xref: /linux/drivers/net/wireless/ath/ath5k/reset.c (revision 5da50258584469ddfee6545feb4eb2252a8d7e7b)
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  *
20  */
21 
22 #define _ATH5K_RESET
23 
24 /*****************************\
25   Reset functions and helpers
26 \*****************************/
27 
28 #include <linux/pci.h> 		/* To determine if a card is pci-e */
29 #include <linux/log2.h>
30 #include "ath5k.h"
31 #include "reg.h"
32 #include "base.h"
33 #include "debug.h"
34 
35 /**
36  * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
37  *
38  * @ah: the &struct ath5k_hw
39  * @channel: the currently set channel upon reset
40  *
41  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
42  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
43  *
44  * Since delta slope is floating point we split it on its exponent and
45  * mantissa and provide these values on hw.
46  *
47  * For more infos i think this patent is related
48  * http://www.freepatentsonline.com/7184495.html
49  */
50 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
51 	struct ieee80211_channel *channel)
52 {
53 	/* Get exponent and mantissa and set it */
54 	u32 coef_scaled, coef_exp, coef_man,
55 		ds_coef_exp, ds_coef_man, clock;
56 
57 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
58 		!(channel->hw_value & CHANNEL_OFDM));
59 
60 	/* Get coefficient
61 	 * ALGO: coef = (5 * clock * carrier_freq) / 2)
62 	 * we scale coef by shifting clock value by 24 for
63 	 * better precision since we use integers */
64 	/* TODO: Half/quarter rate */
65 	clock =  ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO);
66 
67 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
68 
69 	/* Get exponent
70 	 * ALGO: coef_exp = 14 - highest set bit position */
71 	coef_exp = ilog2(coef_scaled);
72 
73 	/* Doesn't make sense if it's zero*/
74 	if (!coef_scaled || !coef_exp)
75 		return -EINVAL;
76 
77 	/* Note: we've shifted coef_scaled by 24 */
78 	coef_exp = 14 - (coef_exp - 24);
79 
80 
81 	/* Get mantissa (significant digits)
82 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
83 	coef_man = coef_scaled +
84 		(1 << (24 - coef_exp - 1));
85 
86 	/* Calculate delta slope coefficient exponent
87 	 * and mantissa (remove scaling) and set them on hw */
88 	ds_coef_man = coef_man >> (24 - coef_exp);
89 	ds_coef_exp = coef_exp - 16;
90 
91 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
92 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
93 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
94 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
95 
96 	return 0;
97 }
98 
99 
100 /*
101  * index into rates for control rates, we can set it up like this because
102  * this is only used for AR5212 and we know it supports G mode
103  */
104 static const unsigned int control_rates[] =
105 	{ 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
106 
107 /**
108  * ath5k_hw_write_rate_duration - fill rate code to duration table
109  *
110  * @ah: the &struct ath5k_hw
111  * @mode: one of enum ath5k_driver_mode
112  *
113  * Write the rate code to duration table upon hw reset. This is a helper for
114  * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
115  * the hardware, based on current mode, for each rate. The rates which are
116  * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
117  * different rate code so we write their value twice (one for long preample
118  * and one for short).
119  *
120  * Note: Band doesn't matter here, if we set the values for OFDM it works
121  * on both a and g modes. So all we have to do is set values for all g rates
122  * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
123  * quarter rate mode, we need to use another set of bitrates (that's why we
124  * need the mode parameter) but we don't handle these proprietary modes yet.
125  */
126 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
127        unsigned int mode)
128 {
129 	struct ath5k_softc *sc = ah->ah_sc;
130 	struct ieee80211_rate *rate;
131 	unsigned int i;
132 
133 	/* Write rate duration table */
134 	for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
135 		u32 reg;
136 		u16 tx_time;
137 
138 		rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
139 
140 		/* Set ACK timeout */
141 		reg = AR5K_RATE_DUR(rate->hw_value);
142 
143 		/* An ACK frame consists of 10 bytes. If you add the FCS,
144 		 * which ieee80211_generic_frame_duration() adds,
145 		 * its 14 bytes. Note we use the control rate and not the
146 		 * actual rate for this rate. See mac80211 tx.c
147 		 * ieee80211_duration() for a brief description of
148 		 * what rate we should choose to TX ACKs. */
149 		tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
150 							sc->vif, 10, rate));
151 
152 		ath5k_hw_reg_write(ah, tx_time, reg);
153 
154 		if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
155 			continue;
156 
157 		/*
158 		 * We're not distinguishing short preamble here,
159 		 * This is true, all we'll get is a longer value here
160 		 * which is not necessarilly bad. We could use
161 		 * export ieee80211_frame_duration() but that needs to be
162 		 * fixed first to be properly used by mac802111 drivers:
163 		 *
164 		 *  - remove erp stuff and let the routine figure ofdm
165 		 *    erp rates
166 		 *  - remove passing argument ieee80211_local as
167 		 *    drivers don't have access to it
168 		 *  - move drivers using ieee80211_generic_frame_duration()
169 		 *    to this
170 		 */
171 		ath5k_hw_reg_write(ah, tx_time,
172 			reg + (AR5K_SET_SHORT_PREAMBLE << 2));
173 	}
174 }
175 
176 /*
177  * Reset chipset
178  */
179 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
180 {
181 	int ret;
182 	u32 mask = val ? val : ~0U;
183 
184 	ATH5K_TRACE(ah->ah_sc);
185 
186 	/* Read-and-clear RX Descriptor Pointer*/
187 	ath5k_hw_reg_read(ah, AR5K_RXDP);
188 
189 	/*
190 	 * Reset the device and wait until success
191 	 */
192 	ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
193 
194 	/* Wait at least 128 PCI clocks */
195 	udelay(15);
196 
197 	if (ah->ah_version == AR5K_AR5210) {
198 		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
199 			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
200 		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
201 			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
202 	} else {
203 		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
204 		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
205 	}
206 
207 	ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
208 
209 	/*
210 	 * Reset configuration register (for hw byte-swap). Note that this
211 	 * is only set for big endian. We do the necessary magic in
212 	 * AR5K_INIT_CFG.
