xref: /linux/drivers/net/wireless/ath/ath5k/phy.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <asm/unaligned.h>
26 
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "rfbuffer.h"
30 #include "rfgain.h"
31 #include "../regd.h"
32 
33 
34 /******************\
35 * Helper functions *
36 \******************/
37 
38 /*
39  * Get the PHY Chip revision
40  */
41 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
42 {
43 	unsigned int i;
44 	u32 srev;
45 	u16 ret;
46 
47 	/*
48 	 * Set the radio chip access register
49 	 */
50 	switch (band) {
51 	case IEEE80211_BAND_2GHZ:
52 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
53 		break;
54 	case IEEE80211_BAND_5GHZ:
55 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
56 		break;
57 	default:
58 		return 0;
59 	}
60 
61 	mdelay(2);
62 
63 	/* ...wait until PHY is ready and read the selected radio revision */
64 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
65 
66 	for (i = 0; i < 8; i++)
67 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
68 
69 	if (ah->ah_version == AR5K_AR5210) {
70 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
71 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
72 	} else {
73 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
74 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
75 				((srev & 0x0f) << 4), 8);
76 	}
77 
78 	/* Reset to the 5GHz mode */
79 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
80 
81 	return ret;
82 }
83 
84 /*
85  * Check if a channel is supported
86  */
87 bool ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
88 {
89 	u16 freq = channel->center_freq;
90 
91 	/* Check if the channel is in our supported range */
92 	if (channel->band == IEEE80211_BAND_2GHZ) {
93 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
94 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
95 			return true;
96 	} else if (channel->band == IEEE80211_BAND_5GHZ)
97 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
98 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
99 			return true;
100 
101 	return false;
102 }
103 
104 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
105 				struct ieee80211_channel *channel)
106 {
107 	u8 refclk_freq;
108 
109 	if ((ah->ah_radio == AR5K_RF5112) ||
110 	(ah->ah_radio == AR5K_RF5413) ||
111 	(ah->ah_radio == AR5K_RF2413) ||
112 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
113 		refclk_freq = 40;
114 	else
115 		refclk_freq = 32;
116 
117 	if ((channel->center_freq % refclk_freq != 0) &&
118 	((channel->center_freq % refclk_freq < 10) ||
119 	(channel->center_freq % refclk_freq > 22)))
120 		return true;
121 	else
122 		return false;
123 }
124 
125 /*
126  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
127  */
128 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
129 					const struct ath5k_rf_reg *rf_regs,
130 					u32 val, u8 reg_id, bool set)
131 {
132 	const struct ath5k_rf_reg *rfreg = NULL;
133 	u8 offset, bank, num_bits, col, position;
134 	u16 entry;
135 	u32 mask, data, last_bit, bits_shifted, first_bit;
136 	u32 *rfb;
137 	s32 bits_left;
138 	int i;
139 
140 	data = 0;
141 	rfb = ah->ah_rf_banks;
142 
143 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
144 		if (rf_regs[i].index == reg_id) {
145 			rfreg = &rf_regs[i];
146 			break;
147 		}
148 	}
149 
150 	if (rfb == NULL || rfreg == NULL) {
151 		ATH5K_PRINTF("Rf register not found!\n");
152 		/* should not happen */
153 		return 0;
154 	}
155 
156 	bank = rfreg->bank;
157 	num_bits = rfreg->field.len;
158 	first_bit = rfreg->field.pos;
159 	col = rfreg->field.col;
160 
161 	/* first_bit is an offset from bank's
162 	 * start. Since we have all banks on
163 	 * the same array, we use this offset
164 	 * to mark each bank's start */
165 	offset = ah->ah_offset[bank];
166 
167 	/* Boundary check */
168 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
169 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
170 		return 0;
171 	}
172 
173 	entry = ((first_bit - 1) / 8) + offset;
174 	position = (first_bit - 1) % 8;
175 
176 	if (set)
177 		data = ath5k_hw_bitswap(val, num_bits);
178 
179 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
180 	     position = 0, entry++) {
181 
182 		last_bit = (position + bits_left > 8) ? 8 :
183 					position + bits_left;
184 
185 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
186 								(col * 8);
187 
188 		if (set) {
189 			rfb[entry] &= ~mask;
190 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
191 			data >>= (8 - position);
192 		} else {
193 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
194 				<< bits_shifted;
195 			bits_shifted += last_bit - position;
196 		}
197 
198 		bits_left -= 8 - position;
199 	}
200 
201 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
202 
203 	return data;
204 }
205 
206 /**
207  * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
208  *
209  * @ah: the &struct ath5k_hw
210  * @channel: the currently set channel upon reset
211  *
212  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
213  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
214  *
215  * Since delta slope is floating point we split it on its exponent and
216  * mantissa and provide these values on hw.
217  *
218  * For more infos i think this patent is related
219  * http://www.freepatentsonline.com/7184495.html
220  */
221 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
222 	struct ieee80211_channel *channel)
223 {
224 	/* Get exponent and mantissa and set it */
225 	u32 coef_scaled, coef_exp, coef_man,
226 		ds_coef_exp, ds_coef_man, clock;
227 
228 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
229 		(channel->hw_value == AR5K_MODE_11B));
230 
231 	/* Get coefficient
232 	 * ALGO: coef = (5 * clock / carrier_freq) / 2
233 	 * we scale coef by shifting clock value by 24 for
234 	 * better precision since we use integers */
235 	switch (ah->ah_bwmode) {
236 	case AR5K_BWMODE_40MHZ:
237 		clock = 40 * 2;
238 		break;
239 	case AR5K_BWMODE_10MHZ:
240 		clock = 40 / 2;
241 		break;
242 	case AR5K_BWMODE_5MHZ:
243 		clock = 40 / 4;
244 		break;
245 	default:
246 		clock = 40;
247 		break;
248 	}
249 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
250 
251 	/* Get exponent
252 	 * ALGO: coef_exp = 14 - highest set bit position */
253 	coef_exp = ilog2(coef_scaled);
254 
255 	/* Doesn't make sense if it's zero*/
256 	if (!coef_scaled || !coef_exp)
257 		return -EINVAL;
258 
259 	/* Note: we've shifted coef_scaled by 24 */
260 	coef_exp = 14 - (coef_exp - 24);
261 
262 
263 	/* Get mantissa (significant digits)
264 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
265 	coef_man = coef_scaled +
266 		(1 << (24 - coef_exp - 1));
267 
268 	/* Calculate delta slope coefficient exponent
269 	 * and mantissa (remove scaling) and set them on hw */
270 	ds_coef_man = coef_man >> (24 - coef_exp);
271 	ds_coef_exp = coef_exp - 16;
272 
273 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
274 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
275 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
276 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
277 
278 	return 0;
279 }
280 
281 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
282 {
283 	/*Just a try M.F.*/
284 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
285 
286 	return 0;
287 }
288 
289 /*
290  * Wait for synth to settle
291  */
292 static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
293 			struct ieee80211_channel *channel)
294 {
295 	/*
296 	 * On 5211+ read activation -> rx delay
297 	 * and use it (100ns steps).
298 	 */
299 	if (ah->ah_version != AR5K_AR5210) {
300 		u32 delay;
301 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
302 			AR5K_PHY_RX_DELAY_M;
303 		delay = (channel->hw_value == AR5K_MODE_11B) ?
304 			((delay << 2) / 22) : (delay / 10);
305 		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
306 			delay = delay << 1;
307 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
308 			delay = delay << 2;
309 		/* XXX: /2 on turbo ? Let's be safe
310 		 * for now */
311 		udelay(100 + delay);
312 	} else {
313 		mdelay(1);
314 	}
315 }
316 
317 
318 /**********************\
319 * RF Gain optimization *
320 \**********************/
321 
322 /*
323  * This code is used to optimize RF gain on different environments
324  * (temperature mostly) based on feedback from a power detector.
325  *
326  * It's only used on RF5111 and RF5112, later RF chips seem to have
327  * auto adjustment on hw -notice they have a much smaller BANK 7 and
328  * no gain optimization ladder-.
329  *
330  * For more infos check out this patent doc
331  * http://www.freepatentsonline.com/7400691.html
332  *
333  * This paper describes power drops as seen on the receiver due to
334  * probe packets
335  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
336  * %20of%20Power%20Control.pdf
337  *
338  * And this is the MadWiFi bug entry related to the above
339  * http://madwifi-project.org/ticket/1659
340  * with various measurements and diagrams
341  *
342  * TODO: Deal with power drops due to probes by setting an appropriate
343  * tx power on the probe packets ! Make this part of the calibration process.
344  */
345 
346 /* Initialize ah_gain during attach */
347 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
348 {
349 	/* Initialize the gain optimization values */
350 	switch (ah->ah_radio) {
351 	case AR5K_RF5111:
352 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
353 		ah->ah_gain.g_low = 20;
354 		ah->ah_gain.g_high = 35;
355 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
356 		break;
357 	case AR5K_RF5112:
358 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
359 		ah->ah_gain.g_low = 20;
360 		ah->ah_gain.g_high = 85;
361 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
362 		break;
363 	default:
364 		return -EINVAL;
365 	}
366 
367 	return 0;
368 }
369 
370 /* Schedule a gain probe check on the next transmitted packet.
371  * That means our next packet is going to be sent with lower
372  * tx power and a Peak to Average Power Detector (PAPD) will try
373  * to measure the gain.
374  *
375  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
376  * just after we enable the probe so that we don't mess with
377  * standard traffic ? Maybe it's time to use sw interrupts and
378  * a probe tasklet !!!
379  */
380 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
381 {
382 
383 	/* Skip if gain calibration is inactive or
384 	 * we already handle a probe request */
385 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
386 		return;
387 
388 	/* Send the packet with 2dB below max power as
389 	 * patent doc suggest */
390 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
391 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
392 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
393 
394 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
395 
396 }
397 
398 /* Calculate gain_F measurement correction
399  * based on the current step for RF5112 rev. 2 */
400 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
401 {
402 	u32 mix, step;
403 	u32 *rf;
404 	const struct ath5k_gain_opt *go;
405 	const struct ath5k_gain_opt_step *g_step;
406 	const struct ath5k_rf_reg *rf_regs;
407 
408 	/* Only RF5112 Rev. 2 supports it */
409 	if ((ah->ah_radio != AR5K_RF5112) ||
410 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
411 		return 0;
412 
413 	go = &rfgain_opt_5112;
414 	rf_regs = rf_regs_5112a;
415 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
416 
417 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
418 
419 	if (ah->ah_rf_banks == NULL)
420 		return 0;
421 
422 	rf = ah->ah_rf_banks;
423 	ah->ah_gain.g_f_corr = 0;
424 
425 	/* No VGA (Variable Gain Amplifier) override, skip */
426 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
427 		return 0;
428 
429 	/* Mix gain stepping */
430 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
431 
432 	/* Mix gain override */
433 	mix = g_step->gos_param[0];
434 
435 	switch (mix) {
436 	case 3:
437 		ah->ah_gain.g_f_corr = step * 2;
438 		break;
439 	case 2:
440 		ah->ah_gain.g_f_corr = (step - 5) * 2;
441 		break;
442 	case 1:
443 		ah->ah_gain.g_f_corr = step;
444 		break;
445 	default:
446 		ah->ah_gain.g_f_corr = 0;
447 		break;
448 	}
449 
450 	return ah->ah_gain.g_f_corr;
451 }
452 
453 /* Check if current gain_F measurement is in the range of our
454  * power detector windows. If we get a measurement outside range
455  * we know it's not accurate (detectors can't measure anything outside
456  * their detection window) so we must ignore it */
457 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
458 {
459 	const struct ath5k_rf_reg *rf_regs;
460 	u32 step, mix_ovr, level[4];
461 	u32 *rf;
462 
463 	if (ah->ah_rf_banks == NULL)
464 		return false;
465 
466 	rf = ah->ah_rf_banks;
467 
468 	if (ah->ah_radio == AR5K_RF5111) {
469 
470 		rf_regs = rf_regs_5111;
471 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
472 
473 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
474 			false);
475 
476 		level[0] = 0;
477 		level[1] = (step == 63) ? 50 : step + 4;
478 		level[2] = (step != 63) ? 64 : level[0];
479 		level[3] = level[2] + 50;
480 
481 		ah->ah_gain.g_high = level[3] -
482 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
483 		ah->ah_gain.g_low = level[0] +
484 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
485 	} else {
486 
487 		rf_regs = rf_regs_5112;
488 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
489 
490 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
491 			false);
492 
493 		level[0] = level[2] = 0;
494 
495 		if (mix_ovr == 1) {
496 			level[1] = level[3] = 83;
497 		} else {
498 			level[1] = level[3] = 107;
499 			ah->ah_gain.g_high = 55;
500 		}
501 	}
502 
503 	return (ah->ah_gain.g_current >= level[0] &&
504 			ah->ah_gain.g_current <= level[1]) ||
505 		(ah->ah_gain.g_current >= level[2] &&
506 			ah->ah_gain.g_current <= level[3]);
507 }
508 
509 /* Perform gain_F adjustment by choosing the right set
510  * of parameters from RF gain optimization ladder */
511 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
512 {
513 	const struct ath5k_gain_opt *go;
514 	const struct ath5k_gain_opt_step *g_step;
515 	int ret = 0;
516 
517 	switch (ah->ah_radio) {
518 	case AR5K_RF5111:
519 		go = &rfgain_opt_5111;
520 		break;
521 	case AR5K_RF5112:
522 		go = &rfgain_opt_5112;
523 		break;
524 	default:
525 		return 0;
526 	}
527 
528 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
529 
530 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
531 
532 		/* Reached maximum */
533 		if (ah->ah_gain.g_step_idx == 0)
534 			return -1;
535 
536 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
537 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
538 				ah->ah_gain.g_step_idx > 0;
539 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
540 			ah->ah_gain.g_target -= 2 *
541 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
542 			    g_step->gos_gain);
543 
544 		ret = 1;
545 		goto done;
546 	}
547 
548 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
549 
550 		/* Reached minimum */
551 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
552 			return -2;
553 
554 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
555 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
556 				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
557 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
558 			ah->ah_gain.g_target -= 2 *
559 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
560 			    g_step->gos_gain);
561 
562 		ret = 2;
563 		goto done;
564 	}
565 
566 done:
567 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
568 		"ret %d, gain step %u, current gain %u, target gain %u\n",
569 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
570 		ah->ah_gain.g_target);
571 
572 	return ret;
573 }
574 
575 /* Main callback for thermal RF gain calibration engine
576  * Check for a new gain reading and schedule an adjustment
577  * if needed.
