xref: /linux/drivers/net/wireless/ath/ath5k/pcu.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
5  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
26 
27 #include <asm/unaligned.h>
28 
29 #include "ath5k.h"
30 #include "reg.h"
31 #include "debug.h"
32 
33 /**
34  * DOC: Protocol Control Unit (PCU) functions
35  *
36  * Protocol control unit is responsible to maintain various protocol
37  * properties before a frame is send and after a frame is received to/from
38  * baseband. To be more specific, PCU handles:
39  *
40  * - Buffering of RX and TX frames (after QCU/DCUs)
41  *
42  * - Encrypting and decrypting (using the built-in engine)
43  *
44  * - Generating ACKs, RTS/CTS frames
45  *
46  * - Maintaining TSF
47  *
48  * - FCS
49  *
50  * - Updating beacon data (with TSF etc)
51  *
52  * - Generating virtual CCA
53  *
54  * - RX/Multicast filtering
55  *
56  * - BSSID filtering
57  *
58  * - Various statistics
59  *
60  * -Different operating modes: AP, STA, IBSS
61  *
62  * Note: Most of these functions can be tweaked/bypassed so you can do
63  * them on sw above for debugging or research. For more infos check out PCU
64  * registers on reg.h.
65  */
66 
67 /**
68  * DOC: ACK rates
69  *
70  * AR5212+ can use higher rates for ack transmission
71  * based on current tx rate instead of the base rate.
72  * It does this to better utilize channel usage.
73  * There is a mapping between G rates (that cover both
74  * CCK and OFDM) and ack rates that we use when setting
75  * rate -> duration table. This mapping is hw-based so
76  * don't change anything.
77  *
78  * To enable this functionality we must set
79  * ah->ah_ack_bitrate_high to true else base rate is
80  * used (1Mb for CCK, 6Mb for OFDM).
81  */
82 static const unsigned int ack_rates_high[] =
83 /* Tx	-> ACK	*/
84 /* 1Mb	-> 1Mb	*/	{ 0,
85 /* 2MB	-> 2Mb	*/	1,
86 /* 5.5Mb -> 2Mb	*/	1,
87 /* 11Mb	-> 2Mb	*/	1,
88 /* 6Mb	-> 6Mb	*/	4,
89 /* 9Mb	-> 6Mb	*/	4,
90 /* 12Mb	-> 12Mb	*/	6,
91 /* 18Mb	-> 12Mb	*/	6,
92 /* 24Mb	-> 24Mb	*/	8,
93 /* 36Mb	-> 24Mb	*/	8,
94 /* 48Mb	-> 24Mb	*/	8,
95 /* 54Mb	-> 24Mb	*/	8 };
96 
97 /*******************\
98 * Helper functions *
99 \*******************/
100 
101 /**
102  * ath5k_hw_get_frame_duration() - Get tx time of a frame
103  * @ah: The &struct ath5k_hw
104  * @len: Frame's length in bytes
105  * @rate: The @struct ieee80211_rate
106  * @shortpre: Indicate short preample
107  *
108  * Calculate tx duration of a frame given it's rate and length
109  * It extends ieee80211_generic_frame_duration for non standard
110  * bwmodes.
