xref: /linux/drivers/net/wireless/ath/ath5k/eeprom.c (revision dfc349402de8e95f6a42e8341e9ea193b718eee3)
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19 
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23 
24 #include "ath5k.h"
25 #include "reg.h"
26 #include "debug.h"
27 #include "base.h"
28 
29 /*
30  * Read from eeprom
31  */
32 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
33 {
34 	u32 status, timeout;
35 
36 	ATH5K_TRACE(ah->ah_sc);
37 	/*
38 	 * Initialize EEPROM access
39 	 */
40 	if (ah->ah_version == AR5K_AR5210) {
41 		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
42 		(void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
43 	} else {
44 		ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
45 		AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
46 				AR5K_EEPROM_CMD_READ);
47 	}
48 
49 	for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
50 		status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
51 		if (status & AR5K_EEPROM_STAT_RDDONE) {
52 			if (status & AR5K_EEPROM_STAT_RDERR)
53 				return -EIO;
54 			*data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
55 					0xffff);
56 			return 0;
57 		}
58 		udelay(15);
59 	}
60 
61 	return -ETIMEDOUT;
62 }
63 
64 /*
65  * Translate binary channel representation in EEPROM to frequency
66  */
67 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
68                                  unsigned int mode)
69 {
70 	u16 val;
71 
72 	if (bin == AR5K_EEPROM_CHANNEL_DIS)
73 		return bin;
74 
75 	if (mode == AR5K_EEPROM_MODE_11A) {
76 		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
77 			val = (5 * bin) + 4800;
78 		else
79 			val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
80 				(bin * 10) + 5100;
81 	} else {
82 		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
83 			val = bin + 2300;
84 		else
85 			val = bin + 2400;
86 	}
87 
88 	return val;
89 }
90 
91 /*
92  * Initialize eeprom & capabilities structs
93  */
94 static int
95 ath5k_eeprom_init_header(struct ath5k_hw *ah)
96 {
97 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
98 	int ret;
99 	u16 val;
100 
101 	/*
102 	 * Read values from EEPROM and store them in the capability structure
103 	 */
104 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
105 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
106 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
107 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
108 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
109 
110 	/* Return if we have an old EEPROM */
111 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
112 		return 0;
113 
114 #ifdef notyet
115 	/*
116 	 * Validate the checksum of the EEPROM date. There are some
117 	 * devices with invalid EEPROMs.
118 	 */
119 	for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
120 		AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
121 		cksum ^= val;
122 	}
123 	if (cksum != AR5K_EEPROM_INFO_CKSUM) {
124 		ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
125 		return -EIO;
126 	}
127 #endif
128 
129 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
130 	    ee_ant_gain);
131 
132 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
133 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
134 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
135 
136 		/* XXX: Don't know which versions include these two */
137 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
138 
139 		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
140 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
141 
142 		if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
143 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
144 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
145 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
146 		}
147 	}
148 
149 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
150 		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
151 		ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
152 		ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
153 
154 		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
155 		ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
156 		ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
157 	}
158 
159 	AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
160 
161 	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
162 		ee->ee_is_hb63 = true;
163 	else
164 		ee->ee_is_hb63 = false;
165 
166 	AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
167 	ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
168 	ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
169 
170 	/* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
171 	 * and enable serdes programming if needed.
172 	 *
173 	 * XXX: Serdes values seem to be fixed so
174 	 * no need to read them here, we write them
175 	 * during ath5k_hw_attach */
176 	AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
177 	ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
178 							true : false;
179 
180 	return 0;
181 }
182 
183 
184 /*
185  * Read antenna infos from eeprom
186  */
187 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
188 		unsigned int mode)
189 {
190 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
191 	u32 o = *offset;
192 	u16 val;
193 	int ret, i = 0;
194 
195 	AR5K_EEPROM_READ(o++, val);
196 	ee->ee_switch_settling[mode]	= (val >> 8) & 0x7f;
197 	ee->ee_atn_tx_rx[mode]		= (val >> 2) & 0x3f;
198 	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
199 
200 	AR5K_EEPROM_READ(o++, val);
201 	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
202 	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
203 	ee->ee_ant_control[mode][i++]	= val & 0x3f;
204 
205 	AR5K_EEPROM_READ(o++, val);
206 	ee->ee_ant_control[mode][i++]	= (val >> 10) & 0x3f;
207 	ee->ee_ant_control[mode][i++]	= (val >> 4) & 0x3f;
208 	ee->ee_ant_control[mode][i]	= (val << 2) & 0x3f;
209 
210 	AR5K_EEPROM_READ(o++, val);
211 	ee->ee_ant_control[mode][i++]	|= (val >> 14) & 0x3;
212 	ee->ee_ant_control[mode][i++]	= (val >> 8) & 0x3f;
213 	ee->ee_ant_control[mode][i++]	= (val >> 2) & 0x3f;
214 	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
215 
216 	AR5K_EEPROM_READ(o++, val);
217 	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
218 	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
219 	ee->ee_ant_control[mode][i++]	= val & 0x3f;
220 
221 	/* Get antenna switch tables */
222 	ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
223 	    (ee->ee_ant_control[mode][0] << 4);
224 	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
225 	     ee->ee_ant_control[mode][1] 	|
226 	    (ee->ee_ant_control[mode][2] << 6) 	|
227 	    (ee->ee_ant_control[mode][3] << 12) |
228 	    (ee->ee_ant_control[mode][4] << 18) |
229 	    (ee->ee_ant_control[mode][5] << 24);
230 	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
231 	     ee->ee_ant_control[mode][6] 	|
232 	    (ee->ee_ant_control[mode][7] << 6) 	|
233 	    (ee->ee_ant_control[mode][8] << 12) |
234 	    (ee->ee_ant_control[mode][9] << 18) |
235 	    (ee->ee_ant_control[mode][10] << 24);
236 
237 	/* return new offset */
238 	*offset = o;
239 
