1 /* 2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> 3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com> 4 * Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org> 5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu> 6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org> 7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 * 21 */ 22 23 /*********************************\ 24 * Protocol Control Unit Functions * 25 \*********************************/ 26 27 #include <asm/unaligned.h> 28 29 #include "ath5k.h" 30 #include "reg.h" 31 #include "debug.h" 32 33 /** 34 * DOC: Protocol Control Unit (PCU) functions 35 * 36 * Protocol control unit is responsible to maintain various protocol 37 * properties before a frame is send and after a frame is received to/from 38 * baseband. To be more specific, PCU handles: 39 * 40 * - Buffering of RX and TX frames (after QCU/DCUs) 41 * 42 * - Encrypting and decrypting (using the built-in engine) 43 * 44 * - Generating ACKs, RTS/CTS frames 45 * 46 * - Maintaining TSF 47 * 48 * - FCS 49 * 50 * - Updating beacon data (with TSF etc) 51 * 52 * - Generating virtual CCA 53 * 54 * - RX/Multicast filtering 55 * 56 * - BSSID filtering 57 * 58 * - Various statistics 59 * 60 * -Different operating modes: AP, STA, IBSS 61 * 62 * Note: Most of these functions can be tweaked/bypassed so you can do 63 * them on sw above for debugging or research. For more infos check out PCU 64 * registers on reg.h. 65 */ 66 67 /** 68 * DOC: ACK rates 69 * 70 * AR5212+ can use higher rates for ack transmission 71 * based on current tx rate instead of the base rate. 72 * It does this to better utilize channel usage. 73 * There is a mapping between G rates (that cover both 74 * CCK and OFDM) and ack rates that we use when setting 75 * rate -> duration table. This mapping is hw-based so 76 * don't change anything. 77 * 78 * To enable this functionality we must set 79 * ah->ah_ack_bitrate_high to true else base rate is 80 * used (1Mb for CCK, 6Mb for OFDM). 81 */ 82 static const unsigned int ack_rates_high[] = 83 /* Tx -> ACK */ 84 /* 1Mb -> 1Mb */ { 0, 85 /* 2MB -> 2Mb */ 1, 86 /* 5.5Mb -> 2Mb */ 1, 87 /* 11Mb -> 2Mb */ 1, 88 /* 6Mb -> 6Mb */ 4, 89 /* 9Mb -> 6Mb */ 4, 90 /* 12Mb -> 12Mb */ 6, 91 /* 18Mb -> 12Mb */ 6, 92 /* 24Mb -> 24Mb */ 8, 93 /* 36Mb -> 24Mb */ 8, 94 /* 48Mb -> 24Mb */ 8, 95 /* 54Mb -> 24Mb */ 8 }; 96 97 /*******************\ 98 * Helper functions * 99 \*******************/ 100 101 /** 102 * ath5k_hw_get_frame_duration() - Get tx time of a frame 103 * @ah: The &struct ath5k_hw 104 * @len: Frame's length in bytes 105 * @rate: The @struct ieee80211_rate 106 * @shortpre: Indicate short preample 107 * 108 * Calculate tx duration of a frame given it's rate and length 109 * It extends ieee80211_generic_frame_duration for non standard 110 * bwmodes. 111 */ 112 int 113 ath5k_hw_get_frame_duration(struct ath5k_hw *ah, enum ieee80211_band band, 114 int len, struct ieee80211_rate *rate, bool shortpre) 115 { 116 int sifs, preamble, plcp_bits, sym_time; 117 int bitrate, bits, symbols, symbol_bits; 118 int dur; 119 120 /* Fallback */ 121 if (!ah->ah_bwmode) { 122 __le16 raw_dur = ieee80211_generic_frame_duration(ah->hw, 123 NULL, band, len, rate); 124 125 /* subtract difference between long and short preamble */ 126 dur = le16_to_cpu(raw_dur); 127 if (shortpre) 128 dur -= 96; 129 130 return dur; 131 } 132 133 bitrate = rate->bitrate; 134 preamble = AR5K_INIT_OFDM_PREAMPLE_TIME; 135 plcp_bits = AR5K_INIT_OFDM_PLCP_BITS; 136 sym_time = AR5K_INIT_OFDM_SYMBOL_TIME; 137 138 switch (ah->ah_bwmode) { 139 case AR5K_BWMODE_40MHZ: 140 sifs = AR5K_INIT_SIFS_TURBO; 141 preamble = AR5K_INIT_OFDM_PREAMBLE_TIME_MIN; 142 break; 143 case AR5K_BWMODE_10MHZ: 144 sifs = AR5K_INIT_SIFS_HALF_RATE; 145 preamble *= 2; 146 sym_time *= 2; 147 bitrate = DIV_ROUND_UP(bitrate, 