xref: /linux/drivers/net/wireless/ath/ath5k/phy.c (revision cff4fa8415a3224a5abdd2b1dd7f431e4ea49366)
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <asm/unaligned.h>
26 
27 #include "ath5k.h"
28 #include "reg.h"
29 #include "base.h"
30 #include "rfbuffer.h"
31 #include "rfgain.h"
32 
33 
34 /******************\
35 * Helper functions *
36 \******************/
37 
38 /*
39  * Get the PHY Chip revision
40  */
41 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
42 {
43 	unsigned int i;
44 	u32 srev;
45 	u16 ret;
46 
47 	/*
48 	 * Set the radio chip access register
49 	 */
50 	switch (chan) {
51 	case CHANNEL_2GHZ:
52 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
53 		break;
54 	case CHANNEL_5GHZ:
55 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
56 		break;
57 	default:
58 		return 0;
59 	}
60 
61 	mdelay(2);
62 
63 	/* ...wait until PHY is ready and read the selected radio revision */
64 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
65 
66 	for (i = 0; i < 8; i++)
67 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
68 
69 	if (ah->ah_version == AR5K_AR5210) {
70 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
71 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
72 	} else {
73 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
74 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
75 				((srev & 0x0f) << 4), 8);
76 	}
77 
78 	/* Reset to the 5GHz mode */
79 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
80 
81 	return ret;
82 }
83 
84 /*
85  * Check if a channel is supported
86  */
87 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
88 {
89 	/* Check if the channel is in our supported range */
90 	if (flags & CHANNEL_2GHZ) {
91 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
92 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
93 			return true;
94 	} else if (flags & CHANNEL_5GHZ)
95 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
96 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
97 			return true;
98 
99 	return false;
100 }
101 
102 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
103 				struct ieee80211_channel *channel)
104 {
105 	u8 refclk_freq;
106 
107 	if ((ah->ah_radio == AR5K_RF5112) ||
108 	(ah->ah_radio == AR5K_RF5413) ||
109 	(ah->ah_radio == AR5K_RF2413) ||
110 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
111 		refclk_freq = 40;
112 	else
113 		refclk_freq = 32;
114 
115 	if ((channel->center_freq % refclk_freq != 0) &&
116 	((channel->center_freq % refclk_freq < 10) ||
117 	(channel->center_freq % refclk_freq > 22)))
118 		return true;
119 	else
120 		return false;
121 }
122 
123 /*
124  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
125  */
126 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
127 					const struct ath5k_rf_reg *rf_regs,
128 					u32 val, u8 reg_id, bool set)
129 {
130 	const struct ath5k_rf_reg *rfreg = NULL;
131 	u8 offset, bank, num_bits, col, position;
132 	u16 entry;
133 	u32 mask, data, last_bit, bits_shifted, first_bit;
134 	u32 *rfb;
135 	s32 bits_left;
136 	int i;
137 
138 	data = 0;
139 	rfb = ah->ah_rf_banks;
140 
141 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
142 		if (rf_regs[i].index == reg_id) {
143 			rfreg = &rf_regs[i];
144 			break;
145 		}
146 	}
147 
148 	if (rfb == NULL || rfreg == NULL) {
149 		ATH5K_PRINTF("Rf register not found!\n");
150 		/* should not happen */
151 		return 0;
152 	}
153 
154 	bank = rfreg->bank;
155 	num_bits = rfreg->field.len;
156 	first_bit = rfreg->field.pos;
157 	col = rfreg->field.col;
158 
159 	/* first_bit is an offset from bank's
160 	 * start. Since we have all banks on
161 	 * the same array, we use this offset
162 	 * to mark each bank's start */
163 	offset = ah->ah_offset[bank];
164 
165 	/* Boundary check */
166 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
167 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
168 		return 0;
169 	}
170 
171 	entry = ((first_bit - 1) / 8) + offset;
172 	position = (first_bit - 1) % 8;
173 
174 	if (set)
175 		data = ath5k_hw_bitswap(val, num_bits);
176 
177 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
178 	     position = 0, entry++) {
179 
180 		last_bit = (position + bits_left > 8) ? 8 :
181 					position + bits_left;
182 
183 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
184 								(col * 8);
185 
186 		if (set) {
187 			rfb[entry] &= ~mask;
188 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
189 			data >>= (8 - position);
190 		} else {
191 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
192 				<< bits_shifted;
193 			bits_shifted += last_bit - position;
194 		}
195 
196 		bits_left -= 8 - position;
197 	}
198 
199 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
200 
201 	return data;
202 }
203 
204 /**
205  * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
206  *
207  * @ah: the &struct ath5k_hw
208  * @channel: the currently set channel upon reset
209  *
210  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
211  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
212  *
213  * Since delta slope is floating point we split it on its exponent and
214  * mantissa and provide these values on hw.
215  *
216  * For more infos i think this patent is related
217  * http://www.freepatentsonline.com/7184495.html
218  */
219 static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
220 	struct ieee80211_channel *channel)
221 {
222 	/* Get exponent and mantissa and set it */
223 	u32 coef_scaled, coef_exp, coef_man,
224 		ds_coef_exp, ds_coef_man, clock;
225 
226 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
227 		!(channel->hw_value & CHANNEL_OFDM));
228 
229 	/* Get coefficient
230 	 * ALGO: coef = (5 * clock / carrier_freq) / 2
231 	 * we scale coef by shifting clock value by 24 for
232 	 * better precision since we use integers */
233 	switch (ah->ah_bwmode) {
234 	case AR5K_BWMODE_40MHZ:
235 		clock = 40 * 2;
236 		break;
237 	case AR5K_BWMODE_10MHZ:
238 		clock = 40 / 2;
239 		break;
240 	case AR5K_BWMODE_5MHZ:
241 		clock = 40 / 4;
242 		break;
243 	default:
244 		clock = 40;
245 		break;
246 	}
247 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
248 
249 	/* Get exponent
250 	 * ALGO: coef_exp = 14 - highest set bit position */
251 	coef_exp = ilog2(coef_scaled);
252 
253 	/* Doesn't make sense if it's zero*/
254 	if (!coef_scaled || !coef_exp)
255 		return -EINVAL;
256 
257 	/* Note: we've shifted coef_scaled by 24 */
258 	coef_exp = 14 - (coef_exp - 24);
259 
260 
261 	/* Get mantissa (significant digits)
262 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
263 	coef_man = coef_scaled +
264 		(1 << (24 - coef_exp - 1));
265 
266 	/* Calculate delta slope coefficient exponent
267 	 * and mantissa (remove scaling) and set them on hw */
268 	ds_coef_man = coef_man >> (24 - coef_exp);
269 	ds_coef_exp = coef_exp - 16;
270 
271 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
272 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
273 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
274 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
275 
276 	return 0;
277 }
278 
279 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
280 {
281 	/*Just a try M.F.*/
282 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
283 
284 	return 0;
285 }
286 
287 /*
288  * Wait for synth to settle
289  */
290 static void ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
291 			struct ieee80211_channel *channel)
292 {
293 	/*
294 	 * On 5211+ read activation -> rx delay
295 	 * and use it (100ns steps).
296 	 */
297 	if (ah->ah_version != AR5K_AR5210) {
298 		u32 delay;
299 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
300 			AR5K_PHY_RX_DELAY_M;
301 		delay = (channel->hw_value & CHANNEL_CCK) ?
302 			((delay << 2) / 22) : (delay / 10);
303 		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
304 			delay = delay << 1;
305 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
306 			delay = delay << 2;
307 		/* XXX: /2 on turbo ? Let's be safe
308 		 * for now */
309 		udelay(100 + delay);
310 	} else {
311 		mdelay(1);
312 	}
313 }
314 
315 
316 /**********************\
317 * RF Gain optimization *
318 \**********************/
319 
320 /*
321  * This code is used to optimize RF gain on different environments
322  * (temperature mostly) based on feedback from a power detector.
323  *
324  * It's only used on RF5111 and RF5112, later RF chips seem to have
325  * auto adjustment on hw -notice they have a much smaller BANK 7 and
326  * no gain optimization ladder-.
327  *
328  * For more infos check out this patent doc
329  * http://www.freepatentsonline.com/7400691.html
330  *
331  * This paper describes power drops as seen on the receiver due to
332  * probe packets
333  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
334  * %20of%20Power%20Control.pdf
335  *
336  * And this is the MadWiFi bug entry related to the above
337  * http://madwifi-project.org/ticket/1659
338  * with various measurements and diagrams
339  *
340  * TODO: Deal with power drops due to probes by setting an appropriate
341  * tx power on the probe packets ! Make this part of the calibration process.
342  */
343 
344 /* Initialize ah_gain during attach */
345 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
346 {
347 	/* Initialize the gain optimization values */
348 	switch (ah->ah_radio) {
349 	case AR5K_RF5111:
350 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
351 		ah->ah_gain.g_low = 20;
352 		ah->ah_gain.g_high = 35;
353 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
354 		break;
355 	case AR5K_RF5112:
356 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
357 		ah->ah_gain.g_low = 20;
358 		ah->ah_gain.g_high = 85;
359 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
360 		break;
361 	default:
362 		return -EINVAL;
363 	}
364 
365 	return 0;
366 }
367 
368 /* Schedule a gain probe check on the next transmitted packet.
369  * That means our next packet is going to be sent with lower
370  * tx power and a Peak to Average Power Detector (PAPD) will try
371  * to measure the gain.
372  *
373  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
374  * just after we enable the probe so that we don't mess with
375  * standard traffic ? Maybe it's time to use sw interrupts and
376  * a probe tasklet !!!
377  */
378 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
379 {
380 
381 	/* Skip if gain calibration is inactive or
382 	 * we already handle a probe request */
383 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
384 		return;
385 
386 	/* Send the packet with 2dB below max power as
387 	 * patent doc suggest */
388 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
389 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
390 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
391 
392 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
393 
394 }
395 
396 /* Calculate gain_F measurement correction
397  * based on the current step for RF5112 rev. 2 */
398 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
399 {
400 	u32 mix, step;
401 	u32 *rf;
402 	const struct ath5k_gain_opt *go;
403 	const struct ath5k_gain_opt_step *g_step;
404 	const struct ath5k_rf_reg *rf_regs;
405 
406 	/* Only RF5112 Rev. 2 supports it */
407 	if ((ah->ah_radio != AR5K_RF5112) ||
408 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
409 		return 0;
410 
411 	go = &rfgain_opt_5112;
412 	rf_regs = rf_regs_5112a;
413 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
414 
415 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
416 
417 	if (ah->ah_rf_banks == NULL)
418 		return 0;
419 
420 	rf = ah->ah_rf_banks;
421 	ah->ah_gain.g_f_corr = 0;
422 
423 	/* No VGA (Variable Gain Amplifier) override, skip */
424 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
425 		return 0;
426 
427 	/* Mix gain stepping */
428 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
429 
430 	/* Mix gain override */
431 	mix = g_step->gos_param[0];
432 
433 	switch (mix) {
434 	case 3:
435 		ah->ah_gain.g_f_corr = step * 2;
436 		break;
437 	case 2:
438 		ah->ah_gain.g_f_corr = (step - 5) * 2;
439 		break;
440 	case 1:
441 		ah->ah_gain.g_f_corr = step;
442 		break;
443 	default:
444 		ah->ah_gain.g_f_corr = 0;
445 		break;
446 	}
447 
448 	return ah->ah_gain.g_f_corr;
449 }
450 
451 /* Check if current gain_F measurement is in the range of our
452  * power detector windows. If we get a measurement outside range
453  * we know it's not accurate (detectors can't measure anything outside
454  * their detection window) so we must ignore it */
455 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
456 {
457 	const struct ath5k_rf_reg *rf_regs;
458 	u32 step, mix_ovr, level[4];
459 	u32 *rf;
460 
461 	if (ah->ah_rf_banks == NULL)
462 		return false;
463 
464 	rf = ah->ah_rf_banks;
465 
466 	if (ah->ah_radio == AR5K_RF5111) {
467 
468 		rf_regs = rf_regs_5111;
469 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
470 
471 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
472 			false);
473 
474 		level[0] = 0;
475 		level[1] = (step == 63) ? 50 : step + 4;
476 		level[2] = (step != 63) ? 64 : level[0];
477 		level[3] = level[2] + 50;
478 
479 		ah->ah_gain.g_high = level[3] -
480 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
481 		ah->ah_gain.g_low = level[0] +
482 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
483 	} else {
484 
485 		rf_regs = rf_regs_5112;
486 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
487 
488 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
489 			false);
490 
491 		level[0] = level[2] = 0;
492 
493 		if (mix_ovr == 1) {
494 			level[1] = level[3] = 83;
495 		} else {
496 			level[1] = level[3] = 107;
497 			ah->ah_gain.g_high = 55;
498 		}
499 	}
500 
501 	return (ah->ah_gain.g_current >= level[0] &&
502 			ah->ah_gain.g_current <= level[1]) ||
503 		(ah->ah_gain.g_current >= level[2] &&
504 			ah->ah_gain.g_current <= level[3]);
505 }
506 
507 /* Perform gain_F adjustment by choosing the right set
508  * of parameters from RF gain optimization ladder */
509 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
510 {
511 	const struct ath5k_gain_opt *go;
512 	const struct ath5k_gain_opt_step *g_step;
513 	int ret = 0;
514 
515 	switch (ah->ah_radio) {
516 	case AR5K_RF5111:
517 		go = &rfgain_opt_5111;
518 		break;
519 	case AR5K_RF5112:
520 		go = &rfgain_opt_5112;
521 		break;
522 	default:
523 		return 0;
524 	}
525 
526 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
527 
528 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
529 
530 		/* Reached maximum */
531 		if (ah->ah_gain.g_step_idx == 0)
532 			return -1;
533 
534 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
535 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
536 				ah->ah_gain.g_step_idx > 0;
537 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
538 			ah->ah_gain.g_target -= 2 *
539 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
540 			    g_step->gos_gain);
541 
542 		ret = 1;
543 		goto done;
544 	}
545 
546 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
547 
548 		/* Reached minimum */
549 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
550 			return -2;
551 
552 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
553 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
554 				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
555 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
556 			ah->ah_gain.g_target -= 2 *
557 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
558 			    g_step->gos_gain);
559 
560 		ret = 2;
561 		goto done;
562 	}
563 
564 done:
565 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
566 		"ret %d, gain step %u, current gain %u, target gain %u\n",
567 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
568 		ah->ah_gain.g_target);
569 
570 	return ret;
571 }
572 
573 /* Main callback for thermal RF gain calibration engine
574  * Check for a new gain reading and schedule an adjustment
575  * if needed.