578  *
579  * TODO: Use sw interrupt to schedule reset if gain_F needs
580  * adjustment */
581 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
582 {
583 	u32 data, type;
584 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
585 
586 	if (ah->ah_rf_banks == NULL ||
587 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
588 		return AR5K_RFGAIN_INACTIVE;
589 
590 	/* No check requested, either engine is inactive
591 	 * or an adjustment is already requested */
592 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
593 		goto done;
594 
595 	/* Read the PAPD (Peak to Average Power Detector)
596 	 * register */
597 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
598 
599 	/* No probe is scheduled, read gain_F measurement */
600 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
601 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
602 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
603 
604 		/* If tx packet is CCK correct the gain_F measurement
605 		 * by cck ofdm gain delta */
606 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
607 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
608 				ah->ah_gain.g_current +=
609 					ee->ee_cck_ofdm_gain_delta;
610 			else
611 				ah->ah_gain.g_current +=
612 					AR5K_GAIN_CCK_PROBE_CORR;
613 		}
614 
615 		/* Further correct gain_F measurement for
616 		 * RF5112A radios */
617 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
618 			ath5k_hw_rf_gainf_corr(ah);
619 			ah->ah_gain.g_current =
620 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
621 				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
622 				0;
623 		}
624 
625 		/* Check if measurement is ok and if we need
626 		 * to adjust gain, schedule a gain adjustment,
627 		 * else switch back to the active state */
628 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
629 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
630 		ath5k_hw_rf_gainf_adjust(ah)) {
631 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
632 		} else {
633 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
634 		}
635 	}
636 
637 done:
638 	return ah->ah_gain.g_state;
639 }
640 
641 /* Write initial RF gain table to set the RF sensitivity
642  * this one works on all RF chips and has nothing to do
643  * with gain_F calibration */
644 static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
645 {
646 	const struct ath5k_ini_rfgain *ath5k_rfg;
647 	unsigned int i, size, index;
648 
649 	switch (ah->ah_radio) {
650 	case AR5K_RF5111:
651 		ath5k_rfg = rfgain_5111;
652 		size = ARRAY_SIZE(rfgain_5111);
653 		break;
654 	case AR5K_RF5112:
655 		ath5k_rfg = rfgain_5112;
656 		size = ARRAY_SIZE(rfgain_5112);
657 		break;
658 	case AR5K_RF2413:
659 		ath5k_rfg = rfgain_2413;
660 		size = ARRAY_SIZE(rfgain_2413);
661 		break;
662 	case AR5K_RF2316:
663 		ath5k_rfg = rfgain_2316;
664 		size = ARRAY_SIZE(rfgain_2316);
665 		break;
666 	case AR5K_RF5413:
667 		ath5k_rfg = rfgain_5413;
668 		size = ARRAY_SIZE(rfgain_5413);
669 		break;
670 	case AR5K_RF2317:
671 	case AR5K_RF2425:
672 		ath5k_rfg = rfgain_2425;
673 		size = ARRAY_SIZE(rfgain_2425);
674 		break;
675 	default:
676 		return -EINVAL;
677 	}
678 
679 	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
680 
681 	for (i = 0; i < size; i++) {
682 		AR5K_REG_WAIT(i);
683 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
684 			(u32)ath5k_rfg[i].rfg_register);
685 	}
686 
687 	return 0;
688 }
689 
690 
691 
692 /********************\
693 * RF Registers setup *
694 \********************/
695 
696 /*
697  * Setup RF registers by writing RF buffer on hw
698  */
699 static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
700 	struct ieee80211_channel *channel, unsigned int mode)
701 {
702 	const struct ath5k_rf_reg *rf_regs;
703 	const struct ath5k_ini_rfbuffer *ini_rfb;
704 	const struct ath5k_gain_opt *go = NULL;
705 	const struct ath5k_gain_opt_step *g_step;
706 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
707 	u8 ee_mode = 0;
708 	u32 *rfb;
709 	int i, obdb = -1, bank = -1;
710 
711 	switch (ah->ah_radio) {
712 	case AR5K_RF5111:
713 		rf_regs = rf_regs_5111;
714 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
715 		ini_rfb = rfb_5111;
716 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
717 		go = &rfgain_opt_5111;
718 		break;
719 	case AR5K_RF5112:
720 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
721 			rf_regs = rf_regs_5112a;
722 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
723 			ini_rfb = rfb_5112a;
724 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
725 		} else {
726 			rf_regs = rf_regs_5112;
727 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
728 			ini_rfb = rfb_5112;
729 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
730 		}
731 		go = &rfgain_opt_5112;
732 		break;
733 	case AR5K_RF2413:
734 		rf_regs = rf_regs_2413;
735 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
736 		ini_rfb = rfb_2413;
737 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
738 		break;
739 	case AR5K_RF2316:
740 		rf_regs = rf_regs_2316;
741 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
742 		ini_rfb = rfb_2316;
743 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
744 		break;
745 	case AR5K_RF5413:
746 		rf_regs = rf_regs_5413;
747 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
748 		ini_rfb = rfb_5413;
749 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
750 		break;
751 	case AR5K_RF2317:
752 		rf_regs = rf_regs_2425;
753 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
754 		ini_rfb = rfb_2317;
755 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
756 		break;
757 	case AR5K_RF2425:
758 		rf_regs = rf_regs_2425;
759 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
760 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
761 			ini_rfb = rfb_2425;
762 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
763 		} else {
764 			ini_rfb = rfb_2417;
765 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
766 		}
767 		break;
768 	default:
769 		return -EINVAL;
770 	}
771 
772 	/* If it's the first time we set RF buffer, allocate
773 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
774 	 * we set above */
775 	if (ah->ah_rf_banks == NULL) {
776 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
777 								GFP_KERNEL);
778 		if (ah->ah_rf_banks == NULL) {
779 			ATH5K_ERR(ah, "out of memory\n");
780 			return -ENOMEM;
781 		}
782 	}
783 
784 	/* Copy values to modify them */
785 	rfb = ah->ah_rf_banks;
786 
787 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
788 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
789 			ATH5K_ERR(ah, "invalid bank\n");
790 			return -EINVAL;
791 		}
792 
793 		/* Bank changed, write down the offset */
794 		if (bank != ini_rfb[i].rfb_bank) {
795 			bank = ini_rfb[i].rfb_bank;
796 			ah->ah_offset[bank] = i;
797 		}
798 
799 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
800 	}
801 
802 	/* Set Output and Driver bias current (OB/DB) */
803 	if (channel->band == IEEE80211_BAND_2GHZ) {
804 
805 		if (channel->hw_value == AR5K_MODE_11B)
806 			ee_mode = AR5K_EEPROM_MODE_11B;
807 		else
808 			ee_mode = AR5K_EEPROM_MODE_11G;
809 
810 		/* For RF511X/RF211X combination we
811 		 * use b_OB and b_DB parameters stored
812 		 * in eeprom on ee->ee_ob[ee_mode][0]
813 		 *
814 		 * For all other chips we use OB/DB for 2GHz
815 		 * stored in the b/g modal section just like
816 		 * 802.11a on ee->ee_ob[ee_mode][1] */
817 		if ((ah->ah_radio == AR5K_RF5111) ||
818 		(ah->ah_radio == AR5K_RF5112))
819 			obdb = 0;
820 		else
821 			obdb = 1;
822 
823 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
824 						AR5K_RF_OB_2GHZ, true);
825 
826 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
827 						AR5K_RF_DB_2GHZ, true);
828 
829 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
830 	} else if ((channel->band == IEEE80211_BAND_5GHZ) ||
831 			(ah->ah_radio == AR5K_RF5111)) {
832 
833 		/* For 11a, Turbo and XR we need to choose
834 		 * OB/DB based on frequency range */
835 		ee_mode = AR5K_EEPROM_MODE_11A;
836 		obdb =	 channel->center_freq >= 5725 ? 3 :
837 			(channel->center_freq >= 5500 ? 2 :
838 			(channel->center_freq >= 5260 ? 1 :
839 			 (channel->center_freq > 4000 ? 0 : -1)));
840 
841 		if (obdb < 0)
842 			return -EINVAL;
843 
844 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
845 						AR5K_RF_OB_5GHZ, true);
846 
847 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
848 						AR5K_RF_DB_5GHZ, true);
849 	}
850 
851 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
852 
853 	/* Set turbo mode (N/A on RF5413) */
854 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
855 	(ah->ah_radio != AR5K_RF5413))
856 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
857 
858 	/* Bank Modifications (chip-specific) */
859 	if (ah->ah_radio == AR5K_RF5111) {
860 
861 		/* Set gain_F settings according to current step */
862 		if (channel->hw_value != AR5K_MODE_11B) {
863 
864 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
865 					AR5K_PHY_FRAME_CTL_TX_CLIP,
866 					g_step->gos_param[0]);
867 
868 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
869 							AR5K_RF_PWD_90, true);
870 
871 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
872 							AR5K_RF_PWD_84, true);
873 
874 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
875 						AR5K_RF_RFGAIN_SEL, true);
876 
877 			/* We programmed gain_F parameters, switch back
878 			 * to active state */
879 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
880 
881 		}
882 
883 		/* Bank 6/7 setup */
884 
885 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
886 						AR5K_RF_PWD_XPD, true);
887 
888 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
889 						AR5K_RF_XPD_GAIN, true);
890 
891 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
892 						AR5K_RF_GAIN_I, true);
893 
894 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
895 						AR5K_RF_PLO_SEL, true);
896 
897 		/* Tweak power detectors for half/quarter rate support */
898 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
899 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
900 			u8 wait_i;
901 
902 			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
903 						AR5K_RF_WAIT_S, true);
904 
905 			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
906 							0x1f : 0x10;
907 
908 			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
909 						AR5K_RF_WAIT_I, true);
910 			ath5k_hw_rfb_op(ah, rf_regs, 3,
911 						AR5K_RF_MAX_TIME, true);
912 
913 		}
914 	}
915 
916 	if (ah->ah_radio == AR5K_RF5112) {
917 
918 		/* Set gain_F settings according to current step */
919 		if (channel->hw_value != AR5K_MODE_11B) {
920 
921 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
922 						AR5K_RF_MIXGAIN_OVR, true);
923 
924 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
925 						AR5K_RF_PWD_138, true);
926 
927 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
928 						AR5K_RF_PWD_137, true);
929 
930 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
931 						AR5K_RF_PWD_136, true);
932 
933 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
934 						AR5K_RF_PWD_132, true);
935 
936 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
937 						AR5K_RF_PWD_131, true);
938 
939 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
940 						AR5K_RF_PWD_130, true);
941 
942 			/* We programmed gain_F parameters, switch back
943 			 * to active state */
944 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
945 		}
946 
947 		/* Bank 6/7 setup */
948 
949 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
950 						AR5K_RF_XPD_SEL, true);
951 
952 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
953 			/* Rev. 1 supports only one xpd */
954 			ath5k_hw_rfb_op(ah, rf_regs,
955 						ee->ee_x_gain[ee_mode],
956 						AR5K_RF_XPD_GAIN, true);