2); 148 break; 149 case AR5K_BWMODE_5MHZ: 150 sifs = AR5K_INIT_SIFS_QUARTER_RATE; 151 preamble *= 4; 152 sym_time *= 4; 153 bitrate = DIV_ROUND_UP(bitrate, 4); 154 break; 155 default: 156 sifs = AR5K_INIT_SIFS_DEFAULT_BG; 157 break; 158 } 159 160 bits = plcp_bits + (len << 3); 161 /* Bit rate is in 100Kbits */ 162 symbol_bits = bitrate * sym_time; 163 symbols = DIV_ROUND_UP(bits * 10, symbol_bits); 164 165 dur = sifs + preamble + (sym_time * symbols); 166 167 return dur; 168 } 169 170 /** 171 * ath5k_hw_get_default_slottime() - Get the default slot time for current mode 172 * @ah: The &struct ath5k_hw 173 */ 174 unsigned int 175 ath5k_hw_get_default_slottime(struct ath5k_hw *ah) 176 { 177 struct ieee80211_channel *channel = ah->ah_current_channel; 178 unsigned int slot_time; 179 180 switch (ah->ah_bwmode) { 181 case AR5K_BWMODE_40MHZ: 182 slot_time = AR5K_INIT_SLOT_TIME_TURBO; 183 break; 184 case AR5K_BWMODE_10MHZ: 185 slot_time = AR5K_INIT_SLOT_TIME_HALF_RATE; 186 break; 187 case AR5K_BWMODE_5MHZ: 188 slot_time = AR5K_INIT_SLOT_TIME_QUARTER_RATE; 189 break; 190 case AR5K_BWMODE_DEFAULT: 191 default: 192 slot_time = AR5K_INIT_SLOT_TIME_DEFAULT; 193 if ((channel->hw_value == AR5K_MODE_11B) && !ah->ah_short_slot) 194 slot_time = AR5K_INIT_SLOT_TIME_B; 195 break; 196 } 197 198 return slot_time; 199 } 200 201 /** 202 * ath5k_hw_get_default_sifs() - Get the default SIFS for current mode 203 * @ah: The &struct ath5k_hw 204 */ 205 unsigned int 206 ath5k_hw_get_default_sifs(struct ath5k_hw *ah) 207 { 208 struct ieee80211_channel *channel = ah->ah_current_channel; 209 unsigned int sifs; 210 211 switch (ah->ah_bwmode) { 212 case AR5K_BWMODE_40MHZ: 213 sifs = AR5K_INIT_SIFS_TURBO; 214 break; 215 case AR5K_BWMODE_10MHZ: 216 sifs = AR5K_INIT_SIFS_HALF_RATE; 217 break; 218 case AR5K_BWMODE_5MHZ: 219 sifs = AR5K_INIT_SIFS_QUARTER_RATE; 220 break; 221 case AR5K_BWMODE_DEFAULT: 222 sifs = AR5K_INIT_SIFS_DEFAULT_BG; 223 default: 224 if (channel->band == IEEE80211_BAND_5GHZ) 225 sifs = AR5K_INIT_SIFS_DEFAULT_A; 226 break; 227 } 228 229 return sifs; 230 } 231 232 /** 233 * ath5k_hw_update_mib_counters() - Update MIB counters (mac layer statistics) 234 * @ah: The &struct ath5k_hw 235 * 236 * Reads MIB counters from PCU and updates sw statistics. Is called after a 237 * MIB interrupt, because one of these counters might have reached their maximum 238 * and triggered the MIB interrupt, to let us read and clear the counter. 239 * 240 * NOTE: Is called in interrupt context! 241 */ 242 void 243 ath5k_hw_update_mib_counters(struct ath5k_hw *ah) 244 { 245 struct ath5k_statistics *stats = &ah->stats; 246 247 /* Read-And-Clear */ 248 stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL); 249 stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL); 250 stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK); 251 stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL); 252 stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT); 253 } 254 255 256 /******************\ 257 * ACK/CTS Timeouts * 258 \******************/ 259 260 /** 261 * ath5k_hw_write_rate_duration() - Fill rate code to duration table 262 * @ah: The &struct ath5k_hw 263 * 264 * Write the rate code to duration table upon hw reset. This is a helper for 265 * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on 266 * the hardware, based on current mode, for each rate. The rates which are 267 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have 268 * different rate code so we write their value twice (one for long preamble 269 * and one for short). 270 * 271 * Note: Band doesn't matter here, if we set the values for OFDM it works 272 * on both a and g modes. So all we have to do is set values for all g rates 273 * that include all OFDM and CCK rates. 