213 	 */
214 	if ((val & AR5K_RESET_CTL_PCU) == 0)
215 		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
216 
217 	return ret;
218 }
219 
220 /*
221  * Sleep control
222  */
223 int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
224 		bool set_chip, u16 sleep_duration)
225 {
226 	unsigned int i;
227 	u32 staid, data;
228 
229 	ATH5K_TRACE(ah->ah_sc);
230 	staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
231 
232 	switch (mode) {
233 	case AR5K_PM_AUTO:
234 		staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
235 		/* fallthrough */
236 	case AR5K_PM_NETWORK_SLEEP:
237 		if (set_chip)
238 			ath5k_hw_reg_write(ah,
239 				AR5K_SLEEP_CTL_SLE_ALLOW |
240 				sleep_duration,
241 				AR5K_SLEEP_CTL);
242 
243 		staid |= AR5K_STA_ID1_PWR_SV;
244 		break;
245 
246 	case AR5K_PM_FULL_SLEEP:
247 		if (set_chip)
248 			ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
249 				AR5K_SLEEP_CTL);
250 
251 		staid |= AR5K_STA_ID1_PWR_SV;
252 		break;
253 
254 	case AR5K_PM_AWAKE:
255 
256 		staid &= ~AR5K_STA_ID1_PWR_SV;
257 
258 		if (!set_chip)
259 			goto commit;
260 
261 		/* Preserve sleep duration */
262 		data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
263 		if (data & 0xffc00000)
264 			data = 0;
265 		else
266 			data = data & 0xfffcffff;
267 
268 		ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
269 		udelay(15);
270 
271 		for (i = 50; i > 0; i--) {
272 			/* Check if the chip did wake up */
273 			if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
274 					AR5K_PCICFG_SPWR_DN) == 0)
275 				break;
276 
277 			/* Wait a bit and retry */
278 			udelay(200);
279 			ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
280 		}
281 
282 		/* Fail if the chip didn't wake up */
283 		if (i <= 0)
284 			return -EIO;
285 
286 		break;
287 
288 	default:
289 		return -EINVAL;
290 	}
291 
292 commit:
293 	ah->ah_power_mode = mode;
294 	ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
295 
296 	return 0;
297 }
298 
299 /*
300  * Bring up MAC + PHY Chips and program PLL
301  * TODO: Half/Quarter rate support
302  */
303 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
304 {
305 	struct pci_dev *pdev = ah->ah_sc->pdev;
306 	u32 turbo, mode, clock, bus_flags;
307 	int ret;
308 
309 	turbo = 0;
310 	mode = 0;
311 	clock = 0;
312 
313 	ATH5K_TRACE(ah->ah_sc);
314 
315 	/* Wakeup the device */
316 	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
317 	if (ret) {
318 		ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
319 		return ret;
320 	}
321 
322 	if (ah->ah_version != AR5K_AR5210) {
323 		/*
324 		 * Get channel mode flags
325 		 */
326 
327 		if (ah->ah_radio >= AR5K_RF5112) {
328 			mode = AR5K_PHY_MODE_RAD_RF5112;
329 			clock = AR5K_PHY_PLL_RF5112;
330 		} else {
331 			mode = AR5K_PHY_MODE_RAD_RF5111;	/*Zero*/
332 			clock = AR5K_PHY_PLL_RF5111;		/*Zero*/
333 		}
334 
335 		if (flags & CHANNEL_2GHZ) {
336 			mode |= AR5K_PHY_MODE_FREQ_2GHZ;
337 			clock |= AR5K_PHY_PLL_44MHZ;
338 
339 			if (flags & CHANNEL_CCK) {
340 				mode |= AR5K_PHY_MODE_MOD_CCK;
341 			} else if (flags & CHANNEL_OFDM) {
342 				/* XXX Dynamic OFDM/CCK is not supported by the
343 				 * AR5211 so we set MOD_OFDM for plain g (no
344 				 * CCK headers) operation. We need to test
345 				 * this, 5211 might support ofdm-only g after
346 				 * all, there are also initial register values
347 				 * in the code for g mode (see initvals.c). */
348 				if (ah->ah_version == AR5K_AR5211)
349 					mode |= AR5K_PHY_MODE_MOD_OFDM;
350 				else
351 					mode |= AR5K_PHY_MODE_MOD_DYN;
352 			} else {
353 				ATH5K_ERR(ah->ah_sc,
354 					"invalid radio modulation mode\n");
355 				return -EINVAL;
356 			}
357 		} else if (flags & CHANNEL_5GHZ) {
358 			mode |= AR5K_PHY_MODE_FREQ_5GHZ;
359 
360 			if (ah->ah_radio == AR5K_RF5413)
361 				clock = AR5K_PHY_PLL_40MHZ_5413;
362 			else
363 				clock |= AR5K_PHY_PLL_40MHZ;
364 
365 			if (flags & CHANNEL_OFDM)
366 				mode |= AR5K_PHY_MODE_MOD_OFDM;
367 			else {
368 				ATH5K_ERR(ah->ah_sc,
369 					"invalid radio modulation mode\n");
370 				return -EINVAL;
371 			}
372 		} else {
373 			ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
374 			return -EINVAL;
375 		}
376 
377 		if (flags & CHANNEL_TURBO)
378 			turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
379 	} else { /* Reset the device */
380 
381 		/* ...enable Atheros turbo mode if requested */
382 		if (flags & CHANNEL_TURBO)
383 			ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
384 					AR5K_PHY_TURBO);
385 	}
386 
387 	/* reseting PCI on PCI-E cards results card to hang
388 	 * and always return 0xffff... so we ingore that flag
389 	 * for PCI-E cards */
390 	bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
391 
392 	/* Reset chipset */
393 	if (ah->ah_version == AR5K_AR5210) {
394 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
395 			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
396 			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
397 			mdelay(2);
398 	} else {
399 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
400 			AR5K_RESET_CTL_BASEBAND | bus_flags);
401 	}
402 	if (ret) {
403 		ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
404 		return -EIO;
405 	}
406 
407 	/* ...wakeup again!*/
408 	ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
409 	if (ret) {
410 		ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
411 		return ret;