957 
958 		} else {
959 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
960 			if (ee->ee_pd_gains[ee_mode] > 1) {
961 				ath5k_hw_rfb_op(ah, rf_regs,
962 						pdg_curve_to_idx[0],
963 						AR5K_RF_PD_GAIN_LO, true);
964 				ath5k_hw_rfb_op(ah, rf_regs,
965 						pdg_curve_to_idx[1],
966 						AR5K_RF_PD_GAIN_HI, true);
967 			} else {
968 				ath5k_hw_rfb_op(ah, rf_regs,
969 						pdg_curve_to_idx[0],
970 						AR5K_RF_PD_GAIN_LO, true);
971 				ath5k_hw_rfb_op(ah, rf_regs,
972 						pdg_curve_to_idx[0],
973 						AR5K_RF_PD_GAIN_HI, true);
974 			}
975 
976 			/* Lower synth voltage on Rev 2 */
977 			if (ah->ah_radio == AR5K_RF5112 &&
978 			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
979 				ath5k_hw_rfb_op(ah, rf_regs, 2,
980 						AR5K_RF_HIGH_VC_CP, true);
981 
982 				ath5k_hw_rfb_op(ah, rf_regs, 2,
983 						AR5K_RF_MID_VC_CP, true);
984 
985 				ath5k_hw_rfb_op(ah, rf_regs, 2,
986 						AR5K_RF_LOW_VC_CP, true);
987 
988 				ath5k_hw_rfb_op(ah, rf_regs, 2,
989 						AR5K_RF_PUSH_UP, true);
990 			}
991 
992 			/* Decrease power consumption on 5213+ BaseBand */
993 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
994 				ath5k_hw_rfb_op(ah, rf_regs, 1,
995 						AR5K_RF_PAD2GND, true);
996 
997 				ath5k_hw_rfb_op(ah, rf_regs, 1,
998 						AR5K_RF_XB2_LVL, true);
999 
1000 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1001 						AR5K_RF_XB5_LVL, true);
1002 
1003 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1004 						AR5K_RF_PWD_167, true);
1005 
1006 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1007 						AR5K_RF_PWD_166, true);
1008 			}
1009 		}
1010 
1011 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1012 						AR5K_RF_GAIN_I, true);
1013 
1014 		/* Tweak power detector for half/quarter rates */
1015 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1016 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1017 			u8 pd_delay;
1018 
1019 			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1020 							0xf : 0x8;
1021 
1022 			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1023 						AR5K_RF_PD_PERIOD_A, true);
1024 			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1025 						AR5K_RF_PD_DELAY_A, true);
1026 
1027 		}
1028 	}
1029 
1030 	if (ah->ah_radio == AR5K_RF5413 &&
1031 	channel->band == IEEE80211_BAND_2GHZ) {
1032 
1033 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1034 									true);
1035 
1036 		/* Set optimum value for early revisions (on pci-e chips) */
1037 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1038 		ah->ah_mac_srev < AR5K_SREV_AR5413)
1039 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1040 						AR5K_RF_PWD_ICLOBUF_2G, true);
1041 
1042 	}
1043 
1044 	/* Write RF banks on hw */
1045 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1046 		AR5K_REG_WAIT(i);
1047 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 
1054 /**************************\
1055   PHY/RF channel functions
1056 \**************************/
1057 
1058 /*
1059  * Conversion needed for RF5110
1060  */
1061 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1062 {
1063 	u32 athchan;
1064 
1065 	/*
1066 	 * Convert IEEE channel/MHz to an internal channel value used
1067 	 * by the AR5210 chipset. This has not been verified with
1068 	 * newer chipsets like the AR5212A who have a completely
1069 	 * different RF/PHY part.
1070 	 */
1071 	athchan = (ath5k_hw_bitswap(
1072 			(ieee80211_frequency_to_channel(
1073 				channel->center_freq) - 24) / 2, 5)
1074 				<< 1) | (1 << 6) | 0x1;
1075 	return athchan;
1076 }
1077 
1078 /*
1079  * Set channel on RF5110
1080  */
1081 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1082 		struct ieee80211_channel *channel)
1083 {
1084 	u32 data;
1085 
1086 	/*
1087 	 * Set the channel and wait
1088 	 */
1089 	data = ath5k_hw_rf5110_chan2athchan(channel);
1090 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1091 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1092 	mdelay(1);
1093 
1094 	return 0;
1095 }
1096 
1097 /*
1098  * Conversion needed for 5111
1099  */
1100 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1101 		struct ath5k_athchan_2ghz *athchan)
1102 {
1103 	int channel;
1104 
1105 	/* Cast this value to catch negative channel numbers (>= -19) */
1106 	channel = (int)ieee;
1107 
1108 	/*
1109 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1110 	 */
1111 	if (channel <= 13) {
1112 		athchan->a2_athchan = 115 + channel;
1113 		athchan->a2_flags = 0x46;
1114 	} else if (channel == 14) {
1115 		athchan->a2_athchan = 124;
1116 		athchan->a2_flags = 0x44;
1117 	} else if (channel >= 15 && channel <= 26) {
1118 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1119 		athchan->a2_flags = 0x46;
1120 	} else
1121 		return -EINVAL;
1122 
1123 	return 0;
1124 }
1125 
1126 /*
1127  * Set channel on 5111
1128  */
1129 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1130 		struct ieee80211_channel *channel)
1131 {
1132 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1133 	unsigned int ath5k_channel =
1134 		ieee80211_frequency_to_channel(channel->center_freq);
1135 	u32 data0, data1, clock;
1136 	int ret;
1137 
1138 	/*
1139 	 * Set the channel on the RF5111 radio
1140 	 */
1141 	data0 = data1 = 0;
1142 
1143 	if (channel->band == IEEE80211_BAND_2GHZ) {
1144 		/* Map 2GHz channel to 5GHz Atheros channel ID */
1145 		ret = ath5k_hw_rf5111_chan2athchan(
1146 			ieee80211_frequency_to_channel(channel->center_freq),
1147 			&ath5k_channel_2ghz);
1148 		if (ret)
1149 			return ret;
1150 
1151 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1152 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1153 		    << 5) | (1 << 4);
1154 	}
1155 
1156 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1157 		clock = 1;
1158 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1159 			(clock << 1) | (1 << 10) | 1;
1160 	} else {
1161 		clock = 0;
1162 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1163 			<< 2) | (clock << 1) | (1 << 10) | 1;
1164 	}
1165 
1166 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1167 			AR5K_RF_BUFFER);
1168 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1169 			AR5K_RF_BUFFER_CONTROL_3);
1170 
1171 	return 0;
1172 }
1173 
1174 /*
1175  * Set channel on 5112 and newer
1176  */
1177 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1178 		struct ieee80211_channel *channel)
1179 {
1180 	u32 data, data0, data1, data2;
1181 	u16 c;
1182 
1183 	data = data0 = data1 = data2 = 0;
1184 	c = channel->center_freq;
1185 
1186 	if (c < 4800) {
1187 		if (!((c - 2224) % 5)) {
1188 			data0 = ((2 * (c - 704)) - 3040) / 10;
1189 			data1 = 1;
1190 		} else if (!((c - 2192) % 5)) {
1191 			data0 = ((2 * (c - 672)) - 3040) / 10;
1192 			data1 = 0;
1193 		} else
1194 			return -EINVAL;
1195 
1196 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1197 	} else if ((c % 5) != 2 || c > 5435) {
1198 		if (!(c % 20) && c >= 5120) {
1199 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1200 			data2 = ath5k_hw_bitswap(3, 2);
1201 		} else if (!(c % 10)) {
1202 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1203 			data2 = ath5k_hw_bitswap(2, 2);
1204 		} else if (!(c % 5)) {
1205 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1206 			data2 = ath5k_hw_bitswap(1, 2);
1207 		} else
1208 			return -EINVAL;
1209 	} else {
1210 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1211 		data2 = ath5k_hw_bitswap(0, 2);
1212 	}
1213 
1214 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1215 
1216 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1217 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1218 
1219 	return 0;
1220 }
1221 
1222 /*
1223  * Set the channel on the RF2425
1224  */
1225 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1226 		struct ieee80211_channel *channel)
1227 {
1228 	u32 data, data0, data2;
1229 	u16 c;
1230 
1231 	data = data0 = data2 = 0;
1232 	c = channel->center_freq;
1233 
1234 	if (c < 4800) {
1235 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1236 		data2 = 0;
1237 	/* ? 5GHz ? */
1238 	} else if ((c % 5) != 2 || c > 5435) {
1239 		if (!(c % 20) && c < 5120)
1240 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1241 		else if (!(c % 10))
1242 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1243 		else if (!(c % 5))
1244 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1245 		else
1246 			return -EINVAL;
1247 		data2 = ath5k_hw_bitswap(1, 2);
1248 	} else {
1249 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1250 		data2 = ath5k_hw_bitswap(0, 2);
1251 	}
1252 
1253 	data = (data0 << 4) | data2 << 2 | 0x1001;
1254 
1255 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1256 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1257 
1258 	return 0;
1259 }
1260 
1261 /*
1262  * Set a channel on the radio chip
1263  */
1264 static int ath5k_hw_channel(struct ath5k_hw *ah,
1265 		struct ieee80211_channel *channel)
1266 {
1267 	int ret;
1268 	/*
1269 	 * Check bounds supported by the PHY (we don't care about regulatory
1270 	 * restrictions at this point).
1271 	 */
1272 	if (!ath5k_channel_ok(ah, channel)) {
1273 		ATH5K_ERR(ah,
1274 			"channel frequency (%u MHz) out of supported "
1275 			"band range\n",
1276 			channel->center_freq);
1277 			return -EINVAL;
1278 	}
1279 
1280 	/*
1281 	 * Set the channel and wait
1282 	 */
1283 	switch (ah->ah_radio) {
1284 	case AR5K_RF5110:
1285 		ret = ath5k_hw_rf5110_channel(ah, channel);
1286 		break;
1287 	case AR5K_RF5111:
1288 		ret = ath5k_hw_rf5111_channel(ah, channel);
1289 		break;
1290 	case AR5K_RF2317:
1291 	case AR5K_RF2425:
1292 		ret = ath5k_hw_rf2425_channel(ah, channel);
1293 		break;
1294 	default:
1295 		ret = ath5k_hw_rf5112_channel(ah, channel);
1296 		break;
1297 	}
1298 
1299 	if (ret)
1300 		return ret;
1301 
1302 	/* Set JAPAN setting for channel 14 */
1303 	if (channel->center_freq == 2484) {
1304 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1305 				AR5K_PHY_CCKTXCTL_JAPAN);
1306 	} else {
1307 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1308 				AR5K_PHY_CCKTXCTL_WORLD);
1309 	}
1310 
1311 	ah->ah_current_channel = channel;
1312 
1313 	return 0;
1314 }
1315 
1316 /*****************\
1317   PHY calibration
1318 \*****************/
1319 
1320 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1321 {
1322 	s32 val;
1323 
1324 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1325 	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1326 }
1327 
1328 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1329 {
1330 	int i;
1331 
1332 	ah->ah_nfcal_hist.index = 0;
1333 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1334 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1335 }
1336 
1337 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1338 {
1339 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1340 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1341 	hist->nfval[hist->index] = noise_floor;
1342 }
1343 
1344 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1345 {
1346 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1347 	s16 tmp;
1348 	int i, j;
1349 
1350 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1351 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1352 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1353 			if (sort[j] > sort[j - 1]) {
1354 				tmp = sort[j];
1355 				sort[j] = sort[j - 1];
1356 				sort[j - 1] = tmp;
1357 			}
1358 		}
1359 	}
1360 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1361 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1362 			"cal %d:%d\n", i, sort[i]);
1363 	}
1364 	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1365 }
1366 
1367 /*
1368  * When we tell the hardware to perform a noise floor calibration
1369  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1370  * sample-and-hold the minimum noise level seen at the antennas.
