xref: /linux/drivers/net/wireless/ath/ath5k/pcu.c (revision c9494727cf293ae2ec66af57547a3e79c724fec2)
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
5  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
26 
27 #include <asm/unaligned.h>
28 
29 #include "ath5k.h"
30 #include "reg.h"
31 #include "debug.h"
32 #include "base.h"
33 
34 /*******************\
35 * Generic functions *
36 \*******************/
37 
38 /**
39  * ath5k_hw_set_opmode - Set PCU operating mode
40  *
41  * @ah: The &struct ath5k_hw
42  *
43  * Initialize PCU for the various operating modes (AP/STA etc)
44  *
45  * NOTE: ah->ah_op_mode must be set before calling this.
46  */
47 int ath5k_hw_set_opmode(struct ath5k_hw *ah)
48 {
49 	struct ath_common *common = ath5k_hw_common(ah);
50 	u32 pcu_reg, beacon_reg, low_id, high_id;
51 
52 
53 	/* Preserve rest settings */
54 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
55 	pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
56 			| AR5K_STA_ID1_KEYSRCH_MODE
57 			| (ah->ah_version == AR5K_AR5210 ?
58 			(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
59 
60 	beacon_reg = 0;
61 
62 	ATH5K_TRACE(ah->ah_sc);
63 
64 	switch (ah->ah_op_mode) {
65 	case NL80211_IFTYPE_ADHOC:
66 		pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
67 		beacon_reg |= AR5K_BCR_ADHOC;
68 		if (ah->ah_version == AR5K_AR5210)
69 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
70 		else
71 			AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
72 		break;
73 
74 	case NL80211_IFTYPE_AP:
75 	case NL80211_IFTYPE_MESH_POINT:
76 		pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
77 		beacon_reg |= AR5K_BCR_AP;
78 		if (ah->ah_version == AR5K_AR5210)
79 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
80 		else
81 			AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
82 		break;
83 
84 	case NL80211_IFTYPE_STATION:
85 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
86 			| (ah->ah_version == AR5K_AR5210 ?
87 				AR5K_STA_ID1_PWR_SV : 0);
88 	case NL80211_IFTYPE_MONITOR:
89 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
90 			| (ah->ah_version == AR5K_AR5210 ?
91 				AR5K_STA_ID1_NO_PSPOLL : 0);
92 		break;
93 
94 	default:
95 		return -EINVAL;
96 	}
97 
98 	/*
99 	 * Set PCU registers
100 	 */
101 	low_id = get_unaligned_le32(common->macaddr);
102 	high_id = get_unaligned_le16(common->macaddr + 4);
103 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
104 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
105 
106 	/*
107 	 * Set Beacon Control Register on 5210
108 	 */
109 	if (ah->ah_version == AR5K_AR5210)
110 		ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
111 
112 	return 0;
113 }
114 
115 /**
116  * ath5k_hw_update - Update mib counters (mac layer statistics)
117  *
118  * @ah: The &struct ath5k_hw
119  * @stats: The &struct ieee80211_low_level_stats we use to track
120  * statistics on the driver
121  *
122  * Reads MIB counters from PCU and updates sw statistics. Must be
123  * called after a MIB interrupt.
124  */
125 void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
126 		struct ieee80211_low_level_stats  *stats)
127 {
128 	ATH5K_TRACE(ah->ah_sc);
129 
130 	/* Read-And-Clear */
131 	stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
132 	stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
133 	stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
134 	stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
135 
136 	/* XXX: Should we use this to track beacon count ?
137 	 * -we read it anyway to clear the register */
138 	ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
139 
140 	/* Reset profile count registers on 5212*/
141 	if (ah->ah_version == AR5K_AR5212) {
142 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
143 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
144 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
145 		ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
146 	}
147 
148 	/* TODO: Handle ANI stats */
149 }
150 
151 /**
152  * ath5k_hw_set_ack_bitrate - set bitrate for ACKs
153  *
154  * @ah: The &struct ath5k_hw
155  * @high: Flag to determine if we want to use high transmition rate
156  * for ACKs or not
157  *
158  * If high flag is set, we tell hw to use a set of control rates based on
159  * the current transmition rate (check out control_rates array inside reset.c).