240 	return 0;
241 }
242 
243 /*
244  * Read supported modes and some mode-specific calibration data
245  * from eeprom
246  */
247 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
248 		unsigned int mode)
249 {
250 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
251 	u32 o = *offset;
252 	u16 val;
253 	int ret;
254 
255 	ee->ee_n_piers[mode] = 0;
256 	AR5K_EEPROM_READ(o++, val);
257 	ee->ee_adc_desired_size[mode]	= (s8)((val >> 8) & 0xff);
258 	switch(mode) {
259 	case AR5K_EEPROM_MODE_11A:
260 		ee->ee_ob[mode][3]	= (val >> 5) & 0x7;
261 		ee->ee_db[mode][3]	= (val >> 2) & 0x7;
262 		ee->ee_ob[mode][2]	= (val << 1) & 0x7;
263 
264 		AR5K_EEPROM_READ(o++, val);
265 		ee->ee_ob[mode][2]	|= (val >> 15) & 0x1;
266 		ee->ee_db[mode][2]	= (val >> 12) & 0x7;
267 		ee->ee_ob[mode][1]	= (val >> 9) & 0x7;
268 		ee->ee_db[mode][1]	= (val >> 6) & 0x7;
269 		ee->ee_ob[mode][0]	= (val >> 3) & 0x7;
270 		ee->ee_db[mode][0]	= val & 0x7;
271 		break;
272 	case AR5K_EEPROM_MODE_11G:
273 	case AR5K_EEPROM_MODE_11B:
274 		ee->ee_ob[mode][1]	= (val >> 4) & 0x7;
275 		ee->ee_db[mode][1]	= val & 0x7;
276 		break;
277 	}
278 
279 	AR5K_EEPROM_READ(o++, val);
280 	ee->ee_tx_end2xlna_enable[mode]	= (val >> 8) & 0xff;
281 	ee->ee_thr_62[mode]		= val & 0xff;
282 
283 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
284 		ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
285 
286 	AR5K_EEPROM_READ(o++, val);
287 	ee->ee_tx_end2xpa_disable[mode]	= (val >> 8) & 0xff;
288 	ee->ee_tx_frm2xpa_enable[mode]	= val & 0xff;
289 
290 	AR5K_EEPROM_READ(o++, val);
291 	ee->ee_pga_desired_size[mode]	= (val >> 8) & 0xff;
292 
293 	if ((val & 0xff) & 0x80)
294 		ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
295 	else
296 		ee->ee_noise_floor_thr[mode] = val & 0xff;
297 
298 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
299 		ee->ee_noise_floor_thr[mode] =
300 		    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
301 
302 	AR5K_EEPROM_READ(o++, val);
303 	ee->ee_xlna_gain[mode]		= (val >> 5) & 0xff;
304 	ee->ee_x_gain[mode]		= (val >> 1) & 0xf;
305 	ee->ee_xpd[mode]		= val & 0x1;
306 
307 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
308 		ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
309 
310 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
311 		AR5K_EEPROM_READ(o++, val);
312 		ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
313 
314 		if (mode == AR5K_EEPROM_MODE_11A)
315 			ee->ee_xr_power[mode] = val & 0x3f;
316 		else {
317 			ee->ee_ob[mode][0] = val & 0x7;
318 			ee->ee_db[mode][0] = (val >> 3) & 0x7;
319 		}
320 	}
321 
322 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
323 		ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
324 		ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
325 	} else {
326 		ee->ee_i_gain[mode] = (val >> 13) & 0x7;
327 
328 		AR5K_EEPROM_READ(o++, val);
329 		ee->ee_i_gain[mode] |= (val << 3) & 0x38;
330 
331 		if (mode == AR5K_EEPROM_MODE_11G) {
332 			ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
333 			if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
334 				ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
335 		}
336 	}
337 
338 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
339 			mode == AR5K_EEPROM_MODE_11A) {
340 		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
341 		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
342 	}
343 
344 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
345 		goto done;
346 
347 	/* Note: >= v5 have bg freq piers on another location
348 	 * so these freq piers are ignored for >= v5 (should be 0xff
349 	 * anyway) */
350 	switch(mode) {
351 	case AR5K_EEPROM_MODE_11A:
352 		if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
353 			break;
354 
355 		AR5K_EEPROM_READ(o++, val);
356 		ee->ee_margin_tx_rx[mode] = val & 0x3f;
357 		break;
358 	case AR5K_EEPROM_MODE_11B:
359 		AR5K_EEPROM_READ(o++, val);
360 
361 		ee->ee_pwr_cal_b[0].freq =
362 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
363 		if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
364 			ee->ee_n_piers[mode]++;
365 
366 		ee->ee_pwr_cal_b[1].freq =
367 			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
368 		if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
369 			ee->ee_n_piers[mode]++;
370 
371 		AR5K_EEPROM_READ(o++, val);
372 		ee->ee_pwr_cal_b[2].freq =
373 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
374 		if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
375 			ee->ee_n_piers[mode]++;
376 
377 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
378 			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
379 		break;
380 	case AR5K_EEPROM_MODE_11G:
381 		AR5K_EEPROM_READ(o++, val);
382 
383 		ee->ee_pwr_cal_g[0].freq =
384 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
385 		if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
386 			ee->ee_n_piers[mode]++;
387 
388 		ee->ee_pwr_cal_g[1].freq =
389 			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
390 		if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
391 			ee->ee_n_piers[mode]++;
392 
393 		AR5K_EEPROM_READ(o++, val);
394 		ee->ee_turbo_max_power[mode] = val & 0x7f;
395 		ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
396 
397 		AR5K_EEPROM_READ(o++, val);
398 		ee->ee_pwr_cal_g[2].freq =
399 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
400 		if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
401 			ee->ee_n_piers[mode]++;
402 
403 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
404 			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
405 
406 		AR5K_EEPROM_READ(o++, val);
407 		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
408 		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
409 
410 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
411 			AR5K_EEPROM_READ(o++, val);
412 			ee->ee_cck_ofdm_gain_delta = val & 0xff;
413 		}
414 		break;
415 	}
416 
417 	/*
418 	 * Read turbo mode information on newer EEPROM versions
419 	 */
420 	if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
421 		goto done;
422 
423 	switch (mode){
424 	case AR5K_EEPROM_MODE_11A:
425 		ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
426 
427 		ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
428 		AR5K_EEPROM_READ(o++, val);
429 		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
430 		ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
431 
432 		ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
433 		AR5K_EEPROM_READ(o++, val);
434 		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
435 		ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
436 
437 		if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
438 			ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
439 		break;
440 	case AR5K_EEPROM_MODE_11G:
441 		ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
442 
443 		ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
444 		AR5K_EEPROM_READ(o++, val);
445 		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
446 		ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
447 
448 		ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
449 		AR5K_EEPROM_READ(o++, val);
