1 /* 2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> 3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> 4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> 5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 * 19 */ 20 21 /***********************\ 22 * PHY related functions * 23 \***********************/ 24 25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 26 27 #include <linux/delay.h> 28 #include <linux/slab.h> 29 #include <asm/unaligned.h> 30 31 #include "ath5k.h" 32 #include "reg.h" 33 #include "rfbuffer.h" 34 #include "rfgain.h" 35 #include "../regd.h" 36 37 38 /** 39 * DOC: PHY related functions 40 * 41 * Here we handle the low-level functions related to baseband 42 * and analog frontend (RF) parts. This is by far the most complex 43 * part of the hw code so make sure you know what you are doing. 44 * 45 * Here is a list of what this is all about: 46 * 47 * - Channel setting/switching 48 * 49 * - Automatic Gain Control (AGC) calibration 50 * 51 * - Noise Floor calibration 52 * 53 * - I/Q imbalance calibration (QAM correction) 54 * 55 * - Calibration due to thermal changes (gain_F) 56 * 57 * - Spur noise mitigation 58 * 59 * - RF/PHY initialization for the various operating modes and bwmodes 60 * 61 * - Antenna control 62 * 63 * - TX power control per channel/rate/packet type 64 * 65 * Also have in mind we never got documentation for most of these 66 * functions, what we have comes mostly from Atheros's code, reverse 67 * engineering and patent docs/presentations etc. 68 */ 69 70 71 /******************\ 72 * Helper functions * 73 \******************/ 74 75 /** 76 * ath5k_hw_radio_revision() - Get the PHY Chip revision 77 * @ah: The &struct ath5k_hw 78 * @band: One of enum ieee80211_band 79 * 80 * Returns the revision number of a 2GHz, 5GHz or single chip 81 * radio. 82 */ 83 u16 84 ath5k_hw_radio_revision(struct ath5k_hw *ah, enum ieee80211_band band) 85 { 86 unsigned int i; 87 u32 srev; 88 u16 ret; 89 90 /* 91 * Set the radio chip access register 92 */ 93 switch (band) { 94 case IEEE80211_BAND_2GHZ: 95 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); 96 break; 97 case IEEE80211_BAND_5GHZ: 98 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 99 break; 100 default: 101 return 0; 102 } 103 104 usleep_range(2000, 2500); 105 106 /* ...wait until PHY is ready and read the selected radio revision */ 107 ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); 108 109 for (i = 0; i < 8; i++) 110 ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); 111 112 if (ah->ah_version == AR5K_AR5210) { 113 srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf; 114 ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; 115 } else { 116 srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; 117 ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | 118 ((srev & 0x0f) << 4), 8); 119 } 120 121 /* Reset to the 5GHz mode */ 122 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); 123 124 return ret; 125 } 126 127 /** 128 * ath5k_channel_ok() - Check if a channel is supported by the hw 129 * @ah: The &struct ath5k_hw 130 * @channel: The &struct ieee80211_channel 131 * 132 * Note: We don't do any regulatory domain checks here, it's just 133 * a sanity check. 134 */ 135 bool 136 ath5k_channel_ok(struct ath5k_hw *ah, struct ieee80211_channel *channel) 137 { 138 u16 freq = channel->center_freq; 139 140 /* Check if the channel is in our supported range */ 141 if (channel->band == IEEE80211_BAND_2GHZ) { 142 if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && 143 (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) 144 return true; 145 } else if (channel->band == IEEE80211_BAND_5GHZ) 146 if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && 147 (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) 148 return true; 149 150 return false; 151 } 152 153 /** 154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise 155 * @ah: The &struct ath5k_hw 156 * @channel: The &struct ieee80211_channel 157 */ 158 bool 159 ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah, 160 struct ieee80211_channel *channel) 161 { 162 u8 refclk_freq; 163 164 if ((ah->ah_radio == AR5K_RF5112) || 165 (ah->ah_radio == AR5K_RF5413) || 166 (ah->ah_radio == AR5K_RF2413) || 167 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) 168 refclk_freq = 40; 169 else 170 refclk_freq = 32; 171 172 if ((channel->center_freq % refclk_freq != 0) && 173 ((channel->center_freq % refclk_freq < 10) || 174 (channel->center_freq % refclk_freq > 22))) 175 return true; 176 else 177 return false; 178 } 179 180 /** 181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer 182 * @ah: The &struct ath5k_hw 183 * @rf_regs: The struct ath5k_rf_reg 184 * @val: New value 185 * @reg_id: RF register ID 186 * @set: Indicate we need to swap data 187 * 188 * This is an internal function used to modify RF Banks before 189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more 190 * infos. 191 */ 192 static unsigned int 193 ath5k_hw_rfb_op(struct ath5k_hw *ah, const struct ath5k_rf_reg *rf_regs, 194 u32 val, u8 reg_id, bool set) 195 { 196 const struct ath5k_rf_reg *rfreg = NULL; 197 u8 offset, bank, num_bits, col, position; 198 u16 entry; 199 u32 mask, data, last_bit, bits_shifted, first_bit; 200 u32 *rfb; 201 s32 bits_left; 202 int i; 203 204 data = 0; 205 rfb = ah->ah_rf_banks; 206 207 for (i = 0; i < ah->ah_rf_regs_count; i++) { 208 if (rf_regs[i].index == reg_id) { 209 rfreg = &rf_regs[i]; 210 break; 211 } 212 } 213 214 if (rfb == NULL || rfreg == NULL) { 215 ATH5K_PRINTF("Rf register not found!\n"); 216 /* should not happen */ 217 return 0; 218 } 219 220 bank = rfreg->bank; 221 num_bits = rfreg->field.len; 222 first_bit = rfreg->field.pos; 223 col = rfreg->field.col; 224 225 /* first_bit is an offset from bank's 226 * start. Since we have all banks on 227 * the same array, we use this offset 228 * to mark each bank's start */ 229 offset = ah->ah_offset[bank]; 230 231 /* Boundary check */ 232 if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { 233 ATH5K_PRINTF("invalid values at offset %u\n", offset); 234 return 0; 235 } 236 237 entry = ((first_bit - 1) / 8) + offset; 238 position = (first_bit - 1) % 8; 239 240 if (set) 241 data = ath5k_hw_bitswap(val, num_bits); 242 243 for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; 244 position = 0, entry++) { 245 246 last_bit = (position + bits_left > 8) ? 8 : 247 position + bits_left; 248 249 mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << 250 (col * 8); 251 252 if (set) { 253 rfb[entry] &= ~mask; 254 rfb[entry] |= ((data << position) << (col * 8)) & mask; 255 data >>= (8 - position); 256 } else { 257 data |= (((rfb[entry] & mask) >> (col * 8)) >> position) 258 << bits_shifted; 259 bits_shifted += last_bit - position; 260 } 261 262 bits_left -= 8 - position; 263 } 264 265 data = set ? 1 : ath5k_hw_bitswap(data, num_bits); 266 267 return data; 268 } 269 270 /** 271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212 272 * @ah: the &struct ath5k_hw 273 * @channel: the currently set channel upon reset 274 * 275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM 276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init. 277 * 278 * Since delta slope is floating point we split it on its exponent and 279 * mantissa and provide these values on hw. 280 * 281 * For more infos i think this patent is related 282 * "http://www.freepatentsonline.com/7184495.html" 283 */ 284 static inline int 285 ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah, 286 struct ieee80211_channel *channel) 287 { 288 /* Get exponent and mantissa and set it */ 289 u32 coef_scaled, coef_exp, coef_man, 290 ds_coef_exp, ds_coef_man, clock; 291 292 BUG_ON(!(ah->ah_version == AR5K_AR5212) || 293 (channel->hw_value == AR5K_MODE_11B)); 294 295 /* Get coefficient 296 * ALGO: coef = (5 * clock / carrier_freq) / 2 297 * we scale coef by shifting clock value by 24 for 298 * better precision since we use integers */ 299 switch (ah->ah_bwmode) { 300 case AR5K_BWMODE_40MHZ: 301 clock = 40 * 2; 302 break; 303 case AR5K_BWMODE_10MHZ: 304 clock = 40 / 2; 305 break; 306 case AR5K_BWMODE_5MHZ: 307 clock = 40 / 4; 308 break; 309 default: 310 clock = 40; 311 break; 312 } 313 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq; 314 315 /* Get exponent 316 * ALGO: coef_exp = 14 - highest set bit position */ 317 coef_exp = ilog2(coef_scaled); 318 319 /* Doesn't make sense if it's zero*/ 320 if (!coef_scaled || !coef_exp) 321 return -EINVAL; 322 323 /* Note: we've shifted coef_scaled by 24 */ 324 coef_exp = 14 - (coef_exp - 24); 325 326 327 /* Get mantissa (significant digits) 328 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */ 329 coef_man = coef_scaled + 330 (1 << (24 - coef_exp - 1)); 331 332 /* Calculate delta slope coefficient exponent 333 * and mantissa (remove scaling) and set them on hw */ 334 ds_coef_man = coef_man >> (24 - coef_exp); 335 ds_coef_exp = coef_exp - 16; 336 337 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 338 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man); 339 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3, 340 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp); 341 342 return 0; 343 } 344 345 /** 346 * ath5k_hw_phy_disable() - Disable PHY 347 * @ah: The &struct ath5k_hw 348 */ 349 int ath5k_hw_phy_disable(struct ath5k_hw *ah) 350 { 351 /*Just a try M.F.*/ 352 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); 353 354 return 0; 355 } 356 357 /** 358 * ath5k_hw_wait_for_synth() - Wait for synth to settle 359 * @ah: The &struct ath5k_hw 360 * @channel: The &struct ieee80211_channel 361 */ 362 static void 363 ath5k_hw_wait_for_synth(struct ath5k_hw *ah, 364 struct ieee80211_channel *channel) 365 { 366 /* 367 * On 5211+ read activation -> rx delay 368 * and use it (100ns steps). 369 */ 370 if (ah->ah_version != AR5K_AR5210) { 371 u32 delay; 372 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) & 373 AR5K_PHY_RX_DELAY_M; 374 delay = (channel->hw_value == AR5K_MODE_11B) ? 375 ((delay << 2) / 22) : (delay / 10); 376 if (ah->ah_bwmode == AR5K_BWMODE_10MHZ) 377 delay = delay << 1; 378 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ) 379 delay = delay << 2; 380 /* XXX: /2 on turbo ? Let's be safe 381 * for now */ 382 usleep_range(100 + delay, 100 + (2 * delay)); 383 } else { 384 usleep_range(1000, 1500); 385 } 386 } 387 388 389 /**********************\ 390 * RF Gain optimization * 391 \**********************/ 392 393 /** 394 * DOC: RF Gain optimization 395 * 396 * This code is used to optimize RF gain on different environments 397 * (temperature mostly) based on feedback from a power detector. 398 * 399 * It's only used on RF5111 and RF5112, later RF chips seem to have 400 * auto adjustment on hw -notice they have a much smaller BANK 7 and 401 * no gain optimization ladder-. 402 * 403 * For more infos check out this patent doc 404 * "http://www.freepatentsonline.com/7400691.html" 405 * 406 * This paper describes power drops as seen on the receiver due to 407 * probe packets 408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues 409 * %20of%20Power%20Control.pdf" 410 * 411 * And this is the MadWiFi bug entry related to the above 412 * "http://madwifi-project.org/ticket/1659" 413 * with various measurements and diagrams 414 */ 415 416 /** 417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach 418 * @ah: The &struct ath5k_hw 419 */ 420 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) 421 { 422 /* Initialize the gain optimization values */ 423 switch (ah->ah_radio) { 424 case AR5K_RF5111: 425 ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; 426 ah->ah_gain.g_low = 20; 427 ah->ah_gain.g_high = 35; 428 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 429 break; 430 case AR5K_RF5112: 431 ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; 432 ah->ah_gain.g_low = 20; 433 ah->ah_gain.g_high = 85; 434 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 435 break; 436 default: 437 return -EINVAL; 438 } 439 440 return 0; 441 } 442 443 /** 444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet 445 * @ah: The &struct ath5k_hw 446 * 447 * Schedules a gain probe check on the next transmitted packet. 448 * That means our next packet is going to be sent with lower 449 * tx power and a Peak to Average Power Detector (PAPD) will try 450 * to measure the gain. 451 * 452 * TODO: Force a tx packet (bypassing PCU arbitrator etc) 453 * just after we enable the probe so that we don't mess with 454 * standard traffic. 455 */ 456 static void 457 ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) 458 { 459 460 /* Skip if gain calibration is inactive or 461 * we already handle a probe request */ 462 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) 463 return; 464 465 /* Send the packet with 2dB below max power as 466 * patent doc suggest */ 467 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4, 468 AR5K_PHY_PAPD_PROBE_TXPOWER) | 469 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); 470 471 ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; 472 473 } 474 475 /** 476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction 477 * @ah: The &struct ath5k_hw 478 * 479 * Calculate Gain_F measurement correction 480 * based on the current step for RF5112 rev. 2 481 */ 482 static u32 483 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) 484 { 485 u32 mix, step; 486 u32 *rf; 487 const struct ath5k_gain_opt *go; 488 const struct ath5k_gain_opt_step *g_step; 489 const struct ath5k_rf_reg *rf_regs; 490 491 /* Only RF5112 Rev. 2 supports it */ 492 if ((ah->ah_radio != AR5K_RF5112) || 493 (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) 494 return 0; 495 496 go = &rfgain_opt_5112; 497 rf_regs = rf_regs_5112a; 498 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); 499 500 g_step = &go->go_step[ah->ah_gain.g_step_idx]; 501 502 if (ah->ah_rf_banks == NULL) 503 return 0; 504 505 rf = ah->ah_rf_banks; 506 ah->ah_gain.g_f_corr = 0; 507 508 /* No VGA (Variable Gain Amplifier) override, skip */ 509 if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1) 510 return 0; 511 512 /* Mix gain stepping */ 513 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false); 514 515 /* Mix gain override */ 516 mix = g_step->gos_param[0]; 517 518 switch (mix) { 519 case 3: 520 ah->ah_gain.g_f_corr = step * 2; 521 break; 522 case 2: 523 ah->ah_gain.g_f_corr = (step - 5) * 2; 524 break; 525 case 1: 526 ah->ah_gain.g_f_corr = step; 527 break; 528 default: 529 ah->ah_gain.g_f_corr = 0; 530 break; 531 } 532 533 return ah->ah_gain.g_f_corr; 534 } 535 536 /** 537 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector 538 * @ah: The &struct ath5k_hw 539 * 540 * Check if current gain_F measurement is in the range of our 541 * power detector windows. If we get a measurement outside range 542 * we know it's not accurate (detectors can't measure anything outside 543 * their detection window) so we must ignore it. 544 * 545 * Returns true if readback was O.K. or false on failure 546 */ 547 static bool 548 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) 549 { 550 const struct ath5k_rf_reg *rf_regs; 551 u32 step, mix_ovr, level[4]; 552 u32 *rf; 553 554 if (ah->ah_rf_banks == NULL) 555 return false; 556 557 rf = ah->ah_rf_banks; 558 559 if (ah->ah_radio == AR5K_RF5111) { 560 561 rf_regs = rf_regs_5111; 562 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); 563 564 step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, 565 false); 566 567 level[0] = 0; 568 level[1] = (step == 63) ? 