412 	}
413 
414 	/* ...final warm reset */
415 	if (ath5k_hw_nic_reset(ah, 0)) {
416 		ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
417 		return -EIO;
418 	}
419 
420 	if (ah->ah_version != AR5K_AR5210) {
421 
422 		/* ...update PLL if needed */
423 		if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
424 			ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
425 			udelay(300);
426 		}
427 
428 		/* ...set the PHY operating mode */
429 		ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
430 		ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
431 	}
432 
433 	return 0;
434 }
435 
436 /*
437  * If there is an external 32KHz crystal available, use it
438  * as ref. clock instead of 32/40MHz clock and baseband clocks
439  * to save power during sleep or restore normal 32/40MHz
440  * operation.
441  *
442  * XXX: When operating on 32KHz certain PHY registers (27 - 31,
443  * 	123 - 127) require delay on access.
444  */
445 static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
446 {
447 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
448 	u32 scal, spending, usec32;
449 
450 	/* Only set 32KHz settings if we have an external
451 	 * 32KHz crystal present */
452 	if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
453 	AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
454 	enable) {
455 
456 		/* 1 usec/cycle */
457 		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
458 		/* Set up tsf increment on each cycle */
459 		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
460 
461 		/* Set baseband sleep control registers
462 		 * and sleep control rate */
463 		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
464 
465 		if ((ah->ah_radio == AR5K_RF5112) ||
466 		(ah->ah_radio == AR5K_RF5413) ||
467 		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
468 			spending = 0x14;
469 		else
470 			spending = 0x18;
471 		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
472 
473 		if ((ah->ah_radio == AR5K_RF5112) ||
474 		(ah->ah_radio == AR5K_RF5413) ||
475 		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
476 			ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
477 			ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
478 			ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
479 			ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
480 			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
481 				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
482 		} else {
483 			ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
484 			ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
485 			ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
486 			ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
487 			AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
488 				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
489 		}
490 
491 		/* Enable sleep clock operation */
492 		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
493 				AR5K_PCICFG_SLEEP_CLOCK_EN);
494 
495 	} else {
496 
497 		/* Disable sleep clock operation and
498 		 * restore default parameters */
499 		AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
500 				AR5K_PCICFG_SLEEP_CLOCK_EN);
501 
502 		AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
503 				AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
504 
505 		ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
506 		ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
507 
508 		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
509 			scal = AR5K_PHY_SCAL_32MHZ_2417;
510 		else if (ee->ee_is_hb63)
511 			scal = AR5K_PHY_SCAL_32MHZ_HB63;
512 		else
513 			scal = AR5K_PHY_SCAL_32MHZ;
514 		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
515 
516 		ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
517 		ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
518 
519 		if ((ah->ah_radio == AR5K_RF5112) ||
520 		(ah->ah_radio == AR5K_RF5413) ||
521 		(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
522 			spending = 0x14;
523 		else
524 			spending = 0x18;
525 		ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
526 
527 		if ((ah->ah_radio == AR5K_RF5112) ||
528 		(ah->ah_radio == AR5K_RF5413))
529 			usec32 = 39;
530 		else
531 			usec32 = 31;
532 		AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
533 
534 		AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
535 	}
536 	return;
537 }
538 
539 /* TODO: Half/Quarter rate */
540 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
541 				struct ieee80211_channel *channel)
542 {
543 	if (ah->ah_version == AR5K_AR5212 &&
544 	    ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
545 
546 		/* Setup ADC control */
547 		ath5k_hw_reg_write(ah,
548 				(AR5K_REG_SM(2,
549 				AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
550 				AR5K_REG_SM(2,
551 				AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
552 				AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
553 				AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
554 				AR5K_PHY_ADC_CTL);
555 
556 
557 
558 		/* Disable barker RSSI threshold */
559 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
560 				AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
561 
562 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
563 			AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
564 
565 		/* Set the mute mask */