450 		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
451 		ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
452 		break;
453 	}
454 
455 done:
456 	/* return new offset */
457 	*offset = o;
458 
459 	return 0;
460 }
461 
462 /* Read mode-specific data (except power calibration data) */
463 static int
464 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
465 {
466 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
467 	u32 mode_offset[3];
468 	unsigned int mode;
469 	u32 offset;
470 	int ret;
471 
472 	/*
473 	 * Get values for all modes
474 	 */
475 	mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
476 	mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
477 	mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
478 
479 	ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
480 		AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
481 
482 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
483 		offset = mode_offset[mode];
484 
485 		ret = ath5k_eeprom_read_ants(ah, &offset, mode);
486 		if (ret)
487 			return ret;
488 
489 		ret = ath5k_eeprom_read_modes(ah, &offset, mode);
490 		if (ret)
491 			return ret;
492 	}
493 
494 	/* override for older eeprom versions for better performance */
495 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
496 		ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
497 		ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
498 		ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
499 	}
500 
501 	return 0;
502 }
503 
504 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
505  * frequency mask) */
506 static inline int
507 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
508 			struct ath5k_chan_pcal_info *pc, unsigned int mode)
509 {
510 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
511 	int o = *offset;
512 	int i = 0;
513 	u8 freq1, freq2;
514 	int ret;
515 	u16 val;
516 
517 	ee->ee_n_piers[mode] = 0;
518 	while(i < max) {
519 		AR5K_EEPROM_READ(o++, val);
520 
521 		freq1 = val & 0xff;
522 		if (!freq1)
523 			break;
524 
525 		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
526 				freq1, mode);
527 		ee->ee_n_piers[mode]++;
528 
529 		freq2 = (val >> 8) & 0xff;
530 		if (!freq2)
531 			break;
532 
533 		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
534 				freq2, mode);
535 		ee->ee_n_piers[mode]++;
536 	}
537 
538 	/* return new offset */
539 	*offset = o;
540 
541 	return 0;
542 }
543 
544 /* Read frequency piers for 802.11a */
545 static int
546 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
547 {
548 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
549 	struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
550 	int i, ret;
551 	u16 val;
552 	u8 mask;
553 
554 	if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
555 		ath5k_eeprom_read_freq_list(ah, &offset,
556 			AR5K_EEPROM_N_5GHZ_CHAN, pcal,
557 			AR5K_EEPROM_MODE_11A);
558 	} else {
559 		mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
560 
561 		AR5K_EEPROM_READ(offset++, val);
562 		pcal[0].freq  = (val >> 9) & mask;
563 		pcal[1].freq  = (val >> 2) & mask;
564 		pcal[2].freq  = (val << 5) & mask;
565 
566 		AR5K_EEPROM_READ(offset++, val);
567 		pcal[2].freq |= (val >> 11) & 0x1f;
568 		pcal[3].freq  = (val >> 4) & mask;
569 		pcal[4].freq  = (val << 3) & mask;
570 
571 		AR5K_EEPROM_READ(offset++, val);
572 		pcal[4].freq |= (val >> 13) & 0x7;
573 		pcal[5].freq  = (val >> 6) & mask;
574 		pcal[6].freq  = (val << 1) & mask;
575 
576 		AR5K_EEPROM_READ(offset++, val);
577 		pcal[6].freq |= (val >> 15) & 0x1;
578 		pcal[7].freq  = (val >> 8) & mask;
579 		pcal[8].freq  = (val >> 1) & mask;
580 		pcal[9].freq  = (val << 6) & mask;
581 
582 		AR5K_EEPROM_READ(offset++, val);
583 		pcal[9].freq |= (val >> 10) & 0x3f;
584 
585 		/* Fixed number of piers */
586 		ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
587 
588 		for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
589 			pcal[i].freq = ath5k_eeprom_bin2freq(ee,
590 				pcal[i].freq, AR5K_EEPROM_MODE_11A);
591 		}
592 	}
593 
594 	return 0;
595 }
596 
597 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
598 static inline int
599 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
600 {
601 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
602 	struct ath5k_chan_pcal_info *pcal;
603 
604 	switch(mode) {
605 	case AR5K_EEPROM_MODE_11B:
606 		pcal = ee->ee_pwr_cal_b;
607 		break;
608 	case AR5K_EEPROM_MODE_11G:
609 		pcal = ee->ee_pwr_cal_g;
610 		break;
611 	default:
612 		return -EINVAL;
613 	}
614 
615 	ath5k_eeprom_read_freq_list(ah, &offset,
616 		AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
617 		mode);
618 
619 	return 0;
620 }
621 
622 /*
623  * Read power calibration for RF5111 chips
624  *
625  * For RF5111 we have an XPD -eXternal Power Detector- curve
626  * for each calibrated channel. Each curve has 0,5dB Power steps
627  * on x axis and PCDAC steps (offsets) on y axis and looks like an
628  * exponential function. To recreate the curve we read 11 points
629  * here and interpolate later.
630  */
631 
632 /* Used to match PCDAC steps with power values on RF5111 chips
633  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
634  * steps that match with the power values we read from eeprom. On
635  * older eeprom versions (< 3.2) these steps are equaly spaced at
636  * 10% of the pcdac curve -until the curve reaches it's maximum-
637  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
638  * these 11 steps are spaced in a different way. This function returns
639  * the pcdac steps based on eeprom version and curve min/max so that we
640  * can have pcdac/pwr points.
641  */
642 static inline void
643 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
644 {
645 	static const u16 intercepts3[] =
646 		{ 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
647 	static const u16 intercepts3_2[] =
648 		{ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
649 	const u16 *ip;
650 	int i;
651 
652 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
653 		ip = intercepts3_2;
654 	else
655 		ip = intercepts3;
656 
657 	for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
658 		vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
659 }
660 
661 /* Convert RF5111 specific data to generic raw data
662  * used by interpolation code */
663 static int
664 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
665 				struct ath5k_chan_pcal_info *chinfo)
666 {
667 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
668 	struct ath5k_chan_pcal_info_rf5111 *pcinfo;
669 	struct ath5k_pdgain_info *pd;
670 	u8 pier, point, idx;
671 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
672 
673 	/* Fill raw data for each calibration pier */
674 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
675 
676 		pcinfo = &chinfo[pier].rf5111_info;
677 
678 		/* Allocate pd_curves for this cal pier */
679 		chinfo[pier].pd_curves =
680 			kcalloc(AR5K_EEPROM_N_PD_CURVES,
681 				sizeof(struct ath5k_pdgain_info),
682 				GFP_KERNEL);
683 
684 		if (!chinfo[pier].pd_curves)
685 			return -ENOMEM;
686 
687 		/* Only one curve for RF5111
688 		 * find out which one and place
689 		 * in in pd_curves.