576  *
577  * TODO: Use sw interrupt to schedule reset if gain_F needs
578  * adjustment */
579 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
580 {
581 	u32 data, type;
582 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
583 
584 	if (ah->ah_rf_banks == NULL ||
585 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
586 		return AR5K_RFGAIN_INACTIVE;
587 
588 	/* No check requested, either engine is inactive
589 	 * or an adjustment is already requested */
590 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
591 		goto done;
592 
593 	/* Read the PAPD (Peak to Average Power Detector)
594 	 * register */
595 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
596 
597 	/* No probe is scheduled, read gain_F measurement */
598 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
599 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
600 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
601 
602 		/* If tx packet is CCK correct the gain_F measurement
603 		 * by cck ofdm gain delta */
604 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
605 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
606 				ah->ah_gain.g_current +=
607 					ee->ee_cck_ofdm_gain_delta;
608 			else
609 				ah->ah_gain.g_current +=
610 					AR5K_GAIN_CCK_PROBE_CORR;
611 		}
612 
613 		/* Further correct gain_F measurement for
614 		 * RF5112A radios */
615 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
616 			ath5k_hw_rf_gainf_corr(ah);
617 			ah->ah_gain.g_current =
618 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
619 				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
620 				0;
621 		}
622 
623 		/* Check if measurement is ok and if we need
624 		 * to adjust gain, schedule a gain adjustment,
625 		 * else switch back to the active state */
626 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
627 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
628 		ath5k_hw_rf_gainf_adjust(ah)) {
629 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
630 		} else {
631 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
632 		}
633 	}
634 
635 done:
636 	return ah->ah_gain.g_state;
637 }
638 
639 /* Write initial RF gain table to set the RF sensitivity
640  * this one works on all RF chips and has nothing to do
641  * with gain_F calibration */
642 static int ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
643 {
644 	const struct ath5k_ini_rfgain *ath5k_rfg;
645 	unsigned int i, size, index;
646 
647 	switch (ah->ah_radio) {
648 	case AR5K_RF5111:
649 		ath5k_rfg = rfgain_5111;
650 		size = ARRAY_SIZE(rfgain_5111);
651 		break;
652 	case AR5K_RF5112:
653 		ath5k_rfg = rfgain_5112;
654 		size = ARRAY_SIZE(rfgain_5112);
655 		break;
656 	case AR5K_RF2413:
657 		ath5k_rfg = rfgain_2413;
658 		size = ARRAY_SIZE(rfgain_2413);
659 		break;
660 	case AR5K_RF2316:
661 		ath5k_rfg = rfgain_2316;
662 		size = ARRAY_SIZE(rfgain_2316);
663 		break;
664 	case AR5K_RF5413:
665 		ath5k_rfg = rfgain_5413;
666 		size = ARRAY_SIZE(rfgain_5413);
667 		break;
668 	case AR5K_RF2317:
669 	case AR5K_RF2425:
670 		ath5k_rfg = rfgain_2425;
671 		size = ARRAY_SIZE(rfgain_2425);
672 		break;
673 	default:
674 		return -EINVAL;
675 	}
676 
677 	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
678 
679 	for (i = 0; i < size; i++) {
680 		AR5K_REG_WAIT(i);
681 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
682 			(u32)ath5k_rfg[i].rfg_register);
683 	}
684 
685 	return 0;
686 }
687 
688 
689 
690 /********************\
691 * RF Registers setup *
692 \********************/
693 
694 /*
695  * Setup RF registers by writing RF buffer on hw
696  */
697 static int ath5k_hw_rfregs_init(struct ath5k_hw *ah,
698 	struct ieee80211_channel *channel, unsigned int mode)
699 {
700 	const struct ath5k_rf_reg *rf_regs;
701 	const struct ath5k_ini_rfbuffer *ini_rfb;
702 	const struct ath5k_gain_opt *go = NULL;
703 	const struct ath5k_gain_opt_step *g_step;
704 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
705 	u8 ee_mode = 0;
706 	u32 *rfb;
707 	int i, obdb = -1, bank = -1;
708 
709 	switch (ah->ah_radio) {
710 	case AR5K_RF5111:
711 		rf_regs = rf_regs_5111;
712 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
713 		ini_rfb = rfb_5111;
714 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
715 		go = &rfgain_opt_5111;
716 		break;
717 	case AR5K_RF5112:
718 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
719 			rf_regs = rf_regs_5112a;
720 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
721 			ini_rfb = rfb_5112a;
722 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
723 		} else {
724 			rf_regs = rf_regs_5112;
725 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
726 			ini_rfb = rfb_5112;
727 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
728 		}
729 		go = &rfgain_opt_5112;
730 		break;
731 	case AR5K_RF2413:
732 		rf_regs = rf_regs_2413;
733 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
734 		ini_rfb = rfb_2413;
735 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
736 		break;
737 	case AR5K_RF2316:
738 		rf_regs = rf_regs_2316;
739 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
740 		ini_rfb = rfb_2316;
741 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
742 		break;
743 	case AR5K_RF5413:
744 		rf_regs = rf_regs_5413;
745 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
746 		ini_rfb = rfb_5413;
747 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
748 		break;
749 	case AR5K_RF2317:
750 		rf_regs = rf_regs_2425;
751 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
752 		ini_rfb = rfb_2317;
753 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
754 		break;
755 	case AR5K_RF2425:
756 		rf_regs = rf_regs_2425;
757 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
758 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
759 			ini_rfb = rfb_2425;
760 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
761 		} else {
762 			ini_rfb = rfb_2417;
763 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
764 		}
765 		break;
766 	default:
767 		return -EINVAL;
768 	}
769 
770 	/* If it's the first time we set RF buffer, allocate
771 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
772 	 * we set above */
773 	if (ah->ah_rf_banks == NULL) {
774 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
775 								GFP_KERNEL);
776 		if (ah->ah_rf_banks == NULL) {
777 			ATH5K_ERR(ah, "out of memory\n");
778 			return -ENOMEM;
779 		}
780 	}
781 
782 	/* Copy values to modify them */
783 	rfb = ah->ah_rf_banks;
784 
785 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
786 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
787 			ATH5K_ERR(ah, "invalid bank\n");
788 			return -EINVAL;
789 		}
790 
791 		/* Bank changed, write down the offset */
792 		if (bank != ini_rfb[i].rfb_bank) {
793 			bank = ini_rfb[i].rfb_bank;
794 			ah->ah_offset[bank] = i;
795 		}
796 
797 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
798 	}
799 
800 	/* Set Output and Driver bias current (OB/DB) */
801 	if (channel->hw_value & CHANNEL_2GHZ) {
802 
803 		if (channel->hw_value & CHANNEL_CCK)
804 			ee_mode = AR5K_EEPROM_MODE_11B;
805 		else
806 			ee_mode = AR5K_EEPROM_MODE_11G;
807 
808 		/* For RF511X/RF211X combination we
809 		 * use b_OB and b_DB parameters stored
810 		 * in eeprom on ee->ee_ob[ee_mode][0]
811 		 *
812 		 * For all other chips we use OB/DB for 2GHz
813 		 * stored in the b/g modal section just like
814 		 * 802.11a on ee->ee_ob[ee_mode][1] */
815 		if ((ah->ah_radio == AR5K_RF5111) ||
816 		(ah->ah_radio == AR5K_RF5112))
817 			obdb = 0;
818 		else
819 			obdb = 1;
820 
821 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
822 						AR5K_RF_OB_2GHZ, true);
823 
824 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
825 						AR5K_RF_DB_2GHZ, true);
826 
827 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
828 	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
829 			(ah->ah_radio == AR5K_RF5111)) {
830 
831 		/* For 11a, Turbo and XR we need to choose
832 		 * OB/DB based on frequency range */
833 		ee_mode = AR5K_EEPROM_MODE_11A;
834 		obdb =	 channel->center_freq >= 5725 ? 3 :
835 			(channel->center_freq >= 5500 ? 2 :
836 			(channel->center_freq >= 5260 ? 1 :
837 			 (channel->center_freq > 4000 ? 0 : -1)));
838 
839 		if (obdb < 0)
840 			return -EINVAL;
841 
842 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
843 						AR5K_RF_OB_5GHZ, true);
844 
845 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
846 						AR5K_RF_DB_5GHZ, true);
847 	}
848 
849 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
850 
851 	/* Set turbo mode (N/A on RF5413) */
852 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
853 	(ah->ah_radio != AR5K_RF5413))
854 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
855 
856 	/* Bank Modifications (chip-specific) */
857 	if (ah->ah_radio == AR5K_RF5111) {
858 
859 		/* Set gain_F settings according to current step */
860 		if (channel->hw_value & CHANNEL_OFDM) {
861 
862 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
863 					AR5K_PHY_FRAME_CTL_TX_CLIP,
864 					g_step->gos_param[0]);
865 
866 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
867 							AR5K_RF_PWD_90, true);
868 
869 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
870 							AR5K_RF_PWD_84, true);
871 
872 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
873 						AR5K_RF_RFGAIN_SEL, true);
874 
875 			/* We programmed gain_F parameters, switch back
876 			 * to active state */
877 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
878 
879 		}
880 
881 		/* Bank 6/7 setup */
882 
883 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
884 						AR5K_RF_PWD_XPD, true);
885 
886 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
887 						AR5K_RF_XPD_GAIN, true);
888 
889 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
890 						AR5K_RF_GAIN_I, true);
891 
892 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
893 						AR5K_RF_PLO_SEL, true);
894 
895 		/* Tweak power detectors for half/quarter rate support */
896 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
897 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
898 			u8 wait_i;
899 
900 			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
901 						AR5K_RF_WAIT_S, true);
902 
903 			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
904 							0x1f : 0x10;
905 
906 			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
907 						AR5K_RF_WAIT_I, true);
908 			ath5k_hw_rfb_op(ah, rf_regs, 3,
909 						AR5K_RF_MAX_TIME, true);
910 
911 		}
912 	}
913 
914 	if (ah->ah_radio == AR5K_RF5112) {
915 
916 		/* Set gain_F settings according to current step */
917 		if (channel->hw_value & CHANNEL_OFDM) {
918 
919 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
920 						AR5K_RF_MIXGAIN_OVR, true);
921 
922 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
923 						AR5K_RF_PWD_138, true);
924 
925 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
926 						AR5K_RF_PWD_137, true);
927 
928 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
929 						AR5K_RF_PWD_136, true);
930 
931 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
932 						AR5K_RF_PWD_132, true);
933 
934 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
935 						AR5K_RF_PWD_131, true);
936 
937 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
938 						AR5K_RF_PWD_130, true);
939 
940 			/* We programmed gain_F parameters, switch back
941 			 * to active state */
942 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
943 		}
944 
945 		/* Bank 6/7 setup */
946 
947 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
948 						AR5K_RF_XPD_SEL, true);
949 
950 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
951 			/* Rev. 1 supports only one xpd */
952 			ath5k_hw_rfb_op(ah, rf_regs,
953 						ee->ee_x_gain[ee_mode],
954 						AR5K_RF_XPD_GAIN, true);
955 
956 		} else {
