xref: /linux/drivers/net/wireless/ath/ath5k/phy.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  *
19  */
20 
21 /***********************\
22 * PHY related functions *
23 \***********************/
24 
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <asm/unaligned.h>
28 
29 #include "ath5k.h"
30 #include "reg.h"
31 #include "rfbuffer.h"
32 #include "rfgain.h"
33 #include "../regd.h"
34 
35 
36 /**
37  * DOC: PHY related functions
38  *
39  * Here we handle the low-level functions related to baseband
40  * and analog frontend (RF) parts. This is by far the most complex
41  * part of the hw code so make sure you know what you are doing.
42  *
43  * Here is a list of what this is all about:
44  *
45  * - Channel setting/switching
46  *
47  * - Automatic Gain Control (AGC) calibration
48  *
49  * - Noise Floor calibration
50  *
51  * - I/Q imbalance calibration (QAM correction)
52  *
53  * - Calibration due to thermal changes (gain_F)
54  *
55  * - Spur noise mitigation
56  *
57  * - RF/PHY initialization for the various operating modes and bwmodes
58  *
59  * - Antenna control
60  *
61  * - TX power control per channel/rate/packet type
62  *
63  * Also have in mind we never got documentation for most of these
64  * functions, what we have comes mostly from Atheros's code, reverse
65  * engineering and patent docs/presentations etc.
66  */
67 
68 
69 /******************\
70 * Helper functions *
71 \******************/
72 
73 /**
74  * ath5k_hw_radio_revision() - Get the PHY Chip revision
75  * @ah: The &struct ath5k_hw
76  * @band: One of enum ieee80211_band
77  *
78  * Returns the revision number of a 2GHz, 5GHz or single chip
79  * radio.
80  */
81 u16
82 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band)
83 {
84 	unsigned int i;
85 	u32 srev;
86 	u16 ret;
87 
88 	/*
89 	 * Set the radio chip access register
90 	 */
91 	switch (band) {
92 	case IEEE80211_BAND_2GHZ:
93 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
94 		break;
95 	case IEEE80211_BAND_5GHZ:
96 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
97 		break;
98 	default:
99 		return 0;
100 	}
101 
102 	usleep_range(2000, 2500);
103 
104 	/* ...wait until PHY is ready and read the selected radio revision */
105 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
106 
107 	for (i = 0; i < 8; i++)
108 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
109 
110 	if (ah->ah_version == AR5K_AR5210) {
111 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
112 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
113 	} else {
114 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
115 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
116 				((srev & 0x0f) << 4), 8);
117 	}
118 
119 	/* Reset to the 5GHz mode */
120 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
121 
122 	return ret;
123 }
124 
125 /**
126  * ath5k_channel_ok() - Check if a channel is supported by the hw
127  * @ah: The &struct ath5k_hw
128  * @channel: The &struct ieee80211_channel
129  *
130  * Note: We don't do any regulatory domain checks here, it's just
131  * a sanity check.
132  */
133 bool
134 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel)
135 {
136 	u16 freq = channel->center_freq;
137 
138 	/* Check if the channel is in our supported range */
139 	if (channel->band == IEEE80211_BAND_2GHZ) {
140 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
141 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
142 			return true;
143 	} else if (channel->band == IEEE80211_BAND_5GHZ)
144 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
145 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
146 			return true;
147 
148 	return false;
149 }
150 
151 /**
152  * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
153  * @ah: The &struct ath5k_hw
154  * @channel: The &struct ieee80211_channel
155  */
156 bool
157 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
158 				struct ieee80211_channel *channel)
159 {
160 	u8 refclk_freq;
161 
162 	if ((ah->ah_radio == AR5K_RF5112) ||
163 	(ah->ah_radio == AR5K_RF5413) ||
164 	(ah->ah_radio == AR5K_RF2413) ||
165 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
166 		refclk_freq = 40;
167 	else
168 		refclk_freq = 32;
169 
170 	if ((channel->center_freq % refclk_freq != 0) &&
171 	((channel->center_freq % refclk_freq < 10) ||
172 	(channel->center_freq % refclk_freq > 22)))
173 		return true;
174 	else
175 		return false;
176 }
177 
178 /**
179  * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
180  * @ah: The &struct ath5k_hw
181  * @rf_regs: The struct ath5k_rf_reg
182  * @val: New value
183  * @reg_id: RF register ID
184  * @set: Indicate we need to swap data
185  *
186  * This is an internal function used to modify RF Banks before
187  * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
188  * infos.
189  */
190 static unsigned int
191 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs,
192 					u32 val, u8 reg_id, bool set)
193 {
194 	const struct ath5k_rf_reg *rfreg = NULL;
195 	u8 offset, bank, num_bits, col, position;
196 	u16 entry;
197 	u32 mask, data, last_bit, bits_shifted, first_bit;
198 	u32 *rfb;
199 	s32 bits_left;
200 	int i;
201 
202 	data = 0;
203 	rfb = ah->ah_rf_banks;
204 
205 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
206 		if (rf_regs[i].index == reg_id) {
207 			rfreg = &rf_regs[i];
208 			break;
209 		}
210 	}
211 
212 	if (rfb == NULL || rfreg == NULL) {
213 		ATH5K_PRINTF("Rf register not found!\n");
214 		/* should not happen */
215 		return 0;
216 	}
217 
218 	bank = rfreg->bank;
219 	num_bits = rfreg->field.len;
220 	first_bit = rfreg->field.pos;
221 	col = rfreg->field.col;
222 
223 	/* first_bit is an offset from bank's
224 	 * start. Since we have all banks on
225 	 * the same array, we use this offset
226 	 * to mark each bank's start */
227 	offset = ah->ah_offset[bank];
228 
229 	/* Boundary check */
230 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
231 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
232 		return 0;
233 	}
234 
235 	entry = ((first_bit - 1) / 8) + offset;
236 	position = (first_bit - 1) % 8;
237 
238 	if (set)
239 		data = ath5k_hw_bitswap(val, num_bits);
240 
241 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
242 	     position = 0, entry++) {
243 
244 		last_bit = (position + bits_left > 8) ? 8 :
245 					position + bits_left;
246 
247 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
248 								(col * 8);
249 
250 		if (set) {
251 			rfb[entry] &= ~mask;
252 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
253 			data >>= (8 - position);
254 		} else {
255 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
256 				<< bits_shifted;
257 			bits_shifted += last_bit - position;
258 		}
259 
260 		bits_left -= 8 - position;
261 	}
262 
263 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
264 
265 	return data;
266 }
267 
268 /**
269  * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
270  * @ah: the &struct ath5k_hw
271  * @channel: the currently set channel upon reset
272  *
273  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
274  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
275  *
276  * Since delta slope is floating point we split it on its exponent and
277  * mantissa and provide these values on hw.
278  *
279  * For more infos i think this patent is related
280  * "http://www.freepatentsonline.com/7184495.html"
281  */
282 static inline int
283 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
284 				struct ieee80211_channel *channel)
285 {
286 	/* Get exponent and mantissa and set it */
287 	u32 coef_scaled, coef_exp, coef_man,
288 		ds_coef_exp, ds_coef_man, clock;
289 
290 	BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
291 		(channel->hw_value == AR5K_MODE_11B));
292 
293 	/* Get coefficient
294 	 * ALGO: coef = (5 * clock / carrier_freq) / 2
295 	 * we scale coef by shifting clock value by 24 for
296 	 * better precision since we use integers */
297 	switch (ah->ah_bwmode) {
298 	case AR5K_BWMODE_40MHZ:
299 		clock = 40 * 2;
300 		break;
301 	case AR5K_BWMODE_10MHZ:
302 		clock = 40 / 2;
303 		break;
304 	case AR5K_BWMODE_5MHZ:
305 		clock = 40 / 4;
306 		break;
307 	default:
308 		clock = 40;
309 		break;
310 	}
311 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
312 
313 	/* Get exponent
314 	 * ALGO: coef_exp = 14 - highest set bit position */
315 	coef_exp = ilog2(coef_scaled);
316 
317 	/* Doesn't make sense if it's zero*/
318 	if (!coef_scaled || !coef_exp)
319 		return -EINVAL;
320 
321 	/* Note: we've shifted coef_scaled by 24 */
322 	coef_exp = 14 - (coef_exp - 24);
323 
324 
325 	/* Get mantissa (significant digits)
326 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
327 	coef_man = coef_scaled +
328 		(1 << (24 - coef_exp - 1));
329 
330 	/* Calculate delta slope coefficient exponent
331 	 * and mantissa (remove scaling) and set them on hw */
332 	ds_coef_man = coef_man >> (24 - coef_exp);
333 	ds_coef_exp = coef_exp - 16;
334 
335 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
336 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
337 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
338 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
339 
340 	return 0;
341 }
342 
343 /**
344  * ath5k_hw_phy_disable() - Disable PHY
345  * @ah: The &struct ath5k_hw
346  */
347 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
348 {
349 	/*Just a try M.F.*/
350 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
351 
352 	return 0;
353 }
354 
355 /**
356  * ath5k_hw_wait_for_synth() - Wait for synth to settle
357  * @ah: The &struct ath5k_hw
358  * @channel: The &struct ieee80211_channel
359  */
360 static void
361 ath5k_hw_wait_for_synth(struct ath5k_hw *ah,
362 			struct ieee80211_channel *channel)
363 {
364 	/*
365 	 * On 5211+ read activation -> rx delay
366 	 * and use it (100ns steps).
367 	 */
368 	if (ah->ah_version != AR5K_AR5210) {
369 		u32 delay;
370 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
371 			AR5K_PHY_RX_DELAY_M;
372 		delay = (channel->hw_value == AR5K_MODE_11B) ?
373 			((delay << 2) / 22) : (delay / 10);
374 		if (ah->ah_bwmode == AR5K_BWMODE_10MHZ)
375 			delay = delay << 1;
376 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ)
377 			delay = delay << 2;
378 		/* XXX: /2 on turbo ? Let's be safe
379 		 * for now */
380 		usleep_range(100 + delay, 100 + (2 * delay));
381 	} else {
382 		usleep_range(1000, 1500);
383 	}
384 }
385 
386 
387 /**********************\
388 * RF Gain optimization *
389 \**********************/
390 
391 /**
392  * DOC: RF Gain optimization
393  *
394  * This code is used to optimize RF gain on different environments
395  * (temperature mostly) based on feedback from a power detector.
396  *
397  * It's only used on RF5111 and RF5112, later RF chips seem to have
398  * auto adjustment on hw -notice they have a much smaller BANK 7 and
399  * no gain optimization ladder-.
400  *
401  * For more infos check out this patent doc
402  * "http://www.freepatentsonline.com/7400691.html"
403  *
404  * This paper describes power drops as seen on the receiver due to
405  * probe packets
406  * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
407  * %20of%20Power%20Control.pdf"
408  *
409  * And this is the MadWiFi bug entry related to the above
410  * "http://madwifi-project.org/ticket/1659"
411  * with various measurements and diagrams
412  */
413 
414 /**
415  * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
416  * @ah: The &struct ath5k_hw
417  */
418 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
419 {
420 	/* Initialize the gain optimization values */
421 	switch (ah->ah_radio) {
422 	case AR5K_RF5111:
423 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
424 		ah->ah_gain.g_low = 20;
425 		ah->ah_gain.g_high = 35;
426 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
427 		break;
428 	case AR5K_RF5112:
429 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
430 		ah->ah_gain.g_low = 20;
431 		ah->ah_gain.g_high = 85;
432 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
433 		break;
434 	default:
435 		return -EINVAL;
436 	}
437 
438 	return 0;
439 }
440 
441 /**
442  * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
443  * @ah: The &struct ath5k_hw
444  *
445  * Schedules a gain probe check on the next transmitted packet.
446  * That means our next packet is going to be sent with lower
447  * tx power and a Peak to Average Power Detector (PAPD) will try
448  * to measure the gain.
449  *
450  * TODO: Force a tx packet (bypassing PCU arbitrator etc)
451  * just after we enable the probe so that we don't mess with
452  * standard traffic.
453  */
454 static void
455 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
456 {
457 
458 	/* Skip if gain calibration is inactive or
459 	 * we already handle a probe request */
460 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
461 		return;
462 
463 	/* Send the packet with 2dB below max power as
464 	 * patent doc suggest */
465 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
466 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
467 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
468 
469 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
470 
471 }
472 
473 /**
474  * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
475  * @ah: The &struct ath5k_hw
476  *
477  * Calculate Gain_F measurement correction
478  * based on the current step for RF5112 rev. 2
479  */
480 static u32
481 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
482 {
483 	u32 mix, step;
484 	u32 *rf;
485 	const struct ath5k_gain_opt *go;
486 	const struct ath5k_gain_opt_step *g_step;
487 	const struct ath5k_rf_reg *rf_regs;
488 
489 	/* Only RF5112 Rev. 2 supports it */
490 	if ((ah->ah_radio != AR5K_RF5112) ||
491 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
492 		return 0;
493 
494 	go = &rfgain_opt_5112;
495 	rf_regs = rf_regs_5112a;
496 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
497 
498 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
499 
500 	if (ah->ah_rf_banks == NULL)
501 		return 0;
502 
503 	rf = ah->ah_rf_banks;
504 	ah->ah_gain.g_f_corr = 0;
505 
506 	/* No VGA (Variable Gain Amplifier) override, skip */
507 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
508 		return 0;
509 
510 	/* Mix gain stepping */
511 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
512 
513 	/* Mix gain override */
514 	mix = g_step->gos_param[0];
515 
516 	switch (mix) {
517 	case 3:
518 		ah->ah_gain.g_f_corr = step * 2;
519 		break;
520 	case 2:
521 		ah->ah_gain.g_f_corr = (step - 5) * 2;
522 		break;
523 	case 1:
524 		ah->ah_gain.g_f_corr = step;
525 		break;
526 	default:
527 		ah->ah_gain.g_f_corr = 0;
528 		break;
529 	}
530 
531 	return ah->ah_gain.g_f_corr;
532 }
533 
534 /**
535  * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
536  * @ah: The &struct ath5k_hw
537  *
538  * Check if current gain_F measurement is in the range of our
539  * power detector windows. If we get a measurement outside range
540  * we know it's not accurate (detectors can't measure anything outside
541  * their detection window) so we must ignore it.