690 		 * Note: ee_x_gain is reversed here */
691 		for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
692 
693 			if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
694 				pdgain_idx[0] = idx;
695 				break;
696 			}
697 		}
698 
699 		ee->ee_pd_gains[mode] = 1;
700 
701 		pd = &chinfo[pier].pd_curves[idx];
702 
703 		pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
704 
705 		/* Allocate pd points for this curve */
706 		pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
707 					sizeof(u8), GFP_KERNEL);
708 		if (!pd->pd_step)
709 			return -ENOMEM;
710 
711 		pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
712 					sizeof(s16), GFP_KERNEL);
713 		if (!pd->pd_pwr)
714 			return -ENOMEM;
715 
716 		/* Fill raw dataset
717 		 * (convert power to 0.25dB units
718 		 * for RF5112 combatibility) */
719 		for (point = 0; point < pd->pd_points; point++) {
720 
721 			/* Absolute values */
722 			pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
723 
724 			/* Already sorted */
725 			pd->pd_step[point] = pcinfo->pcdac[point];
726 		}
727 
728 		/* Set min/max pwr */
729 		chinfo[pier].min_pwr = pd->pd_pwr[0];
730 		chinfo[pier].max_pwr = pd->pd_pwr[10];
731 
732 	}
733 
734 	return 0;
735 }
736 
737 /* Parse EEPROM data */
738 static int
739 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
740 {
741 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
742 	struct ath5k_chan_pcal_info *pcal;
743 	int offset, ret;
744 	int i;
745 	u16 val;
746 
747 	offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
748 	switch(mode) {
749 	case AR5K_EEPROM_MODE_11A:
750 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
751 			return 0;
752 
753 		ret = ath5k_eeprom_init_11a_pcal_freq(ah,
754 			offset + AR5K_EEPROM_GROUP1_OFFSET);
755 		if (ret < 0)
756 			return ret;
757 
758 		offset += AR5K_EEPROM_GROUP2_OFFSET;
759 		pcal = ee->ee_pwr_cal_a;
760 		break;
761 	case AR5K_EEPROM_MODE_11B:
762 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
763 		    !AR5K_EEPROM_HDR_11G(ee->ee_header))
764 			return 0;
765 
766 		pcal = ee->ee_pwr_cal_b;
767 		offset += AR5K_EEPROM_GROUP3_OFFSET;
768 
769 		/* fixed piers */
770 		pcal[0].freq = 2412;
771 		pcal[1].freq = 2447;
772 		pcal[2].freq = 2484;
773 		ee->ee_n_piers[mode] = 3;
774 		break;
775 	case AR5K_EEPROM_MODE_11G:
776 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
777 			return 0;
778 
779 		pcal = ee->ee_pwr_cal_g;
780 		offset += AR5K_EEPROM_GROUP4_OFFSET;
781 
782 		/* fixed piers */
783 		pcal[0].freq = 2312;
784 		pcal[1].freq = 2412;
785 		pcal[2].freq = 2484;
786 		ee->ee_n_piers[mode] = 3;
787 		break;
788 	default:
789 		return -EINVAL;
790 	}
791 
792 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
793 		struct ath5k_chan_pcal_info_rf5111 *cdata =
794 			&pcal[i].rf5111_info;
795 
796 		AR5K_EEPROM_READ(offset++, val);
797 		cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
798 		cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
799 		cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
800 
801 		AR5K_EEPROM_READ(offset++, val);
802 		cdata->pwr[0] |= ((val >> 14) & 0x3);
803 		cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
804 		cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
805 		cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
806 
807 		AR5K_EEPROM_READ(offset++, val);
808 		cdata->pwr[3] |= ((val >> 12) & 0xf);
809 		cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
810 		cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
811 
812 		AR5K_EEPROM_READ(offset++, val);
813 		cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
814 		cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
815 		cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
816 
817 		AR5K_EEPROM_READ(offset++, val);
818 		cdata->pwr[8] |= ((val >> 14) & 0x3);
819 		cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
820 		cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
821 
822 		ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
823 			cdata->pcdac_max, cdata->pcdac);
824 	}
825 
826 	return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
827 }
828 
829 
830 /*
831  * Read power calibration for RF5112 chips
832  *
833  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
834  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
835  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
836  * power steps on x axis and PCDAC steps on y axis and looks like a
837  * linear function. To recreate the curve and pass the power values
838  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
839  * and 3 points for xpd 3 (higher gain -> lower power) here and
840  * interpolate later.
841  *
842  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
843  */
844 
845 /* Convert RF5112 specific data to generic raw data
846  * used by interpolation code */
847 static int
848 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
849 				struct ath5k_chan_pcal_info *chinfo)
850 {
851 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
852 	struct ath5k_chan_pcal_info_rf5112 *pcinfo;
853 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
854 	unsigned int pier, pdg, point;
855 
856 	/* Fill raw data for each calibration pier */
857 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
858 
859 		pcinfo = &chinfo[pier].rf5112_info;
860 
861 		/* Allocate pd_curves for this cal pier */
862 		chinfo[pier].pd_curves =
863 				kcalloc(AR5K_EEPROM_N_PD_CURVES,
864 					sizeof(struct ath5k_pdgain_info),
865 					GFP_KERNEL);
866 
867 		if (!chinfo[pier].pd_curves)
868 			return -ENOMEM;
869 
870 		/* Fill pd_curves */
871 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
872 
873 			u8 idx = pdgain_idx[pdg];
874 			struct ath5k_pdgain_info *pd =
875 					&chinfo[pier].pd_curves[idx];
876 
877 			/* Lowest gain curve (max power) */
878 			if (pdg == 0) {
879 				/* One more point for better accuracy */
880 				pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
881 
882 				/* Allocate pd points for this curve */
883 				pd->pd_step = kcalloc(pd->pd_points,
884 						sizeof(u8), GFP_KERNEL);
885 
886 				if (!pd->pd_step)
887 					return -ENOMEM;
888 
889 				pd->pd_pwr = kcalloc(pd->pd_points,
890 						sizeof(s16), GFP_KERNEL);
891 
892 				if (!pd->pd_pwr)
893 					return -ENOMEM;
894 
895 
896 				/* Fill raw dataset
897 				 * (all power levels are in 0.25dB units) */
898 				pd->pd_step[0] = pcinfo->pcdac_x0[0];
899 				pd->pd_pwr[0] = pcinfo->pwr_x0[0];
900 
901 				for (point = 1; point < pd->pd_points;
902 				point++) {
903 					/* Absolute values */
904 					pd->pd_pwr[point] =
905 						pcinfo->pwr_x0[point];
906 
907 					/* Deltas */
908 					pd->pd_step[point] =
909 						pd->pd_step[point - 1] +
910 						pcinfo->pcdac_x0[point];
911 				}
912 
913 				/* Set min power for this frequency */
914 				chinfo[pier].min_pwr = pd->pd_pwr[0];
915 
916 			/* Highest gain curve (min power) */
917 			} else if (pdg == 1) {
918 
919 				pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
920 
921 				/* Allocate pd points for this curve */
922 				pd->pd_step = kcalloc(pd->pd_points,
923 						sizeof(u8), GFP_KERNEL);
924 
925 				if (!pd->pd_step)
926 					return -ENOMEM;
927 
928 				pd->pd_pwr = kcalloc(pd->pd_points,
929 						sizeof(s16), GFP_KERNEL);
930 
931 				if (!pd->pd_pwr)
932 					return -ENOMEM;
933 
934 				/* Fill raw dataset
935 				 * (all power levels are in 0.25dB units) */
936 				for (point = 0; point < pd->pd_points;
937 				point++) {
938 					/* Absolute values */
939 					pd->pd_pwr[point] =
940 						pcinfo->pwr_x3[point];
941 
942 					/* Fixed points */
943 					pd->pd_step[point] =
944 						pcinfo->pcdac_x3[point];
945 				}
946 
947 				/* Since we have a higher gain curve
948 				 * override min power */
949 				chinfo[pier].min_pwr = pd->pd_pwr[0];
950 			}
951 		}
952 	}
953 
954 	return 0;
955 }
956 
957 /* Parse EEPROM data */
958 static int
959 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
960 {
961 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
962 	struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
963 	struct ath5k_chan_pcal_info *gen_chan_info;
964 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
965 	u32 offset;
966 	u8 i, c;
967 	u16 val;
968 	int ret;
969 	u8 pd_gains = 0;
970 
971 	/* Count how many curves we have and
972 	 * identify them (which one of the 4
973 	 * available curves we have on each count).