111  */
112 int
113 ath5k_hw_get_frame_duration(struct ath5k_hw *ah,
114 		int len, struct ieee80211_rate *rate, bool shortpre)
115 {
116 	int sifs, preamble, plcp_bits, sym_time;
117 	int bitrate, bits, symbols, symbol_bits;
118 	int dur;
119 
120 	/* Fallback */
121 	if (!ah->ah_bwmode) {
122 		__le16 raw_dur = ieee80211_generic_frame_duration(ah->hw,
123 					NULL, len, rate);
124 
125 		/* subtract difference between long and short preamble */
126 		dur = le16_to_cpu(raw_dur);
127 		if (shortpre)
128 			dur -= 96;
129 
130 		return dur;
131 	}
132 
133 	bitrate = rate->bitrate;
134 	preamble = AR5K_INIT_OFDM_PREAMPLE_TIME;
135 	plcp_bits = AR5K_INIT_OFDM_PLCP_BITS;
136 	sym_time = AR5K_INIT_OFDM_SYMBOL_TIME;
137 
138 	switch (ah->ah_bwmode) {
139 	case AR5K_BWMODE_40MHZ:
140 		sifs = AR5K_INIT_SIFS_TURBO;
141 		preamble = AR5K_INIT_OFDM_PREAMBLE_TIME_MIN;
142 		break;
143 	case AR5K_BWMODE_10MHZ:
144 		sifs = AR5K_INIT_SIFS_HALF_RATE;
145 		preamble *= 2;
146 		sym_time *= 2;
147 		break;
148 	case AR5K_BWMODE_5MHZ:
149 		sifs = AR5K_INIT_SIFS_QUARTER_RATE;
150 		preamble *= 4;
151 		sym_time *= 4;
152 		break;
153 	default:
154 		sifs = AR5K_INIT_SIFS_DEFAULT_BG;
155 		break;
156 	}
157 
158 	bits = plcp_bits + (len << 3);
159 	/* Bit rate is in 100Kbits */
160 	symbol_bits = bitrate * sym_time;
161 	symbols = DIV_ROUND_UP(bits * 10, symbol_bits);
162 
163 	dur = sifs + preamble + (sym_time * symbols);
164 
165 	return dur;
166 }
167 
168 /**
169  * ath5k_hw_get_default_slottime() - Get the default slot time for current mode
170  * @ah: The &struct ath5k_hw
171  */
172 unsigned int
173 ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
174 {
175 	struct ieee80211_channel *channel = ah->ah_current_channel;
176 	unsigned int slot_time;
177 
178 	switch (ah->ah_bwmode) {
179 	case AR5K_BWMODE_40MHZ:
180 		slot_time = AR5K_INIT_SLOT_TIME_TURBO;
181 		break;
182 	case AR5K_BWMODE_10MHZ:
183 		slot_time = AR5K_INIT_SLOT_TIME_HALF_RATE;
184 		break;
185 	case AR5K_BWMODE_5MHZ:
186 		slot_time = AR5K_INIT_SLOT_TIME_QUARTER_RATE;
187 		break;
188 	case AR5K_BWMODE_DEFAULT:
189 	default:
190 		slot_time = AR5K_INIT_SLOT_TIME_DEFAULT;
191 		if ((channel->hw_value == AR5K_MODE_11B) && !ah->ah_short_slot)
192 			slot_time = AR5K_INIT_SLOT_TIME_B;
193 		break;
194 	}
195 
196 	return slot_time;
197 }
198 
199 /**
200  * ath5k_hw_get_default_sifs() - Get the default SIFS for current mode
201  * @ah: The &struct ath5k_hw
202  */
203 unsigned int
204 ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
205 {
206 	struct ieee80211_channel *channel = ah->ah_current_channel;
207 	unsigned int sifs;
208 
209 	switch (ah->ah_bwmode) {
210 	case AR5K_BWMODE_40MHZ:
211 		sifs = AR5K_INIT_SIFS_TURBO;
212 		break;
213 	case AR5K_BWMODE_10MHZ:
214 		sifs = AR5K_INIT_SIFS_HALF_RATE;
215 		break;
216 	case AR5K_BWMODE_5MHZ:
217 		sifs = AR5K_INIT_SIFS_QUARTER_RATE;
218 		break;
219 	case AR5K_BWMODE_DEFAULT:
220 		sifs = AR5K_INIT_SIFS_DEFAULT_BG;
221 	default:
222 		if (channel->band == IEEE80211_BAND_5GHZ)
223 			sifs = AR5K_INIT_SIFS_DEFAULT_A;
224 		break;
225 	}
226 
227 	return sifs;
228 }
229 
230 /**
231  * ath5k_hw_update_mib_counters() - Update MIB counters (mac layer statistics)
232  * @ah: The &struct ath5k_hw
233  *
234  * Reads MIB counters from PCU and updates sw statistics. Is called after a
235  * MIB interrupt, because one of these counters might have reached their maximum
236  * and triggered the MIB interrupt, to let us read and clear the counter.
237  *
238  * NOTE: Is called in interrupt context!
