable(struct ath6kl *ar)
584 {
585 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
586 	int ret;
587 
588 	sdio_claim_host(ar_sdio->func);
589 
590 	/* Register the isr */
591 	ret =  sdio_claim_irq(ar_sdio->func, ath6kl_sdio_irq_handler);
592 	if (ret)
593 		ath6kl_err("Failed to claim sdio irq: %d\n", ret);
594 
595 	sdio_release_host(ar_sdio->func);
596 }
597 
598 static bool ath6kl_sdio_is_on_irq(struct ath6kl *ar)
599 {
600 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
601 
602 	return !atomic_read(&ar_sdio->irq_handling);
603 }
604 
605 static void ath6kl_sdio_irq_disable(struct ath6kl *ar)
606 {
607 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
608 	int ret;
609 
610 	sdio_claim_host(ar_sdio->func);
611 
612 	if (atomic_read(&ar_sdio->irq_handling)) {
613 		sdio_release_host(ar_sdio->func);
614 
615 		ret = wait_event_interruptible(ar_sdio->irq_wq,
616 					       ath6kl_sdio_is_on_irq(ar));
617 		if (ret)
618 			return;
619 
620 		sdio_claim_host(ar_sdio->func);
621 	}
622 
623 	ret = sdio_release_irq(ar_sdio->func);
624 	if (ret)
625 		ath6kl_err("Failed to release sdio irq: %d\n", ret);
626 
627 	sdio_release_host(ar_sdio->func);
628 }
629 
630 static struct hif_scatter_req *ath6kl_sdio_scatter_req_get(struct ath6kl *ar)
631 {
632 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
633 	struct hif_scatter_req *node = NULL;
634 
635 	spin_lock_bh(&ar_sdio->scat_lock);
636 
637 	if (!list_empty(&ar_sdio->scat_req)) {
638 		node = list_first_entry(&ar_sdio->scat_req,
639 					struct hif_scatter_req, list);
640 		list_del(&node->list);
641 
642 		node->scat_q_depth = get_queue_depth(&ar_sdio->scat_req);
643 	}
644 
645 	spin_unlock_bh(&ar_sdio->scat_lock);
646 
647 	return node;
648 }
649 
650 static void ath6kl_sdio_scatter_req_add(struct ath6kl *ar,
651 					struct hif_scatter_req *s_req)
652 {
653 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
654 
655 	spin_lock_bh(&ar_sdio->scat_lock);
656 
657 	list_add_tail(&s_req->list, &ar_sdio->scat_req);
658 
659 	spin_unlock_bh(&ar_sdio->scat_lock);
660 }
661 
662 /* scatter gather read write request */
663 static int ath6kl_sdio_async_rw_scatter(struct ath6kl *ar,
664 					struct hif_scatter_req *scat_req)
665 {
666 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
667 	u32 request = scat_req->req;
668 	int status = 0;
669 
670 	if (!scat_req->len)
671 		return -EINVAL;
672 
673 	ath6kl_dbg(ATH6KL_DBG_SCATTER,
674 		   "hif-scatter: total len: %d scatter entries: %d\n",
675 		   scat_req->len, scat_req->scat_entries);
676 
677 	if (request & HIF_SYNCHRONOUS) {
678 		status = ath6kl_sdio_scat_rw(ar_sdio, scat_req->busrequest);
679 	} else {
680 		spin_lock_bh(&ar_sdio->wr_async_lock);
681 		list_add_tail(&scat_req->busrequest->list, &ar_sdio->wr_asyncq);
682 		spin_unlock_bh(&ar_sdio->wr_async_lock);
683 		queue_work(ar->ath6kl_wq, &ar_sdio->wr_async_work);
684 	}
685 
686 	return status;
687 }
688 
689 /* clean up scatter support */
690 static void ath6kl_sdio_cleanup_scatter(struct ath6kl *ar)
691 {
692 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
693 	struct hif_scatter_req *s_req, *tmp_req;
694 
695 	/* empty the free list */
696 	spin_lock_bh(&ar_sdio->scat_lock);
697 	list_for_each_entry_safe(s_req, tmp_req, &ar_sdio->scat_req, list) {
698 		list_del(&s_req->list);
699 		spin_unlock_bh(&ar_sdio->scat_lock);
700 
701 		/*
702 		 * FIXME: should we also call completion handler with
703 		 * ath6kl_hif_rw_comp_handler() with status -ECANCELED so
704 		 * that the packet is properly freed?