957 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
958 			if (ee->ee_pd_gains[ee_mode] > 1) {
959 				ath5k_hw_rfb_op(ah, rf_regs,
960 						pdg_curve_to_idx[0],
961 						AR5K_RF_PD_GAIN_LO, true);
962 				ath5k_hw_rfb_op(ah, rf_regs,
963 						pdg_curve_to_idx[1],
964 						AR5K_RF_PD_GAIN_HI, true);
965 			} else {
966 				ath5k_hw_rfb_op(ah, rf_regs,
967 						pdg_curve_to_idx[0],
968 						AR5K_RF_PD_GAIN_LO, true);
969 				ath5k_hw_rfb_op(ah, rf_regs,
970 						pdg_curve_to_idx[0],
971 						AR5K_RF_PD_GAIN_HI, true);
972 			}
973 
974 			/* Lower synth voltage on Rev 2 */
975 			if (ah->ah_radio == AR5K_RF5112 &&
976 			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
977 				ath5k_hw_rfb_op(ah, rf_regs, 2,
978 						AR5K_RF_HIGH_VC_CP, true);
979 
980 				ath5k_hw_rfb_op(ah, rf_regs, 2,
981 						AR5K_RF_MID_VC_CP, true);
982 
983 				ath5k_hw_rfb_op(ah, rf_regs, 2,
984 						AR5K_RF_LOW_VC_CP, true);
985 
986 				ath5k_hw_rfb_op(ah, rf_regs, 2,
987 						AR5K_RF_PUSH_UP, true);
988 			}
989 
990 			/* Decrease power consumption on 5213+ BaseBand */
991 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
992 				ath5k_hw_rfb_op(ah, rf_regs, 1,
993 						AR5K_RF_PAD2GND, true);
994 
995 				ath5k_hw_rfb_op(ah, rf_regs, 1,
996 						AR5K_RF_XB2_LVL, true);
997 
998 				ath5k_hw_rfb_op(ah, rf_regs, 1,
999 						AR5K_RF_XB5_LVL, true);
1000 
1001 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1002 						AR5K_RF_PWD_167, true);
1003 
1004 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1005 						AR5K_RF_PWD_166, true);
1006 			}
1007 		}
1008 
1009 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1010 						AR5K_RF_GAIN_I, true);
1011 
1012 		/* Tweak power detector for half/quarter rates */
1013 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1014 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1015 			u8 pd_delay;
1016 
1017 			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1018 							0xf : 0x8;
1019 
1020 			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1021 						AR5K_RF_PD_PERIOD_A, true);
1022 			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1023 						AR5K_RF_PD_DELAY_A, true);
1024 
1025 		}
1026 	}
1027 
1028 	if (ah->ah_radio == AR5K_RF5413 &&
1029 	channel->hw_value & CHANNEL_2GHZ) {
1030 
1031 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1032 									true);
1033 
1034 		/* Set optimum value for early revisions (on pci-e chips) */
1035 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1036 		ah->ah_mac_srev < AR5K_SREV_AR5413)
1037 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1038 						AR5K_RF_PWD_ICLOBUF_2G, true);
1039 
1040 	}
1041 
1042 	/* Write RF banks on hw */
1043 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1044 		AR5K_REG_WAIT(i);
1045 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 
1052 /**************************\
1053   PHY/RF channel functions
1054 \**************************/
1055 
1056 /*
1057  * Conversion needed for RF5110
1058  */
1059 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1060 {
1061 	u32 athchan;
1062 
1063 	/*
1064 	 * Convert IEEE channel/MHz to an internal channel value used
1065 	 * by the AR5210 chipset. This has not been verified with
1066 	 * newer chipsets like the AR5212A who have a completely
1067 	 * different RF/PHY part.
1068 	 */
1069 	athchan = (ath5k_hw_bitswap(
1070 			(ieee80211_frequency_to_channel(
1071 				channel->center_freq) - 24) / 2, 5)
1072 				<< 1) | (1 << 6) | 0x1;
1073 	return athchan;
1074 }
1075 
1076 /*
1077  * Set channel on RF5110
1078  */
1079 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1080 		struct ieee80211_channel *channel)
1081 {
1082 	u32 data;
1083 
1084 	/*
1085 	 * Set the channel and wait
1086 	 */
1087 	data = ath5k_hw_rf5110_chan2athchan(channel);
1088 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1089 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1090 	mdelay(1);
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * Conversion needed for 5111
1097  */
1098 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1099 		struct ath5k_athchan_2ghz *athchan)
1100 {
1101 	int channel;
1102 
1103 	/* Cast this value to catch negative channel numbers (>= -19) */
1104 	channel = (int)ieee;
1105 
1106 	/*
1107 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1108 	 */
1109 	if (channel <= 13) {
1110 		athchan->a2_athchan = 115 + channel;
1111 		athchan->a2_flags = 0x46;
1112 	} else if (channel == 14) {
1113 		athchan->a2_athchan = 124;
1114 		athchan->a2_flags = 0x44;
1115 	} else if (channel >= 15 && channel <= 26) {
1116 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1117 		athchan->a2_flags = 0x46;
1118 	} else
1119 		return -EINVAL;
1120 
1121 	return 0;
1122 }
1123 
1124 /*
1125  * Set channel on 5111
1126  */
1127 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1128 		struct ieee80211_channel *channel)
1129 {
1130 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1131 	unsigned int ath5k_channel =
1132 		ieee80211_frequency_to_channel(channel->center_freq);
1133 	u32 data0, data1, clock;
1134 	int ret;
1135 
1136 	/*
1137 	 * Set the channel on the RF5111 radio
1138 	 */
1139 	data0 = data1 = 0;
1140 
1141 	if (channel->hw_value & CHANNEL_2GHZ) {
1142 		/* Map 2GHz channel to 5GHz Atheros channel ID */
1143 		ret = ath5k_hw_rf5111_chan2athchan(
1144 			ieee80211_frequency_to_channel(channel->center_freq),
1145 			&ath5k_channel_2ghz);
1146 		if (ret)
1147 			return ret;
1148 
1149 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1150 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1151 		    << 5) | (1 << 4);
1152 	}
1153 
1154 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1155 		clock = 1;
1156 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1157 			(clock << 1) | (1 << 10) | 1;
1158 	} else {
1159 		clock = 0;
1160 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1161 			<< 2) | (clock << 1) | (1 << 10) | 1;
1162 	}
1163 
1164 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1165 			AR5K_RF_BUFFER);
1166 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1167 			AR5K_RF_BUFFER_CONTROL_3);
1168 
1169 	return 0;
1170 }
1171 
1172 /*
1173  * Set channel on 5112 and newer
1174  */
1175 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1176 		struct ieee80211_channel *channel)
1177 {
1178 	u32 data, data0, data1, data2;
1179 	u16 c;
1180 
1181 	data = data0 = data1 = data2 = 0;
1182 	c = channel->center_freq;
1183 
1184 	if (c < 4800) {
1185 		if (!((c - 2224) % 5)) {
1186 			data0 = ((2 * (c - 704)) - 3040) / 10;
1187 			data1 = 1;
1188 		} else if (!((c - 2192) % 5)) {
1189 			data0 = ((2 * (c - 672)) - 3040) / 10;
1190 			data1 = 0;
1191 		} else
1192 			return -EINVAL;
1193 
1194 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1195 	} else if ((c % 5) != 2 || c > 5435) {
1196 		if (!(c % 20) && c >= 5120) {
1197 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1198 			data2 = ath5k_hw_bitswap(3, 2);
1199 		} else if (!(c % 10)) {
1200 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1201 			data2 = ath5k_hw_bitswap(2, 2);
1202 		} else if (!(c % 5)) {
1203 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1204 			data2 = ath5k_hw_bitswap(1, 2);
1205 		} else
1206 			return -EINVAL;
1207 	} else {
1208 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1209 		data2 = ath5k_hw_bitswap(0, 2);
1210 	}
1211 
1212 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1213 
1214 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1215 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Set the channel on the RF2425
1222  */
1223 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1224 		struct ieee80211_channel *channel)
1225 {
1226 	u32 data, data0, data2;
1227 	u16 c;
1228 
1229 	data = data0 = data2 = 0;
1230 	c = channel->center_freq;
1231 
1232 	if (c < 4800) {
1233 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1234 		data2 = 0;
1235 	/* ? 5GHz ? */
1236 	} else if ((c % 5) != 2 || c > 5435) {
1237 		if (!(c % 20) && c < 5120)
1238 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1239 		else if (!(c % 10))
1240 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1241 		else if (!(c % 5))
1242 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1243 		else
1244 			return -EINVAL;
1245 		data2 = ath5k_hw_bitswap(1, 2);
1246 	} else {
1247 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1248 		data2 = ath5k_hw_bitswap(0, 2);
1249 	}
1250 
1251 	data = (data0 << 4) | data2 << 2 | 0x1001;
1252 
1253 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1254 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1255 
1256 	return 0;
1257 }
1258 
1259 /*
1260  * Set a channel on the radio chip
1261  */
1262 static int ath5k_hw_channel(struct ath5k_hw *ah,
1263 		struct ieee80211_channel *channel)
1264 {
1265 	int ret;
1266 	/*
1267 	 * Check bounds supported by the PHY (we don't care about regulatory
1268 	 * restrictions at this point). Note: hw_value already has the band
1269 	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1270 	 * of the band by that */
1271 	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1272 		ATH5K_ERR(ah,
1273 			"channel frequency (%u MHz) out of supported "
1274 			"band range\n",
1275 			channel->center_freq);
1276 			return -EINVAL;
1277 	}
1278 
1279 	/*
1280 	 * Set the channel and wait
1281 	 */
1282 	switch (ah->ah_radio) {
1283 	case AR5K_RF5110:
1284 		ret = ath5k_hw_rf5110_channel(ah, channel);
1285 		break;
1286 	case AR5K_RF5111:
1287 		ret = ath5k_hw_rf5111_channel(ah, channel);
1288 		break;
1289 	case AR5K_RF2317:
1290 	case AR5K_RF2425:
1291 		ret = ath5k_hw_rf2425_channel(ah, channel);
1292 		break;
1293 	default:
1294 		ret = ath5k_hw_rf5112_channel(ah, channel);
1295 		break;
1296 	}
1297 
1298 	if (ret)
1299 		return ret;
1300 
1301 	/* Set JAPAN setting for channel 14 */
1302 	if (channel->center_freq == 2484) {
1303 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1304 				AR5K_PHY_CCKTXCTL_JAPAN);
1305 	} else {
1306 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1307 				AR5K_PHY_CCKTXCTL_WORLD);
1308 	}
1309 
1310 	ah->ah_current_channel = channel;
1311 
1312 	return 0;
1313 }
1314 
1315 /*****************\
1316   PHY calibration
1317 \*****************/
1318 
1319 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1320 {
1321 	s32 val;
1322 
1323 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1324 	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1325 }
1326 
1327 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1328 {
1329 	int i;
1330 
1331 	ah->ah_nfcal_hist.index = 0;
1332 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1333 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1334 }
1335 
1336 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1337 {
1338 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1339 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1340 	hist->nfval[hist->index] = noise_floor;
1341 }
1342 
1343 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1344 {
1345 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1346 	s16 tmp;
1347 	int i, j;
1348 
1349 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1350 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1351 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1352 			if (sort[j] > sort[j - 1]) {
1353 				tmp = sort[j];
1354 				sort[j] = sort[j - 1];
1355 				sort[j - 1] = tmp;
1356 			}
1357 		}
1358 	}
1359 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1360 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1361 			"cal %d:%d\n", i, sort[i]);
1362 	}
1363 	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1364 }
1365 
1366 /*
1367  * When we tell the hardware to perform a noise floor calibration
1368  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1369  * sample-and-hold the minimum noise level seen at the antennas.
