xref: /linux/drivers/net/wireless/ath/ath5k/eeprom.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19 
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23 
24 #include "ath5k.h"
25 #include "reg.h"
26 #include "debug.h"
27 #include "base.h"
28 
29 /*
30  * Read from eeprom
31  */
32 static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
33 {
34 	u32 status, timeout;
35 
36 	ATH5K_TRACE(ah->ah_sc);
37 	/*
38 	 * Initialize EEPROM access
39 	 */
40 	if (ah->ah_version == AR5K_AR5210) {
41 		AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
42 		(void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
43 	} else {
44 		ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
45 		AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
46 				AR5K_EEPROM_CMD_READ);
47 	}
48 
49 	for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
50 		status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
51 		if (status & AR5K_EEPROM_STAT_RDDONE) {
52 			if (status & AR5K_EEPROM_STAT_RDERR)
53 				return -EIO;
54 			*data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
55 					0xffff);
56 			return 0;
57 		}
58 		udelay(15);
59 	}
60 
61 	return -ETIMEDOUT;
62 }
63 
64 /*
65  * Translate binary channel representation in EEPROM to frequency
66  */
67 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
68                                  unsigned int mode)
69 {
70 	u16 val;
71 
72 	if (bin == AR5K_EEPROM_CHANNEL_DIS)
73 		return bin;
74 
75 	if (mode == AR5K_EEPROM_MODE_11A) {
76 		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
77 			val = (5 * bin) + 4800;
78 		else
79 			val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
80 				(bin * 10) + 5100;
81 	} else {
82 		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
83 			val = bin + 2300;
84 		else
85 			val = bin + 2400;
86 	}
87 
88 	return val;
89 }
90 
91 /*
92  * Initialize eeprom & capabilities structs
93  */
94 static int
95 ath5k_eeprom_init_header(struct ath5k_hw *ah)
96 {
97 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
98 	int ret;
99 	u16 val;
100 
101 	/*
102 	 * Read values from EEPROM and store them in the capability structure
103 	 */
104 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
105 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
106 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
107 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
108 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
109 
110 	/* Return if we have an old EEPROM */
111 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
112 		return 0;
113 
114 #ifdef notyet
115 	/*
116 	 * Validate the checksum of the EEPROM date. There are some
117 	 * devices with invalid EEPROMs.
118 	 */
119 	for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
120 		AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
121 		cksum ^= val;
122 	}
123 	if (cksum != AR5K_EEPROM_INFO_CKSUM) {
124 		ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
125 		return -EIO;
126 	}
127 #endif
128 
129 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
130 	    ee_ant_gain);
131 
132 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
133 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
134 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
135 
136 		/* XXX: Don't know which versions include these two */
137 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
138 
139 		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
140 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
141 
142 		if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
143 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
144 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
145 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
146 		}
147 	}
148 
149 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
150 		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
151 		ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
152 		ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
153 
154 		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
155 		ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
156 		ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
157 	}
158 
159 	AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
160 
161 	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
162 		ee->ee_is_hb63 = true;
163 	else
164 		ee->ee_is_hb63 = false;
165 
166 	AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
167 	ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
168 	ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
169 
170 	return 0;
171 }
172 
173 
174 /*
175  * Read antenna infos from eeprom
176  */
177 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