974 	 * Curves are stored from lower (x0) to
975 	 * higher (x3) gain */
976 	for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
977 		/* ee_x_gain[mode] is x gain mask */
978 		if ((ee->ee_x_gain[mode] >> i) & 0x1)
979 			pdgain_idx[pd_gains++] = i;
980 	}
981 	ee->ee_pd_gains[mode] = pd_gains;
982 
983 	if (pd_gains == 0 || pd_gains > 2)
984 		return -EINVAL;
985 
986 	switch (mode) {
987 	case AR5K_EEPROM_MODE_11A:
988 		/*
989 		 * Read 5GHz EEPROM channels
990 		 */
991 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
992 		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
993 
994 		offset += AR5K_EEPROM_GROUP2_OFFSET;
995 		gen_chan_info = ee->ee_pwr_cal_a;
996 		break;
997 	case AR5K_EEPROM_MODE_11B:
998 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
999 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1000 			offset += AR5K_EEPROM_GROUP3_OFFSET;
1001 
1002 		/* NB: frequency piers parsed during mode init */
1003 		gen_chan_info = ee->ee_pwr_cal_b;
1004 		break;
1005 	case AR5K_EEPROM_MODE_11G:
1006 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1007 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1008 			offset += AR5K_EEPROM_GROUP4_OFFSET;
1009 		else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1010 			offset += AR5K_EEPROM_GROUP2_OFFSET;
1011 
1012 		/* NB: frequency piers parsed during mode init */
1013 		gen_chan_info = ee->ee_pwr_cal_g;
1014 		break;
1015 	default:
1016 		return -EINVAL;
1017 	}
1018 
1019 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1020 		chan_pcal_info = &gen_chan_info[i].rf5112_info;
1021 
1022 		/* Power values in quarter dB
1023 		 * for the lower xpd gain curve
1024 		 * (0 dBm -> higher output power) */
1025 		for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1026 			AR5K_EEPROM_READ(offset++, val);
1027 			chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1028 			chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1029 		}
1030 
1031 		/* PCDAC steps
1032 		 * corresponding to the above power
1033 		 * measurements */
1034 		AR5K_EEPROM_READ(offset++, val);
1035 		chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1036 		chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1037 		chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1038 
1039 		/* Power values in quarter dB
1040 		 * for the higher xpd gain curve
1041 		 * (18 dBm -> lower output power) */
1042 		AR5K_EEPROM_READ(offset++, val);
1043 		chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1044 		chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1045 
1046 		AR5K_EEPROM_READ(offset++, val);
1047 		chan_pcal_info->pwr_x3[2] = (val & 0xff);
1048 
1049 		/* PCDAC steps
1050 		 * corresponding to the above power
1051 		 * measurements (fixed) */
1052 		chan_pcal_info->pcdac_x3[0] = 20;
1053 		chan_pcal_info->pcdac_x3[1] = 35;
1054 		chan_pcal_info->pcdac_x3[2] = 63;
1055 
1056 		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1057 			chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1058 
1059 			/* Last xpd0 power level is also channel maximum */
1060 			gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1061 		} else {
1062 			chan_pcal_info->pcdac_x0[0] = 1;
1063 			gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1064 		}
1065 
1066 	}
1067 
1068 	return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1069 }
1070 
1071 
1072 /*
1073  * Read power calibration for RF2413 chips
1074  *
1075  * For RF2413 we have a Power to PDDAC table (Power Detector)
1076  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1077  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1078  * axis and looks like an exponential function like the RF5111 curve.
1079  *
1080  * To recreate the curves we read here the points and interpolate
1081  * later. Note that in most cases only 2 (higher and lower) curves are
1082  * used (like RF5112) but vendors have the oportunity to include all
1083  * 4 curves on eeprom. The final curve (higher power) has an extra
1084  * point for better accuracy like RF5112.
1085  */
1086 
1087 /* For RF2413 power calibration data doesn't start on a fixed location and
1088  * if a mode is not supported, it's section is missing -not zeroed-.