239  */
240 void
241 ath5k_hw_update_mib_counters(struct ath5k_hw *ah)
242 {
243 	struct ath5k_statistics *stats = &ah->stats;
244 
245 	/* Read-And-Clear */
246 	stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
247 	stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
248 	stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
249 	stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
250 	stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
251 }
252 
253 
254 /******************\
255 * ACK/CTS Timeouts *
256 \******************/
257 
258 /**
259  * ath5k_hw_write_rate_duration() - Fill rate code to duration table
260  * @ah: The &struct ath5k_hw
261  *
262  * Write the rate code to duration table upon hw reset. This is a helper for
263  * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on
264  * the hardware, based on current mode, for each rate. The rates which are
265  * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
266  * different rate code so we write their value twice (one for long preamble
267  * and one for short).
268  *
269  * Note: Band doesn't matter here, if we set the values for OFDM it works
270  * on both a and g modes. So all we have to do is set values for all g rates
271  * that include all OFDM and CCK rates.
272  *
273  */
274 static inline void
275 ath5k_hw_write_rate_duration(struct ath5k_hw *ah)
276 {
277 	struct ieee80211_rate *rate;
278 	unsigned int i;
279 	/* 802.11g covers both OFDM and CCK */
280 	u8 band = IEEE80211_BAND_2GHZ;
281 
282 	/* Write rate duration table */
283 	for (i = 0; i < ah->sbands[band].n_bitrates; i++) {
284 		u32 reg;
285 		u16 tx_time;
286 
287 		if (ah->ah_ack_bitrate_high)
288 			rate = &ah->sbands[band].bitrates[ack_rates_high[i]];
289 		/* CCK -> 1Mb */
290 		else if (i < 4)
291 			rate = &ah->sbands[band].bitrates[0];
292 		/* OFDM -> 6Mb */
293 		else
294 			rate = &ah->sbands[band].bitrates[4];
295 
296 		/* Set ACK timeout */
297 		reg = AR5K_RATE_DUR(rate->hw_value);
298 
299 		/* An ACK frame consists of 10 bytes. If you add the FCS,
300 		 * which ieee80211_generic_frame_duration() adds,
301 		 * its 14 bytes. Note we use the control rate and not the
302 		 * actual rate for this rate. See mac80211 tx.c
303 		 * ieee80211_duration() for a brief description of
304 		 * what rate we should choose to TX ACKs. */
305 		tx_time = ath5k_hw_get_frame_duration(ah, 10, rate, false);
306 
307 		ath5k_hw_reg_write(ah, tx_time, reg);
308 
309 		if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
310 			continue;
311 
312 		tx_time = ath5k_hw_get_frame_duration(ah, 10, rate, true);
313 		ath5k_hw_reg_write(ah, tx_time,
314 			reg + (AR5K_SET_SHORT_PREAMBLE << 2));
315 	}
316 }
317 
318 /**
319  * ath5k_hw_set_ack_timeout() - Set ACK timeout on PCU
320  * @ah: The &struct ath5k_hw
321  * @timeout: Timeout in usec
322  */
323 static int
324 ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
325 {
326 	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK))
327 			<= timeout)
328 		return -EINVAL;
329 
330 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
331 		ath5k_hw_htoclock(ah, timeout));
332 
333 	return 0;
334 }
335 
336 /**
337  * ath5k_hw_set_cts_timeout() - Set CTS timeout on PCU
338  * @ah: The &struct ath5k_hw
339  * @timeout: Timeout in usec
340  */
341 static int
342 ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
343 {
344 	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS))
345 			<= timeout)
346 		return -EINVAL;
347 
348 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
349 			ath5k_hw_htoclock(ah, timeout));
350 
351 	return 0;
352 }
353 
354 
355 /*******************\
356 * RX filter Control *
357 \*******************/
358 
359 /**
360  * ath5k_hw_set_lladdr() - Set station id
361  * @ah: The &struct ath5k_hw
362  * @mac: The card's mac address (array of octets)
363  *
364  * Set station id on hw using the provided mac address
365  */
366 int
367 ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
368 {
369 	struct ath_common *common = ath5k_hw_common(ah);
370 	u32 low_id, high_id;
371 	u32 pcu_reg;
372 