705 		 */
706 		if (s_req->busrequest)
707 			ath6kl_sdio_free_bus_req(ar_sdio, s_req->busrequest);
708 		kfree(s_req->virt_dma_buf);
709 		kfree(s_req->sgentries);
710 		kfree(s_req);
711 
712 		spin_lock_bh(&ar_sdio->scat_lock);
713 	}
714 	spin_unlock_bh(&ar_sdio->scat_lock);
715 }
716 
717 /* setup of HIF scatter resources */
718 static int ath6kl_sdio_enable_scatter(struct ath6kl *ar)
719 {
720 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
721 	struct htc_target *target = ar->htc_target;
722 	int ret = 0;
723 	bool virt_scat = false;
724 
725 	if (ar_sdio->scatter_enabled)
726 		return 0;
727 
728 	ar_sdio->scatter_enabled = true;
729 
730 	/* check if host supports scatter and it meets our requirements */
731 	if (ar_sdio->func->card->host->max_segs < MAX_SCATTER_ENTRIES_PER_REQ) {
732 		ath6kl_err("host only supports scatter of :%d entries, need: %d\n",
733 			   ar_sdio->func->card->host->max_segs,
734 			   MAX_SCATTER_ENTRIES_PER_REQ);
735 		virt_scat = true;
736 	}
737 
738 	if (!virt_scat) {
739 		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
740 				MAX_SCATTER_ENTRIES_PER_REQ,
741 				MAX_SCATTER_REQUESTS, virt_scat);
742 
743 		if (!ret) {
744 			ath6kl_dbg(ATH6KL_DBG_BOOT,
745 				   "hif-scatter enabled requests %d entries %d\n",
746 				   MAX_SCATTER_REQUESTS,
747 				   MAX_SCATTER_ENTRIES_PER_REQ);
748 
749 			target->max_scat_entries = MAX_SCATTER_ENTRIES_PER_REQ;
750 			target->max_xfer_szper_scatreq =
751 						MAX_SCATTER_REQ_TRANSFER_SIZE;
752 		} else {
753 			ath6kl_sdio_cleanup_scatter(ar);
754 			ath6kl_warn("hif scatter resource setup failed, trying virtual scatter method\n");
755 		}
756 	}
757 
758 	if (virt_scat || ret) {
759 		ret = ath6kl_sdio_alloc_prep_scat_req(ar_sdio,
760 				ATH6KL_SCATTER_ENTRIES_PER_REQ,
761 				ATH6KL_SCATTER_REQS, virt_scat);
762 
763 		if (ret) {
764 			ath6kl_err("failed to alloc virtual scatter resources !\n");
765 			ath6kl_sdio_cleanup_scatter(ar);
766 			return ret;
767 		}
768 
769 		ath6kl_dbg(ATH6KL_DBG_BOOT,
770 			   "virtual scatter enabled requests %d entries %d\n",
771 			   ATH6KL_SCATTER_REQS, ATH6KL_SCATTER_ENTRIES_PER_REQ);
772 
773 		target->max_scat_entries = ATH6KL_SCATTER_ENTRIES_PER_REQ;
774 		target->max_xfer_szper_scatreq =
775 					ATH6KL_MAX_TRANSFER_SIZE_PER_SCATTER;
776 	}
777 
778 	return 0;
779 }
780 
781 static int ath6kl_sdio_config(struct ath6kl *ar)
782 {
783 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
784 	struct sdio_func *func = ar_sdio->func;
785 	int ret;
786 
787 	sdio_claim_host(func);
788 
789 	if ((ar_sdio->id->device & MANUFACTURER_ID_ATH6KL_BASE_MASK) >=
790 	    MANUFACTURER_ID_AR6003_BASE) {
791 		/* enable 4-bit ASYNC interrupt on AR6003 or later */
792 		ret = ath6kl_sdio_func0_cmd52_wr_byte(func->card,
793 						CCCR_SDIO_IRQ_MODE_REG,
794 						SDIO_IRQ_MODE_ASYNC_4BIT_IRQ);
795 		if (ret) {
796 			ath6kl_err("Failed to enable 4-bit async irq mode %d\n",
797 				   ret);
798 			goto out;
799 		}
800 
801 		ath6kl_dbg(ATH6KL_DBG_BOOT, "4-bit async irq mode enabled\n");
802 	}
803 
804 	/* give us some time to enable, in ms */
805 	func->enable_timeout = 100;
806 
807 	ret = sdio_set_block_size(func, HIF_MBOX_BLOCK_SIZE);
808 	if (ret) {
809 		ath6kl_err("Set sdio block size %d failed: %d)\n",
810 			   HIF_MBOX_BLOCK_SIZE, ret);
811 		goto out;
812 	}
813 
814 out:
815 	sdio_release_host(func);
816 
817 	return ret;
818 }
819 
820 static int ath6kl_set_sdio_pm_caps(struct ath6kl *ar)
821 {
822 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
823 	struct sdio_func *func = ar_sdio->func;
824 	mmc_pm_flag_t flags;
825 	int ret;
826 
827 	flags = sdio_get_host_pm_caps(func);
828 
829 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio suspend pm_caps 0x%x\n", flags);