50 : step + 4; 569 level[2] = (step != 63) ? 64 : level[0]; 570 level[3] = level[2] + 50; 571 572 ah->ah_gain.g_high = level[3] - 573 (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); 574 ah->ah_gain.g_low = level[0] + 575 (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); 576 } else { 577 578 rf_regs = rf_regs_5112; 579 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); 580 581 mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, 582 false); 583 584 level[0] = level[2] = 0; 585 586 if (mix_ovr == 1) { 587 level[1] = level[3] = 83; 588 } else { 589 level[1] = level[3] = 107; 590 ah->ah_gain.g_high = 55; 591 } 592 } 593 594 return (ah->ah_gain.g_current >= level[0] && 595 ah->ah_gain.g_current <= level[1]) || 596 (ah->ah_gain.g_current >= level[2] && 597 ah->ah_gain.g_current <= level[3]); 598 } 599 600 /** 601 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment 602 * @ah: The &struct ath5k_hw 603 * 604 * Choose the right target gain based on current gain 605 * and RF gain optimization ladder 606 */ 607 static s8 608 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) 609 { 610 const struct ath5k_gain_opt *go; 611 const struct ath5k_gain_opt_step *g_step; 612 int ret = 0; 613 614 switch (ah->ah_radio) { 615 case AR5K_RF5111: 616 go = &rfgain_opt_5111; 617 break; 618 case AR5K_RF5112: 619 go = &rfgain_opt_5112; 620 break; 621 default: 622 return 0; 623 } 624 625 g_step = &go->go_step[ah->ah_gain.g_step_idx]; 626 627 if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { 628 629 /* Reached maximum */ 630 if (ah->ah_gain.g_step_idx == 0) 631 return -1; 632 633 for (ah->ah_gain.g_target = ah->ah_gain.g_current; 634 ah->ah_gain.g_target >= ah->ah_gain.g_high && 635 ah->ah_gain.g_step_idx > 0; 636 g_step = &go->go_step[ah->ah_gain.g_step_idx]) 637 ah->ah_gain.g_target -= 2 * 638 (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - 639 g_step->gos_gain); 640 641 ret = 1; 642 goto done; 643 } 644 645 if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { 646 647 /* Reached minimum */ 648 if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) 649 return -2; 650 651 for (ah->ah_gain.g_target = ah->ah_gain.g_current; 652 ah->ah_gain.g_target <= ah->ah_gain.g_low && 653 ah->ah_gain.g_step_idx < go->go_steps_count - 1; 654 g_step = &go->go_step[ah->ah_gain.g_step_idx]) 655 ah->ah_gain.g_target -= 2 * 656 (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - 657 g_step->gos_gain); 658 659 ret = 2; 660 goto done; 661 } 662 663 done: 664 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 665 "ret %d, gain step %u, current gain %u, target gain %u\n", 666 ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, 667 ah->ah_gain.g_target); 668 669 return ret; 670 } 671 672 /** 673 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration 674 * @ah: The &struct ath5k_hw 675 * 676 * Main callback for thermal RF gain calibration engine 677 * Check for a new gain reading and schedule an adjustment 678 * if needed. 679 * 680 * Returns one of enum ath5k_rfgain codes 681 */ 682 enum ath5k_rfgain 683 ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) 684 { 685 u32 data, type; 686 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 687 688 if (ah->ah_rf_banks == NULL || 689 ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) 690 return AR5K_RFGAIN_INACTIVE; 691 692 /* No check requested, either engine is inactive 693 * or an adjustment is already requested */ 694 if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) 695 goto done; 696 697 /* Read the PAPD (Peak to Average Power Detector) 698 * register */ 699 data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); 700 701 /* No probe is scheduled, read gain_F measurement */ 702 if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { 703 ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; 704 type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); 705 706 /* If tx packet is CCK correct the gain_F measurement 707 * by cck ofdm gain delta */ 708 if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { 709 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) 710 ah->ah_gain.g_current += 711 ee->ee_cck_ofdm_gain_delta; 712 else 713 ah->ah_gain.g_current += 714 AR5K_GAIN_CCK_PROBE_CORR; 715 } 716 717 /* Further correct gain_F measurement for 718 * RF5112A radios */ 719 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { 720 ath5k_hw_rf_gainf_corr(ah); 721 ah->ah_gain.g_current = 722 ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? 723 (ah->ah_gain.g_current - ah->ah_gain.g_f_corr) : 724 0; 725 } 726 727 /* Check if measurement is ok and if we need 728 * to adjust gain, schedule a gain adjustment, 729 * else switch back to the active state */ 730 if (ath5k_hw_rf_check_gainf_readback(ah) && 731 AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && 732 ath5k_hw_rf_gainf_adjust(ah)) { 733 ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; 734 } else { 735 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 736 } 737 } 738 739 done: 740 return ah->ah_gain.g_state; 741 } 742 743 /** 744 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw 745 * @ah: The &struct ath5k_hw 746 * @band: One of enum ieee80211_band 747 * 748 * Write initial RF gain table to set the RF sensitivity. 749 * 750 * NOTE: This one works on all RF chips and has nothing to do 751 * with Gain_F calibration 752 */ 753 static int 754 ath5k_hw_rfgain_init(struct ath5k_hw *ah, enum ieee80211_band band) 755 { 756 const struct ath5k_ini_rfgain *ath5k_rfg; 757 unsigned int i, size, index; 758 759 switch (ah->ah_radio) { 760 case AR5K_RF5111: 761 ath5k_rfg = rfgain_5111; 762 size = ARRAY_SIZE(rfgain_5111); 763 break; 764 case AR5K_RF5112: 765 ath5k_rfg = rfgain_5112; 766 size = ARRAY_SIZE(rfgain_5112); 767 break; 768 case AR5K_RF2413: 769 ath5k_rfg = rfgain_2413; 770 size = ARRAY_SIZE(rfgain_2413); 771 break; 772 case AR5K_RF2316: 773 ath5k_rfg = rfgain_2316; 774 size = ARRAY_SIZE(rfgain_2316); 775 break; 776 case AR5K_RF5413: 777 ath5k_rfg = rfgain_5413; 778 size = ARRAY_SIZE(rfgain_5413); 779 break; 780 case AR5K_RF2317: 781 case AR5K_RF2425: 782 ath5k_rfg = rfgain_2425; 783 size = ARRAY_SIZE(rfgain_2425); 784 break; 785 default: 786 return -EINVAL; 787 } 788 789 index = (band == IEEE80211_BAND_2GHZ) ? 1 : 0; 790 791 for (i = 0; i < size; i++) { 792 AR5K_REG_WAIT(i); 793 ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[index], 794 (u32)ath5k_rfg[i].rfg_register); 795 } 796 797 return 0; 798 } 799 800 801 /********************\ 802 * RF Registers setup * 803 \********************/ 804 805 /** 806 * ath5k_hw_rfregs_init() - Initialize RF register settings 807 * @ah: The &struct ath5k_hw 808 * @channel: The &struct ieee80211_channel 809 * @mode: One of enum ath5k_driver_mode 810 * 811 * Setup RF registers by writing RF buffer on hw. For 812 * more infos on this, check out rfbuffer.h 813 */ 814 static int 815 ath5k_hw_rfregs_init(struct ath5k_hw *ah, 816 struct ieee80211_channel *channel, 817 unsigned int mode) 818 { 819 const struct ath5k_rf_reg *rf_regs; 820 const struct ath5k_ini_rfbuffer *ini_rfb; 821 const struct ath5k_gain_opt *go = NULL; 822 const struct ath5k_gain_opt_step *g_step; 823 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 824 u8 ee_mode = 0; 825 u32 *rfb; 826 int i, obdb = -1, bank = -1; 827 828 switch (ah->ah_radio) { 829 case AR5K_RF5111: 830 rf_regs = rf_regs_5111; 831 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); 832 ini_rfb = rfb_5111; 833 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); 834 go = &rfgain_opt_5111; 835 break; 836 case AR5K_RF5112: 837 if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { 838 rf_regs = rf_regs_5112a; 839 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); 840 ini_rfb = rfb_5112a; 841 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); 842 } else { 843 rf_regs = rf_regs_5112; 844 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); 845 ini_rfb = rfb_5112; 846 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); 847 } 848 go = &rfgain_opt_5112; 849 break; 850 case AR5K_RF2413: 851 rf_regs = rf_regs_2413; 852 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); 853 ini_rfb = rfb_2413; 854 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); 855 break; 856 case AR5K_RF2316: 857 rf_regs = rf_regs_2316; 858 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); 859 ini_rfb = rfb_2316; 860 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); 861 break; 862 case AR5K_RF5413: 863 rf_regs = rf_regs_5413; 864 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); 865 ini_rfb = rfb_5413; 866 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); 867 break; 868 case AR5K_RF2317: 869 rf_regs = rf_regs_2425; 870 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); 871 ini_rfb = rfb_2317; 872 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); 873 break; 874 case AR5K_RF2425: 875 rf_regs = rf_regs_2425; 876 ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); 877 if (ah->ah_mac_srev < AR5K_SREV_AR2417) { 878 ini_rfb = rfb_2425; 879 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); 880 } else { 881 ini_rfb = rfb_2417; 882 ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); 883 } 884 break; 885 default: 886 return -EINVAL; 887 } 888 889 /* If it's the first time we set RF buffer, allocate 890 * ah->ah_rf_banks based on ah->ah_rf_banks_size 891 * we set above */ 892 if (ah->ah_rf_banks == NULL) { 893 ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size, 894 GFP_KERNEL); 895 if (ah->ah_rf_banks == NULL) { 896 ATH5K_ERR(ah, "out of memory\n"); 897 return -ENOMEM; 898 } 899 } 900 901 /* Copy values to modify them */ 902 rfb = ah->ah_rf_banks; 903 904 for (i = 0; i < ah->ah_rf_banks_size; i++) { 905 if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { 906 ATH5K_ERR(ah, "invalid bank\n"); 907 return -EINVAL; 908 } 909 910 /* Bank changed, write down the offset */ 911 if (bank != ini_rfb[i].rfb_bank) { 912 bank = ini_rfb[i].rfb_bank; 913 ah->ah_offset[bank] = i; 914 } 915 916 rfb[i] = ini_rfb[i].rfb_mode_data[mode]; 917 } 918 919 /* Set Output and Driver bias current (OB/DB) */ 920 if (channel->band == IEEE80211_BAND_2GHZ) { 921 922 if (channel->hw_value == AR5K_MODE_11B) 923 ee_mode = AR5K_EEPROM_MODE_11B; 924 else 925 ee_mode = AR5K_EEPROM_MODE_11G; 926 927 /* For RF511X/RF211X combination we 928 * use b_OB and b_DB parameters stored 929 * in eeprom on ee->ee_ob[ee_mode][0] 930 * 931 * For all other chips we use OB/DB for 2GHz 932 * stored in the b/g modal section just like 933 * 802.11a on ee->ee_ob[ee_mode][1] */ 934 if ((ah->ah_radio == AR5K_RF5111) || 935 (ah->ah_radio == AR5K_RF5112)) 936 obdb = 0; 937 else 938 obdb = 1; 939 940 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], 941 AR5K_RF_OB_2GHZ, true); 942 943 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], 944 AR5K_RF_DB_2GHZ, true); 945 946 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ 947 } else if ((channel->band == IEEE80211_BAND_5GHZ) || 948 (ah->ah_radio == AR5K_RF5111)) { 949 950 /* For 11a, Turbo and XR we need to choose 951 * OB/DB based on frequency range */ 952 ee_mode = AR5K_EEPROM_MODE_11A; 953 obdb = channel->center_freq >= 5725 ? 3 : 954 (channel->center_freq >= 5500 ? 2 : 955 (channel->center_freq >= 5260 ? 1 : 956 (channel->center_freq > 4000 ? 0 : -1))); 957 958 if (obdb < 0) 959 return -EINVAL; 960 961 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], 962 AR5K_RF_OB_5GHZ, true); 963 964 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], 965 AR5K_RF_DB_5GHZ, true); 966 } 967 968 g_step = &go->go_step[ah->ah_gain.g_step_idx]; 969 970 /* Set turbo mode (N/A on RF5413) */ 971 if ((ah->ah_bwmode == AR5K_BWMODE_40MHZ) && 972 (ah->ah_radio != AR5K_RF5413)) 973 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_TURBO, false); 974 975 /* Bank Modifications (chip-specific) */ 976 if (ah->ah_radio == AR5K_RF5111) { 977 978 /* Set gain_F settings according to current step */ 979 if (channel->hw_value != AR5K_MODE_11B) { 980 981 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, 982 AR5K_PHY_FRAME_CTL_TX_CLIP, 983 g_step->gos_param[0]); 984 985 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], 986 AR5K_RF_PWD_90, true); 987 988 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], 989 AR5K_RF_PWD_84, true); 990 991 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], 992 AR5K_RF_RFGAIN_SEL, true); 993 994 /* We programmed gain_F parameters, switch back 995 * to active state */ 996 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 997 998 } 999 1000 /* Bank 6/7 setup */ 1001 1002 ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], 1003 AR5K_RF_PWD_XPD, true); 1004 1005 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], 1006 AR5K_RF_XPD_GAIN, true); 1007 1008 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], 1009 AR5K_RF_GAIN_I, true); 1010 1011 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], 1012 AR5K_RF_PLO_SEL, true); 1013 1014 /* Tweak power detectors for half/quarter rate support */ 1015 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || 1016 ah->ah_bwmode == AR5K_BWMODE_10MHZ) { 1017 u8 wait_i; 1018 1019 ath5k_hw_rfb_op(ah, rf_regs, 0x1f, 1020 AR5K_RF_WAIT_S, true); 1021 1022 wait_i = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? 1023 0x1f : 0x10; 1024 1025 ath5k_hw_rfb_op(ah, rf_regs, wait_i, 1026 AR5K_RF_WAIT_I, true); 1027 ath5k_hw_rfb_op(ah, rf_regs, 3, 1028 AR5K_RF_MAX_TIME, true); 1029 1030 } 1031 } 1032 1033 if (ah->ah_radio == AR5K_RF5112) { 1034 1035 /* Set gain_F settings according to current step */ 1036 if (channel->hw_value != AR5K_MODE_11B) { 1037 1038 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], 1039 AR5K_RF_MIXGAIN_OVR, true); 1040 1041 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], 1042 AR5K_RF_PWD_138, true); 1043 1044 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], 1045 AR5K_RF_PWD_137, true); 1046 1047 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], 1048 AR5K_RF_PWD_136, true); 1049 1050 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], 1051 AR5K_RF_PWD_132, true); 1052 1053 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], 1054 AR5K_RF_PWD_131, true); 1055 1056 ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], 1057 AR5K_RF_PWD_130, true); 1058 1059 /* We programmed gain_F parameters, switch back 1060 * to active state */ 1061 ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; 1062 } 1063 1064 /* Bank 6/7 setup */ 1065 1066 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], 1067 AR5K_RF_XPD_SEL, true); 1068 1069 if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { 1070 /* Rev. 1 supports only one xpd */ 1071 ath5k_hw_rfb_op(ah, rf_regs, 1072 ee->ee_x_gain[ee_mode], 1073 AR5K_RF_XPD_GAIN, true); 1074 1075 } else { 1076 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; 1077 if (ee->ee_pd_gains[ee_mode] > 1) { 1078 ath5k_hw_rfb_op(ah, rf_regs, 1079 pdg_curve_to_idx[0], 1080 AR5K_RF_PD_GAIN_LO, true); 1081 ath5k_hw_rfb_op(ah, rf_regs, 1082 pdg_curve_to_idx[1], 1083 AR5K_RF_PD_GAIN_HI, true); 1084 } else { 1085 ath5k_hw_rfb_op(ah, rf_regs, 1086 pdg_curve_to_idx[0], 1087 AR5K_RF_PD_GAIN_LO, true); 1088 ath5k_hw_rfb_op(ah, rf_regs, 1089 pdg_curve_to_idx[0], 1090 AR5K_RF_PD_GAIN_HI, true); 1091 } 1092 1093 /* Lower synth voltage on Rev 2 */ 1094 if (ah->ah_radio == AR5K_RF5112 && 1095 (ah->ah_radio_5ghz_revision & AR5K_SREV_REV) > 0) { 1096 ath5k_hw_rfb_op(ah, rf_regs, 2, 1097 AR5K_RF_HIGH_VC_CP, true); 1098 1099 ath5k_hw_rfb_op(ah, rf_regs, 2, 1100 AR5K_RF_MID_VC_CP, true); 1101 1102 ath5k_hw_rfb_op(ah, rf_regs, 2, 1103 AR5K_RF_LOW_VC_CP, true); 1104 1105 ath5k_hw_rfb_op(ah, rf_regs, 2, 1106 AR5K_RF_PUSH_UP, true); 1107 } 1108 1109 /* Decrease power consumption on 5213+ BaseBand */ 1110 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { 1111 ath5k_hw_rfb_op(ah, rf_regs, 1, 1112 AR5K_RF_PAD2GND, true); 1113 1114 ath5k_hw_rfb_op(ah, rf_regs, 1, 1115 AR5K_RF_XB2_LVL, true); 1116 1117 ath5k_hw_rfb_op(ah, rf_regs, 1, 1118 AR5K_RF_XB5_LVL, true); 1119 1120 ath5k_hw_rfb_op(ah, rf_regs, 1, 1121 AR5K_RF_PWD_167, true); 1122 1123 ath5k_hw_rfb_op(ah, rf_regs, 1, 1124 AR5K_RF_PWD_166, true); 1125 } 1126 } 1127 1128 ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], 1129 AR5K_RF_GAIN_I, true); 1130 1131 /* Tweak power detector for half/quarter rates */ 1132 if (ah->ah_bwmode == AR5K_BWMODE_5MHZ || 1133 ah->ah_bwmode == AR5K_BWMODE_10MHZ) { 1134 u8 pd_delay; 1135 1136 pd_delay = (ah->ah_bwmode == AR5K_BWMODE_5MHZ) ? 