566 		ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
567 	}
568 
569 	/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
570 	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
571 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
572 
573 	/* Enable DCU double buffering */
574 	if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
575 		AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
576 				AR5K_TXCFG_DCU_DBL_BUF_DIS);
577 
578 	/* Set DAC/ADC delays */
579 	if (ah->ah_version == AR5K_AR5212) {
580 		u32 scal;
581 		struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
582 		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
583 			scal = AR5K_PHY_SCAL_32MHZ_2417;
584 		else if (ee->ee_is_hb63)
585 			scal = AR5K_PHY_SCAL_32MHZ_HB63;
586 		else
587 			scal = AR5K_PHY_SCAL_32MHZ;
588 		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
589 	}
590 
591 	/* Set fast ADC */
592 	if ((ah->ah_radio == AR5K_RF5413) ||
593 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
594 		u32 fast_adc = true;
595 
596 		if (channel->center_freq == 2462 ||
597 		channel->center_freq == 2467)
598 			fast_adc = 0;
599 
600 		/* Only update if needed */
601 		if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
602 				ath5k_hw_reg_write(ah, fast_adc,
603 						AR5K_PHY_FAST_ADC);
604 	}
605 
606 	/* Fix for first revision of the RF5112 RF chipset */
607 	if (ah->ah_radio == AR5K_RF5112 &&
608 			ah->ah_radio_5ghz_revision <
609 			AR5K_SREV_RAD_5112A) {
610 		u32 data;
611 		ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
612 				AR5K_PHY_CCKTXCTL);
613 		if (channel->hw_value & CHANNEL_5GHZ)
614 			data = 0xffb81020;
615 		else
616 			data = 0xffb80d20;
617 		ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
618 	}
619 
620 	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
621 		u32 usec_reg;
622 		/* 5311 has different tx/rx latency masks
623 		 * from 5211, since we deal 5311 the same
624 		 * as 5211 when setting initvals, shift
625 		 * values here to their proper locations */
626 		usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
627 		ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
628 				AR5K_USEC_32 |
629 				AR5K_USEC_TX_LATENCY_5211 |
630 				AR5K_REG_SM(29,
631 				AR5K_USEC_RX_LATENCY_5210)),
632 				AR5K_USEC_5211);
633 		/* Clear QCU/DCU clock gating register */
634 		ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
635 		/* Set DAC/ADC delays */
636 		ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
637 		/* Enable PCU FIFO corruption ECO */
638 		AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
639 					AR5K_DIAG_SW_ECO_ENABLE);
640 	}
641 }
642 
643 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
644 		struct ieee80211_channel *channel, u8 *ant, u8 ee_mode)
645 {
646 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
647 	s16 cck_ofdm_pwr_delta;
648 
649 	/* Adjust power delta for channel 14 */
650 	if (channel->center_freq == 2484)
651 		cck_ofdm_pwr_delta =
652 			((ee->ee_cck_ofdm_power_delta -
653 			ee->ee_scaled_cck_delta) * 2) / 10;
654 	else
655 		cck_ofdm_pwr_delta =
656 			(ee->ee_cck_ofdm_power_delta * 2) / 10;
657 
658 	/* Set CCK to OFDM power delta on tx power
659 	 * adjustment register */
660 	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
661 		if (channel->hw_value == CHANNEL_G)
662 			ath5k_hw_reg_write(ah,
663 			AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
664 				AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
665 			AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
666 				AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
667 				AR5K_PHY_TX_PWR_ADJ);
668 		else
669 			ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
670 	} else {
671 		/* For older revs we scale power on sw during tx power
672 		 * setup */
673 		ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
674 		ah->ah_txpower.txp_cck_ofdm_gainf_delta =
675 						ee->ee_cck_ofdm_gain_delta;
676 	}
677 
678 	/* Set antenna idle switch table */
679 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
680 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
681 			(ah->ah_ant_ctl[ee_mode][0] |
682 			AR5K_PHY_ANT_CTL_TXRX_EN));
683 
684 	/* Set antenna switch tables */
685 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[0]],
686 		AR5K_PHY_ANT_SWITCH_TABLE_0);
687 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant[1]],
688 		AR5K_PHY_ANT_SWITCH_TABLE_1);
689 
690 	/* Noise floor threshold */
691 	ath5k_hw_reg_write(ah,
692 		AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
693 		AR5K_PHY_NFTHRES);
694 
695 	if ((channel->hw_value & CHANNEL_TURBO) &&
696 	(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
697 		/* Switch settling time (Turbo) */
698 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
699 				AR5K_PHY_SETTLING_SWITCH,
700 				ee->ee_switch_settling_turbo[ee_mode]);
701 
702 		/* Tx/Rx attenuation (Turbo) */
703 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
704 				AR5K_PHY_GAIN_TXRX_ATTEN,
705 				ee->ee_atn_tx_rx_turbo[ee_mode]);
706 
707 		/* ADC/PGA desired size (Turbo) */
708 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
709 				AR5K_PHY_DESIRED_SIZE_ADC,
710 				ee->ee_adc_desired_size_turbo[ee_mode]);
711 
712 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
713 				AR5K_PHY_DESIRED_SIZE_PGA,
714 				ee->ee_pga_desired_size_turbo[ee_mode]);
715 