1371  * This value is then stored in a ring buffer of recently measured
1372  * noise floor values so we have a moving window of the last few
1373  * samples.
1374  *
1375  * The median of the values in the history is then loaded into the
1376  * hardware for its own use for RSSI and CCA measurements.
1377  */
1378 void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1379 {
1380 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1381 	u32 val;
1382 	s16 nf, threshold;
1383 	u8 ee_mode;
1384 
1385 	/* keep last value if calibration hasn't completed */
1386 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1387 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1388 			"NF did not complete in calibration window\n");
1389 
1390 		return;
1391 	}
1392 
1393 	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1394 
1395 	/* completed NF calibration, test threshold */
1396 	nf = ath5k_hw_read_measured_noise_floor(ah);
1397 	threshold = ee->ee_noise_floor_thr[ee_mode];
1398 
1399 	if (nf > threshold) {
1400 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1401 			"noise floor failure detected; "
1402 			"read %d, threshold %d\n",
1403 			nf, threshold);
1404 
1405 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1406 	}
1407 
1408 	ath5k_hw_update_nfcal_hist(ah, nf);
1409 	nf = ath5k_hw_get_median_noise_floor(ah);
1410 
1411 	/* load noise floor (in .5 dBm) so the hardware will use it */
1412 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1413 	val |= (nf * 2) & AR5K_PHY_NF_M;
1414 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1415 
1416 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1417 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1418 
1419 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1420 		0, false);
1421 
1422 	/*
1423 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1424 	 * so that we're not capped by the median we just loaded.
1425 	 * This will be used as the initial value for the next noise
1426 	 * floor calibration.
1427 	 */
1428 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1429 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1430 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1431 		AR5K_PHY_AGCCTL_NF_EN |
1432 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1433 		AR5K_PHY_AGCCTL_NF);
1434 
1435 	ah->ah_noise_floor = nf;
1436 
1437 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1438 		"noise floor calibrated: %d\n", nf);
1439 }
1440 
1441 /*
1442  * Perform a PHY calibration on RF5110
1443  * -Fix BPSK/QAM Constellation (I/Q correction)
1444  */
1445 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1446 		struct ieee80211_channel *channel)
1447 {
1448 	u32 phy_sig, phy_agc, phy_sat, beacon;
1449 	int ret;
1450 
1451 	/*
1452 	 * Disable beacons and RX/TX queues, wait
1453 	 */
1454 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1455 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1456 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1457 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1458 
1459 	mdelay(2);
1460 
1461 	/*
1462 	 * Set the channel (with AGC turned off)
1463 	 */
1464 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1465 	udelay(10);
1466 	ret = ath5k_hw_channel(ah, channel);
1467 
1468 	/*
1469 	 * Activate PHY and wait
1470 	 */
1471 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1472 	mdelay(1);
1473 
1474 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1475 
1476 	if (ret)
1477 		return ret;
1478 
1479 	/*
1480 	 * Calibrate the radio chip
1481 	 */
1482 
1483 	/* Remember normal state */
1484 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1485 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1486 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1487 
1488 	/* Update radio registers */
1489 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1490 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1491 
1492 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1493 			AR5K_PHY_AGCCOARSE_LO)) |
1494 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1495 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1496 
1497 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1498 			AR5K_PHY_ADCSAT_THR)) |
1499 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1500 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1501 
1502 	udelay(20);
1503 
1504 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1505 	udelay(10);
1506 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1507 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1508 
1509 	mdelay(1);
1510 
1511 	/*
1512 	 * Enable calibration and wait until completion
1513 	 */
1514 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1515 
1516 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1517 			AR5K_PHY_AGCCTL_CAL, 0, false);
1518 
1519 	/* Reset to normal state */
1520 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1521 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1522 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1523 
1524 	if (ret) {
1525 		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1526 				channel->center_freq);
1527 		return ret;
1528 	}
1529 
1530 	/*
1531 	 * Re-enable RX/TX and beacons
1532 	 */
1533 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1534 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1535 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1536 
1537 	return 0;
1538 }
1539 
1540 /*
1541  * Perform I/Q calibration on RF5111/5112 and newer chips
1542  */
1543 static int
1544 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1545 {
1546 	u32 i_pwr, q_pwr;
1547 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1548 	int i;
1549 
1550 	if (!ah->ah_calibration ||
1551 		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1552 		return 0;
1553 
1554 	/* Calibration has finished, get the results and re-run */
1555 	/* work around empty results which can apparently happen on 5212 */
1556 	for (i = 0; i <= 10; i++) {
1557 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1558 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1559 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1560 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1561 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1562 		if (i_pwr && q_pwr)
1563 			break;
1564 	}
1565 
1566 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1567 
1568 	if (ah->ah_version == AR5K_AR5211)
1569 		q_coffd = q_pwr >> 6;
1570 	else
1571 		q_coffd = q_pwr >> 7;
1572 
1573 	/* protect against divide by 0 and loss of sign bits */
1574 	if (i_coffd == 0 || q_coffd < 2)
1575 		return 0;
1576 
1577 	i_coff = (-iq_corr) / i_coffd;
1578 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1579 
1580 	if (ah->ah_version == AR5K_AR5211)
1581 		q_coff = (i_pwr / q_coffd) - 64;
1582 	else
1583 		q_coff = (i_pwr / q_coffd) - 128;
1584 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1585 
1586 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1587 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1588 			i_coff, q_coff, i_coffd, q_coffd);
1589 
1590 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1591 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1592 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1593 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1594 
1595 	/* Re-enable calibration -if we don't we'll commit
1596 	 * the same values again and again */
1597 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1598 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1599 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1600 
1601 	return 0;
1602 }
1603 
1604 /*
1605  * Perform a PHY calibration
1606  */
1607 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1608 		struct ieee80211_channel *channel)
1609 {
1610 	int ret;
1611 
1612 	if (ah->ah_radio == AR5K_RF5110)
1613 		return ath5k_hw_rf5110_calibrate(ah, channel);
1614 
1615 	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1616 
1617 	if ((ah->ah_radio == AR5K_RF5111 || ah->ah_radio == AR5K_RF5112) &&
1618 	    (channel->hw_value != AR5K_MODE_11B))
1619 		ath5k_hw_request_rfgain_probe(ah);
1620 
1621 	return ret;
1622 }
1623 
1624 
1625 /***************************\
1626 * Spur mitigation functions *
1627 \***************************/
1628 
1629 static void
1630 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1631 				struct ieee80211_channel *channel)
1632 {
1633 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1634 	u32 mag_mask[4] = {0, 0, 0, 0};
1635 	u32 pilot_mask[2] = {0, 0};
1636 	/* Note: fbin values are scaled up by 2 */
1637 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1638 	s32 spur_delta_phase, spur_freq_sigma_delta;
1639 	s32 spur_offset, num_symbols_x16;
1640 	u8 num_symbol_offsets, i, freq_band;
1641 
1642 	/* Convert current frequency to fbin value (the same way channels
1643 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1644 	 * up by 2 so we can compare it later */
1645 	if (channel->band == IEEE80211_BAND_2GHZ) {
1646 		chan_fbin = (channel->center_freq - 2300) * 10;
1647 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1648 	} else {
1649 		chan_fbin = (channel->center_freq - 4900) * 10;
1650 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1651 	}
1652 
1653 	/* Check if any spur_chan_fbin from EEPROM is
1654 	 * within our current channel's spur detection range */
1655 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1656 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1657 	/* XXX: Half/Quarter channels ?*/
1658 	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1659 		spur_detection_window *= 2;
1660 
1661 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1662 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1663 
1664 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1665 		 * so it's zero if we got nothing from EEPROM */
1666 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1667 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1668 			break;
1669 		}
1670 
1671 		if ((chan_fbin - spur_detection_window <=
1672 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1673 		(chan_fbin + spur_detection_window >=
1674 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1675 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1676 			break;
1677 		}
1678 	}
1679 
1680 	/* We need to enable spur filter for this channel */
1681 	if (spur_chan_fbin) {
1682 		spur_offset = spur_chan_fbin - chan_fbin;
1683 		/*
1684 		 * Calculate deltas:
1685 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1686 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1687 		 * Note: Both values have 100Hz resolution
1688 		 */
1689 		switch (ah->ah_bwmode) {
1690 		case AR5K_BWMODE_40MHZ:
1691 			/* Both sample_freq and chip_freq are 80MHz */
1692 			spur_delta_phase = (spur_offset << 16) / 25;
1693 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1694 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1695 			break;
1696 		case AR5K_BWMODE_10MHZ:
1697 			/* Both sample_freq and chip_freq are 20MHz (?) */
1698 			spur_delta_phase = (spur_offset << 18) / 25;
1699 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1700 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1701 		case AR5K_BWMODE_5MHZ:
1702 			/* Both sample_freq and chip_freq are 10MHz (?) */
1703 			spur_delta_phase = (spur_offset << 19) / 25;
1704 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1705 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1706 		default:
1707 			if (channel->band == IEEE80211_BAND_5GHZ) {
1708 				/* Both sample_freq and chip_freq are 40MHz */
1709 				spur_delta_phase = (spur_offset << 17) / 25;
1710 				spur_freq_sigma_delta =
1711 						(spur_delta_phase >> 10);
1712 				symbol_width =
1713 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1714 			} else {
1715 				/* sample_freq -> 40MHz chip_freq -> 44MHz
1716 				 * (for b compatibility) */
1717 				spur_delta_phase = (spur_offset << 17) / 25;
1718 				spur_freq_sigma_delta =
1719 						(spur_offset << 8) / 55;
1720 				symbol_width =
1721 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1722 			}
1723 			break;
1724 		}
1725 
1726 		/* Calculate pilot and magnitude masks */
1727 
1728 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1729 		 * and divide by symbol_width to find how many symbols we have
1730 		 * Note: number of symbols is scaled up by 16 */
1731 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1732 
1733 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1734 		if (!(num_symbols_x16 & 0xF))
1735 			/* _X_ */
1736 			num_symbol_offsets = 3;
1737 		else
1738 			/* _xx_ */
1739 			num_symbol_offsets = 4;
1740 
1741 		for (i = 0; i < num_symbol_offsets; i++) {
1742 
1743 			/* Calculate pilot mask */
1744 			s32 curr_sym_off =
1745 				(num_symbols_x16 / 16) + i + 25;
1746 
1747 			/* Pilot magnitude mask seems to be a way to
1748 			 * declare the boundaries for our detection
1749 			 * window or something, it's 2 for the middle
1750 			 * value(s) where the symbol is expected to be
1751 			 * and 1 on the boundary values */
1752 			u8 plt_mag_map =
1753 				(i == 0 || i == (num_symbol_offsets - 1))
1754 								? 1 : 2;
1755 
1756 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1757 				if (curr_sym_off <= 25)
1758 					pilot_mask[0] |= 1 << curr_sym_off;
1759 				else if (curr_sym_off >= 27)
1760 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1761 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1762 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1763 
1764 			/* Calculate magnitude mask (for viterbi decoder) */
1765 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1766 				mag_mask[0] |=
1767 					plt_mag_map << (curr_sym_off + 1) * 2;
1768 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1769 				mag_mask[1] |=
1770 					plt_mag_map << (curr_sym_off - 15) * 2;
1771 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1772 				mag_mask[2] |=
1773 					plt_mag_map << (curr_sym_off - 31) * 2;
1774 			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1775 				mag_mask[3] |=
1776 					plt_mag_map << (curr_sym_off - 47) * 2;
1777 
1778 		}
1779 
1780 		/* Write settings on hw to enable spur filter */
1781 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1782 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1783 		/* XXX: Self correlator also ? */
1784 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1785 					AR5K_PHY_IQ_PILOT_MASK_EN |
1786 					AR5K_PHY_IQ_CHAN_MASK_EN |
1787 					AR5K_PHY_IQ_SPUR_FILT_EN);
1788 
1789 		/* Set delta phase and freq sigma delta */
1790 		ath5k_hw_reg_write(ah,
1791 				AR5K_REG_SM(spur_delta_phase,
1792 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1793 				AR5K_REG_SM(spur_freq_sigma_delta,
1794 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1795 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1796 				AR5K_PHY_TIMING_11);
1797 
1798 		/* Write pilot masks */
1799 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1800 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1801 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1802 					pilot_mask[1]);
1803 
1804 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1805 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1806 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1807 					pilot_mask[1]);
1808 
1809 		/* Write magnitude masks */
1810 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1811 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1812 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1813 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1814 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1815 					mag_mask[3]);
1816 
1817 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1818 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1819 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1820 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1821 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1822 					mag_mask[3]);
1823 
1824 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1825 	AR5K_PHY_IQ_SPUR_FILT_EN) {
1826 		/* Clean up spur mitigation settings and disable filter */
1827 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1828 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1829 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1830 					AR5K_PHY_IQ_PILOT_MASK_EN |
1831 					AR5K_PHY_IQ_CHAN_MASK_EN |
1832 					AR5K_PHY_IQ_SPUR_FILT_EN);
1833 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1834 
1835 		/* Clear pilot masks */
1836 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1837 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1838 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1839 					0);
1840 
1841 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1842 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1843 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1844 					0);
1845 
1846 		/* Clear magnitude masks */
1847 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1848 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1849 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1850 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1851 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1852 					0);
1853 
1854 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1855 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1856 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1857 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1858 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1859 					0);
1860 	}
1861 }
1862 
1863 
1864 /*****************\
1865 * Antenna control *
1866 \*****************/
1867 
1868 static void /*TODO:Boundary check*/
1869 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1870 {
1871 	if (ah->ah_version != AR5K_AR5210)
1872 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1873 }
1874 
1875 /*
1876  * Enable/disable fast rx antenna diversity
1877  */
1878 static void
1879 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1880 {
1881 	switch (ee_mode) {
1882 	case AR5K_EEPROM_MODE_11G:
1883 		/* XXX: This is set to
1884 		 * disabled on initvals !!! */
1885 	case AR5K_EEPROM_MODE_11A:
1886 		if (enable)
1887 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1888 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1889 		else
1890 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1891 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1892 		break;
1893 	case AR5K_EEPROM_MODE_11B:
1894 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1895 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1896 		break;
1897 	default:
1898 		return;
1899 	}
1900 
1901 	if (enable) {
1902 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1903 				AR5K_PHY_RESTART_DIV_GC, 4);
1904 
1905 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1906 					AR5K_PHY_FAST_ANT_DIV_EN);
1907 	} else {
1908 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1909 				AR5K_PHY_RESTART_DIV_GC, 0);
1910 
1911 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1912 					AR5K_PHY_FAST_ANT_DIV_EN);
1913 	}
1914 }
1915 
1916 void
1917 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1918 {
1919 	u8 ant0, ant1;
1920 
1921 	/*
1922 	 * In case a fixed antenna was set as default
1923 	 * use the same switch table twice.