1137 0xf : 0x8; 1138 1139 ath5k_hw_rfb_op(ah, rf_regs, pd_delay, 1140 AR5K_RF_PD_PERIOD_A, true); 1141 ath5k_hw_rfb_op(ah, rf_regs, 0xf, 1142 AR5K_RF_PD_DELAY_A, true); 1143 1144 } 1145 } 1146 1147 if (ah->ah_radio == AR5K_RF5413 && 1148 channel->band == IEEE80211_BAND_2GHZ) { 1149 1150 ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, 1151 true); 1152 1153 /* Set optimum value for early revisions (on pci-e chips) */ 1154 if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && 1155 ah->ah_mac_srev < AR5K_SREV_AR5413) 1156 ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), 1157 AR5K_RF_PWD_ICLOBUF_2G, true); 1158 1159 } 1160 1161 /* Write RF banks on hw */ 1162 for (i = 0; i < ah->ah_rf_banks_size; i++) { 1163 AR5K_REG_WAIT(i); 1164 ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); 1165 } 1166 1167 return 0; 1168 } 1169 1170 1171 /**************************\ 1172 PHY/RF channel functions 1173 \**************************/ 1174 1175 /** 1176 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110 1177 * @channel: The &struct ieee80211_channel 1178 * 1179 * Map channel frequency to IEEE channel number and convert it 1180 * to an internal channel value used by the RF5110 chipset. 1181 */ 1182 static u32 1183 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) 1184 { 1185 u32 athchan; 1186 1187 athchan = (ath5k_hw_bitswap( 1188 (ieee80211_frequency_to_channel( 1189 channel->center_freq) - 24) / 2, 5) 1190 << 1) | (1 << 6) | 0x1; 1191 return athchan; 1192 } 1193 1194 /** 1195 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110 1196 * @ah: The &struct ath5k_hw 1197 * @channel: The &struct ieee80211_channel 1198 */ 1199 static int 1200 ath5k_hw_rf5110_channel(struct ath5k_hw *ah, 1201 struct ieee80211_channel *channel) 1202 { 1203 u32 data; 1204 1205 /* 1206 * Set the channel and wait 1207 */ 1208 data = ath5k_hw_rf5110_chan2athchan(channel); 1209 ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); 1210 ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); 1211 usleep_range(1000, 1500); 1212 1213 return 0; 1214 } 1215 1216 /** 1217 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111 1218 * @ieee: IEEE channel number 1219 * @athchan: The &struct ath5k_athchan_2ghz 1220 * 1221 * In order to enable the RF2111 frequency converter on RF5111/2111 setups 1222 * we need to add some offsets and extra flags to the data values we pass 1223 * on to the PHY. So for every 2GHz channel this function gets called 1224 * to do the conversion. 1225 */ 1226 static int 1227 ath5k_hw_rf5111_chan2athchan(unsigned int ieee, 1228 struct ath5k_athchan_2ghz *athchan) 1229 { 1230 int channel; 1231 1232 /* Cast this value to catch negative channel numbers (>= -19) */ 1233 channel = (int)ieee; 1234 1235 /* 1236 * Map 2GHz IEEE channel to 5GHz Atheros channel 1237 */ 1238 if (channel <= 13) { 1239 athchan->a2_athchan = 115 + channel; 1240 athchan->a2_flags = 0x46; 1241 } else if (channel == 14) { 1242 athchan->a2_athchan = 124; 1243 athchan->a2_flags = 0x44; 1244 } else if (channel >= 15 && channel <= 26) { 1245 athchan->a2_athchan = ((channel - 14) * 4) + 132; 1246 athchan->a2_flags = 0x46; 1247 } else 1248 return -EINVAL; 1249 1250 return 0; 1251 } 1252 1253 /** 1254 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111 1255 * @ah: The &struct ath5k_hw 1256 * @channel: The &struct ieee80211_channel 1257 */ 1258 static int 1259 ath5k_hw_rf5111_channel(struct ath5k_hw *ah, 1260 struct ieee80211_channel *channel) 1261 { 1262 struct ath5k_athchan_2ghz ath5k_channel_2ghz; 1263 unsigned int ath5k_channel = 1264 ieee80211_frequency_to_channel(channel->center_freq); 1265 u32 data0, data1, clock; 1266 int ret; 1267 1268 /* 1269 * Set the channel on the RF5111 radio 1270 */ 1271 data0 = data1 = 0; 1272 1273 if (channel->band == IEEE80211_BAND_2GHZ) { 1274 /* Map 2GHz channel to 5GHz Atheros channel ID */ 1275 ret = ath5k_hw_rf5111_chan2athchan( 1276 ieee80211_frequency_to_channel(channel->center_freq), 1277 &ath5k_channel_2ghz); 1278 if (ret) 1279 return ret; 1280 1281 ath5k_channel = ath5k_channel_2ghz.a2_athchan; 1282 data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) 1283 << 5) | (1 << 4); 1284 } 1285 1286 if (ath5k_channel < 145 || !(ath5k_channel & 1)) { 1287 clock = 1; 1288 data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | 1289 (clock << 1) | (1 << 10) | 1; 1290 } else { 1291 clock = 0; 1292 data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) 1293 << 2) | (clock << 1) | (1 << 10) | 1; 1294 } 1295 1296 ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), 1297 AR5K_RF_BUFFER); 1298 ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), 1299 AR5K_RF_BUFFER_CONTROL_3); 1300 1301 return 0; 1302 } 1303 1304 /** 1305 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer 1306 * @ah: The &struct ath5k_hw 1307 * @channel: The &struct ieee80211_channel 1308 * 1309 * On RF5112/2112 and newer we don't need to do any conversion. 1310 * We pass the frequency value after a few modifications to the 1311 * chip directly. 1312 * 1313 * NOTE: Make sure channel frequency given is within our range or else 1314 * we might damage the chip ! Use ath5k_channel_ok before calling this one. 1315 */ 1316 static int 1317 ath5k_hw_rf5112_channel(struct ath5k_hw *ah, 1318 struct ieee80211_channel *channel) 1319 { 1320 u32 data, data0, data1, data2; 1321 u16 c; 1322 1323 data = data0 = data1 = data2 = 0; 1324 c = channel->center_freq; 1325 1326 /* My guess based on code: 1327 * 2GHz RF has 2 synth modes, one with a Local Oscillator 1328 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz 1329 * (3040/2). data0 is used to set the PLL divider and data1 1330 * selects synth mode. */ 1331 if (c < 4800) { 1332 /* Channel 14 and all frequencies with 2Hz spacing 1333 * below/above (non-standard channels) */ 1334 if (!((c - 2224) % 5)) { 1335 /* Same as (c - 2224) / 5 */ 1336 data0 = ((2 * (c - 704)) - 3040) / 10; 1337 data1 = 1; 1338 /* Channel 1 and all frequencies with 5Hz spacing 1339 * below/above (standard channels without channel 14) */ 1340 } else if (!((c - 2192) % 5)) { 1341 /* Same as (c - 2192) / 5 */ 1342 data0 = ((2 * (c - 672)) - 3040) / 10; 1343 data1 = 0; 1344 } else 1345 return -EINVAL; 1346 1347 data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); 1348 /* This is more complex, we have a single synthesizer with 1349 * 4 reference clock settings (?) based on frequency spacing 1350 * and set using data2. LO is at 4800Hz and data0 is again used 1351 * to set some divider. 1352 * 1353 * NOTE: There is an old atheros presentation at Stanford 1354 * that mentions a method called dual direct conversion 1355 * with 1GHz sliding IF for RF5110. Maybe that's what we 1356 * have here, or an updated version. */ 1357 } else if ((c % 5) != 2 || c > 5435) { 1358 if (!(c % 20) && c >= 5120) { 1359 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); 1360 data2 = ath5k_hw_bitswap(3, 2); 1361 } else if (!(c % 10)) { 1362 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); 1363 data2 = ath5k_hw_bitswap(2, 2); 1364 } else if (!(c % 5)) { 1365 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); 1366 data2 = ath5k_hw_bitswap(1, 2); 1367 } else 1368 return -EINVAL; 1369 } else { 1370 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); 1371 data2 = ath5k_hw_bitswap(0, 2); 1372 } 1373 1374 data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; 1375 1376 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 1377 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 1378 1379 return 0; 1380 } 1381 1382 /** 1383 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425 1384 * @ah: The &struct ath5k_hw 1385 * @channel: The &struct ieee80211_channel 1386 * 1387 * AR2425/2417 have a different 2GHz RF so code changes 1388 * a little bit from RF5112. 1389 */ 1390 static int 1391 ath5k_hw_rf2425_channel(struct ath5k_hw *ah, 1392 struct ieee80211_channel *channel) 1393 { 1394 u32 data, data0, data2; 1395 u16 c; 1396 1397 data = data0 = data2 = 0; 1398 c = channel->center_freq; 1399 1400 if (c < 4800) { 1401 data0 = ath5k_hw_bitswap((c - 2272), 8); 1402 data2 = 0; 1403 /* ? 5GHz ? */ 1404 } else if ((c % 5) != 2 || c > 5435) { 1405 if (!(c % 20) && c < 5120) 1406 data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); 1407 else if (!(c % 10)) 1408 data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); 1409 else if (!(c % 5)) 1410 data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); 1411 else 1412 return -EINVAL; 1413 data2 = ath5k_hw_bitswap(1, 2); 1414 } else { 1415 data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8); 1416 data2 = ath5k_hw_bitswap(0, 2); 1417 } 1418 1419 data = (data0 << 4) | data2 << 2 | 0x1001; 1420 1421 ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); 1422 ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); 1423 1424 return 0; 1425 } 1426 1427 /** 1428 * ath5k_hw_channel() - Set a channel on the radio chip 1429 * @ah: The &struct ath5k_hw 1430 * @channel: The &struct ieee80211_channel 1431 * 1432 * This is the main function called to set a channel on the 1433 * radio chip based on the radio chip version. 1434 */ 1435 static int 1436 ath5k_hw_channel(struct ath5k_hw *ah, 1437 struct ieee80211_channel *channel) 1438 { 1439 int ret; 1440 /* 1441 * Check bounds supported by the PHY (we don't care about regulatory 1442 * restrictions at this point). 1443 */ 1444 if (!ath5k_channel_ok(ah, channel)) { 1445 ATH5K_ERR(ah, 1446 "channel frequency (%u MHz) out of supported " 1447 "band range\n", 1448 channel->center_freq); 1449 return -EINVAL; 1450 } 1451 1452 /* 1453 * Set the channel and wait 1454 */ 1455 switch (ah->ah_radio) { 1456 case AR5K_RF5110: 1457 ret = ath5k_hw_rf5110_channel(ah, channel); 1458 break; 1459 case AR5K_RF5111: 1460 ret = ath5k_hw_rf5111_channel(ah, channel); 1461 break; 1462 case AR5K_RF2317: 1463 case AR5K_RF2425: 1464 ret = ath5k_hw_rf2425_channel(ah, channel); 1465 break; 1466 default: 1467 ret = ath5k_hw_rf5112_channel(ah, channel); 1468 break; 1469 } 1470 1471 if (ret) 1472 return ret; 1473 1474 /* Set JAPAN setting for channel 14 */ 1475 if (channel->center_freq == 2484) { 1476 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, 1477 AR5K_PHY_CCKTXCTL_JAPAN); 1478 } else { 1479 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, 1480 AR5K_PHY_CCKTXCTL_WORLD); 1481 } 1482 1483 ah->ah_current_channel = channel; 1484 1485 return 0; 1486 } 1487 1488 1489 /*****************\ 1490 PHY calibration 1491 \*****************/ 1492 1493 /** 1494 * DOC: PHY Calibration routines 1495 * 1496 * Noise floor calibration: When we tell the hardware to 1497 * perform a noise floor calibration by setting the 1498 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically 1499 * sample-and-hold the minimum noise level seen at the antennas. 1500 * This value is then stored in a ring buffer of recently measured 1501 * noise floor values so we have a moving window of the last few 1502 * samples. The median of the values in the history is then loaded 1503 * into the hardware for its own use for RSSI and CCA measurements. 1504 * This type of calibration doesn't interfere with traffic. 1505 * 1506 * AGC calibration: When we tell the hardware to perform 1507 * an AGC (Automatic Gain Control) calibration by setting the 1508 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does 1509 * a calibration on the DC offsets of ADCs. During this period 1510 * rx/tx gets disabled so we have to deal with it on the driver 1511 * part. 1512 * 1513 * I/Q calibration: When we tell the hardware to perform 1514 * an I/Q calibration, it tries to correct I/Q imbalance and 1515 * fix QAM constellation by sampling data from rxed frames. 1516 * It doesn't interfere with traffic. 1517 * 1518 * For more infos on AGC and I/Q calibration check out patent doc 1519 * #03/094463. 1520 */ 1521 1522 /** 1523 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw 1524 * @ah: The &struct ath5k_hw 1525 */ 1526 static s32 1527 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah) 1528 { 1529 s32 val; 1530 1531 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF); 1532 return sign_extend32(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 8); 1533 } 1534 1535 /** 1536 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer 1537 * @ah: The &struct ath5k_hw 1538 */ 1539 void 1540 ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah) 1541 { 1542 int i; 1543 1544 ah->ah_nfcal_hist.index = 0; 1545 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) 1546 ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE; 1547 } 1548 1549 /** 1550 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer 1551 * @ah: The &struct ath5k_hw 1552 * @noise_floor: The NF we got from hw 1553 */ 1554 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor) 1555 { 1556 struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist; 1557 hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX - 1); 1558 hist->nfval[hist->index] = noise_floor; 1559 } 1560 1561 /** 1562 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer 1563 * @ah: The &struct ath5k_hw 1564 */ 1565 static s16 1566 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah) 1567 { 1568 s16 sort[ATH5K_NF_CAL_HIST_MAX]; 1569 s16 tmp; 1570 int i, j; 1571 1572 memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort)); 1573 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) { 1574 for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) { 1575 if (sort[j] > sort[j - 1]) { 1576 tmp = sort[j]; 1577 sort[j] = sort[j - 1]; 1578 sort[j - 1] = tmp; 1579 } 1580 } 1581 } 1582 for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) { 1583 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1584 "cal %d:%d\n", i, sort[i]); 1585 } 1586 return sort[(ATH5K_NF_CAL_HIST_MAX - 1) / 2]; 1587 } 1588 1589 /** 1590 * ath5k_hw_update_noise_floor() - Update NF on hardware 1591 * @ah: The &struct ath5k_hw 1592 * 1593 * This is the main function we call to perform a NF calibration, 1594 * it reads NF from hardware, calculates the median and updates 1595 * NF on hw. 1596 */ 1597 void 1598 ath5k_hw_update_noise_floor(struct ath5k_hw *ah) 1599 { 1600 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1601 u32 val; 1602 s16 nf, threshold; 1603 u8 ee_mode; 1604 1605 /* keep last value if calibration hasn't completed */ 1606 if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) { 1607 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1608 "NF did not complete in calibration window\n"); 1609 1610 return; 1611 } 1612 1613 ah->ah_cal_mask |= AR5K_CALIBRATION_NF; 1614 1615 ee_mode = ath5k_eeprom_mode_from_channel(ah->ah_current_channel); 1616 1617 /* completed NF calibration, test threshold */ 1618 nf = ath5k_hw_read_measured_noise_floor(ah); 1619 threshold = ee->ee_noise_floor_thr[ee_mode]; 1620 1621 if (nf > threshold) { 1622 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1623 "noise floor failure detected; " 1624 "read %d, threshold %d\n", 1625 nf, threshold); 1626 1627 nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE; 1628 } 1629 1630 ath5k_hw_update_nfcal_hist(ah, nf); 1631 nf = ath5k_hw_get_median_noise_floor(ah); 1632 1633 /* load noise floor (in .5 dBm) so the hardware will use it */ 1634 val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M; 1635 val |= (nf * 2) & AR5K_PHY_NF_M; 1636 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); 1637 1638 AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, 1639 ~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE)); 1640 1641 ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF, 1642 0, false); 1643 1644 /* 1645 * Load a high max CCA Power value (-50 dBm in .5 dBm units) 1646 * so that we're not capped by the median we just loaded. 