1089  * So we need to calculate the starting offset for each section by using
1090  * these two functions */
1091 
1092 /* Return the size of each section based on the mode and the number of pd
1093  * gains available (maximum 4). */
1094 static inline unsigned int
1095 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1096 {
1097 	static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1098 	unsigned int sz;
1099 
1100 	sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1101 	sz *= ee->ee_n_piers[mode];
1102 
1103 	return sz;
1104 }
1105 
1106 /* Return the starting offset for a section based on the modes supported
1107  * and each section's size. */
1108 static unsigned int
1109 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1110 {
1111 	u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1112 
1113 	switch(mode) {
1114 	case AR5K_EEPROM_MODE_11G:
1115 		if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1116 			offset += ath5k_pdgains_size_2413(ee,
1117 					AR5K_EEPROM_MODE_11B) +
1118 					AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1119 		/* fall through */
1120 	case AR5K_EEPROM_MODE_11B:
1121 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1122 			offset += ath5k_pdgains_size_2413(ee,
1123 					AR5K_EEPROM_MODE_11A) +
1124 					AR5K_EEPROM_N_5GHZ_CHAN / 2;
1125 		/* fall through */
1126 	case AR5K_EEPROM_MODE_11A:
1127 		break;
1128 	default:
1129 		break;
1130 	}
1131 
1132 	return offset;
1133 }
1134 
1135 /* Convert RF2413 specific data to generic raw data
1136  * used by interpolation code */
1137 static int
1138 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1139 				struct ath5k_chan_pcal_info *chinfo)
1140 {
1141 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1142 	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1143 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1144 	unsigned int pier, pdg, point;
1145 
1146 	/* Fill raw data for each calibration pier */
1147 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1148 
1149 		pcinfo = &chinfo[pier].rf2413_info;
1150 
1151 		/* Allocate pd_curves for this cal pier */
1152 		chinfo[pier].pd_curves =
1153 				kcalloc(AR5K_EEPROM_N_PD_CURVES,
1154 					sizeof(struct ath5k_pdgain_info),
1155 					GFP_KERNEL);
1156 
1157 		if (!chinfo[pier].pd_curves)
1158 			return -ENOMEM;
1159 
1160 		/* Fill pd_curves */
1161 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1162 
1163 			u8 idx = pdgain_idx[pdg];
1164 			struct ath5k_pdgain_info *pd =
1165 					&chinfo[pier].pd_curves[idx];
1166 
1167 			/* One more point for the highest power
1168 			 * curve (lowest gain) */
1169 			if (pdg == ee->ee_pd_gains[mode] - 1)
1170 				pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1171 			else
1172 				pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1173 
1174 			/* Allocate pd points for this curve */
1175 			pd->pd_step = kcalloc(pd->pd_points,
1176 					sizeof(u8), GFP_KERNEL);
1177 
1178 			if (!pd->pd_step)
1179 				return -ENOMEM;
1180 
1181 			pd->pd_pwr = kcalloc(pd->pd_points,
1182 					sizeof(s16), GFP_KERNEL);
1183 
1184 			if (!pd->pd_pwr)
1185 				return -ENOMEM;
1186 
1187 			/* Fill raw dataset
1188 			 * convert all pwr levels to
1189 			 * quarter dB for RF5112 combatibility */
1190 			pd->pd_step[0] = pcinfo->pddac_i[pdg];
1191 			pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1192 
1193 			for (point = 1; point < pd->pd_points; point++) {
1194 
1195 				pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1196 					2 * pcinfo->pwr[pdg][point - 1];
1197 
1198 				pd->pd_step[point] = pd->pd_step[point - 1] +
1199 						pcinfo->pddac[pdg][point - 1];
1200 
1201 			}
1202 
1203 			/* Highest gain curve -> min power */
1204 			if (pdg == 0)
1205 				chinfo[pier].min_pwr = pd->pd_pwr[0];
1206 
1207 			/* Lowest gain curve -> max power */
1208 			if (pdg == ee->ee_pd_gains[mode] - 1)
1209 				chinfo[pier].max_pwr =
1210 					pd->pd_pwr[pd->pd_points - 1];
1211 		}
1212 	}
1213 
1214 	return 0;
1215 }
1216 
1217 /* Parse EEPROM data */
1218 static int
1219 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1220 {
1221 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1222 	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1223 	struct ath5k_chan_pcal_info *chinfo;
1224 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1225 	u32 offset;
1226 	int idx, i, ret;
1227 	u16 val;
1228 	u8 pd_gains = 0;
1229 
1230 	/* Count how many curves we have and
1231 	 * identify them (which one of the 4
1232 	 * available curves we have on each count).
1233 	 * Curves are stored from higher to
1234 	 * lower gain so we go backwards */
1235 	for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1236 		/* ee_x_gain[mode] is x gain mask */
1237 		if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1238 			pdgain_idx[pd_gains++] = idx;
1239 
1240 	}
1241 	ee->ee_pd_gains[mode] = pd_gains;
1242 
1243 	if (pd_gains == 0)
1244 		return -EINVAL;
1245 
1246 	offset = ath5k_cal_data_offset_2413(ee, mode);
1247 	switch (mode) {
1248 	case AR5K_EEPROM_MODE_11A:
1249 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1250 			return 0;
1251 
1252 		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1253 		offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1254 		chinfo = ee->ee_pwr_cal_a;
1255 		break;
1256 	case AR5K_EEPROM_MODE_11B:
1257 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1258 			return 0;
1259 
1260 		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1261 		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1262 		chinfo = ee->ee_pwr_cal_b;
1263 		break;
1264 	case AR5K_EEPROM_MODE_11G:
1265 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1266 			return 0;
1267 
1268 		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1269 		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1270 		chinfo = ee->ee_pwr_cal_g;
1271 		break;
1272 	default:
1273 		return -EINVAL;
1274 	}
1275 
1276 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1277 		pcinfo = &chinfo[i].rf2413_info;
1278 
1279 		/*
1280 		 * Read pwr_i, pddac_i and the first
1281 		 * 2 pd points (pwr, pddac)
1282 		 */
1283 		AR5K_EEPROM_READ(offset++, val);
1284 		pcinfo->pwr_i[0] = val & 0x1f;
1285 		pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1286 		pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1287 
1288 		AR5K_EEPROM_READ(offset++, val);
1289 		pcinfo->pddac[0][0] = val & 0x3f;
1290 		pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1291 		pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1292 
1293 		AR5K_EEPROM_READ(offset++, val);
1294 		pcinfo->pwr[0][2] = val & 0xf;
1295 		pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1296 
1297 		pcinfo->pwr[0][3] = 0;
1298 		pcinfo->pddac[0][3] = 0;
1299 
1300 		if (pd_gains > 1) {
1301 			/*
1302 			 * Pd gain 0 is not the last pd gain
1303 			 * so it only has 2 pd points.
1304 			 * Continue wih pd gain 1.
1305 			 */
1306 			pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1307 
1308 			pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1309 			AR5K_EEPROM_READ(offset++, val);
1310 			pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1311 
1312 			pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1313 			pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1314 
1315 			AR5K_EEPROM_READ(offset++, val);
1316 			pcinfo->pwr[1][1] = val & 0xf;
1317 			pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1318 			pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1319 
1320 			pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1321 			AR5K_EEPROM_READ(offset++, val);
1322 			pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1323 
1324 			pcinfo->pwr[1][3] = 0;
1325 			pcinfo->pddac[1][3] = 0;
1326 		} else if (pd_gains == 1) {
1327 			/*
1328 			 * Pd gain 0 is the last one so
1329 			 * read the extra point.
1330 			 */
1331 			pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1332 
1333 			pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1334 			AR5K_EEPROM_READ(offset++, val);
1335 			pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1336 		}
1337 
1338 		/*
1339 		 * Proceed with the other pd_gains
1340 		 * as above.