373 	/* Set new station ID */
374 	memcpy(common->macaddr, mac, ETH_ALEN);
375 
376 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
377 
378 	low_id = get_unaligned_le32(mac);
379 	high_id = get_unaligned_le16(mac + 4);
380 
381 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
382 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
383 
384 	return 0;
385 }
386 
387 /**
388  * ath5k_hw_set_bssid() - Set current BSSID on hw
389  * @ah: The &struct ath5k_hw
390  *
391  * Sets the current BSSID and BSSID mask we have from the
392  * common struct into the hardware
393  */
394 void
395 ath5k_hw_set_bssid(struct ath5k_hw *ah)
396 {
397 	struct ath_common *common = ath5k_hw_common(ah);
398 	u16 tim_offset = 0;
399 
400 	/*
401 	 * Set BSSID mask on 5212
402 	 */
403 	if (ah->ah_version == AR5K_AR5212)
404 		ath_hw_setbssidmask(common);
405 
406 	/*
407 	 * Set BSSID
408 	 */
409 	ath5k_hw_reg_write(ah,
410 			   get_unaligned_le32(common->curbssid),
411 			   AR5K_BSS_ID0);
412 	ath5k_hw_reg_write(ah,
413 			   get_unaligned_le16(common->curbssid + 4) |
414 			   ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S),
415 			   AR5K_BSS_ID1);
416 
417 	if (common->curaid == 0) {
418 		ath5k_hw_disable_pspoll(ah);
419 		return;
420 	}
421 
422 	AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
423 			    tim_offset ? tim_offset + 4 : 0);
424 
425 	ath5k_hw_enable_pspoll(ah, NULL, 0);
426 }
427 
428 /**
429  * ath5k_hw_set_bssid_mask() - Filter out bssids we listen
430  * @ah: The &struct ath5k_hw
431  * @mask: The BSSID mask to set (array of octets)
432  *
433  * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
434  * which bits of the interface's MAC address should be looked at when trying
435  * to decide which packets to ACK. In station mode and AP mode with a single
436  * BSS every bit matters since we lock to only one BSS. In AP mode with
437  * multiple BSSes (virtual interfaces) not every bit matters because hw must
438  * accept frames for all BSSes and so we tweak some bits of our mac address
439  * in order to have multiple BSSes.
440  *
441  * For more information check out ../hw.c of the common ath module.
442  */
443 void
444 ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
445 {
446 	struct ath_common *common = ath5k_hw_common(ah);
447 
448 	/* Cache bssid mask so that we can restore it
449 	 * on reset */
450 	memcpy(common->bssidmask, mask, ETH_ALEN);
451 	if (ah->ah_version == AR5K_AR5212)
452 		ath_hw_setbssidmask(common);
453 }
454 
455 /**
456  * ath5k_hw_set_mcast_filter() - Set multicast filter
457  * @ah: The &struct ath5k_hw
458  * @filter0: Lower 32bits of muticast filter
459  * @filter1: Higher 16bits of multicast filter
460  */
461 void
462 ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
463 {
464 	ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
465 	ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
466 }
467 
468 /**
469  * ath5k_hw_get_rx_filter() - Get current rx filter
470  * @ah: The &struct ath5k_hw
471  *
472  * Returns the RX filter by reading rx filter and
473  * phy error filter registers. RX filter is used
474  * to set the allowed frame types that PCU will accept
475  * and pass to the driver. For a list of frame types
476  * check out reg.h.
477  */
478 u32
479 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
480 {
481 	u32 data, filter = 0;
482 
483 	filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
484 
485 	/*Radar detection for 5212*/
486 	if (ah->ah_version == AR5K_AR5212) {
487 		data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
488 
489 		if (data & AR5K_PHY_ERR_FIL_RADAR)
490 			filter |= AR5K_RX_FILTER_RADARERR;
491 		if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
492 			filter |= AR5K_RX_FILTER_PHYERR;
493 	}
494 
495 	return filter;
496 }
497 
498 /**
499  * ath5k_hw_set_rx_filter() - Set rx filter
500  * @ah: The &struct ath5k_hw
501  * @filter: RX filter mask (see reg.h)
502  *
503  * Sets RX filter register and also handles PHY error filter
504  * register on 5212 and newer chips so that we have proper PHY
505  * error reporting.