830 
831 	if (!(flags & MMC_PM_WAKE_SDIO_IRQ) ||
832 	    !(flags & MMC_PM_KEEP_POWER))
833 		return -EINVAL;
834 
835 	ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
836 	if (ret) {
837 		ath6kl_err("set sdio keep pwr flag failed: %d\n", ret);
838 		return ret;
839 	}
840 
841 	/* sdio irq wakes up host */
842 	ret = sdio_set_host_pm_flags(func, MMC_PM_WAKE_SDIO_IRQ);
843 	if (ret)
844 		ath6kl_err("set sdio wake irq flag failed: %d\n", ret);
845 
846 	return ret;
847 }
848 
849 static int ath6kl_sdio_suspend(struct ath6kl *ar, struct cfg80211_wowlan *wow)
850 {
851 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
852 	struct sdio_func *func = ar_sdio->func;
853 	mmc_pm_flag_t flags;
854 	bool try_deepsleep = false;
855 	int ret;
856 
857 	if (ar->suspend_mode == WLAN_POWER_STATE_WOW ||
858 	    (!ar->suspend_mode && wow)) {
859 		ret = ath6kl_set_sdio_pm_caps(ar);
860 		if (ret)
861 			goto cut_pwr;
862 
863 		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_WOW, wow);
864 		if (ret && ret != -ENOTCONN)
865 			ath6kl_err("wow suspend failed: %d\n", ret);
866 
867 		if (ret &&
868 		    (!ar->wow_suspend_mode ||
869 		     ar->wow_suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP))
870 			try_deepsleep = true;
871 		else if (ret &&
872 			 ar->wow_suspend_mode == WLAN_POWER_STATE_CUT_PWR)
873 			goto cut_pwr;
874 		if (!ret)
875 			return 0;
876 	}
877 
878 	if (ar->suspend_mode == WLAN_POWER_STATE_DEEP_SLEEP ||
879 	    !ar->suspend_mode || try_deepsleep) {
880 		flags = sdio_get_host_pm_caps(func);
881 		if (!(flags & MMC_PM_KEEP_POWER))
882 			goto cut_pwr;
883 
884 		ret = sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER);
885 		if (ret)
886 			goto cut_pwr;
887 
888 		/*
889 		 * Workaround to support Deep Sleep with MSM, set the host pm
890 		 * flag as MMC_PM_WAKE_SDIO_IRQ to allow SDCC deiver to disable
891 		 * the sdc2_clock and internally allows MSM to enter
892 		 * TCXO shutdown properly.
893 		 */
894 		if ((flags & MMC_PM_WAKE_SDIO_IRQ)) {
895 			ret = sdio_set_host_pm_flags(func,
896 						MMC_PM_WAKE_SDIO_IRQ);
897 			if (ret)
898 				goto cut_pwr;
899 		}
900 
901 		ret = ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_DEEPSLEEP,
902 					      NULL);
903 		if (ret)
904 			goto cut_pwr;
905 
906 		return 0;
907 	}
908 
909 cut_pwr:
910 	if (func->card && func->card->host)
911 		func->card->host->pm_flags &= ~MMC_PM_KEEP_POWER;
912 
913 	return ath6kl_cfg80211_suspend(ar, ATH6KL_CFG_SUSPEND_CUTPOWER, NULL);
914 }
915 
916 static int ath6kl_sdio_resume(struct ath6kl *ar)
917 {
918 	switch (ar->state) {
919 	case ATH6KL_STATE_OFF:
920 	case ATH6KL_STATE_CUTPOWER:
921 		ath6kl_dbg(ATH6KL_DBG_SUSPEND,
922 			   "sdio resume configuring sdio\n");
923 
924 		/* need to set sdio settings after power is cut from sdio */
925 		ath6kl_sdio_config(ar);
926 		break;
927 
928 	case ATH6KL_STATE_ON:
929 		break;
930 
931 	case ATH6KL_STATE_DEEPSLEEP:
932 		break;
933 
934 	case ATH6KL_STATE_WOW:
935 		break;
936 
937 	case ATH6KL_STATE_SUSPENDING:
938 		break;
939 
940 	case ATH6KL_STATE_RESUMING:
941 		break;
942 
943 	case ATH6KL_STATE_RECOVERY:
944 		break;
945 	}
946 
947 	ath6kl_cfg80211_resume(ar);
948 
949 	return 0;
950 }
951 
952 /* set the window address register (using 4-byte register access ). */
953 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
954 {
955 	int status;
956 	u8 addr_val[4];
957 	s32 i;
958 
959 	/*
960 	 * Write bytes 1,2,3 of the register to set the upper address bytes,
961 	 * the LSB is written last to initiate the access cycle
962 	 */
963 
964 	for (i = 1; i <= 3; i++) {
965 		/*
966 		 * Fill the buffer with the address byte value we want to
967 		 * hit 4 times.