716 		/* Tx/Rx margin (Turbo) */
717 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
718 				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
719 				ee->ee_margin_tx_rx_turbo[ee_mode]);
720 
721 	} else {
722 		/* Switch settling time */
723 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
724 				AR5K_PHY_SETTLING_SWITCH,
725 				ee->ee_switch_settling[ee_mode]);
726 
727 		/* Tx/Rx attenuation */
728 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
729 				AR5K_PHY_GAIN_TXRX_ATTEN,
730 				ee->ee_atn_tx_rx[ee_mode]);
731 
732 		/* ADC/PGA desired size */
733 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
734 				AR5K_PHY_DESIRED_SIZE_ADC,
735 				ee->ee_adc_desired_size[ee_mode]);
736 
737 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
738 				AR5K_PHY_DESIRED_SIZE_PGA,
739 				ee->ee_pga_desired_size[ee_mode]);
740 
741 		/* Tx/Rx margin */
742 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
743 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
744 				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
745 				ee->ee_margin_tx_rx[ee_mode]);
746 	}
747 
748 	/* XPA delays */
749 	ath5k_hw_reg_write(ah,
750 		(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
751 		(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
752 		(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
753 		(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
754 
755 	/* XLNA delay */
756 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
757 			AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
758 			ee->ee_tx_end2xlna_enable[ee_mode]);
759 
760 	/* Thresh64 (ANI) */
761 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
762 			AR5K_PHY_NF_THRESH62,
763 			ee->ee_thr_62[ee_mode]);
764 
765 
766 	/* False detect backoff for channels
767 	 * that have spur noise. Write the new
768 	 * cyclic power RSSI threshold. */
769 	if (ath5k_hw_chan_has_spur_noise(ah, channel))
770 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
771 				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
772 				AR5K_INIT_CYCRSSI_THR1 +
773 				ee->ee_false_detect[ee_mode]);
774 	else
775 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
776 				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
777 				AR5K_INIT_CYCRSSI_THR1);
778 
779 	/* I/Q correction
780 	 * TODO: Per channel i/q infos ? */
781 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
782 		AR5K_PHY_IQ_CORR_ENABLE |
783 		(ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
784 		ee->ee_q_cal[ee_mode]);
785 
786 	/* Heavy clipping -disable for now */
787 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
788 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
789 
790 	return;
791 }
792 
793 /*
794  * Main reset function
795  */
796 int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
797 	struct ieee80211_channel *channel, bool change_channel)
798 {
799 	u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo;
800 	u32 phy_tst1;
801 	u8 mode, freq, ee_mode, ant[2];
802 	int i, ret;
803 
804 	ATH5K_TRACE(ah->ah_sc);
805 
806 	s_ant = 0;
807 	ee_mode = 0;
808 	staid1_flags = 0;
809 	tsf_up = 0;
810 	tsf_lo = 0;
811 	freq = 0;
812 	mode = 0;
813 
814 	/*
815 	 * Save some registers before a reset
816 	 */
817 	/*DCU/Antenna selection not available on 5210*/
818 	if (ah->ah_version != AR5K_AR5210) {
819 
820 		switch (channel->hw_value & CHANNEL_MODES) {
821 		case CHANNEL_A:
822 			mode = AR5K_MODE_11A;
823 			freq = AR5K_INI_RFGAIN_5GHZ;
824 			ee_mode = AR5K_EEPROM_MODE_11A;
825 			break;
826 		case CHANNEL_G:
827 			mode = AR5K_MODE_11G;
828 			freq = AR5K_INI_RFGAIN_2GHZ;
829 			ee_mode = AR5K_EEPROM_MODE_11G;
830 			break;
831 		case CHANNEL_B:
832 			mode = AR5K_MODE_11B;
833 			freq = AR5K_INI_RFGAIN_2GHZ;
834 			ee_mode = AR5K_EEPROM_MODE_11B;
835 			break;
836 		case CHANNEL_T:
837 			mode = AR5K_MODE_11A_TURBO;
838 			freq = AR5K_INI_RFGAIN_5GHZ;
839 			ee_mode = AR5K_EEPROM_MODE_11A;
840 			break;
841 		case CHANNEL_TG:
842 			if (ah->ah_version == AR5K_AR5211) {
843 				ATH5K_ERR(ah->ah_sc,
844 					"TurboG mode not available on 5211");
845 				return -EINVAL;
846 			}
847 			mode = AR5K_MODE_11G_TURBO;
848 			freq = AR5K_INI_RFGAIN_2GHZ;
849 			ee_mode = AR5K_EEPROM_MODE_11G;
850 			break;
851 		case CHANNEL_XR:
852 			if (ah->ah_version == AR5K_AR5211) {
853 				ATH5K_ERR(ah->ah_sc,
854 					"XR mode not available on 5211");
855 				return -EINVAL;
856 			}
857 			mode = AR5K_MODE_XR;
858 			freq = AR5K_INI_RFGAIN_5GHZ;
859 			ee_mode = AR5K_EEPROM_MODE_11A;
860 			break;
861 		default:
862 			ATH5K_ERR(ah->ah_sc,
863 				"invalid channel: %d\n", channel->center_freq);
864 			return -EINVAL;
865 		}
866 
867 		if (change_channel) {
868 			/*
869 			 * Save frame sequence count
870 			 * For revs. after Oahu, only save
871 			 * seq num for DCU 0 (Global seq num)
872 			 */
873 			if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
874 
875 				for (i = 0; i < 10; i++)
876 					s_seq[i] = ath5k_hw_reg_read(ah,
877 						AR5K_QUEUE_DCU_SEQNUM(i));
878 
879 			} else {
880 				s_seq[0] = ath5k_hw_reg_read(ah,
881 						AR5K_QUEUE_DCU_SEQNUM(0));
882 			}
883 
884 			/* TSF accelerates on AR5211 durring reset
885 			 * As a workaround save it here and restore
886 			 * it later so that it's back in time after
887 			 * reset. This way it'll get re-synced on the
888 			 * next beacon without breaking ad-hoc.