1370  * This value is then stored in a ring buffer of recently measured
1371  * noise floor values so we have a moving window of the last few
1372  * samples.
1373  *
1374  * The median of the values in the history is then loaded into the
1375  * hardware for its own use for RSSI and CCA measurements.
1376  */
1377 void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1378 {
1379 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1380 	u32 val;
1381 	s16 nf, threshold;
1382 	u8 ee_mode;
1383 
1384 	/* keep last value if calibration hasn't completed */
1385 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1386 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1387 			"NF did not complete in calibration window\n");
1388 
1389 		return;
1390 	}
1391 
1392 	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1393 
1394 	/* completed NF calibration, test threshold */
1395 	nf = ath5k_hw_read_measured_noise_floor(ah);
1396 	threshold = ee->ee_noise_floor_thr[ee_mode];
1397 
1398 	if (nf > threshold) {
1399 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1400 			"noise floor failure detected; "
1401 			"read %d, threshold %d\n",
1402 			nf, threshold);
1403 
1404 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1405 	}
1406 
1407 	ath5k_hw_update_nfcal_hist(ah, nf);
1408 	nf = ath5k_hw_get_median_noise_floor(ah);
1409 
1410 	/* load noise floor (in .5 dBm) so the hardware will use it */
1411 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1412 	val |= (nf * 2) & AR5K_PHY_NF_M;
1413 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1414 
1415 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1416 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1417 
1418 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1419 		0, false);
1420 
1421 	/*
1422 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1423 	 * so that we're not capped by the median we just loaded.
1424 	 * This will be used as the initial value for the next noise
1425 	 * floor calibration.
1426 	 */
1427 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1428 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1429 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1430 		AR5K_PHY_AGCCTL_NF_EN |
1431 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1432 		AR5K_PHY_AGCCTL_NF);
1433 
1434 	ah->ah_noise_floor = nf;
1435 
1436 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1437 		"noise floor calibrated: %d\n", nf);
1438 }
1439 
1440 /*
1441  * Perform a PHY calibration on RF5110
1442  * -Fix BPSK/QAM Constellation (I/Q correction)
1443  */
1444 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1445 		struct ieee80211_channel *channel)
1446 {
1447 	u32 phy_sig, phy_agc, phy_sat, beacon;
1448 	int ret;
1449 
1450 	/*
1451 	 * Disable beacons and RX/TX queues, wait
1452 	 */
1453 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1454 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1455 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1456 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1457 
1458 	mdelay(2);
1459 
1460 	/*
1461 	 * Set the channel (with AGC turned off)
1462 	 */
1463 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1464 	udelay(10);
1465 	ret = ath5k_hw_channel(ah, channel);
1466 
1467 	/*
1468 	 * Activate PHY and wait
1469 	 */
1470 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1471 	mdelay(1);
1472 
1473 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1474 
1475 	if (ret)
1476 		return ret;
1477 
1478 	/*
1479 	 * Calibrate the radio chip
1480 	 */
1481 
1482 	/* Remember normal state */
1483 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1484 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1485 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1486 
1487 	/* Update radio registers */
1488 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1489 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1490 
1491 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1492 			AR5K_PHY_AGCCOARSE_LO)) |
1493 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1494 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1495 
1496 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1497 			AR5K_PHY_ADCSAT_THR)) |
1498 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1499 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1500 
1501 	udelay(20);
1502 
1503 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1504 	udelay(10);
1505 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1506 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1507 
1508 	mdelay(1);
1509 
1510 	/*
1511 	 * Enable calibration and wait until completion
1512 	 */
1513 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1514 
1515 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1516 			AR5K_PHY_AGCCTL_CAL, 0, false);
1517 
1518 	/* Reset to normal state */
1519 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1520 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1521 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1522 
1523 	if (ret) {
1524 		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1525 				channel->center_freq);
1526 		return ret;
1527 	}
1528 
1529 	/*
1530 	 * Re-enable RX/TX and beacons
1531 	 */
1532 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1533 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1534 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1535 
1536 	return 0;
1537 }
1538 
1539 /*
1540  * Perform I/Q calibration on RF5111/5112 and newer chips
1541  */
1542 static int
1543 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1544 {
1545 	u32 i_pwr, q_pwr;
1546 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1547 	int i;
1548 
1549 	if (!ah->ah_calibration ||
1550 		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1551 		return 0;
1552 
1553 	/* Calibration has finished, get the results and re-run */
1554 	/* work around empty results which can apparently happen on 5212 */
1555 	for (i = 0; i <= 10; i++) {
1556 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1557 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1558 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1559 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1560 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1561 		if (i_pwr && q_pwr)
1562 			break;
1563 	}
1564 
1565 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1566 
1567 	if (ah->ah_version == AR5K_AR5211)
1568 		q_coffd = q_pwr >> 6;
1569 	else
1570 		q_coffd = q_pwr >> 7;
1571 
1572 	/* protect against divide by 0 and loss of sign bits */
1573 	if (i_coffd == 0 || q_coffd < 2)
1574 		return 0;
1575 
1576 	i_coff = (-iq_corr) / i_coffd;
1577 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1578 
1579 	if (ah->ah_version == AR5K_AR5211)
1580 		q_coff = (i_pwr / q_coffd) - 64;
1581 	else
1582 		q_coff = (i_pwr / q_coffd) - 128;
1583 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1584 
1585 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1586 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1587 			i_coff, q_coff, i_coffd, q_coffd);
1588 
1589 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1590 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1591 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1592 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1593 
1594 	/* Re-enable calibration -if we don't we'll commit
1595 	 * the same values again and again */
1596 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1597 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1598 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1599 
1600 	return 0;
1601 }
1602 
1603 /*
1604  * Perform a PHY calibration
1605  */
1606 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1607 		struct ieee80211_channel *channel)
1608 {
1609 	int ret;
1610 
1611 	if (ah->ah_radio == AR5K_RF5110)
1612 		return ath5k_hw_rf5110_calibrate(ah, channel);
1613 
1614 	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1615 
1616 	if ((ah->ah_radio == AR5K_RF5111 || ah->ah_radio == AR5K_RF5112) &&
1617 	    (channel->hw_value & CHANNEL_OFDM))
1618 		ath5k_hw_request_rfgain_probe(ah);
1619 
1620 	return ret;
1621 }
1622 
1623 
1624 /***************************\
1625 * Spur mitigation functions *
1626 \***************************/
1627 
1628 static void
1629 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1630 				struct ieee80211_channel *channel)
1631 {
1632 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1633 	u32 mag_mask[4] = {0, 0, 0, 0};
1634 	u32 pilot_mask[2] = {0, 0};
1635 	/* Note: fbin values are scaled up by 2 */
1636 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1637 	s32 spur_delta_phase, spur_freq_sigma_delta;
1638 	s32 spur_offset, num_symbols_x16;
1639 	u8 num_symbol_offsets, i, freq_band;
1640 
1641 	/* Convert current frequency to fbin value (the same way channels
1642 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1643 	 * up by 2 so we can compare it later */
1644 	if (channel->hw_value & CHANNEL_2GHZ) {
1645 		chan_fbin = (channel->center_freq - 2300) * 10;
1646 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1647 	} else {
1648 		chan_fbin = (channel->center_freq - 4900) * 10;
1649 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1650 	}
1651 
1652 	/* Check if any spur_chan_fbin from EEPROM is
1653 	 * within our current channel's spur detection range */
1654 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1655 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1656 	/* XXX: Half/Quarter channels ?*/
1657 	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1658 		spur_detection_window *= 2;
1659 
1660 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1661 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1662 
1663 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1664 		 * so it's zero if we got nothing from EEPROM */
1665 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1666 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1667 			break;
1668 		}
1669 
1670 		if ((chan_fbin - spur_detection_window <=
1671 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1672 		(chan_fbin + spur_detection_window >=
1673 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1674 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1675 			break;
1676 		}
1677 	}
1678 
1679 	/* We need to enable spur filter for this channel */
1680 	if (spur_chan_fbin) {
1681 		spur_offset = spur_chan_fbin - chan_fbin;
1682 		/*
1683 		 * Calculate deltas:
1684 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1685 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1686 		 * Note: Both values have 100Hz resolution
1687 		 */
1688 		switch (ah->ah_bwmode) {
1689 		case AR5K_BWMODE_40MHZ:
1690 			/* Both sample_freq and chip_freq are 80MHz */
1691 			spur_delta_phase = (spur_offset << 16) / 25;
1692 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1693 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1694 			break;
1695 		case AR5K_BWMODE_10MHZ:
1696 			/* Both sample_freq and chip_freq are 20MHz (?) */
1697 			spur_delta_phase = (spur_offset << 18) / 25;
1698 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1699 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1700 		case AR5K_BWMODE_5MHZ:
1701 			/* Both sample_freq and chip_freq are 10MHz (?) */
1702 			spur_delta_phase = (spur_offset << 19) / 25;
1703 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1704 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1705 		default:
1706 			if (channel->hw_value == CHANNEL_A) {
1707 				/* Both sample_freq and chip_freq are 40MHz */
1708 				spur_delta_phase = (spur_offset << 17) / 25;
1709 				spur_freq_sigma_delta =
1710 						(spur_delta_phase >> 10);
1711 				symbol_width =
1712 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1713 			} else {
1714 				/* sample_freq -> 40MHz chip_freq -> 44MHz
1715 				 * (for b compatibility) */
1716 				spur_delta_phase = (spur_offset << 17) / 25;
1717 				spur_freq_sigma_delta =
1718 						(spur_offset << 8) / 55;
1719 				symbol_width =
1720 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1721 			}
1722 			break;
1723 		}
1724 
1725 		/* Calculate pilot and magnitude masks */
1726 
1727 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1728 		 * and divide by symbol_width to find how many symbols we have
1729 		 * Note: number of symbols is scaled up by 16 */
1730 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1731 
1732 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1733 		if (!(num_symbols_x16 & 0xF))
1734 			/* _X_ */
1735 			num_symbol_offsets = 3;
1736 		else
1737 			/* _xx_ */
1738 			num_symbol_offsets = 4;
1739 
1740 		for (i = 0; i < num_symbol_offsets; i++) {
1741 
1742 			/* Calculate pilot mask */
1743 			s32 curr_sym_off =
1744 				(num_symbols_x16 / 16) + i + 25;
1745 
1746 			/* Pilot magnitude mask seems to be a way to
1747 			 * declare the boundaries for our detection
1748 			 * window or something, it's 2 for the middle
1749 			 * value(s) where the symbol is expected to be
1750 			 * and 1 on the boundary values */
1751 			u8 plt_mag_map =
1752 				(i == 0 || i == (num_symbol_offsets - 1))
1753 								? 1 : 2;
1754 
1755 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1756 				if (curr_sym_off <= 25)
1757 					pilot_mask[0] |= 1 << curr_sym_off;
1758 				else if (curr_sym_off >= 27)
1759 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1760 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1761 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1762 
1763 			/* Calculate magnitude mask (for viterbi decoder) */
1764 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1765 				mag_mask[0] |=
1766 					plt_mag_map << (curr_sym_off + 1) * 2;
1767 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1768 				mag_mask[1] |=
1769 					plt_mag_map << (curr_sym_off - 15) * 2;
1770 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1771 				mag_mask[2] |=
1772 					plt_mag_map << (curr_sym_off - 31) * 2;
1773 			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
1774 				mag_mask[3] |=
1775 					plt_mag_map << (curr_sym_off - 47) * 2;
1776 
1777 		}
1778 
1779 		/* Write settings on hw to enable spur filter */
1780 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1781 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1782 		/* XXX: Self correlator also ? */
1783 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1784 					AR5K_PHY_IQ_PILOT_MASK_EN |
1785 					AR5K_PHY_IQ_CHAN_MASK_EN |
1786 					AR5K_PHY_IQ_SPUR_FILT_EN);
1787 
1788 		/* Set delta phase and freq sigma delta */
1789 		ath5k_hw_reg_write(ah,
1790 				AR5K_REG_SM(spur_delta_phase,
1791 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1792 				AR5K_REG_SM(spur_freq_sigma_delta,
1793 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1794 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1795 				AR5K_PHY_TIMING_11);
1796 
1797 		/* Write pilot masks */
1798 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1799 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1800 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1801 					pilot_mask[1]);
1802 
1803 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1804 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1805 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1806 					pilot_mask[1]);
1807 
1808 		/* Write magnitude masks */
1809 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1810 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1811 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1812 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1813 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1814 					mag_mask[3]);
1815 
1816 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1817 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1818 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1819 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1820 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1821 					mag_mask[3]);
1822 
1823 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1824 	AR5K_PHY_IQ_SPUR_FILT_EN) {
1825 		/* Clean up spur mitigation settings and disable filter */
1826 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1827 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1828 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1829 					AR5K_PHY_IQ_PILOT_MASK_EN |
1830 					AR5K_PHY_IQ_CHAN_MASK_EN |
1831 					AR5K_PHY_IQ_SPUR_FILT_EN);
1832 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1833 
1834 		/* Clear pilot masks */
1835 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1836 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1837 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1838 					0);
1839 
1840 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1841 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1842 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1843 					0);
1844 
1845 		/* Clear magnitude masks */
1846 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1847 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1848 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1849 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1850 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1851 					0);
1852 
1853 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1854 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1855 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1856 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1857 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1858 					0);
1859 	}
1860 }
1861 
1862 
1863 /*****************\
1864 * Antenna control *
1865 \*****************/
1866 
1867 static void /*TODO:Boundary check*/
1868 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1869 {
1870 	if (ah->ah_version != AR5K_AR5210)
1871 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1872 }
1873 
1874 /*
1875  * Enable/disable fast rx antenna diversity
1876  */
1877 static void
1878 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1879 {
1880 	switch (ee_mode) {
1881 	case AR5K_EEPROM_MODE_11G:
1882 		/* XXX: This is set to
1883 		 * disabled on initvals !!! */
1884 	case AR5K_EEPROM_MODE_11A:
1885 		if (enable)
1886 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1887 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1888 		else
1889 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1890 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1891 		break;
1892 	case AR5K_EEPROM_MODE_11B:
1893 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1894 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1895 		break;
1896 	default:
1897 		return;
1898 	}
1899 
1900 	if (enable) {
1901 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1902 				AR5K_PHY_RESTART_DIV_GC, 4);
1903 
1904 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1905 					AR5K_PHY_FAST_ANT_DIV_EN);
1906 	} else {
1907 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1908 				AR5K_PHY_RESTART_DIV_GC, 0);
1909 
1910 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1911 					AR5K_PHY_FAST_ANT_DIV_EN);
1912 	}
1913 }
1914 
1915 void
1916 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1917 {
1918 	u8 ant0, ant1;
1919 
1920 	/*
1921 	 * In case a fixed antenna was set as default
1922 	 * use the same switch table twice.
