xref: /linux/drivers/net/wireless/ath/ath5k/pcu.c (revision a234ca0faa65dcd5cc473915bd925130ebb7b74b)
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
5  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
7  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 /*********************************\
24 * Protocol Control Unit Functions *
25 \*********************************/
26 
27 #include <asm/unaligned.h>
28 
29 #include "ath5k.h"
30 #include "reg.h"
31 #include "debug.h"
32 #include "base.h"
33 
34 /*******************\
35 * Generic functions *
36 \*******************/
37 
38 /**
39  * ath5k_hw_set_opmode - Set PCU operating mode
40  *
41  * @ah: The &struct ath5k_hw
42  * @op_mode: &enum nl80211_iftype operating mode
43  *
44  * Initialize PCU for the various operating modes (AP/STA etc)
45  */
46 int ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
47 {
48 	struct ath_common *common = ath5k_hw_common(ah);
49 	u32 pcu_reg, beacon_reg, low_id, high_id;
50 
51 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_MODE, "mode %d\n", op_mode);
52 
53 	/* Preserve rest settings */
54 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
55 	pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
56 			| AR5K_STA_ID1_KEYSRCH_MODE
57 			| (ah->ah_version == AR5K_AR5210 ?
58 			(AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
59 
60 	beacon_reg = 0;
61 
62 	switch (op_mode) {
63 	case NL80211_IFTYPE_ADHOC:
64 		pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
65 		beacon_reg |= AR5K_BCR_ADHOC;
66 		if (ah->ah_version == AR5K_AR5210)
67 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
68 		else
69 			AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
70 		break;
71 
72 	case NL80211_IFTYPE_AP:
73 	case NL80211_IFTYPE_MESH_POINT:
74 		pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
75 		beacon_reg |= AR5K_BCR_AP;
76 		if (ah->ah_version == AR5K_AR5210)
77 			pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
78 		else
79 			AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
80 		break;
81 
82 	case NL80211_IFTYPE_STATION:
83 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
84 			| (ah->ah_version == AR5K_AR5210 ?
85 				AR5K_STA_ID1_PWR_SV : 0);
86 	case NL80211_IFTYPE_MONITOR:
87 		pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
88 			| (ah->ah_version == AR5K_AR5210 ?
89 				AR5K_STA_ID1_NO_PSPOLL : 0);
90 		break;
91 
92 	default:
93 		return -EINVAL;
94 	}
95 
96 	/*
97 	 * Set PCU registers
98 	 */
99 	low_id = get_unaligned_le32(common->macaddr);
100 	high_id = get_unaligned_le16(common->macaddr + 4);
101 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
102 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
103 
104 	/*
105 	 * Set Beacon Control Register on 5210
106 	 */
107 	if (ah->ah_version == AR5K_AR5210)
108 		ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
109 
110 	return 0;
111 }
112 
113 /**
114  * ath5k_hw_update - Update MIB counters (mac layer statistics)
115  *
116  * @ah: The &struct ath5k_hw
117  *
118  * Reads MIB counters from PCU and updates sw statistics. Is called after a
119  * MIB interrupt, because one of these counters might have reached their maximum
120  * and triggered the MIB interrupt, to let us read and clear the counter.
121  *
122  * Is called in interrupt context!
123  */
124 void ath5k_hw_update_mib_counters(struct ath5k_hw *ah)
125 {
126 	struct ath5k_statistics *stats = &ah->ah_sc->stats;
127 
128 	/* Read-And-Clear */
129 	stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
130 	stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
131 	stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
132 	stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
133 	stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
134 }
135 
136 /**
137  * ath5k_hw_set_ack_bitrate - set bitrate for ACKs
138  *
139  * @ah: The &struct ath5k_hw
140  * @high: Flag to determine if we want to use high transmition rate
141  * for ACKs or not
142  *
143  * If high flag is set, we tell hw to use a set of control rates based on
144  * the current transmition rate (check out control_rates array inside reset.c).
145  * If not hw just uses the lowest rate available for the current modulation
146  * scheme being used (1Mbit for CCK and 6Mbits for OFDM).