160  * If not hw just uses the lowest rate available for the current modulation
161  * scheme being used (1Mbit for CCK and 6Mbits for OFDM).
162  */
163 void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
164 {
165 	if (ah->ah_version != AR5K_AR5212)
166 		return;
167 	else {
168 		u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
169 		if (high)
170 			AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
171 		else
172 			AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
173 	}
174 }
175 
176 
177 /******************\
178 * ACK/CTS Timeouts *
179 \******************/
180 
181 /**
182  * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec
183  *
184  * @ah: The &struct ath5k_hw
185  */
186 unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
187 {
188 	ATH5K_TRACE(ah->ah_sc);
189 
190 	return ath5k_hw_clocktoh(ah, AR5K_REG_MS(ath5k_hw_reg_read(ah,
191 			AR5K_TIME_OUT), AR5K_TIME_OUT_ACK));
192 }
193 
194 /**
195  * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
196  *
197  * @ah: The &struct ath5k_hw
198  * @timeout: Timeout in usec
199  */
200 int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
201 {
202 	ATH5K_TRACE(ah->ah_sc);
203 	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK))
204 			<= timeout)
205 		return -EINVAL;
206 
207 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
208 		ath5k_hw_htoclock(ah, timeout));
209 
210 	return 0;
211 }
212 
213 /**
214  * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec
215  *
216  * @ah: The &struct ath5k_hw
217  */
218 unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
219 {
220 	ATH5K_TRACE(ah->ah_sc);
221 	return ath5k_hw_clocktoh(ah, AR5K_REG_MS(ath5k_hw_reg_read(ah,
222 			AR5K_TIME_OUT), AR5K_TIME_OUT_CTS));
223 }
224 
225 /**
226  * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
227  *
228  * @ah: The &struct ath5k_hw
229  * @timeout: Timeout in usec
230  */
231 int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
232 {
233 	ATH5K_TRACE(ah->ah_sc);
234 	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS))
235 			<= timeout)
236 		return -EINVAL;
237 
238 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
239 			ath5k_hw_htoclock(ah, timeout));
240 
241 	return 0;
242 }
243 
244 /**
245  * ath5k_hw_htoclock - Translate usec to hw clock units
246  *
247  * @ah: The &struct ath5k_hw
248  * @usec: value in microseconds
249  */
250 unsigned int ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
251 {
252 	return usec * ath5k_hw_get_clockrate(ah);
253 }
254 
255 /**
256  * ath5k_hw_clocktoh - Translate hw clock units to usec
257  * @clock: value in hw clock units
258  */
259 unsigned int ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
260 {
261 	return clock / ath5k_hw_get_clockrate(ah);
262 }
263 
264 /**
265  * ath5k_hw_get_clockrate - Get the clock rate for current mode
266  *
267  * @ah: The &struct ath5k_hw
268  */
269 unsigned int ath5k_hw_get_clockrate(struct ath5k_hw *ah)
270 {
271 	struct ieee80211_channel *channel = ah->ah_current_channel;
272 	int clock;
273 
274 	if (channel->hw_value & CHANNEL_5GHZ)
275 		clock = 40; /* 802.11a */
276 	else if (channel->hw_value & CHANNEL_CCK)
277 		clock = 22; /* 802.11b */
278 	else
279 		clock = 44; /* 802.11g */
280 
281 	/* Clock rate in turbo modes is twice the normal rate */
282 	if (channel->hw_value & CHANNEL_TURBO)
283 		clock *= 2;
284 
285 	return clock;
286 }
287 
288 /**