1923 	 */
1924 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1925 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1926 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1927 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1928 	else {
1929 		ant0 = AR5K_ANT_SWTABLE_A;
1930 		ant1 = AR5K_ANT_SWTABLE_B;
1931 	}
1932 
1933 	/* Set antenna idle switch table */
1934 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1935 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1936 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1937 			AR5K_PHY_ANT_CTL_TXRX_EN));
1938 
1939 	/* Set antenna switch tables */
1940 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1941 		AR5K_PHY_ANT_SWITCH_TABLE_0);
1942 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1943 		AR5K_PHY_ANT_SWITCH_TABLE_1);
1944 }
1945 
1946 /*
1947  * Set antenna operating mode
1948  */
1949 void
1950 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1951 {
1952 	struct ieee80211_channel *channel = ah->ah_current_channel;
1953 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1954 	bool use_def_for_sg;
1955 	int ee_mode;
1956 	u8 def_ant, tx_ant;
1957 	u32 sta_id1 = 0;
1958 
1959 	/* if channel is not initialized yet we can't set the antennas
1960 	 * so just store the mode. it will be set on the next reset */
1961 	if (channel == NULL) {
1962 		ah->ah_ant_mode = ant_mode;
1963 		return;
1964 	}
1965 
1966 	def_ant = ah->ah_def_ant;
1967 
1968 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
1969 	if (ee_mode < 0) {
1970 		ATH5K_ERR(ah,
1971 			"invalid channel: %d\n", channel->center_freq);
1972 		return;
1973 	}
1974 
1975 	switch (ant_mode) {
1976 	case AR5K_ANTMODE_DEFAULT:
1977 		tx_ant = 0;
1978 		use_def_for_tx = false;
1979 		update_def_on_tx = false;
1980 		use_def_for_rts = false;
1981 		use_def_for_sg = false;
1982 		fast_div = true;
1983 		break;
1984 	case AR5K_ANTMODE_FIXED_A:
1985 		def_ant = 1;
1986 		tx_ant = 1;
1987 		use_def_for_tx = true;
1988 		update_def_on_tx = false;
1989 		use_def_for_rts = true;
1990 		use_def_for_sg = true;
1991 		fast_div = false;
1992 		break;
1993 	case AR5K_ANTMODE_FIXED_B:
1994 		def_ant = 2;
1995 		tx_ant = 2;
1996 		use_def_for_tx = true;
1997 		update_def_on_tx = false;
1998 		use_def_for_rts = true;
1999 		use_def_for_sg = true;
2000 		fast_div = false;
2001 		break;
2002 	case AR5K_ANTMODE_SINGLE_AP:
2003 		def_ant = 1;	/* updated on tx */
2004 		tx_ant = 0;
2005 		use_def_for_tx = true;
2006 		update_def_on_tx = true;
2007 		use_def_for_rts = true;
2008 		use_def_for_sg = true;
2009 		fast_div = true;
2010 		break;
2011 	case AR5K_ANTMODE_SECTOR_AP:
2012 		tx_ant = 1;	/* variable */
2013 		use_def_for_tx = false;
2014 		update_def_on_tx = false;
2015 		use_def_for_rts = true;
2016 		use_def_for_sg = false;
2017 		fast_div = false;
2018 		break;
2019 	case AR5K_ANTMODE_SECTOR_STA:
2020 		tx_ant = 1;	/* variable */
2021 		use_def_for_tx = true;
2022 		update_def_on_tx = false;
2023 		use_def_for_rts = true;
2024 		use_def_for_sg = false;
2025 		fast_div = true;
2026 		break;
2027 	case AR5K_ANTMODE_DEBUG:
2028 		def_ant = 1;
2029 		tx_ant = 2;
2030 		use_def_for_tx = false;
2031 		update_def_on_tx = false;
2032 		use_def_for_rts = false;
2033 		use_def_for_sg = false;
2034 		fast_div = false;
2035 		break;
2036 	default:
2037 		return;
2038 	}
2039 
2040 	ah->ah_tx_ant = tx_ant;
2041 	ah->ah_ant_mode = ant_mode;
2042 	ah->ah_def_ant = def_ant;
2043 
2044 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2045 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2046 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2047 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2048 
2049 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2050 
2051 	if (sta_id1)
2052 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2053 
2054 	ath5k_hw_set_antenna_switch(ah, ee_mode);
2055 	/* Note: set diversity before default antenna
2056 	 * because it won't work correctly */
2057 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2058 	ath5k_hw_set_def_antenna(ah, def_ant);
2059 }
2060 
2061 
2062 /****************\
2063 * TX power setup *
2064 \****************/
2065 
2066 /*
2067  * Helper functions
2068  */
2069 
2070 /*
2071  * Do linear interpolation between two given (x, y) points
2072  */
2073 static s16
2074 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2075 					s16 y_left, s16 y_right)
2076 {
2077 	s16 ratio, result;
2078 
2079 	/* Avoid divide by zero and skip interpolation
2080 	 * if we have the same point */
2081 	if ((x_left == x_right) || (y_left == y_right))
2082 		return y_left;
2083 
2084 	/*
2085 	 * Since we use ints and not fps, we need to scale up in
2086 	 * order to get a sane ratio value (or else we 'll eg. get
2087 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2088 	 * to have some accuracy both for 0.5 and 0.25 steps.
2089 	 */
2090 	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2091 
2092 	/* Now scale down to be in range */
2093 	result = y_left + (ratio * (target - x_left) / 100);
2094 
2095 	return result;
2096 }
2097 
2098 /*
2099  * Find vertical boundary (min pwr) for the linear PCDAC curve.
2100  *
2101  * Since we have the top of the curve and we draw the line below
2102  * until we reach 1 (1 pcdac step) we need to know which point
2103  * (x value) that is so that we don't go below y axis and have negative
2104  * pcdac values when creating the curve, or fill the table with zeroes.
2105  */
2106 static s16
2107 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2108 				const s16 *pwrL, const s16 *pwrR)
2109 {
2110 	s8 tmp;
2111 	s16 min_pwrL, min_pwrR;
2112 	s16 pwr_i;
2113 
2114 	/* Some vendors write the same pcdac value twice !!! */
2115 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2116 		return max(pwrL[0], pwrR[0]);
2117 
2118 	if (pwrL[0] == pwrL[1])
2119 		min_pwrL = pwrL[0];
2120 	else {
2121 		pwr_i = pwrL[0];
2122 		do {
2123 			pwr_i--;
2124 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2125 							pwrL[0], pwrL[1],
2126 							stepL[0], stepL[1]);
2127 		} while (tmp > 1);
2128 
2129 		min_pwrL = pwr_i;
2130 	}
2131 
2132 	if (pwrR[0] == pwrR[1])
2133 		min_pwrR = pwrR[0];
2134 	else {
2135 		pwr_i = pwrR[0];
2136 		do {
2137 			pwr_i--;
2138 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2139 							pwrR[0], pwrR[1],
2140 							stepR[0], stepR[1]);
2141 		} while (tmp > 1);
2142 
2143 		min_pwrR = pwr_i;
2144 	}
2145 
2146 	/* Keep the right boundary so that it works for both curves */
2147 	return max(min_pwrL, min_pwrR);
2148 }
2149 
2150 /*
2151  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2152  * Power to PCDAC curve.
2153  *
2154  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2155  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2156  * PCDAC/PDADC step for each curve is 64 but we can write more than
2157  * one curves on hw so we can go up to 128 (which is the max step we
2158  * can write on the final table).
2159  *
2160  * We write y values (PCDAC/PDADC steps) on hw.
2161  */
2162 static void
2163 ath5k_create_power_curve(s16 pmin, s16 pmax,
2164 			const s16 *pwr, const u8 *vpd,
2165 			u8 num_points,
2166 			u8 *vpd_table, u8 type)
2167 {
2168 	u8 idx[2] = { 0, 1 };
2169 	s16 pwr_i = 2 * pmin;
2170 	int i;
2171 
2172 	if (num_points < 2)
2173 		return;
2174 
2175 	/* We want the whole line, so adjust boundaries
2176 	 * to cover the entire power range. Note that
2177 	 * power values are already 0.25dB so no need
2178 	 * to multiply pwr_i by 2 */
2179 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2180 		pwr_i = pmin;
2181 		pmin = 0;
2182 		pmax = 63;
2183 	}
2184 
2185 	/* Find surrounding turning points (TPs)
2186 	 * and interpolate between them */
2187 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2188 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2189 
2190 		/* We passed the right TP, move to the next set of TPs
2191 		 * if we pass the last TP, extrapolate above using the last
2192 		 * two TPs for ratio */
2193 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2194 			idx[0]++;
2195 			idx[1]++;
2196 		}
2197 
2198 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2199 						pwr[idx[0]], pwr[idx[1]],
2200 						vpd[idx[0]], vpd[idx[1]]);
2201 
2202 		/* Increase by 0.5dB
2203 		 * (0.25 dB units) */
2204 		pwr_i += 2;
2205 	}
2206 }
2207 
2208 /*
2209  * Get the surrounding per-channel power calibration piers
2210  * for a given frequency so that we can interpolate between
2211  * them and come up with an appropriate dataset for our current
2212  * channel.