147  */
148 void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
149 {
150 	if (ah->ah_version != AR5K_AR5212)
151 		return;
152 	else {
153 		u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
154 		if (high)
155 			AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
156 		else
157 			AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
158 	}
159 }
160 
161 
162 /******************\
163 * ACK/CTS Timeouts *
164 \******************/
165 
166 /**
167  * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU
168  *
169  * @ah: The &struct ath5k_hw
170  * @timeout: Timeout in usec
171  */
172 static int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
173 {
174 	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK))
175 			<= timeout)
176 		return -EINVAL;
177 
178 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
179 		ath5k_hw_htoclock(ah, timeout));
180 
181 	return 0;
182 }
183 
184 /**
185  * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU
186  *
187  * @ah: The &struct ath5k_hw
188  * @timeout: Timeout in usec
189  */
190 static int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
191 {
192 	if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS))
193 			<= timeout)
194 		return -EINVAL;
195 
196 	AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
197 			ath5k_hw_htoclock(ah, timeout));
198 
199 	return 0;
200 }
201 
202 /**
203  * ath5k_hw_htoclock - Translate usec to hw clock units
204  *
205  * @ah: The &struct ath5k_hw
206  * @usec: value in microseconds
207  */
208 unsigned int ath5k_hw_htoclock(struct ath5k_hw *ah, unsigned int usec)
209 {
210 	return usec * ath5k_hw_get_clockrate(ah);
211 }
212 
213 /**
214  * ath5k_hw_clocktoh - Translate hw clock units to usec
215  * @clock: value in hw clock units
216  */
217 unsigned int ath5k_hw_clocktoh(struct ath5k_hw *ah, unsigned int clock)
218 {
219 	return clock / ath5k_hw_get_clockrate(ah);
220 }
221 
222 /**
223  * ath5k_hw_get_clockrate - Get the clock rate for current mode
224  *
225  * @ah: The &struct ath5k_hw
226  */
227 unsigned int ath5k_hw_get_clockrate(struct ath5k_hw *ah)
228 {
229 	struct ieee80211_channel *channel = ah->ah_current_channel;
230 	int clock;
231 
232 	if (channel->hw_value & CHANNEL_5GHZ)
233 		clock = 40; /* 802.11a */
234 	else if (channel->hw_value & CHANNEL_CCK)
235 		clock = 22; /* 802.11b */
236 	else
237 		clock = 44; /* 802.11g */
238 
239 	/* Clock rate in turbo modes is twice the normal rate */
240 	if (channel->hw_value & CHANNEL_TURBO)
241 		clock *= 2;
242 
243 	return clock;
244 }
245 
246 /**
247  * ath5k_hw_get_default_slottime - Get the default slot time for current mode
248  *
249  * @ah: The &struct ath5k_hw
250  */
251 static unsigned int ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
252 {
253 	struct ieee80211_channel *channel = ah->ah_current_channel;
254 
255 	if (channel->hw_value & CHANNEL_TURBO)
256 		return 6; /* both turbo modes */
257 
258 	if (channel->hw_value & CHANNEL_CCK)
259 		return 20; /* 802.11b */
260 
261 	return 9; /* 802.11 a/g */
262 }
263 
264 /**
265  * ath5k_hw_get_default_sifs - Get the default SIFS for current mode
266  *
267  * @ah: The &struct ath5k_hw
268  */
269 static unsigned int ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
270 {
271 	struct ieee80211_channel *channel = ah->ah_current_channel;
272 
273 	if (channel->hw_value & CHANNEL_TURBO)
274 		return 8; /* both turbo modes */
275 
276 	if (channel->hw_value & CHANNEL_5GHZ)
277 		return 16; /* 802.11a */
278 
279 	return 10; /* 802.11 b/g */
280 }
281 
282 /**
283  * ath5k_hw_set_lladdr - Set station id
284  *
285  * @ah: The &struct ath5k_hw
286  * @mac: The card's mac address
287  *
288  * Set station id on hw using the provided mac address
289  */
290 int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
291 {
292 	struct ath_common *common = ath5k_hw_common(ah);
293 	u32 low_id, high_id;
294 	u32 pcu_reg;
295 
296 	/* Set new station ID */
297 	memcpy(common->macaddr, mac, ETH_ALEN);