1924 	 */
1925 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1926 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1927 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1928 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1929 	else {
1930 		ant0 = AR5K_ANT_SWTABLE_A;
1931 		ant1 = AR5K_ANT_SWTABLE_B;
1932 	}
1933 
1934 	/* Set antenna idle switch table */
1935 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1936 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1937 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1938 			AR5K_PHY_ANT_CTL_TXRX_EN));
1939 
1940 	/* Set antenna switch tables */
1941 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1942 		AR5K_PHY_ANT_SWITCH_TABLE_0);
1943 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1944 		AR5K_PHY_ANT_SWITCH_TABLE_1);
1945 }
1946 
1947 /*
1948  * Set antenna operating mode
1949  */
1950 void
1951 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1952 {
1953 	struct ieee80211_channel *channel = ah->ah_current_channel;
1954 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1955 	bool use_def_for_sg;
1956 	int ee_mode;
1957 	u8 def_ant, tx_ant;
1958 	u32 sta_id1 = 0;
1959 
1960 	/* if channel is not initialized yet we can't set the antennas
1961 	 * so just store the mode. it will be set on the next reset */
1962 	if (channel == NULL) {
1963 		ah->ah_ant_mode = ant_mode;
1964 		return;
1965 	}
1966 
1967 	def_ant = ah->ah_def_ant;
1968 
1969 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
1970 	if (ee_mode < 0) {
1971 		ATH5K_ERR(ah,
1972 			"invalid channel: %d\n", channel->center_freq);
1973 		return;
1974 	}
1975 
1976 	switch (ant_mode) {
1977 	case AR5K_ANTMODE_DEFAULT:
1978 		tx_ant = 0;
1979 		use_def_for_tx = false;
1980 		update_def_on_tx = false;
1981 		use_def_for_rts = false;
1982 		use_def_for_sg = false;
1983 		fast_div = true;
1984 		break;
1985 	case AR5K_ANTMODE_FIXED_A:
1986 		def_ant = 1;
1987 		tx_ant = 1;
1988 		use_def_for_tx = true;
1989 		update_def_on_tx = false;
1990 		use_def_for_rts = true;
1991 		use_def_for_sg = true;
1992 		fast_div = false;
1993 		break;
1994 	case AR5K_ANTMODE_FIXED_B:
1995 		def_ant = 2;
1996 		tx_ant = 2;
1997 		use_def_for_tx = true;
1998 		update_def_on_tx = false;
1999 		use_def_for_rts = true;
2000 		use_def_for_sg = true;
2001 		fast_div = false;
2002 		break;
2003 	case AR5K_ANTMODE_SINGLE_AP:
2004 		def_ant = 1;	/* updated on tx */
2005 		tx_ant = 0;
2006 		use_def_for_tx = true;
2007 		update_def_on_tx = true;
2008 		use_def_for_rts = true;
2009 		use_def_for_sg = true;
2010 		fast_div = true;
2011 		break;
2012 	case AR5K_ANTMODE_SECTOR_AP:
2013 		tx_ant = 1;	/* variable */
2014 		use_def_for_tx = false;
2015 		update_def_on_tx = false;
2016 		use_def_for_rts = true;
2017 		use_def_for_sg = false;
2018 		fast_div = false;
2019 		break;
2020 	case AR5K_ANTMODE_SECTOR_STA:
2021 		tx_ant = 1;	/* variable */
2022 		use_def_for_tx = true;
2023 		update_def_on_tx = false;
2024 		use_def_for_rts = true;
2025 		use_def_for_sg = false;
2026 		fast_div = true;
2027 		break;
2028 	case AR5K_ANTMODE_DEBUG:
2029 		def_ant = 1;
2030 		tx_ant = 2;
2031 		use_def_for_tx = false;
2032 		update_def_on_tx = false;
2033 		use_def_for_rts = false;
2034 		use_def_for_sg = false;
2035 		fast_div = false;
2036 		break;
2037 	default:
2038 		return;
2039 	}
2040 
2041 	ah->ah_tx_ant = tx_ant;
2042 	ah->ah_ant_mode = ant_mode;
2043 	ah->ah_def_ant = def_ant;
2044 
2045 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2046 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2047 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2048 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2049 
2050 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2051 
2052 	if (sta_id1)
2053 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2054 
2055 	ath5k_hw_set_antenna_switch(ah, ee_mode);
2056 	/* Note: set diversity before default antenna
2057 	 * because it won't work correctly */
2058 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2059 	ath5k_hw_set_def_antenna(ah, def_ant);
2060 }
2061 
2062 
2063 /****************\
2064 * TX power setup *
2065 \****************/
2066 
2067 /*
2068  * Helper functions
2069  */
2070 
2071 /*
2072  * Do linear interpolation between two given (x, y) points
2073  */
2074 static s16
2075 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2076 					s16 y_left, s16 y_right)
2077 {
2078 	s16 ratio, result;
2079 
2080 	/* Avoid divide by zero and skip interpolation
2081 	 * if we have the same point */
2082 	if ((x_left == x_right) || (y_left == y_right))
2083 		return y_left;
2084 
2085 	/*
2086 	 * Since we use ints and not fps, we need to scale up in
2087 	 * order to get a sane ratio value (or else we 'll eg. get
2088 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2089 	 * to have some accuracy both for 0.5 and 0.25 steps.
2090 	 */
2091 	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2092 
2093 	/* Now scale down to be in range */
2094 	result = y_left + (ratio * (target - x_left) / 100);
2095 
2096 	return result;
2097 }
2098 
2099 /*
2100  * Find vertical boundary (min pwr) for the linear PCDAC curve.
2101  *
2102  * Since we have the top of the curve and we draw the line below
2103  * until we reach 1 (1 pcdac step) we need to know which point
2104  * (x value) that is so that we don't go below y axis and have negative
2105  * pcdac values when creating the curve, or fill the table with zeroes.
2106  */
2107 static s16
2108 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2109 				const s16 *pwrL, const s16 *pwrR)
2110 {
2111 	s8 tmp;
2112 	s16 min_pwrL, min_pwrR;
2113 	s16 pwr_i;
2114 
2115 	/* Some vendors write the same pcdac value twice !!! */
2116 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2117 		return max(pwrL[0], pwrR[0]);
2118 
2119 	if (pwrL[0] == pwrL[1])
2120 		min_pwrL = pwrL[0];
2121 	else {
2122 		pwr_i = pwrL[0];
2123 		do {
2124 			pwr_i--;
2125 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2126 							pwrL[0], pwrL[1],
2127 							stepL[0], stepL[1]);
2128 		} while (tmp > 1);
2129 
2130 		min_pwrL = pwr_i;
2131 	}
2132 
2133 	if (pwrR[0] == pwrR[1])
2134 		min_pwrR = pwrR[0];
2135 	else {
2136 		pwr_i = pwrR[0];
2137 		do {
2138 			pwr_i--;
2139 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2140 							pwrR[0], pwrR[1],
2141 							stepR[0], stepR[1]);
2142 		} while (tmp > 1);
2143 
2144 		min_pwrR = pwr_i;
2145 	}
2146 
2147 	/* Keep the right boundary so that it works for both curves */
2148 	return max(min_pwrL, min_pwrR);
2149 }
2150 
2151 /*
2152  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2153  * Power to PCDAC curve.
2154  *
2155  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2156  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2157  * PCDAC/PDADC step for each curve is 64 but we can write more than
2158  * one curves on hw so we can go up to 128 (which is the max step we
2159  * can write on the final table).
2160  *
2161  * We write y values (PCDAC/PDADC steps) on hw.
2162  */
2163 static void
2164 ath5k_create_power_curve(s16 pmin, s16 pmax,
2165 			const s16 *pwr, const u8 *vpd,
2166 			u8 num_points,
2167 			u8 *vpd_table, u8 type)
2168 {
2169 	u8 idx[2] = { 0, 1 };
2170 	s16 pwr_i = 2 * pmin;
2171 	int i;
2172 
2173 	if (num_points < 2)
2174 		return;
2175 
2176 	/* We want the whole line, so adjust boundaries
2177 	 * to cover the entire power range. Note that
2178 	 * power values are already 0.25dB so no need
2179 	 * to multiply pwr_i by 2 */
2180 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2181 		pwr_i = pmin;
2182 		pmin = 0;
2183 		pmax = 63;
2184 	}
2185 
2186 	/* Find surrounding turning points (TPs)
2187 	 * and interpolate between them */
2188 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2189 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2190 
2191 		/* We passed the right TP, move to the next set of TPs
2192 		 * if we pass the last TP, extrapolate above using the last
2193 		 * two TPs for ratio */
2194 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2195 			idx[0]++;
2196 			idx[1]++;
2197 		}
2198 
2199 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2200 						pwr[idx[0]], pwr[idx[1]],
2201 						vpd[idx[0]], vpd[idx[1]]);
2202 
2203 		/* Increase by 0.5dB
2204 		 * (0.25 dB units) */
2205 		pwr_i += 2;
2206 	}
2207 }
2208 
2209 /*
2210  * Get the surrounding per-channel power calibration piers
2211  * for a given frequency so that we can interpolate between
2212  * them and come up with an appropriate dataset for our current
2213  * channel.