968 		 */
969 		memset(addr_val, ((u8 *)&addr)[i], 4);
970 
971 		/*
972 		 * Hit each byte of the register address with a 4-byte
973 		 * write operation to the same address, this is a harmless
974 		 * operation.
975 		 */
976 		status = ath6kl_sdio_read_write_sync(ar, reg_addr + i, addr_val,
977 					     4, HIF_WR_SYNC_BYTE_FIX);
978 		if (status)
979 			break;
980 	}
981 
982 	if (status) {
983 		ath6kl_err("%s: failed to write initial bytes of 0x%x to window reg: 0x%X\n",
984 			   __func__, addr, reg_addr);
985 		return status;
986 	}
987 
988 	/*
989 	 * Write the address register again, this time write the whole
990 	 * 4-byte value. The effect here is that the LSB write causes the
991 	 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
992 	 * effect since we are writing the same values again
993 	 */
994 	status = ath6kl_sdio_read_write_sync(ar, reg_addr, (u8 *)(&addr),
995 				     4, HIF_WR_SYNC_BYTE_INC);
996 
997 	if (status) {
998 		ath6kl_err("%s: failed to write 0x%x to window reg: 0x%X\n",
999 			   __func__, addr, reg_addr);
1000 		return status;
1001 	}
1002 
1003 	return 0;
1004 }
1005 
1006 static int ath6kl_sdio_diag_read32(struct ath6kl *ar, u32 address, u32 *data)
1007 {
1008 	int status;
1009 
1010 	/* set window register to start read cycle */
1011 	status = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS,
1012 					address);
1013 
1014 	if (status)
1015 		return status;
1016 
1017 	/* read the data */
1018 	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1019 				(u8 *)data, sizeof(u32), HIF_RD_SYNC_BYTE_INC);
1020 	if (status) {
1021 		ath6kl_err("%s: failed to read from window data addr\n",
1022 			   __func__);
1023 		return status;
1024 	}
1025 
1026 	return status;
1027 }
1028 
1029 static int ath6kl_sdio_diag_write32(struct ath6kl *ar, u32 address,
1030 				    __le32 data)
1031 {
1032 	int status;
1033 	u32 val = (__force u32) data;
1034 
1035 	/* set write data */
1036 	status = ath6kl_sdio_read_write_sync(ar, WINDOW_DATA_ADDRESS,
1037 				(u8 *) &val, sizeof(u32), HIF_WR_SYNC_BYTE_INC);
1038 	if (status) {
1039 		ath6kl_err("%s: failed to write 0x%x to window data addr\n",
1040 			   __func__, data);
1041 		return status;
1042 	}
1043 
1044 	/* set window register, which starts the write cycle */
1045 	return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
1046 				      address);
1047 }
1048 
1049 static int ath6kl_sdio_bmi_credits(struct ath6kl *ar)
1050 {
1051 	u32 addr;
1052 	unsigned long timeout;
1053 	int ret;
1054 
1055 	ar->bmi.cmd_credits = 0;
1056 
1057 	/* Read the counter register to get the command credits */
1058 	addr = COUNT_DEC_ADDRESS + (HTC_MAILBOX_NUM_MAX + ENDPOINT1) * 4;
1059 
1060 	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1061 	while (time_before(jiffies, timeout) && !ar->bmi.cmd_credits) {
1062 		/*
1063 		 * Hit the credit counter with a 4-byte access, the first byte
1064 		 * read will hit the counter and cause a decrement, while the
1065 		 * remaining 3 bytes has no effect. The rationale behind this
1066 		 * is to make all HIF accesses 4-byte aligned.