1647 * This will be used as the initial value for the next noise 1648 * floor calibration. 1649 */ 1650 val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M); 1651 ath5k_hw_reg_write(ah, val, AR5K_PHY_NF); 1652 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 1653 AR5K_PHY_AGCCTL_NF_EN | 1654 AR5K_PHY_AGCCTL_NF_NOUPDATE | 1655 AR5K_PHY_AGCCTL_NF); 1656 1657 ah->ah_noise_floor = nf; 1658 1659 ah->ah_cal_mask &= ~AR5K_CALIBRATION_NF; 1660 1661 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 1662 "noise floor calibrated: %d\n", nf); 1663 } 1664 1665 /** 1666 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110 1667 * @ah: The &struct ath5k_hw 1668 * @channel: The &struct ieee80211_channel 1669 * 1670 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110 1671 */ 1672 static int 1673 ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, 1674 struct ieee80211_channel *channel) 1675 { 1676 u32 phy_sig, phy_agc, phy_sat, beacon; 1677 int ret; 1678 1679 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) 1680 return 0; 1681 1682 /* 1683 * Disable beacons and RX/TX queues, wait 1684 */ 1685 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, 1686 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); 1687 beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); 1688 ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); 1689 1690 usleep_range(2000, 2500); 1691 1692 /* 1693 * Set the channel (with AGC turned off) 1694 */ 1695 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1696 udelay(10); 1697 ret = ath5k_hw_channel(ah, channel); 1698 1699 /* 1700 * Activate PHY and wait 1701 */ 1702 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); 1703 usleep_range(1000, 1500); 1704 1705 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1706 1707 if (ret) 1708 return ret; 1709 1710 /* 1711 * Calibrate the radio chip 1712 */ 1713 1714 /* Remember normal state */ 1715 phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); 1716 phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); 1717 phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); 1718 1719 /* Update radio registers */ 1720 ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | 1721 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); 1722 1723 ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | 1724 AR5K_PHY_AGCCOARSE_LO)) | 1725 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | 1726 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); 1727 1728 ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | 1729 AR5K_PHY_ADCSAT_THR)) | 1730 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | 1731 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); 1732 1733 udelay(20); 1734 1735 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1736 udelay(10); 1737 ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); 1738 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); 1739 1740 usleep_range(1000, 1500); 1741 1742 /* 1743 * Enable calibration and wait until completion 1744 */ 1745 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); 1746 1747 ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, 1748 AR5K_PHY_AGCCTL_CAL, 0, false); 1749 1750 /* Reset to normal state */ 1751 ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); 1752 ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); 1753 ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); 1754 1755 if (ret) { 1756 ATH5K_ERR(ah, "calibration timeout (%uMHz)\n", 1757 channel->center_freq); 1758 return ret; 1759 } 1760 1761 /* 1762 * Re-enable RX/TX and beacons 1763 */ 1764 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, 1765 AR5K_DIAG_SW_DIS_TX_5210 | AR5K_DIAG_SW_DIS_RX_5210); 1766 ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); 1767 1768 return 0; 1769 } 1770 1771 /** 1772 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer 1773 * @ah: The &struct ath5k_hw 1774 */ 1775 static int 1776 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah) 1777 { 1778 u32 i_pwr, q_pwr; 1779 s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; 1780 int i; 1781 1782 /* Skip if I/Q calibration is not needed or if it's still running */ 1783 if (!ah->ah_iq_cal_needed) 1784 return -EINVAL; 1785 else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) { 1786 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1787 "I/Q calibration still running"); 1788 return -EBUSY; 1789 } 1790 1791 /* Calibration has finished, get the results and re-run */ 1792 1793 /* Work around for empty results which can apparently happen on 5212: 1794 * Read registers up to 10 times until we get both i_pr and q_pwr */ 1795 for (i = 0; i <= 10; i++) { 1796 iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); 1797 i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); 1798 q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); 1799 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1800 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr); 1801 if (i_pwr && q_pwr) 1802 break; 1803 } 1804 1805 i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; 1806 1807 if (ah->ah_version == AR5K_AR5211) 1808 q_coffd = q_pwr >> 6; 1809 else 1810 q_coffd = q_pwr >> 7; 1811 1812 /* In case i_coffd became zero, cancel calibration 1813 * not only it's too small, it'll also result a divide 1814 * by zero later on. */ 1815 if (i_coffd == 0 || q_coffd < 2) 1816 return -ECANCELED; 1817 1818 /* Protect against loss of sign bits */ 1819 1820 i_coff = (-iq_corr) / i_coffd; 1821 i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */ 1822 1823 if (ah->ah_version == AR5K_AR5211) 1824 q_coff = (i_pwr / q_coffd) - 64; 1825 else 1826 q_coff = (i_pwr / q_coffd) - 128; 1827 q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */ 1828 1829 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1830 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)", 1831 i_coff, q_coff, i_coffd, q_coffd); 1832 1833 /* Commit new I/Q values (set enable bit last to match HAL sources) */ 1834 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff); 1835 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff); 1836 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE); 1837 1838 /* Re-enable calibration -if we don't we'll commit 1839 * the same values again and again */ 1840 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, 1841 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); 1842 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); 1843 1844 return 0; 1845 } 1846 1847 /** 1848 * ath5k_hw_phy_calibrate() - Perform a PHY calibration 1849 * @ah: The &struct ath5k_hw 1850 * @channel: The &struct ieee80211_channel 1851 * 1852 * The main function we call from above to perform 1853 * a short or full PHY calibration based on RF chip 1854 * and current channel 1855 */ 1856 int 1857 ath5k_hw_phy_calibrate(struct ath5k_hw *ah, 1858 struct ieee80211_channel *channel) 1859 { 1860 int ret; 1861 1862 if (ah->ah_radio == AR5K_RF5110) 1863 return ath5k_hw_rf5110_calibrate(ah, channel); 1864 1865 ret = ath5k_hw_rf511x_iq_calibrate(ah); 1866 if (ret) { 1867 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_CALIBRATE, 1868 "No I/Q correction performed (%uMHz)\n", 1869 channel->center_freq); 1870 1871 /* Happens all the time if there is not much 1872 * traffic, consider it normal behaviour. */ 1873 ret = 0; 1874 } 1875 1876 /* On full calibration request a PAPD probe for 1877 * gainf calibration if needed */ 1878 if ((ah->ah_cal_mask & AR5K_CALIBRATION_FULL) && 1879 (ah->ah_radio == AR5K_RF5111 || 1880 ah->ah_radio == AR5K_RF5112) && 1881 channel->hw_value != AR5K_MODE_11B) 1882 ath5k_hw_request_rfgain_probe(ah); 1883 1884 /* Update noise floor */ 1885 if (!(ah->ah_cal_mask & AR5K_CALIBRATION_NF)) 1886 ath5k_hw_update_noise_floor(ah); 1887 1888 return ret; 1889 } 1890 1891 1892 /***************************\ 1893 * Spur mitigation functions * 1894 \***************************/ 1895 1896 /** 1897 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter 1898 * @ah: The &struct ath5k_hw 1899 * @channel: The &struct ieee80211_channel 1900 * 1901 * This function gets called during PHY initialization to 1902 * configure the spur filter for the given channel. Spur is noise 1903 * generated due to "reflection" effects, for more information on this 1904 * method check out patent US7643810 1905 */ 1906 static void 1907 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah, 1908 struct ieee80211_channel *channel) 1909 { 1910 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1911 u32 mag_mask[4] = {0, 0, 0, 0}; 1912 u32 pilot_mask[2] = {0, 0}; 1913 /* Note: fbin values are scaled up by 2 */ 1914 u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window; 1915 s32 spur_delta_phase, spur_freq_sigma_delta; 1916 s32 spur_offset, num_symbols_x16; 1917 u8 num_symbol_offsets, i, freq_band; 1918 1919 /* Convert current frequency to fbin value (the same way channels 1920 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale 1921 * up by 2 so we can compare it later */ 1922 if (channel->band == IEEE80211_BAND_2GHZ) { 1923 chan_fbin = (channel->center_freq - 2300) * 10; 1924 freq_band = AR5K_EEPROM_BAND_2GHZ; 1925 } else { 1926 chan_fbin = (channel->center_freq - 4900) * 10; 1927 freq_band = AR5K_EEPROM_BAND_5GHZ; 1928 } 1929 1930 /* Check if any spur_chan_fbin from EEPROM is 1931 * within our current channel's spur detection range */ 1932 spur_chan_fbin = AR5K_EEPROM_NO_SPUR; 1933 spur_detection_window = AR5K_SPUR_CHAN_WIDTH; 1934 /* XXX: Half/Quarter channels ?*/ 1935 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 1936 spur_detection_window *= 2; 1937 1938 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) { 1939 spur_chan_fbin = ee->ee_spur_chans[i][freq_band]; 1940 1941 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag 1942 * so it's zero if we got nothing from EEPROM */ 1943 if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) { 1944 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; 1945 break; 1946 } 1947 1948 if ((chan_fbin - spur_detection_window <= 1949 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) && 1950 (chan_fbin + spur_detection_window >= 1951 (spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) { 1952 spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK; 1953 break; 1954 } 1955 } 1956 1957 /* We need to enable spur filter for this channel */ 1958 if (spur_chan_fbin) { 1959 spur_offset = spur_chan_fbin - chan_fbin; 1960 /* 1961 * Calculate deltas: 1962 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21 1963 * spur_delta_phase -> spur_offset / chip_freq << 11 1964 * Note: Both values have 100Hz resolution 1965 */ 1966 switch (ah->ah_bwmode) { 1967 case AR5K_BWMODE_40MHZ: 1968 /* Both sample_freq and chip_freq are 80MHz */ 1969 spur_delta_phase = (spur_offset << 16) / 25; 1970 spur_freq_sigma_delta = (spur_delta_phase >> 10); 1971 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz * 2; 1972 break; 1973 case AR5K_BWMODE_10MHZ: 1974 /* Both sample_freq and chip_freq are 20MHz (?) */ 1975 spur_delta_phase = (spur_offset << 18) / 25; 1976 spur_freq_sigma_delta = (spur_delta_phase >> 10); 1977 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 2; 1978 break; 1979 case AR5K_BWMODE_5MHZ: 1980 /* Both sample_freq and chip_freq are 10MHz (?) */ 1981 spur_delta_phase = (spur_offset << 19) / 25; 1982 spur_freq_sigma_delta = (spur_delta_phase >> 10); 1983 symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz / 4; 1984 break; 1985 default: 1986 if (channel->band == IEEE80211_BAND_5GHZ) { 1987 /* Both sample_freq and chip_freq are 40MHz */ 1988 spur_delta_phase = (spur_offset << 17) / 25; 1989 spur_freq_sigma_delta = 1990 (spur_delta_phase >> 10); 1991 symbol_width = 1992 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; 1993 } else { 1994 /* sample_freq -> 40MHz chip_freq -> 44MHz 1995 * (for b compatibility) */ 1996 spur_delta_phase = (spur_offset << 17) / 25; 1997 spur_freq_sigma_delta = 1998 (spur_offset << 8) / 55; 1999 symbol_width = 2000 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz; 2001 } 2002 break; 2003 } 2004 2005 /* Calculate pilot and magnitude masks */ 2006 2007 /* Scale up spur_offset by 1000 to switch to 100HZ resolution 2008 * and divide by symbol_width to find how many symbols we have 2009 * Note: number of symbols is scaled up by 16 */ 2010 num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width; 2011 2012 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */ 2013 if (!(num_symbols_x16 & 0xF)) 2014 /* _X_ */ 2015 num_symbol_offsets = 3; 2016 else 2017 /* _xx_ */ 2018 num_symbol_offsets = 4; 2019 2020 for (i = 0; i < num_symbol_offsets; i++) { 2021 2022 /* Calculate pilot mask */ 2023 s32 curr_sym_off = 2024 (num_symbols_x16 / 16) + i + 25; 2025 2026 /* Pilot magnitude mask seems to be a way to 2027 * declare the boundaries for our detection 2028 * window or something, it's 2 for the middle 2029 * value(s) where the symbol is expected to be 2030 * and 1 on the boundary values */ 2031 u8 plt_mag_map = 2032 (i == 0 || i == (num_symbol_offsets - 1)) 2033 ? 