274 * 275 */ 276 static inline void 277 ath5k_hw_write_rate_duration(struct ath5k_hw *ah) 278 { 279 struct ieee80211_rate *rate; 280 unsigned int i; 281 /* 802.11g covers both OFDM and CCK */ 282 u8 band = IEEE80211_BAND_2GHZ; 283 284 /* Write rate duration table */ 285 for (i = 0; i < ah->sbands[band].n_bitrates; i++) { 286 u32 reg; 287 u16 tx_time; 288 289 if (ah->ah_ack_bitrate_high) 290 rate = &ah->sbands[band].bitrates[ack_rates_high[i]]; 291 /* CCK -> 1Mb */ 292 else if (i < 4) 293 rate = &ah->sbands[band].bitrates[0]; 294 /* OFDM -> 6Mb */ 295 else 296 rate = &ah->sbands[band].bitrates[4]; 297 298 /* Set ACK timeout */ 299 reg = AR5K_RATE_DUR(rate->hw_value); 300 301 /* An ACK frame consists of 10 bytes. If you add the FCS, 302 * which ieee80211_generic_frame_duration() adds, 303 * its 14 bytes. Note we use the control rate and not the 304 * actual rate for this rate. See mac80211 tx.c 305 * ieee80211_duration() for a brief description of 306 * what rate we should choose to TX ACKs. */ 307 tx_time = ath5k_hw_get_frame_duration(ah, band, 10, 308 rate, false); 309 310 ath5k_hw_reg_write(ah, tx_time, reg); 311 312 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)) 313 continue; 314 315 tx_time = ath5k_hw_get_frame_duration(ah, band, 10, rate, true); 316 ath5k_hw_reg_write(ah, tx_time, 317 reg + (AR5K_SET_SHORT_PREAMBLE << 2)); 318 } 319 } 320 321 /** 322 * ath5k_hw_set_ack_timeout() - Set ACK timeout on PCU 323 * @ah: The &struct ath5k_hw 324 * @timeout: Timeout in usec 325 */ 326 static int 327 ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout) 328 { 329 if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK)) 330 <= timeout) 331 return -EINVAL; 332 333 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK, 334 ath5k_hw_htoclock(ah, timeout)); 335 336 return 0; 337 } 338 339 /** 340 * ath5k_hw_set_cts_timeout() - Set CTS timeout on PCU 341 * @ah: The &struct ath5k_hw 342 * @timeout: Timeout in usec 343 */ 344 static int 345 ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout) 346 { 347 if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS)) 348 <= timeout) 349 return -EINVAL; 350 351 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS, 352 ath5k_hw_htoclock(ah, timeout)); 353 354 return 0; 355 } 356 357 358 /*******************\ 359 * RX filter Control * 360 \*******************/ 361 362 /** 363 * ath5k_hw_set_lladdr() - Set station id 364 * @ah: The &struct ath5k_hw 365 * @mac: The card's mac address (array of octets) 366 * 367 * Set station id on hw using the provided mac address 368 */ 369 int 370 ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac) 371 { 372 struct ath_common *common = ath5k_hw_common(ah); 373 u32 low_id, high_id; 374 u32 pcu_reg; 375 376 /* Set new station ID */ 377 memcpy(common->macaddr, mac, ETH_ALEN); 378 379 pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000; 380 381 low_id = get_unaligned_le32(mac); 382 high_id = get_unaligned_le16(mac + 4); 383 384 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); 385 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1); 386 387 return 0; 388 } 389 390 /** 391 * ath5k_hw_set_bssid() - Set current BSSID on hw 392 * @ah: The &struct ath5k_hw 393 * 394 * Sets the current BSSID and BSSID mask we have from the 395 * common struct into the hardware 396 */ 397 void 398 ath5k_hw_set_bssid(struct ath5k_hw *ah) 399 { 400 struct ath_common *common = ath5k_hw_common(ah); 401 u16 tim_offset = 0; 402 403 /* 404 * Set BSSID mask on 5212 405 */ 406 if (ah->ah_version == AR5K_AR5212) 407 ath_hw_setbssidmask(common); 408 409 /* 410 * Set BSSID 411 */ 412 ath5k_hw_reg_write(ah, 413 get_unaligned_le32(common->curbssid), 414 AR5K_BSS_ID0); 415 ath5k_hw_reg_write(ah, 416 get_unaligned_le16(common->curbssid + 4) | 417 ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S), 418 AR5K_BSS_ID1); 419 420 if (common->curaid == 0) { 421 ath5k_hw_disable_pspoll(ah); 422 