1 /* 2 * Copyright (c) 2007-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2012 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 #include "hif.h" 18 19 #include <linux/export.h> 20 21 #include "core.h" 22 #include "target.h" 23 #include "hif-ops.h" 24 #include "debug.h" 25 26 #define MAILBOX_FOR_BLOCK_SIZE 1 27 28 #define ATH6KL_TIME_QUANTUM 10 /* in ms */ 29 30 static int ath6kl_hif_cp_scat_dma_buf(struct hif_scatter_req *req, 31 bool from_dma) 32 { 33 u8 *buf; 34 int i; 35 36 buf = req->virt_dma_buf; 37 38 for (i = 0; i < req->scat_entries; i++) { 39 40 if (from_dma) 41 memcpy(req->scat_list[i].buf, buf, 42 req->scat_list[i].len); 43 else 44 memcpy(buf, req->scat_list[i].buf, 45 req->scat_list[i].len); 46 47 buf += req->scat_list[i].len; 48 } 49 50 return 0; 51 } 52 53 int ath6kl_hif_rw_comp_handler(void *context, int status) 54 { 55 struct htc_packet *packet = context; 56 57 ath6kl_dbg(ATH6KL_DBG_HIF, "hif rw completion pkt 0x%p status %d\n", 58 packet, status); 59 60 packet->status = status; 61 packet->completion(packet->context, packet); 62 63 return 0; 64 } 65 EXPORT_SYMBOL(ath6kl_hif_rw_comp_handler); 66 67 #define REG_DUMP_COUNT_AR6003 60 68 #define REGISTER_DUMP_LEN_MAX 60 69 70 static void ath6kl_hif_dump_fw_crash(struct ath6kl *ar) 71 { 72 __le32 regdump_val[REGISTER_DUMP_LEN_MAX]; 73 u32 i, address, regdump_addr = 0; 74 int ret; 75 76 if (ar->target_type != TARGET_TYPE_AR6003) 77 return; 78 79 /* the reg dump pointer is copied to the host interest area */ 80 address = ath6kl_get_hi_item_addr(ar, HI_ITEM(hi_failure_state)); 81 address = TARG_VTOP(ar->target_type, address); 82 83 /* read RAM location through diagnostic window */ 84 ret = ath6kl_diag_read32(ar, address, ®dump_addr); 85 86 if (ret || !regdump_addr) { 87 ath6kl_warn("failed to get ptr to register dump area: %d\n", 88 ret); 89 return; 90 } 91 92 ath6kl_dbg(ATH6KL_DBG_IRQ, "register dump data address 0x%x\n", 93 regdump_addr); 94 regdump_addr = TARG_VTOP(ar->target_type, regdump_addr); 95 96 /* fetch register dump data */ 97 ret = ath6kl_diag_read(ar, regdump_addr, (u8 *)®dump_val[0], 98 REG_DUMP_COUNT_AR6003 * (sizeof(u32))); 99 if (ret) { 100 ath6kl_warn("failed to get register dump: %d\n", ret); 101 return; 102 } 103 104 ath6kl_info("crash dump:\n"); 105 ath6kl_info("hw 0x%x fw %s\n", ar->wiphy->hw_version, 106 ar->wiphy->fw_version); 107 108 BUILD_BUG_ON(REG_DUMP_COUNT_AR6003 % 4); 109 110 for (i = 0; i < REG_DUMP_COUNT_AR6003 / 4; i++) { 111 ath6kl_info("%d: 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\n", 112 4 * i, 113 le32_to_cpu(regdump_val[i]), 114 le32_to_cpu(regdump_val[i + 1]), 115 le32_to_cpu(regdump_val[i + 2]), 116 le32_to_cpu(regdump_val[i + 3])); 117 } 118 119 } 120 121 static int ath6kl_hif_proc_dbg_intr(struct ath6kl_device *dev) 122 { 123 u32 dummy; 124 int ret; 125 126 ath6kl_warn("firmware crashed\n"); 127 128 /* 129 * read counter to clear the interrupt, the debug error interrupt is 130 * counter 0. 