1 : 2; 2034 2035 if (curr_sym_off >= 0 && curr_sym_off <= 32) { 2036 if (curr_sym_off <= 25) 2037 pilot_mask[0] |= 1 << curr_sym_off; 2038 else if (curr_sym_off >= 27) 2039 pilot_mask[0] |= 1 << (curr_sym_off - 1); 2040 } else if (curr_sym_off >= 33 && curr_sym_off <= 52) 2041 pilot_mask[1] |= 1 << (curr_sym_off - 33); 2042 2043 /* Calculate magnitude mask (for viterbi decoder) */ 2044 if (curr_sym_off >= -1 && curr_sym_off <= 14) 2045 mag_mask[0] |= 2046 plt_mag_map << (curr_sym_off + 1) * 2; 2047 else if (curr_sym_off >= 15 && curr_sym_off <= 30) 2048 mag_mask[1] |= 2049 plt_mag_map << (curr_sym_off - 15) * 2; 2050 else if (curr_sym_off >= 31 && curr_sym_off <= 46) 2051 mag_mask[2] |= 2052 plt_mag_map << (curr_sym_off - 31) * 2; 2053 else if (curr_sym_off >= 47 && curr_sym_off <= 53) 2054 mag_mask[3] |= 2055 plt_mag_map << (curr_sym_off - 47) * 2; 2056 2057 } 2058 2059 /* Write settings on hw to enable spur filter */ 2060 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2061 AR5K_PHY_BIN_MASK_CTL_RATE, 0xff); 2062 /* XXX: Self correlator also ? */ 2063 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, 2064 AR5K_PHY_IQ_PILOT_MASK_EN | 2065 AR5K_PHY_IQ_CHAN_MASK_EN | 2066 AR5K_PHY_IQ_SPUR_FILT_EN); 2067 2068 /* Set delta phase and freq sigma delta */ 2069 ath5k_hw_reg_write(ah, 2070 AR5K_REG_SM(spur_delta_phase, 2071 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) | 2072 AR5K_REG_SM(spur_freq_sigma_delta, 2073 AR5K_PHY_TIMING_11_SPUR_FREQ_SD) | 2074 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC, 2075 AR5K_PHY_TIMING_11); 2076 2077 /* Write pilot masks */ 2078 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7); 2079 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, 2080 AR5K_PHY_TIMING_8_PILOT_MASK_2, 2081 pilot_mask[1]); 2082 2083 ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9); 2084 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, 2085 AR5K_PHY_TIMING_10_PILOT_MASK_2, 2086 pilot_mask[1]); 2087 2088 /* Write magnitude masks */ 2089 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1); 2090 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2); 2091 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3); 2092 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2093 AR5K_PHY_BIN_MASK_CTL_MASK_4, 2094 mag_mask[3]); 2095 2096 ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1); 2097 ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2); 2098 ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3); 2099 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, 2100 AR5K_PHY_BIN_MASK2_4_MASK_4, 2101 mag_mask[3]); 2102 2103 } else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & 2104 AR5K_PHY_IQ_SPUR_FILT_EN) { 2105 /* Clean up spur mitigation settings and disable filter */ 2106 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2107 AR5K_PHY_BIN_MASK_CTL_RATE, 0); 2108 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ, 2109 AR5K_PHY_IQ_PILOT_MASK_EN | 2110 AR5K_PHY_IQ_CHAN_MASK_EN | 2111 AR5K_PHY_IQ_SPUR_FILT_EN); 2112 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11); 2113 2114 /* Clear pilot masks */ 2115 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7); 2116 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8, 2117 AR5K_PHY_TIMING_8_PILOT_MASK_2, 2118 0); 2119 2120 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9); 2121 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10, 2122 AR5K_PHY_TIMING_10_PILOT_MASK_2, 2123 0); 2124 2125 /* Clear magnitude masks */ 2126 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1); 2127 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2); 2128 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3); 2129 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL, 2130 AR5K_PHY_BIN_MASK_CTL_MASK_4, 2131 0); 2132 2133 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1); 2134 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2); 2135 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3); 2136 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4, 2137 AR5K_PHY_BIN_MASK2_4_MASK_4, 2138 0); 2139 } 2140 } 2141 2142 2143 /*****************\ 2144 * Antenna control * 2145 \*****************/ 2146 2147 /** 2148 * DOC: Antenna control 2149 * 2150 * Hw supports up to 14 antennas ! I haven't found any card that implements 2151 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2 2152 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX) 2153 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional). 2154 * 2155 * We can have a single antenna for RX and multiple antennas for TX. 2156 * RX antenna is our "default" antenna (usually antenna 1) set on 2157 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor 2158 * (0 for automatic selection, 1 - 14 antenna number). 2159 * 2160 * We can let hw do all the work doing fast antenna diversity for both 2161 * tx and rx or we can do things manually. Here are the options we have 2162 * (all are bits of STA_ID1 register): 2163 * 2164 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX 2165 * control descriptor, use the default antenna to transmit or else use the last 2166 * antenna on which we received an ACK. 2167 * 2168 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to 2169 * the antenna on which we got the ACK for that frame. 2170 * 2171 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the 2172 * one on the TX descriptor. 2173 * 2174 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames 2175 * (ACKs etc), or else use current antenna (the one we just used for TX). 2176 * 2177 * Using the above we support the following scenarios: 2178 * 2179 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically 2180 * 2181 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present 2182 * 2183 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present 2184 * 2185 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap 2186 * 2187 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc 2188 * 2189 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc 2190 * 2191 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx- 2192 * 2193 * Also note that when setting antenna to F on tx descriptor card inverts 2194 * current tx antenna. 2195 */ 2196 2197 /** 2198 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer 2199 * @ah: The &struct ath5k_hw 2200 * @ant: Antenna number 2201 */ 2202 static void 2203 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant) 2204 { 2205 if (ah->ah_version != AR5K_AR5210) 2206 ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA); 2207 } 2208 2209 /** 2210 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity 2211 * @ah: The &struct ath5k_hw 2212 * @ee_mode: One of enum ath5k_driver_mode 2213 * @enable: True to enable, false to disable 2214 */ 2215 static void 2216 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable) 2217 { 2218 switch (ee_mode) { 2219 case AR5K_EEPROM_MODE_11G: 2220 /* XXX: This is set to 2221 * disabled on initvals !!! */ 2222 case AR5K_EEPROM_MODE_11A: 2223 if (enable) 2224 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL, 2225 AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 2226 else 2227 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 2228 AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 2229 break; 2230 case AR5K_EEPROM_MODE_11B: 2231 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 2232 AR5K_PHY_AGCCTL_OFDM_DIV_DIS); 2233 break; 2234 default: 2235 return; 2236 } 2237 2238 if (enable) { 2239 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, 2240 AR5K_PHY_RESTART_DIV_GC, 4); 2241 2242 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, 2243 AR5K_PHY_FAST_ANT_DIV_EN); 2244 } else { 2245 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART, 2246 AR5K_PHY_RESTART_DIV_GC, 0); 2247 2248 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV, 2249 AR5K_PHY_FAST_ANT_DIV_EN); 2250 } 2251 } 2252 2253 /** 2254 * ath5k_hw_set_antenna_switch() - Set up antenna switch table 2255 * @ah: The &struct ath5k_hw 2256 * @ee_mode: One of enum ath5k_driver_mode 2257 * 2258 * Switch table comes from EEPROM and includes information on controlling 2259 * the 2 antenna RX attenuators 2260 */ 2261 void 2262 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode) 2263 { 2264 u8 ant0, ant1; 2265 2266 /* 2267 * In case a fixed antenna was set as default 2268 * use the same switch table twice. 2269 */ 2270 if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A) 2271 ant0 = ant1 = AR5K_ANT_SWTABLE_A; 2272 else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B) 2273 ant0 = ant1 = AR5K_ANT_SWTABLE_B; 2274 else { 2275 ant0 = AR5K_ANT_SWTABLE_A; 2276 ant1 = AR5K_ANT_SWTABLE_B; 2277 } 2278 2279 /* Set antenna idle switch table */ 2280 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL, 2281 AR5K_PHY_ANT_CTL_SWTABLE_IDLE, 2282 (ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] | 2283 AR5K_PHY_ANT_CTL_TXRX_EN)); 2284 2285 /* Set antenna switch tables */ 2286 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0], 2287 AR5K_PHY_ANT_SWITCH_TABLE_0); 2288 ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1], 2289 AR5K_PHY_ANT_SWITCH_TABLE_1); 2290 } 2291 2292 /** 2293 * ath5k_hw_set_antenna_mode() - Set antenna operating mode 2294 * @ah: The &struct ath5k_hw 2295 * @ant_mode: One of enum ath5k_ant_mode 2296 */ 2297 void 2298 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode) 2299 { 2300 struct ieee80211_channel *channel = ah->ah_current_channel; 2301 bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div; 2302 bool use_def_for_sg; 2303 int ee_mode; 2304 u8 def_ant, tx_ant; 2305 u32 sta_id1 = 0; 2306 2307 /* if channel is not initialized yet we can't set the antennas 2308 * so just store the mode. it will be set on the next reset */ 2309 if (channel == NULL) { 2310 ah->ah_ant_mode = ant_mode; 2311 return; 2312 } 2313 2314 def_ant = ah->ah_def_ant; 2315 2316 ee_mode = ath5k_eeprom_mode_from_channel(channel); 2317 if (ee_mode < 0) { 2318 ATH5K_ERR(ah, 2319 "invalid channel: %d\n", channel->center_freq); 2320 return; 2321 } 2322 2323 switch (ant_mode) { 2324 case AR5K_ANTMODE_DEFAULT: 2325 tx_ant = 0; 2326 use_def_for_tx = false; 2327 update_def_on_tx = false; 2328 use_def_for_rts = false; 2329 use_def_for_sg = false; 2330 fast_div = true; 2331 break; 2332 case AR5K_ANTMODE_FIXED_A: 2333 def_ant = 1; 2334 tx_ant = 1; 2335 use_def_for_tx = true; 2336 update_def_on_tx = false; 2337 use_def_for_rts = true; 2338 use_def_for_sg = true; 2339 fast_div = false; 2340 break; 2341 case AR5K_ANTMODE_FIXED_B: 2342 def_ant = 2; 2343 tx_ant = 2; 2344 use_def_for_tx = true; 2345 update_def_on_tx = false; 2346 use_def_for_rts = true; 2347 use_def_for_sg = true; 2348 fast_div = false; 2349 break; 2350 case AR5K_ANTMODE_SINGLE_AP: 2351 def_ant = 1; /* updated on tx */ 2352 tx_ant = 0; 2353 use_def_for_tx = true; 2354 update_def_on_tx = true; 2355 use_def_for_rts = true; 2356 use_def_for_sg = true; 2357 fast_div = true; 2358 break; 2359 case AR5K_ANTMODE_SECTOR_AP: 2360 tx_ant = 1; /* variable */ 2361 use_def_for_tx = false; 2362 update_def_on_tx = false; 2363 use_def_for_rts = true; 2364 use_def_for_sg = false; 2365 fast_div = false; 2366 break; 2367 case AR5K_ANTMODE_SECTOR_STA: 2368 tx_ant = 1; /* variable */ 2369 use_def_for_tx = true; 2370 update_def_on_tx = false; 2371 use_def_for_rts = true; 2372 use_def_for_sg = false; 2373 fast_div = true; 2374 break; 2375 case AR5K_ANTMODE_DEBUG: 2376 def_ant = 1; 2377 tx_ant = 2; 2378 use_def_for_tx = false; 2379 update_def_on_tx = false; 2380 use_def_for_rts = false; 2381 use_def_for_sg = false; 2382 fast_div = false; 2383 break; 2384 default: 2385 return; 2386 } 2387 2388 ah->ah_tx_ant = tx_ant; 2389 ah->ah_ant_mode = ant_mode; 2390 ah->ah_def_ant = def_ant; 2391 2392 sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0; 2393 sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0; 2394 sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0; 2395 sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0; 2396 2397 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS); 2398 2399 if (sta_id1) 2400 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1); 2401 2402 ath5k_hw_set_antenna_switch(ah, ee_mode); 2403 /* Note: set diversity before default antenna 2404 * because it won't work correctly */ 2405 ath5k_hw_set_fast_div(ah, ee_mode, fast_div); 2406 ath5k_hw_set_def_antenna(ah, def_ant); 2407 } 2408 2409 2410 /****************\ 2411 * TX power setup * 2412 \****************/ 2413 2414 /* 2415 * Helper functions 2416 */ 2417 2418 /** 2419 * ath5k_get_interpolated_value() - Get interpolated Y val between two points 2420 * @target: X value of the middle point 2421 * @x_left: X value of the left point 2422 * @x_right: X value of the right point 2423 * @y_left: Y value of the left point 2424 * @y_right: Y value of the right point 2425 */ 2426 static s16 2427 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, 2428 s16 y_left, s16 y_right) 2429 { 2430 s16 ratio, result; 2431 2432 /* Avoid divide by zero and skip interpolation 2433 * if we have the same point */ 2434 if ((x_left == x_right) || (y_left == y_right)) 2435 return y_left; 2436 2437 /* 2438 * Since we use ints and not fps, we need to scale up in 2439 * order to get a sane ratio value (or else we 'll eg. get 2440 * always 1 instead of 1.25, 1.75 etc). We scale up by 100 2441 * to have some accuracy both for 0.5 and 0.25 steps. 2442 */ 2443 ratio = ((100 * y_right - 100 * y_left) / (x_right - x_left)); 2444 2445 /* Now scale down to be in range */ 2446 result = y_left + (ratio * (target - x_left) / 100); 2447 2448 return result; 2449 } 2450 2451 /** 2452 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the 2453 * linear PCDAC curve 2454 * @stepL: Left array with y values (pcdac steps) 2455 * @stepR: Right array with y values (pcdac steps) 2456 * @pwrL: Left array with x values (power steps) 2457 * @pwrR: Right array with x values (power steps) 2458 * 2459 * Since we have the top of the curve and we draw the line below 2460 * until we reach 1 (1 pcdac step) we need to know which point 2461 * (x value) that is so that we don't go below x axis and have negative 2462 * pcdac values when creating the curve, or fill the table with zeros. 2463 */ 2464 static s16 2465 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, 2466 const s16 *pwrL, const s16 *pwrR) 2467 { 2468 s8 tmp; 2469 s16 min_pwrL, min_pwrR; 2470 s16 pwr_i; 2471 2472 /* Some vendors write the same pcdac value twice !!! */ 2473 if (stepL[0] == stepL[1] || stepR[0] == stepR[1]) 2474 return max(pwrL[0], pwrR[0]); 2475 2476 if (pwrL[0] == pwrL[1]) 2477 min_pwrL = pwrL[0]; 2478 else { 2479 pwr_i = pwrL[0]; 2480 do { 2481 pwr_i--; 2482 tmp = (s8) ath5k_get_interpolated_value(pwr_i, 2483 pwrL[0], pwrL[1], 2484 stepL[0], stepL[1]); 2485 } while (tmp > 1); 2486 2487 min_pwrL = pwr_i; 2488 } 2489 2490 if (pwrR[0] == pwrR[1]) 2491 min_pwrR = pwrR[0]; 2492 else { 2493 pwr_i = pwrR[0]; 2494 do { 2495 pwr_i--; 2496 tmp = (s8) ath5k_get_interpolated_value(pwr_i, 2497 pwrR[0], pwrR[1], 2498 stepR[0], stepR[1]); 2499 } while (tmp > 1); 2500 2501 min_pwrR = pwr_i; 2502 } 2503 2504 /* Keep the right boundary so that it works for both curves */ 2505 return max(min_pwrL, min_pwrR); 2506 } 2507 2508 /** 2509 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve 2510 * @pmin: Minimum power value (xmin) 2511 * @pmax: Maximum power value (xmax) 2512 * @pwr: Array of power steps (x values) 2513 * @vpd: Array of matching PCDAC/PDADC steps (y values) 2514 * @num_points: Number of provided points 2515 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values) 2516 * @type: One of enum ath5k_powertable_type (eeprom.h) 2517 * 2518 * Interpolate (pwr,vpd) points to create a Power to PDADC or a 2519 * Power to PCDAC curve. 2520 * 2521 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC 2522 * steps (offsets) on y axis. Power can go up to 31.5dB and max 2523 * PCDAC/PDADC step for each curve is 64 but we can write more than 2524 * one curves on hw so we can go up to 128 (which is the max step we 2525 * can write on the final table). 