298 
299 	pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
300 
301 	low_id = get_unaligned_le32(mac);
302 	high_id = get_unaligned_le16(mac + 4);
303 
304 	ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
305 	ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
306 
307 	return 0;
308 }
309 
310 /**
311  * ath5k_hw_set_associd - Set BSSID for association
312  *
313  * @ah: The &struct ath5k_hw
314  * @bssid: BSSID
315  * @assoc_id: Assoc id
316  *
317  * Sets the BSSID which trigers the "SME Join" operation
318  */
319 void ath5k_hw_set_associd(struct ath5k_hw *ah)
320 {
321 	struct ath_common *common = ath5k_hw_common(ah);
322 	u16 tim_offset = 0;
323 
324 	/*
325 	 * Set simple BSSID mask on 5212
326 	 */
327 	if (ah->ah_version == AR5K_AR5212)
328 		ath_hw_setbssidmask(common);
329 
330 	/*
331 	 * Set BSSID which triggers the "SME Join" operation
332 	 */
333 	ath5k_hw_reg_write(ah,
334 			   get_unaligned_le32(common->curbssid),
335 			   AR5K_BSS_ID0);
336 	ath5k_hw_reg_write(ah,
337 			   get_unaligned_le16(common->curbssid + 4) |
338 			   ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S),
339 			   AR5K_BSS_ID1);
340 
341 	if (common->curaid == 0) {
342 		ath5k_hw_disable_pspoll(ah);
343 		return;
344 	}
345 
346 	AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
347 			    tim_offset ? tim_offset + 4 : 0);
348 
349 	ath5k_hw_enable_pspoll(ah, NULL, 0);
350 }
351 
352 void ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
353 {
354 	struct ath_common *common = ath5k_hw_common(ah);
355 
356 	/* Cache bssid mask so that we can restore it
357 	 * on reset */
358 	memcpy(common->bssidmask, mask, ETH_ALEN);
359 	if (ah->ah_version == AR5K_AR5212)
360 		ath_hw_setbssidmask(common);
361 }
362 
363 /************\
364 * RX Control *
365 \************/
366 
367 /**
368  * ath5k_hw_start_rx_pcu - Start RX engine
369  *
370  * @ah: The &struct ath5k_hw
371  *
372  * Starts RX engine on PCU so that hw can process RXed frames
373  * (ACK etc).
374  *
375  * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
376  */
377 void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
378 {
379 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
380 }
381 
382 /**
383  * at5k_hw_stop_rx_pcu - Stop RX engine
384  *
385  * @ah: The &struct ath5k_hw
386  *
387  * Stops RX engine on PCU
388  *
389  * TODO: Detach ANI here
390  */
391 void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
392 {
393 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
394 }
395 
396 /*
397  * Set multicast filter
398  */
399 void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
400 {
401 	ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
402 	ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
403 }
404 
405 /**
406  * ath5k_hw_get_rx_filter - Get current rx filter
407  *
408  * @ah: The &struct ath5k_hw
409  *
410  * Returns the RX filter by reading rx filter and
411  * phy error filter registers. RX filter is used
412  * to set the allowed frame types that PCU will accept
413  * and pass to the driver. For a list of frame types
414  * check out reg.h.
415  */
416 u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
417 {
418 	u32 data, filter = 0;
419 
420 	filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
421 
422 	/*Radar detection for 5212*/
423 	if (ah->ah_version == AR5K_AR5212) {
424 		data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
425 
426 		if (data & AR5K_PHY_ERR_FIL_RADAR)
427 			filter |= AR5K_RX_FILTER_RADARERR;
428 		if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
429 			filter |= AR5K_RX_FILTER_PHYERR;
430 	}
431 
432 	return filter;
433 }
434 
435 /**
436  * ath5k_hw_set_rx_filter - Set rx filter
437  *
438  * @ah: The &struct ath5k_hw
439  * @filter: RX filter mask (see reg.h)
440  *
441  * Sets RX filter register and also handles PHY error filter
442  * register on 5212 and newer chips so that we have proper PHY
443  * error reporting.