542  *
543  * Returns true if readback was O.K. or false on failure
544  */
545 static bool
546 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
547 {
548 	const struct ath5k_rf_reg *rf_regs;
549 	u32 step, mix_ovr, level[4];
550 	u32 *rf;
551 
552 	if (ah->ah_rf_banks == NULL)
553 		return false;
554 
555 	rf = ah->ah_rf_banks;
556 
557 	if (ah->ah_radio == AR5K_RF5111) {
558 
559 		rf_regs = rf_regs_5111;
560 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
561 
562 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
563 			false);
564 
565 		level[0] = 0;
566 		level[1] = (step == 63) ? 50 : step + 4;
567 		level[2] = (step != 63) ? 64 : level[0];
568 		level[3] = level[2] + 50;
569 
570 		ah->ah_gain.g_high = level[3] -
571 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
572 		ah->ah_gain.g_low = level[0] +
573 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
574 	} else {
575 
576 		rf_regs = rf_regs_5112;
577 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
578 
579 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
580 			false);
581 
582 		level[0] = level[2] = 0;
583 
584 		if (mix_ovr == 1) {
585 			level[1] = level[3] = 83;
586 		} else {
587 			level[1] = level[3] = 107;
588 			ah->ah_gain.g_high = 55;
589 		}
590 	}
591 
592 	return (ah->ah_gain.g_current >= level[0] &&
593 			ah->ah_gain.g_current <= level[1]) ||
594 		(ah->ah_gain.g_current >= level[2] &&
595 			ah->ah_gain.g_current <= level[3]);
596 }
597 
598 /**
599  * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
600  * @ah: The &struct ath5k_hw
601  *
602  * Choose the right target gain based on current gain
603  * and RF gain optimization ladder
604  */
605 static s8
606 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
607 {
608 	const struct ath5k_gain_opt *go;
609 	const struct ath5k_gain_opt_step *g_step;
610 	int ret = 0;
611 
612 	switch (ah->ah_radio) {
613 	case AR5K_RF5111:
614 		go = &rfgain_opt_5111;
615 		break;
616 	case AR5K_RF5112:
617 		go = &rfgain_opt_5112;
618 		break;
619 	default:
620 		return 0;
621 	}
622 
623 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
624 
625 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
626 
627 		/* Reached maximum */
628 		if (ah->ah_gain.g_step_idx == 0)
629 			return -1;
630 
631 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
632 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
633 				ah->ah_gain.g_step_idx > 0;
634 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
635 			ah->ah_gain.g_target -= 2 *
636 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
637 			    g_step->gos_gain);
638 
639 		ret = 1;
640 		goto done;
641 	}
642 
643 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
644 
645 		/* Reached minimum */
646 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
647 			return -2;
648 
649 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
650 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
651 				ah->ah_gain.g_step_idx < go->go_steps_count - 1;
652 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
653 			ah->ah_gain.g_target -= 2 *
654 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
655 			    g_step->gos_gain);
656 
657 		ret = 2;
658 		goto done;
659 	}
660 
661 done:
662 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
663 		"ret %d, gain step %u, current gain %u, target gain %u\n",
664 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
665 		ah->ah_gain.g_target);
666 
667 	return ret;
668 }
669 
670 /**
671  * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
672  * @ah: The &struct ath5k_hw
673  *
674  * Main callback for thermal RF gain calibration engine
675  * Check for a new gain reading and schedule an adjustment
676  * if needed.
677  *
678  * Returns one of enum ath5k_rfgain codes
679  */
680 enum ath5k_rfgain
681 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
682 {
683 	u32 data, type;
684 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
685 
686 	if (ah->ah_rf_banks == NULL ||
687 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
688 		return AR5K_RFGAIN_INACTIVE;
689 
690 	/* No check requested, either engine is inactive
691 	 * or an adjustment is already requested */
692 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
693 		goto done;
694 
695 	/* Read the PAPD (Peak to Average Power Detector)
696 	 * register */
697 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
698 
699 	/* No probe is scheduled, read gain_F measurement */
700 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
701 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
702 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
703 
704 		/* If tx packet is CCK correct the gain_F measurement
705 		 * by cck ofdm gain delta */
706 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
707 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
708 				ah->ah_gain.g_current +=
709 					ee->ee_cck_ofdm_gain_delta;
710 			else
711 				ah->ah_gain.g_current +=
712 					AR5K_GAIN_CCK_PROBE_CORR;
713 		}
714 
715 		/* Further correct gain_F measurement for
716 		 * RF5112A radios */
717 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
718 			ath5k_hw_rf_gainf_corr(ah);
719 			ah->ah_gain.g_current =
720 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
721 				(ah->ah_gain.g_current - ah->ah_gain.g_f_corr) :
722 				0;
723 		}
724 
725 		/* Check if measurement is ok and if we need
726 		 * to adjust gain, schedule a gain adjustment,
727 		 * else switch back to the active state */
728 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
729 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
730 		ath5k_hw_rf_gainf_adjust(ah)) {
731 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
732 		} else {
733 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
734 		}
735 	}
736 
737 done:
738 	return ah->ah_gain.g_state;
739 }
740 
741 /**
742  * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
743  * @ah: The &struct ath5k_hw
744  * @band: One of enum ieee80211_band
745  *
746  * Write initial RF gain table to set the RF sensitivity.
747  *
748  * NOTE: This one works on all RF chips and has nothing to do
749  * with Gain_F calibration
750  */
751 static int
752 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band)
753 {
754 	const struct ath5k_ini_rfgain *ath5k_rfg;
755 	unsigned int i, size, index;
756 
757 	switch (ah->ah_radio) {
758 	case AR5K_RF5111:
759 		ath5k_rfg = rfgain_5111;
760 		size = ARRAY_SIZE(rfgain_5111);
761 		break;
762 	case AR5K_RF5112:
763 		ath5k_rfg = rfgain_5112;
764 		size = ARRAY_SIZE(rfgain_5112);
765 		break;
766 	case AR5K_RF2413:
767 		ath5k_rfg = rfgain_2413;
768 		size = ARRAY_SIZE(rfgain_2413);
769 		break;
770 	case AR5K_RF2316:
771 		ath5k_rfg = rfgain_2316;
772 		size = ARRAY_SIZE(rfgain_2316);
773 		break;
774 	case AR5K_RF5413:
775 		ath5k_rfg = rfgain_5413;
776 		size = ARRAY_SIZE(rfgain_5413);
777 		break;
778 	case AR5K_RF2317:
779 	case AR5K_RF2425:
780 		ath5k_rfg = rfgain_2425;
781 		size = ARRAY_SIZE(rfgain_2425);
782 		break;
783 	default:
784 		return -EINVAL;
785 	}
786 
787 	index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0;
788 
789 	for (i = 0; i < size; i++) {
790 		AR5K_REG_WAIT(i);
791 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index],
792 			(u32)ath5k_rfg[i].rfg_register);
793 	}
794 
795 	return 0;
796 }
797 
798 
799 /********************\
800 * RF Registers setup *
801 \********************/
802 
803 /**
804  * ath5k_hw_rfregs_init() - Initialize RF register settings
805  * @ah: The &struct ath5k_hw
806  * @channel: The &struct ieee80211_channel
807  * @mode: One of enum ath5k_driver_mode
808  *
809  * Setup RF registers by writing RF buffer on hw. For
810  * more infos on this, check out rfbuffer.h
811  */
812 static int
813 ath5k_hw_rfregs_init(struct ath5k_hw *ah,
814 			struct ieee80211_channel *channel,
815 			unsigned int mode)
816 {
817 	const struct ath5k_rf_reg *rf_regs;
818 	const struct ath5k_ini_rfbuffer *ini_rfb;
819 	const struct ath5k_gain_opt *go = NULL;
820 	const struct ath5k_gain_opt_step *g_step;
821 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
822 	u8 ee_mode = 0;
823 	u32 *rfb;
824 	int i, obdb = -1, bank = -1;
825 
826 	switch (ah->ah_radio) {
827 	case AR5K_RF5111:
828 		rf_regs = rf_regs_5111;
829 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
830 		ini_rfb = rfb_5111;
831 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
832 		go = &rfgain_opt_5111;
833 		break;
834 	case AR5K_RF5112:
835 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
836 			rf_regs = rf_regs_5112a;
837 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
838 			ini_rfb = rfb_5112a;
839 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
840 		} else {
841 			rf_regs = rf_regs_5112;
842 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
843 			ini_rfb = rfb_5112;
844 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
845 		}
846 		go = &rfgain_opt_5112;
847 		break;
848 	case AR5K_RF2413:
849 		rf_regs = rf_regs_2413;
850 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
851 		ini_rfb = rfb_2413;
852 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
853 		break;
854 	case AR5K_RF2316:
855 		rf_regs = rf_regs_2316;
856 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
857 		ini_rfb = rfb_2316;
858 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
859 		break;
860 	case AR5K_RF5413:
861 		rf_regs = rf_regs_5413;
862 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
863 		ini_rfb = rfb_5413;
864 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
865 		break;
866 	case AR5K_RF2317:
867 		rf_regs = rf_regs_2425;
868 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
869 		ini_rfb = rfb_2317;
870 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
871 		break;
872 	case AR5K_RF2425:
873 		rf_regs = rf_regs_2425;
874 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
875 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
876 			ini_rfb = rfb_2425;
877 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
878 		} else {
879 			ini_rfb = rfb_2417;
880 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
881 		}
882 		break;
883 	default:
884 		return -EINVAL;
885 	}
886 
887 	/* If it's the first time we set RF buffer, allocate
888 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
889 	 * we set above */
890 	if (ah->ah_rf_banks == NULL) {
891 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
892 								GFP_KERNEL);
893 		if (ah->ah_rf_banks == NULL) {
894 			ATH5K_ERR(ah, "out of memory\n");
895 			return -ENOMEM;
896 		}
897 	}
898 
899 	/* Copy values to modify them */
900 	rfb = ah->ah_rf_banks;
901 
902 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
903 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
904 			ATH5K_ERR(ah, "invalid bank\n");
905 			return -EINVAL;
906 		}
907 
908 		/* Bank changed, write down the offset */
909 		if (bank != ini_rfb[i].rfb_bank) {
910 			bank = ini_rfb[i].rfb_bank;
911 			ah->ah_offset[bank] = i;
912 		}
913 
914 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
915 	}
916 
917 	/* Set Output and Driver bias current (OB/DB) */
918 	if (channel->band == IEEE80211_BAND_2GHZ) {
919 
920 		if (channel->hw_value == AR5K_MODE_11B)
921 			ee_mode = AR5K_EEPROM_MODE_11B;
922 		else
923 			ee_mode = AR5K_EEPROM_MODE_11G;
924 
925 		/* For RF511X/RF211X combination we
926 		 * use b_OB and b_DB parameters stored
927 		 * in eeprom on ee->ee_ob[ee_mode][0]
928 		 *
929 		 * For all other chips we use OB/DB for 2GHz
930 		 * stored in the b/g modal section just like
931 		 * 802.11a on ee->ee_ob[ee_mode][1] */
932 		if ((ah->ah_radio == AR5K_RF5111) ||
933 		(ah->ah_radio == AR5K_RF5112))
934 			obdb = 0;
935 		else
936 			obdb = 1;
937 
938 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
939 						AR5K_RF_OB_2GHZ, true);
940 
941 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
942 						AR5K_RF_DB_2GHZ, true);
943 
944 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
945 	} else if ((channel->band == IEEE80211_BAND_5GHZ) ||
946 			(ah->ah_radio == AR5K_RF5111)) {
947 
948 		/* For 11a, Turbo and XR we need to choose
949 		 * OB/DB based on frequency range */
950 		ee_mode = AR5K_EEPROM_MODE_11A;
951 		obdb =	 channel->center_freq >= 5725 ? 3 :
952 			(channel->center_freq >= 5500 ? 2 :
953 			(channel->center_freq >= 5260 ? 1 :
954 			 (channel->center_freq > 4000 ? 0 : -1)));
955 
956 		if (obdb < 0)
957 			return -EINVAL;
958 
959 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
960 						AR5K_RF_OB_5GHZ, true);
961 
962 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
963 						AR5K_RF_DB_5GHZ, true);
964 	}
965 
966 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
967 
968 	/* Set turbo mode (N/A on RF5413) */
969 	if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) &&
970 	(ah->ah_radio != AR5K_RF5413))
971 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false);
972 
973 	/* Bank Modifications (chip-specific) */
974 	if (ah->ah_radio == AR5K_RF5111) {
975 
976 		/* Set gain_F settings according to current step */
977 		if (channel->hw_value != AR5K_MODE_11B) {
978 
979 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
980 					AR5K_PHY_FRAME_CTL_TX_CLIP,
981 					g_step->gos_param[0]);
982 
983 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
984 							AR5K_RF_PWD_90, true);
985 
986 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
987 							AR5K_RF_PWD_84, true);
988 
989 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
990 						AR5K_RF_RFGAIN_SEL, true);
991 
992 			/* We programmed gain_F parameters, switch back
993 			 * to active state */
994 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
995 
996 		}
997 
998 		/* Bank 6/7 setup */
999 
1000 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
1001 						AR5K_RF_PWD_XPD, true);
1002 
1003 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
1004 						AR5K_RF_XPD_GAIN, true);
1005 
1006 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1007 						AR5K_RF_GAIN_I, true);
1008 
1009 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1010 						AR5K_RF_PLO_SEL, true);
1011 
1012 		/* Tweak power detectors for half/quarter rate support */
1013 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1014 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1015 			u8 wait_i;
1016 
1017 			ath5k_hw_rfb_op(ah, rf_regs, 0x1f,
1018 						AR5K_RF_WAIT_S, true);
1019 
1020 			wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1021 							0x1f : 0x10;
1022 
1023 			ath5k_hw_rfb_op(ah, rf_regs, wait_i,
1024 						AR5K_RF_WAIT_I, true);
1025 			ath5k_hw_rfb_op(ah, rf_regs, 3,
1026 						AR5K_RF_MAX_TIME, true);
1027 
1028 		}
1029 	}
1030 
1031 	if (ah->ah_radio == AR5K_RF5112) {
1032 
1033 		/* Set gain_F settings according to current step */
1034 		if (channel->hw_value != AR5K_MODE_11B) {
1035 
1036 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
1037 						AR5K_RF_MIXGAIN_OVR, true);
1038 
1039 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
1040 						AR5K_RF_PWD_138, true);
1041 
1042 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
1043 						AR5K_RF_PWD_137, true);
1044 
1045 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
1046 						AR5K_RF_PWD_136, true);
1047 
1048 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
1049 						AR5K_RF_PWD_132, true);
1050 
1051 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
1052 						AR5K_RF_PWD_131, true);
1053 
1054 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
1055 						AR5K_RF_PWD_130, true);
1056 
1057 			/* We programmed gain_F parameters, switch back
1058 			 * to active state */
1059 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
1060 		}
1061 
1062 		/* Bank 6/7 setup */
1063 
1064 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
1065 						AR5K_RF_XPD_SEL, true);
1066 
1067 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
1068 			/* Rev. 1 supports only one xpd */
1069 			ath5k_hw_rfb_op(ah, rf_regs,
1070 						ee->ee_x_gain[ee_mode],
1071 						AR5K_RF_XPD_GAIN, true);
1072 
1073 		} else {
1074 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
1075 			if (ee->ee_pd_gains[ee_mode] > 1) {
1076 				ath5k_hw_rfb_op(ah, rf_regs,
1077 						pdg_curve_to_idx[0],
1078 						AR5K_RF_PD_GAIN_LO, true);
1079 				ath5k_hw_rfb_op(ah, rf_regs,
1080 						pdg_curve_to_idx[1],
1081 						AR5K_RF_PD_GAIN_HI, true);
1082 			} else {
1083 				ath5k_hw_rfb_op(ah, rf_regs,
1084 						pdg_curve_to_idx[0],
1085 						AR5K_RF_PD_GAIN_LO, true);
1086 				ath5k_hw_rfb_op(ah, rf_regs,
1087 						pdg_curve_to_idx[0],
1088 						AR5K_RF_PD_GAIN_HI, true);
1089 			}
1090 
1091 			/* Lower synth voltage on Rev 2 */
1092 			if (ah->ah_radio == AR5K_RF5112 &&
1093 			    (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) {
1094 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1095 						AR5K_RF_HIGH_VC_CP, true);
1096 
1097 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1098 						AR5K_RF_MID_VC_CP, true);
1099 
1100 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1101 						AR5K_RF_LOW_VC_CP, true);
1102 
1103 				ath5k_hw_rfb_op(ah, rf_regs, 2,
1104 						AR5K_RF_PUSH_UP, true);
1105 			}
1106 
1107 			/* Decrease power consumption on 5213+ BaseBand */
1108 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
1109 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1110 						AR5K_RF_PAD2GND, true);
1111 
1112 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1113 						AR5K_RF_XB2_LVL, true);
1114 
1115 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1116 						AR5K_RF_XB5_LVL, true);
1117 
1118 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1119 						AR5K_RF_PWD_167, true);
1120 
1121 				ath5k_hw_rfb_op(ah, rf_regs, 1,
1122 						AR5K_RF_PWD_166, true);
1123 			}
1124 		}
1125 
1126 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
1127 						AR5K_RF_GAIN_I, true);
1128 
1129 		/* Tweak power detector for half/quarter rates */
1130 		if (ah->ah_bwmode == AR5K_BWMODE_5MHZ ||
1131 		ah->ah_bwmode == AR5K_BWMODE_10MHZ) {
1132 			u8 pd_delay;
1133 
1134 			pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ?