131 */ 132 ret = hif_read_write_sync(dev->ar, COUNT_DEC_ADDRESS, 133 (u8 *)&dummy, 4, HIF_RD_SYNC_BYTE_INC); 134 if (ret) 135 ath6kl_warn("Failed to clear debug interrupt: %d\n", ret); 136 137 ath6kl_hif_dump_fw_crash(dev->ar); 138 139 return ret; 140 } 141 142 /* mailbox recv message polling */ 143 int ath6kl_hif_poll_mboxmsg_rx(struct ath6kl_device *dev, u32 *lk_ahd, 144 int timeout) 145 { 146 struct ath6kl_irq_proc_registers *rg; 147 int status = 0, i; 148 u8 htc_mbox = 1 << HTC_MAILBOX; 149 150 for (i = timeout / ATH6KL_TIME_QUANTUM; i > 0; i--) { 151 /* this is the standard HIF way, load the reg table */ 152 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS, 153 (u8 *) &dev->irq_proc_reg, 154 sizeof(dev->irq_proc_reg), 155 HIF_RD_SYNC_BYTE_INC); 156 157 if (status) { 158 ath6kl_err("failed to read reg table\n"); 159 return status; 160 } 161 162 /* check for MBOX data and valid lookahead */ 163 if (dev->irq_proc_reg.host_int_status & htc_mbox) { 164 if (dev->irq_proc_reg.rx_lkahd_valid & 165 htc_mbox) { 166 /* 167 * Mailbox has a message and the look ahead 168 * is valid. 169 */ 170 rg = &dev->irq_proc_reg; 171 *lk_ahd = 172 le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]); 173 break; 174 } 175 } 176 177 /* delay a little */ 178 mdelay(ATH6KL_TIME_QUANTUM); 179 ath6kl_dbg(ATH6KL_DBG_HIF, "hif retry mbox poll try %d\n", i); 180 } 181 182 if (i == 0) { 183 ath6kl_err("timeout waiting for recv message\n"); 184 status = -ETIME; 185 /* check if the target asserted */ 186 if (dev->irq_proc_reg.counter_int_status & 187 ATH6KL_TARGET_DEBUG_INTR_MASK) 188 /* 189 * Target failure handler will be called in case of 190 * an assert. 191 */ 192 ath6kl_hif_proc_dbg_intr(dev); 193 } 194 195 return status; 196 } 197 198 /* 199 * Disable packet reception (used in case the host runs out of buffers) 200 * using the interrupt enable registers through the host I/F 201 */ 202 int ath6kl_hif_rx_control(struct ath6kl_device *dev, bool enable_rx) 203 { 204 struct ath6kl_irq_enable_reg regs; 205 int status = 0; 206 207 ath6kl_dbg(ATH6KL_DBG_HIF, "hif rx %s\n", 208 enable_rx ? "enable" : "disable"); 209 210 /* take the lock to protect interrupt enable shadows */ 211 spin_lock_bh(&dev->lock); 212 213 if (enable_rx) 214 dev->irq_en_reg.int_status_en |= 215 SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01); 216 else 217 dev->irq_en_reg.int_status_en &= 218 ~SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01); 219 220 memcpy(®s, &dev->irq_en_reg, sizeof(regs)); 221 222 spin_unlock_bh(&dev->lock); 223 224 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS, 225 ®s.int_status_en, 226 sizeof(struct ath6kl_irq_enable_reg), 227 HIF_WR_SYNC_BYTE_INC); 228 229 return status; 230 } 231 232 int ath6kl_hif_submit_scat_req(struct ath6kl_device *dev, 233 struct hif_scatter_req *scat_req, bool read) 234 { 235 int status = 0; 236 237 if (read) { 238 scat_req->req = HIF_RD_SYNC_BLOCK_FIX; 239 scat_req->addr = dev->ar->mbox_info.htc_addr; 240 } else { 241 scat_req->req = HIF_WR_ASYNC_BLOCK_INC; 242 243 scat_req->addr = 244 (scat_req->len > HIF_MBOX_WIDTH) ? 