1341 		 */
1342 		if (pd_gains > 2) {
1343 			pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1344 			pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1345 
1346 			AR5K_EEPROM_READ(offset++, val);
1347 			pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1348 			pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1349 			pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1350 
1351 			pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1352 			AR5K_EEPROM_READ(offset++, val);
1353 			pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1354 
1355 			pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1356 			pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1357 
1358 			pcinfo->pwr[2][3] = 0;
1359 			pcinfo->pddac[2][3] = 0;
1360 		} else if (pd_gains == 2) {
1361 			pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1362 			pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1363 		}
1364 
1365 		if (pd_gains > 3) {
1366 			pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1367 			AR5K_EEPROM_READ(offset++, val);
1368 			pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1369 
1370 			pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1371 			pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1372 			pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1373 
1374 			AR5K_EEPROM_READ(offset++, val);
1375 			pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1376 			pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1377 			pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1378 
1379 			pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1380 			AR5K_EEPROM_READ(offset++, val);
1381 			pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1382 
1383 			pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1384 			pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1385 
1386 			pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1387 			AR5K_EEPROM_READ(offset++, val);
1388 			pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1389 		} else if (pd_gains == 3) {
1390 			pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1391 			AR5K_EEPROM_READ(offset++, val);
1392 			pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1393 
1394 			pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1395 		}
1396 	}
1397 
1398 	return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1399 }
1400 
1401 
1402 /*
1403  * Read per rate target power (this is the maximum tx power
1404  * supported by the card). This info is used when setting
1405  * tx power, no matter the channel.
1406  *
1407  * This also works for v5 EEPROMs.
1408  */
1409 static int
1410 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1411 {
1412 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1413 	struct ath5k_rate_pcal_info *rate_pcal_info;
1414 	u8 *rate_target_pwr_num;
1415 	u32 offset;
1416 	u16 val;
1417 	int ret, i;
1418 
1419 	offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1420 	rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1421 	switch (mode) {
1422 	case AR5K_EEPROM_MODE_11A:
1423 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1424 		rate_pcal_info = ee->ee_rate_tpwr_a;
1425 		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1426 		break;
1427 	case AR5K_EEPROM_MODE_11B:
1428 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1429 		rate_pcal_info = ee->ee_rate_tpwr_b;
1430 		ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1431 		break;
1432 	case AR5K_EEPROM_MODE_11G:
1433 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1434 		rate_pcal_info = ee->ee_rate_tpwr_g;
1435 		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1436 		break;
1437 	default:
1438 		return -EINVAL;
1439 	}
1440 
1441 	/* Different freq mask for older eeproms (<= v3.2) */
1442 	if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1443 		for (i = 0; i < (*rate_target_pwr_num); i++) {
1444 			AR5K_EEPROM_READ(offset++, val);
1445 			rate_pcal_info[i].freq =
1446 			    ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1447 
1448 			rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1449 			rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1450 
1451 			AR5K_EEPROM_READ(offset++, val);
1452 
1453 			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1454 			    val == 0) {
1455 				(*rate_target_pwr_num) = i;
1456 				break;
1457 			}
1458 
1459 			rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1460 			rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1461 			rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1462 		}
1463 	} else {
1464 		for (i = 0; i < (*rate_target_pwr_num); i++) {
1465 			AR5K_EEPROM_READ(offset++, val);
1466 			rate_pcal_info[i].freq =
1467 			    ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1468 
1469 			rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1470 			rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1471 
1472 			AR5K_EEPROM_READ(offset++, val);
1473 
1474 			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1475 			    val == 0) {
1476 				(*rate_target_pwr_num) = i;
1477 				break;
1478 			}
1479 
1480 			rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1481 			rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1482 			rate_pcal_info[i].target_power_54 = (val & 0x3f);
1483 		}
1484 	}
1485 
1486 	return 0;
1487 }
1488 
1489 /*
1490  * Read per channel calibration info from EEPROM
1491  *
1492  * This info is used to calibrate the baseband power table. Imagine
1493  * that for each channel there is a power curve that's hw specific
1494  * (depends on amplifier etc) and we try to "correct" this curve using
1495  * offests we pass on to phy chip (baseband -> before amplifier) so that
1496  * it can use accurate power values when setting tx power (takes amplifier's
1497  * performance on each channel into account).
1498  *
1499  * EEPROM provides us with the offsets for some pre-calibrated channels
1500  * and we have to interpolate to create the full table for these channels and
1501  * also the table for any channel.
1502  */
1503 static int
1504 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1505 {
1506 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1507 	int (*read_pcal)(struct ath5k_hw *hw, int mode);
1508 	int mode;
1509 	int err;
1510 
1511 	if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1512 			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1513 		read_pcal = ath5k_eeprom_read_pcal_info_5112;
1514 	else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1515 			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1516 		read_pcal = ath5k_eeprom_read_pcal_info_2413;
1517 	else
1518 		read_pcal = ath5k_eeprom_read_pcal_info_5111;
1519 
1520 
1521 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1522 	mode++) {
1523 		err = read_pcal(ah, mode);
1524 		if (err)
1525 			return err;
1526 
1527 		err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1528 		if (err < 0)
1529 			return err;
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 static int
1536 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1537 {
1538 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1539 	struct ath5k_chan_pcal_info *chinfo;