1135 							0xf : 0x8;
1136 
1137 			ath5k_hw_rfb_op(ah, rf_regs, pd_delay,
1138 						AR5K_RF_PD_PERIOD_A, true);
1139 			ath5k_hw_rfb_op(ah, rf_regs, 0xf,
1140 						AR5K_RF_PD_DELAY_A, true);
1141 
1142 		}
1143 	}
1144 
1145 	if (ah->ah_radio == AR5K_RF5413 &&
1146 	channel->band == IEEE80211_BAND_2GHZ) {
1147 
1148 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
1149 									true);
1150 
1151 		/* Set optimum value for early revisions (on pci-e chips) */
1152 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
1153 		ah->ah_mac_srev < AR5K_SREV_AR5413)
1154 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
1155 						AR5K_RF_PWD_ICLOBUF_2G, true);
1156 
1157 	}
1158 
1159 	/* Write RF banks on hw */
1160 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
1161 		AR5K_REG_WAIT(i);
1162 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
1163 	}
1164 
1165 	return 0;
1166 }
1167 
1168 
1169 /**************************\
1170   PHY/RF channel functions
1171 \**************************/
1172 
1173 /**
1174  * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1175  * @channel: The &struct ieee80211_channel
1176  *
1177  * Map channel frequency to IEEE channel number and convert it
1178  * to an internal channel value used by the RF5110 chipset.
1179  */
1180 static u32
1181 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
1182 {
1183 	u32 athchan;
1184 
1185 	athchan = (ath5k_hw_bitswap(
1186 			(ieee80211_frequency_to_channel(
1187 				channel->center_freq) - 24) / 2, 5)
1188 				<< 1) | (1 << 6) | 0x1;
1189 	return athchan;
1190 }
1191 
1192 /**
1193  * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1194  * @ah: The &struct ath5k_hw
1195  * @channel: The &struct ieee80211_channel
1196  */
1197 static int
1198 ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
1199 		struct ieee80211_channel *channel)
1200 {
1201 	u32 data;
1202 
1203 	/*
1204 	 * Set the channel and wait
1205 	 */
1206 	data = ath5k_hw_rf5110_chan2athchan(channel);
1207 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
1208 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
1209 	usleep_range(1000, 1500);
1210 
1211 	return 0;
1212 }
1213 
1214 /**
1215  * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1216  * @ieee: IEEE channel number
1217  * @athchan: The &struct ath5k_athchan_2ghz
1218  *
1219  * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1220  * we need to add some offsets and extra flags to the data values we pass
1221  * on to the PHY. So for every 2GHz channel this function gets called
1222  * to do the conversion.
1223  */
1224 static int
1225 ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
1226 		struct ath5k_athchan_2ghz *athchan)
1227 {
1228 	int channel;
1229 
1230 	/* Cast this value to catch negative channel numbers (>= -19) */
1231 	channel = (int)ieee;
1232 
1233 	/*
1234 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
1235 	 */
1236 	if (channel <= 13) {
1237 		athchan->a2_athchan = 115 + channel;
1238 		athchan->a2_flags = 0x46;
1239 	} else if (channel == 14) {
1240 		athchan->a2_athchan = 124;
1241 		athchan->a2_flags = 0x44;
1242 	} else if (channel >= 15 && channel <= 26) {
1243 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
1244 		athchan->a2_flags = 0x46;
1245 	} else
1246 		return -EINVAL;
1247 
1248 	return 0;
1249 }
1250 
1251 /**
1252  * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1253  * @ah: The &struct ath5k_hw
1254  * @channel: The &struct ieee80211_channel
1255  */
1256 static int
1257 ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
1258 		struct ieee80211_channel *channel)
1259 {
1260 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
1261 	unsigned int ath5k_channel =
1262 		ieee80211_frequency_to_channel(channel->center_freq);
1263 	u32 data0, data1, clock;
1264 	int ret;
1265 
1266 	/*
1267 	 * Set the channel on the RF5111 radio
1268 	 */
1269 	data0 = data1 = 0;
1270 
1271 	if (channel->band == IEEE80211_BAND_2GHZ) {
1272 		/* Map 2GHz channel to 5GHz Atheros channel ID */
1273 		ret = ath5k_hw_rf5111_chan2athchan(
1274 			ieee80211_frequency_to_channel(channel->center_freq),
1275 			&ath5k_channel_2ghz);
1276 		if (ret)
1277 			return ret;
1278 
1279 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
1280 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
1281 		    << 5) | (1 << 4);
1282 	}
1283 
1284 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
1285 		clock = 1;
1286 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
1287 			(clock << 1) | (1 << 10) | 1;
1288 	} else {
1289 		clock = 0;
1290 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
1291 			<< 2) | (clock << 1) | (1 << 10) | 1;
1292 	}
1293 
1294 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
1295 			AR5K_RF_BUFFER);
1296 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
1297 			AR5K_RF_BUFFER_CONTROL_3);
1298 
1299 	return 0;
1300 }
1301 
1302 /**
1303  * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1304  * @ah: The &struct ath5k_hw
1305  * @channel: The &struct ieee80211_channel
1306  *
1307  * On RF5112/2112 and newer we don't need to do any conversion.
1308  * We pass the frequency value after a few modifications to the
1309  * chip directly.
1310  *
1311  * NOTE: Make sure channel frequency given is within our range or else
1312  * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1313  */
1314 static int
1315 ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
1316 		struct ieee80211_channel *channel)
1317 {
1318 	u32 data, data0, data1, data2;
1319 	u16 c;
1320 
1321 	data = data0 = data1 = data2 = 0;
1322 	c = channel->center_freq;
1323 
1324 	/* My guess based on code:
1325 	 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1326 	 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1327 	 * (3040/2). data0 is used to set the PLL divider and data1
1328 	 * selects synth mode. */
1329 	if (c < 4800) {
1330 		/* Channel 14 and all frequencies with 2Hz spacing
1331 		 * below/above (non-standard channels) */
1332 		if (!((c - 2224) % 5)) {
1333 			/* Same as (c - 2224) / 5 */
1334 			data0 = ((2 * (c - 704)) - 3040) / 10;
1335 			data1 = 1;
1336 		/* Channel 1 and all frequencies with 5Hz spacing
1337 		 * below/above (standard channels without channel 14) */
1338 		} else if (!((c - 2192) % 5)) {
1339 			/* Same as (c - 2192) / 5 */
1340 			data0 = ((2 * (c - 672)) - 3040) / 10;
1341 			data1 = 0;
1342 		} else
1343 			return -EINVAL;
1344 
1345 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
1346 	/* This is more complex, we have a single synthesizer with
1347 	 * 4 reference clock settings (?) based on frequency spacing
1348 	 * and set using data2. LO is at 4800Hz and data0 is again used
1349 	 * to set some divider.
1350 	 *
1351 	 * NOTE: There is an old atheros presentation at Stanford
1352 	 * that mentions a method called dual direct conversion
1353 	 * with 1GHz sliding IF for RF5110. Maybe that's what we
1354 	 * have here, or an updated version. */
1355 	} else if ((c % 5) != 2 || c > 5435) {
1356 		if (!(c % 20) && c >= 5120) {
1357 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1358 			data2 = ath5k_hw_bitswap(3, 2);
1359 		} else if (!(c % 10)) {
1360 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1361 			data2 = ath5k_hw_bitswap(2, 2);
1362 		} else if (!(c % 5)) {
1363 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1364 			data2 = ath5k_hw_bitswap(1, 2);
1365 		} else
1366 			return -EINVAL;
1367 	} else {
1368 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1369 		data2 = ath5k_hw_bitswap(0, 2);
1370 	}
1371 
1372 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
1373 
1374 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1375 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1376 
1377 	return 0;
1378 }
1379 
1380 /**
1381  * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1382  * @ah: The &struct ath5k_hw
1383  * @channel: The &struct ieee80211_channel
1384  *
1385  * AR2425/2417 have a different 2GHz RF so code changes
1386  * a little bit from RF5112.
1387  */
1388 static int
1389 ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1390 		struct ieee80211_channel *channel)
1391 {
1392 	u32 data, data0, data2;
1393 	u16 c;
1394 
1395 	data = data0 = data2 = 0;
1396 	c = channel->center_freq;
1397 
1398 	if (c < 4800) {
1399 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1400 		data2 = 0;
1401 	/* ? 5GHz ? */
1402 	} else if ((c % 5) != 2 || c > 5435) {
1403 		if (!(c % 20) && c < 5120)
1404 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1405 		else if (!(c % 10))
1406 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1407 		else if (!(c % 5))
1408 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1409 		else
1410 			return -EINVAL;
1411 		data2 = ath5k_hw_bitswap(1, 2);
1412 	} else {
1413 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1414 		data2 = ath5k_hw_bitswap(0, 2);
1415 	}
1416 
1417 	data = (data0 << 4) | data2 << 2 | 0x1001;
1418 
1419 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1420 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1421 
1422 	return 0;
1423 }
1424 
1425 /**
1426  * ath5k_hw_channel() - Set a channel on the radio chip
1427  * @ah: The &struct ath5k_hw
1428  * @channel: The &struct ieee80211_channel
1429  *
1430  * This is the main function called to set a channel on the
1431  * radio chip based on the radio chip version.
1432  */
1433 static int
1434 ath5k_hw_channel(struct ath5k_hw *ah,
1435 		struct ieee80211_channel *channel)
1436 {
1437 	int ret;
1438 	/*
1439 	 * Check bounds supported by the PHY (we don't care about regulatory
1440 	 * restrictions at this point).
1441 	 */
1442 	if (!ath5k_channel_ok(ah, channel)) {
1443 		ATH5K_ERR(ah,
1444 			"channel frequency (%u MHz) out of supported "
1445 			"band range\n",
1446 			channel->center_freq);
1447 			return -EINVAL;
1448 	}
1449 
1450 	/*
1451 	 * Set the channel and wait
1452 	 */
1453 	switch (ah->ah_radio) {
1454 	case AR5K_RF5110:
1455 		ret = ath5k_hw_rf5110_channel(ah, channel);
1456 		break;
1457 	case AR5K_RF5111:
1458 		ret = ath5k_hw_rf5111_channel(ah, channel);
1459 		break;
1460 	case AR5K_RF2317:
1461 	case AR5K_RF2425:
1462 		ret = ath5k_hw_rf2425_channel(ah, channel);
1463 		break;
1464 	default:
1465 		ret = ath5k_hw_rf5112_channel(ah, channel);
1466 		break;
1467 	}
1468 
1469 	if (ret)
1470 		return ret;
1471 
1472 	/* Set JAPAN setting for channel 14 */
1473 	if (channel->center_freq == 2484) {
1474 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1475 				AR5K_PHY_CCKTXCTL_JAPAN);
1476 	} else {
1477 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1478 				AR5K_PHY_CCKTXCTL_WORLD);
1479 	}
1480 
1481 	ah->ah_current_channel = channel;
1482 
1483 	return 0;
1484 }
1485 
1486 
1487 /*****************\
1488   PHY calibration
1489 \*****************/
1490 
1491 /**
1492  * DOC: PHY Calibration routines
1493  *
1494  * Noise floor calibration: When we tell the hardware to
1495  * perform a noise floor calibration by setting the
1496  * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1497  * sample-and-hold the minimum noise level seen at the antennas.
1498  * This value is then stored in a ring buffer of recently measured
1499  * noise floor values so we have a moving window of the last few
1500  * samples. The median of the values in the history is then loaded
1501  * into the hardware for its own use for RSSI and CCA measurements.
1502  * This type of calibration doesn't interfere with traffic.
1503  *
1504  * AGC calibration: When we tell the hardware to perform
1505  * an AGC (Automatic Gain Control) calibration by setting the
1506  * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1507  * a calibration on the DC offsets of ADCs. During this period
1508  * rx/tx gets disabled so we have to deal with it on the driver
1509  * part.
1510  *
1511  * I/Q calibration: When we tell the hardware to perform
1512  * an I/Q calibration, it tries to correct I/Q imbalance and
1513  * fix QAM constellation by sampling data from rxed frames.
1514  * It doesn't interfere with traffic.
1515  *
1516  * For more infos on AGC and I/Q calibration check out patent doc
1517  * #03/094463.
1518  */
1519 
1520 /**
1521  * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1522  * @ah: The &struct ath5k_hw
1523  */
1524 static s32
1525 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1526 {
1527 	s32 val;
1528 
1529 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1530 	return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8);
1531 }
1532 
1533 /**
1534  * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1535  * @ah: The &struct ath5k_hw
1536  */
1537 void
1538 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1539 {
1540 	int i;
1541 
1542 	ah->ah_nfcal_hist.index = 0;
1543 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1544 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1545 }
1546 
1547 /**
1548  * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1549  * @ah: The &struct ath5k_hw
1550  * @noise_floor: The NF we got from hw
1551  */
1552 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1553 {
1554 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1555 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1);
1556 	hist->nfval[hist->index] = noise_floor;
1557 }
1558 
1559 /**
1560  * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1561  * @ah: The &struct ath5k_hw
1562  */
1563 static s16
1564 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1565 {
1566 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1567 	s16 tmp;
1568 	int i, j;
1569 
1570 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1571 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1572 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1573 			if (sort[j] > sort[j - 1]) {
1574 				tmp = sort[j];
1575 				sort[j] = sort[j - 1];
1576 				sort[j - 1] = tmp;
1577 			}
1578 		}
1579 	}
1580 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1581 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1582 			"cal %d:%d\n", i, sort[i]);
1583 	}
1584 	return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2];
1585 }
1586 
1587 /**
1588  * ath5k_hw_update_noise_floor() - Update NF on hardware
1589  * @ah: The &struct ath5k_hw
1590  *
1591  * This is the main function we call to perform a NF calibration,
1592  * it reads NF from hardware, calculates the median and updates
1593  * NF on hw.