444  */
445 void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
446 {
447 	u32 data = 0;
448 
449 	/* Set PHY error filter register on 5212*/
450 	if (ah->ah_version == AR5K_AR5212) {
451 		if (filter & AR5K_RX_FILTER_RADARERR)
452 			data |= AR5K_PHY_ERR_FIL_RADAR;
453 		if (filter & AR5K_RX_FILTER_PHYERR)
454 			data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
455 	}
456 
457 	/*
458 	 * The AR5210 uses promiscous mode to detect radar activity
459 	 */
460 	if (ah->ah_version == AR5K_AR5210 &&
461 			(filter & AR5K_RX_FILTER_RADARERR)) {
462 		filter &= ~AR5K_RX_FILTER_RADARERR;
463 		filter |= AR5K_RX_FILTER_PROM;
464 	}
465 
466 	/*Zero length DMA (phy error reporting) */
467 	if (data)
468 		AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
469 	else
470 		AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
471 
472 	/*Write RX Filter register*/
473 	ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
474 
475 	/*Write PHY error filter register on 5212*/
476 	if (ah->ah_version == AR5K_AR5212)
477 		ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
478 
479 }
480 
481 
482 /****************\
483 * Beacon control *
484 \****************/
485 
486 #define ATH5K_MAX_TSF_READ 10
487 
488 /**
489  * ath5k_hw_get_tsf64 - Get the full 64bit TSF
490  *
491  * @ah: The &struct ath5k_hw
492  *
493  * Returns the current TSF
494  */
495 u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
496 {
497 	u32 tsf_lower, tsf_upper1, tsf_upper2;
498 	int i;
499 
500 	/*
501 	 * While reading TSF upper and then lower part, the clock is still
502 	 * counting (or jumping in case of IBSS merge) so we might get
503 	 * inconsistent values. To avoid this, we read the upper part again
504 	 * and check it has not been changed. We make the hypothesis that a
505 	 * maximum of 3 changes can happens in a row (we use 10 as a safe
506 	 * value).
507 	 *
508 	 * Impact on performance is pretty small, since in most cases, only
509 	 * 3 register reads are needed.
510 	 */
511 
512 	tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
513 	for (i = 0; i < ATH5K_MAX_TSF_READ; i++) {
514 		tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
515 		tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
516 		if (tsf_upper2 == tsf_upper1)
517 			break;
518 		tsf_upper1 = tsf_upper2;
519 	}
520 
521 	WARN_ON( i == ATH5K_MAX_TSF_READ );
522 
523 	return (((u64)tsf_upper1 << 32) | tsf_lower);
524 }
525 
526 /**
527  * ath5k_hw_set_tsf64 - Set a new 64bit TSF
528  *
529  * @ah: The &struct ath5k_hw
530  * @tsf64: The new 64bit TSF
531  *
532  * Sets the new TSF
533  */
534 void ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
535 {
536 	ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
537 	ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
538 }
539 
540 /**
541  * ath5k_hw_reset_tsf - Force a TSF reset
542  *
543  * @ah: The &struct ath5k_hw
544  *
545  * Forces a TSF reset on PCU
546  */
547 void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
548 {
549 	u32 val;
550 
551 	val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
552 
553 	/*
554 	 * Each write to the RESET_TSF bit toggles a hardware internal
555 	 * signal to reset TSF, but if left high it will cause a TSF reset
556 	 * on the next chip reset as well.  Thus we always write the value
557 	 * twice to clear the signal.
558 	 */
559 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
560 	ath5k_hw_reg_write(ah, val, AR5K_BEACON);
561 }
562 
563 /*
564  * Initialize beacon timers
565  */
566 void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
567 {
568 	u32 timer1, timer2, timer3;
569 
570 	/*
571 	 * Set the additional timers by mode
572 	 */
573 	switch (ah->ah_sc->opmode) {
574 	case NL80211_IFTYPE_MONITOR:
575 	case NL80211_IFTYPE_STATION:
576 		/* In STA mode timer1 is used as next wakeup
577 		 * timer and timer2 as next CFP duration start
578 		 * timer. Both in 1/8TUs. */
579 		/* TODO: PCF handling */
580 		if (ah->ah_version == AR5K_AR5210) {
581 			timer1 = 0xffffffff;
582 			timer2 = 0xffffffff;
583 		} else {
584 			timer1 = 0x0000ffff;
585 			timer2 = 0x0007ffff;
586 		}
587 		/* Mark associated AP as PCF incapable for now */
588 		AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
589 		break;
590 	case NL80211_IFTYPE_ADHOC:
591 		AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
592 	default:
593 		/* On non-STA modes timer1 is used as next DMA
594 		 * beacon alert (DBA) timer and timer2 as next
595 		 * software beacon alert. Both in 1/8TUs. */
596 		timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
597 		timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
598 		break;
599 	}
600 
601 	/* Timer3 marks the end of our ATIM window
602 	 * a zero length window is not allowed because
603 	 * we 'll get no beacons */
604 	timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
605 
606 	/*
607 	 * Set the beacon register and enable all timers.