506  */
507 void
508 ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
509 {
510 	u32 data = 0;
511 
512 	/* Set PHY error filter register on 5212*/
513 	if (ah->ah_version == AR5K_AR5212) {
514 		if (filter & AR5K_RX_FILTER_RADARERR)
515 			data |= AR5K_PHY_ERR_FIL_RADAR;
516 		if (filter & AR5K_RX_FILTER_PHYERR)
517 			data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
518 	}
519 
520 	/*
521 	 * The AR5210 uses promiscuous mode to detect radar activity
522 	 */
523 	if (ah->ah_version == AR5K_AR5210 &&
524 			(filter & AR5K_RX_FILTER_RADARERR)) {
525 		filter &= ~AR5K_RX_FILTER_RADARERR;
526 		filter |= AR5K_RX_FILTER_PROM;
527 	}
528 
529 	/*Zero length DMA (phy error reporting) */
530 	if (data)
531 		AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
532 	else
533 		AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
534 
535 	/*Write RX Filter register*/
536 	ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
537 
538 	/*Write PHY error filter register on 5212*/
539 	if (ah->ah_version == AR5K_AR5212)
540 		ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
541 
542 }
543 
544 
545 /****************\
546 * Beacon control *
547 \****************/
548 
549 #define ATH5K_MAX_TSF_READ 10
550 
551 /**
552  * ath5k_hw_get_tsf64() - Get the full 64bit TSF
553  * @ah: The &struct ath5k_hw
554  *
555  * Returns the current TSF
556  */
557 u64
558 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
559 {
560 	u32 tsf_lower, tsf_upper1, tsf_upper2;
561 	int i;
562 	unsigned long flags;
563 
564 	/* This code is time critical - we don't want to be interrupted here */
565 	local_irq_save(flags);
566 
567 	/*
568 	 * While reading TSF upper and then lower part, the clock is still
569 	 * counting (or jumping in case of IBSS merge) so we might get
570 	 * inconsistent values. To avoid this, we read the upper part again
571 	 * and check it has not been changed. We make the hypothesis that a
572 	 * maximum of 3 changes can happens in a row (we use 10 as a safe
573 	 * value).
574 	 *
575 	 * Impact on performance is pretty small, since in most cases, only
576 	 * 3 register reads are needed.
577 	 */
578 
579 	tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
580 	for (i = 0; i < ATH5K_MAX_TSF_READ; i++) {
581 		tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
582 		tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
583 		if (tsf_upper2 == tsf_upper1)
584 			break;
585 		tsf_upper1 = tsf_upper2;
586 	}
587 
588 	local_irq_restore(flags);
589 
590 	WARN_ON(i == ATH5K_MAX_TSF_READ);
591 
592 	return ((u64)tsf_upper1 << 32) | tsf_lower;
593 }
594 
595 #undef ATH5K_MAX_TSF_READ
596 
597 /**
598  * ath5k_hw_set_tsf64() - Set a new 64bit TSF
599  * @ah: The &struct ath5k_hw
600  * @tsf64: The new 64bit TSF
601  *
602  * Sets the new TSF
603  */
604 void
605 ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
606 {
607 	ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
608 	ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
609 }
610 
611 /**
612  * ath5k_hw_reset_tsf() - Force a TSF reset
613  * @ah: The &struct ath5k_hw
614  *
615  * Forces a TSF reset on PCU
616  */
617 void
618 ath5k_hw_reset_tsf(struct ath5k_hw *ah)
619 {
620 	u32 val;
621 
622 	val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
623 
624 	/*
625 	 * Each write to the RESET_TSF bit toggles a hardware internal
626 	 * signal to reset TSF, but if left high it will cause a TSF reset
627 	 * on the next chip reset as well.  Thus we always write the value
628 	 * twice to clear the signal.
629 	 */
630 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
631 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
632 }
633 
634 /**
635  * ath5k_hw_init_beacon_timers() - Initialize beacon timers
636  * @ah: The &struct ath5k_hw
637  * @next_beacon: Next TBTT
638  * @interval: Current beacon interval
639  *
640  * This function is used to initialize beacon timers based on current
641  * operation mode and settings.