1594  */
1595 void
1596 ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1597 {
1598 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1599 	u32 val;
1600 	s16 nf, threshold;
1601 	u8 ee_mode;
1602 
1603 	/* keep last value if calibration hasn't completed */
1604 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1605 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1606 			"NF did not complete in calibration window\n");
1607 
1608 		return;
1609 	}
1610 
1611 	ah->ah_cal_mask |= AR5K_CALIBRATION_NF;
1612 
1613 	ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel);
1614 
1615 	/* completed NF calibration, test threshold */
1616 	nf = ath5k_hw_read_measured_noise_floor(ah);
1617 	threshold = ee->ee_noise_floor_thr[ee_mode];
1618 
1619 	if (nf > threshold) {
1620 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1621 			"noise floor failure detected; "
1622 			"read %d, threshold %d\n",
1623 			nf, threshold);
1624 
1625 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1626 	}
1627 
1628 	ath5k_hw_update_nfcal_hist(ah, nf);
1629 	nf = ath5k_hw_get_median_noise_floor(ah);
1630 
1631 	/* load noise floor (in .5 dBm) so the hardware will use it */
1632 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1633 	val |= (nf * 2) & AR5K_PHY_NF_M;
1634 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1635 
1636 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1637 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1638 
1639 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1640 		0, false);
1641 
1642 	/*
1643 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1644 	 * so that we're not capped by the median we just loaded.
1645 	 * This will be used as the initial value for the next noise
1646 	 * floor calibration.
1647 	 */
1648 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1649 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1650 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1651 		AR5K_PHY_AGCCTL_NF_EN |
1652 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1653 		AR5K_PHY_AGCCTL_NF);
1654 
1655 	ah->ah_noise_floor = nf;
1656 
1657 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF;
1658 
1659 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
1660 		"noise floor calibrated: %d\n", nf);
1661 }
1662 
1663 /**
1664  * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1665  * @ah: The &struct ath5k_hw
1666  * @channel: The &struct ieee80211_channel
1667  *
1668  * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1669  */
1670 static int
1671 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1672 		struct ieee80211_channel *channel)
1673 {
1674 	u32 phy_sig, phy_agc, phy_sat, beacon;
1675 	int ret;
1676 
1677 	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL))
1678 		return 0;
1679 
1680 	/*
1681 	 * Disable beacons and RX/TX queues, wait
1682 	 */
1683 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1684 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1685 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1686 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1687 
1688 	usleep_range(2000, 2500);
1689 
1690 	/*
1691 	 * Set the channel (with AGC turned off)
1692 	 */
1693 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1694 	udelay(10);
1695 	ret = ath5k_hw_channel(ah, channel);
1696 
1697 	/*
1698 	 * Activate PHY and wait
1699 	 */
1700 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1701 	usleep_range(1000, 1500);
1702 
1703 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1704 
1705 	if (ret)
1706 		return ret;
1707 
1708 	/*
1709 	 * Calibrate the radio chip
1710 	 */
1711 
1712 	/* Remember normal state */
1713 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1714 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1715 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1716 
1717 	/* Update radio registers */
1718 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1719 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1720 
1721 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1722 			AR5K_PHY_AGCCOARSE_LO)) |
1723 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1724 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1725 
1726 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1727 			AR5K_PHY_ADCSAT_THR)) |
1728 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1729 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1730 
1731 	udelay(20);
1732 
1733 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1734 	udelay(10);
1735 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1736 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1737 
1738 	usleep_range(1000, 1500);
1739 
1740 	/*
1741 	 * Enable calibration and wait until completion
1742 	 */
1743 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1744 
1745 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1746 			AR5K_PHY_AGCCTL_CAL, 0, false);
1747 
1748 	/* Reset to normal state */
1749 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1750 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1751 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1752 
1753 	if (ret) {
1754 		ATH5K_ERR(ah, "calibration timeout (%uMHz)\n",
1755 				channel->center_freq);
1756 		return ret;
1757 	}
1758 
1759 	/*
1760 	 * Re-enable RX/TX and beacons
1761 	 */
1762 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1763 		AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210);
1764 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1765 
1766 	return 0;
1767 }
1768 
1769 /**
1770  * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1771  * @ah: The &struct ath5k_hw
1772  */
1773 static int
1774 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1775 {
1776 	u32 i_pwr, q_pwr;
1777 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1778 	int i;
1779 
1780 	/* Skip if I/Q calibration is not needed or if it's still running */
1781 	if (!ah->ah_iq_cal_needed)
1782 		return -EINVAL;
1783 	else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) {
1784 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1785 				"I/Q calibration still running");
1786 		return -EBUSY;
1787 	}
1788 
1789 	/* Calibration has finished, get the results and re-run */
1790 
1791 	/* Work around for empty results which can apparently happen on 5212:
1792 	 * Read registers up to 10 times until we get both i_pr and q_pwr */
1793 	for (i = 0; i <= 10; i++) {
1794 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1795 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1796 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1797 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1798 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1799 		if (i_pwr && q_pwr)
1800 			break;
1801 	}
1802 
1803 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1804 
1805 	if (ah->ah_version == AR5K_AR5211)
1806 		q_coffd = q_pwr >> 6;
1807 	else
1808 		q_coffd = q_pwr >> 7;
1809 
1810 	/* In case i_coffd became zero, cancel calibration
1811 	 * not only it's too small, it'll also result a divide
1812 	 * by zero later on. */
1813 	if (i_coffd == 0 || q_coffd < 2)
1814 		return -ECANCELED;
1815 
1816 	/* Protect against loss of sign bits */
1817 
1818 	i_coff = (-iq_corr) / i_coffd;
1819 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1820 
1821 	if (ah->ah_version == AR5K_AR5211)
1822 		q_coff = (i_pwr / q_coffd) - 64;
1823 	else
1824 		q_coff = (i_pwr / q_coffd) - 128;
1825 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1826 
1827 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1828 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1829 			i_coff, q_coff, i_coffd, q_coffd);
1830 
1831 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1832 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1833 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1834 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1835 
1836 	/* Re-enable calibration -if we don't we'll commit
1837 	 * the same values again and again */
1838 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1839 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1840 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1841 
1842 	return 0;
1843 }
1844 
1845 /**
1846  * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1847  * @ah: The &struct ath5k_hw
1848  * @channel: The &struct ieee80211_channel
1849  *
1850  * The main function we call from above to perform
1851  * a short or full PHY calibration based on RF chip
1852  * and current channel
1853  */
1854 int
1855 ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1856 		struct ieee80211_channel *channel)
1857 {
1858 	int ret;
1859 
1860 	if (ah->ah_radio == AR5K_RF5110)
1861 		return ath5k_hw_rf5110_calibrate(ah, channel);
1862 
1863 	ret = ath5k_hw_rf511x_iq_calibrate(ah);
1864 	if (ret) {
1865 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE,
1866 			"No I/Q correction performed (%uMHz)\n",
1867 			channel->center_freq);
1868 
1869 		/* Happens all the time if there is not much
1870 		 * traffic, consider it normal behaviour. */
1871 		ret = 0;
1872 	}
1873 
1874 	/* On full calibration do an AGC calibration and
1875 	 * request a PAPD probe for gainf calibration if
1876 	 * needed */
1877 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL) {
1878 
1879 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1880 					AR5K_PHY_AGCCTL_CAL);
1881 
1882 		ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1883 			AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF,
1884 			0, false);
1885 		if (ret) {
1886 			ATH5K_ERR(ah,
1887 				"gain calibration timeout (%uMHz)\n",
1888 				channel->center_freq);
1889 		}
1890 
1891 		if ((ah->ah_radio == AR5K_RF5111 ||
1892 			ah->ah_radio == AR5K_RF5112)
1893 			&& (channel->hw_value != AR5K_MODE_11B))
1894 			ath5k_hw_request_rfgain_probe(ah);
1895 	}
1896 
1897 	/* Update noise floor
1898 	 * XXX: Only do this after AGC calibration */
1899 	if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF))
1900 		ath5k_hw_update_noise_floor(ah);
1901 
1902 	return ret;
1903 }
1904 
1905 
1906 /***************************\
1907 * Spur mitigation functions *
1908 \***************************/
1909 
1910 /**
1911  * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1912  * @ah: The &struct ath5k_hw
1913  * @channel: The &struct ieee80211_channel
1914  *
1915  * This function gets called during PHY initialization to
1916  * configure the spur filter for the given channel. Spur is noise
1917  * generated due to "reflection" effects, for more information on this
1918  * method check out patent US7643810
1919  */
1920 static void
1921 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1922 				struct ieee80211_channel *channel)
1923 {
1924 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1925 	u32 mag_mask[4] = {0, 0, 0, 0};
1926 	u32 pilot_mask[2] = {0, 0};
1927 	/* Note: fbin values are scaled up by 2 */
1928 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1929 	s32 spur_delta_phase, spur_freq_sigma_delta;
1930 	s32 spur_offset, num_symbols_x16;
1931 	u8 num_symbol_offsets, i, freq_band;
1932 
1933 	/* Convert current frequency to fbin value (the same way channels
1934 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1935 	 * up by 2 so we can compare it later */
1936 	if (channel->band == IEEE80211_BAND_2GHZ) {
1937 		chan_fbin = (channel->center_freq - 2300) * 10;
1938 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1939 	} else {
1940 		chan_fbin = (channel->center_freq - 4900) * 10;
1941 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1942 	}
1943 
1944 	/* Check if any spur_chan_fbin from EEPROM is
1945 	 * within our current channel's spur detection range */
1946 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1947 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1948 	/* XXX: Half/Quarter channels ?*/
1949 	if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
1950 		spur_detection_window *= 2;
1951 
1952 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1953 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1954 
1955 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1956 		 * so it's zero if we got nothing from EEPROM */
1957 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1958 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1959 			break;
1960 		}
1961 
1962 		if ((chan_fbin - spur_detection_window <=
1963 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1964 		(chan_fbin + spur_detection_window >=
1965 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1966 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1967 			break;
1968 		}
1969 	}
1970 
1971 	/* We need to enable spur filter for this channel */
1972 	if (spur_chan_fbin) {
1973 		spur_offset = spur_chan_fbin - chan_fbin;
1974 		/*
1975 		 * Calculate deltas:
1976 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1977 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1978 		 * Note: Both values have 100Hz resolution
1979 		 */
1980 		switch (ah->ah_bwmode) {
1981 		case AR5K_BWMODE_40MHZ:
1982 			/* Both sample_freq and chip_freq are 80MHz */
1983 			spur_delta_phase = (spur_offset << 16) / 25;
1984 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1985 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2;
1986 			break;
1987 		case AR5K_BWMODE_10MHZ:
1988 			/* Both sample_freq and chip_freq are 20MHz (?) */
1989 			spur_delta_phase = (spur_offset << 18) / 25;
1990 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1991 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2;
1992 		case AR5K_BWMODE_5MHZ:
1993 			/* Both sample_freq and chip_freq are 10MHz (?) */
1994 			spur_delta_phase = (spur_offset << 19) / 25;
1995 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1996 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4;
1997 		default:
1998 			if (channel->band == IEEE80211_BAND_5GHZ) {
1999 				/* Both sample_freq and chip_freq are 40MHz */
2000 				spur_delta_phase = (spur_offset << 17) / 25;
2001 				spur_freq_sigma_delta =
2002 						(spur_delta_phase >> 10);
2003 				symbol_width =
2004 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
2005 			} else {
2006 				/* sample_freq -> 40MHz chip_freq -> 44MHz
2007 				 * (for b compatibility) */
2008 				spur_delta_phase = (spur_offset << 17) / 25;
2009 				spur_freq_sigma_delta =
2010 						(spur_offset << 8) / 55;
2011 				symbol_width =
2012 					AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
2013 			}
2014 			break;
2015 		}
2016 
2017 		/* Calculate pilot and magnitude masks */
2018 
2019 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
2020 		 * and divide by symbol_width to find how many symbols we have
2021 		 * Note: number of symbols is scaled up by 16 */
2022 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
2023 
2024 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2025 		if (!(num_symbols_x16 & 0xF))
2026 			/* _X_ */
2027 			num_symbol_offsets = 3;
2028 		else
2029 			/* _xx_ */
2030 			num_symbol_offsets = 4;
2031 
2032 		for (i = 0; i < num_symbol_offsets; i++) {
2033 
2034 			/* Calculate pilot mask */
2035 			s32 curr_sym_off =
2036 				(num_symbols_x16 / 16) + i + 25;
2037 
2038 			/* Pilot magnitude mask seems to be a way to
2039 			 * declare the boundaries for our detection
2040 			 * window or something, it's 2 for the middle
2041 			 * value(s) where the symbol is expected to be
2042 			 * and 1 on the boundary values */
2043 			u8 plt_mag_map =
2044 				(i == 0 || i == (num_symbol_offsets - 1))
2045 								? 1 : 2;
2046 
2047 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
2048 				if (curr_sym_off <= 25)
2049 					pilot_mask[0] |= 1 << curr_sym_off;
2050 				else if (curr_sym_off >= 27)
2051 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
2052 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
2053 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
2054 
2055 			/* Calculate magnitude mask (for viterbi decoder) */
2056 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
2057 				mag_mask[0] |=
2058 					plt_mag_map << (curr_sym_off + 1) * 2;
2059 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
2060 				mag_mask[1] |=
2061 					plt_mag_map << (curr_sym_off - 15) * 2;
2062 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
2063 				mag_mask[2] |=
2064 					plt_mag_map << (curr_sym_off - 31) * 2;
2065 			else if (curr_sym_off >= 47 && curr_sym_off <= 53)
2066 				mag_mask[3] |=
2067 					plt_mag_map << (curr_sym_off - 47) * 2;
2068 
2069 		}
2070 
2071 		/* Write settings on hw to enable spur filter */
2072 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2073 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
2074 		/* XXX: Self correlator also ? */
2075 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
2076 					AR5K_PHY_IQ_PILOT_MASK_EN |
2077 					AR5K_PHY_IQ_CHAN_MASK_EN |
2078 					AR5K_PHY_IQ_SPUR_FILT_EN);
2079 
2080 		/* Set delta phase and freq sigma delta */
2081 		ath5k_hw_reg_write(ah,
2082 				AR5K_REG_SM(spur_delta_phase,
2083 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
2084 				AR5K_REG_SM(spur_freq_sigma_delta,
2085 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
2086 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
2087 				AR5K_PHY_TIMING_11);
2088 
2089 		/* Write pilot masks */
2090 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
2091 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2092 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2093 					pilot_mask[1]);
2094 
2095 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
2096 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2097 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2098 					pilot_mask[1]);
2099 
2100 		/* Write magnitude masks */
2101 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
2102 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
2103 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
2104 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2105 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2106 					mag_mask[3]);
2107 
2108 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
2109 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
2110 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
2111 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2112 					AR5K_PHY_BIN_MASK2_4_MASK_4,
2113 					mag_mask[3]);
2114 
2115 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
2116 	AR5K_PHY_IQ_SPUR_FILT_EN) {
2117 		/* Clean up spur mitigation settings and disable filter */
2118 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2119 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
2120 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
2121 					AR5K_PHY_IQ_PILOT_MASK_EN |
2122 					AR5K_PHY_IQ_CHAN_MASK_EN |
2123 					AR5K_PHY_IQ_SPUR_FILT_EN);
2124 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
2125 
2126 		/* Clear pilot masks */
2127 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
2128 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
2129 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
2130 					0);
2131 
2132 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
2133 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
2134 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
2135 					0);
2136 
2137 		/* Clear magnitude masks */
2138 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
2139 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
2140 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
2141 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
2142 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
2143 					0);
2144 
2145 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
2146 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
2147 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
2148 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
2149 					AR5K_PHY_BIN_MASK2_4_MASK_4,
2150 					0);
2151 	}
2152 }
2153 
2154 
2155 /*****************\
2156 * Antenna control *
2157 \*****************/
2158 
2159 /**
2160  * DOC: Antenna control
2161  *
2162  * Hw supports up to 14 antennas ! I haven't found any card that implements
2163  * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2164  * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2165  * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2166  *
2167  * We can have a single antenna for RX and multiple antennas for TX.