889 			 *
890 			 * On AR5212 TSF is almost preserved across a
891 			 * reset so it stays back in time anyway and
892 			 * we don't have to save/restore it.
893 			 *
894 			 * XXX: Since this breaks power saving we have
895 			 * to disable power saving until we receive the
896 			 * next beacon, so we can resync beacon timers */
897 			if (ah->ah_version == AR5K_AR5211) {
898 				tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
899 				tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
900 			}
901 		}
902 
903 		/* Save default antenna */
904 		s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
905 
906 		if (ah->ah_version == AR5K_AR5212) {
907 			/* Restore normal 32/40MHz clock operation
908 			 * to avoid register access delay on certain
909 			 * PHY registers */
910 			ath5k_hw_set_sleep_clock(ah, false);
911 
912 			/* Since we are going to write rf buffer
913 			 * check if we have any pending gain_F
914 			 * optimization settings */
915 			if (change_channel && ah->ah_rf_banks != NULL)
916 				ath5k_hw_gainf_calibrate(ah);
917 		}
918 	}
919 
920 	/*GPIOs*/
921 	s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
922 					AR5K_PCICFG_LEDSTATE;
923 	s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
924 	s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
925 
926 	/* AR5K_STA_ID1 flags, only preserve antenna
927 	 * settings and ack/cts rate mode */
928 	staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
929 			(AR5K_STA_ID1_DEFAULT_ANTENNA |
930 			AR5K_STA_ID1_DESC_ANTENNA |
931 			AR5K_STA_ID1_RTS_DEF_ANTENNA |
932 			AR5K_STA_ID1_ACKCTS_6MB |
933 			AR5K_STA_ID1_BASE_RATE_11B |
934 			AR5K_STA_ID1_SELFGEN_DEF_ANT);
935 
936 	/* Wakeup the device */
937 	ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
938 	if (ret)
939 		return ret;
940 
941 	/*
942 	 * Initialize operating mode
943 	 */
944 	ah->ah_op_mode = op_mode;
945 
946 	/* PHY access enable */
947 	if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
948 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
949 	else
950 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
951 							AR5K_PHY(0));
952 
953 	/* Write initial settings */
954 	ret = ath5k_hw_write_initvals(ah, mode, change_channel);
955 	if (ret)
956 		return ret;
957 
958 	/*
959 	 * 5211/5212 Specific
960 	 */
961 	if (ah->ah_version != AR5K_AR5210) {
962 
963 		/*
964 		 * Write initial RF gain settings
965 		 * This should work for both 5111/5112
966 		 */
967 		ret = ath5k_hw_rfgain_init(ah, freq);
968 		if (ret)
969 			return ret;
970 
971 		mdelay(1);
972 
973 		/*
974 		 * Tweak initval settings for revised
975 		 * chipsets and add some more config
976 		 * bits
977 		 */
978 		ath5k_hw_tweak_initval_settings(ah, channel);
979 
980 		/*
981 		 * Set TX power
982 		 */
983 		ret = ath5k_hw_txpower(ah, channel, ee_mode,
984 					ah->ah_txpower.txp_max_pwr / 2);
985 		if (ret)
986 			return ret;
987 
988 		/* Write rate duration table only on AR5212 and if
989 		 * virtual interface has already been brought up
990 		 * XXX: rethink this after new mode changes to
991 		 * mac80211 are integrated */
992 		if (ah->ah_version == AR5K_AR5212 &&
993 			ah->ah_sc->vif != NULL)
994 			ath5k_hw_write_rate_duration(ah, mode);
995 
996 		/*
997 		 * Write RF buffer
998 		 */
999 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
1000 		if (ret)
1001 			return ret;
1002 
1003 
1004 		/* Write OFDM timings on 5212*/
1005 		if (ah->ah_version == AR5K_AR5212 &&
1006 			channel->hw_value & CHANNEL_OFDM) {
1007 			struct ath5k_eeprom_info *ee =
1008 					&ah->ah_capabilities.cap_eeprom;
1009 
1010 			ret = ath5k_hw_write_ofdm_timings(ah, channel);
1011 			if (ret)
1012 				return ret;
1013 
1014 			/* Note: According to docs we can have a newer
1015 			 * EEPROM on old hardware, so we need to verify
1016 			 * that our hardware is new enough to have spur
1017 			 * mitigation registers (delta phase etc) */
1018 			if (ah->ah_mac_srev >= AR5K_SREV_AR5424 ||
1019 			(ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1020 			ee->ee_version >= AR5K_EEPROM_VERSION_5_3))
1021 				ath5k_hw_set_spur_mitigation_filter(ah,
1022 								channel);
1023 		}
1024 
1025 		/*Enable/disable 802.11b mode on 5111
1026 		(enable 2111 frequency converter + CCK)*/
1027 		if (ah->ah_radio == AR5K_RF5111) {
1028 			if (mode == AR5K_MODE_11B)
1029 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
1030 				    AR5K_TXCFG_B_MODE);
1031 			else
1032 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
1033 				    AR5K_TXCFG_B_MODE);
1034 		}
1035 
1036 		/*
1037 		 * In case a fixed antenna was set as default
1038 		 * use the same switch table twice.