2213  */
2214 static void
2215 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2216 			struct ieee80211_channel *channel,
2217 			struct ath5k_chan_pcal_info **pcinfo_l,
2218 			struct ath5k_chan_pcal_info **pcinfo_r)
2219 {
2220 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2221 	struct ath5k_chan_pcal_info *pcinfo;
2222 	u8 idx_l, idx_r;
2223 	u8 mode, max, i;
2224 	u32 target = channel->center_freq;
2225 
2226 	idx_l = 0;
2227 	idx_r = 0;
2228 
2229 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2230 		pcinfo = ee->ee_pwr_cal_b;
2231 		mode = AR5K_EEPROM_MODE_11B;
2232 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2233 		pcinfo = ee->ee_pwr_cal_g;
2234 		mode = AR5K_EEPROM_MODE_11G;
2235 	} else {
2236 		pcinfo = ee->ee_pwr_cal_a;
2237 		mode = AR5K_EEPROM_MODE_11A;
2238 	}
2239 	max = ee->ee_n_piers[mode] - 1;
2240 
2241 	/* Frequency is below our calibrated
2242 	 * range. Use the lowest power curve
2243 	 * we have */
2244 	if (target < pcinfo[0].freq) {
2245 		idx_l = idx_r = 0;
2246 		goto done;
2247 	}
2248 
2249 	/* Frequency is above our calibrated
2250 	 * range. Use the highest power curve
2251 	 * we have */
2252 	if (target > pcinfo[max].freq) {
2253 		idx_l = idx_r = max;
2254 		goto done;
2255 	}
2256 
2257 	/* Frequency is inside our calibrated
2258 	 * channel range. Pick the surrounding
2259 	 * calibration piers so that we can
2260 	 * interpolate */
2261 	for (i = 0; i <= max; i++) {
2262 
2263 		/* Frequency matches one of our calibration
2264 		 * piers, no need to interpolate, just use
2265 		 * that calibration pier */
2266 		if (pcinfo[i].freq == target) {
2267 			idx_l = idx_r = i;
2268 			goto done;
2269 		}
2270 
2271 		/* We found a calibration pier that's above
2272 		 * frequency, use this pier and the previous
2273 		 * one to interpolate */
2274 		if (target < pcinfo[i].freq) {
2275 			idx_r = i;
2276 			idx_l = idx_r - 1;
2277 			goto done;
2278 		}
2279 	}
2280 
2281 done:
2282 	*pcinfo_l = &pcinfo[idx_l];
2283 	*pcinfo_r = &pcinfo[idx_r];
2284 }
2285 
2286 /*
2287  * Get the surrounding per-rate power calibration data
2288  * for a given frequency and interpolate between power
2289  * values to set max target power supported by hw for
2290  * each rate.
2291  */
2292 static void
2293 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2294 			struct ieee80211_channel *channel,
2295 			struct ath5k_rate_pcal_info *rates)
2296 {
2297 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2298 	struct ath5k_rate_pcal_info *rpinfo;
2299 	u8 idx_l, idx_r;
2300 	u8 mode, max, i;
2301 	u32 target = channel->center_freq;
2302 
2303 	idx_l = 0;
2304 	idx_r = 0;
2305 
2306 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2307 		rpinfo = ee->ee_rate_tpwr_b;
2308 		mode = AR5K_EEPROM_MODE_11B;
2309 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2310 		rpinfo = ee->ee_rate_tpwr_g;
2311 		mode = AR5K_EEPROM_MODE_11G;
2312 	} else {
2313 		rpinfo = ee->ee_rate_tpwr_a;
2314 		mode = AR5K_EEPROM_MODE_11A;
2315 	}
2316 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2317 
2318 	/* Get the surrounding calibration
2319 	 * piers - same as above */
2320 	if (target < rpinfo[0].freq) {
2321 		idx_l = idx_r = 0;
2322 		goto done;
2323 	}
2324 
2325 	if (target > rpinfo[max].freq) {
2326 		idx_l = idx_r = max;
2327 		goto done;
2328 	}
2329 
2330 	for (i = 0; i <= max; i++) {
2331 
2332 		if (rpinfo[i].freq == target) {
2333 			idx_l = idx_r = i;
2334 			goto done;
2335 		}
2336 
2337 		if (target < rpinfo[i].freq) {
2338 			idx_r = i;
2339 			idx_l = idx_r - 1;
2340 			goto done;
2341 		}
2342 	}
2343 
2344 done:
2345 	/* Now interpolate power value, based on the frequency */
2346 	rates->freq = target;
2347 
2348 	rates->target_power_6to24 =
2349 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2350 					rpinfo[idx_r].freq,
2351 					rpinfo[idx_l].target_power_6to24,
2352 					rpinfo[idx_r].target_power_6to24);
2353 
2354 	rates->target_power_36 =
2355 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2356 					rpinfo[idx_r].freq,
2357 					rpinfo[idx_l].target_power_36,
2358 					rpinfo[idx_r].target_power_36);
2359 
2360 	rates->target_power_48 =
2361 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2362 					rpinfo[idx_r].freq,
2363 					rpinfo[idx_l].target_power_48,
2364 					rpinfo[idx_r].target_power_48);
2365 
2366 	rates->target_power_54 =
2367 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2368 					rpinfo[idx_r].freq,
2369 					rpinfo[idx_l].target_power_54,
2370 					rpinfo[idx_r].target_power_54);
2371 }
2372 
2373 /*
2374  * Get the max edge power for this channel if
2375  * we have such data from EEPROM's Conformance Test
2376  * Limits (CTL), and limit max power if needed.
2377  */
2378 static void
2379 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2380 			struct ieee80211_channel *channel)
2381 {
2382 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2383 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2384 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2385 	u8 *ctl_val = ee->ee_ctl;
2386 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2387 	s16 edge_pwr = 0;
2388 	u8 rep_idx;
2389 	u8 i, ctl_mode;
2390 	u8 ctl_idx = 0xFF;
2391 	u32 target = channel->center_freq;
2392 
2393 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2394 
2395 	switch (channel->hw_value & CHANNEL_MODES) {
2396 	case CHANNEL_A:
2397 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2398 			ctl_mode |= AR5K_CTL_TURBO;
2399 		else
2400 			ctl_mode |= AR5K_CTL_11A;
2401 		break;
2402 	case CHANNEL_G:
2403 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2404 			ctl_mode |= AR5K_CTL_TURBOG;
2405 		else
2406 			ctl_mode |= AR5K_CTL_11G;
2407 		break;
2408 	case CHANNEL_B:
2409 		ctl_mode |= AR5K_CTL_11B;
2410 		break;
2411 	case CHANNEL_XR:
2412 		/* Fall through */
2413 	default:
2414 		return;
2415 	}
2416 
2417 	for (i = 0; i < ee->ee_ctls; i++) {
2418 		if (ctl_val[i] == ctl_mode) {
2419 			ctl_idx = i;
2420 			break;
2421 		}
2422 	}
2423 
2424 	/* If we have a CTL dataset available grab it and find the
2425 	 * edge power for our frequency */
2426 	if (ctl_idx == 0xFF)
2427 		return;
2428 
2429 	/* Edge powers are sorted by frequency from lower
2430 	 * to higher. Each CTL corresponds to 8 edge power
2431 	 * measurements. */
2432 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2433 
2434 	/* Don't do boundaries check because we
2435 	 * might have more that one bands defined
2436 	 * for this mode */
2437 
2438 	/* Get the edge power that's closer to our
2439 	 * frequency */
2440 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2441 		rep_idx += i;
2442 		if (target <= rep[rep_idx].freq)
2443 			edge_pwr = (s16) rep[rep_idx].edge;
2444 	}
2445 
2446 	if (edge_pwr)
2447 		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2448 }
2449 
2450 
2451 /*
2452  * Power to PCDAC table functions
2453  */
2454 
2455 /*
2456  * Fill Power to PCDAC table on RF5111
2457  *
2458  * No further processing is needed for RF5111, the only thing we have to
2459  * do is fill the values below and above calibration range since eeprom data
2460  * may not cover the entire PCDAC table.
2461  */
2462 static void
2463 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2464 							s16 *table_max)
2465 {
2466 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2467 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2468 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2469 	s16	min_pwr, max_pwr;
2470 
2471 	/* Get table boundaries */
2472 	min_pwr = table_min[0];
2473 	pcdac_0 = pcdac_tmp[0];
2474 
2475 	max_pwr = table_max[0];
2476 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2477 
2478 	/* Extrapolate below minimum using pcdac_0 */
2479 	pcdac_i = 0;
2480 	for (i = 0; i < min_pwr; i++)
2481 		pcdac_out[pcdac_i++] = pcdac_0;
2482 
2483 	/* Copy values from pcdac_tmp */
2484 	pwr_idx = min_pwr;
2485 	for (i = 0; pwr_idx <= max_pwr &&
2486 		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2487 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2488 		pwr_idx++;
2489 	}
2490 
2491 	/* Extrapolate above maximum */
2492 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2493 		pcdac_out[pcdac_i++] = pcdac_n;
2494 
2495 }
2496 
2497 /*
2498  * Combine available XPD Curves and fill Linear Power to PCDAC table
2499  * on RF5112
2500  *
2501  * RFX112 can have up to 2 curves (one for low txpower range and one for
2502  * higher txpower range). We need to put them both on pcdac_out and place
2503  * them in the correct location. In case we only have one curve available
2504  * just fit it on pcdac_out (it's supposed to cover the entire range of
2505  * available pwr levels since it's always the higher power curve). Extrapolate
2506  * below and above final table if needed.
2507  */
2508 static void
2509 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2510 						s16 *table_max, u8 pdcurves)
2511 {
2512 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2513 	u8	*pcdac_low_pwr;
2514 	u8	*pcdac_high_pwr;
2515 	u8	*pcdac_tmp;
2516 	u8	pwr;
2517 	s16	max_pwr_idx;
2518 	s16	min_pwr_idx;
2519 	s16	mid_pwr_idx = 0;
2520 	/* Edge flag turns on the 7nth bit on the PCDAC
2521 	 * to declare the higher power curve (force values
2522 	 * to be greater than 64). If we only have one curve
2523 	 * we don't need to set this, if we have 2 curves and
2524 	 * fill the table backwards this can also be used to
2525 	 * switch from higher power curve to lower power curve */
2526 	u8	edge_flag;
2527 	int	i;
2528 
2529 	/* When we have only one curve available
2530 	 * that's the higher power curve. If we have
2531 	 * two curves the first is the high power curve
2532 	 * and the next is the low power curve. */
2533 	if (pdcurves > 1) {
2534 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2535 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2536 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2537 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2538 
2539 		/* If table size goes beyond 31.5dB, keep the
2540 		 * upper 31.5dB range when setting tx power.
2541 		 * Note: 126 = 31.5 dB in quarter dB steps */
2542 		if (table_max[0] - table_min[1] > 126)
2543 			min_pwr_idx = table_max[0] - 126;
2544 		else
2545 			min_pwr_idx = table_min[1];
2546 
2547 		/* Since we fill table backwards
2548 		 * start from high power curve */
2549 		pcdac_tmp = pcdac_high_pwr;
2550 
2551 		edge_flag = 0x40;
2552 	} else {
2553 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2554 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2555 		min_pwr_idx = table_min[0];
2556 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2557 		pcdac_tmp = pcdac_high_pwr;
2558 		edge_flag = 0;
2559 	}
2560 
2561 	/* This is used when setting tx power*/
2562 	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
2563 
2564 	/* Fill Power to PCDAC table backwards */
2565 	pwr = max_pwr_idx;
2566 	for (i = 63; i >= 0; i--) {
2567 		/* Entering lower power range, reset
2568 		 * edge flag and set pcdac_tmp to lower
2569 		 * power curve.*/
2570 		if (edge_flag == 0x40 &&
2571 		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2572 			edge_flag = 0x00;
2573 			pcdac_tmp = pcdac_low_pwr;
2574 			pwr = mid_pwr_idx / 2;
2575 		}
2576 
2577 		/* Don't go below 1, extrapolate below if we have
2578 		 * already switched to the lower power curve -or
2579 		 * we only have one curve and edge_flag is zero
2580 		 * anyway */
2581 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2582 			while (i >= 0) {
2583 				pcdac_out[i] = pcdac_out[i + 1];
2584 				i--;
2585 			}
2586 			break;
2587 		}
2588 
2589 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2590 
2591 		/* Extrapolate above if pcdac is greater than
2592 		 * 126 -this can happen because we OR pcdac_out
2593 		 * value with edge_flag on high power curve */
2594 		if (pcdac_out[i] > 126)
2595 			pcdac_out[i] = 126;
2596 
2597 		/* Decrease by a 0.5dB step */
2598 		pwr--;
2599 	}
2600 }
2601 
2602 /* Write PCDAC values on hw */
2603 static void
2604 ath5k_write_pcdac_table(struct ath5k_hw *ah)
2605 {
2606 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2607 	int	i;
2608 
2609 	/*
2610 	 * Write TX power values
2611 	 */
2612 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2613 		ath5k_hw_reg_write(ah,
2614 			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
2615 			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
2616 			AR5K_PHY_PCDAC_TXPOWER(i));
2617 	}
2618 }
2619 
2620 
2621 /*
2622  * Power to PDADC table functions
2623  */
2624 
2625 /*
2626  * Set the gain boundaries and create final Power to PDADC table
2627  *
2628  * We can have up to 4 pd curves, we need to do a similar process
2629  * as we do for RF5112. This time we don't have an edge_flag but we
2630  * set the gain boundaries on a separate register.