1067 		 */
1068 		ret = ath6kl_sdio_read_write_sync(ar, addr,
1069 					 (u8 *)&ar->bmi.cmd_credits, 4,
1070 					 HIF_RD_SYNC_BYTE_INC);
1071 		if (ret) {
1072 			ath6kl_err("Unable to decrement the command credit count register: %d\n",
1073 				   ret);
1074 			return ret;
1075 		}
1076 
1077 		/* The counter is only 8 bits.
1078 		 * Ignore anything in the upper 3 bytes
1079 		 */
1080 		ar->bmi.cmd_credits &= 0xFF;
1081 	}
1082 
1083 	if (!ar->bmi.cmd_credits) {
1084 		ath6kl_err("bmi communication timeout\n");
1085 		return -ETIMEDOUT;
1086 	}
1087 
1088 	return 0;
1089 }
1090 
1091 static int ath6kl_bmi_get_rx_lkahd(struct ath6kl *ar)
1092 {
1093 	unsigned long timeout;
1094 	u32 rx_word = 0;
1095 	int ret = 0;
1096 
1097 	timeout = jiffies + msecs_to_jiffies(BMI_COMMUNICATION_TIMEOUT);
1098 	while ((time_before(jiffies, timeout)) && !rx_word) {
1099 		ret = ath6kl_sdio_read_write_sync(ar,
1100 					RX_LOOKAHEAD_VALID_ADDRESS,
1101 					(u8 *)&rx_word, sizeof(rx_word),
1102 					HIF_RD_SYNC_BYTE_INC);
1103 		if (ret) {
1104 			ath6kl_err("unable to read RX_LOOKAHEAD_VALID\n");
1105 			return ret;
1106 		}
1107 
1108 		 /* all we really want is one bit */
1109 		rx_word &= (1 << ENDPOINT1);
1110 	}
1111 
1112 	if (!rx_word) {
1113 		ath6kl_err("bmi_recv_buf FIFO empty\n");
1114 		return -EINVAL;
1115 	}
1116 
1117 	return ret;
1118 }
1119 
1120 static int ath6kl_sdio_bmi_write(struct ath6kl *ar, u8 *buf, u32 len)
1121 {
1122 	int ret;
1123 	u32 addr;
1124 
1125 	ret = ath6kl_sdio_bmi_credits(ar);
1126 	if (ret)
1127 		return ret;
1128 
1129 	addr = ar->mbox_info.htc_addr;
1130 
1131 	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1132 					  HIF_WR_SYNC_BYTE_INC);
1133 	if (ret) {
1134 		ath6kl_err("unable to send the bmi data to the device\n");
1135 		return ret;
1136 	}
1137 
1138 	return 0;
1139 }
1140 
1141 static int ath6kl_sdio_bmi_read(struct ath6kl *ar, u8 *buf, u32 len)
1142 {
1143 	int ret;
1144 	u32 addr;
1145 
1146 	/*
1147 	 * During normal bootup, small reads may be required.
1148 	 * Rather than issue an HIF Read and then wait as the Target
1149 	 * adds successive bytes to the FIFO, we wait here until
1150 	 * we know that response data is available.
1151 	 *
1152 	 * This allows us to cleanly timeout on an unexpected
1153 	 * Target failure rather than risk problems at the HIF level.
1154 	 * In particular, this avoids SDIO timeouts and possibly garbage
1155 	 * data on some host controllers.  And on an interconnect
1156 	 * such as Compact Flash (as well as some SDIO masters) which
1157 	 * does not provide any indication on data timeout, it avoids
1158 	 * a potential hang or garbage response.
1159 	 *
1160 	 * Synchronization is more difficult for reads larger than the
1161 	 * size of the MBOX FIFO (128B), because the Target is unable
1162 	 * to push the 129th byte of data until AFTER the Host posts an
1163 	 * HIF Read and removes some FIFO data.  So for large reads the
1164 	 * Host proceeds to post an HIF Read BEFORE all the data is
1165 	 * actually available to read.  Fortunately, large BMI reads do
1166 	 * not occur in practice -- they're supported for debug/development.
1167 	 *
1168 	 * So Host/Target BMI synchronization is divided into these cases:
1169 	 *  CASE 1: length < 4
1170 	 *        Should not happen
1171 	 *
1172 	 *  CASE 2: 4 <= length <= 128
1173 	 *        Wait for first 4 bytes to be in FIFO
1174 	 *        If CONSERVATIVE_BMI_READ is enabled, also wait for
1175 	 *        a BMI command credit, which indicates that the ENTIRE
1176 	 *        response is available in the the FIFO
1177 	 *
1178 	 *  CASE 3: length > 128
1179 	 *        Wait for the first 4 bytes to be in FIFO
1180 	 *
1181 	 * For most uses, a small timeout should be sufficient and we will
1182 	 * usually see a response quickly; but there may be some unusual
1183 	 * (debug) cases of BMI_EXECUTE where we want an larger timeout.