return; 423 } 424 425 AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM, 426 tim_offset ? tim_offset + 4 : 0); 427 428 ath5k_hw_enable_pspoll(ah, NULL, 0); 429 } 430 431 /** 432 * ath5k_hw_set_bssid_mask() - Filter out bssids we listen 433 * @ah: The &struct ath5k_hw 434 * @mask: The BSSID mask to set (array of octets) 435 * 436 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU 437 * which bits of the interface's MAC address should be looked at when trying 438 * to decide which packets to ACK. In station mode and AP mode with a single 439 * BSS every bit matters since we lock to only one BSS. In AP mode with 440 * multiple BSSes (virtual interfaces) not every bit matters because hw must 441 * accept frames for all BSSes and so we tweak some bits of our mac address 442 * in order to have multiple BSSes. 443 * 444 * For more information check out ../hw.c of the common ath module. 445 */ 446 void 447 ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask) 448 { 449 struct ath_common *common = ath5k_hw_common(ah); 450 451 /* Cache bssid mask so that we can restore it 452 * on reset */ 453 memcpy(common->bssidmask, mask, ETH_ALEN); 454 if (ah->ah_version == AR5K_AR5212) 455 ath_hw_setbssidmask(common); 456 } 457 458 /** 459 * ath5k_hw_set_mcast_filter() - Set multicast filter 460 * @ah: The &struct ath5k_hw 461 * @filter0: Lower 32bits of muticast filter 462 * @filter1: Higher 16bits of multicast filter 463 */ 464 void 465 ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1) 466 { 467 ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0); 468 ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1); 469 } 470 471 /** 472 * ath5k_hw_get_rx_filter() - Get current rx filter 473 * @ah: The &struct ath5k_hw 474 * 475 * Returns the RX filter by reading rx filter and 476 * phy error filter registers. RX filter is used 477 * to set the allowed frame types that PCU will accept 478 * and pass to the driver. For a list of frame types 479 * check out reg.h. 480 */ 481 u32 482 ath5k_hw_get_rx_filter(struct ath5k_hw *ah) 483 { 484 u32 data, filter = 0; 485 486 filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER); 487 488 /*Radar detection for 5212*/ 489 if (ah->ah_version == AR5K_AR5212) { 490 data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL); 491 492 if (data & AR5K_PHY_ERR_FIL_RADAR) 493 filter |= AR5K_RX_FILTER_RADARERR; 494 if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK)) 495 filter |= AR5K_RX_FILTER_PHYERR; 496 } 497 498 return filter; 499 } 500 501 /** 502 * ath5k_hw_set_rx_filter() - Set rx filter 503 * @ah: The &struct ath5k_hw 504 * @filter: RX filter mask (see reg.h) 505 * 506 * Sets RX filter register and also handles PHY error filter 507 * register on 5212 and newer chips so that we have proper PHY 508 * error reporting. 509 */ 510 void 511 ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter) 512 { 513 u32 data = 0; 514 515 /* Set PHY error filter register on 5212*/ 516 if (ah->ah_version == AR5K_AR5212) { 517 if (filter & AR5K_RX_FILTER_RADARERR) 518 data |= AR5K_PHY_ERR_FIL_RADAR; 519 if (filter & AR5K_RX_FILTER_PHYERR) 520 data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK; 521 } 522 523 /* 524 * The AR5210 uses promiscuous mode to detect radar activity 525 */ 526 if (ah->ah_version == AR5K_AR5210 && 527 (filter & AR5K_RX_FILTER_RADARERR)) { 528 filter &= ~AR5K_RX_FILTER_RADARERR; 529 filter |= AR5K_RX_FILTER_PROM; 530 } 531 532 /*Zero length DMA (phy error reporting) */ 533 if (data) 534 AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); 535 else 536 AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); 537 538 /*Write RX Filter register*/ 539 ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER); 540 541 /*Write PHY error filter register on 5212*/ 542 if (ah->ah_version == AR5K_AR5212) 543 ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL); 544 545 } 546 547 548 /****************\ 549 * Beacon control * 550 \****************/ 551 552 #define ATH5K_MAX_TSF_READ 10 553 554 /** 555 * ath5k_hw_get_tsf64() - Get the full 64bit TSF 556 * @ah: The &struct ath5k_hw 557 * 558 * Returns the current TSF 559 */ 560 u64 561 ath5k_hw_get_tsf64(struct ath5k_hw *ah) 562 { 563 u32 tsf_lower, tsf_upper1, tsf_upper2; 564 int i; 565 unsigned long flags; 566 567 /* This code is time critical - we don't want to be interrupted here */ 568 local_irq_save(flags); 569 570 /* 571 * While reading TSF upper and then lower part, the clock is still 572 * counting (or jumping in case of IBSS merge) so we might get 573 * inconsistent values. To avoid this, we read the upper part again 574 * and check it has not been changed. We make the hypothesis that a 575 * maximum of 3 changes can happens in a row (we use 10 as a safe 576 * value). 577 * 578 * Impact on performance is pretty small, since in most cases, only 579 * 3 register reads are needed. 580 */ 581 582 tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32); 583 for (i = 0; i < ATH5K_MAX_TSF_READ; i++) { 584 tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32); 585 tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32); 586 if (tsf_upper2 == tsf_upper1) 587 break; 588 tsf_upper1 = tsf_upper2; 589 } 590 591 local_irq_restore(flags); 592 593 WARN_ON(i == ATH5K_MAX_TSF_READ); 594 595 return ((u64)tsf_upper1 << 32) | tsf_lower; 596 } 597 598 #undef ATH5K_MAX_TSF_READ 599 600 /** 601 * ath5k_hw_set_tsf64() - Set a new 64bit TSF 602 * @ah: The &struct ath5k_hw 603 * @tsf64: The new 64bit TSF 604 * 605 * Sets the new TSF 606 */ 607 void 608 ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64) 609 { 610 ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32); 611 ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32); 612 } 613 614 /** 615 * ath5k_hw_reset_tsf() - Force a TSF reset 616 * @ah: The &struct ath5k_hw 617 * 618 * Forces a TSF reset on PCU 619 */ 620 void 621 ath5k_hw_reset_tsf(struct ath5k_hw *ah) 622 { 623 u32 val; 624 625 val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF; 626 627 /* 628 * Each write to the RESET_TSF bit toggles a hardware internal 629 * signal to reset TSF, but if left high it will cause a TSF reset 630 * on the next chip reset as well. Thus we always write the value 631 * twice to clear the signal. 632 */ 633 ath5k_hw_reg_write(ah, val, AR5K_BEACON); 634 ath5k_hw_reg_write(ah, val, AR5K_BEACON); 635 } 636 637 /** 638 * ath5k_hw_init_beacon_timers() - Initialize beacon timers 639 * @ah: The &struct ath5k_hw 640 * @next_beacon: Next TBTT 641 * @interval: Current beacon interval 642 * 643 * This function is used to initialize beacon timers based on current 644 * operation mode and settings. 645 */ 646 void 647 ath5k_hw_init_beacon_timers(struct ath5k_hw *ah, u32 next_beacon, u32 interval) 648 { 649 u32 timer1, timer2, timer3; 650 651 /* 652 * Set the additional timers by mode 653 */ 654 switch (ah->opmode) { 655 case NL80211_IFTYPE_MONITOR: 656 case NL80211_IFTYPE_STATION: 657 /* In STA mode timer1 is used as next wakeup 658 * timer and timer2 as next CFP duration start 659 * timer. Both in 1/8TUs. */ 660 /* TODO: PCF handling */ 661 if (ah->ah_version == AR5K_AR5210) { 662 timer1 = 0xffffffff; 663 timer2 = 0xffffffff; 664 } else { 665 timer1 = 0x0000ffff; 666 timer2 = 0x0007ffff; 667 } 668 /* Mark associated AP as PCF incapable for now */ 669 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF); 670 break; 671 case NL80211_IFTYPE_ADHOC: 672 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM); 673 default: 674 /* On non-STA modes timer1 is used as next DMA 675 * beacon alert (DBA) timer and timer2 as next 676 * software beacon alert. Both in 1/8TUs. */ 677 timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3; 678 timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3; 679 break; 680 } 681 682 /* Timer3 marks the end of our ATIM window 683 * a zero length window is not allowed because 684 * we 'll get no beacons */ 685 timer3 = next_beacon + 1; 686 687 /* 688 * Set the beacon register and enable all timers. 