289  * ath5k_hw_get_default_slottime - Get the default slot time for current mode
290  *
291  * @ah: The &struct ath5k_hw
292  */
293 unsigned int ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
294 {
295 	struct ieee80211_channel *channel = ah->ah_current_channel;
296 
297 	if (channel->hw_value & CHANNEL_TURBO)
298 		return 6; /* both turbo modes */
299 
300 	if (channel->hw_value & CHANNEL_CCK)
301 		return 20; /* 802.11b */
302 
303 	return 9; /* 802.11 a/g */
304 }
305 
306 /**
307  * ath5k_hw_get_default_sifs - Get the default SIFS for current mode
308  *
309  * @ah: The &struct ath5k_hw
310  */
311 unsigned int ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
312 {
313 	struct ieee80211_channel *channel = ah->ah_current_channel;
314 
315 	if (channel->hw_value & CHANNEL_TURBO)
316 		return 8; /* both turbo modes */
317 
318 	if (channel->hw_value & CHANNEL_5GHZ)
319 		return 16; /* 802.11a */
320 
321 	return 10; /* 802.11 b/g */
322 }
323 
324 /**
325  * ath5k_hw_set_lladdr - Set station id
326  *
327  * @ah: The &struct ath5k_hw
328  * @mac: The card's mac address
329  *
330  * Set station id on hw using the provided mac address
331  */
332 int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
333 {
334 	struct ath_common *common = ath5k_hw_common(ah);
335 	u32 low_id, high_id;
336 	u32 pcu_reg;
337 
338 	ATH5K_TRACE(ah->ah_sc);
339 	/* Set new station ID */
340 	memcpy(common->macaddr, mac, ETH_ALEN);
341 
342 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
343 
344 	low_id = get_unaligned_le32(mac);
345 	high_id = get_unaligned_le16(mac + 4);
346 
347 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
348 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
349 
350 	return 0;
351 }
352 
353 /**
354  * ath5k_hw_set_associd - Set BSSID for association
355  *
356  * @ah: The &struct ath5k_hw
357  * @bssid: BSSID
358  * @assoc_id: Assoc id
359  *
360  * Sets the BSSID which trigers the "SME Join" operation
361  */
362 void ath5k_hw_set_associd(struct ath5k_hw *ah)
363 {
364 	struct ath_common *common = ath5k_hw_common(ah);
365 	u16 tim_offset = 0;
366 
367 	/*
368 	 * Set simple BSSID mask on 5212
369 	 */
370 	if (ah->ah_version == AR5K_AR5212)
371 		ath_hw_setbssidmask(common);
372 
373 	/*
374 	 * Set BSSID which triggers the "SME Join" operation
375 	 */
376 	ath5k_hw_reg_write(ah,
377 			   get_unaligned_le32(common->curbssid),
378 			   AR5K_BSS_ID0);
379 	ath5k_hw_reg_write(ah,
380 			   get_unaligned_le16(common->curbssid + 4) |
381 			   ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S),
382 			   AR5K_BSS_ID1);
383 
384 	if (common->curaid == 0) {
385 		ath5k_hw_disable_pspoll(ah);
386 		return;
387 	}
388 
389 	AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
390 			    tim_offset ? tim_offset + 4 : 0);
391 
392 	ath5k_hw_enable_pspoll(ah, NULL, 0);
393 }
394 
395 void ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
396 {
397 	struct ath_common *common = ath5k_hw_common(ah);
398 	ATH5K_TRACE(ah->ah_sc);
399 
400 	/* Cache bssid mask so that we can restore it
401 	 * on reset */
402 	memcpy(common->bssidmask, mask, ETH_ALEN);
403 	if (ah->ah_version == AR5K_AR5212)
404 		ath_hw_setbssidmask(common);
405 }
406 
407 /************\
408 * RX Control *
409 \************/
410 
411 /**
412  * ath5k_hw_start_rx_pcu - Start RX engine
413  *
414  * @ah: The &struct ath5k_hw
415  *
416  * Starts RX engine on PCU so that hw can process RXed frames
417  * (ACK etc).