1039 		 */
1040 		if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1041 				ant[0] = ant[1] = AR5K_ANT_SWTABLE_A;
1042 		else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1043 				ant[0] = ant[1] = AR5K_ANT_SWTABLE_B;
1044 		else {
1045 			ant[0] = AR5K_ANT_SWTABLE_A;
1046 			ant[1] = AR5K_ANT_SWTABLE_B;
1047 		}
1048 
1049 		/* Commit values from EEPROM */
1050 		ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
1051 
1052 	} else {
1053 		/*
1054 		 * For 5210 we do all initialization using
1055 		 * initvals, so we don't have to modify
1056 		 * any settings (5210 also only supports
1057 		 * a/aturbo modes)
1058 		 */
1059 		mdelay(1);
1060 		/* Disable phy and wait */
1061 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1062 		mdelay(1);
1063 	}
1064 
1065 	/*
1066 	 * Restore saved values
1067 	 */
1068 
1069 	/*DCU/Antenna selection not available on 5210*/
1070 	if (ah->ah_version != AR5K_AR5210) {
1071 
1072 		if (change_channel) {
1073 			if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1074 				for (i = 0; i < 10; i++)
1075 					ath5k_hw_reg_write(ah, s_seq[i],
1076 						AR5K_QUEUE_DCU_SEQNUM(i));
1077 			} else {
1078 				ath5k_hw_reg_write(ah, s_seq[0],
1079 					AR5K_QUEUE_DCU_SEQNUM(0));
1080 			}
1081 
1082 
1083 			if (ah->ah_version == AR5K_AR5211) {
1084 				ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1085 				ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1086 			}
1087 		}
1088 
1089 		ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
1090 	}
1091 
1092 	/* Ledstate */
1093 	AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1094 
1095 	/* Gpio settings */
1096 	ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1097 	ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1098 
1099 	/* Restore sta_id flags and preserve our mac address*/
1100 	ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id),
1101 						AR5K_STA_ID0);
1102 	ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id),
1103 						AR5K_STA_ID1);
1104 
1105 
1106 	/*
1107 	 * Configure PCU
1108 	 */
1109 
1110 	/* Restore bssid and bssid mask */
1111 	/* XXX: add ah->aid once mac80211 gives this to us */
1112 	ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
1113 
1114 	/* Set PCU config */
1115 	ath5k_hw_set_opmode(ah);
1116 
1117 	/* Clear any pending interrupts
1118 	 * PISR/SISR Not available on 5210 */
1119 	if (ah->ah_version != AR5K_AR5210)
1120 		ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
1121 
1122 	/* Set RSSI/BRSSI thresholds
1123 	 *
1124 	 * Note: If we decide to set this value
1125 	 * dynamicaly, have in mind that when AR5K_RSSI_THR
1126 	 * register is read it might return 0x40 if we haven't
1127 	 * wrote anything to it plus BMISS RSSI threshold is zeroed.
1128 	 * So doing a save/restore procedure here isn't the right
1129 	 * choice. Instead store it on ath5k_hw */
1130 	ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
1131 				AR5K_TUNE_BMISS_THRES <<
1132 				AR5K_RSSI_THR_BMISS_S),
1133 				AR5K_RSSI_THR);
1134 
1135 	/* MIC QoS support */
1136 	if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
1137 		ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
1138 		ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
1139 	}
1140 
1141 	/* QoS NOACK Policy */
1142 	if (ah->ah_version == AR5K_AR5212) {
1143 		ath5k_hw_reg_write(ah,
1144 			AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
1145 			AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET)  |
1146 			AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
1147 			AR5K_QOS_NOACK);
1148 	}
1149 
1150 
1151 	/*
1152 	 * Configure PHY
1153 	 */
1154 
1155 	/* Set channel on PHY */
1156 	ret = ath5k_hw_channel(ah, channel);
1157 	if (ret)
1158 		return ret;
1159 
1160 	/*
1161 	 * Enable the PHY and wait until completion
1162 	 * This includes BaseBand and Synthesizer
1163 	 * activation.
1164 	 */
1165 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1166 
1167 	/*
1168 	 * On 5211+ read activation -> rx delay
1169 	 * and use it.
1170 	 *
1171 	 * TODO: Half/quarter rate support
1172 	 */
1173 	if (ah->ah_version != AR5K_AR5210) {
1174 		u32 delay;
1175 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1176 			AR5K_PHY_RX_DELAY_M;
1177 		delay = (channel->hw_value & CHANNEL_CCK) ?