2214  */
2215 static void
2216 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2217 			struct ieee80211_channel *channel,
2218 			struct ath5k_chan_pcal_info **pcinfo_l,
2219 			struct ath5k_chan_pcal_info **pcinfo_r)
2220 {
2221 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2222 	struct ath5k_chan_pcal_info *pcinfo;
2223 	u8 idx_l, idx_r;
2224 	u8 mode, max, i;
2225 	u32 target = channel->center_freq;
2226 
2227 	idx_l = 0;
2228 	idx_r = 0;
2229 
2230 	switch (channel->hw_value) {
2231 	case AR5K_EEPROM_MODE_11A:
2232 		pcinfo = ee->ee_pwr_cal_a;
2233 		mode = AR5K_EEPROM_MODE_11A;
2234 		break;
2235 	case AR5K_EEPROM_MODE_11B:
2236 		pcinfo = ee->ee_pwr_cal_b;
2237 		mode = AR5K_EEPROM_MODE_11B;
2238 		break;
2239 	case AR5K_EEPROM_MODE_11G:
2240 	default:
2241 		pcinfo = ee->ee_pwr_cal_g;
2242 		mode = AR5K_EEPROM_MODE_11G;
2243 		break;
2244 	}
2245 	max = ee->ee_n_piers[mode] - 1;
2246 
2247 	/* Frequency is below our calibrated
2248 	 * range. Use the lowest power curve
2249 	 * we have */
2250 	if (target < pcinfo[0].freq) {
2251 		idx_l = idx_r = 0;
2252 		goto done;
2253 	}
2254 
2255 	/* Frequency is above our calibrated
2256 	 * range. Use the highest power curve
2257 	 * we have */
2258 	if (target > pcinfo[max].freq) {
2259 		idx_l = idx_r = max;
2260 		goto done;
2261 	}
2262 
2263 	/* Frequency is inside our calibrated
2264 	 * channel range. Pick the surrounding
2265 	 * calibration piers so that we can
2266 	 * interpolate */
2267 	for (i = 0; i <= max; i++) {
2268 
2269 		/* Frequency matches one of our calibration
2270 		 * piers, no need to interpolate, just use
2271 		 * that calibration pier */
2272 		if (pcinfo[i].freq == target) {
2273 			idx_l = idx_r = i;
2274 			goto done;
2275 		}
2276 
2277 		/* We found a calibration pier that's above
2278 		 * frequency, use this pier and the previous
2279 		 * one to interpolate */
2280 		if (target < pcinfo[i].freq) {
2281 			idx_r = i;
2282 			idx_l = idx_r - 1;
2283 			goto done;
2284 		}
2285 	}
2286 
2287 done:
2288 	*pcinfo_l = &pcinfo[idx_l];
2289 	*pcinfo_r = &pcinfo[idx_r];
2290 }
2291 
2292 /*
2293  * Get the surrounding per-rate power calibration data
2294  * for a given frequency and interpolate between power
2295  * values to set max target power supported by hw for
2296  * each rate.
2297  */
2298 static void
2299 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2300 			struct ieee80211_channel *channel,
2301 			struct ath5k_rate_pcal_info *rates)
2302 {
2303 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2304 	struct ath5k_rate_pcal_info *rpinfo;
2305 	u8 idx_l, idx_r;
2306 	u8 mode, max, i;
2307 	u32 target = channel->center_freq;
2308 
2309 	idx_l = 0;
2310 	idx_r = 0;
2311 
2312 	switch (channel->hw_value) {
2313 	case AR5K_MODE_11A:
2314 		rpinfo = ee->ee_rate_tpwr_a;
2315 		mode = AR5K_EEPROM_MODE_11A;
2316 		break;
2317 	case AR5K_MODE_11B:
2318 		rpinfo = ee->ee_rate_tpwr_b;
2319 		mode = AR5K_EEPROM_MODE_11B;
2320 		break;
2321 	case AR5K_MODE_11G:
2322 	default:
2323 		rpinfo = ee->ee_rate_tpwr_g;
2324 		mode = AR5K_EEPROM_MODE_11G;
2325 		break;
2326 	}
2327 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2328 
2329 	/* Get the surrounding calibration
2330 	 * piers - same as above */
2331 	if (target < rpinfo[0].freq) {
2332 		idx_l = idx_r = 0;
2333 		goto done;
2334 	}
2335 
2336 	if (target > rpinfo[max].freq) {
2337 		idx_l = idx_r = max;
2338 		goto done;
2339 	}
2340 
2341 	for (i = 0; i <= max; i++) {
2342 
2343 		if (rpinfo[i].freq == target) {
2344 			idx_l = idx_r = i;
2345 			goto done;
2346 		}
2347 
2348 		if (target < rpinfo[i].freq) {
2349 			idx_r = i;
2350 			idx_l = idx_r - 1;
2351 			goto done;
2352 		}
2353 	}
2354 
2355 done:
2356 	/* Now interpolate power value, based on the frequency */
2357 	rates->freq = target;
2358 
2359 	rates->target_power_6to24 =
2360 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2361 					rpinfo[idx_r].freq,
2362 					rpinfo[idx_l].target_power_6to24,
2363 					rpinfo[idx_r].target_power_6to24);
2364 
2365 	rates->target_power_36 =
2366 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2367 					rpinfo[idx_r].freq,
2368 					rpinfo[idx_l].target_power_36,
2369 					rpinfo[idx_r].target_power_36);
2370 
2371 	rates->target_power_48 =
2372 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2373 					rpinfo[idx_r].freq,
2374 					rpinfo[idx_l].target_power_48,
2375 					rpinfo[idx_r].target_power_48);
2376 
2377 	rates->target_power_54 =
2378 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2379 					rpinfo[idx_r].freq,
2380 					rpinfo[idx_l].target_power_54,
2381 					rpinfo[idx_r].target_power_54);
2382 }
2383 
2384 /*
2385  * Get the max edge power for this channel if
2386  * we have such data from EEPROM's Conformance Test
2387  * Limits (CTL), and limit max power if needed.
2388  */
2389 static void
2390 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2391 			struct ieee80211_channel *channel)
2392 {
2393 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2394 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2395 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2396 	u8 *ctl_val = ee->ee_ctl;
2397 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2398 	s16 edge_pwr = 0;
2399 	u8 rep_idx;
2400 	u8 i, ctl_mode;
2401 	u8 ctl_idx = 0xFF;
2402 	u32 target = channel->center_freq;
2403 
2404 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2405 
2406 	switch (channel->hw_value) {
2407 	case AR5K_MODE_11A:
2408 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2409 			ctl_mode |= AR5K_CTL_TURBO;
2410 		else
2411 			ctl_mode |= AR5K_CTL_11A;
2412 		break;
2413 	case AR5K_MODE_11G:
2414 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2415 			ctl_mode |= AR5K_CTL_TURBOG;
2416 		else
2417 			ctl_mode |= AR5K_CTL_11G;
2418 		break;
2419 	case AR5K_MODE_11B:
2420 		ctl_mode |= AR5K_CTL_11B;
2421 		break;
2422 	default:
2423 		return;
2424 	}
2425 
2426 	for (i = 0; i < ee->ee_ctls; i++) {
2427 		if (ctl_val[i] == ctl_mode) {
2428 			ctl_idx = i;
2429 			break;
2430 		}
2431 	}
2432 
2433 	/* If we have a CTL dataset available grab it and find the
2434 	 * edge power for our frequency */
2435 	if (ctl_idx == 0xFF)
2436 		return;
2437 
2438 	/* Edge powers are sorted by frequency from lower
2439 	 * to higher. Each CTL corresponds to 8 edge power
2440 	 * measurements. */
2441 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2442 
2443 	/* Don't do boundaries check because we
2444 	 * might have more that one bands defined
2445 	 * for this mode */
2446 
2447 	/* Get the edge power that's closer to our
2448 	 * frequency */
2449 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2450 		rep_idx += i;
2451 		if (target <= rep[rep_idx].freq)
2452 			edge_pwr = (s16) rep[rep_idx].edge;
2453 	}
2454 
2455 	if (edge_pwr)
2456 		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2457 }
2458 
2459 
2460 /*
2461  * Power to PCDAC table functions
2462  */
2463 
2464 /*
2465  * Fill Power to PCDAC table on RF5111
2466  *
2467  * No further processing is needed for RF5111, the only thing we have to
2468  * do is fill the values below and above calibration range since eeprom data
2469  * may not cover the entire PCDAC table.
2470  */
2471 static void
2472 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2473 							s16 *table_max)
2474 {
2475 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2476 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2477 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2478 	s16	min_pwr, max_pwr;
2479 
2480 	/* Get table boundaries */
2481 	min_pwr = table_min[0];
2482 	pcdac_0 = pcdac_tmp[0];
2483 
2484 	max_pwr = table_max[0];
2485 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2486 
2487 	/* Extrapolate below minimum using pcdac_0 */
2488 	pcdac_i = 0;
2489 	for (i = 0; i < min_pwr; i++)
2490 		pcdac_out[pcdac_i++] = pcdac_0;
2491 
2492 	/* Copy values from pcdac_tmp */
2493 	pwr_idx = min_pwr;
2494 	for (i = 0; pwr_idx <= max_pwr &&
2495 		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2496 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2497 		pwr_idx++;
2498 	}
2499 
2500 	/* Extrapolate above maximum */
2501 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2502 		pcdac_out[pcdac_i++] = pcdac_n;
2503 
2504 }
2505 
2506 /*
2507  * Combine available XPD Curves and fill Linear Power to PCDAC table
2508  * on RF5112
2509  *
2510  * RFX112 can have up to 2 curves (one for low txpower range and one for
2511  * higher txpower range). We need to put them both on pcdac_out and place
2512  * them in the correct location. In case we only have one curve available
2513  * just fit it on pcdac_out (it's supposed to cover the entire range of
2514  * available pwr levels since it's always the higher power curve). Extrapolate
2515  * below and above final table if needed.
2516  */
2517 static void
2518 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2519 						s16 *table_max, u8 pdcurves)
2520 {
2521 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2522 	u8	*pcdac_low_pwr;
2523 	u8	*pcdac_high_pwr;
2524 	u8	*pcdac_tmp;
2525 	u8	pwr;
2526 	s16	max_pwr_idx;
2527 	s16	min_pwr_idx;
2528 	s16	mid_pwr_idx = 0;
2529 	/* Edge flag turns on the 7nth bit on the PCDAC
2530 	 * to declare the higher power curve (force values
2531 	 * to be greater than 64). If we only have one curve
2532 	 * we don't need to set this, if we have 2 curves and
2533 	 * fill the table backwards this can also be used to
2534 	 * switch from higher power curve to lower power curve */
2535 	u8	edge_flag;
2536 	int	i;
2537 
2538 	/* When we have only one curve available
2539 	 * that's the higher power curve. If we have
2540 	 * two curves the first is the high power curve
2541 	 * and the next is the low power curve. */
2542 	if (pdcurves > 1) {
2543 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2544 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2545 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2546 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2547 
2548 		/* If table size goes beyond 31.5dB, keep the
2549 		 * upper 31.5dB range when setting tx power.
2550 		 * Note: 126 = 31.5 dB in quarter dB steps */
2551 		if (table_max[0] - table_min[1] > 126)
2552 			min_pwr_idx = table_max[0] - 126;
2553 		else
2554 			min_pwr_idx = table_min[1];
2555 
2556 		/* Since we fill table backwards
2557 		 * start from high power curve */
2558 		pcdac_tmp = pcdac_high_pwr;
2559 
2560 		edge_flag = 0x40;
2561 	} else {
2562 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2563 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2564 		min_pwr_idx = table_min[0];
2565 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2566 		pcdac_tmp = pcdac_high_pwr;
2567 		edge_flag = 0;
2568 	}
2569 
2570 	/* This is used when setting tx power*/
2571 	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2572 
2573 	/* Fill Power to PCDAC table backwards */
2574 	pwr = max_pwr_idx;
2575 	for (i = 63; i >= 0; i--) {
2576 		/* Entering lower power range, reset
2577 		 * edge flag and set pcdac_tmp to lower
2578 		 * power curve.*/
2579 		if (edge_flag == 0x40 &&
2580 		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2581 			edge_flag = 0x00;
2582 			pcdac_tmp = pcdac_low_pwr;
2583 			pwr = mid_pwr_idx / 2;
2584 		}
2585 
2586 		/* Don't go below 1, extrapolate below if we have
2587 		 * already switched to the lower power curve -or
2588 		 * we only have one curve and edge_flag is zero
2589 		 * anyway */
2590 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2591 			while (i >= 0) {
2592 				pcdac_out[i] = pcdac_out[i + 1];
2593 				i--;
2594 			}
2595 			break;
2596 		}
2597 
2598 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2599 
2600 		/* Extrapolate above if pcdac is greater than
2601 		 * 126 -this can happen because we OR pcdac_out
2602 		 * value with edge_flag on high power curve */
2603 		if (pcdac_out[i] > 126)
2604 			pcdac_out[i] = 126;
2605 
2606 		/* Decrease by a 0.5dB step */
2607 		pwr--;
2608 	}
2609 }
2610 
2611 /* Write PCDAC values on hw */
2612 static void
2613 ath5k_write_pcdac_table(struct ath5k_hw *ah)
2614 {
2615 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2616 	int	i;
2617 
2618 	/*
2619 	 * Write TX power values
2620 	 */
2621 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2622 		ath5k_hw_reg_write(ah,
2623 			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
2624 			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
2625 			AR5K_PHY_PCDAC_TXPOWER(i));
2626 	}
2627 }
2628 
2629 
2630 /*
2631  * Power to PDADC table functions
2632  */
2633 
2634 /*
2635  * Set the gain boundaries and create final Power to PDADC table
2636  *
2637  * We can have up to 4 pd curves, we need to do a similar process
2638  * as we do for RF5112. This time we don't have an edge_flag but we
2639  * set the gain boundaries on a separate register.