2168  * RX antenna is our "default" antenna (usually antenna 1) set on
2169  * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2170  * (0 for automatic selection, 1 - 14 antenna number).
2171  *
2172  * We can let hw do all the work doing fast antenna diversity for both
2173  * tx and rx or we can do things manually. Here are the options we have
2174  * (all are bits of STA_ID1 register):
2175  *
2176  * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2177  * control descriptor, use the default antenna to transmit or else use the last
2178  * antenna on which we received an ACK.
2179  *
2180  * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2181  * the antenna on which we got the ACK for that frame.
2182  *
2183  * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2184  * one on the TX descriptor.
2185  *
2186  * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2187  * (ACKs etc), or else use current antenna (the one we just used for TX).
2188  *
2189  * Using the above we support the following scenarios:
2190  *
2191  * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2192  *
2193  * AR5K_ANTMODE_FIXED_A	-> Only antenna A (MAIN) is present
2194  *
2195  * AR5K_ANTMODE_FIXED_B	-> Only antenna B (AUX) is present
2196  *
2197  * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2198  *
2199  * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2200  *
2201  * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2202  *
2203  * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2204  *
2205  * Also note that when setting antenna to F on tx descriptor card inverts
2206  * current tx antenna.
2207  */
2208 
2209 /**
2210  * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2211  * @ah: The &struct ath5k_hw
2212  * @ant: Antenna number
2213  */
2214 static void
2215 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
2216 {
2217 	if (ah->ah_version != AR5K_AR5210)
2218 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
2219 }
2220 
2221 /**
2222  * ath5k_hw_set_fast_div() -  Enable/disable fast rx antenna diversity
2223  * @ah: The &struct ath5k_hw
2224  * @ee_mode: One of enum ath5k_driver_mode
2225  * @enable: True to enable, false to disable
2226  */
2227 static void
2228 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
2229 {
2230 	switch (ee_mode) {
2231 	case AR5K_EEPROM_MODE_11G:
2232 		/* XXX: This is set to
2233 		 * disabled on initvals !!! */
2234 	case AR5K_EEPROM_MODE_11A:
2235 		if (enable)
2236 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
2237 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2238 		else
2239 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2240 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2241 		break;
2242 	case AR5K_EEPROM_MODE_11B:
2243 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
2244 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
2245 		break;
2246 	default:
2247 		return;
2248 	}
2249 
2250 	if (enable) {
2251 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2252 				AR5K_PHY_RESTART_DIV_GC, 4);
2253 
2254 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2255 					AR5K_PHY_FAST_ANT_DIV_EN);
2256 	} else {
2257 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
2258 				AR5K_PHY_RESTART_DIV_GC, 0);
2259 
2260 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
2261 					AR5K_PHY_FAST_ANT_DIV_EN);
2262 	}
2263 }
2264 
2265 /**
2266  * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2267  * @ah: The &struct ath5k_hw
2268  * @ee_mode: One of enum ath5k_driver_mode
2269  *
2270  * Switch table comes from EEPROM and includes information on controlling
2271  * the 2 antenna RX attenuators
2272  */
2273 void
2274 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
2275 {
2276 	u8 ant0, ant1;
2277 
2278 	/*
2279 	 * In case a fixed antenna was set as default
2280 	 * use the same switch table twice.
2281 	 */
2282 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
2283 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
2284 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
2285 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
2286 	else {
2287 		ant0 = AR5K_ANT_SWTABLE_A;
2288 		ant1 = AR5K_ANT_SWTABLE_B;
2289 	}
2290 
2291 	/* Set antenna idle switch table */
2292 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
2293 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
2294 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
2295 			AR5K_PHY_ANT_CTL_TXRX_EN));
2296 
2297 	/* Set antenna switch tables */
2298 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
2299 		AR5K_PHY_ANT_SWITCH_TABLE_0);
2300 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
2301 		AR5K_PHY_ANT_SWITCH_TABLE_1);
2302 }
2303 
2304 /**
2305  * ath5k_hw_set_antenna_mode() -  Set antenna operating mode
2306  * @ah: The &struct ath5k_hw
2307  * @ant_mode: One of enum ath5k_ant_mode
2308  */
2309 void
2310 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
2311 {
2312 	struct ieee80211_channel *channel = ah->ah_current_channel;
2313 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
2314 	bool use_def_for_sg;
2315 	int ee_mode;
2316 	u8 def_ant, tx_ant;
2317 	u32 sta_id1 = 0;
2318 
2319 	/* if channel is not initialized yet we can't set the antennas
2320 	 * so just store the mode. it will be set on the next reset */
2321 	if (channel == NULL) {
2322 		ah->ah_ant_mode = ant_mode;
2323 		return;
2324 	}
2325 
2326 	def_ant = ah->ah_def_ant;
2327 
2328 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
2329 	if (ee_mode < 0) {
2330 		ATH5K_ERR(ah,
2331 			"invalid channel: %d\n", channel->center_freq);
2332 		return;
2333 	}
2334 
2335 	switch (ant_mode) {
2336 	case AR5K_ANTMODE_DEFAULT:
2337 		tx_ant = 0;
2338 		use_def_for_tx = false;
2339 		update_def_on_tx = false;
2340 		use_def_for_rts = false;
2341 		use_def_for_sg = false;
2342 		fast_div = true;
2343 		break;
2344 	case AR5K_ANTMODE_FIXED_A:
2345 		def_ant = 1;
2346 		tx_ant = 1;
2347 		use_def_for_tx = true;
2348 		update_def_on_tx = false;
2349 		use_def_for_rts = true;
2350 		use_def_for_sg = true;
2351 		fast_div = false;
2352 		break;
2353 	case AR5K_ANTMODE_FIXED_B:
2354 		def_ant = 2;
2355 		tx_ant = 2;
2356 		use_def_for_tx = true;
2357 		update_def_on_tx = false;
2358 		use_def_for_rts = true;
2359 		use_def_for_sg = true;
2360 		fast_div = false;
2361 		break;
2362 	case AR5K_ANTMODE_SINGLE_AP:
2363 		def_ant = 1;	/* updated on tx */
2364 		tx_ant = 0;
2365 		use_def_for_tx = true;
2366 		update_def_on_tx = true;
2367 		use_def_for_rts = true;
2368 		use_def_for_sg = true;
2369 		fast_div = true;
2370 		break;
2371 	case AR5K_ANTMODE_SECTOR_AP:
2372 		tx_ant = 1;	/* variable */
2373 		use_def_for_tx = false;
2374 		update_def_on_tx = false;
2375 		use_def_for_rts = true;
2376 		use_def_for_sg = false;
2377 		fast_div = false;
2378 		break;
2379 	case AR5K_ANTMODE_SECTOR_STA:
2380 		tx_ant = 1;	/* variable */
2381 		use_def_for_tx = true;
2382 		update_def_on_tx = false;
2383 		use_def_for_rts = true;
2384 		use_def_for_sg = false;
2385 		fast_div = true;
2386 		break;
2387 	case AR5K_ANTMODE_DEBUG:
2388 		def_ant = 1;
2389 		tx_ant = 2;
2390 		use_def_for_tx = false;
2391 		update_def_on_tx = false;
2392 		use_def_for_rts = false;
2393 		use_def_for_sg = false;
2394 		fast_div = false;
2395 		break;
2396 	default:
2397 		return;
2398 	}
2399 
2400 	ah->ah_tx_ant = tx_ant;
2401 	ah->ah_ant_mode = ant_mode;
2402 	ah->ah_def_ant = def_ant;
2403 
2404 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
2405 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
2406 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
2407 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
2408 
2409 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
2410 
2411 	if (sta_id1)
2412 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
2413 
2414 	ath5k_hw_set_antenna_switch(ah, ee_mode);
2415 	/* Note: set diversity before default antenna
2416 	 * because it won't work correctly */
2417 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
2418 	ath5k_hw_set_def_antenna(ah, def_ant);
2419 }
2420 
2421 
2422 /****************\
2423 * TX power setup *
2424 \****************/
2425 
2426 /*
2427  * Helper functions
2428  */
2429 
2430 /**
2431  * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2432  * @target: X value of the middle point
2433  * @x_left: X value of the left point
2434  * @x_right: X value of the right point
2435  * @y_left: Y value of the left point
2436  * @y_right: Y value of the right point
2437  */
2438 static s16
2439 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
2440 					s16 y_left, s16 y_right)
2441 {
2442 	s16 ratio, result;
2443 
2444 	/* Avoid divide by zero and skip interpolation
2445 	 * if we have the same point */
2446 	if ((x_left == x_right) || (y_left == y_right))
2447 		return y_left;
2448 
2449 	/*
2450 	 * Since we use ints and not fps, we need to scale up in
2451 	 * order to get a sane ratio value (or else we 'll eg. get
2452 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2453 	 * to have some accuracy both for 0.5 and 0.25 steps.
2454 	 */
2455 	ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left));
2456 
2457 	/* Now scale down to be in range */
2458 	result = y_left + (ratio * (target - x_left) / 100);
2459 
2460 	return result;
2461 }
2462 
2463 /**
2464  * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2465  * linear PCDAC curve
2466  * @stepL: Left array with y values (pcdac steps)
2467  * @stepR: Right array with y values (pcdac steps)
2468  * @pwrL: Left array with x values (power steps)
2469  * @pwrR: Right array with x values (power steps)
2470  *
2471  * Since we have the top of the curve and we draw the line below
2472  * until we reach 1 (1 pcdac step) we need to know which point
2473  * (x value) that is so that we don't go below x axis and have negative
2474  * pcdac values when creating the curve, or fill the table with zeros.
2475  */
2476 static s16
2477 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
2478 				const s16 *pwrL, const s16 *pwrR)
2479 {
2480 	s8 tmp;
2481 	s16 min_pwrL, min_pwrR;
2482 	s16 pwr_i;
2483 
2484 	/* Some vendors write the same pcdac value twice !!! */
2485 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
2486 		return max(pwrL[0], pwrR[0]);
2487 
2488 	if (pwrL[0] == pwrL[1])
2489 		min_pwrL = pwrL[0];
2490 	else {
2491 		pwr_i = pwrL[0];
2492 		do {
2493 			pwr_i--;
2494 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2495 							pwrL[0], pwrL[1],
2496 							stepL[0], stepL[1]);
2497 		} while (tmp > 1);
2498 
2499 		min_pwrL = pwr_i;
2500 	}
2501 
2502 	if (pwrR[0] == pwrR[1])
2503 		min_pwrR = pwrR[0];
2504 	else {
2505 		pwr_i = pwrR[0];
2506 		do {
2507 			pwr_i--;
2508 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2509 							pwrR[0], pwrR[1],
2510 							stepR[0], stepR[1]);
2511 		} while (tmp > 1);
2512 
2513 		min_pwrR = pwr_i;
2514 	}
2515 
2516 	/* Keep the right boundary so that it works for both curves */
2517 	return max(min_pwrL, min_pwrR);
2518 }
2519 
2520 /**
2521  * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2522  * @pmin: Minimum power value (xmin)
2523  * @pmax: Maximum power value (xmax)
2524  * @pwr: Array of power steps (x values)
2525  * @vpd: Array of matching PCDAC/PDADC steps (y values)
2526  * @num_points: Number of provided points
2527  * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2528  * @type: One of enum ath5k_powertable_type (eeprom.h)
2529  *
2530  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2531  * Power to PCDAC curve.
2532  *
2533  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2534  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2535  * PCDAC/PDADC step for each curve is 64 but we can write more than
2536  * one curves on hw so we can go up to 128 (which is the max step we
2537  * can write on the final table).
2538  *
2539  * We write y values (PCDAC/PDADC steps) on hw.
2540  */
2541 static void
2542 ath5k_create_power_curve(s16 pmin, s16 pmax,
2543 			const s16 *pwr, const u8 *vpd,
2544 			u8 num_points,
2545 			u8 *vpd_table, u8 type)
2546 {
2547 	u8 idx[2] = { 0, 1 };
2548 	s16 pwr_i = 2 * pmin;
2549 	int i;
2550 
2551 	if (num_points < 2)
2552 		return;
2553 
2554 	/* We want the whole line, so adjust boundaries
2555 	 * to cover the entire power range. Note that
2556 	 * power values are already 0.25dB so no need
2557 	 * to multiply pwr_i by 2 */
2558 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2559 		pwr_i = pmin;
2560 		pmin = 0;
2561 		pmax = 63;
2562 	}
2563 
2564 	/* Find surrounding turning points (TPs)
2565 	 * and interpolate between them */
2566 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2567 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2568 
2569 		/* We passed the right TP, move to the next set of TPs
2570 		 * if we pass the last TP, extrapolate above using the last
2571 		 * two TPs for ratio */
2572 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2573 			idx[0]++;
2574 			idx[1]++;
2575 		}
2576 
2577 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2578 						pwr[idx[0]], pwr[idx[1]],
2579 						vpd[idx[0]], vpd[idx[1]]);
2580 
2581 		/* Increase by 0.5dB
2582 		 * (0.25 dB units) */
2583 		pwr_i += 2;
2584 	}
2585 }
2586 
2587 /**
2588  * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2589  * for a given channel.