642  */
643 void
644 ath5k_hw_init_beacon_timers(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
645 {
646 	u32 timer1, timer2, timer3;
647 
648 	/*
649 	 * Set the additional timers by mode
650 	 */
651 	switch (ah->opmode) {
652 	case NL80211_IFTYPE_MONITOR:
653 	case NL80211_IFTYPE_STATION:
654 		/* In STA mode timer1 is used as next wakeup
655 		 * timer and timer2 as next CFP duration start
656 		 * timer. Both in 1/8TUs. */
657 		/* TODO: PCF handling */
658 		if (ah->ah_version == AR5K_AR5210) {
659 			timer1 = 0xffffffff;
660 			timer2 = 0xffffffff;
661 		} else {
662 			timer1 = 0x0000ffff;
663 			timer2 = 0x0007ffff;
664 		}
665 		/* Mark associated AP as PCF incapable for now */
666 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
667 		break;
668 	case NL80211_IFTYPE_ADHOC:
669 		AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
670 	default:
671 		/* On non-STA modes timer1 is used as next DMA
672 		 * beacon alert (DBA) timer and timer2 as next
673 		 * software beacon alert. Both in 1/8TUs. */
674 		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
675 		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
676 		break;
677 	}
678 
679 	/* Timer3 marks the end of our ATIM window
680 	 * a zero length window is not allowed because
681 	 * we 'll get no beacons */
682 	timer3 = next_beacon + 1;
683 
684 	/*
685 	 * Set the beacon register and enable all timers.
686 	 */
687 	/* When in AP or Mesh Point mode zero timer0 to start TSF */
688 	if (ah->opmode == NL80211_IFTYPE_AP ||
689 	    ah->opmode == NL80211_IFTYPE_MESH_POINT)
690 		ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
691 
692 	ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
693 	ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
694 	ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
695 	ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
696 
697 	/* Force a TSF reset if requested and enable beacons */
698 	if (interval & AR5K_BEACON_RESET_TSF)
699 		ath5k_hw_reset_tsf(ah);
700 
701 	ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
702 					AR5K_BEACON_ENABLE),
703 						AR5K_BEACON);
704 
705 	/* Flush any pending BMISS interrupts on ISR by
706 	 * performing a clear-on-write operation on PISR
707 	 * register for the BMISS bit (writing a bit on
708 	 * ISR toggles a reset for that bit and leaves
709 	 * the remaining bits intact) */
710 	if (ah->ah_version == AR5K_AR5210)
711 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
712 	else
713 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
714 
715 	/* TODO: Set enhanced sleep registers on AR5212
716 	 * based on vif->bss_conf params, until then
717 	 * disable power save reporting.*/
718 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
719 
720 }
721 
722 /**
723  * ath5k_check_timer_win() - Check if timer B is timer A + window
724  * @a: timer a (before b)
725  * @b: timer b (after a)
726  * @window: difference between a and b
727  * @intval: timers are increased by this interval
728  *
729  * This helper function checks if timer B is timer A + window and covers
730  * cases where timer A or B might have already been updated or wrapped
731  * around (Timers are 16 bit).
732  *
733  * Returns true if O.K.
734  */
735 static inline bool
736 ath5k_check_timer_win(int a, int b, int window, int intval)
737 {
738 	/*
739 	 * 1.) usually B should be A + window
740 	 * 2.) A already updated, B not updated yet
741 	 * 3.) A already updated and has wrapped around
742 	 * 4.) B has wrapped around
743 	 */
744 	if ((b - a == window) ||				/* 1.) */
745 	    (a - b == intval - window) ||			/* 2.) */
746 	    ((a | 0x10000) - b == intval - window) ||		/* 3.) */
747 	    ((b | 0x10000) - a == window))			/* 4.) */
748 		return true; /* O.K. */
749 	return false;
750 }
751 
752 /**
753  * ath5k_hw_check_beacon_timers() - Check if the beacon timers are correct
754  * @ah: The &struct ath5k_hw
755  * @intval: beacon interval
756  *
757  * This is a workaround for IBSS mode
758  *
759  * The need for this function arises from the fact that we have 4 separate
760  * HW timer registers (TIMER0 - TIMER3), which are closely related to the
761  * next beacon target time (NBTT), and that the HW updates these timers
762  * separately based on the current TSF value. The hardware increments each
763  * timer by the beacon interval, when the local TSF converted to TU is equal
764  * to the value stored in the timer.