245 dev->ar->mbox_info.htc_ext_addr : 246 dev->ar->mbox_info.htc_addr; 247 } 248 249 ath6kl_dbg(ATH6KL_DBG_HIF, 250 "hif submit scatter request entries %d len %d mbox 0x%x %s %s\n", 251 scat_req->scat_entries, scat_req->len, 252 scat_req->addr, !read ? "async" : "sync", 253 (read) ? "rd" : "wr"); 254 255 if (!read && scat_req->virt_scat) { 256 status = ath6kl_hif_cp_scat_dma_buf(scat_req, false); 257 if (status) { 258 scat_req->status = status; 259 scat_req->complete(dev->ar->htc_target, scat_req); 260 return 0; 261 } 262 } 263 264 status = ath6kl_hif_scat_req_rw(dev->ar, scat_req); 265 266 if (read) { 267 /* in sync mode, we can touch the scatter request */ 268 scat_req->status = status; 269 if (!status && scat_req->virt_scat) 270 scat_req->status = 271 ath6kl_hif_cp_scat_dma_buf(scat_req, true); 272 } 273 274 return status; 275 } 276 277 static int ath6kl_hif_proc_counter_intr(struct ath6kl_device *dev) 278 { 279 u8 counter_int_status; 280 281 ath6kl_dbg(ATH6KL_DBG_IRQ, "counter interrupt\n"); 282 283 counter_int_status = dev->irq_proc_reg.counter_int_status & 284 dev->irq_en_reg.cntr_int_status_en; 285 286 ath6kl_dbg(ATH6KL_DBG_IRQ, 287 "valid interrupt source(s) in COUNTER_INT_STATUS: 0x%x\n", 288 counter_int_status); 289 290 /* 291 * NOTE: other modules like GMBOX may use the counter interrupt for 292 * credit flow control on other counters, we only need to check for 293 * the debug assertion counter interrupt. 294 */ 295 if (counter_int_status & ATH6KL_TARGET_DEBUG_INTR_MASK) 296 return ath6kl_hif_proc_dbg_intr(dev); 297 298 return 0; 299 } 300 301 static int ath6kl_hif_proc_err_intr(struct ath6kl_device *dev) 302 { 303 int status; 304 u8 error_int_status; 305 u8 reg_buf[4]; 306 307 ath6kl_dbg(ATH6KL_DBG_IRQ, "error interrupt\n"); 308 309 error_int_status = dev->irq_proc_reg.error_int_status & 0x0F; 310 if (!error_int_status) { 311 WARN_ON(1); 312 return -EIO; 313 } 314 315 ath6kl_dbg(ATH6KL_DBG_IRQ, 316 "valid interrupt source(s) in ERROR_INT_STATUS: 0x%x\n", 317 error_int_status); 318 319 if (MS(ERROR_INT_STATUS_WAKEUP, error_int_status)) 320 ath6kl_dbg(ATH6KL_DBG_IRQ, "error : wakeup\n"); 321 322 if (MS(ERROR_INT_STATUS_RX_UNDERFLOW, error_int_status)) 323 ath6kl_err("rx underflow\n"); 324 325 if (MS(ERROR_INT_STATUS_TX_OVERFLOW, error_int_status)) 326 ath6kl_err("tx overflow\n"); 327 328 /* Clear the interrupt */ 329 dev->irq_proc_reg.error_int_status &= ~error_int_status; 330 331 /* set W1C value to clear the interrupt, this hits the register first */ 332 reg_buf[0] = error_int_status; 333 reg_buf[1] = 0; 334 reg_buf[2] = 0; 335 reg_buf[3] = 0; 336 337 status = hif_read_write_sync(dev->ar, ERROR_INT_STATUS_ADDRESS, 338 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX); 339 340 if (status) 341 WARN_ON(1); 342 343 return status; 344 } 345 346 static int ath6kl_hif_proc_cpu_intr(struct ath6kl_device *dev) 347 { 348 int status; 349 u8 cpu_int_status; 350 u8 reg_buf[4]; 351 352 ath6kl_dbg(ATH6KL_DBG_IRQ, "cpu interrupt\n"); 353 354 cpu_int_status = dev->irq_proc_reg.cpu_int_status & 355 dev->irq_en_reg.cpu_int_status_en; 356 if (!cpu_int_status) { 357 WARN_ON(1); 358 return -EIO; 359 } 360 361 ath6kl_dbg(ATH6KL_DBG_IRQ, 362 "valid interrupt source(s) in CPU_INT_STATUS: 0x%x\n", 363 cpu_int_status); 364 365 /* Clear the interrupt */ 366 dev->irq_proc_reg.cpu_int_status &= ~cpu_int_status; 367 368 /* 369 * Set up the register transfer buffer to hit the register 4 times , 370 * this is done to make the access 4-byte aligned to mitigate issues 371 * with host bus interconnects that restrict bus transfer lengths to 372 * be a multiple of 4-bytes. 