2640  */
2641 static void
2642 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2643 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2644 {
2645 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2646 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2647 	u8 *pdadc_tmp;
2648 	s16 pdadc_0;
2649 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2650 	u8 pd_gain_overlap;
2651 
2652 	/* Note: Register value is initialized on initvals
2653 	 * there is no feedback from hw.
2654 	 * XXX: What about pd_gain_overlap from EEPROM ? */
2655 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2656 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2657 
2658 	/* Create final PDADC table */
2659 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2660 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2661 
2662 		if (pdg == pdcurves - 1)
2663 			/* 2 dB boundary stretch for last
2664 			 * (higher power) curve */
2665 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2666 		else
2667 			/* Set gain boundary in the middle
2668 			 * between this curve and the next one */
2669 			gain_boundaries[pdg] =
2670 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2671 
2672 		/* Sanity check in case our 2 db stretch got out of
2673 		 * range. */
2674 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2675 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2676 
2677 		/* For the first curve (lower power)
2678 		 * start from 0 dB */
2679 		if (pdg == 0)
2680 			pdadc_0 = 0;
2681 		else
2682 			/* For the other curves use the gain overlap */
2683 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2684 							pd_gain_overlap;
2685 
2686 		/* Force each power step to be at least 0.5 dB */
2687 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2688 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2689 		else
2690 			pwr_step = 1;
2691 
2692 		/* If pdadc_0 is negative, we need to extrapolate
2693 		 * below this pdgain by a number of pwr_steps */
2694 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2695 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2696 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2697 			pdadc_0++;
2698 		}
2699 
2700 		/* Set last pwr level, using gain boundaries */
2701 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2702 		/* Limit it to be inside pwr range */
2703 		table_size = pwr_max[pdg] - pwr_min[pdg];
2704 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2705 
2706 		/* Fill pdadc_out table */
2707 		while (pdadc_0 < max_idx && pdadc_i < 128)
2708 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2709 
2710 		/* Need to extrapolate above this pdgain? */
2711 		if (pdadc_n <= max_idx)
2712 			continue;
2713 
2714 		/* Force each power step to be at least 0.5 dB */
2715 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2716 			pwr_step = pdadc_tmp[table_size - 1] -
2717 						pdadc_tmp[table_size - 2];
2718 		else
2719 			pwr_step = 1;
2720 
2721 		/* Extrapolate above */
2722 		while ((pdadc_0 < (s16) pdadc_n) &&
2723 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2724 			s16 tmp = pdadc_tmp[table_size - 1] +
2725 					(pdadc_0 - max_idx) * pwr_step;
2726 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2727 			pdadc_0++;
2728 		}
2729 	}
2730 
2731 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2732 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2733 		pdg++;
2734 	}
2735 
2736 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2737 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2738 		pdadc_i++;
2739 	}
2740 
2741 	/* Set gain boundaries */
2742 	ath5k_hw_reg_write(ah,
2743 		AR5K_REG_SM(pd_gain_overlap,
2744 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2745 		AR5K_REG_SM(gain_boundaries[0],
2746 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2747 		AR5K_REG_SM(gain_boundaries[1],
2748 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2749 		AR5K_REG_SM(gain_boundaries[2],
2750 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2751 		AR5K_REG_SM(gain_boundaries[3],
2752 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2753 		AR5K_PHY_TPC_RG5);
2754 
2755 	/* Used for setting rate power table */
2756 	ah->ah_txpower.txp_min_idx = pwr_min[0];
2757 
2758 }
2759 
2760 /* Write PDADC values on hw */
2761 static void
2762 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2763 {
2764 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2765 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2766 	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2767 	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2768 	u32 reg;
2769 	u8 i;
2770 
2771 	/* Select the right pdgain curves */
2772 
2773 	/* Clear current settings */
2774 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2775 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2776 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2777 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2778 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2779 
2780 	/*
2781 	 * Use pd_gains curve from eeprom
2782 	 *
2783 	 * This overrides the default setting from initvals
2784 	 * in case some vendors (e.g. Zcomax) don't use the default
2785 	 * curves. If we don't honor their settings we 'll get a
2786 	 * 5dB (1 * gain overlap ?) drop.
2787 	 */
2788 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2789 
2790 	switch (pdcurves) {
2791 	case 3:
2792 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2793 		/* Fall through */
2794 	case 2:
2795 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2796 		/* Fall through */
2797 	case 1:
2798 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2799 		break;
2800 	}
2801 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2802 
2803 	/*
2804 	 * Write TX power values
2805 	 */
2806 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2807 		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
2808 		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
2809 	}
2810 }
2811 
2812 
2813 /*
2814  * Common code for PCDAC/PDADC tables
2815  */
2816 
2817 /*
2818  * This is the main function that uses all of the above
2819  * to set PCDAC/PDADC table on hw for the current channel.
2820  * This table is used for tx power calibration on the baseband,
2821  * without it we get weird tx power levels and in some cases
2822  * distorted spectral mask
2823  */
2824 static int
2825 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2826 			struct ieee80211_channel *channel,
2827 			u8 ee_mode, u8 type)
2828 {
2829 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2830 	struct ath5k_chan_pcal_info *pcinfo_L;
2831 	struct ath5k_chan_pcal_info *pcinfo_R;
2832 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2833 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2834 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2835 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2836 	u8 *tmpL;
2837 	u8 *tmpR;
2838 	u32 target = channel->center_freq;
2839 	int pdg, i;
2840 
2841 	/* Get surrounding freq piers for this channel */
2842 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2843 						&pcinfo_L,
2844 						&pcinfo_R);
2845 
2846 	/* Loop over pd gain curves on
2847 	 * surrounding freq piers by index */
2848 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2849 
2850 		/* Fill curves in reverse order
2851 		 * from lower power (max gain)
2852 		 * to higher power. Use curve -> idx
2853 		 * backmapping we did on eeprom init */
2854 		u8 idx = pdg_curve_to_idx[pdg];
2855 
2856 		/* Grab the needed curves by index */
2857 		pdg_L = &pcinfo_L->pd_curves[idx];
2858 		pdg_R = &pcinfo_R->pd_curves[idx];
2859 
2860 		/* Initialize the temp tables */
2861 		tmpL = ah->ah_txpower.tmpL[pdg];
2862 		tmpR = ah->ah_txpower.tmpR[pdg];
2863 
2864 		/* Set curve's x boundaries and create
2865 		 * curves so that they cover the same
2866 		 * range (if we don't do that one table
2867 		 * will have values on some range and the
2868 		 * other one won't have any so interpolation
2869 		 * will fail) */
2870 		table_min[pdg] = min(pdg_L->pd_pwr[0],
2871 					pdg_R->pd_pwr[0]) / 2;
2872 
2873 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2874 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2875 
2876 		/* Now create the curves on surrounding channels
2877 		 * and interpolate if needed to get the final
2878 		 * curve for this gain on this channel */
2879 		switch (type) {
2880 		case AR5K_PWRTABLE_LINEAR_PCDAC:
2881 			/* Override min/max so that we don't loose
2882 			 * accuracy (don't divide by 2) */
2883 			table_min[pdg] = min(pdg_L->pd_pwr[0],
2884 						pdg_R->pd_pwr[0]);
2885 
2886 			table_max[pdg] =
2887 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2888 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2889 
2890 			/* Override minimum so that we don't get
2891 			 * out of bounds while extrapolating
2892 			 * below. Don't do this when we have 2
2893 			 * curves and we are on the high power curve
2894 			 * because table_min is ok in this case */
2895 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2896 
2897 				table_min[pdg] =
2898 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2899 								pdg_R->pd_step,
2900 								pdg_L->pd_pwr,
2901 								pdg_R->pd_pwr);
2902 
2903 				/* Don't go too low because we will
2904 				 * miss the upper part of the curve.
2905 				 * Note: 126 = 31.5dB (max power supported)
2906 				 * in 0.25dB units */
2907 				if (table_max[pdg] - table_min[pdg] > 126)
2908 					table_min[pdg] = table_max[pdg] - 126;
2909 			}
2910 
2911 			/* Fall through */
2912 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2913 		case AR5K_PWRTABLE_PWR_TO_PDADC:
2914 
2915 			ath5k_create_power_curve(table_min[pdg],
2916 						table_max[pdg],
2917 						pdg_L->pd_pwr,
2918 						pdg_L->pd_step,
2919 						pdg_L->pd_points, tmpL, type);
2920 
2921 			/* We are in a calibration
2922 			 * pier, no need to interpolate
2923 			 * between freq piers */
2924 			if (pcinfo_L == pcinfo_R)
2925 				continue;
2926 
2927 			ath5k_create_power_curve(table_min[pdg],
2928 						table_max[pdg],
2929 						pdg_R->pd_pwr,
2930 						pdg_R->pd_step,
2931 						pdg_R->pd_points, tmpR, type);
2932 			break;
2933 		default:
2934 			return -EINVAL;
2935 		}
2936 
2937 		/* Interpolate between curves
2938 		 * of surrounding freq piers to
2939 		 * get the final curve for this
2940 		 * pd gain. Re-use tmpL for interpolation
2941 		 * output */
2942 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2943 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2944 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2945 							(s16) pcinfo_L->freq,
2946 							(s16) pcinfo_R->freq,
2947 							(s16) tmpL[i],
2948 							(s16) tmpR[i]);
2949 		}
2950 	}
2951 
2952 	/* Now we have a set of curves for this
2953 	 * channel on tmpL (x range is table_max - table_min
2954 	 * and y values are tmpL[pdg][]) sorted in the same
2955 	 * order as EEPROM (because we've used the backmapping).
2956 	 * So for RF5112 it's from higher power to lower power
2957 	 * and for RF2413 it's from lower power to higher power.
2958 	 * For RF5111 we only have one curve. */
2959 
2960 	/* Fill min and max power levels for this
2961 	 * channel by interpolating the values on
2962 	 * surrounding channels to complete the dataset */
2963 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2964 					(s16) pcinfo_L->freq,
2965 					(s16) pcinfo_R->freq,
2966 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2967 
2968 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2969 					(s16) pcinfo_L->freq,
2970 					(s16) pcinfo_R->freq,
2971 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2972 
2973 	/* Fill PCDAC/PDADC table */
2974 	switch (type) {
2975 	case AR5K_PWRTABLE_LINEAR_PCDAC:
2976 		/* For RF5112 we can have one or two curves
2977 		 * and each curve covers a certain power lvl
2978 		 * range so we need to do some more processing */
2979 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2980 						ee->ee_pd_gains[ee_mode]);
2981 
2982 		/* Set txp.offset so that we can
2983 		 * match max power value with max
2984 		 * table index */
2985 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2986 		break;
2987 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2988 		/* We are done for RF5111 since it has only
2989 		 * one curve, just fit the curve on the table */
2990 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2991 
2992 		/* No rate powertable adjustment for RF5111 */
2993 		ah->ah_txpower.txp_min_idx = 0;
2994 		ah->ah_txpower.txp_offset = 0;
2995 		break;
2996 	case AR5K_PWRTABLE_PWR_TO_PDADC:
2997 		/* Set PDADC boundaries and fill
2998 		 * final PDADC table */
2999 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3000 						ee->ee_pd_gains[ee_mode]);
3001 
3002 		/* Set txp.offset, note that table_min
3003 		 * can be negative */
3004 		ah->ah_txpower.txp_offset = table_min[0];
3005 		break;
3006 	default:
3007 		return -EINVAL;
3008 	}
3009 
3010 	ah->ah_txpower.txp_setup = true;
3011 
3012 	return 0;
3013 }
3014 
3015 /* Write power table for current channel to hw */
3016 static void
3017 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3018 {
3019 	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3020 		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3021 	else
3022 		ath5k_write_pcdac_table(ah);
3023 }
3024 
3025 /*
3026  * Per-rate tx power setting
3027  *
3028  * This is the code that sets the desired tx power (below
3029  * maximum) on hw for each rate (we also have TPC that sets
3030  * power per packet). We do that by providing an index on the
3031  * PCDAC/PDADC table we set up.