765  *
766  * The reception of a beacon with the same BSSID can update the local HW TSF
767  * at any time - this is something we can't avoid. If the TSF jumps to a
768  * time which is later than the time stored in a timer, this timer will not
769  * be updated until the TSF in TU wraps around at 16 bit (the size of the
770  * timers) and reaches the time which is stored in the timer.
771  *
772  * The problem is that these timers are closely related to TIMER0 (NBTT) and
773  * that they define a time "window". When the TSF jumps between two timers
774  * (e.g. ATIM and NBTT), the one in the past will be left behind (not
775  * updated), while the one in the future will be updated every beacon
776  * interval. This causes the window to get larger, until the TSF wraps
777  * around as described above and the timer which was left behind gets
778  * updated again. But - because the beacon interval is usually not an exact
779  * divisor of the size of the timers (16 bit), an unwanted "window" between
780  * these timers has developed!
781  *
782  * This is especially important with the ATIM window, because during
783  * the ATIM window only ATIM frames and no data frames are allowed to be
784  * sent, which creates transmission pauses after each beacon. This symptom
785  * has been described as "ramping ping" because ping times increase linearly
786  * for some time and then drop down again. A wrong window on the DMA beacon
787  * timer has the same effect, so we check for these two conditions.
788  *
789  * Returns true if O.K.
790  */
791 bool
792 ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval)
793 {
794 	unsigned int nbtt, atim, dma;
795 
796 	nbtt = ath5k_hw_reg_read(ah, AR5K_TIMER0);
797 	atim = ath5k_hw_reg_read(ah, AR5K_TIMER3);
798 	dma = ath5k_hw_reg_read(ah, AR5K_TIMER1) >> 3;
799 
800 	/* NOTE: SWBA is different. Having a wrong window there does not
801 	 * stop us from sending data and this condition is caught by
802 	 * other means (SWBA interrupt) */
803 
804 	if (ath5k_check_timer_win(nbtt, atim, 1, intval) &&
805 	    ath5k_check_timer_win(dma, nbtt, AR5K_TUNE_DMA_BEACON_RESP,
806 				  intval))
807 		return true; /* O.K. */
808 	return false;
809 }
810 
811 /**
812  * ath5k_hw_set_coverage_class() - Set IEEE 802.11 coverage class
813  * @ah: The &struct ath5k_hw
814  * @coverage_class: IEEE 802.11 coverage class number
815  *
816  * Sets IFS intervals and ACK/CTS timeouts for given coverage class.
817  */
818 void
819 ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class)
820 {
821 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
822 	int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class;
823 	int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time;
824 	int cts_timeout = ack_timeout;
825 
826 	ath5k_hw_set_ifs_intervals(ah, slot_time);
827 	ath5k_hw_set_ack_timeout(ah, ack_timeout);
828 	ath5k_hw_set_cts_timeout(ah, cts_timeout);
829 
830 	ah->ah_coverage_class = coverage_class;
831 }
832 
833 /***************************\
834 * Init/Start/Stop functions *
835 \***************************/
836 
837 /**
838  * ath5k_hw_start_rx_pcu() - Start RX engine
839  * @ah: The &struct ath5k_hw
840  *
841  * Starts RX engine on PCU so that hw can process RXed frames
842  * (ACK etc).
843  *
844  * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
845  */
846 void
847 ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
848 {
849 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
850 }
851 
852 /**
853  * at5k_hw_stop_rx_pcu() - Stop RX engine
854  * @ah: The &struct ath5k_hw
855  *
856  * Stops RX engine on PCU
857  */
858 void
859 ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
860 {
861 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
862 }
863 
864 /**
865  * ath5k_hw_set_opmode() - Set PCU operating mode
866  * @ah: The &struct ath5k_hw
867  * @op_mode: One of enum nl80211_iftype
868  *
869  * Configure PCU for the various operating modes (AP/STA etc)
870  */
871 int
872 ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
873 {
874 	struct ath_common *common = ath5k_hw_common(ah);
875 	u32 pcu_reg, beacon_reg, low_id, high_id;
876 
877 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode %d\n", op_mode);
878 
879 	/* Preserve rest settings */
880 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
881 	pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
882 			| AR5K_STA_ID1_KEYSRCH_MODE
883 			| (ah->ah_version == AR5K_AR5210 ?