418  *
419  * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
420  * TODO: Init ANI here
421  */
422 void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
423 {
424 	ATH5K_TRACE(ah->ah_sc);
425 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
426 }
427 
428 /**
429  * at5k_hw_stop_rx_pcu - Stop RX engine
430  *
431  * @ah: The &struct ath5k_hw
432  *
433  * Stops RX engine on PCU
434  *
435  * TODO: Detach ANI here
436  */
437 void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
438 {
439 	ATH5K_TRACE(ah->ah_sc);
440 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
441 }
442 
443 /*
444  * Set multicast filter
445  */
446 void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
447 {
448 	ATH5K_TRACE(ah->ah_sc);
449 	/* Set the multicat filter */
450 	ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
451 	ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
452 }
453 
454 /*
455  * Set multicast filter by index
456  */
457 int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
458 {
459 
460 	ATH5K_TRACE(ah->ah_sc);
461 	if (index >= 64)
462 		return -EINVAL;
463 	else if (index >= 32)
464 		AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
465 				(1 << (index - 32)));
466 	else
467 		AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
468 
469 	return 0;
470 }
471 
472 /*
473  * Clear Multicast filter by index
474  */
475 int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
476 {
477 
478 	ATH5K_TRACE(ah->ah_sc);
479 	if (index >= 64)
480 		return -EINVAL;
481 	else if (index >= 32)
482 		AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
483 				(1 << (index - 32)));
484 	else
485 		AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
486 
487 	return 0;
488 }
489 
490 /**
491  * ath5k_hw_get_rx_filter - Get current rx filter
492  *
493  * @ah: The &struct ath5k_hw
494  *
495  * Returns the RX filter by reading rx filter and
496  * phy error filter registers. RX filter is used
497  * to set the allowed frame types that PCU will accept
498  * and pass to the driver. For a list of frame types
499  * check out reg.h.
500  */
501 u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
502 {
503 	u32 data, filter = 0;
504 
505 	ATH5K_TRACE(ah->ah_sc);
506 	filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
507 
508 	/*Radar detection for 5212*/
509 	if (ah->ah_version == AR5K_AR5212) {
510 		data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
511 
512 		if (data & AR5K_PHY_ERR_FIL_RADAR)
513 			filter |= AR5K_RX_FILTER_RADARERR;
514 		if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
515 			filter |= AR5K_RX_FILTER_PHYERR;
516 	}
517 
518 	return filter;
519 }
520 
521 /**
522  * ath5k_hw_set_rx_filter - Set rx filter
523  *
524  * @ah: The &struct ath5k_hw
525  * @filter: RX filter mask (see reg.h)
526  *
527  * Sets RX filter register and also handles PHY error filter
528  * register on 5212 and newer chips so that we have proper PHY
529  * error reporting.
530  */
531 void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
532 {
533 	u32 data = 0;
534 
535 	ATH5K_TRACE(ah->ah_sc);
536 
537 	/* Set PHY error filter register on 5212*/
538 	if (ah->ah_version == AR5K_AR5212) {
539 		if (filter & AR5K_RX_FILTER_RADARERR)
540 			data |= AR5K_PHY_ERR_FIL_RADAR;
541 		if (filter & AR5K_RX_FILTER_PHYERR)
542 			data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
543 	}
544 
545 	/*
546 	 * The AR5210 uses promiscous mode to detect radar activity
547 	 */
548 	if (ah->ah_version == AR5K_AR5210 &&
549 			(filter & AR5K_RX_FILTER_RADARERR)) {
550 		filter &= ~AR5K_RX_FILTER_RADARERR;
551 		filter |= AR5K_RX_FILTER_PROM;
552 	}
553 
554 	/*Zero length DMA (phy error reporting) */
555 	if (data)
556 		AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
557 	else
558 		AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
559 
560 	/*Write RX Filter register*/
561 	ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
562 
563 	/*Write PHY error filter register on 5212*/
564 	if (ah->ah_version == AR5K_AR5212)
565 		ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
566 
567 }
568 
569 
570 /****************\
571 * Beacon control *
572 \****************/
573 
574 /**
575  * ath5k_hw_get_tsf32 - Get a 32bit TSF
576  *
577  * @ah: The &struct ath5k_hw
578  *
579  * Returns lower 32 bits of current TSF
580  */
581 u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
582 {
583 	ATH5K_TRACE(ah->ah_sc);
584 	return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
585 }
586 
587 /**
588  * ath5k_hw_get_tsf64 - Get the full 64bit TSF
589  *
590  * @ah: The &struct ath5k_hw
591  *
592  * Returns the current TSF
593  */
594 u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
595 {
596 	u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
597 	ATH5K_TRACE(ah->ah_sc);
598 
599 	return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
600 }
601 
602 /**
603  * ath5k_hw_set_tsf64 - Set a new 64bit TSF
604  *
605  * @ah: The &struct ath5k_hw
606  * @tsf64: The new 64bit TSF
607  *
608  * Sets the new TSF
609  */
610 void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
611 {
612 	ATH5K_TRACE(ah->ah_sc);
613 
614 	ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
615 	ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
616 }
617 
618 /**
619  * ath5k_hw_reset_tsf - Force a TSF reset
620  *
621  * @ah: The &struct ath5k_hw
622  *
623  * Forces a TSF reset on PCU
624  */
625 void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
626 {
627 	u32 val;
628 
629 	ATH5K_TRACE(ah->ah_sc);
630 
631 	val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
632 
633 	/*
634 	 * Each write to the RESET_TSF bit toggles a hardware internal
635 	 * signal to reset TSF, but if left high it will cause a TSF reset
636 	 * on the next chip reset as well.  Thus we always write the value
637 	 * twice to clear the signal.