3032  */
3033 
3034 /*
3035  * Set rate power table
3036  *
3037  * For now we only limit txpower based on maximum tx power
3038  * supported by hw (what's inside rate_info). We need to limit
3039  * this even more, based on regulatory domain etc.
3040  *
3041  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3042  * and is indexed as follows:
3043  * rates[0] - rates[7] -> OFDM rates
3044  * rates[8] - rates[14] -> CCK rates
3045  * rates[15] -> XR rates (they all have the same power)
3046  */
3047 static void
3048 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3049 			struct ath5k_rate_pcal_info *rate_info,
3050 			u8 ee_mode)
3051 {
3052 	unsigned int i;
3053 	u16 *rates;
3054 
3055 	/* max_pwr is power level we got from driver/user in 0.5dB
3056 	 * units, switch to 0.25dB units so we can compare */
3057 	max_pwr *= 2;
3058 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3059 
3060 	/* apply rate limits */
3061 	rates = ah->ah_txpower.txp_rates_power_table;
3062 
3063 	/* OFDM rates 6 to 24Mb/s */
3064 	for (i = 0; i < 5; i++)
3065 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3066 
3067 	/* Rest OFDM rates */
3068 	rates[5] = min(rates[0], rate_info->target_power_36);
3069 	rates[6] = min(rates[0], rate_info->target_power_48);
3070 	rates[7] = min(rates[0], rate_info->target_power_54);
3071 
3072 	/* CCK rates */
3073 	/* 1L */
3074 	rates[8] = min(rates[0], rate_info->target_power_6to24);
3075 	/* 2L */
3076 	rates[9] = min(rates[0], rate_info->target_power_36);
3077 	/* 2S */
3078 	rates[10] = min(rates[0], rate_info->target_power_36);
3079 	/* 5L */
3080 	rates[11] = min(rates[0], rate_info->target_power_48);
3081 	/* 5S */
3082 	rates[12] = min(rates[0], rate_info->target_power_48);
3083 	/* 11L */
3084 	rates[13] = min(rates[0], rate_info->target_power_54);
3085 	/* 11S */
3086 	rates[14] = min(rates[0], rate_info->target_power_54);
3087 
3088 	/* XR rates */
3089 	rates[15] = min(rates[0], rate_info->target_power_6to24);
3090 
3091 	/* CCK rates have different peak to average ratio
3092 	 * so we have to tweak their power so that gainf
3093 	 * correction works ok. For this we use OFDM to
3094 	 * CCK delta from eeprom */
3095 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3096 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3097 		for (i = 8; i <= 15; i++)
3098 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3099 
3100 	/* Now that we have all rates setup use table offset to
3101 	 * match the power range set by user with the power indices
3102 	 * on PCDAC/PDADC table */
3103 	for (i = 0; i < 16; i++) {
3104 		rates[i] += ah->ah_txpower.txp_offset;
3105 		/* Don't get out of bounds */
3106 		if (rates[i] > 63)
3107 			rates[i] = 63;
3108 	}
3109 
3110 	/* Min/max in 0.25dB units */
3111 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3112 	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3113 	ah->ah_txpower.txp_ofdm = rates[7];
3114 }
3115 
3116 
3117 /*
3118  * Set transmission power
3119  */
3120 static int
3121 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3122 		 u8 txpower)
3123 {
3124 	struct ath5k_rate_pcal_info rate_info;
3125 	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3126 	int ee_mode;
3127 	u8 type;
3128 	int ret;
3129 
3130 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3131 		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3132 		return -EINVAL;
3133 	}
3134 
3135 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3136 	if (ee_mode < 0) {
3137 		ATH5K_ERR(ah,
3138 			"invalid channel: %d\n", channel->center_freq);
3139 		return -EINVAL;
3140 	}
3141 
3142 	/* Initialize TX power table */
3143 	switch (ah->ah_radio) {
3144 	case AR5K_RF5110:
3145 		/* TODO */
3146 		return 0;
3147 	case AR5K_RF5111:
3148 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3149 		break;
3150 	case AR5K_RF5112:
3151 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3152 		break;
3153 	case AR5K_RF2413:
3154 	case AR5K_RF5413:
3155 	case AR5K_RF2316:
3156 	case AR5K_RF2317:
3157 	case AR5K_RF2425:
3158 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3159 		break;
3160 	default:
3161 		return -EINVAL;
3162 	}
3163 
3164 	/*
3165 	 * If we don't change channel/mode skip tx powertable calculation
3166 	 * and use the cached one.
3167 	 */
3168 	if (!ah->ah_txpower.txp_setup ||
3169 	    (channel->hw_value != curr_channel->hw_value) ||
3170 	    (channel->center_freq != curr_channel->center_freq)) {
3171 		/* Reset TX power values */
3172 		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3173 		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3174 
3175 		/* Calculate the powertable */
3176 		ret = ath5k_setup_channel_powertable(ah, channel,
3177 							ee_mode, type);
3178 		if (ret)
3179 			return ret;
3180 	}
3181 
3182 	/* Write table on hw */
3183 	ath5k_write_channel_powertable(ah, ee_mode, type);
3184 
3185 	/* Limit max power if we have a CTL available */
3186 	ath5k_get_max_ctl_power(ah, channel);
3187 
3188 	/* FIXME: Antenna reduction stuff */
3189 
3190 	/* FIXME: Limit power on turbo modes */
3191 
3192 	/* FIXME: TPC scale reduction */
3193 
3194 	/* Get surrounding channels for per-rate power table
3195 	 * calibration */
3196 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3197 
3198 	/* Setup rate power table */
3199 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3200 
3201 	/* Write rate power table on hw */
3202 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3203 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3204 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3205 
3206 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3207 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3208 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3209 
3210 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3211 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3212 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3213 
3214 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3215 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3216 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3217 
3218 	/* FIXME: TPC support */
3219 	if (ah->ah_txpower.txp_tpc) {
3220 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3221 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3222 
3223 		ath5k_hw_reg_write(ah,
3224 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3225 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3226 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3227 			AR5K_TPC);
3228 	} else {
3229 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3230 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3231 	}
3232 
3233 	return 0;
3234 }
3235 
3236 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3237 {
3238 	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3239 		"changing txpower to %d\n", txpower);
3240 
3241 	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3242 }
3243 
3244 /*************\
3245  Init function
3246 \*************/
3247 
3248 int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3249 		      u8 mode, bool fast)
3250 {
3251 	struct ieee80211_channel *curr_channel;
3252 	int ret, i;
3253 	u32 phy_tst1;
3254 	ret = 0;
3255 
3256 	/*
3257 	 * Sanity check for fast flag
3258 	 * Don't try fast channel change when changing modulation
3259 	 * mode/band. We check for chip compatibility on
3260 	 * ath5k_hw_reset.
3261 	 */
3262 	curr_channel = ah->ah_current_channel;
3263 	if (fast && (channel->hw_value != curr_channel->hw_value))
3264 		return -EINVAL;
3265 
3266 	/*
3267 	 * On fast channel change we only set the synth parameters
3268 	 * while PHY is running, enable calibration and skip the rest.
3269 	 */
3270 	if (fast) {
3271 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3272 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3273 		for (i = 0; i < 100; i++) {
3274 			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3275 				break;
3276 			udelay(5);
3277 		}
3278 		/* Failed */
3279 		if (i >= 100)
3280 			return -EIO;
3281 
3282 		/* Set channel and wait for synth */
3283 		ret = ath5k_hw_channel(ah, channel);
3284 		if (ret)
3285 			return ret;
3286 
3287 		ath5k_hw_wait_for_synth(ah, channel);
3288 	}
3289 
3290 	/*
3291 	 * Set TX power
3292 	 *
3293 	 * Note: We need to do that before we set
3294 	 * RF buffer settings on 5211/5212+ so that we
3295 	 * properly set curve indices.
3296 	 */
3297 	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3298 			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3299 	if (ret)
3300 		return ret;
3301 
3302 	/* Write OFDM timings on 5212*/
3303 	if (ah->ah_version == AR5K_AR5212 &&
3304 		channel->hw_value != AR5K_MODE_11B) {
3305 
3306 		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3307 		if (ret)
3308 			return ret;
3309 
3310 		/* Spur info is available only from EEPROM versions
3311 		 * greater than 5.3, but the EEPROM routines will use
3312 		 * static values for older versions */
3313 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3314 			ath5k_hw_set_spur_mitigation_filter(ah,
3315 							    channel);
3316 	}
3317 
3318 	/* If we used fast channel switching
3319 	 * we are done, release RF bus and
3320 	 * fire up NF calibration.
3321 	 *
3322 	 * Note: Only NF calibration due to
3323 	 * channel change, not AGC calibration
3324 	 * since AGC is still running !
3325 	 */
3326 	if (fast) {
3327 		/*
3328 		 * Release RF Bus grant
3329 		 */
3330 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3331 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3332 
3333 		/*
3334 		 * Start NF calibration
3335 		 */
3336 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3337 					AR5K_PHY_AGCCTL_NF);
3338 
3339 		return ret;
3340 	}
3341 
3342 	/*
3343 	 * For 5210 we do all initialization using
3344 	 * initvals, so we don't have to modify
3345 	 * any settings (5210 also only supports
3346 	 * a/aturbo modes)
3347 	 */
3348 	if (ah->ah_version != AR5K_AR5210) {
3349 
3350 		/*
3351 		 * Write initial RF gain settings
3352 		 * This should work for both 5111/5112
3353 		 */
3354 		ret = ath5k_hw_rfgain_init(ah, channel->band);
3355 		if (ret)
3356 			return ret;
3357 
3358 		mdelay(1);
3359 
3360 		/*
3361 		 * Write RF buffer
3362 		 */
3363 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3364 		if (ret)
3365 			return ret;
3366 
3367 		/*Enable/disable 802.11b mode on 5111
3368 		(enable 2111 frequency converter + CCK)*/
3369 		if (ah->ah_radio == AR5K_RF5111) {
3370 			if (mode == AR5K_MODE_11B)
3371 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3372 				    AR5K_TXCFG_B_MODE);
3373 			else
3374 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3375 				    AR5K_TXCFG_B_MODE);
3376 		}
3377 
3378 	} else if (ah->ah_version == AR5K_AR5210) {
3379 		mdelay(1);
3380 		/* Disable phy and wait */
3381 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3382 		mdelay(1);
3383 	}
3384 
3385 	/* Set channel on PHY */
3386 	ret = ath5k_hw_channel(ah, channel);
3387 	if (ret)
3388 		return ret;
3389 
3390 	/*
3391 	 * Enable the PHY and wait until completion
3392 	 * This includes BaseBand and Synthesizer
3393 	 * activation.
3394 	 */
3395 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3396 
3397 	ath5k_hw_wait_for_synth(ah, channel);
3398 
3399 	/*
3400 	 * Perform ADC test to see if baseband is ready
3401 	 * Set tx hold and check adc test register
3402 	 */
3403 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3404 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3405 	for (i = 0; i <= 20; i++) {
3406 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3407 			break;
3408 		udelay(200);
3409 	}
3410 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3411 
3412 	/*
3413 	 * Start automatic gain control calibration
3414 	 *
3415 	 * During AGC calibration RX path is re-routed to
3416 	 * a power detector so we don't receive anything.
3417 	 *
3418 	 * This method is used to calibrate some static offsets
3419 	 * used together with on-the fly I/Q calibration (the
3420 	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3421 	 * interrupt rx path.
3422 	 *
3423 	 * While rx path is re-routed to the power detector we also
3424 	 * start a noise floor calibration to measure the
3425 	 * card's noise floor (the noise we measure when we are not
3426 	 * transmitting or receiving anything).
3427 	 *
3428 	 * If we are in a noisy environment, AGC calibration may time
3429 	 * out and/or noise floor calibration might timeout.
3430 	 */
3431 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3432 				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3433 
3434 	/* At the same time start I/Q calibration for QAM constellation
3435 	 * -no need for CCK- */
3436 	ah->ah_calibration = false;
3437 	if (!(mode == AR5K_MODE_11B)) {
3438 		ah->ah_calibration = true;
3439 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3440 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3441 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3442 				AR5K_PHY_IQ_RUN);
3443 	}
3444 
3445 	/* Wait for gain calibration to finish (we check for I/Q calibration
3446 	 * during ath5k_phy_calibrate) */
3447 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3448 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3449 		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3450 			channel->center_freq);
3451 	}
3452 
3453 	/* Restore antenna mode */
3454 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3455 
3456 	return ret;
3457 }
3458