2631  */
2632 static void
2633 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2634 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2635 {
2636 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2637 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2638 	u8 *pdadc_tmp;
2639 	s16 pdadc_0;
2640 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2641 	u8 pd_gain_overlap;
2642 
2643 	/* Note: Register value is initialized on initvals
2644 	 * there is no feedback from hw.
2645 	 * XXX: What about pd_gain_overlap from EEPROM ? */
2646 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2647 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2648 
2649 	/* Create final PDADC table */
2650 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2651 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2652 
2653 		if (pdg == pdcurves - 1)
2654 			/* 2 dB boundary stretch for last
2655 			 * (higher power) curve */
2656 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2657 		else
2658 			/* Set gain boundary in the middle
2659 			 * between this curve and the next one */
2660 			gain_boundaries[pdg] =
2661 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2662 
2663 		/* Sanity check in case our 2 db stretch got out of
2664 		 * range. */
2665 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2666 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2667 
2668 		/* For the first curve (lower power)
2669 		 * start from 0 dB */
2670 		if (pdg == 0)
2671 			pdadc_0 = 0;
2672 		else
2673 			/* For the other curves use the gain overlap */
2674 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2675 							pd_gain_overlap;
2676 
2677 		/* Force each power step to be at least 0.5 dB */
2678 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2679 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2680 		else
2681 			pwr_step = 1;
2682 
2683 		/* If pdadc_0 is negative, we need to extrapolate
2684 		 * below this pdgain by a number of pwr_steps */
2685 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2686 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2687 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2688 			pdadc_0++;
2689 		}
2690 
2691 		/* Set last pwr level, using gain boundaries */
2692 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2693 		/* Limit it to be inside pwr range */
2694 		table_size = pwr_max[pdg] - pwr_min[pdg];
2695 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2696 
2697 		/* Fill pdadc_out table */
2698 		while (pdadc_0 < max_idx && pdadc_i < 128)
2699 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2700 
2701 		/* Need to extrapolate above this pdgain? */
2702 		if (pdadc_n <= max_idx)
2703 			continue;
2704 
2705 		/* Force each power step to be at least 0.5 dB */
2706 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2707 			pwr_step = pdadc_tmp[table_size - 1] -
2708 						pdadc_tmp[table_size - 2];
2709 		else
2710 			pwr_step = 1;
2711 
2712 		/* Extrapolate above */
2713 		while ((pdadc_0 < (s16) pdadc_n) &&
2714 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2715 			s16 tmp = pdadc_tmp[table_size - 1] +
2716 					(pdadc_0 - max_idx) * pwr_step;
2717 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2718 			pdadc_0++;
2719 		}
2720 	}
2721 
2722 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2723 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2724 		pdg++;
2725 	}
2726 
2727 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2728 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2729 		pdadc_i++;
2730 	}
2731 
2732 	/* Set gain boundaries */
2733 	ath5k_hw_reg_write(ah,
2734 		AR5K_REG_SM(pd_gain_overlap,
2735 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2736 		AR5K_REG_SM(gain_boundaries[0],
2737 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2738 		AR5K_REG_SM(gain_boundaries[1],
2739 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2740 		AR5K_REG_SM(gain_boundaries[2],
2741 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2742 		AR5K_REG_SM(gain_boundaries[3],
2743 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2744 		AR5K_PHY_TPC_RG5);
2745 
2746 	/* Used for setting rate power table */
2747 	ah->ah_txpower.txp_min_idx = pwr_min[0];
2748 
2749 }
2750 
2751 /* Write PDADC values on hw */
2752 static void
2753 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
2754 {
2755 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2756 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2757 	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
2758 	u8 pdcurves = ee->ee_pd_gains[ee_mode];
2759 	u32 reg;
2760 	u8 i;
2761 
2762 	/* Select the right pdgain curves */
2763 
2764 	/* Clear current settings */
2765 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2766 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2767 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2768 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2769 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2770 
2771 	/*
2772 	 * Use pd_gains curve from eeprom
2773 	 *
2774 	 * This overrides the default setting from initvals
2775 	 * in case some vendors (e.g. Zcomax) don't use the default
2776 	 * curves. If we don't honor their settings we 'll get a
2777 	 * 5dB (1 * gain overlap ?) drop.
2778 	 */
2779 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2780 
2781 	switch (pdcurves) {
2782 	case 3:
2783 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2784 		/* Fall through */
2785 	case 2:
2786 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2787 		/* Fall through */
2788 	case 1:
2789 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2790 		break;
2791 	}
2792 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2793 
2794 	/*
2795 	 * Write TX power values
2796 	 */
2797 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2798 		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
2799 		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
2800 	}
2801 }
2802 
2803 
2804 /*
2805  * Common code for PCDAC/PDADC tables
2806  */
2807 
2808 /*
2809  * This is the main function that uses all of the above
2810  * to set PCDAC/PDADC table on hw for the current channel.
2811  * This table is used for tx power calibration on the baseband,
2812  * without it we get weird tx power levels and in some cases
2813  * distorted spectral mask
2814  */
2815 static int
2816 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2817 			struct ieee80211_channel *channel,
2818 			u8 ee_mode, u8 type)
2819 {
2820 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2821 	struct ath5k_chan_pcal_info *pcinfo_L;
2822 	struct ath5k_chan_pcal_info *pcinfo_R;
2823 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2824 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2825 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2826 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2827 	u8 *tmpL;
2828 	u8 *tmpR;
2829 	u32 target = channel->center_freq;
2830 	int pdg, i;
2831 
2832 	/* Get surrounding freq piers for this channel */
2833 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2834 						&pcinfo_L,
2835 						&pcinfo_R);
2836 
2837 	/* Loop over pd gain curves on
2838 	 * surrounding freq piers by index */
2839 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2840 
2841 		/* Fill curves in reverse order
2842 		 * from lower power (max gain)
2843 		 * to higher power. Use curve -> idx
2844 		 * backmapping we did on eeprom init */
2845 		u8 idx = pdg_curve_to_idx[pdg];
2846 
2847 		/* Grab the needed curves by index */
2848 		pdg_L = &pcinfo_L->pd_curves[idx];
2849 		pdg_R = &pcinfo_R->pd_curves[idx];
2850 
2851 		/* Initialize the temp tables */
2852 		tmpL = ah->ah_txpower.tmpL[pdg];
2853 		tmpR = ah->ah_txpower.tmpR[pdg];
2854 
2855 		/* Set curve's x boundaries and create
2856 		 * curves so that they cover the same
2857 		 * range (if we don't do that one table
2858 		 * will have values on some range and the
2859 		 * other one won't have any so interpolation
2860 		 * will fail) */
2861 		table_min[pdg] = min(pdg_L->pd_pwr[0],
2862 					pdg_R->pd_pwr[0]) / 2;
2863 
2864 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2865 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2866 
2867 		/* Now create the curves on surrounding channels
2868 		 * and interpolate if needed to get the final
2869 		 * curve for this gain on this channel */
2870 		switch (type) {
2871 		case AR5K_PWRTABLE_LINEAR_PCDAC:
2872 			/* Override min/max so that we don't loose
2873 			 * accuracy (don't divide by 2) */
2874 			table_min[pdg] = min(pdg_L->pd_pwr[0],
2875 						pdg_R->pd_pwr[0]);
2876 
2877 			table_max[pdg] =
2878 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2879 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2880 
2881 			/* Override minimum so that we don't get
2882 			 * out of bounds while extrapolating
2883 			 * below. Don't do this when we have 2
2884 			 * curves and we are on the high power curve
2885 			 * because table_min is ok in this case */
2886 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2887 
2888 				table_min[pdg] =
2889 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2890 								pdg_R->pd_step,
2891 								pdg_L->pd_pwr,
2892 								pdg_R->pd_pwr);
2893 
2894 				/* Don't go too low because we will
2895 				 * miss the upper part of the curve.
2896 				 * Note: 126 = 31.5dB (max power supported)
2897 				 * in 0.25dB units */
2898 				if (table_max[pdg] - table_min[pdg] > 126)
2899 					table_min[pdg] = table_max[pdg] - 126;
2900 			}
2901 
2902 			/* Fall through */
2903 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2904 		case AR5K_PWRTABLE_PWR_TO_PDADC:
2905 
2906 			ath5k_create_power_curve(table_min[pdg],
2907 						table_max[pdg],
2908 						pdg_L->pd_pwr,
2909 						pdg_L->pd_step,
2910 						pdg_L->pd_points, tmpL, type);
2911 
2912 			/* We are in a calibration
2913 			 * pier, no need to interpolate
2914 			 * between freq piers */
2915 			if (pcinfo_L == pcinfo_R)
2916 				continue;
2917 
2918 			ath5k_create_power_curve(table_min[pdg],
2919 						table_max[pdg],
2920 						pdg_R->pd_pwr,
2921 						pdg_R->pd_step,
2922 						pdg_R->pd_points, tmpR, type);
2923 			break;
2924 		default:
2925 			return -EINVAL;
2926 		}
2927 
2928 		/* Interpolate between curves
2929 		 * of surrounding freq piers to
2930 		 * get the final curve for this
2931 		 * pd gain. Re-use tmpL for interpolation
2932 		 * output */
2933 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2934 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2935 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2936 							(s16) pcinfo_L->freq,
2937 							(s16) pcinfo_R->freq,
2938 							(s16) tmpL[i],
2939 							(s16) tmpR[i]);
2940 		}
2941 	}
2942 
2943 	/* Now we have a set of curves for this
2944 	 * channel on tmpL (x range is table_max - table_min
2945 	 * and y values are tmpL[pdg][]) sorted in the same
2946 	 * order as EEPROM (because we've used the backmapping).
2947 	 * So for RF5112 it's from higher power to lower power
2948 	 * and for RF2413 it's from lower power to higher power.
2949 	 * For RF5111 we only have one curve. */
2950 
2951 	/* Fill min and max power levels for this
2952 	 * channel by interpolating the values on
2953 	 * surrounding channels to complete the dataset */
2954 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2955 					(s16) pcinfo_L->freq,
2956 					(s16) pcinfo_R->freq,
2957 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2958 
2959 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2960 					(s16) pcinfo_L->freq,
2961 					(s16) pcinfo_R->freq,
2962 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2963 
2964 	/* Fill PCDAC/PDADC table */
2965 	switch (type) {
2966 	case AR5K_PWRTABLE_LINEAR_PCDAC:
2967 		/* For RF5112 we can have one or two curves
2968 		 * and each curve covers a certain power lvl
2969 		 * range so we need to do some more processing */
2970 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2971 						ee->ee_pd_gains[ee_mode]);
2972 
2973 		/* Set txp.offset so that we can
2974 		 * match max power value with max
2975 		 * table index */
2976 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2977 		break;
2978 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2979 		/* We are done for RF5111 since it has only
2980 		 * one curve, just fit the curve on the table */
2981 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2982 
2983 		/* No rate powertable adjustment for RF5111 */
2984 		ah->ah_txpower.txp_min_idx = 0;
2985 		ah->ah_txpower.txp_offset = 0;
2986 		break;
2987 	case AR5K_PWRTABLE_PWR_TO_PDADC:
2988 		/* Set PDADC boundaries and fill
2989 		 * final PDADC table */
2990 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2991 						ee->ee_pd_gains[ee_mode]);
2992 
2993 		/* Set txp.offset, note that table_min
2994 		 * can be negative */
2995 		ah->ah_txpower.txp_offset = table_min[0];
2996 		break;
2997 	default:
2998 		return -EINVAL;
2999 	}
3000 
3001 	ah->ah_txpower.txp_setup = true;
3002 
3003 	return 0;
3004 }
3005 
3006 /* Write power table for current channel to hw */
3007 static void
3008 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3009 {
3010 	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3011 		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3012 	else
3013 		ath5k_write_pcdac_table(ah);
3014 }
3015 
3016 /*
3017  * Per-rate tx power setting
3018  *
3019  * This is the code that sets the desired tx power (below
3020  * maximum) on hw for each rate (we also have TPC that sets
3021  * power per packet). We do that by providing an index on the
3022  * PCDAC/PDADC table we set up.