373 */ 374 375 /* set W1C value to clear the interrupt, this hits the register first */ 376 reg_buf[0] = cpu_int_status; 377 /* the remaining are set to zero which have no-effect */ 378 reg_buf[1] = 0; 379 reg_buf[2] = 0; 380 reg_buf[3] = 0; 381 382 status = hif_read_write_sync(dev->ar, CPU_INT_STATUS_ADDRESS, 383 reg_buf, 4, HIF_WR_SYNC_BYTE_FIX); 384 385 if (status) 386 WARN_ON(1); 387 388 return status; 389 } 390 391 /* process pending interrupts synchronously */ 392 static int proc_pending_irqs(struct ath6kl_device *dev, bool *done) 393 { 394 struct ath6kl_irq_proc_registers *rg; 395 int status = 0; 396 u8 host_int_status = 0; 397 u32 lk_ahd = 0; 398 u8 htc_mbox = 1 << HTC_MAILBOX; 399 400 ath6kl_dbg(ATH6KL_DBG_IRQ, "proc_pending_irqs: (dev: 0x%p)\n", dev); 401 402 /* 403 * NOTE: HIF implementation guarantees that the context of this 404 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 405 * sleep or call any API that can block or switch thread/task 406 * contexts. This is a fully schedulable context. 407 */ 408 409 /* 410 * Process pending intr only when int_status_en is clear, it may 411 * result in unnecessary bus transaction otherwise. Target may be 412 * unresponsive at the time. 413 */ 414 if (dev->irq_en_reg.int_status_en) { 415 /* 416 * Read the first 28 bytes of the HTC register table. This 417 * will yield us the value of different int status 418 * registers and the lookahead registers. 419 * 420 * length = sizeof(int_status) + sizeof(cpu_int_status) 421 * + sizeof(error_int_status) + 422 * sizeof(counter_int_status) + 423 * sizeof(mbox_frame) + sizeof(rx_lkahd_valid) 424 * + sizeof(hole) + sizeof(rx_lkahd) + 425 * sizeof(int_status_en) + 426 * sizeof(cpu_int_status_en) + 427 * sizeof(err_int_status_en) + 428 * sizeof(cntr_int_status_en); 429 */ 430 status = hif_read_write_sync(dev->ar, HOST_INT_STATUS_ADDRESS, 431 (u8 *) &dev->irq_proc_reg, 432 sizeof(dev->irq_proc_reg), 433 HIF_RD_SYNC_BYTE_INC); 434 if (status) 435 goto out; 436 437 ath6kl_dump_registers(dev, &dev->irq_proc_reg, 438 &dev->irq_en_reg); 439 440 /* Update only those registers that are enabled */ 441 host_int_status = dev->irq_proc_reg.host_int_status & 442 dev->irq_en_reg.int_status_en; 443 444 /* Look at mbox status */ 445 if (host_int_status & htc_mbox) { 446 /* 447 * Mask out pending mbox value, we use "lookAhead as 448 * the real flag for mbox processing. 449 */ 450 host_int_status &= ~htc_mbox; 451 if (dev->irq_proc_reg.rx_lkahd_valid & 452 htc_mbox) { 453 rg = &dev->irq_proc_reg; 454 lk_ahd = le32_to_cpu(rg->rx_lkahd[HTC_MAILBOX]); 455 if (!lk_ahd) 456 ath6kl_err("lookAhead is zero!\n"); 457 } 458 } 459 } 460 461 if (!host_int_status && !lk_ahd) { 462 *done = true; 463 goto out; 464 } 465 466 if (lk_ahd) { 467 int fetched = 0; 468 469 ath6kl_dbg(ATH6KL_DBG_IRQ, 470 "pending mailbox msg, lk_ahd: 0x%X\n", lk_ahd); 471 /* 472 * Mailbox Interrupt, the HTC layer may issue async 473 * requests to empty the mailbox. When emptying the recv 474 * mailbox we use the async handler above called from the 475 * completion routine of the callers read request. This can 476 * improve performance by reducing context switching when 477 * we rapidly pull packets. 478 */ 479 status = ath6kl_htc_rxmsg_pending_handler(dev->htc_cnxt, 480 lk_ahd, &fetched); 481 if (status) 482 goto out; 483 484 if (!fetched) 485 /* 486 * HTC could not pull any messages out due to lack 487 * of resources. 