608 	 */
609 	/* When in AP or Mesh Point mode zero timer0 to start TSF */
610 	if (ah->ah_sc->opmode == NL80211_IFTYPE_AP ||
611 	    ah->ah_sc->opmode == NL80211_IFTYPE_MESH_POINT)
612 		ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
613 
614 	ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
615 	ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
616 	ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
617 	ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
618 
619 	/* Force a TSF reset if requested and enable beacons */
620 	if (interval & AR5K_BEACON_RESET_TSF)
621 		ath5k_hw_reset_tsf(ah);
622 
623 	ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
624 					AR5K_BEACON_ENABLE),
625 						AR5K_BEACON);
626 
627 	/* Flush any pending BMISS interrupts on ISR by
628 	 * performing a clear-on-write operation on PISR
629 	 * register for the BMISS bit (writing a bit on
630 	 * ISR togles a reset for that bit and leaves
631 	 * the rest bits intact) */
632 	if (ah->ah_version == AR5K_AR5210)
633 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
634 	else
635 		ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
636 
637 	/* TODO: Set enchanced sleep registers on AR5212
638 	 * based on vif->bss_conf params, until then
639 	 * disable power save reporting.*/
640 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
641 
642 }
643 
644 
645 /*********************\
646 * Key table functions *
647 \*********************/
648 
649 /*
650  * Reset a key entry on the table
651  */
652 int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
653 {
654 	unsigned int i, type;
655 	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
656 
657 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
658 
659 	type = ath5k_hw_reg_read(ah, AR5K_KEYTABLE_TYPE(entry));
660 
661 	for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
662 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
663 
664 	/* Reset associated MIC entry if TKIP
665 	 * is enabled located at offset (entry + 64) */
666 	if (type == AR5K_KEYTABLE_TYPE_TKIP) {
667 		AR5K_ASSERT_ENTRY(micentry, AR5K_KEYTABLE_SIZE);
668 		for (i = 0; i < AR5K_KEYCACHE_SIZE / 2 ; i++)
669 			ath5k_hw_reg_write(ah, 0,
670 				AR5K_KEYTABLE_OFF(micentry, i));
671 	}
672 
673 	/*
674 	 * Set NULL encryption on AR5212+
675 	 *
676 	 * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5)
677 	 *       AR5K_KEYTABLE_TYPE_NULL -> 0x00000007
678 	 *
679 	 * Note2: Windows driver (ndiswrapper) sets this to
680 	 *        0x00000714 instead of 0x00000007
681 	 */
682 	if (ah->ah_version >= AR5K_AR5211) {
683 		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
684 				AR5K_KEYTABLE_TYPE(entry));
685 
686 		if (type == AR5K_KEYTABLE_TYPE_TKIP) {
687 			ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
688 				AR5K_KEYTABLE_TYPE(micentry));
689 		}
690 	}
691 
692 	return 0;
693 }
694 
695 static
696 int ath5k_keycache_type(const struct ieee80211_key_conf *key)
697 {
698 	switch (key->alg) {
699 	case ALG_TKIP:
700 		return AR5K_KEYTABLE_TYPE_TKIP;
701 	case ALG_CCMP:
702 		return AR5K_KEYTABLE_TYPE_CCM;
703 	case ALG_WEP:
704 		if (key->keylen == WLAN_KEY_LEN_WEP40)
705 			return AR5K_KEYTABLE_TYPE_40;
706 		else if (key->keylen == WLAN_KEY_LEN_WEP104)
707 			return AR5K_KEYTABLE_TYPE_104;
708 		return -EINVAL;
709 	default:
710 		return -EINVAL;
711 	}
712 	return -EINVAL;
713 }
714 
715 /*
716  * Set a key entry on the table
717  */
718 int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
719 		const struct ieee80211_key_conf *key, const u8 *mac)
720 {
721 	unsigned int i;
722 	int keylen;
723 	__le32 key_v[5] = {};
724 	__le32 key0 = 0, key1 = 0;
725 	__le32 *rxmic, *txmic;
726 	int keytype;
727 	u16 micentry = entry + AR5K_KEYTABLE_MIC_OFFSET;
728 	bool is_tkip;
729 	const u8 *key_ptr;
730 
731 	is_tkip = (key->alg == ALG_TKIP);
732 
733 	/*
734 	 * key->keylen comes in from mac80211 in bytes.