3023  */
3024 
3025 /*
3026  * Set rate power table
3027  *
3028  * For now we only limit txpower based on maximum tx power
3029  * supported by hw (what's inside rate_info). We need to limit
3030  * this even more, based on regulatory domain etc.
3031  *
3032  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
3033  * and is indexed as follows:
3034  * rates[0] - rates[7] -> OFDM rates
3035  * rates[8] - rates[14] -> CCK rates
3036  * rates[15] -> XR rates (they all have the same power)
3037  */
3038 static void
3039 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3040 			struct ath5k_rate_pcal_info *rate_info,
3041 			u8 ee_mode)
3042 {
3043 	unsigned int i;
3044 	u16 *rates;
3045 
3046 	/* max_pwr is power level we got from driver/user in 0.5dB
3047 	 * units, switch to 0.25dB units so we can compare */
3048 	max_pwr *= 2;
3049 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3050 
3051 	/* apply rate limits */
3052 	rates = ah->ah_txpower.txp_rates_power_table;
3053 
3054 	/* OFDM rates 6 to 24Mb/s */
3055 	for (i = 0; i < 5; i++)
3056 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3057 
3058 	/* Rest OFDM rates */
3059 	rates[5] = min(rates[0], rate_info->target_power_36);
3060 	rates[6] = min(rates[0], rate_info->target_power_48);
3061 	rates[7] = min(rates[0], rate_info->target_power_54);
3062 
3063 	/* CCK rates */
3064 	/* 1L */
3065 	rates[8] = min(rates[0], rate_info->target_power_6to24);
3066 	/* 2L */
3067 	rates[9] = min(rates[0], rate_info->target_power_36);
3068 	/* 2S */
3069 	rates[10] = min(rates[0], rate_info->target_power_36);
3070 	/* 5L */
3071 	rates[11] = min(rates[0], rate_info->target_power_48);
3072 	/* 5S */
3073 	rates[12] = min(rates[0], rate_info->target_power_48);
3074 	/* 11L */
3075 	rates[13] = min(rates[0], rate_info->target_power_54);
3076 	/* 11S */
3077 	rates[14] = min(rates[0], rate_info->target_power_54);
3078 
3079 	/* XR rates */
3080 	rates[15] = min(rates[0], rate_info->target_power_6to24);
3081 
3082 	/* CCK rates have different peak to average ratio
3083 	 * so we have to tweak their power so that gainf
3084 	 * correction works ok. For this we use OFDM to
3085 	 * CCK delta from eeprom */
3086 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3087 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3088 		for (i = 8; i <= 15; i++)
3089 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3090 
3091 	/* Now that we have all rates setup use table offset to
3092 	 * match the power range set by user with the power indices
3093 	 * on PCDAC/PDADC table */
3094 	for (i = 0; i < 16; i++) {
3095 		rates[i] += ah->ah_txpower.txp_offset;
3096 		/* Don't get out of bounds */
3097 		if (rates[i] > 63)
3098 			rates[i] = 63;
3099 	}
3100 
3101 	/* Min/max in 0.25dB units */
3102 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3103 	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3104 	ah->ah_txpower.txp_ofdm = rates[7];
3105 }
3106 
3107 
3108 /*
3109  * Set transmission power
3110  */
3111 static int
3112 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3113 		 u8 txpower)
3114 {
3115 	struct ath5k_rate_pcal_info rate_info;
3116 	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3117 	int ee_mode;
3118 	u8 type;
3119 	int ret;
3120 
3121 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3122 		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3123 		return -EINVAL;
3124 	}
3125 
3126 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3127 	if (ee_mode < 0) {
3128 		ATH5K_ERR(ah,
3129 			"invalid channel: %d\n", channel->center_freq);
3130 		return -EINVAL;
3131 	}
3132 
3133 	/* Initialize TX power table */
3134 	switch (ah->ah_radio) {
3135 	case AR5K_RF5110:
3136 		/* TODO */
3137 		return 0;
3138 	case AR5K_RF5111:
3139 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3140 		break;
3141 	case AR5K_RF5112:
3142 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3143 		break;
3144 	case AR5K_RF2413:
3145 	case AR5K_RF5413:
3146 	case AR5K_RF2316:
3147 	case AR5K_RF2317:
3148 	case AR5K_RF2425:
3149 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3150 		break;
3151 	default:
3152 		return -EINVAL;
3153 	}
3154 
3155 	/*
3156 	 * If we don't change channel/mode skip tx powertable calculation
3157 	 * and use the cached one.
3158 	 */
3159 	if (!ah->ah_txpower.txp_setup ||
3160 	    (channel->hw_value != curr_channel->hw_value) ||
3161 	    (channel->center_freq != curr_channel->center_freq)) {
3162 		/* Reset TX power values */
3163 		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3164 		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3165 
3166 		/* Calculate the powertable */
3167 		ret = ath5k_setup_channel_powertable(ah, channel,
3168 							ee_mode, type);
3169 		if (ret)
3170 			return ret;
3171 	}
3172 
3173 	/* Write table on hw */
3174 	ath5k_write_channel_powertable(ah, ee_mode, type);
3175 
3176 	/* Limit max power if we have a CTL available */
3177 	ath5k_get_max_ctl_power(ah, channel);
3178 
3179 	/* FIXME: Antenna reduction stuff */
3180 
3181 	/* FIXME: Limit power on turbo modes */
3182 
3183 	/* FIXME: TPC scale reduction */
3184 
3185 	/* Get surrounding channels for per-rate power table
3186 	 * calibration */
3187 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3188 
3189 	/* Setup rate power table */
3190 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3191 
3192 	/* Write rate power table on hw */
3193 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3194 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3195 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3196 
3197 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3198 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3199 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3200 
3201 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3202 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3203 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3204 
3205 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3206 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3207 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3208 
3209 	/* FIXME: TPC support */
3210 	if (ah->ah_txpower.txp_tpc) {
3211 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3212 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3213 
3214 		ath5k_hw_reg_write(ah,
3215 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3216 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3217 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3218 			AR5K_TPC);
3219 	} else {
3220 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3221 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3222 	}
3223 
3224 	return 0;
3225 }
3226 
3227 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3228 {
3229 	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3230 		"changing txpower to %d\n", txpower);
3231 
3232 	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3233 }
3234 
3235 /*************\
3236  Init function
3237 \*************/
3238 
3239 int ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3240 		      u8 mode, bool fast)
3241 {
3242 	struct ieee80211_channel *curr_channel;
3243 	int ret, i;
3244 	u32 phy_tst1;
3245 	ret = 0;
3246 
3247 	/*
3248 	 * Sanity check for fast flag
3249 	 * Don't try fast channel change when changing modulation
3250 	 * mode/band. We check for chip compatibility on
3251 	 * ath5k_hw_reset.
3252 	 */
3253 	curr_channel = ah->ah_current_channel;
3254 	if (fast && (channel->hw_value != curr_channel->hw_value))
3255 		return -EINVAL;
3256 
3257 	/*
3258 	 * On fast channel change we only set the synth parameters
3259 	 * while PHY is running, enable calibration and skip the rest.
3260 	 */
3261 	if (fast) {
3262 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3263 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3264 		for (i = 0; i < 100; i++) {
3265 			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3266 				break;
3267 			udelay(5);
3268 		}
3269 		/* Failed */
3270 		if (i >= 100)
3271 			return -EIO;
3272 
3273 		/* Set channel and wait for synth */
3274 		ret = ath5k_hw_channel(ah, channel);
3275 		if (ret)
3276 			return ret;
3277 
3278 		ath5k_hw_wait_for_synth(ah, channel);
3279 	}
3280 
3281 	/*
3282 	 * Set TX power
3283 	 *
3284 	 * Note: We need to do that before we set
3285 	 * RF buffer settings on 5211/5212+ so that we
3286 	 * properly set curve indices.
3287 	 */
3288 	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3289 			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3290 	if (ret)
3291 		return ret;
3292 
3293 	/* Write OFDM timings on 5212*/
3294 	if (ah->ah_version == AR5K_AR5212 &&
3295 		channel->hw_value & CHANNEL_OFDM) {
3296 
3297 		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3298 		if (ret)
3299 			return ret;
3300 
3301 		/* Spur info is available only from EEPROM versions
3302 		 * greater than 5.3, but the EEPROM routines will use
3303 		 * static values for older versions */
3304 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3305 			ath5k_hw_set_spur_mitigation_filter(ah,
3306 							    channel);
3307 	}
3308 
3309 	/* If we used fast channel switching
3310 	 * we are done, release RF bus and
3311 	 * fire up NF calibration.
3312 	 *
3313 	 * Note: Only NF calibration due to
3314 	 * channel change, not AGC calibration
3315 	 * since AGC is still running !
3316 	 */
3317 	if (fast) {
3318 		/*
3319 		 * Release RF Bus grant
3320 		 */
3321 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3322 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3323 
3324 		/*
3325 		 * Start NF calibration
3326 		 */
3327 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3328 					AR5K_PHY_AGCCTL_NF);
3329 
3330 		return ret;
3331 	}
3332 
3333 	/*
3334 	 * For 5210 we do all initialization using
3335 	 * initvals, so we don't have to modify
3336 	 * any settings (5210 also only supports
3337 	 * a/aturbo modes)
3338 	 */
3339 	if (ah->ah_version != AR5K_AR5210) {
3340 
3341 		/*
3342 		 * Write initial RF gain settings
3343 		 * This should work for both 5111/5112
3344 		 */
3345 		ret = ath5k_hw_rfgain_init(ah, channel->band);
3346 		if (ret)
3347 			return ret;
3348 
3349 		mdelay(1);
3350 
3351 		/*
3352 		 * Write RF buffer
3353 		 */
3354 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3355 		if (ret)
3356 			return ret;
3357 
3358 		/*Enable/disable 802.11b mode on 5111
3359 		(enable 2111 frequency converter + CCK)*/
3360 		if (ah->ah_radio == AR5K_RF5111) {
3361 			if (mode == AR5K_MODE_11B)
3362 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3363 				    AR5K_TXCFG_B_MODE);
3364 			else
3365 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3366 				    AR5K_TXCFG_B_MODE);
3367 		}
3368 
3369 	} else if (ah->ah_version == AR5K_AR5210) {
3370 		mdelay(1);
3371 		/* Disable phy and wait */
3372 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3373 		mdelay(1);
3374 	}
3375 
3376 	/* Set channel on PHY */
3377 	ret = ath5k_hw_channel(ah, channel);
3378 	if (ret)
3379 		return ret;
3380 
3381 	/*
3382 	 * Enable the PHY and wait until completion
3383 	 * This includes BaseBand and Synthesizer
3384 	 * activation.
3385 	 */
3386 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3387 
3388 	ath5k_hw_wait_for_synth(ah, channel);
3389 
3390 	/*
3391 	 * Perform ADC test to see if baseband is ready
3392 	 * Set tx hold and check adc test register
3393 	 */
3394 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3395 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3396 	for (i = 0; i <= 20; i++) {
3397 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3398 			break;
3399 		udelay(200);
3400 	}
3401 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3402 
3403 	/*
3404 	 * Start automatic gain control calibration
3405 	 *
3406 	 * During AGC calibration RX path is re-routed to
3407 	 * a power detector so we don't receive anything.
3408 	 *
3409 	 * This method is used to calibrate some static offsets
3410 	 * used together with on-the fly I/Q calibration (the
3411 	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3412 	 * interrupt rx path.
3413 	 *
3414 	 * While rx path is re-routed to the power detector we also
3415 	 * start a noise floor calibration to measure the
3416 	 * card's noise floor (the noise we measure when we are not
3417 	 * transmitting or receiving anything).
3418 	 *
3419 	 * If we are in a noisy environment, AGC calibration may time
3420 	 * out and/or noise floor calibration might timeout.
3421 	 */
3422 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3423 				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3424 
3425 	/* At the same time start I/Q calibration for QAM constellation
3426 	 * -no need for CCK- */
3427 	ah->ah_calibration = false;
3428 	if (!(mode == AR5K_MODE_11B)) {
3429 		ah->ah_calibration = true;
3430 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3431 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3432 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3433 				AR5K_PHY_IQ_RUN);
3434 	}
3435 
3436 	/* Wait for gain calibration to finish (we check for I/Q calibration
3437 	 * during ath5k_phy_calibrate) */
3438 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3439 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3440 		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3441 			channel->center_freq);
3442 	}
3443 
3444 	/* Restore antenna mode */
3445 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3446 
3447 	return ret;
3448 }
3449