488 */ 489 dev->htc_cnxt->chk_irq_status_cnt = 0; 490 } 491 492 /* now handle the rest of them */ 493 ath6kl_dbg(ATH6KL_DBG_IRQ, 494 "valid interrupt source(s) for other interrupts: 0x%x\n", 495 host_int_status); 496 497 if (MS(HOST_INT_STATUS_CPU, host_int_status)) { 498 /* CPU Interrupt */ 499 status = ath6kl_hif_proc_cpu_intr(dev); 500 if (status) 501 goto out; 502 } 503 504 if (MS(HOST_INT_STATUS_ERROR, host_int_status)) { 505 /* Error Interrupt */ 506 status = ath6kl_hif_proc_err_intr(dev); 507 if (status) 508 goto out; 509 } 510 511 if (MS(HOST_INT_STATUS_COUNTER, host_int_status)) 512 /* Counter Interrupt */ 513 status = ath6kl_hif_proc_counter_intr(dev); 514 515 out: 516 /* 517 * An optimization to bypass reading the IRQ status registers 518 * unecessarily which can re-wake the target, if upper layers 519 * determine that we are in a low-throughput mode, we can rely on 520 * taking another interrupt rather than re-checking the status 521 * registers which can re-wake the target. 522 * 523 * NOTE : for host interfaces that makes use of detecting pending 524 * mbox messages at hif can not use this optimization due to 525 * possible side effects, SPI requires the host to drain all 526 * messages from the mailbox before exiting the ISR routine. 527 */ 528 529 ath6kl_dbg(ATH6KL_DBG_IRQ, 530 "bypassing irq status re-check, forcing done\n"); 531 532 if (!dev->htc_cnxt->chk_irq_status_cnt) 533 *done = true; 534 535 ath6kl_dbg(ATH6KL_DBG_IRQ, 536 "proc_pending_irqs: (done:%d, status=%d\n", *done, status); 537 538 return status; 539 } 540 541 /* interrupt handler, kicks off all interrupt processing */ 542 int ath6kl_hif_intr_bh_handler(struct ath6kl *ar) 543 { 544 struct ath6kl_device *dev = ar->htc_target->dev; 545 unsigned long timeout; 546 int status = 0; 547 bool done = false; 548 549 /* 550 * Reset counter used to flag a re-scan of IRQ status registers on 551 * the target. 552 */ 553 dev->htc_cnxt->chk_irq_status_cnt = 0; 554 555 /* 556 * IRQ processing is synchronous, interrupt status registers can be 557 * re-read. 558 */ 559 timeout = jiffies + msecs_to_jiffies(ATH6KL_HIF_COMMUNICATION_TIMEOUT); 560 while (time_before(jiffies, timeout) && !done) { 561 status = proc_pending_irqs(dev, &done); 562 if (status) 563 break; 564 } 565 566 return status; 567 } 568 EXPORT_SYMBOL(ath6kl_hif_intr_bh_handler); 569 570 static int ath6kl_hif_enable_intrs(struct ath6kl_device *dev) 571 { 572 struct ath6kl_irq_enable_reg regs; 573 int status; 574 575 spin_lock_bh(&dev->lock); 576 577 /* Enable all but ATH6KL CPU interrupts */ 578 dev->irq_en_reg.int_status_en = 579 SM(INT_STATUS_ENABLE_ERROR, 0x01) | 580 SM(INT_STATUS_ENABLE_CPU, 0x01) | 581 SM(INT_STATUS_ENABLE_COUNTER, 0x01); 582 583 /* 584 * NOTE: There are some cases where HIF can do detection of 585 * pending mbox messages which is disabled now. 586 */ 587 dev->irq_en_reg.int_status_en |= SM(INT_STATUS_ENABLE_MBOX_DATA, 0x01); 588 589 /* Set up the CPU Interrupt status Register */ 590 dev->irq_en_reg.cpu_int_status_en = 0; 591 592 /* Set up the Error Interrupt status Register */ 593 dev->irq_en_reg.err_int_status_en = 594 SM(ERROR_STATUS_ENABLE_RX_UNDERFLOW, 0x01) | 595 SM(ERROR_STATUS_ENABLE_TX_OVERFLOW, 0x1); 596 597 /* 598 * Enable Counter interrupt status register to get fatal errors for 599 * debugging. 