1184 	 * For now, we use an unbounded busy loop while waiting for
1185 	 * BMI_EXECUTE.
1186 	 *
1187 	 * If BMI_EXECUTE ever needs to support longer-latency execution,
1188 	 * especially in production, this code needs to be enhanced to sleep
1189 	 * and yield.  Also note that BMI_COMMUNICATION_TIMEOUT is currently
1190 	 * a function of Host processor speed.
1191 	 */
1192 	if (len >= 4) { /* NB: Currently, always true */
1193 		ret = ath6kl_bmi_get_rx_lkahd(ar);
1194 		if (ret)
1195 			return ret;
1196 	}
1197 
1198 	addr = ar->mbox_info.htc_addr;
1199 	ret = ath6kl_sdio_read_write_sync(ar, addr, buf, len,
1200 				  HIF_RD_SYNC_BYTE_INC);
1201 	if (ret) {
1202 		ath6kl_err("Unable to read the bmi data from the device: %d\n",
1203 			   ret);
1204 		return ret;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 static void ath6kl_sdio_stop(struct ath6kl *ar)
1211 {
1212 	struct ath6kl_sdio *ar_sdio = ath6kl_sdio_priv(ar);
1213 	struct bus_request *req, *tmp_req;
1214 	void *context;
1215 
1216 	/* FIXME: make sure that wq is not queued again */
1217 
1218 	cancel_work_sync(&ar_sdio->wr_async_work);
1219 
1220 	spin_lock_bh(&ar_sdio->wr_async_lock);
1221 
1222 	list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) {
1223 		list_del(&req->list);
1224 
1225 		if (req->scat_req) {
1226 			/* this is a scatter gather request */
1227 			req->scat_req->status = -ECANCELED;
1228 			req->scat_req->complete(ar_sdio->ar->htc_target,
1229 						req->scat_req);
1230 		} else {
1231 			context = req->packet;
1232 			ath6kl_sdio_free_bus_req(ar_sdio, req);
1233 			ath6kl_hif_rw_comp_handler(context, -ECANCELED);
1234 		}
1235 	}
1236 
1237 	spin_unlock_bh(&ar_sdio->wr_async_lock);
1238 
1239 	WARN_ON(get_queue_depth(&ar_sdio->scat_req) != 4);
1240 }
1241 
1242 static const struct ath6kl_hif_ops ath6kl_sdio_ops = {
1243 	.read_write_sync = ath6kl_sdio_read_write_sync,
1244 	.write_async = ath6kl_sdio_write_async,
1245 	.irq_enable = ath6kl_sdio_irq_enable,
1246 	.irq_disable = ath6kl_sdio_irq_disable,
1247 	.scatter_req_get = ath6kl_sdio_scatter_req_get,
1248 	.scatter_req_add = ath6kl_sdio_scatter_req_add,
1249 	.enable_scatter = ath6kl_sdio_enable_scatter,
1250 	.scat_req_rw = ath6kl_sdio_async_rw_scatter,
1251 	.cleanup_scatter = ath6kl_sdio_cleanup_scatter,
1252 	.suspend = ath6kl_sdio_suspend,
1253 	.resume = ath6kl_sdio_resume,
1254 	.diag_read32 = ath6kl_sdio_diag_read32,
1255 	.diag_write32 = ath6kl_sdio_diag_write32,
1256 	.bmi_read = ath6kl_sdio_bmi_read,
1257 	.bmi_write = ath6kl_sdio_bmi_write,
1258 	.power_on = ath6kl_sdio_power_on,
1259 	.power_off = ath6kl_sdio_power_off,
1260 	.stop = ath6kl_sdio_stop,
1261 };
1262 
1263 #ifdef CONFIG_PM_SLEEP
1264 
1265 /*
1266  * Empty handlers so that mmc subsystem doesn't remove us entirely during
1267  * suspend. We instead follow cfg80211 suspend/resume handlers.