735 	 * TKIP is 128 bit + 128 bit mic
736 	 */
737 	keylen = (is_tkip) ? (128 / 8) : key->keylen;
738 
739 	if (entry > AR5K_KEYTABLE_SIZE ||
740 		(is_tkip && micentry > AR5K_KEYTABLE_SIZE))
741 		return -EOPNOTSUPP;
742 
743 	if (unlikely(keylen > 16))
744 		return -EOPNOTSUPP;
745 
746 	keytype = ath5k_keycache_type(key);
747 	if (keytype < 0)
748 		return keytype;
749 
750 	/*
751 	 * each key block is 6 bytes wide, written as pairs of
752 	 * alternating 32 and 16 bit le values.
753 	 */
754 	key_ptr = key->key;
755 	for (i = 0; keylen >= 6; keylen -= 6) {
756 		memcpy(&key_v[i], key_ptr, 6);
757 		i += 2;
758 		key_ptr += 6;
759 	}
760 	if (keylen)
761 		memcpy(&key_v[i], key_ptr, keylen);
762 
763 	/* intentionally corrupt key until mic is installed */
764 	if (is_tkip) {
765 		key0 = key_v[0] = ~key_v[0];
766 		key1 = key_v[1] = ~key_v[1];
767 	}
768 
769 	for (i = 0; i < ARRAY_SIZE(key_v); i++)
770 		ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
771 				AR5K_KEYTABLE_OFF(entry, i));
772 
773 	ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
774 
775 	if (is_tkip) {
776 		/* Install rx/tx MIC */
777 		rxmic = (__le32 *) &key->key[16];
778 		txmic = (__le32 *) &key->key[24];
779 
780 		if (ah->ah_combined_mic) {
781 			key_v[0] = rxmic[0];
782 			key_v[1] = cpu_to_le32(le32_to_cpu(txmic[0]) >> 16);
783 			key_v[2] = rxmic[1];
784 			key_v[3] = cpu_to_le32(le32_to_cpu(txmic[0]) & 0xffff);
785 			key_v[4] = txmic[1];
786 		} else {
787 			key_v[0] = rxmic[0];
788 			key_v[1] = 0;
789 			key_v[2] = rxmic[1];
790 			key_v[3] = 0;
791 			key_v[4] = 0;
792 		}
793 		for (i = 0; i < ARRAY_SIZE(key_v); i++)
794 			ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
795 				AR5K_KEYTABLE_OFF(micentry, i));
796 
797 		ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
798 			AR5K_KEYTABLE_TYPE(micentry));
799 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC0(micentry));
800 		ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_MAC1(micentry));
801 
802 		/* restore first 2 words of key */
803 		ath5k_hw_reg_write(ah, le32_to_cpu(~key0),
804 			AR5K_KEYTABLE_OFF(entry, 0));
805 		ath5k_hw_reg_write(ah, le32_to_cpu(~key1),
806 			AR5K_KEYTABLE_OFF(entry, 1));
807 	}
808 
809 	return ath5k_hw_set_key_lladdr(ah, entry, mac);
810 }
811 
812 int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
813 {
814 	u32 low_id, high_id;
815 
816 	 /* Invalid entry (key table overflow) */
817 	AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
818 
819 	/*
820 	 * MAC may be NULL if it's a broadcast key. In this case no need to
821 	 * to compute get_unaligned_le32 and get_unaligned_le16 as we
822 	 * already know it.
823 	 */
824 	if (!mac) {
825 		low_id = 0xffffffff;
826 		high_id = 0xffff | AR5K_KEYTABLE_VALID;
827 	} else {
828 		low_id = get_unaligned_le32(mac);
829 		high_id = get_unaligned_le16(mac + 4) | AR5K_KEYTABLE_VALID;
830 	}
831 
832 	ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
833 	ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
834 
835 	return 0;
836 }
837 
838 /**
839  * ath5k_hw_set_coverage_class - Set IEEE 802.11 coverage class
840  *
841  * @ah: The &struct ath5k_hw
842  * @coverage_class: IEEE 802.11 coverage class number
843  *
844  * Sets slot time, ACK timeout and CTS timeout for given coverage class.
845  */
846 void ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class)
847 {
848 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
849 	int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class;
850 	int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time;
851 	int cts_timeout = ack_timeout;
852 
853 	ath5k_hw_set_slot_time(ah, slot_time);
854 	ath5k_hw_set_ack_timeout(ah, ack_timeout);
855 	ath5k_hw_set_cts_timeout(ah, cts_timeout);
856 
857 	ah->ah_coverage_class = coverage_class;
858 }
859