638 	 */
639 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
640 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
641 }
642 
643 /*
644  * Initialize beacon timers
645  */
646 void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
647 {
648 	u32 timer1, timer2, timer3;
649 
650 	ATH5K_TRACE(ah->ah_sc);
651 	/*
652 	 * Set the additional timers by mode
653 	 */
654 	switch (ah->ah_op_mode) {
655 	case NL80211_IFTYPE_MONITOR:
656 	case NL80211_IFTYPE_STATION:
657 		/* In STA mode timer1 is used as next wakeup
658 		 * timer and timer2 as next CFP duration start
659 		 * timer. Both in 1/8TUs. */
660 		/* TODO: PCF handling */
661 		if (ah->ah_version == AR5K_AR5210) {
662 			timer1 = 0xffffffff;
663 			timer2 = 0xffffffff;
664 		} else {
665 			timer1 = 0x0000ffff;
666 			timer2 = 0x0007ffff;
667 		}
668 		/* Mark associated AP as PCF incapable for now */
669 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
670 		break;
671 	case NL80211_IFTYPE_ADHOC:
672 		AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
673 	default:
674 		/* On non-STA modes timer1 is used as next DMA
675 		 * beacon alert (DBA) timer and timer2 as next
676 		 * software beacon alert. Both in 1/8TUs. */
677 		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
678 		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
679 		break;
680 	}
681 
682 	/* Timer3 marks the end of our ATIM window
683 	 * a zero length window is not allowed because
684 	 * we 'll get no beacons */
685 	timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
686 
687 	/*
688 	 * Set the beacon register and enable all timers.
689 	 */
690 	/* When in AP or Mesh Point mode zero timer0 to start TSF */
691 	if (ah->ah_op_mode == NL80211_IFTYPE_AP ||
692 	    ah->ah_op_mode == NL80211_IFTYPE_MESH_POINT)
693 		ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
694 
695 	ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
696 	ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
697 	ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
698 	ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
699 
700 	/* Force a TSF reset if requested and enable beacons */
701 	if (interval & AR5K_BEACON_RESET_TSF)
702 		ath5k_hw_reset_tsf(ah);
703 
704 	ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
705 					AR5K_BEACON_ENABLE),
706 						AR5K_BEACON);
707 
708 	/* Flush any pending BMISS interrupts on ISR by
709 	 * performing a clear-on-write operation on PISR
710 	 * register for the BMISS bit (writing a bit on
711 	 * ISR togles a reset for that bit and leaves
712 	 * the rest bits intact) */
713 	if (ah->ah_version == AR5K_AR5210)
714 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
715 	else
716 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
717 
718 	/* TODO: Set enchanced sleep registers on AR5212
719 	 * based on vif->bss_conf params, until then
720 	 * disable power save reporting.*/
721 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
722 
723 }
724 
725 #if 0
726 /*
727  * Set beacon timers
728  */
729 int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
730 		const struct ath5k_beacon_state *state)
731 {
732 	u32 cfp_period, next_cfp, dtim, interval, next_beacon;
733 
734 	/*
735 	 * TODO: should be changed through *state
736 	 * review struct ath5k_beacon_state struct
737 	 *
738 	 * XXX: These are used for cfp period bellow, are they
739 	 * ok ? Is it O.K. for tsf here to be 0 or should we use
740 	 * get_tsf ?
741 	 */
742 	u32 dtim_count = 0; /* XXX */
743 	u32 cfp_count = 0; /* XXX */
744 	u32 tsf = 0; /* XXX */
745 
746 	ATH5K_TRACE(ah->ah_sc);
747 	/* Return on an invalid beacon state */
748 	if (state->bs_interval < 1)
749 		return -EINVAL;
750 
751 	interval = state->bs_interval;
752 	dtim = state->bs_dtim_period;
753 
754 	/*
755 	 * PCF support?