2590  * @ah: The &struct ath5k_hw
2591  * @channel: The &struct ieee80211_channel
2592  * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2593  * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2594  *
2595  * Get the surrounding per-channel power calibration piers
2596  * for a given frequency so that we can interpolate between
2597  * them and come up with an appropriate dataset for our current
2598  * channel.
2599  */
2600 static void
2601 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2602 			struct ieee80211_channel *channel,
2603 			struct ath5k_chan_pcal_info **pcinfo_l,
2604 			struct ath5k_chan_pcal_info **pcinfo_r)
2605 {
2606 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2607 	struct ath5k_chan_pcal_info *pcinfo;
2608 	u8 idx_l, idx_r;
2609 	u8 mode, max, i;
2610 	u32 target = channel->center_freq;
2611 
2612 	idx_l = 0;
2613 	idx_r = 0;
2614 
2615 	switch (channel->hw_value) {
2616 	case AR5K_EEPROM_MODE_11A:
2617 		pcinfo = ee->ee_pwr_cal_a;
2618 		mode = AR5K_EEPROM_MODE_11A;
2619 		break;
2620 	case AR5K_EEPROM_MODE_11B:
2621 		pcinfo = ee->ee_pwr_cal_b;
2622 		mode = AR5K_EEPROM_MODE_11B;
2623 		break;
2624 	case AR5K_EEPROM_MODE_11G:
2625 	default:
2626 		pcinfo = ee->ee_pwr_cal_g;
2627 		mode = AR5K_EEPROM_MODE_11G;
2628 		break;
2629 	}
2630 	max = ee->ee_n_piers[mode] - 1;
2631 
2632 	/* Frequency is below our calibrated
2633 	 * range. Use the lowest power curve
2634 	 * we have */
2635 	if (target < pcinfo[0].freq) {
2636 		idx_l = idx_r = 0;
2637 		goto done;
2638 	}
2639 
2640 	/* Frequency is above our calibrated
2641 	 * range. Use the highest power curve
2642 	 * we have */
2643 	if (target > pcinfo[max].freq) {
2644 		idx_l = idx_r = max;
2645 		goto done;
2646 	}
2647 
2648 	/* Frequency is inside our calibrated
2649 	 * channel range. Pick the surrounding
2650 	 * calibration piers so that we can
2651 	 * interpolate */
2652 	for (i = 0; i <= max; i++) {
2653 
2654 		/* Frequency matches one of our calibration
2655 		 * piers, no need to interpolate, just use
2656 		 * that calibration pier */
2657 		if (pcinfo[i].freq == target) {
2658 			idx_l = idx_r = i;
2659 			goto done;
2660 		}
2661 
2662 		/* We found a calibration pier that's above
2663 		 * frequency, use this pier and the previous
2664 		 * one to interpolate */
2665 		if (target < pcinfo[i].freq) {
2666 			idx_r = i;
2667 			idx_l = idx_r - 1;
2668 			goto done;
2669 		}
2670 	}
2671 
2672 done:
2673 	*pcinfo_l = &pcinfo[idx_l];
2674 	*pcinfo_r = &pcinfo[idx_r];
2675 }
2676 
2677 /**
2678  * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2679  * calibration data
2680  * @ah: The &struct ath5k_hw *ah,
2681  * @channel: The &struct ieee80211_channel
2682  * @rates: The &struct ath5k_rate_pcal_info to fill
2683  *
2684  * Get the surrounding per-rate power calibration data
2685  * for a given frequency and interpolate between power
2686  * values to set max target power supported by hw for
2687  * each rate on this frequency.
2688  */
2689 static void
2690 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2691 			struct ieee80211_channel *channel,
2692 			struct ath5k_rate_pcal_info *rates)
2693 {
2694 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2695 	struct ath5k_rate_pcal_info *rpinfo;
2696 	u8 idx_l, idx_r;
2697 	u8 mode, max, i;
2698 	u32 target = channel->center_freq;
2699 
2700 	idx_l = 0;
2701 	idx_r = 0;
2702 
2703 	switch (channel->hw_value) {
2704 	case AR5K_MODE_11A:
2705 		rpinfo = ee->ee_rate_tpwr_a;
2706 		mode = AR5K_EEPROM_MODE_11A;
2707 		break;
2708 	case AR5K_MODE_11B:
2709 		rpinfo = ee->ee_rate_tpwr_b;
2710 		mode = AR5K_EEPROM_MODE_11B;
2711 		break;
2712 	case AR5K_MODE_11G:
2713 	default:
2714 		rpinfo = ee->ee_rate_tpwr_g;
2715 		mode = AR5K_EEPROM_MODE_11G;
2716 		break;
2717 	}
2718 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2719 
2720 	/* Get the surrounding calibration
2721 	 * piers - same as above */
2722 	if (target < rpinfo[0].freq) {
2723 		idx_l = idx_r = 0;
2724 		goto done;
2725 	}
2726 
2727 	if (target > rpinfo[max].freq) {
2728 		idx_l = idx_r = max;
2729 		goto done;
2730 	}
2731 
2732 	for (i = 0; i <= max; i++) {
2733 
2734 		if (rpinfo[i].freq == target) {
2735 			idx_l = idx_r = i;
2736 			goto done;
2737 		}
2738 
2739 		if (target < rpinfo[i].freq) {
2740 			idx_r = i;
2741 			idx_l = idx_r - 1;
2742 			goto done;
2743 		}
2744 	}
2745 
2746 done:
2747 	/* Now interpolate power value, based on the frequency */
2748 	rates->freq = target;
2749 
2750 	rates->target_power_6to24 =
2751 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2752 					rpinfo[idx_r].freq,
2753 					rpinfo[idx_l].target_power_6to24,
2754 					rpinfo[idx_r].target_power_6to24);
2755 
2756 	rates->target_power_36 =
2757 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2758 					rpinfo[idx_r].freq,
2759 					rpinfo[idx_l].target_power_36,
2760 					rpinfo[idx_r].target_power_36);
2761 
2762 	rates->target_power_48 =
2763 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2764 					rpinfo[idx_r].freq,
2765 					rpinfo[idx_l].target_power_48,
2766 					rpinfo[idx_r].target_power_48);
2767 
2768 	rates->target_power_54 =
2769 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2770 					rpinfo[idx_r].freq,
2771 					rpinfo[idx_l].target_power_54,
2772 					rpinfo[idx_r].target_power_54);
2773 }
2774 
2775 /**
2776  * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2777  * @ah: the &struct ath5k_hw
2778  * @channel: The &struct ieee80211_channel
2779  *
2780  * Get the max edge power for this channel if
2781  * we have such data from EEPROM's Conformance Test
2782  * Limits (CTL), and limit max power if needed.
2783  */
2784 static void
2785 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2786 			struct ieee80211_channel *channel)
2787 {
2788 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2789 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2790 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2791 	u8 *ctl_val = ee->ee_ctl;
2792 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2793 	s16 edge_pwr = 0;
2794 	u8 rep_idx;
2795 	u8 i, ctl_mode;
2796 	u8 ctl_idx = 0xFF;
2797 	u32 target = channel->center_freq;
2798 
2799 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2800 
2801 	switch (channel->hw_value) {
2802 	case AR5K_MODE_11A:
2803 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2804 			ctl_mode |= AR5K_CTL_TURBO;
2805 		else
2806 			ctl_mode |= AR5K_CTL_11A;
2807 		break;
2808 	case AR5K_MODE_11G:
2809 		if (ah->ah_bwmode == AR5K_BWMODE_40MHZ)
2810 			ctl_mode |= AR5K_CTL_TURBOG;
2811 		else
2812 			ctl_mode |= AR5K_CTL_11G;
2813 		break;
2814 	case AR5K_MODE_11B:
2815 		ctl_mode |= AR5K_CTL_11B;
2816 		break;
2817 	default:
2818 		return;
2819 	}
2820 
2821 	for (i = 0; i < ee->ee_ctls; i++) {
2822 		if (ctl_val[i] == ctl_mode) {
2823 			ctl_idx = i;
2824 			break;
2825 		}
2826 	}
2827 
2828 	/* If we have a CTL dataset available grab it and find the
2829 	 * edge power for our frequency */
2830 	if (ctl_idx == 0xFF)
2831 		return;
2832 
2833 	/* Edge powers are sorted by frequency from lower
2834 	 * to higher. Each CTL corresponds to 8 edge power
2835 	 * measurements. */
2836 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2837 
2838 	/* Don't do boundaries check because we
2839 	 * might have more that one bands defined
2840 	 * for this mode */
2841 
2842 	/* Get the edge power that's closer to our
2843 	 * frequency */
2844 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2845 		rep_idx += i;
2846 		if (target <= rep[rep_idx].freq)
2847 			edge_pwr = (s16) rep[rep_idx].edge;
2848 	}
2849 
2850 	if (edge_pwr)
2851 		ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr);
2852 }
2853 
2854 
2855 /*
2856  * Power to PCDAC table functions
2857  */
2858 
2859 /**
2860  * DOC: Power to PCDAC table functions
2861  *
2862  * For RF5111 we have an XPD -eXternal Power Detector- curve
2863  * for each calibrated channel. Each curve has 0,5dB Power steps
2864  * on x axis and PCDAC steps (offsets) on y axis and looks like an
2865  * exponential function. To recreate the curve we read 11 points
2866  * from eeprom (eeprom.c) and interpolate here.
2867  *
2868  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2869  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2870  * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2871  * power steps on x axis and PCDAC steps on y axis and looks like a
2872  * linear function. To recreate the curve and pass the power values
2873  * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2874  * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2875  * and interpolate here.
2876  *
2877  * For a given channel we get the calibrated points (piers) for it or
2878  * -if we don't have calibration data for this specific channel- from the
2879  * available surrounding channels we have calibration data for, after we do a
2880  * linear interpolation between them. Then since we have our calibrated points
2881  * for this channel, we do again a linear interpolation between them to get the
2882  * whole curve.
2883  *
2884  * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2885  */
2886 
2887 /**
2888  * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2889  * @ah: The &struct ath5k_hw
2890  * @table_min: Minimum power (x min)
2891  * @table_max: Maximum power (x max)
2892  *
2893  * No further processing is needed for RF5111, the only thing we have to
2894  * do is fill the values below and above calibration range since eeprom data
2895  * may not cover the entire PCDAC table.
2896  */
2897 static void
2898 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2899 							s16 *table_max)
2900 {
2901 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2902 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2903 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2904 	s16	min_pwr, max_pwr;
2905 
2906 	/* Get table boundaries */
2907 	min_pwr = table_min[0];
2908 	pcdac_0 = pcdac_tmp[0];
2909 
2910 	max_pwr = table_max[0];
2911 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2912 
2913 	/* Extrapolate below minimum using pcdac_0 */
2914 	pcdac_i = 0;
2915 	for (i = 0; i < min_pwr; i++)
2916 		pcdac_out[pcdac_i++] = pcdac_0;
2917 
2918 	/* Copy values from pcdac_tmp */
2919 	pwr_idx = min_pwr;
2920 	for (i = 0; pwr_idx <= max_pwr &&
2921 		    pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2922 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2923 		pwr_idx++;
2924 	}
2925 
2926 	/* Extrapolate above maximum */
2927 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2928 		pcdac_out[pcdac_i++] = pcdac_n;
2929 
2930 }
2931 
2932 /**
2933  * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2934  * @ah: The &struct ath5k_hw
2935  * @table_min: Minimum power (x min)
2936  * @table_max: Maximum power (x max)
2937  * @pdcurves: Number of pd curves
2938  *
2939  * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2940  * RFX112 can have up to 2 curves (one for low txpower range and one for
2941  * higher txpower range). We need to put them both on pcdac_out and place
2942  * them in the correct location. In case we only have one curve available
2943  * just fit it on pcdac_out (it's supposed to cover the entire range of
2944  * available pwr levels since it's always the higher power curve). Extrapolate
2945  * below and above final table if needed.
2946  */
2947 static void
2948 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2949 						s16 *table_max, u8 pdcurves)
2950 {
2951 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
2952 	u8	*pcdac_low_pwr;
2953 	u8	*pcdac_high_pwr;
2954 	u8	*pcdac_tmp;
2955 	u8	pwr;
2956 	s16	max_pwr_idx;
2957 	s16	min_pwr_idx;
2958 	s16	mid_pwr_idx = 0;
2959 	/* Edge flag turns on the 7nth bit on the PCDAC
2960 	 * to declare the higher power curve (force values
2961 	 * to be greater than 64). If we only have one curve
2962 	 * we don't need to set this, if we have 2 curves and
2963 	 * fill the table backwards this can also be used to
2964 	 * switch from higher power curve to lower power curve */
2965 	u8	edge_flag;
2966 	int	i;
2967 
2968 	/* When we have only one curve available
2969 	 * that's the higher power curve. If we have
2970 	 * two curves the first is the high power curve
2971 	 * and the next is the low power curve. */
2972 	if (pdcurves > 1) {
2973 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2974 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2975 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2976 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2977 
2978 		/* If table size goes beyond 31.5dB, keep the
2979 		 * upper 31.5dB range when setting tx power.
2980 		 * Note: 126 = 31.5 dB in quarter dB steps */
2981 		if (table_max[0] - table_min[1] > 126)
2982 			min_pwr_idx = table_max[0] - 126;
2983 		else
2984 			min_pwr_idx = table_min[1];
2985 
2986 		/* Since we fill table backwards
2987 		 * start from high power curve */
2988 		pcdac_tmp = pcdac_high_pwr;
2989 
2990 		edge_flag = 0x40;
2991 	} else {
2992 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2993 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2994 		min_pwr_idx = table_min[0];
2995 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2996 		pcdac_tmp = pcdac_high_pwr;
2997 		edge_flag = 0;
2998 	}
2999 
3000 	/* This is used when setting tx power*/
3001 	ah->ah_txpower.txp_min_idx = min_pwr_idx / 2;
3002 
3003 	/* Fill Power to PCDAC table backwards */
3004 	pwr = max_pwr_idx;
3005 	for (i = 63; i >= 0; i--) {
3006 		/* Entering lower power range, reset
3007 		 * edge flag and set pcdac_tmp to lower
3008 		 * power curve.*/
3009 		if (edge_flag == 0x40 &&
3010 		(2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
3011 			edge_flag = 0x00;
3012 			pcdac_tmp = pcdac_low_pwr;
3013 			pwr = mid_pwr_idx / 2;
3014 		}
3015 
3016 		/* Don't go below 1, extrapolate below if we have
3017 		 * already switched to the lower power curve -or
3018 		 * we only have one curve and edge_flag is zero
3019 		 * anyway */
3020 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
3021 			while (i >= 0) {
3022 				pcdac_out[i] = pcdac_out[i + 1];
3023 				i--;
3024 			}
3025 			break;
3026 		}
3027 
3028 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
3029 
3030 		/* Extrapolate above if pcdac is greater than
3031 		 * 126 -this can happen because we OR pcdac_out
3032 		 * value with edge_flag on high power curve */
3033 		if (pcdac_out[i] > 126)
3034 			pcdac_out[i] = 126;
3035 
3036 		/* Decrease by a 0.5dB step */
3037 		pwr--;
3038 	}
3039 }
3040 
3041 /**
3042  * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3043  * @ah: The &struct ath5k_hw
3044  */
3045 static void
3046 ath5k_write_pcdac_table(struct ath5k_hw *ah)
3047 {
3048 	u8	*pcdac_out = ah->ah_txpower.txp_pd_table;
3049 	int	i;
3050 
3051 	/*
3052 	 * Write TX power values
3053 	 */
3054 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3055 		ath5k_hw_reg_write(ah,
3056 			(((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) |
3057 			(((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16),
3058 			AR5K_PHY_PCDAC_TXPOWER(i));
3059 	}
3060 }
3061 
3062 
3063 /*
3064  * Power to PDADC table functions
3065  */
3066 
3067 /**
3068  * DOC: Power to PDADC table functions
3069  *
3070  * For RF2413 and later we have a Power to PDADC table (Power Detector)
3071  * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3072  * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3073  * PDADC steps on y axis and looks like an exponential function like the
3074  * RF5111 curve.