1268  */
1269 static int ath6kl_sdio_pm_suspend(struct device *device)
1270 {
1271 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm suspend\n");
1272 
1273 	return 0;
1274 }
1275 
1276 static int ath6kl_sdio_pm_resume(struct device *device)
1277 {
1278 	ath6kl_dbg(ATH6KL_DBG_SUSPEND, "sdio pm resume\n");
1279 
1280 	return 0;
1281 }
1282 
1283 static SIMPLE_DEV_PM_OPS(ath6kl_sdio_pm_ops, ath6kl_sdio_pm_suspend,
1284 			 ath6kl_sdio_pm_resume);
1285 
1286 #define ATH6KL_SDIO_PM_OPS (&ath6kl_sdio_pm_ops)
1287 
1288 #else
1289 
1290 #define ATH6KL_SDIO_PM_OPS NULL
1291 
1292 #endif /* CONFIG_PM_SLEEP */
1293 
1294 static int ath6kl_sdio_probe(struct sdio_func *func,
1295 			     const struct sdio_device_id *id)
1296 {
1297 	int ret;
1298 	struct ath6kl_sdio *ar_sdio;
1299 	struct ath6kl *ar;
1300 	int count;
1301 
1302 	ath6kl_dbg(ATH6KL_DBG_BOOT,
1303 		   "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n",
1304 		   func->num, func->vendor, func->device,
1305 		   func->max_blksize, func->cur_blksize);
1306 
1307 	ar_sdio = kzalloc(sizeof(struct ath6kl_sdio), GFP_KERNEL);
1308 	if (!ar_sdio)
1309 		return -ENOMEM;
1310 
1311 	ar_sdio->dma_buffer = kzalloc(HIF_DMA_BUFFER_SIZE, GFP_KERNEL);
1312 	if (!ar_sdio->dma_buffer) {
1313 		ret = -ENOMEM;
1314 		goto err_hif;
1315 	}
1316 
1317 	ar_sdio->func = func;
1318 	sdio_set_drvdata(func, ar_sdio);
1319 
1320 	ar_sdio->id = id;
1321 	ar_sdio->is_disabled = true;
1322 
1323 	spin_lock_init(&ar_sdio->lock);
1324 	spin_lock_init(&ar_sdio->scat_lock);
1325 	spin_lock_init(&ar_sdio->wr_async_lock);
1326 	mutex_init(&ar_sdio->dma_buffer_mutex);
1327 
1328 	INIT_LIST_HEAD(&ar_sdio->scat_req);
1329 	INIT_LIST_HEAD(&ar_sdio->bus_req_freeq);
1330 	INIT_LIST_HEAD(&ar_sdio->wr_asyncq);
1331 
1332 	INIT_WORK(&ar_sdio->wr_async_work, ath6kl_sdio_write_async_work);
1333 
1334 	init_waitqueue_head(&ar_sdio->irq_wq);
1335 
1336 	for (count = 0; count < BUS_REQUEST_MAX_NUM; count++)
1337 		ath6kl_sdio_free_bus_req(ar_sdio, &ar_sdio->bus_req[count]);
1338 
1339 	ar = ath6kl_core_create(&ar_sdio->func->dev);
1340 	if (!ar) {
1341 		ath6kl_err("Failed to alloc ath6kl core\n");
1342 		ret = -ENOMEM;
1343 		goto err_dma;
1344 	}
1345 
1346 	ar_sdio->ar = ar;
1347 	ar->hif_type = ATH6KL_HIF_TYPE_SDIO;
1348 	ar->hif_priv = ar_sdio;
1349 	ar->hif_ops = &ath6kl_sdio_ops;
1350 	ar->bmi.max_data_size = 256;
1351 
1352 	ath6kl_sdio_set_mbox_info(ar);
1353 
1354 	ret = ath6kl_sdio_config(ar);
1355 	if (ret) {
1356 		ath6kl_err("Failed to config sdio: %d\n", ret);
1357 		goto err_core_alloc;
1358 	}
1359 
1360 	ret = ath6kl_core_init(ar, ATH6KL_HTC_TYPE_MBOX);
1361 	if (ret) {
1362 		ath6kl_err("Failed to init ath6kl core\n");
1363 		goto err_core_alloc;
1364 	}
1365 
1366 	return ret;
1367 
1368 err_core_alloc:
1369 	ath6kl_core_destroy(ar_sdio->ar);
1370 err_dma:
1371 	kfree(ar_sdio->dma_buffer);
1372 err_hif:
1373 	kfree(ar_sdio);
1374 
1375 	return ret;
1376 }
1377 
1378 static void ath6kl_sdio_remove(struct sdio_func *func)
1379 {
1380 	struct ath6kl_sdio *ar_sdio;
1381 
1382 	ath6kl_dbg(ATH6KL_DBG_BOOT,
1383 		   "sdio removed func %d vendor 0x%x device 0x%x\n",