2526 * 2527 * We write y values (PCDAC/PDADC steps) on hw. 2528 */ 2529 static void 2530 ath5k_create_power_curve(s16 pmin, s16 pmax, 2531 const s16 *pwr, const u8 *vpd, 2532 u8 num_points, 2533 u8 *vpd_table, u8 type) 2534 { 2535 u8 idx[2] = { 0, 1 }; 2536 s16 pwr_i = 2 * pmin; 2537 int i; 2538 2539 if (num_points < 2) 2540 return; 2541 2542 /* We want the whole line, so adjust boundaries 2543 * to cover the entire power range. Note that 2544 * power values are already 0.25dB so no need 2545 * to multiply pwr_i by 2 */ 2546 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { 2547 pwr_i = pmin; 2548 pmin = 0; 2549 pmax = 63; 2550 } 2551 2552 /* Find surrounding turning points (TPs) 2553 * and interpolate between them */ 2554 for (i = 0; (i <= (u16) (pmax - pmin)) && 2555 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { 2556 2557 /* We passed the right TP, move to the next set of TPs 2558 * if we pass the last TP, extrapolate above using the last 2559 * two TPs for ratio */ 2560 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { 2561 idx[0]++; 2562 idx[1]++; 2563 } 2564 2565 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, 2566 pwr[idx[0]], pwr[idx[1]], 2567 vpd[idx[0]], vpd[idx[1]]); 2568 2569 /* Increase by 0.5dB 2570 * (0.25 dB units) */ 2571 pwr_i += 2; 2572 } 2573 } 2574 2575 /** 2576 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers 2577 * for a given channel. 2578 * @ah: The &struct ath5k_hw 2579 * @channel: The &struct ieee80211_channel 2580 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier 2581 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier 2582 * 2583 * Get the surrounding per-channel power calibration piers 2584 * for a given frequency so that we can interpolate between 2585 * them and come up with an appropriate dataset for our current 2586 * channel. 2587 */ 2588 static void 2589 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, 2590 struct ieee80211_channel *channel, 2591 struct ath5k_chan_pcal_info **pcinfo_l, 2592 struct ath5k_chan_pcal_info **pcinfo_r) 2593 { 2594 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2595 struct ath5k_chan_pcal_info *pcinfo; 2596 u8 idx_l, idx_r; 2597 u8 mode, max, i; 2598 u32 target = channel->center_freq; 2599 2600 idx_l = 0; 2601 idx_r = 0; 2602 2603 switch (channel->hw_value) { 2604 case AR5K_EEPROM_MODE_11A: 2605 pcinfo = ee->ee_pwr_cal_a; 2606 mode = AR5K_EEPROM_MODE_11A; 2607 break; 2608 case AR5K_EEPROM_MODE_11B: 2609 pcinfo = ee->ee_pwr_cal_b; 2610 mode = AR5K_EEPROM_MODE_11B; 2611 break; 2612 case AR5K_EEPROM_MODE_11G: 2613 default: 2614 pcinfo = ee->ee_pwr_cal_g; 2615 mode = AR5K_EEPROM_MODE_11G; 2616 break; 2617 } 2618 max = ee->ee_n_piers[mode] - 1; 2619 2620 /* Frequency is below our calibrated 2621 * range. Use the lowest power curve 2622 * we have */ 2623 if (target < pcinfo[0].freq) { 2624 idx_l = idx_r = 0; 2625 goto done; 2626 } 2627 2628 /* Frequency is above our calibrated 2629 * range. Use the highest power curve 2630 * we have */ 2631 if (target > pcinfo[max].freq) { 2632 idx_l = idx_r = max; 2633 goto done; 2634 } 2635 2636 /* Frequency is inside our calibrated 2637 * channel range. Pick the surrounding 2638 * calibration piers so that we can 2639 * interpolate */ 2640 for (i = 0; i <= max; i++) { 2641 2642 /* Frequency matches one of our calibration 2643 * piers, no need to interpolate, just use 2644 * that calibration pier */ 2645 if (pcinfo[i].freq == target) { 2646 idx_l = idx_r = i; 2647 goto done; 2648 } 2649 2650 /* We found a calibration pier that's above 2651 * frequency, use this pier and the previous 2652 * one to interpolate */ 2653 if (target < pcinfo[i].freq) { 2654 idx_r = i; 2655 idx_l = idx_r - 1; 2656 goto done; 2657 } 2658 } 2659 2660 done: 2661 *pcinfo_l = &pcinfo[idx_l]; 2662 *pcinfo_r = &pcinfo[idx_r]; 2663 } 2664 2665 /** 2666 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power 2667 * calibration data 2668 * @ah: The &struct ath5k_hw *ah, 2669 * @channel: The &struct ieee80211_channel 2670 * @rates: The &struct ath5k_rate_pcal_info to fill 2671 * 2672 * Get the surrounding per-rate power calibration data 2673 * for a given frequency and interpolate between power 2674 * values to set max target power supported by hw for 2675 * each rate on this frequency. 2676 */ 2677 static void 2678 ath5k_get_rate_pcal_data(struct ath5k_hw *ah, 2679 struct ieee80211_channel *channel, 2680 struct ath5k_rate_pcal_info *rates) 2681 { 2682 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2683 struct ath5k_rate_pcal_info *rpinfo; 2684 u8 idx_l, idx_r; 2685 u8 mode, max, i; 2686 u32 target = channel->center_freq; 2687 2688 idx_l = 0; 2689 idx_r = 0; 2690 2691 switch (channel->hw_value) { 2692 case AR5K_MODE_11A: 2693 rpinfo = ee->ee_rate_tpwr_a; 2694 mode = AR5K_EEPROM_MODE_11A; 2695 break; 2696 case AR5K_MODE_11B: 2697 rpinfo = ee->ee_rate_tpwr_b; 2698 mode = AR5K_EEPROM_MODE_11B; 2699 break; 2700 case AR5K_MODE_11G: 2701 default: 2702 rpinfo = ee->ee_rate_tpwr_g; 2703 mode = AR5K_EEPROM_MODE_11G; 2704 break; 2705 } 2706 max = ee->ee_rate_target_pwr_num[mode] - 1; 2707 2708 /* Get the surrounding calibration 2709 * piers - same as above */ 2710 if (target < rpinfo[0].freq) { 2711 idx_l = idx_r = 0; 2712 goto done; 2713 } 2714 2715 if (target > rpinfo[max].freq) { 2716 idx_l = idx_r = max; 2717 goto done; 2718 } 2719 2720 for (i = 0; i <= max; i++) { 2721 2722 if (rpinfo[i].freq == target) { 2723 idx_l = idx_r = i; 2724 goto done; 2725 } 2726 2727 if (target < rpinfo[i].freq) { 2728 idx_r = i; 2729 idx_l = idx_r - 1; 2730 goto done; 2731 } 2732 } 2733 2734 done: 2735 /* Now interpolate power value, based on the frequency */ 2736 rates->freq = target; 2737 2738 rates->target_power_6to24 = 2739 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2740 rpinfo[idx_r].freq, 2741 rpinfo[idx_l].target_power_6to24, 2742 rpinfo[idx_r].target_power_6to24); 2743 2744 rates->target_power_36 = 2745 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2746 rpinfo[idx_r].freq, 2747 rpinfo[idx_l].target_power_36, 2748 rpinfo[idx_r].target_power_36); 2749 2750 rates->target_power_48 = 2751 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2752 rpinfo[idx_r].freq, 2753 rpinfo[idx_l].target_power_48, 2754 rpinfo[idx_r].target_power_48); 2755 2756 rates->target_power_54 = 2757 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, 2758 rpinfo[idx_r].freq, 2759 rpinfo[idx_l].target_power_54, 2760 rpinfo[idx_r].target_power_54); 2761 } 2762 2763 /** 2764 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency 2765 * @ah: the &struct ath5k_hw 2766 * @channel: The &struct ieee80211_channel 2767 * 2768 * Get the max edge power for this channel if 2769 * we have such data from EEPROM's Conformance Test 2770 * Limits (CTL), and limit max power if needed. 2771 */ 2772 static void 2773 ath5k_get_max_ctl_power(struct ath5k_hw *ah, 2774 struct ieee80211_channel *channel) 2775 { 2776 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); 2777 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 2778 struct ath5k_edge_power *rep = ee->ee_ctl_pwr; 2779 u8 *ctl_val = ee->ee_ctl; 2780 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; 2781 s16 edge_pwr = 0; 2782 u8 rep_idx; 2783 u8 i, ctl_mode; 2784 u8 ctl_idx = 0xFF; 2785 u32 target = channel->center_freq; 2786 2787 ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band); 2788 2789 switch (channel->hw_value) { 2790 case AR5K_MODE_11A: 2791 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 2792 ctl_mode |= AR5K_CTL_TURBO; 2793 else 2794 ctl_mode |= AR5K_CTL_11A; 2795 break; 2796 case AR5K_MODE_11G: 2797 if (ah->ah_bwmode == AR5K_BWMODE_40MHZ) 2798 ctl_mode |= AR5K_CTL_TURBOG; 2799 else 2800 ctl_mode |= AR5K_CTL_11G; 2801 break; 2802 case AR5K_MODE_11B: 2803 ctl_mode |= AR5K_CTL_11B; 2804 break; 2805 default: 2806 return; 2807 } 2808 2809 for (i = 0; i < ee->ee_ctls; i++) { 2810 if (ctl_val[i] == ctl_mode) { 2811 ctl_idx = i; 2812 break; 2813 } 2814 } 2815 2816 /* If we have a CTL dataset available grab it and find the 2817 * edge power for our frequency */ 2818 if (ctl_idx == 0xFF) 2819 return; 2820 2821 /* Edge powers are sorted by frequency from lower 2822 * to higher. Each CTL corresponds to 8 edge power 2823 * measurements. */ 2824 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; 2825 2826 /* Don't do boundaries check because we 2827 * might have more that one bands defined 2828 * for this mode */ 2829 2830 /* Get the edge power that's closer to our 2831 * frequency */ 2832 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { 2833 rep_idx += i; 2834 if (target <= rep[rep_idx].freq) 2835 edge_pwr = (s16) rep[rep_idx].edge; 2836 } 2837 2838 if (edge_pwr) 2839 ah->ah_txpower.txp_max_pwr = 4 * min(edge_pwr, max_chan_pwr); 2840 } 2841 2842 2843 /* 2844 * Power to PCDAC table functions 2845 */ 2846 2847 /** 2848 * DOC: Power to PCDAC table functions 2849 * 2850 * For RF5111 we have an XPD -eXternal Power Detector- curve 2851 * for each calibrated channel. Each curve has 0,5dB Power steps 2852 * on x axis and PCDAC steps (offsets) on y axis and looks like an 2853 * exponential function. To recreate the curve we read 11 points 2854 * from eeprom (eeprom.c) and interpolate here. 2855 * 2856 * For RF5112 we have 4 XPD -eXternal Power Detector- curves 2857 * for each calibrated channel on 0, -6, -12 and -18dBm but we only 2858 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB 2859 * power steps on x axis and PCDAC steps on y axis and looks like a 2860 * linear function. To recreate the curve and pass the power values 2861 * on hw, we get 4 points for xpd 0 (lower gain -> max power) 2862 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c) 2863 * and interpolate here. 2864 * 2865 * For a given channel we get the calibrated points (piers) for it or 2866 * -if we don't have calibration data for this specific channel- from the 2867 * available surrounding channels we have calibration data for, after we do a 2868 * linear interpolation between them. Then since we have our calibrated points 2869 * for this channel, we do again a linear interpolation between them to get the 2870 * whole curve. 2871 * 2872 * We finally write the Y values of the curve(s) (the PCDAC values) on hw 2873 */ 2874 2875 /** 2876 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111 2877 * @ah: The &struct ath5k_hw 2878 * @table_min: Minimum power (x min) 2879 * @table_max: Maximum power (x max) 2880 * 2881 * No further processing is needed for RF5111, the only thing we have to 2882 * do is fill the values below and above calibration range since eeprom data 2883 * may not cover the entire PCDAC table. 2884 */ 2885 static void 2886 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, 2887 s16 *table_max) 2888 { 2889 u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 2890 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0]; 2891 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; 2892 s16 min_pwr, max_pwr; 2893 2894 /* Get table boundaries */ 2895 min_pwr = table_min[0]; 2896 pcdac_0 = pcdac_tmp[0]; 2897 2898 max_pwr = table_max[0]; 2899 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; 2900 2901 /* Extrapolate below minimum using pcdac_0 */ 2902 pcdac_i = 0; 2903 for (i = 0; i < min_pwr; i++) 2904 pcdac_out[pcdac_i++] = pcdac_0; 2905 2906 /* Copy values from pcdac_tmp */ 2907 pwr_idx = min_pwr; 2908 for (i = 0; pwr_idx <= max_pwr && 2909 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { 2910 pcdac_out[pcdac_i++] = pcdac_tmp[i]; 2911 pwr_idx++; 2912 } 2913 2914 /* Extrapolate above maximum */ 2915 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) 2916 pcdac_out[pcdac_i++] = pcdac_n; 2917 2918 } 2919 2920 /** 2921 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves 2922 * @ah: The &struct ath5k_hw 2923 * @table_min: Minimum power (x min) 2924 * @table_max: Maximum power (x max) 2925 * @pdcurves: Number of pd curves 2926 * 2927 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112 2928 * RFX112 can have up to 2 curves (one for low txpower range and one for 2929 * higher txpower range). We need to put them both on pcdac_out and place 2930 * them in the correct location. In case we only have one curve available 2931 * just fit it on pcdac_out (it's supposed to cover the entire range of 2932 * available pwr levels since it's always the higher power curve). Extrapolate 2933 * below and above final table if needed. 2934 */ 2935 static void 2936 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, 2937 s16 *table_max, u8 pdcurves) 2938 { 2939 u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 2940 u8 *pcdac_low_pwr; 2941 u8 *pcdac_high_pwr; 2942 u8 *pcdac_tmp; 2943 u8 pwr; 2944 s16 max_pwr_idx; 2945 s16 min_pwr_idx; 2946 s16 mid_pwr_idx = 0; 2947 /* Edge flag turns on the 7nth bit on the PCDAC 2948 * to declare the higher power curve (force values 2949 * to be greater than 64). If we only have one curve 2950 * we don't need to set this, if we have 2 curves and 2951 * fill the table backwards this can also be used to 2952 * switch from higher power curve to lower power curve */ 2953 u8 edge_flag; 2954 int i; 2955 2956 /* When we have only one curve available 2957 * that's the higher power curve. If we have 2958 * two curves the first is the high power curve 2959 * and the next is the low power curve. */ 2960 if (pdcurves > 1) { 2961 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; 2962 pcdac_high_pwr = ah->ah_txpower.tmpL[0]; 2963 mid_pwr_idx = table_max[1] - table_min[1] - 1; 2964 max_pwr_idx = (table_max[0] - table_min[0]) / 2; 2965 2966 /* If table size goes beyond 31.5dB, keep the 2967 * upper 31.5dB range when setting tx power. 2968 * Note: 126 = 31.5 dB in quarter dB steps */ 2969 if (table_max[0] - table_min[1] > 126) 2970 min_pwr_idx = table_max[0] - 126; 2971 else 2972 min_pwr_idx = table_min[1]; 2973 2974 /* Since we fill table backwards 2975 * start from high power curve */ 2976 pcdac_tmp = pcdac_high_pwr; 2977 2978 edge_flag = 0x40; 2979 } else { 2980 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ 2981 pcdac_high_pwr = ah->ah_txpower.tmpL[0]; 2982 min_pwr_idx = table_min[0]; 2983 max_pwr_idx = (table_max[0] - table_min[0]) / 2; 2984 pcdac_tmp = pcdac_high_pwr; 2985 edge_flag = 0; 2986 } 2987 2988 /* This is used when setting tx power*/ 2989 ah->ah_txpower.txp_min_idx = min_pwr_idx / 2; 2990 2991 /* Fill Power to PCDAC table backwards */ 2992 pwr = max_pwr_idx; 2993 for (i = 63; i >= 0; i--) { 2994 /* Entering lower power range, reset 2995 * edge flag and set pcdac_tmp to lower 2996 * power curve.