3075  *
3076  * To recreate the curves we read the points from eeprom (eeprom.c)
3077  * and interpolate here. Note that in most cases only 2 (higher and lower)
3078  * curves are used (like RF5112) but vendors have the opportunity to include
3079  * all 4 curves on eeprom. The final curve (higher power) has an extra
3080  * point for better accuracy like RF5112.
3081  *
3082  * The process is similar to what we do above for RF5111/5112
3083  */
3084 
3085 /**
3086  * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3087  * @ah: The &struct ath5k_hw
3088  * @pwr_min: Minimum power (x min)
3089  * @pwr_max: Maximum power (x max)
3090  * @pdcurves: Number of available curves
3091  *
3092  * Combine the various pd curves and create the final Power to PDADC table
3093  * We can have up to 4 pd curves, we need to do a similar process
3094  * as we do for RF5112. This time we don't have an edge_flag but we
3095  * set the gain boundaries on a separate register.
3096  */
3097 static void
3098 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
3099 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
3100 {
3101 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
3102 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3103 	u8 *pdadc_tmp;
3104 	s16 pdadc_0;
3105 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
3106 	u8 pd_gain_overlap;
3107 
3108 	/* Note: Register value is initialized on initvals
3109 	 * there is no feedback from hw.
3110 	 * XXX: What about pd_gain_overlap from EEPROM ? */
3111 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
3112 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
3113 
3114 	/* Create final PDADC table */
3115 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
3116 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
3117 
3118 		if (pdg == pdcurves - 1)
3119 			/* 2 dB boundary stretch for last
3120 			 * (higher power) curve */
3121 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
3122 		else
3123 			/* Set gain boundary in the middle
3124 			 * between this curve and the next one */
3125 			gain_boundaries[pdg] =
3126 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
3127 
3128 		/* Sanity check in case our 2 db stretch got out of
3129 		 * range. */
3130 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
3131 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
3132 
3133 		/* For the first curve (lower power)
3134 		 * start from 0 dB */
3135 		if (pdg == 0)
3136 			pdadc_0 = 0;
3137 		else
3138 			/* For the other curves use the gain overlap */
3139 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
3140 							pd_gain_overlap;
3141 
3142 		/* Force each power step to be at least 0.5 dB */
3143 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
3144 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
3145 		else
3146 			pwr_step = 1;
3147 
3148 		/* If pdadc_0 is negative, we need to extrapolate
3149 		 * below this pdgain by a number of pwr_steps */
3150 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
3151 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
3152 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
3153 			pdadc_0++;
3154 		}
3155 
3156 		/* Set last pwr level, using gain boundaries */
3157 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
3158 		/* Limit it to be inside pwr range */
3159 		table_size = pwr_max[pdg] - pwr_min[pdg];
3160 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
3161 
3162 		/* Fill pdadc_out table */
3163 		while (pdadc_0 < max_idx && pdadc_i < 128)
3164 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
3165 
3166 		/* Need to extrapolate above this pdgain? */
3167 		if (pdadc_n <= max_idx)
3168 			continue;
3169 
3170 		/* Force each power step to be at least 0.5 dB */
3171 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
3172 			pwr_step = pdadc_tmp[table_size - 1] -
3173 						pdadc_tmp[table_size - 2];
3174 		else
3175 			pwr_step = 1;
3176 
3177 		/* Extrapolate above */
3178 		while ((pdadc_0 < (s16) pdadc_n) &&
3179 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
3180 			s16 tmp = pdadc_tmp[table_size - 1] +
3181 					(pdadc_0 - max_idx) * pwr_step;
3182 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
3183 			pdadc_0++;
3184 		}
3185 	}
3186 
3187 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
3188 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
3189 		pdg++;
3190 	}
3191 
3192 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
3193 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
3194 		pdadc_i++;
3195 	}
3196 
3197 	/* Set gain boundaries */
3198 	ath5k_hw_reg_write(ah,
3199 		AR5K_REG_SM(pd_gain_overlap,
3200 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
3201 		AR5K_REG_SM(gain_boundaries[0],
3202 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
3203 		AR5K_REG_SM(gain_boundaries[1],
3204 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
3205 		AR5K_REG_SM(gain_boundaries[2],
3206 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
3207 		AR5K_REG_SM(gain_boundaries[3],
3208 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
3209 		AR5K_PHY_TPC_RG5);
3210 
3211 	/* Used for setting rate power table */
3212 	ah->ah_txpower.txp_min_idx = pwr_min[0];
3213 
3214 }
3215 
3216 /**
3217  * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3218  * @ah: The &struct ath5k_hw
3219  * @ee_mode: One of enum ath5k_driver_mode
3220  */
3221 static void
3222 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode)
3223 {
3224 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3225 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
3226 	u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode];
3227 	u8 pdcurves = ee->ee_pd_gains[ee_mode];
3228 	u32 reg;
3229 	u8 i;
3230 
3231 	/* Select the right pdgain curves */
3232 
3233 	/* Clear current settings */
3234 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
3235 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
3236 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
3237 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
3238 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3239 
3240 	/*
3241 	 * Use pd_gains curve from eeprom
3242 	 *
3243 	 * This overrides the default setting from initvals
3244 	 * in case some vendors (e.g. Zcomax) don't use the default
3245 	 * curves. If we don't honor their settings we 'll get a
3246 	 * 5dB (1 * gain overlap ?) drop.
3247 	 */
3248 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
3249 
3250 	switch (pdcurves) {
3251 	case 3:
3252 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
3253 		/* Fall through */
3254 	case 2:
3255 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
3256 		/* Fall through */
3257 	case 1:
3258 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
3259 		break;
3260 	}
3261 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
3262 
3263 	/*
3264 	 * Write TX power values
3265 	 */
3266 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
3267 		u32 val = get_unaligned_le32(&pdadc_out[4 * i]);
3268 		ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i));
3269 	}
3270 }
3271 
3272 
3273 /*
3274  * Common code for PCDAC/PDADC tables
3275  */
3276 
3277 /**
3278  * ath5k_setup_channel_powertable() - Set up power table for this channel
3279  * @ah: The &struct ath5k_hw
3280  * @channel: The &struct ieee80211_channel
3281  * @ee_mode: One of enum ath5k_driver_mode
3282  * @type: One of enum ath5k_powertable_type (eeprom.h)
3283  *
3284  * This is the main function that uses all of the above
3285  * to set PCDAC/PDADC table on hw for the current channel.
3286  * This table is used for tx power calibration on the baseband,
3287  * without it we get weird tx power levels and in some cases
3288  * distorted spectral mask
3289  */
3290 static int
3291 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
3292 			struct ieee80211_channel *channel,
3293 			u8 ee_mode, u8 type)
3294 {
3295 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
3296 	struct ath5k_chan_pcal_info *pcinfo_L;
3297 	struct ath5k_chan_pcal_info *pcinfo_R;
3298 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
3299 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
3300 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
3301 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
3302 	u8 *tmpL;
3303 	u8 *tmpR;
3304 	u32 target = channel->center_freq;
3305 	int pdg, i;
3306 
3307 	/* Get surrounding freq piers for this channel */
3308 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
3309 						&pcinfo_L,
3310 						&pcinfo_R);
3311 
3312 	/* Loop over pd gain curves on
3313 	 * surrounding freq piers by index */
3314 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
3315 
3316 		/* Fill curves in reverse order
3317 		 * from lower power (max gain)
3318 		 * to higher power. Use curve -> idx
3319 		 * backmapping we did on eeprom init */
3320 		u8 idx = pdg_curve_to_idx[pdg];
3321 
3322 		/* Grab the needed curves by index */
3323 		pdg_L = &pcinfo_L->pd_curves[idx];
3324 		pdg_R = &pcinfo_R->pd_curves[idx];
3325 
3326 		/* Initialize the temp tables */
3327 		tmpL = ah->ah_txpower.tmpL[pdg];
3328 		tmpR = ah->ah_txpower.tmpR[pdg];
3329 
3330 		/* Set curve's x boundaries and create
3331 		 * curves so that they cover the same
3332 		 * range (if we don't do that one table
3333 		 * will have values on some range and the
3334 		 * other one won't have any so interpolation
3335 		 * will fail) */
3336 		table_min[pdg] = min(pdg_L->pd_pwr[0],
3337 					pdg_R->pd_pwr[0]) / 2;
3338 
3339 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3340 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
3341 
3342 		/* Now create the curves on surrounding channels
3343 		 * and interpolate if needed to get the final
3344 		 * curve for this gain on this channel */
3345 		switch (type) {
3346 		case AR5K_PWRTABLE_LINEAR_PCDAC:
3347 			/* Override min/max so that we don't loose
3348 			 * accuracy (don't divide by 2) */
3349 			table_min[pdg] = min(pdg_L->pd_pwr[0],
3350 						pdg_R->pd_pwr[0]);
3351 
3352 			table_max[pdg] =
3353 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
3354 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
3355 
3356 			/* Override minimum so that we don't get
3357 			 * out of bounds while extrapolating
3358 			 * below. Don't do this when we have 2
3359 			 * curves and we are on the high power curve
3360 			 * because table_min is ok in this case */
3361 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
3362 
3363 				table_min[pdg] =
3364 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
3365 								pdg_R->pd_step,
3366 								pdg_L->pd_pwr,
3367 								pdg_R->pd_pwr);
3368 
3369 				/* Don't go too low because we will
3370 				 * miss the upper part of the curve.
3371 				 * Note: 126 = 31.5dB (max power supported)
3372 				 * in 0.25dB units */
3373 				if (table_max[pdg] - table_min[pdg] > 126)
3374 					table_min[pdg] = table_max[pdg] - 126;
3375 			}
3376 
3377 			/* Fall through */
3378 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
3379 		case AR5K_PWRTABLE_PWR_TO_PDADC:
3380 
3381 			ath5k_create_power_curve(table_min[pdg],
3382 						table_max[pdg],
3383 						pdg_L->pd_pwr,
3384 						pdg_L->pd_step,
3385 						pdg_L->pd_points, tmpL, type);
3386 
3387 			/* We are in a calibration
3388 			 * pier, no need to interpolate
3389 			 * between freq piers */
3390 			if (pcinfo_L == pcinfo_R)
3391 				continue;
3392 
3393 			ath5k_create_power_curve(table_min[pdg],
3394 						table_max[pdg],
3395 						pdg_R->pd_pwr,
3396 						pdg_R->pd_step,
3397 						pdg_R->pd_points, tmpR, type);
3398 			break;
3399 		default:
3400 			return -EINVAL;
3401 		}
3402 
3403 		/* Interpolate between curves
3404 		 * of surrounding freq piers to
3405 		 * get the final curve for this
3406 		 * pd gain. Re-use tmpL for interpolation
3407 		 * output */
3408 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
3409 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
3410 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
3411 							(s16) pcinfo_L->freq,
3412 							(s16) pcinfo_R->freq,
3413 							(s16) tmpL[i],
3414 							(s16) tmpR[i]);
3415 		}
3416 	}
3417 
3418 	/* Now we have a set of curves for this
3419 	 * channel on tmpL (x range is table_max - table_min
3420 	 * and y values are tmpL[pdg][]) sorted in the same
3421 	 * order as EEPROM (because we've used the backmapping).
3422 	 * So for RF5112 it's from higher power to lower power
3423 	 * and for RF2413 it's from lower power to higher power.
3424 	 * For RF5111 we only have one curve. */
3425 
3426 	/* Fill min and max power levels for this
3427 	 * channel by interpolating the values on
3428 	 * surrounding channels to complete the dataset */
3429 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
3430 					(s16) pcinfo_L->freq,
3431 					(s16) pcinfo_R->freq,
3432 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
3433 
3434 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
3435 					(s16) pcinfo_L->freq,
3436 					(s16) pcinfo_R->freq,
3437 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
3438 
3439 	/* Fill PCDAC/PDADC table */
3440 	switch (type) {
3441 	case AR5K_PWRTABLE_LINEAR_PCDAC:
3442 		/* For RF5112 we can have one or two curves
3443 		 * and each curve covers a certain power lvl
3444 		 * range so we need to do some more processing */
3445 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
3446 						ee->ee_pd_gains[ee_mode]);
3447 
3448 		/* Set txp.offset so that we can
3449 		 * match max power value with max
3450 		 * table index */
3451 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
3452 		break;
3453 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
3454 		/* We are done for RF5111 since it has only
3455 		 * one curve, just fit the curve on the table */
3456 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
3457 
3458 		/* No rate powertable adjustment for RF5111 */
3459 		ah->ah_txpower.txp_min_idx = 0;
3460 		ah->ah_txpower.txp_offset = 0;
3461 		break;
3462 	case AR5K_PWRTABLE_PWR_TO_PDADC:
3463 		/* Set PDADC boundaries and fill
3464 		 * final PDADC table */
3465 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
3466 						ee->ee_pd_gains[ee_mode]);
3467 
3468 		/* Set txp.offset, note that table_min
3469 		 * can be negative */
3470 		ah->ah_txpower.txp_offset = table_min[0];
3471 		break;
3472 	default:
3473 		return -EINVAL;
3474 	}
3475 
3476 	ah->ah_txpower.txp_setup = true;
3477 
3478 	return 0;
3479 }
3480 
3481 /**
3482  * ath5k_write_channel_powertable() - Set power table for current channel on hw
3483  * @ah: The &struct ath5k_hw
3484  * @ee_mode: One of enum ath5k_driver_mode
3485  * @type: One of enum ath5k_powertable_type (eeprom.h)
3486  */
3487 static void
3488 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type)
3489 {
3490 	if (type == AR5K_PWRTABLE_PWR_TO_PDADC)
3491 		ath5k_write_pwr_to_pdadc_table(ah, ee_mode);
3492 	else
3493 		ath5k_write_pcdac_table(ah);
3494 }
3495 
3496 
3497 /**
3498  * DOC: Per-rate tx power setting
3499  *
3500  * This is the code that sets the desired tx power limit (below
3501  * maximum) on hw for each rate (we also have TPC that sets
3502  * power per packet type). We do that by providing an index on the
3503  * PCDAC/PDADC table we set up above, for each rate.