884 			(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
885 
886 	beacon_reg = 0;
887 
888 	switch (op_mode) {
889 	case NL80211_IFTYPE_ADHOC:
890 		pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
891 		beacon_reg |= AR5K_BCR_ADHOC;
892 		if (ah->ah_version == AR5K_AR5210)
893 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
894 		else
895 			AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
896 		break;
897 
898 	case NL80211_IFTYPE_AP:
899 	case NL80211_IFTYPE_MESH_POINT:
900 		pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
901 		beacon_reg |= AR5K_BCR_AP;
902 		if (ah->ah_version == AR5K_AR5210)
903 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
904 		else
905 			AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
906 		break;
907 
908 	case NL80211_IFTYPE_STATION:
909 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
910 			| (ah->ah_version == AR5K_AR5210 ?
911 				AR5K_STA_ID1_PWR_SV : 0);
912 	case NL80211_IFTYPE_MONITOR:
913 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
914 			| (ah->ah_version == AR5K_AR5210 ?
915 				AR5K_STA_ID1_NO_PSPOLL : 0);
916 		break;
917 
918 	default:
919 		return -EINVAL;
920 	}
921 
922 	/*
923 	 * Set PCU registers
924 	 */
925 	low_id = get_unaligned_le32(common->macaddr);
926 	high_id = get_unaligned_le16(common->macaddr + 4);
927 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
928 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
929 
930 	/*
931 	 * Set Beacon Control Register on 5210
932 	 */
933 	if (ah->ah_version == AR5K_AR5210)
934 		ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
935 
936 	return 0;
937 }
938 
939 /**
940  * ath5k_hw_pcu_init() - Initialize PCU
941  * @ah: The &struct ath5k_hw
942  * @op_mode: One of enum nl80211_iftype
943  * @mode: One of enum ath5k_driver_mode
944  *
945  * This function is used to initialize PCU by setting current
946  * operation mode and various other settings.
947  */
948 void
949 ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
950 {
951 	/* Set bssid and bssid mask */
952 	ath5k_hw_set_bssid(ah);
953 
954 	/* Set PCU config */
955 	ath5k_hw_set_opmode(ah, op_mode);
956 
957 	/* Write rate duration table only on AR5212 and if
958 	 * virtual interface has already been brought up
959 	 * XXX: rethink this after new mode changes to
960 	 * mac80211 are integrated */
961 	if (ah->ah_version == AR5K_AR5212 &&
962 		ah->nvifs)
963 		ath5k_hw_write_rate_duration(ah);
964 
965 	/* Set RSSI/BRSSI thresholds
966 	 *
967 	 * Note: If we decide to set this value
968 	 * dynamically, have in mind that when AR5K_RSSI_THR
969 	 * register is read it might return 0x40 if we haven't
970 	 * wrote anything to it plus BMISS RSSI threshold is zeroed.
971 	 * So doing a save/restore procedure here isn't the right
972 	 * choice. Instead store it on ath5k_hw */
973 	ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
974 				AR5K_TUNE_BMISS_THRES <<
975 				AR5K_RSSI_THR_BMISS_S),
976 				AR5K_RSSI_THR);
977 
978 	/* MIC QoS support */
979 	if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
980 		ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
981 		ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
982 	}
983 
984 	/* QoS NOACK Policy */
985 	if (ah->ah_version == AR5K_AR5212) {
986 		ath5k_hw_reg_write(ah,
987 			AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
988 			AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET)  |
989 			AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
990 			AR5K_QOS_NOACK);
991 	}
992 
993 	/* Restore slot time and ACK timeouts */
994 	if (ah->ah_coverage_class > 0)
995 		ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
996 
997 	/* Set ACK bitrate mode (see ack_rates_high) */
998 	if (ah->ah_version == AR5K_AR5212) {
999 		u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
1000 		if (ah->ah_ack_bitrate_high)
1001 			AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
1002 		else
1003 			AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
1004 	}
1005 	return;
1006 }
1007