1540 	u8 pier, pdg;
1541 
1542 	switch (mode) {
1543 	case AR5K_EEPROM_MODE_11A:
1544 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1545 			return 0;
1546 		chinfo = ee->ee_pwr_cal_a;
1547 		break;
1548 	case AR5K_EEPROM_MODE_11B:
1549 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1550 			return 0;
1551 		chinfo = ee->ee_pwr_cal_b;
1552 		break;
1553 	case AR5K_EEPROM_MODE_11G:
1554 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1555 			return 0;
1556 		chinfo = ee->ee_pwr_cal_g;
1557 		break;
1558 	default:
1559 		return -EINVAL;
1560 	}
1561 
1562 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1563 		if (!chinfo[pier].pd_curves)
1564 			continue;
1565 
1566 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1567 			struct ath5k_pdgain_info *pd =
1568 					&chinfo[pier].pd_curves[pdg];
1569 
1570 			if (pd != NULL) {
1571 				kfree(pd->pd_step);
1572 				kfree(pd->pd_pwr);
1573 			}
1574 		}
1575 
1576 		kfree(chinfo[pier].pd_curves);
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 void
1583 ath5k_eeprom_detach(struct ath5k_hw *ah)
1584 {
1585 	u8 mode;
1586 
1587 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1588 		ath5k_eeprom_free_pcal_info(ah, mode);
1589 }
1590 
1591 /* Read conformance test limits used for regulatory control */
1592 static int
1593 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1594 {
1595 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1596 	struct ath5k_edge_power *rep;
1597 	unsigned int fmask, pmask;
1598 	unsigned int ctl_mode;
1599 	int ret, i, j;
1600 	u32 offset;
1601 	u16 val;
1602 
1603 	pmask = AR5K_EEPROM_POWER_M;
1604 	fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1605 	offset = AR5K_EEPROM_CTL(ee->ee_version);
1606 	ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1607 	for (i = 0; i < ee->ee_ctls; i += 2) {
1608 		AR5K_EEPROM_READ(offset++, val);
1609 		ee->ee_ctl[i] = (val >> 8) & 0xff;
1610 		ee->ee_ctl[i + 1] = val & 0xff;
1611 	}
1612 
1613 	offset = AR5K_EEPROM_GROUP8_OFFSET;
1614 	if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1615 		offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1616 			AR5K_EEPROM_GROUP5_OFFSET;
1617 	else
1618 		offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1619 
1620 	rep = ee->ee_ctl_pwr;
1621 	for(i = 0; i < ee->ee_ctls; i++) {
1622 		switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1623 		case AR5K_CTL_11A:
1624 		case AR5K_CTL_TURBO:
1625 			ctl_mode = AR5K_EEPROM_MODE_11A;
1626 			break;
1627 		default:
1628 			ctl_mode = AR5K_EEPROM_MODE_11G;
1629 			break;
1630 		}
1631 		if (ee->ee_ctl[i] == 0) {
1632 			if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1633 				offset += 8;
1634 			else
1635 				offset += 7;
1636 			rep += AR5K_EEPROM_N_EDGES;
1637 			continue;
1638 		}
1639 		if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1640 			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1641 				AR5K_EEPROM_READ(offset++, val);
1642 				rep[j].freq = (val >> 8) & fmask;
1643 				rep[j + 1].freq = val & fmask;
1644 			}
1645 			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1646 				AR5K_EEPROM_READ(offset++, val);
1647 				rep[j].edge = (val >> 8) & pmask;
1648 				rep[j].flag = (val >> 14) & 1;
1649 				rep[j + 1].edge = val & pmask;
1650 				rep[j + 1].flag = (val >> 6) & 1;
1651 			}
1652 		} else {
1653 			AR5K_EEPROM_READ(offset++, val);
1654 			rep[0].freq = (val >> 9) & fmask;
1655 			rep[1].freq = (val >> 2) & fmask;
1656 			rep[2].freq = (val << 5) & fmask;
1657 
1658 			AR5K_EEPROM_READ(offset++, val);
1659 			rep[2].freq |= (val >> 11) & 0x1f;
1660 			rep[3].freq = (val >> 4) & fmask;
1661 			rep[4].freq = (val << 3) & fmask;
1662 
1663 			AR5K_EEPROM_READ(offset++, val);
1664 			rep[4].freq |= (val >> 13) & 0x7;
1665 			rep[5].freq = (val >> 6) & fmask;
1666 			rep[6].freq = (val << 1) & fmask;
1667 
1668 			AR5K_EEPROM_READ(offset++, val);
1669 			rep[6].freq |= (val >> 15) & 0x1;
1670 			rep[7].freq = (val >> 8) & fmask;
1671 
1672 			rep[0].edge = (val >> 2) & pmask;
1673 			rep[1].edge = (val << 4) & pmask;
1674 
1675 			AR5K_EEPROM_READ(offset++, val);
1676 			rep[1].edge |= (val >> 12) & 0xf;
1677 			rep[2].edge = (val >> 6) & pmask;
1678 			rep[3].edge = val & pmask;
1679 
1680 			AR5K_EEPROM_READ(offset++, val);
1681 			rep[4].edge = (val >> 10) & pmask;
1682 			rep[5].edge = (val >> 4) & pmask;
1683 			rep[6].edge = (val << 2) & pmask;
1684 
1685 			AR5K_EEPROM_READ(offset++, val);
1686 			rep[6].edge |= (val >> 14) & 0x3;
1687 			rep[7].edge = (val >> 8) & pmask;
1688 		}
1689 		for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1690 			rep[j].freq = ath5k_eeprom_bin2freq(ee,
1691 				rep[j].freq, ctl_mode);
1692 		}
1693 		rep += AR5K_EEPROM_N_EDGES;
1694 	}
1695 
1696 	return 0;
1697 }
1698 
1699 static int
1700 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1701 {
1702 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1703 	u32 offset;
1704 	u16 val;
1705 	int ret = 0, i;
1706 
1707 	offset = AR5K_EEPROM_CTL(ee->ee_version) +
1708 				AR5K_EEPROM_N_CTLS(ee->ee_version);
1709 
1710 	if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1711 		/* No spur info for 5GHz */
1712 		ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1713 		/* 2 channels for 2GHz (2464/2420) */
1714 		ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1715 		ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1716 		ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1717 	} else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1718 		for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1719 			AR5K_EEPROM_READ(offset, val);
1720 			ee->ee_spur_chans[i][0] = val;
1721 			AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1722 									val);
1723 			ee->ee_spur_chans[i][1] = val;
1724 			offset++;
1725 		}
1726 	}
1727 
1728 	return ret;
1729 }
1730 
1731 /*
1732  * Initialize eeprom data structure
1733  */
1734 int
1735 ath5k_eeprom_init(struct ath5k_hw *ah)
1736 {
1737 	int err;
1738 
1739 	err = ath5k_eeprom_init_header(ah);
1740 	if (err < 0)
1741 		return err;
1742 
1743 	err = ath5k_eeprom_init_modes(ah);
1744 	if (err < 0)
1745 		return err;
1746 
1747 	err = ath5k_eeprom_read_pcal_info(ah);
1748 	if (err < 0)
1749 		return err;
1750 
1751 	err = ath5k_eeprom_read_ctl_info(ah);
1752 	if (err < 0)
1753 		return err;
1754 
1755 	err = ath5k_eeprom_read_spur_chans(ah);
1756 	if (err < 0)
1757 		return err;
1758 
1759 	return 0;
1760 }
1761 
1762 /*
1763  * Read the MAC address from eeprom
1764  */
1765 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1766 {
1767 	u8 mac_d[ETH_ALEN] = {};
1768 	u32 total, offset;
1769 	u16 data;
1770 	int octet, ret;
1771 
1772 	ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1773 	if (ret)
1774 		return ret;
1775 
1776 	for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1777 		ret = ath5k_hw_eeprom_read(ah, offset, &data);
1778 		if (ret)
1779 			return ret;
1780 
1781 		total += data;
1782 		mac_d[octet + 1] = data & 0xff;
1783 		mac_d[octet] = data >> 8;
1784 		octet += 2;
1785 	}
1786 
1787 	if (!total || total == 3 * 0xffff)
1788 		return -EINVAL;
1789 
1790 	memcpy(mac, mac_d, ETH_ALEN);
1791 
1792 	return 0;
1793 }
1794