1384 		   func->num, func->vendor, func->device);
1385 
1386 	ar_sdio = sdio_get_drvdata(func);
1387 
1388 	ath6kl_stop_txrx(ar_sdio->ar);
1389 	cancel_work_sync(&ar_sdio->wr_async_work);
1390 
1391 	ath6kl_core_cleanup(ar_sdio->ar);
1392 	ath6kl_core_destroy(ar_sdio->ar);
1393 
1394 	kfree(ar_sdio->dma_buffer);
1395 	kfree(ar_sdio);
1396 }
1397 
1398 static const struct sdio_device_id ath6kl_sdio_devices[] = {
1399 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x0))},
1400 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6003_BASE | 0x1))},
1401 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x0))},
1402 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x1))},
1403 	{SDIO_DEVICE(MANUFACTURER_CODE, (MANUFACTURER_ID_AR6004_BASE | 0x2))},
1404 	{},
1405 };
1406 
1407 MODULE_DEVICE_TABLE(sdio, ath6kl_sdio_devices);
1408 
1409 static struct sdio_driver ath6kl_sdio_driver = {
1410 	.name = "ath6kl_sdio",
1411 	.id_table = ath6kl_sdio_devices,
1412 	.probe = ath6kl_sdio_probe,
1413 	.remove = ath6kl_sdio_remove,
1414 	.drv.pm = ATH6KL_SDIO_PM_OPS,
1415 };
1416 
1417 static int __init ath6kl_sdio_init(void)
1418 {
1419 	int ret;
1420 
1421 	ret = sdio_register_driver(&ath6kl_sdio_driver);
1422 	if (ret)
1423 		ath6kl_err("sdio driver registration failed: %d\n", ret);
1424 
1425 	return ret;
1426 }
1427 
1428 static void __exit ath6kl_sdio_exit(void)
1429 {
1430 	sdio_unregister_driver(&ath6kl_sdio_driver);
1431 }
1432 
1433 module_init(ath6kl_sdio_init);
1434 module_exit(ath6kl_sdio_exit);
1435 
1436 MODULE_AUTHOR("Atheros Communications, Inc.");
1437 MODULE_DESCRIPTION("Driver support for Atheros AR600x SDIO devices");
1438 MODULE_LICENSE("Dual BSD/GPL");
1439 
1440 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_OTP_FILE);
1441 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_FIRMWARE_FILE);
1442 MODULE_FIRMWARE(AR6003_HW_2_0_FW_DIR "/" AR6003_HW_2_0_PATCH_FILE);
1443 MODULE_FIRMWARE(AR6003_HW_2_0_BOARD_DATA_FILE);
1444 MODULE_FIRMWARE(AR6003_HW_2_0_DEFAULT_BOARD_DATA_FILE);
1445 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_OTP_FILE);
1446 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_FIRMWARE_FILE);
1447 MODULE_FIRMWARE(AR6003_HW_2_1_1_FW_DIR "/" AR6003_HW_2_1_1_PATCH_FILE);
1448 MODULE_FIRMWARE(AR6003_HW_2_1_1_BOARD_DATA_FILE);
1449 MODULE_FIRMWARE(AR6003_HW_2_1_1_DEFAULT_BOARD_DATA_FILE);
1450 MODULE_FIRMWARE(AR6004_HW_1_0_FW_DIR "/" AR6004_HW_1_0_FIRMWARE_FILE);
1451 MODULE_FIRMWARE(AR6004_HW_1_0_BOARD_DATA_FILE);
1452 MODULE_FIRMWARE(AR6004_HW_1_0_DEFAULT_BOARD_DATA_FILE);
1453 MODULE_FIRMWARE(AR6004_HW_1_1_FW_DIR "/" AR6004_HW_1_1_FIRMWARE_FILE);
1454 MODULE_FIRMWARE(AR6004_HW_1_1_BOARD_DATA_FILE);
1455 MODULE_FIRMWARE(AR6004_HW_1_1_DEFAULT_BOARD_DATA_FILE);
1456 MODULE_FIRMWARE(AR6004_HW_1_2_FW_DIR "/" AR6004_HW_1_2_FIRMWARE_FILE);
1457 MODULE_FIRMWARE(AR6004_HW_1_2_BOARD_DATA_FILE);
1458 MODULE_FIRMWARE(AR6004_HW_1_2_DEFAULT_BOARD_DATA_FILE);
1459 MODULE_FIRMWARE(AR6004_HW_1_3_FW_DIR "/" AR6004_HW_1_3_FIRMWARE_FILE);
1460 MODULE_FIRMWARE(AR6004_HW_1_3_BOARD_DATA_FILE);
1461 MODULE_FIRMWARE(AR6004_HW_1_3_DEFAULT_BOARD_DATA_FILE);
1462