178 		unsigned int mode)
179 {
180 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
181 	u32 o = *offset;
182 	u16 val;
183 	int ret, i = 0;
184 
185 	AR5K_EEPROM_READ(o++, val);
186 	ee->ee_switch_settling[mode]	= (val >> 8) & 0x7f;
187 	ee->ee_atn_tx_rx[mode]		= (val >> 2) & 0x3f;
188 	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
189 
190 	AR5K_EEPROM_READ(o++, val);
191 	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
192 	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
193 	ee->ee_ant_control[mode][i++]	= val & 0x3f;
194 
195 	AR5K_EEPROM_READ(o++, val);
196 	ee->ee_ant_control[mode][i++]	= (val >> 10) & 0x3f;
197 	ee->ee_ant_control[mode][i++]	= (val >> 4) & 0x3f;
198 	ee->ee_ant_control[mode][i]	= (val << 2) & 0x3f;
199 
200 	AR5K_EEPROM_READ(o++, val);
201 	ee->ee_ant_control[mode][i++]	|= (val >> 14) & 0x3;
202 	ee->ee_ant_control[mode][i++]	= (val >> 8) & 0x3f;
203 	ee->ee_ant_control[mode][i++]	= (val >> 2) & 0x3f;
204 	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
205 
206 	AR5K_EEPROM_READ(o++, val);
207 	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
208 	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
209 	ee->ee_ant_control[mode][i++]	= val & 0x3f;
210 
211 	/* Get antenna switch tables */
212 	ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
213 	    (ee->ee_ant_control[mode][0] << 4);
214 	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
215 	     ee->ee_ant_control[mode][1] 	|
216 	    (ee->ee_ant_control[mode][2] << 6) 	|
217 	    (ee->ee_ant_control[mode][3] << 12) |
218 	    (ee->ee_ant_control[mode][4] << 18) |
219 	    (ee->ee_ant_control[mode][5] << 24);
220 	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
221 	     ee->ee_ant_control[mode][6] 	|
222 	    (ee->ee_ant_control[mode][7] << 6) 	|
223 	    (ee->ee_ant_control[mode][8] << 12) |
224 	    (ee->ee_ant_control[mode][9] << 18) |
225 	    (ee->ee_ant_control[mode][10] << 24);
226 
227 	/* return new offset */
228 	*offset = o;
229 
230 	return 0;
231 }
232 
233 /*
234  * Read supported modes and some mode-specific calibration data
235  * from eeprom
236  */
237 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
238 		unsigned int mode)
239 {
240 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
241 	u32 o = *offset;
242 	u16 val;
243 	int ret;
244 
245 	ee->ee_n_piers[mode] = 0;
246 	AR5K_EEPROM_READ(o++, val);
247 	ee->ee_adc_desired_size[mode]	= (s8)((val >> 8) & 0xff);
248 	switch(mode) {
249 	case AR5K_EEPROM_MODE_11A:
250 		ee->ee_ob[mode][3]	= (val >> 5) & 0x7;
251 		ee->ee_db[mode][3]	= (val >> 2) & 0x7;
252 		ee->ee_ob[mode][2]	= (val << 1) & 0x7;
253 
254 		AR5K_EEPROM_READ(o++, val);
255 		ee->ee_ob[mode][2]	|= (val >> 15) & 0x1;
256 		ee->ee_db[mode][2]	= (val >> 12) & 0x7;
257 		ee->ee_ob[mode][1]	= (val >> 9) & 0x7;
258 		ee->ee_db[mode][1]	= (val >> 6) & 0x7;
259 		ee->ee_ob[mode][0]	= (val >> 3) & 0x7;
260 		ee->ee_db[mode][0]	= val & 0x7;
261 		break;
262 	case AR5K_EEPROM_MODE_11G:
263 	case AR5K_EEPROM_MODE_11B:
264 		ee->ee_ob[mode][1]	= (val >> 4) & 0x7;
265 		ee->ee_db[mode][1]	= val & 0x7;
266 		break;
267 	}
268 
269 	AR5K_EEPROM_READ(o++, val);
270 	ee->ee_tx_end2xlna_enable[mode]	= (val >> 8) & 0xff;
271 	ee->ee_thr_62[mode]		= val & 0xff;
272 
273 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
274 		ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
275 
276 	AR5K_EEPROM_READ(o++, val);
277 	ee->ee_tx_end2xpa_disable[mode]	= (val >> 8) & 0xff;
278 	ee->ee_tx_frm2xpa_enable[mode]	= val & 0xff;
279 
280 	AR5K_EEPROM_READ(o++, val);
281 	ee->ee_pga_desired_size[mode]	= (val >> 8) & 0xff;
282 
283 	if ((val & 0xff) & 0x80)
284 		ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
285 	else
286 		ee->ee_noise_floor_thr[mode] = val & 0xff;
287 
288 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
289 		ee->ee_noise_floor_thr[mode] =
290 		    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
291 
292 	AR5K_EEPROM_READ(o++, val);
293 	ee->ee_xlna_gain[mode]		= (val >> 5) & 0xff;
294 	ee->ee_x_gain[mode]		= (val >> 1) & 0xf;
295 	ee->ee_xpd[mode]		= val & 0x1;
296 
297 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
298 		ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
299 
300 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
301 		AR5K_EEPROM_READ(o++, val);
302 		ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
303 
304 		if (mode == AR5K_EEPROM_MODE_11A)
305 			ee->ee_xr_power[mode] = val & 0x3f;
306 		else {
307 			ee->ee_ob[mode][0] = val & 0x7;
308 			ee->ee_db[mode][0] = (val >> 3) & 0x7;
309 		}
310 	}
311 
312 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
313 		ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