756 	 */
757 	if (state->bs_cfp_period > 0) {
758 		/*
759 		 * Enable PCF mode and set the CFP
760 		 * (Contention Free Period) and timer registers
761 		 */
762 		cfp_period = state->bs_cfp_period * state->bs_dtim_period *
763 			state->bs_interval;
764 		next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
765 			state->bs_interval;
766 
767 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
768 				AR5K_STA_ID1_DEFAULT_ANTENNA |
769 				AR5K_STA_ID1_PCF);
770 		ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
771 		ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
772 				AR5K_CFP_DUR);
773 		ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
774 						next_cfp)) << 3, AR5K_TIMER2);
775 	} else {
776 		/* Disable PCF mode */
777 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
778 				AR5K_STA_ID1_DEFAULT_ANTENNA |
779 				AR5K_STA_ID1_PCF);
780 	}
781 
782 	/*
783 	 * Enable the beacon timer register
784 	 */
785 	ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
786 
787 	/*
788 	 * Start the beacon timers
789 	 */
790 	ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &
791 		~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
792 		AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
793 		AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
794 		AR5K_BEACON_PERIOD), AR5K_BEACON);
795 
796 	/*
797 	 * Write new beacon miss threshold, if it appears to be valid
798 	 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
799 	 * and return if its not in range. We can test this by reading value and
800 	 * setting value to a largest value and seeing which values register.
801 	 */
802 
803 	AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
804 			state->bs_bmiss_threshold);
805 
806 	/*
807 	 * Set sleep control register
808 	 * XXX: Didn't find this in 5210 code but since this register
809 	 * exists also in ar5k's 5210 headers i leave it as common code.
810 	 */
811 	AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
812 			(state->bs_sleep_duration - 3) << 3);
813 
814 	/*
815 	 * Set enhanced sleep registers on 5212
816 	 */
817 	if (ah->ah_version == AR5K_AR5212) {
818 		if (state->bs_sleep_duration > state->bs_interval &&
819 				roundup(state->bs_sleep_duration, interval) ==
820 				state->bs_sleep_duration)
821 			interval = state->bs_sleep_duration;
822 
823 		if (state->bs_sleep_duration > dtim && (dtim == 0 ||
824 				roundup(state->bs_sleep_duration, dtim) ==
825 				state->bs_sleep_duration))
826 			dtim = state->bs_sleep_duration;
827 
828 		if (interval > dtim)
829 			return -EINVAL;
830 
831 		next_beacon = interval == dtim ? state->bs_next_dtim :
832 			state->bs_next_beacon;
833 
834 		ath5k_hw_reg_write(ah,
835 			AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
836 			AR5K_SLEEP0_NEXT_DTIM) |
837 			AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
838 			AR5K_SLEEP0_ENH_SLEEP_EN |
839 			AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
840 
841 		ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
842 			AR5K_SLEEP1_NEXT_TIM) |
843 			AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
844 
845 		ath5k_hw_reg_write(ah,
846 			AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
847 			AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
848 	}
849 
850 	return 0;
851 }
852 
853 /*
854  * Reset beacon timers
855  */
856 void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
857 {
858 	ATH5K_TRACE(ah->ah_sc);
859 	/*
860 	 * Disable beacon timer
861 	 */
862 	ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
863 
864 	/*
865 	 * Disable some beacon register values
866 	 */
867 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
868 			AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
869 	ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
870 }
871 
872 /*
873  * Wait for beacon queue to finish
874  */
875 int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
876 {
877 	unsigned int i;
878 	int ret;
879 
880 	ATH5K_TRACE(ah->ah_sc);
881 
882 	/* 5210 doesn't have QCU*/
883 	if (ah->ah_version == AR5K_AR5210) {
884 		/*
885 		 * Wait for beaconn queue to finish by checking
886 		 * Control Register and Beacon Status Register.