689 */ 690 /* When in AP or Mesh Point mode zero timer0 to start TSF */ 691 if (ah->opmode == NL80211_IFTYPE_AP || 692 ah->opmode == NL80211_IFTYPE_MESH_POINT) 693 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0); 694 695 ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0); 696 ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1); 697 ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2); 698 ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3); 699 700 /* Force a TSF reset if requested and enable beacons */ 701 if (interval & AR5K_BEACON_RESET_TSF) 702 ath5k_hw_reset_tsf(ah); 703 704 ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD | 705 AR5K_BEACON_ENABLE), 706 AR5K_BEACON); 707 708 /* Flush any pending BMISS interrupts on ISR by 709 * performing a clear-on-write operation on PISR 710 * register for the BMISS bit (writing a bit on 711 * ISR toggles a reset for that bit and leaves 712 * the remaining bits intact) */ 713 if (ah->ah_version == AR5K_AR5210) 714 ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR); 715 else 716 ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR); 717 718 /* TODO: Set enhanced sleep registers on AR5212 719 * based on vif->bss_conf params, until then 720 * disable power save reporting.*/ 721 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV); 722 723 } 724 725 /** 726 * ath5k_check_timer_win() - Check if timer B is timer A + window 727 * @a: timer a (before b) 728 * @b: timer b (after a) 729 * @window: difference between a and b 730 * @intval: timers are increased by this interval 731 * 732 * This helper function checks if timer B is timer A + window and covers 733 * cases where timer A or B might have already been updated or wrapped 734 * around (Timers are 16 bit). 735 * 736 * Returns true if O.K. 737 */ 738 static inline bool 739 ath5k_check_timer_win(int a, int b, int window, int intval) 740 { 741 /* 742 * 1.) usually B should be A + window 743 * 2.) A already updated, B not updated yet 744 * 3.) A already updated and has wrapped around 745 * 4.) B has wrapped around 746 */ 747 if ((b - a == window) || /* 1.) */ 748 (a - b == intval - window) || /* 2.) */ 749 ((a | 0x10000) - b == intval - window) || /* 3.) */ 750 ((b | 0x10000) - a == window)) /* 4.) */ 751 return true; /* O.K. */ 752 return false; 753 } 754 755 /** 756 * ath5k_hw_check_beacon_timers() - Check if the beacon timers are correct 757 * @ah: The &struct ath5k_hw 758 * @intval: beacon interval 759 * 760 * This is a workaround for IBSS mode 761 * 762 * The need for this function arises from the fact that we have 4 separate 763 * HW timer registers (TIMER0 - TIMER3), which are closely related to the 764 * next beacon target time (NBTT), and that the HW updates these timers 765 * separately based on the current TSF value. The hardware increments each 766 * timer by the beacon interval, when the local TSF converted to TU is equal 767 * to the value stored in the timer. 768 * 769 * The reception of a beacon with the same BSSID can update the local HW TSF 770 * at any time - this is something we can't avoid. If the TSF jumps to a 771 * time which is later than the time stored in a timer, this timer will not 772 * be updated until the TSF in TU wraps around at 16 bit (the size of the 773 * timers) and reaches the time which is stored in the timer. 