3504  *
3505  * For now we only limit txpower based on maximum tx power
3506  * supported by hw (what's inside rate_info) + conformance test
3507  * limits. We need to limit this even more, based on regulatory domain
3508  * etc to be safe. Normally this is done from above so we don't care
3509  * here, all we care is that the tx power we set will be O.K.
3510  * for the hw (e.g. won't create noise on PA etc).
3511  *
3512  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3513  * x values) and is indexed as follows:
3514  * rates[0] - rates[7] -> OFDM rates
3515  * rates[8] - rates[14] -> CCK rates
3516  * rates[15] -> XR rates (they all have the same power)
3517  */
3518 
3519 /**
3520  * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3521  * @ah: The &struct ath5k_hw
3522  * @max_pwr: The maximum tx power requested in 0.5dB steps
3523  * @rate_info: The &struct ath5k_rate_pcal_info to fill
3524  * @ee_mode: One of enum ath5k_driver_mode
3525  */
3526 static void
3527 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
3528 			struct ath5k_rate_pcal_info *rate_info,
3529 			u8 ee_mode)
3530 {
3531 	unsigned int i;
3532 	u16 *rates;
3533 
3534 	/* max_pwr is power level we got from driver/user in 0.5dB
3535 	 * units, switch to 0.25dB units so we can compare */
3536 	max_pwr *= 2;
3537 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
3538 
3539 	/* apply rate limits */
3540 	rates = ah->ah_txpower.txp_rates_power_table;
3541 
3542 	/* OFDM rates 6 to 24Mb/s */
3543 	for (i = 0; i < 5; i++)
3544 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
3545 
3546 	/* Rest OFDM rates */
3547 	rates[5] = min(rates[0], rate_info->target_power_36);
3548 	rates[6] = min(rates[0], rate_info->target_power_48);
3549 	rates[7] = min(rates[0], rate_info->target_power_54);
3550 
3551 	/* CCK rates */
3552 	/* 1L */
3553 	rates[8] = min(rates[0], rate_info->target_power_6to24);
3554 	/* 2L */
3555 	rates[9] = min(rates[0], rate_info->target_power_36);
3556 	/* 2S */
3557 	rates[10] = min(rates[0], rate_info->target_power_36);
3558 	/* 5L */
3559 	rates[11] = min(rates[0], rate_info->target_power_48);
3560 	/* 5S */
3561 	rates[12] = min(rates[0], rate_info->target_power_48);
3562 	/* 11L */
3563 	rates[13] = min(rates[0], rate_info->target_power_54);
3564 	/* 11S */
3565 	rates[14] = min(rates[0], rate_info->target_power_54);
3566 
3567 	/* XR rates */
3568 	rates[15] = min(rates[0], rate_info->target_power_6to24);
3569 
3570 	/* CCK rates have different peak to average ratio
3571 	 * so we have to tweak their power so that gainf
3572 	 * correction works ok. For this we use OFDM to
3573 	 * CCK delta from eeprom */
3574 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
3575 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
3576 		for (i = 8; i <= 15; i++)
3577 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
3578 
3579 	/* Now that we have all rates setup use table offset to
3580 	 * match the power range set by user with the power indices
3581 	 * on PCDAC/PDADC table */
3582 	for (i = 0; i < 16; i++) {
3583 		rates[i] += ah->ah_txpower.txp_offset;
3584 		/* Don't get out of bounds */
3585 		if (rates[i] > 63)
3586 			rates[i] = 63;
3587 	}
3588 
3589 	/* Min/max in 0.25dB units */
3590 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
3591 	ah->ah_txpower.txp_cur_pwr = 2 * rates[0];
3592 	ah->ah_txpower.txp_ofdm = rates[7];
3593 }
3594 
3595 
3596 /**
3597  * ath5k_hw_txpower() - Set transmission power limit for a given channel
3598  * @ah: The &struct ath5k_hw
3599  * @channel: The &struct ieee80211_channel
3600  * @txpower: Requested tx power in 0.5dB steps
3601  *
3602  * Combines all of the above to set the requested tx power limit
3603  * on hw.
3604  */
3605 static int
3606 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3607 		 u8 txpower)
3608 {
3609 	struct ath5k_rate_pcal_info rate_info;
3610 	struct ieee80211_channel *curr_channel = ah->ah_current_channel;
3611 	int ee_mode;
3612 	u8 type;
3613 	int ret;
3614 
3615 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3616 		ATH5K_ERR(ah, "invalid tx power: %u\n", txpower);
3617 		return -EINVAL;
3618 	}
3619 
3620 	ee_mode = ath5k_eeprom_mode_from_channel(channel);
3621 	if (ee_mode < 0) {
3622 		ATH5K_ERR(ah,
3623 			"invalid channel: %d\n", channel->center_freq);
3624 		return -EINVAL;
3625 	}
3626 
3627 	/* Initialize TX power table */
3628 	switch (ah->ah_radio) {
3629 	case AR5K_RF5110:
3630 		/* TODO */
3631 		return 0;
3632 	case AR5K_RF5111:
3633 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3634 		break;
3635 	case AR5K_RF5112:
3636 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3637 		break;
3638 	case AR5K_RF2413:
3639 	case AR5K_RF5413:
3640 	case AR5K_RF2316:
3641 	case AR5K_RF2317:
3642 	case AR5K_RF2425:
3643 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3644 		break;
3645 	default:
3646 		return -EINVAL;
3647 	}
3648 
3649 	/*
3650 	 * If we don't change channel/mode skip tx powertable calculation
3651 	 * and use the cached one.
3652 	 */
3653 	if (!ah->ah_txpower.txp_setup ||
3654 	    (channel->hw_value != curr_channel->hw_value) ||
3655 	    (channel->center_freq != curr_channel->center_freq)) {
3656 		/* Reset TX power values */
3657 		memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3658 		ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3659 
3660 		/* Calculate the powertable */
3661 		ret = ath5k_setup_channel_powertable(ah, channel,
3662 							ee_mode, type);
3663 		if (ret)
3664 			return ret;
3665 	}
3666 
3667 	/* Write table on hw */
3668 	ath5k_write_channel_powertable(ah, ee_mode, type);
3669 
3670 	/* Limit max power if we have a CTL available */
3671 	ath5k_get_max_ctl_power(ah, channel);
3672 
3673 	/* FIXME: Antenna reduction stuff */
3674 
3675 	/* FIXME: Limit power on turbo modes */
3676 
3677 	/* FIXME: TPC scale reduction */
3678 
3679 	/* Get surrounding channels for per-rate power table
3680 	 * calibration */
3681 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3682 
3683 	/* Setup rate power table */
3684 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3685 
3686 	/* Write rate power table on hw */
3687 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3688 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3689 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3690 
3691 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3692 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3693 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3694 
3695 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3696 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3697 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3698 
3699 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3700 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3701 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3702 
3703 	/* FIXME: TPC support */
3704 	if (ah->ah_txpower.txp_tpc) {
3705 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3706 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3707 
3708 		ath5k_hw_reg_write(ah,
3709 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3710 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3711 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3712 			AR5K_TPC);
3713 	} else {
3714 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3715 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3716 	}
3717 
3718 	return 0;
3719 }
3720 
3721 /**
3722  * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3723  * @ah: The &struct ath5k_hw
3724  * @txpower: The requested tx power limit in 0.5dB steps
3725  *
3726  * This function provides access to ath5k_hw_txpower to the driver in
3727  * case user or an application changes it while PHY is running.
3728  */
3729 int
3730 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3731 {
3732 	ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER,
3733 		"changing txpower to %d\n", txpower);
3734 
3735 	return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower);
3736 }
3737 
3738 
3739 /*************\
3740  Init function
3741 \*************/
3742 
3743 /**
3744  * ath5k_hw_phy_init() - Initialize PHY
3745  * @ah: The &struct ath5k_hw
3746  * @channel: The @struct ieee80211_channel
3747  * @mode: One of enum ath5k_driver_mode
3748  * @fast: Try a fast channel switch instead
3749  *
3750  * This is the main function used during reset to initialize PHY
3751  * or do a fast channel change if possible.
3752  *
3753  * NOTE: Do not call this one from the driver, it assumes PHY is in a
3754  * warm reset state !
3755  */
3756 int
3757 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
3758 		      u8 mode, bool fast)
3759 {
3760 	struct ieee80211_channel *curr_channel;
3761 	int ret, i;
3762 	u32 phy_tst1;
3763 	ret = 0;
3764 
3765 	/*
3766 	 * Sanity check for fast flag
3767 	 * Don't try fast channel change when changing modulation
3768 	 * mode/band. We check for chip compatibility on
3769 	 * ath5k_hw_reset.
3770 	 */
3771 	curr_channel = ah->ah_current_channel;
3772 	if (fast && (channel->hw_value != curr_channel->hw_value))
3773 		return -EINVAL;
3774 
3775 	/*
3776 	 * On fast channel change we only set the synth parameters
3777 	 * while PHY is running, enable calibration and skip the rest.
3778 	 */
3779 	if (fast) {
3780 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3781 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3782 		for (i = 0; i < 100; i++) {
3783 			if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT))
3784 				break;
3785 			udelay(5);
3786 		}
3787 		/* Failed */
3788 		if (i >= 100)
3789 			return -EIO;
3790 
3791 		/* Set channel and wait for synth */
3792 		ret = ath5k_hw_channel(ah, channel);
3793 		if (ret)
3794 			return ret;
3795 
3796 		ath5k_hw_wait_for_synth(ah, channel);
3797 	}
3798 
3799 	/*
3800 	 * Set TX power
3801 	 *
3802 	 * Note: We need to do that before we set
3803 	 * RF buffer settings on 5211/5212+ so that we
3804 	 * properly set curve indices.
3805 	 */
3806 	ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_cur_pwr ?
3807 			ah->ah_txpower.txp_cur_pwr / 2 : AR5K_TUNE_MAX_TXPOWER);
3808 	if (ret)
3809 		return ret;
3810 
3811 	/* Write OFDM timings on 5212*/
3812 	if (ah->ah_version == AR5K_AR5212 &&
3813 		channel->hw_value != AR5K_MODE_11B) {
3814 
3815 		ret = ath5k_hw_write_ofdm_timings(ah, channel);
3816 		if (ret)
3817 			return ret;
3818 
3819 		/* Spur info is available only from EEPROM versions
3820 		 * greater than 5.3, but the EEPROM routines will use
3821 		 * static values for older versions */
3822 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424)
3823 			ath5k_hw_set_spur_mitigation_filter(ah,
3824 							    channel);
3825 	}
3826 
3827 	/* If we used fast channel switching
3828 	 * we are done, release RF bus and
3829 	 * fire up NF calibration.
3830 	 *
3831 	 * Note: Only NF calibration due to
3832 	 * channel change, not AGC calibration
3833 	 * since AGC is still running !
3834 	 */
3835 	if (fast) {
3836 		/*
3837 		 * Release RF Bus grant
3838 		 */
3839 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ,
3840 				    AR5K_PHY_RFBUS_REQ_REQUEST);
3841 
3842 		/*
3843 		 * Start NF calibration
3844 		 */
3845 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3846 					AR5K_PHY_AGCCTL_NF);
3847 
3848 		return ret;
3849 	}
3850 
3851 	/*
3852 	 * For 5210 we do all initialization using
3853 	 * initvals, so we don't have to modify
3854 	 * any settings (5210 also only supports
3855 	 * a/aturbo modes)
3856 	 */
3857 	if (ah->ah_version != AR5K_AR5210) {
3858 
3859 		/*
3860 		 * Write initial RF gain settings
3861 		 * This should work for both 5111/5112
3862 		 */
3863 		ret = ath5k_hw_rfgain_init(ah, channel->band);
3864 		if (ret)
3865 			return ret;
3866 
3867 		usleep_range(1000, 1500);
3868 
3869 		/*
3870 		 * Write RF buffer
3871 		 */
3872 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
3873 		if (ret)
3874 			return ret;
3875 
3876 		/*Enable/disable 802.11b mode on 5111
3877 		(enable 2111 frequency converter + CCK)*/
3878 		if (ah->ah_radio == AR5K_RF5111) {
3879 			if (mode == AR5K_MODE_11B)
3880 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
3881 				    AR5K_TXCFG_B_MODE);
3882 			else
3883 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
3884 				    AR5K_TXCFG_B_MODE);
3885 		}
3886 
3887 	} else if (ah->ah_version == AR5K_AR5210) {
3888 		usleep_range(1000, 1500);
3889 		/* Disable phy and wait */
3890 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
3891 		usleep_range(1000, 1500);
3892 	}
3893 
3894 	/* Set channel on PHY */
3895 	ret = ath5k_hw_channel(ah, channel);
3896 	if (ret)
3897 		return ret;
3898 
3899 	/*
3900 	 * Enable the PHY and wait until completion
3901 	 * This includes BaseBand and Synthesizer
3902 	 * activation.
3903 	 */
3904 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
3905 
3906 	ath5k_hw_wait_for_synth(ah, channel);
3907 
3908 	/*
3909 	 * Perform ADC test to see if baseband is ready
3910 	 * Set tx hold and check adc test register
3911 	 */
3912 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
3913 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
3914 	for (i = 0; i <= 20; i++) {
3915 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
3916 			break;
3917 		usleep_range(200, 250);
3918 	}
3919 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
3920 
3921 	/*
3922 	 * Start automatic gain control calibration
3923 	 *
3924 	 * During AGC calibration RX path is re-routed to
3925 	 * a power detector so we don't receive anything.
3926 	 *
3927 	 * This method is used to calibrate some static offsets
3928 	 * used together with on-the fly I/Q calibration (the
3929 	 * one performed via ath5k_hw_phy_calibrate), which doesn't
3930 	 * interrupt rx path.
3931 	 *
3932 	 * While rx path is re-routed to the power detector we also
3933 	 * start a noise floor calibration to measure the
3934 	 * card's noise floor (the noise we measure when we are not
3935 	 * transmitting or receiving anything).
3936 	 *
3937 	 * If we are in a noisy environment, AGC calibration may time
3938 	 * out and/or noise floor calibration might timeout.
3939 	 */
3940 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
3941 				AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF);
3942 
3943 	/* At the same time start I/Q calibration for QAM constellation
3944 	 * -no need for CCK- */
3945 	ah->ah_iq_cal_needed = false;
3946 	if (!(mode == AR5K_MODE_11B)) {
3947 		ah->ah_iq_cal_needed = true;
3948 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
3949 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
3950 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
3951 				AR5K_PHY_IQ_RUN);
3952 	}
3953 
3954 	/* Wait for gain calibration to finish (we check for I/Q calibration
3955 	 * during ath5k_phy_calibrate) */
3956 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
3957 			AR5K_PHY_AGCCTL_CAL, 0, false)) {
3958 		ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n",
3959 			channel->center_freq);
3960 	}
3961 
3962 	/* Restore antenna mode */
3963 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3964 
3965 	return ret;
3966 }
3967