*/ 2997 if (edge_flag == 0x40 && 2998 (2 * pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { 2999 edge_flag = 0x00; 3000 pcdac_tmp = pcdac_low_pwr; 3001 pwr = mid_pwr_idx / 2; 3002 } 3003 3004 /* Don't go below 1, extrapolate below if we have 3005 * already switched to the lower power curve -or 3006 * we only have one curve and edge_flag is zero 3007 * anyway */ 3008 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { 3009 while (i >= 0) { 3010 pcdac_out[i] = pcdac_out[i + 1]; 3011 i--; 3012 } 3013 break; 3014 } 3015 3016 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; 3017 3018 /* Extrapolate above if pcdac is greater than 3019 * 126 -this can happen because we OR pcdac_out 3020 * value with edge_flag on high power curve */ 3021 if (pcdac_out[i] > 126) 3022 pcdac_out[i] = 126; 3023 3024 /* Decrease by a 0.5dB step */ 3025 pwr--; 3026 } 3027 } 3028 3029 /** 3030 * ath5k_write_pcdac_table() - Write the PCDAC values on hw 3031 * @ah: The &struct ath5k_hw 3032 */ 3033 static void 3034 ath5k_write_pcdac_table(struct ath5k_hw *ah) 3035 { 3036 u8 *pcdac_out = ah->ah_txpower.txp_pd_table; 3037 int i; 3038 3039 /* 3040 * Write TX power values 3041 */ 3042 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { 3043 ath5k_hw_reg_write(ah, 3044 (((pcdac_out[2 * i + 0] << 8 | 0xff) & 0xffff) << 0) | 3045 (((pcdac_out[2 * i + 1] << 8 | 0xff) & 0xffff) << 16), 3046 AR5K_PHY_PCDAC_TXPOWER(i)); 3047 } 3048 } 3049 3050 3051 /* 3052 * Power to PDADC table functions 3053 */ 3054 3055 /** 3056 * DOC: Power to PDADC table functions 3057 * 3058 * For RF2413 and later we have a Power to PDADC table (Power Detector) 3059 * instead of a PCDAC (Power Control) and 4 pd gain curves for each 3060 * calibrated channel. Each curve has power on x axis in 0.5 db steps and 3061 * PDADC steps on y axis and looks like an exponential function like the 3062 * RF5111 curve. 3063 * 3064 * To recreate the curves we read the points from eeprom (eeprom.c) 3065 * and interpolate here. Note that in most cases only 2 (higher and lower) 3066 * curves are used (like RF5112) but vendors have the opportunity to include 3067 * all 4 curves on eeprom. The final curve (higher power) has an extra 3068 * point for better accuracy like RF5112. 3069 * 3070 * The process is similar to what we do above for RF5111/5112 3071 */ 3072 3073 /** 3074 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves 3075 * @ah: The &struct ath5k_hw 3076 * @pwr_min: Minimum power (x min) 3077 * @pwr_max: Maximum power (x max) 3078 * @pdcurves: Number of available curves 3079 * 3080 * Combine the various pd curves and create the final Power to PDADC table 3081 * We can have up to 4 pd curves, we need to do a similar process 3082 * as we do for RF5112. This time we don't have an edge_flag but we 3083 * set the gain boundaries on a separate register. 3084 */ 3085 static void 3086 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, 3087 s16 *pwr_min, s16 *pwr_max, u8 pdcurves) 3088 { 3089 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; 3090 u8 *pdadc_out = ah->ah_txpower.txp_pd_table; 3091 u8 *pdadc_tmp; 3092 s16 pdadc_0; 3093 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; 3094 u8 pd_gain_overlap; 3095 3096 /* Note: Register value is initialized on initvals 3097 * there is no feedback from hw. 3098 * XXX: What about pd_gain_overlap from EEPROM ? */ 3099 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & 3100 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; 3101 3102 /* Create final PDADC table */ 3103 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { 3104 pdadc_tmp = ah->ah_txpower.tmpL[pdg]; 3105 3106 if (pdg == pdcurves - 1) 3107 /* 2 dB boundary stretch for last 3108 * (higher power) curve */ 3109 gain_boundaries[pdg] = pwr_max[pdg] + 4; 3110 else 3111 /* Set gain boundary in the middle 3112 * between this curve and the next one */ 3113 gain_boundaries[pdg] = 3114 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; 3115 3116 /* Sanity check in case our 2 db stretch got out of 3117 * range. */ 3118 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) 3119 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; 3120 3121 /* For the first curve (lower power) 3122 * start from 0 dB */ 3123 if (pdg == 0) 3124 pdadc_0 = 0; 3125 else 3126 /* For the other curves use the gain overlap */ 3127 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - 3128 pd_gain_overlap; 3129 3130 /* Force each power step to be at least 0.5 dB */ 3131 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) 3132 pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; 3133 else 3134 pwr_step = 1; 3135 3136 /* If pdadc_0 is negative, we need to extrapolate 3137 * below this pdgain by a number of pwr_steps */ 3138 while ((pdadc_0 < 0) && (pdadc_i < 128)) { 3139 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; 3140 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; 3141 pdadc_0++; 3142 } 3143 3144 /* Set last pwr level, using gain boundaries */ 3145 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; 3146 /* Limit it to be inside pwr range */ 3147 table_size = pwr_max[pdg] - pwr_min[pdg]; 3148 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; 3149 3150 /* Fill pdadc_out table */ 3151 while (pdadc_0 < max_idx && pdadc_i < 128) 3152 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; 3153 3154 /* Need to extrapolate above this pdgain? */ 3155 if (pdadc_n <= max_idx) 3156 continue; 3157 3158 /* Force each power step to be at least 0.5 dB */ 3159 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) 3160 pwr_step = pdadc_tmp[table_size - 1] - 3161 pdadc_tmp[table_size - 2]; 3162 else 3163 pwr_step = 1; 3164 3165 /* Extrapolate above */ 3166 while ((pdadc_0 < (s16) pdadc_n) && 3167 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { 3168 s16 tmp = pdadc_tmp[table_size - 1] + 3169 (pdadc_0 - max_idx) * pwr_step; 3170 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; 3171 pdadc_0++; 3172 } 3173 } 3174 3175 while (pdg < AR5K_EEPROM_N_PD_GAINS) { 3176 gain_boundaries[pdg] = gain_boundaries[pdg - 1]; 3177 pdg++; 3178 } 3179 3180 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { 3181 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; 3182 pdadc_i++; 3183 } 3184 3185 /* Set gain boundaries */ 3186 ath5k_hw_reg_write(ah, 3187 AR5K_REG_SM(pd_gain_overlap, 3188 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | 3189 AR5K_REG_SM(gain_boundaries[0], 3190 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | 3191 AR5K_REG_SM(gain_boundaries[1], 3192 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | 3193 AR5K_REG_SM(gain_boundaries[2], 3194 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | 3195 AR5K_REG_SM(gain_boundaries[3], 3196 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), 3197 AR5K_PHY_TPC_RG5); 3198 3199 /* Used for setting rate power table */ 3200 ah->ah_txpower.txp_min_idx = pwr_min[0]; 3201 3202 } 3203 3204 /** 3205 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw 3206 * @ah: The &struct ath5k_hw 3207 * @ee_mode: One of enum ath5k_driver_mode 3208 */ 3209 static void 3210 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw *ah, u8 ee_mode) 3211 { 3212 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 3213 u8 *pdadc_out = ah->ah_txpower.txp_pd_table; 3214 u8 *pdg_to_idx = ee->ee_pdc_to_idx[ee_mode]; 3215 u8 pdcurves = ee->ee_pd_gains[ee_mode]; 3216 u32 reg; 3217 u8 i; 3218 3219 /* Select the right pdgain curves */ 3220 3221 /* Clear current settings */ 3222 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); 3223 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | 3224 AR5K_PHY_TPC_RG1_PDGAIN_2 | 3225 AR5K_PHY_TPC_RG1_PDGAIN_3 | 3226 AR5K_PHY_TPC_RG1_NUM_PD_GAIN); 3227 3228 /* 3229 * Use pd_gains curve from eeprom 3230 * 3231 * This overrides the default setting from initvals 3232 * in case some vendors (e.g. Zcomax) don't use the default 3233 * curves. If we don't honor their settings we 'll get a 3234 * 5dB (1 * gain overlap ?) drop. 3235 */ 3236 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); 3237 3238 switch (pdcurves) { 3239 case 3: 3240 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); 3241 /* Fall through */ 3242 case 2: 3243 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); 3244 /* Fall through */ 3245 case 1: 3246 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); 3247 break; 3248 } 3249 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); 3250 3251 /* 3252 * Write TX power values 3253 */ 3254 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { 3255 u32 val = get_unaligned_le32(&pdadc_out[4 * i]); 3256 ath5k_hw_reg_write(ah, val, AR5K_PHY_PDADC_TXPOWER(i)); 3257 } 3258 } 3259 3260 3261 /* 3262 * Common code for PCDAC/PDADC tables 3263 */ 3264 3265 /** 3266 * ath5k_setup_channel_powertable() - Set up power table for this channel 3267 * @ah: The &struct ath5k_hw 3268 * @channel: The &struct ieee80211_channel 3269 * @ee_mode: One of enum ath5k_driver_mode 3270 * @type: One of enum ath5k_powertable_type (eeprom.h) 3271 * 3272 * This is the main function that uses all of the above 3273 * to set PCDAC/PDADC table on hw for the current channel. 3274 * This table is used for tx power calibration on the baseband, 3275 * without it we get weird tx power levels and in some cases 3276 * distorted spectral mask 3277 */ 3278 static int 3279 ath5k_setup_channel_powertable(struct ath5k_hw *ah, 3280 struct ieee80211_channel *channel, 3281 u8 ee_mode, u8 type) 3282 { 3283 struct ath5k_pdgain_info *pdg_L, *pdg_R; 3284 struct ath5k_chan_pcal_info *pcinfo_L; 3285 struct ath5k_chan_pcal_info *pcinfo_R; 3286 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 3287 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; 3288 s16 table_min[AR5K_EEPROM_N_PD_GAINS]; 3289 s16 table_max[AR5K_EEPROM_N_PD_GAINS]; 3290 u8 *tmpL; 3291 u8 *tmpR; 3292 u32 target = channel->center_freq; 3293 int pdg, i; 3294 3295 /* Get surrounding freq piers for this channel */ 3296 ath5k_get_chan_pcal_surrounding_piers(ah, channel, 3297 &pcinfo_L, 3298 &pcinfo_R); 3299 3300 /* Loop over pd gain curves on 3301 * surrounding freq piers by index */ 3302 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { 3303 3304 /* Fill curves in reverse order 3305 * from lower power (max gain) 3306 * to higher power. Use curve -> idx 3307 * backmapping we did on eeprom init */ 3308 u8 idx = pdg_curve_to_idx[pdg]; 3309 3310 /* Grab the needed curves by index */ 3311 pdg_L = &pcinfo_L->pd_curves[idx]; 3312 pdg_R = &pcinfo_R->pd_curves[idx]; 3313 3314 /* Initialize the temp tables */ 3315 tmpL = ah->ah_txpower.tmpL[pdg]; 3316 tmpR = ah->ah_txpower.tmpR[pdg]; 3317 3318 /* Set curve's x boundaries and create 3319 * curves so that they cover the same 3320 * range (if we don't do that one table 3321 * will have values on some range and the 3322 * other one won't have any so interpolation 3323 * will fail) */ 3324 table_min[pdg] = min(pdg_L->pd_pwr[0], 3325 pdg_R->pd_pwr[0]) / 2; 3326 3327 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], 3328 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; 3329 3330 /* Now create the curves on surrounding channels 3331 * and interpolate if needed to get the final 3332 * curve for this gain on this channel */ 3333 switch (type) { 3334 case AR5K_PWRTABLE_LINEAR_PCDAC: 3335 /* Override min/max so that we don't loose 3336 * accuracy (don't divide by 2) */ 3337 table_min[pdg] = min(pdg_L->pd_pwr[0], 3338 pdg_R->pd_pwr[0]); 3339 3340 table_max[pdg] = 3341 max(pdg_L->pd_pwr[pdg_L->pd_points - 1], 3342 pdg_R->pd_pwr[pdg_R->pd_points - 1]); 3343 3344 /* Override minimum so that we don't get 3345 * out of bounds while extrapolating 3346 * below. Don't do this when we have 2 3347 * curves and we are on the high power curve 3348 * because table_min is ok in this case */ 3349 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { 3350 3351 table_min[pdg] = 3352 ath5k_get_linear_pcdac_min(pdg_L->pd_step, 3353 pdg_R->pd_step, 3354 pdg_L->pd_pwr, 3355 pdg_R->pd_pwr); 3356 3357 /* Don't go too low because we will 3358 * miss the upper part of the curve. 3359 * Note: 126 = 31.5dB (max power supported) 3360 * in 0.25dB units */ 3361 if (table_max[pdg] - table_min[pdg] > 126) 3362 table_min[pdg] = table_max[pdg] - 126; 3363 } 3364 3365 /* Fall through */ 3366 case AR5K_PWRTABLE_PWR_TO_PCDAC: 3367 case AR5K_PWRTABLE_PWR_TO_PDADC: 3368 3369 ath5k_create_power_curve(table_min[pdg], 3370 table_max[pdg], 3371 pdg_L->pd_pwr, 3372 pdg_L->pd_step, 3373 pdg_L->pd_points, tmpL, type); 3374 3375 /* We are in a calibration 3376 * pier, no need to interpolate 3377 * between freq piers */ 3378 if (pcinfo_L == pcinfo_R) 3379 continue; 3380 3381 ath5k_create_power_curve(table_min[pdg], 3382 table_max[pdg], 3383 pdg_R->pd_pwr, 3384 pdg_R->pd_step, 3385 pdg_R->pd_points, tmpR, type); 3386 break; 3387 default: 3388 return -EINVAL; 3389 } 3390 3391 /* Interpolate between curves 3392 * of surrounding freq piers to 3393 * get the final curve for this 3394 * pd gain. Re-use tmpL for interpolation 3395 * output */ 3396 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && 3397 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { 3398 tmpL[i] = (u8) ath5k_get_interpolated_value(target, 3399 (s16) pcinfo_L->freq, 3400 (s16) pcinfo_R->freq, 3401 (s16) tmpL[i], 3402 (s16) tmpR[i]); 3403 } 3404 } 3405 3406 /* Now we have a set of curves for this 3407 * channel on tmpL (x range is table_max - table_min 3408 * and y values are tmpL[pdg][]) sorted in the same 3409 * order as EEPROM (because we've used the backmapping). 3410 * So for RF5112 it's from higher power to lower power 3411 * and for RF2413 it's from lower power to higher power. 3412 * For RF5111 we only have one curve. */ 3413 3414 /* Fill min and max power levels for this 3415 * channel by interpolating the values on 3416 * surrounding channels to complete the dataset */ 3417 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, 3418 (s16) pcinfo_L->freq, 3419 (s16) pcinfo_R->freq, 3420 pcinfo_L->min_pwr, pcinfo_R->min_pwr); 3421 3422 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, 3423 (s16) pcinfo_L->freq, 3424 (s16) pcinfo_R->freq, 3425 pcinfo_L->max_pwr, pcinfo_R->max_pwr); 3426 3427 /* Fill PCDAC/PDADC table */ 3428 switch (type) { 3429 case AR5K_PWRTABLE_LINEAR_PCDAC: 3430 /* For RF5112 we can have one or two curves 3431 * and each curve covers a certain power lvl 3432 * range so we need to do some more processing */ 3433 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, 3434 ee->ee_pd_gains[ee_mode]); 3435 3436 /* Set txp.offset so that we can 3437 * match max power value with max 3438 * table index */ 3439 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); 3440 break; 3441 case AR5K_PWRTABLE_PWR_TO_PCDAC: 3442 /* We are done for RF5111 since it has only 3443 * one curve, just fit the curve on the table */ 3444 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); 3445 3446 /* No rate powertable adjustment for RF5111 */ 3447 ah->ah_txpower.txp_min_idx = 0; 3448 ah->ah_txpower.txp_offset = 0; 3449 break; 3450 case AR5K_PWRTABLE_PWR_TO_PDADC: 3451 /* Set PDADC boundaries and fill 3452 * final PDADC table */ 3453 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, 3454 ee->ee_pd_gains[ee_mode]); 3455 3456 /* Set txp.offset, note that table_min 3457 * can be negative */ 3458 ah->ah_txpower.txp_offset = table_min[0]; 3459 break; 3460 default: 3461 return -EINVAL; 3462 } 3463 3464 ah->ah_txpower.txp_setup = true; 3465 3466 return 0; 3467 } 3468 3469 /** 3470 * ath5k_write_channel_powertable() - Set power table for current channel on hw 3471 * @ah: The &struct ath5k_hw 3472 * @ee_mode: One of enum ath5k_driver_mode 3473 * @type: One of enum ath5k_powertable_type (eeprom.h) 3474 */ 3475 static void 3476 ath5k_write_channel_powertable(struct ath5k_hw *ah, u8 ee_mode, u8 type) 3477 { 3478 if (type == AR5K_PWRTABLE_PWR_TO_PDADC) 3479 ath5k_write_pwr_to_pdadc_table(ah, ee_mode); 3480 else 3481 ath5k_write_pcdac_table(ah); 3482 } 3483 3484 3485 /** 3486 * DOC: Per-rate tx power setting 3487 * 3488 * This is the code that sets the desired tx power limit (below 3489 * maximum) on hw for each rate (we also have TPC that sets 3490 * power per packet type). We do that by providing an index on the 3491 * PCDAC/PDADC table we set up above, for each rate. 3492 * 3493 * For now we only limit txpower based on maximum tx power 3494 * supported by hw (what's inside rate_info) + conformance test 3495 * limits. We need to limit this even more, based on regulatory domain 3496 * etc to be safe. Normally this is done from above so we don't care 3497 * here, all we care is that the tx power we set will be O.K. 3498 * for the hw (e.g. won't create noise on PA etc). 