887 		 */
888 		for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
889 			if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
890 					||
891 			    !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
892 				break;
893 			udelay(10);
894 		}
895 
896 		/* Timeout... */
897 		if (i <= 0) {
898 			/*
899 			 * Re-schedule the beacon queue
900 			 */
901 			ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
902 			ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
903 					AR5K_BCR);
904 
905 			return -EIO;
906 		}
907 		ret = 0;
908 	} else {
909 	/*5211/5212*/
910 		ret = ath5k_hw_register_timeout(ah,
911 			AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
912 			AR5K_QCU_STS_FRMPENDCNT, 0, false);
913 
914 		if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
915 			return -EIO;
916 	}
917 
918 	return ret;
919 }
920 #endif
921 
922 
923 /*********************\
924 * Key table functions *
925 \*********************/
926 
927 /*
928  * Reset a key entry on the table
929  */
930 int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
931 {
932 	unsigned int i, type;
933 	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
934 
935 	ATH5K_TRACE(ah->ah_sc);
936 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
937 
938 	type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry));
939 
940 	for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
941 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
942 
943 	/* Reset associated MIC entry if TKIP
944 	 * is enabled located at offset (entry + 64) */
945 	if (type == AR5K_KEYTABLE_TYPE_TKIP) {
946 		AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE);
947 		for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++)
948 			ath5k_hw_reg_write(ah, 0,
949 				AR5K_KEYTABLE_OFF(micentry, i));
950 	}
951 
952 	/*
953 	 * Set NULL encryption on AR5212+
954 	 *
955 	 * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
956 	 *       AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
957 	 *
958 	 * Note2: Windows driver (ndiswrapper) sets this to
959 	 *        0x00000714 instead of 0x00000007
960 	 */
961 	if (ah->ah_version >= AR5K_AR5211) {
962 		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
963 				AR5K_KEYTABLE_TYPE(entry));
964 
965 		if (type == AR5K_KEYTABLE_TYPE_TKIP) {
966 			ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
967 				AR5K_KEYTABLE_TYPE(micentry));
968 		}
969 	}
970 
971 	return 0;
972 }
973 
974 /*
975  * Check if a table entry is valid
976  */
977 int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
978 {
979 	ATH5K_TRACE(ah->ah_sc);
980 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
981 
982 	/* Check the validation flag at the end of the entry */
983 	return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
984 		AR5K_KEYTABLE_VALID;
985 }
986 
987 static
988 int ath5k_keycache_type(const struct ieee80211_key_conf *key)
989 {
990 	switch (key->alg) {
991 	case ALG_TKIP:
992 		return AR5K_KEYTABLE_TYPE_TKIP;
993 	case ALG_CCMP:
994 		return AR5K_KEYTABLE_TYPE_CCM;
995 	case ALG_WEP:
996 		if (key->keylen == WLAN_KEY_LEN_WEP40)
997 			return AR5K_KEYTABLE_TYPE_40;
998 		else if (key->keylen == WLAN_KEY_LEN_WEP104)
999 			return AR5K_KEYTABLE_TYPE_104;
1000 		return -EINVAL;
1001 	default:
1002 		return -EINVAL;
1003 	}
1004 	return -EINVAL;
1005 }
1006 
1007 /*
1008  * Set a key entry on the table
1009  */
1010 int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
1011 		const struct ieee80211_key_conf *key, const u8 *mac)
1012 {
1013 	unsigned int i;
1014 	int keylen;
1015 	__le32 key_v[5] = {};
1016 	__le32 key0 = 0, key1 = 0;
1017 	__le32 *rxmic, *txmic;
1018 	int keytype;
1019 	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
1020 	bool is_tkip;
1021 	const u8 *key_ptr;
1022 
1023 	ATH5K_TRACE(ah->ah_sc);
1024 
1025 	is_tkip = (key->alg == ALG_TKIP);
1026 
1027 	/*
1028 	 * key->keylen comes in from mac80211 in bytes.
1029 	 * TKIP is 128 bit + 128 bit mic
1030 	 */
1031 	keylen = (is_tkip) ? (128 / 8) : key->keylen;
1032 
1033 	if (entry > AR5K_KEYTABLE_SIZE ||
1034 		(is_tkip && micentry > AR5K_KEYTABLE_SIZE))
1035 		return -EOPNOTSUPP;
1036 
1037 	if (unlikely(keylen > 16))
1038 		return -EOPNOTSUPP;
1039 
1040 	keytype = ath5k_keycache_type(key);
1041 	if (keytype < 0)
1042 		return keytype;
1043 
1044 	/*
1045 	 * each key block is 6 bytes wide, written as pairs of
1046 	 * alternating 32 and 16 bit le values.