600 */ 601 dev->irq_en_reg.cntr_int_status_en = SM(COUNTER_INT_STATUS_ENABLE_BIT, 602 ATH6KL_TARGET_DEBUG_INTR_MASK); 603 memcpy(®s, &dev->irq_en_reg, sizeof(regs)); 604 605 spin_unlock_bh(&dev->lock); 606 607 status = hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS, 608 ®s.int_status_en, sizeof(regs), 609 HIF_WR_SYNC_BYTE_INC); 610 611 if (status) 612 ath6kl_err("failed to update interrupt ctl reg err: %d\n", 613 status); 614 615 return status; 616 } 617 618 int ath6kl_hif_disable_intrs(struct ath6kl_device *dev) 619 { 620 struct ath6kl_irq_enable_reg regs; 621 622 spin_lock_bh(&dev->lock); 623 /* Disable all interrupts */ 624 dev->irq_en_reg.int_status_en = 0; 625 dev->irq_en_reg.cpu_int_status_en = 0; 626 dev->irq_en_reg.err_int_status_en = 0; 627 dev->irq_en_reg.cntr_int_status_en = 0; 628 memcpy(®s, &dev->irq_en_reg, sizeof(regs)); 629 spin_unlock_bh(&dev->lock); 630 631 return hif_read_write_sync(dev->ar, INT_STATUS_ENABLE_ADDRESS, 632 ®s.int_status_en, sizeof(regs), 633 HIF_WR_SYNC_BYTE_INC); 634 } 635 636 /* enable device interrupts */ 637 int ath6kl_hif_unmask_intrs(struct ath6kl_device *dev) 638 { 639 int status = 0; 640 641 /* 642 * Make sure interrupt are disabled before unmasking at the HIF 643 * layer. The rationale here is that between device insertion 644 * (where we clear the interrupts the first time) and when HTC 645 * is finally ready to handle interrupts, other software can perform 646 * target "soft" resets. The ATH6KL interrupt enables reset back to an 647 * "enabled" state when this happens. 648 */ 649 ath6kl_hif_disable_intrs(dev); 650 651 /* unmask the host controller interrupts */ 652 ath6kl_hif_irq_enable(dev->ar); 653 status = ath6kl_hif_enable_intrs(dev); 654 655 return status; 656 } 657 658 /* disable all device interrupts */ 659 int ath6kl_hif_mask_intrs(struct ath6kl_device *dev) 660 { 661 /* 662 * Mask the interrupt at the HIF layer to avoid any stray interrupt 663 * taken while we zero out our shadow registers in 664 * ath6kl_hif_disable_intrs(). 665 */ 666 ath6kl_hif_irq_disable(dev->ar); 667 668 return ath6kl_hif_disable_intrs(dev); 669 } 670 671 int ath6kl_hif_setup(struct ath6kl_device *dev) 672 { 673 int status = 0; 674 675 spin_lock_init(&dev->lock); 676 677 /* 678 * NOTE: we actually get the block size of a mailbox other than 0, 679 * for SDIO the block size on mailbox 0 is artificially set to 1. 680 * So we use the block size that is set for the other 3 mailboxes. 681 */ 682 dev->htc_cnxt->block_sz = dev->ar->mbox_info.block_size; 683 684 /* must be a power of 2 */ 685 if ((dev->htc_cnxt->block_sz & (dev->htc_cnxt->block_sz - 1)) != 0) { 686 WARN_ON(1); 687 status = -EINVAL; 688 goto fail_setup; 689 } 690 691 /* assemble mask, used for padding to a block */ 692 dev->htc_cnxt->block_mask = dev->htc_cnxt->block_sz - 1; 693 694 ath6kl_dbg(ATH6KL_DBG_HIF, "hif block size %d mbox addr 0x%x\n", 695 dev->htc_cnxt->block_sz, dev->ar->mbox_info.htc_addr); 696 697 /* usb doesn't support enabling interrupts */ 698 /* FIXME: remove check once USB support is implemented */ 699 if (dev->ar->hif_type == ATH6KL_HIF_TYPE_USB) 700 return 0; 701 702 status = ath6kl_hif_disable_intrs(dev); 703 704 fail_setup: 705 return status; 706 707 } 708