774 * 775 * The problem is that these timers are closely related to TIMER0 (NBTT) and 776 * that they define a time "window". When the TSF jumps between two timers 777 * (e.g. ATIM and NBTT), the one in the past will be left behind (not 778 * updated), while the one in the future will be updated every beacon 779 * interval. This causes the window to get larger, until the TSF wraps 780 * around as described above and the timer which was left behind gets 781 * updated again. But - because the beacon interval is usually not an exact 782 * divisor of the size of the timers (16 bit), an unwanted "window" between 783 * these timers has developed! 784 * 785 * This is especially important with the ATIM window, because during 786 * the ATIM window only ATIM frames and no data frames are allowed to be 787 * sent, which creates transmission pauses after each beacon. This symptom 788 * has been described as "ramping ping" because ping times increase linearly 789 * for some time and then drop down again. A wrong window on the DMA beacon 790 * timer has the same effect, so we check for these two conditions. 791 * 792 * Returns true if O.K. 793 */ 794 bool 795 ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval) 796 { 797 unsigned int nbtt, atim, dma; 798 799 nbtt = ath5k_hw_reg_read(ah, AR5K_TIMER0); 800 atim = ath5k_hw_reg_read(ah, AR5K_TIMER3); 801 dma = ath5k_hw_reg_read(ah, AR5K_TIMER1) >> 3; 802 803 /* NOTE: SWBA is different. Having a wrong window there does not 804 * stop us from sending data and this condition is caught by 805 * other means (SWBA interrupt) */ 806 807 if (ath5k_check_timer_win(nbtt, atim, 1, intval) && 808 ath5k_check_timer_win(dma, nbtt, AR5K_TUNE_DMA_BEACON_RESP, 809 intval)) 810 return true; /* O.K. */ 811 return false; 812 } 813 814 /** 815 * ath5k_hw_set_coverage_class() - Set IEEE 802.11 coverage class 816 * @ah: The &struct ath5k_hw 817 * @coverage_class: IEEE 802.11 coverage class number 818 * 819 * Sets IFS intervals and ACK/CTS timeouts for given coverage class. 820 */ 821 void 822 ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class) 823 { 824 /* As defined by IEEE 802.11-2007 17.3.8.6 */ 825 int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class; 826 int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time; 827 int cts_timeout = ack_timeout; 828 829 ath5k_hw_set_ifs_intervals(ah, slot_time); 830 ath5k_hw_set_ack_timeout(ah, ack_timeout); 831 ath5k_hw_set_cts_timeout(ah, cts_timeout); 832 833 ah->ah_coverage_class = coverage_class; 834 } 835 836 /***************************\ 837 * Init/Start/Stop functions * 838 \***************************/ 839 840 /** 841 * ath5k_hw_start_rx_pcu() - Start RX engine 842 * @ah: The &struct ath5k_hw 843 * 844 * Starts RX engine on PCU so that hw can process RXed frames 845 * (ACK etc). 846 * 847 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma 848 */ 849 void 850 ath5k_hw_start_rx_pcu(struct ath5k_hw *ah) 851 { 852 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); 853 } 854 855 /** 856 * at5k_hw_stop_rx_pcu() - Stop RX engine 857 * @ah: The &struct ath5k_hw 858 * 859 * Stops RX engine on PCU 860 */ 861 void 862 ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah) 863 { 864 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); 865 } 866 867 /** 868 * ath5k_hw_set_opmode() - Set PCU operating mode 869 * @ah: The &struct ath5k_hw 870 * @op_mode: One of enum nl80211_iftype 871 * 872 * Configure PCU for the various operating modes (AP/STA etc) 873 */ 874 int 875 ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode) 876 { 877 struct ath_common *common = ath5k_hw_common(ah); 878 u32 pcu_reg, beacon_reg, low_id, high_id; 879 880 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode %d\n", op_mode); 881 882 /* Preserve rest settings */ 883 pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000; 884 pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP 885 | AR5K_STA_ID1_KEYSRCH_MODE 886 | (ah->ah_version == AR5K_AR5210 ? 