1047 	 */
1048 	key_ptr = key->key;
1049 	for (i = 0; keylen >= 6; keylen -= 6) {
1050 		memcpy(&key_v[i], key_ptr, 6);
1051 		i += 2;
1052 		key_ptr += 6;
1053 	}
1054 	if (keylen)
1055 		memcpy(&key_v[i], key_ptr, keylen);
1056 
1057 	/* intentionally corrupt key until mic is installed */
1058 	if (is_tkip) {
1059 		key0 = key_v[0] = ~key_v[0];
1060 		key1 = key_v[1] = ~key_v[1];
1061 	}
1062 
1063 	for (i = 0; i < ARRAY_SIZE(key_v); i++)
1064 		ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1065 				AR5K_KEYTABLE_OFF(entry, i));
1066 
1067 	ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
1068 
1069 	if (is_tkip) {
1070 		/* Install rx/tx MIC */
1071 		rxmic = (__le32 *) &key->key[16];
1072 		txmic = (__le32 *) &key->key[24];
1073 
1074 		if (ah->ah_combined_mic) {
1075 			key_v[0] = rxmic[0];
1076 			key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16);
1077 			key_v[2] = rxmic[1];
1078 			key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff);
1079 			key_v[4] = txmic[1];
1080 		} else {
1081 			key_v[0] = rxmic[0];
1082 			key_v[1] = 0;
1083 			key_v[2] = rxmic[1];
1084 			key_v[3] = 0;
1085 			key_v[4] = 0;
1086 		}
1087 		for (i = 0; i < ARRAY_SIZE(key_v); i++)
1088 			ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
1089 				AR5K_KEYTABLE_OFF(micentry, i));
1090 
1091 		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
1092 			AR5K_KEYTABLE_TYPE(micentry));
1093 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry));
1094 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry));
1095 
1096 		/* restore first 2 words of key */
1097 		ath5k_hw_reg_write(ah, le32_to_cpu(~key0),
1098 			AR5K_KEYTABLE_OFF(entry, 0));
1099 		ath5k_hw_reg_write(ah, le32_to_cpu(~key1),
1100 			AR5K_KEYTABLE_OFF(entry, 1));
1101 	}
1102 
1103 	return ath5k_hw_set_key_lladdr(ah, entry, mac);
1104 }
1105 
1106 int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
1107 {
1108 	u32 low_id, high_id;
1109 
1110 	ATH5K_TRACE(ah->ah_sc);
1111 	 /* Invalid entry (key table overflow) */
1112 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
1113 
1114 	/*
1115 	 * MAC may be NULL if it's a broadcast key. In this case no need to
1116 	 * to compute get_unaligned_le32 and get_unaligned_le16 as we
1117 	 * already know it.
1118 	 */
1119 	if (!mac) {
1120 		low_id = 0xffffffff;
1121 		high_id = 0xffff | AR5K_KEYTABLE_VALID;
1122 	} else {
1123 		low_id = get_unaligned_le32(mac);
1124 		high_id = get_unaligned_le16(mac + 4) | AR5K_KEYTABLE_VALID;
1125 	}
1126 
1127 	ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
1128 	ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
1129 
1130 	return 0;
1131 }
1132 
1133 /**
1134  * ath5k_hw_set_coverage_class - Set IEEE 802.11 coverage class
1135  *
1136  * @ah: The &struct ath5k_hw
1137  * @coverage_class: IEEE 802.11 coverage class number
1138  *
1139  * Sets slot time, ACK timeout and CTS timeout for given coverage class.
1140  */
1141 void ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class)
1142 {
1143 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1144 	int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class;
1145 	int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time;
1146 	int cts_timeout = ack_timeout;
1147 
1148 	ath5k_hw_set_slot_time(ah, slot_time);
1149 	ath5k_hw_set_ack_timeout(ah, ack_timeout);
1150 	ath5k_hw_set_cts_timeout(ah, cts_timeout);
1151 
1152 	ah->ah_coverage_class = coverage_class;
1153 }
1154