1178 			((delay << 2) / 22) : (delay / 10);
1179 
1180 		udelay(100 + (2 * delay));
1181 	} else {
1182 		mdelay(1);
1183 	}
1184 
1185 	/*
1186 	 * Perform ADC test to see if baseband is ready
1187 	 * Set tx hold and check adc test register
1188 	 */
1189 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1190 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1191 	for (i = 0; i <= 20; i++) {
1192 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1193 			break;
1194 		udelay(200);
1195 	}
1196 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
1197 
1198 	/*
1199 	 * Start automatic gain control calibration
1200 	 *
1201 	 * During AGC calibration RX path is re-routed to
1202 	 * a power detector so we don't receive anything.
1203 	 *
1204 	 * This method is used to calibrate some static offsets
1205 	 * used together with on-the fly I/Q calibration (the
1206 	 * one performed via ath5k_hw_phy_calibrate), that doesn't
1207 	 * interrupt rx path.
1208 	 *
1209 	 * While rx path is re-routed to the power detector we also
1210 	 * start a noise floor calibration, to measure the
1211 	 * card's noise floor (the noise we measure when we are not
1212 	 * transmiting or receiving anything).
1213 	 *
1214 	 * If we are in a noisy environment AGC calibration may time
1215 	 * out and/or noise floor calibration might timeout.
1216 	 */
1217 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1218 				AR5K_PHY_AGCCTL_CAL);
1219 
1220 	/* At the same time start I/Q calibration for QAM constellation
1221 	 * -no need for CCK- */
1222 	ah->ah_calibration = false;
1223 	if (!(mode == AR5K_MODE_11B)) {
1224 		ah->ah_calibration = true;
1225 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1226 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1227 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1228 				AR5K_PHY_IQ_RUN);
1229 	}
1230 
1231 	/* Wait for gain calibration to finish (we check for I/Q calibration
1232 	 * during ath5k_phy_calibrate) */
1233 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1234 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
1235 		ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
1236 			channel->center_freq);
1237 	}
1238 
1239 	/*
1240 	 * If we run NF calibration before AGC, it always times out.
1241 	 * Binary HAL starts NF and AGC calibration at the same time
1242 	 * and only waits for AGC to finish. Also if AGC or NF cal.
1243 	 * times out, reset doesn't fail on binary HAL. I believe
1244 	 * that's wrong because since rx path is routed to a detector,
1245 	 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
1246 	 * enables noise floor calibration after offset calibration and if noise
1247 	 * floor calibration fails, reset fails. I believe that's
1248 	 * a better approach, we just need to find a polling interval
1249 	 * that suits best, even if reset continues we need to make
1250 	 * sure that rx path is ready.
1251 	 */
1252 	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1253 
1254 	/* Restore antenna mode */
1255 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
1256 
1257 	/*
1258 	 * Configure QCUs/DCUs
1259 	 */
1260 
1261 	/* TODO: HW Compression support for data queues */
1262 	/* TODO: Burst prefetch for data queues */
1263 
1264 	/*
1265 	 * Reset queues and start beacon timers at the end of the reset routine
1266 	 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1267 	 * Note: If we want we can assign multiple qcus on one dcu.
1268 	 */
1269 	for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
1270 		ret = ath5k_hw_reset_tx_queue(ah, i);
1271 		if (ret) {
1272 			ATH5K_ERR(ah->ah_sc,
1273 				"failed to reset TX queue #%d\n", i);
1274 			return ret;
1275 		}
1276 	}
1277 
1278 
1279 	/*
1280 	 * Configure DMA/Interrupts
1281 	 */
1282 
1283 	/*
1284 	 * Set Rx/Tx DMA Configuration
1285 	 *
1286 	 * Set standard DMA size (128). Note that
1287 	 * a DMA size of 512 causes rx overruns and tx errors
1288 	 * on pci-e cards (tested on 5424 but since rx overruns
1289 	 * also occur on 5416/5418 with madwifi we set 128
1290 	 * for all PCI-E cards to be safe).
1291 	 *
1292 	 * XXX: need to check 5210 for this
1293 	 * TODO: Check out tx triger level, it's always 64 on dumps but I
1294 	 * guess we can tweak it and see how it goes ;-)
1295 	 */
1296 	if (ah->ah_version != AR5K_AR5210) {
1297 		AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1298 			AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
1299 		AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1300 			AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
1301 	}
1302 
1303 	/* Pre-enable interrupts on 5211/5212*/
1304 	if (ah->ah_version != AR5K_AR5210)
1305 		ath5k_hw_set_imr(ah, ah->ah_imr);
1306 
1307 	/* Enable 32KHz clock function for AR5212+ chips
1308 	 * Set clocks to 32KHz operation and use an
1309 	 * external 32KHz crystal when sleeping if one
1310 	 * exists */
1311 	if (ah->ah_version == AR5K_AR5212)
1312 			ath5k_hw_set_sleep_clock(ah, true);
1313 
1314 	/*
1315 	 * Disable beacons and reset the register
1316 	 */
1317 	AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1318 			AR5K_BEACON_RESET_TSF);
1319 
1320 	return 0;
1321 }
1322 
1323 #undef _ATH5K_RESET
1324