3499 * 3500 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps - 3501 * x values) and is indexed as follows: 3502 * rates[0] - rates[7] -> OFDM rates 3503 * rates[8] - rates[14] -> CCK rates 3504 * rates[15] -> XR rates (they all have the same power) 3505 */ 3506 3507 /** 3508 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power 3509 * @ah: The &struct ath5k_hw 3510 * @max_pwr: The maximum tx power requested in 0.5dB steps 3511 * @rate_info: The &struct ath5k_rate_pcal_info to fill 3512 * @ee_mode: One of enum ath5k_driver_mode 3513 */ 3514 static void 3515 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, 3516 struct ath5k_rate_pcal_info *rate_info, 3517 u8 ee_mode) 3518 { 3519 unsigned int i; 3520 u16 *rates; 3521 s16 rate_idx_scaled = 0; 3522 3523 /* max_pwr is power level we got from driver/user in 0.5dB 3524 * units, switch to 0.25dB units so we can compare */ 3525 max_pwr *= 2; 3526 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; 3527 3528 /* apply rate limits */ 3529 rates = ah->ah_txpower.txp_rates_power_table; 3530 3531 /* OFDM rates 6 to 24Mb/s */ 3532 for (i = 0; i < 5; i++) 3533 rates[i] = min(max_pwr, rate_info->target_power_6to24); 3534 3535 /* Rest OFDM rates */ 3536 rates[5] = min(rates[0], rate_info->target_power_36); 3537 rates[6] = min(rates[0], rate_info->target_power_48); 3538 rates[7] = min(rates[0], rate_info->target_power_54); 3539 3540 /* CCK rates */ 3541 /* 1L */ 3542 rates[8] = min(rates[0], rate_info->target_power_6to24); 3543 /* 2L */ 3544 rates[9] = min(rates[0], rate_info->target_power_36); 3545 /* 2S */ 3546 rates[10] = min(rates[0], rate_info->target_power_36); 3547 /* 5L */ 3548 rates[11] = min(rates[0], rate_info->target_power_48); 3549 /* 5S */ 3550 rates[12] = min(rates[0], rate_info->target_power_48); 3551 /* 11L */ 3552 rates[13] = min(rates[0], rate_info->target_power_54); 3553 /* 11S */ 3554 rates[14] = min(rates[0], rate_info->target_power_54); 3555 3556 /* XR rates */ 3557 rates[15] = min(rates[0], rate_info->target_power_6to24); 3558 3559 /* CCK rates have different peak to average ratio 3560 * so we have to tweak their power so that gainf 3561 * correction works ok. For this we use OFDM to 3562 * CCK delta from eeprom */ 3563 if ((ee_mode == AR5K_EEPROM_MODE_11G) && 3564 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) 3565 for (i = 8; i <= 15; i++) 3566 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; 3567 3568 /* Save min/max and current tx power for this channel 3569 * in 0.25dB units. 3570 * 3571 * Note: We use rates[0] for current tx power because 3572 * it covers most of the rates, in most cases. It's our 3573 * tx power limit and what the user expects to see. */ 3574 ah->ah_txpower.txp_min_pwr = 2 * rates[7]; 3575 ah->ah_txpower.txp_cur_pwr = 2 * rates[0]; 3576 3577 /* Set max txpower for correct OFDM operation on all rates 3578 * -that is the txpower for 54Mbit-, it's used for the PAPD 3579 * gain probe and it's in 0.5dB units */ 3580 ah->ah_txpower.txp_ofdm = rates[7]; 3581 3582 /* Now that we have all rates setup use table offset to 3583 * match the power range set by user with the power indices 3584 * on PCDAC/PDADC table */ 3585 for (i = 0; i < 16; i++) { 3586 rate_idx_scaled = rates[i] + ah->ah_txpower.txp_offset; 3587 /* Don't get out of bounds */ 3588 if (rate_idx_scaled > 63) 3589 rate_idx_scaled = 63; 3590 if (rate_idx_scaled < 0) 3591 rate_idx_scaled = 0; 3592 rates[i] = rate_idx_scaled; 3593 } 3594 } 3595 3596 3597 /** 3598 * ath5k_hw_txpower() - Set transmission power limit for a given channel 3599 * @ah: The &struct ath5k_hw 3600 * @channel: The &struct ieee80211_channel 3601 * @txpower: Requested tx power in 0.5dB steps 3602 * 3603 * Combines all of the above to set the requested tx power limit 3604 * on hw. 3605 */ 3606 static int 3607 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, 3608 u8 txpower) 3609 { 3610 struct ath5k_rate_pcal_info rate_info; 3611 struct ieee80211_channel *curr_channel = ah->ah_current_channel; 3612 int ee_mode; 3613 u8 type; 3614 int ret; 3615 3616 if (txpower > AR5K_TUNE_MAX_TXPOWER) { 3617 ATH5K_ERR(ah, "invalid tx power: %u\n", txpower); 3618 return -EINVAL; 3619 } 3620 3621 ee_mode = ath5k_eeprom_mode_from_channel(channel); 3622 if (ee_mode < 0) { 3623 ATH5K_ERR(ah, 3624 "invalid channel: %d\n", channel->center_freq); 3625 return -EINVAL; 3626 } 3627 3628 /* Initialize TX power table */ 3629 switch (ah->ah_radio) { 3630 case AR5K_RF5110: 3631 /* TODO */ 3632 return 0; 3633 case AR5K_RF5111: 3634 type = AR5K_PWRTABLE_PWR_TO_PCDAC; 3635 break; 3636 case AR5K_RF5112: 3637 type = AR5K_PWRTABLE_LINEAR_PCDAC; 3638 break; 3639 case AR5K_RF2413: 3640 case AR5K_RF5413: 3641 case AR5K_RF2316: 3642 case AR5K_RF2317: 3643 case AR5K_RF2425: 3644 type = AR5K_PWRTABLE_PWR_TO_PDADC; 3645 break; 3646 default: 3647 return -EINVAL; 3648 } 3649 3650 /* 3651 * If we don't change channel/mode skip tx powertable calculation 3652 * and use the cached one. 3653 */ 3654 if (!ah->ah_txpower.txp_setup || 3655 (channel->hw_value != curr_channel->hw_value) || 3656 (channel->center_freq != curr_channel->center_freq)) { 3657 /* Reset TX power values but preserve requested 3658 * tx power from above */ 3659 int requested_txpower = ah->ah_txpower.txp_requested; 3660 3661 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); 3662 3663 /* Restore TPC setting and requested tx power */ 3664 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; 3665 3666 ah->ah_txpower.txp_requested = requested_txpower; 3667 3668 /* Calculate the powertable */ 3669 ret = ath5k_setup_channel_powertable(ah, channel, 3670 ee_mode, type); 3671 if (ret) 3672 return ret; 3673 } 3674 3675 /* Write table on hw */ 3676 ath5k_write_channel_powertable(ah, ee_mode, type); 3677 3678 /* Limit max power if we have a CTL available */ 3679 ath5k_get_max_ctl_power(ah, channel); 3680 3681 /* FIXME: Antenna reduction stuff */ 3682 3683 /* FIXME: Limit power on turbo modes */ 3684 3685 /* FIXME: TPC scale reduction */ 3686 3687 /* Get surrounding channels for per-rate power table 3688 * calibration */ 3689 ath5k_get_rate_pcal_data(ah, channel, &rate_info); 3690 3691 /* Setup rate power table */ 3692 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); 3693 3694 /* Write rate power table on hw */ 3695 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | 3696 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | 3697 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); 3698 3699 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | 3700 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | 3701 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); 3702 3703 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | 3704 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | 3705 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); 3706 3707 ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | 3708 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | 3709 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); 3710 3711 /* FIXME: TPC support */ 3712 if (ah->ah_txpower.txp_tpc) { 3713 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | 3714 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); 3715 3716 ath5k_hw_reg_write(ah, 3717 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | 3718 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | 3719 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), 3720 AR5K_TPC); 3721 } else { 3722 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | 3723 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); 3724 } 3725 3726 return 0; 3727 } 3728 3729 /** 3730 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel 3731 * @ah: The &struct ath5k_hw 3732 * @txpower: The requested tx power limit in 0.5dB steps 3733 * 3734 * This function provides access to ath5k_hw_txpower to the driver in 3735 * case user or an application changes it while PHY is running. 3736 */ 3737 int 3738 ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower) 3739 { 3740 ATH5K_DBG(ah, ATH5K_DEBUG_TXPOWER, 3741 "changing txpower to %d\n", txpower); 3742 3743 return ath5k_hw_txpower(ah, ah->ah_current_channel, txpower); 3744 } 3745 3746 3747 /*************\ 3748 Init function 3749 \*************/ 3750 3751 /** 3752 * ath5k_hw_phy_init() - Initialize PHY 3753 * @ah: The &struct ath5k_hw 3754 * @channel: The @struct ieee80211_channel 3755 * @mode: One of enum ath5k_driver_mode 3756 * @fast: Try a fast channel switch instead 3757 * 3758 * This is the main function used during reset to initialize PHY 3759 * or do a fast channel change if possible. 3760 * 3761 * NOTE: Do not call this one from the driver, it assumes PHY is in a 3762 * warm reset state ! 3763 */ 3764 int 3765 ath5k_hw_phy_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, 3766 u8 mode, bool fast) 3767 { 3768 struct ieee80211_channel *curr_channel; 3769 int ret, i; 3770 u32 phy_tst1; 3771 ret = 0; 3772 3773 /* 3774 * Sanity check for fast flag 3775 * Don't try fast channel change when changing modulation 3776 * mode/band. We check for chip compatibility on 3777 * ath5k_hw_reset. 3778 */ 3779 curr_channel = ah->ah_current_channel; 3780 if (fast && (channel->hw_value != curr_channel->hw_value)) 3781 return -EINVAL; 3782 3783 /* 3784 * On fast channel change we only set the synth parameters 3785 * while PHY is running, enable calibration and skip the rest. 3786 */ 3787 if (fast) { 3788 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, 3789 AR5K_PHY_RFBUS_REQ_REQUEST); 3790 for (i = 0; i < 100; i++) { 3791 if (ath5k_hw_reg_read(ah, AR5K_PHY_RFBUS_GRANT)) 3792 break; 3793 udelay(5); 3794 } 3795 /* Failed */ 3796 if (i >= 100) 3797 return -EIO; 3798 3799 /* Set channel and wait for synth */ 3800 ret = ath5k_hw_channel(ah, channel); 3801 if (ret) 3802 return ret; 3803 3804 ath5k_hw_wait_for_synth(ah, channel); 3805 } 3806 3807 /* 3808 * Set TX power 3809 * 3810 * Note: We need to do that before we set 3811 * RF buffer settings on 5211/5212+ so that we 3812 * properly set curve indices. 3813 */ 3814 ret = ath5k_hw_txpower(ah, channel, ah->ah_txpower.txp_requested ? 3815 ah->ah_txpower.txp_requested * 2 : 3816 AR5K_TUNE_MAX_TXPOWER); 3817 if (ret) 3818 return ret; 3819 3820 /* Write OFDM timings on 5212*/ 3821 if (ah->ah_version == AR5K_AR5212 && 3822 channel->hw_value != AR5K_MODE_11B) { 3823 3824 ret = ath5k_hw_write_ofdm_timings(ah, channel); 3825 if (ret) 3826 return ret; 3827 3828 /* Spur info is available only from EEPROM versions 3829 * greater than 5.3, but the EEPROM routines will use 3830 * static values for older versions */ 3831 if (ah->ah_mac_srev >= AR5K_SREV_AR5424) 3832 ath5k_hw_set_spur_mitigation_filter(ah, 3833 channel); 3834 } 3835 3836 /* If we used fast channel switching 3837 * we are done, release RF bus and 3838 * fire up NF calibration. 3839 * 3840 * Note: Only NF calibration due to 3841 * channel change, not AGC calibration 3842 * since AGC is still running ! 3843 */ 3844 if (fast) { 3845 /* 3846 * Release RF Bus grant 3847 */ 3848 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_RFBUS_REQ, 3849 AR5K_PHY_RFBUS_REQ_REQUEST); 3850 3851 /* 3852 * Start NF calibration 3853 */ 3854 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 3855 AR5K_PHY_AGCCTL_NF); 3856 3857 return ret; 3858 } 3859 3860 /* 3861 * For 5210 we do all initialization using 3862 * initvals, so we don't have to modify 3863 * any settings (5210 also only supports 3864 * a/aturbo modes) 3865 */ 3866 if (ah->ah_version != AR5K_AR5210) { 3867 3868 /* 3869 * Write initial RF gain settings 3870 * This should work for both 5111/5112 3871 */ 3872 ret = ath5k_hw_rfgain_init(ah, channel->band); 3873 if (ret) 3874 return ret; 3875 3876 usleep_range(1000, 1500); 3877 3878 /* 3879 * Write RF buffer 3880 */ 3881 ret = ath5k_hw_rfregs_init(ah, channel, mode); 3882 if (ret) 3883 return ret; 3884 3885 /*Enable/disable 802.11b mode on 5111 3886 (enable 2111 frequency converter + CCK)*/ 3887 if (ah->ah_radio == AR5K_RF5111) { 3888 if (mode == AR5K_MODE_11B) 3889 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, 3890 AR5K_TXCFG_B_MODE); 3891 else 3892 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG, 3893 AR5K_TXCFG_B_MODE); 3894 } 3895 3896 } else if (ah->ah_version == AR5K_AR5210) { 3897 usleep_range(1000, 1500); 3898 /* Disable phy and wait */ 3899 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); 3900 usleep_range(1000, 1500); 3901 } 3902 3903 /* Set channel on PHY */ 3904 ret = ath5k_hw_channel(ah, channel); 3905 if (ret) 3906 return ret; 3907 3908 /* 3909 * Enable the PHY and wait until completion 3910 * This includes BaseBand and Synthesizer 3911 * activation. 3912 */ 3913 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); 3914 3915 ath5k_hw_wait_for_synth(ah, channel); 3916 3917 /* 3918 * Perform ADC test to see if baseband is ready 3919 * Set tx hold and check adc test register 3920 */ 3921 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1); 3922 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1); 3923 for (i = 0; i <= 20; i++) { 3924 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10)) 3925 break; 3926 usleep_range(200, 250); 3927 } 3928 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1); 3929 3930 /* 3931 * Start automatic gain control calibration 3932 * 3933 * During AGC calibration RX path is re-routed to 3934 * a power detector so we don't receive anything. 3935 * 3936 * This method is used to calibrate some static offsets 3937 * used together with on-the fly I/Q calibration (the 3938 * one performed via ath5k_hw_phy_calibrate), which doesn't 3939 * interrupt rx path. 3940 * 3941 * While rx path is re-routed to the power detector we also 3942 * start a noise floor calibration to measure the 3943 * card's noise floor (the noise we measure when we are not 3944 * transmitting or receiving anything). 3945 * 3946 * If we are in a noisy environment, AGC calibration may time 3947 * out and/or noise floor calibration might timeout. 3948 */ 3949 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, 3950 AR5K_PHY_AGCCTL_CAL | AR5K_PHY_AGCCTL_NF); 3951 3952 /* At the same time start I/Q calibration for QAM constellation 3953 * -no need for CCK- */ 3954 ah->ah_iq_cal_needed = false; 3955 if (!(mode == AR5K_MODE_11B)) { 3956 ah->ah_iq_cal_needed = true; 3957 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, 3958 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); 3959 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, 3960 AR5K_PHY_IQ_RUN); 3961 } 3962 3963 /* Wait for gain calibration to finish (we check for I/Q calibration 3964 * during ath5k_phy_calibrate) */ 3965 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, 3966 AR5K_PHY_AGCCTL_CAL, 0, false)) { 3967 ATH5K_ERR(ah, "gain calibration timeout (%uMHz)\n", 3968 channel->center_freq); 3969 } 3970 3971 /* Restore antenna mode */ 3972 ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode); 3973 3974 return ret; 3975 } 3976