887 (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0)); 888 889 beacon_reg = 0; 890 891 switch (op_mode) { 892 case NL80211_IFTYPE_ADHOC: 893 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE; 894 beacon_reg |= AR5K_BCR_ADHOC; 895 if (ah->ah_version == AR5K_AR5210) 896 pcu_reg |= AR5K_STA_ID1_NO_PSPOLL; 897 else 898 AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS); 899 break; 900 901 case NL80211_IFTYPE_AP: 902 case NL80211_IFTYPE_MESH_POINT: 903 pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE; 904 beacon_reg |= AR5K_BCR_AP; 905 if (ah->ah_version == AR5K_AR5210) 906 pcu_reg |= AR5K_STA_ID1_NO_PSPOLL; 907 else 908 AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS); 909 break; 910 911 case NL80211_IFTYPE_STATION: 912 pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE 913 | (ah->ah_version == AR5K_AR5210 ? 914 AR5K_STA_ID1_PWR_SV : 0); 915 case NL80211_IFTYPE_MONITOR: 916 pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE 917 | (ah->ah_version == AR5K_AR5210 ? 918 AR5K_STA_ID1_NO_PSPOLL : 0); 919 break; 920 921 default: 922 return -EINVAL; 923 } 924 925 /* 926 * Set PCU registers 927 */ 928 low_id = get_unaligned_le32(common->macaddr); 929 high_id = get_unaligned_le16(common->macaddr + 4); 930 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); 931 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1); 932 933 /* 934 * Set Beacon Control Register on 5210 935 */ 936 if (ah->ah_version == AR5K_AR5210) 937 ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR); 938 939 return 0; 940 } 941 942 /** 943 * ath5k_hw_pcu_init() - Initialize PCU 944 * @ah: The &struct ath5k_hw 945 * @op_mode: One of enum nl80211_iftype 946 * @mode: One of enum ath5k_driver_mode 947 * 948 * This function is used to initialize PCU by setting current 949 * operation mode and various other settings. 950 */ 951 void 952 ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode) 953 { 954 /* Set bssid and bssid mask */ 955 ath5k_hw_set_bssid(ah); 956 957 /* Set PCU config */ 958 ath5k_hw_set_opmode(ah, op_mode); 959 960 /* Write rate duration table only on AR5212 and if 961 * virtual interface has already been brought up 962 * XXX: rethink this after new mode changes to 963 * mac80211 are integrated */ 964 if (ah->ah_version == AR5K_AR5212 && 965 ah->nvifs) 966 ath5k_hw_write_rate_duration(ah); 967 968 /* Set RSSI/BRSSI thresholds 969 * 970 * Note: If we decide to set this value 971 * dynamically, have in mind that when AR5K_RSSI_THR 972 * register is read it might return 0x40 if we haven't 973 * wrote anything to it plus BMISS RSSI threshold is zeroed. 974 * So doing a save/restore procedure here isn't the right 975 * choice. Instead store it on ath5k_hw */ 976 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES | 977 AR5K_TUNE_BMISS_THRES << 978 AR5K_RSSI_THR_BMISS_S), 979 AR5K_RSSI_THR); 980 981 /* MIC QoS support */ 982 if (ah->ah_mac_srev >= AR5K_SREV_AR2413) { 983 ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL); 984 ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL); 985 } 986 987 /* QoS NOACK Policy */ 988 if (ah->ah_version == AR5K_AR5212) { 989 ath5k_hw_reg_write(ah, 990 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) | 991 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) | 992 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET), 993 AR5K_QOS_NOACK); 994 } 995 996 /* Restore slot time and ACK timeouts */ 997 if (ah->ah_coverage_class > 0) 998 ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class); 999 1000 /* Set ACK bitrate mode (see ack_rates_high) */ 1001 if (ah->ah_version == AR5K_AR5212) { 1002 u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB; 1003 if (ah->ah_ack_bitrate_high) 1004 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val); 1005 else 1006 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val); 1007 } 1008 return; 1009 } 1010