314 		ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
315 	} else {
316 		ee->ee_i_gain[mode] = (val >> 13) & 0x7;
317 
318 		AR5K_EEPROM_READ(o++, val);
319 		ee->ee_i_gain[mode] |= (val << 3) & 0x38;
320 
321 		if (mode == AR5K_EEPROM_MODE_11G) {
322 			ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
323 			if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
324 				ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
325 		}
326 	}
327 
328 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
329 			mode == AR5K_EEPROM_MODE_11A) {
330 		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
331 		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
332 	}
333 
334 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
335 		goto done;
336 
337 	/* Note: >= v5 have bg freq piers on another location
338 	 * so these freq piers are ignored for >= v5 (should be 0xff
339 	 * anyway) */
340 	switch(mode) {
341 	case AR5K_EEPROM_MODE_11A:
342 		if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
343 			break;
344 
345 		AR5K_EEPROM_READ(o++, val);
346 		ee->ee_margin_tx_rx[mode] = val & 0x3f;
347 		break;
348 	case AR5K_EEPROM_MODE_11B:
349 		AR5K_EEPROM_READ(o++, val);
350 
351 		ee->ee_pwr_cal_b[0].freq =
352 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
353 		if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
354 			ee->ee_n_piers[mode]++;
355 
356 		ee->ee_pwr_cal_b[1].freq =
357 			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
358 		if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
359 			ee->ee_n_piers[mode]++;
360 
361 		AR5K_EEPROM_READ(o++, val);
362 		ee->ee_pwr_cal_b[2].freq =
363 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
364 		if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
365 			ee->ee_n_piers[mode]++;
366 
367 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
368 			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
369 		break;
370 	case AR5K_EEPROM_MODE_11G:
371 		AR5K_EEPROM_READ(o++, val);
372 
373 		ee->ee_pwr_cal_g[0].freq =
374 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
375 		if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
376 			ee->ee_n_piers[mode]++;
377 
378 		ee->ee_pwr_cal_g[1].freq =
379 			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
380 		if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
381 			ee->ee_n_piers[mode]++;
382 
383 		AR5K_EEPROM_READ(o++, val);
384 		ee->ee_turbo_max_power[mode] = val & 0x7f;
385 		ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
386 
387 		AR5K_EEPROM_READ(o++, val);
388 		ee->ee_pwr_cal_g[2].freq =
389 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
390 		if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
391 			ee->ee_n_piers[mode]++;
392 
393 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
394 			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
395 
396 		AR5K_EEPROM_READ(o++, val);
397 		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
398 		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
399 
400 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
401 			AR5K_EEPROM_READ(o++, val);
402 			ee->ee_cck_ofdm_gain_delta = val & 0xff;
403 		}
404 		break;
405 	}
406 
407 done:
408 	/* return new offset */
409 	*offset = o;
410 
411 	return 0;
412 }
413 
414 /*
415  * Read turbo mode information on newer EEPROM versions
416  */
417 static int
418 ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
419 			      u32 *offset, unsigned int mode)
420 {
421 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
422 	u32 o = *offset;
423 	u16 val;
424 	int ret;
425 
426 	if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
427 		return 0;
428 
429 	switch (mode){
430 	case AR5K_EEPROM_MODE_11A:
431 		ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
432 
433 		ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
434 		AR5K_EEPROM_READ(o++, val);
435 		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
436 		ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
437 
438 		ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
439 		AR5K_EEPROM_READ(o++, val);
440 		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
441 		ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
442 
443 		if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
444 			ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
445 		break;
446 	case AR5K_EEPROM_MODE_11G:
447 		ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
448 
449 		ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
450 		AR5K_EEPROM_READ(o++, val);
451 		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
452 		ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
453 
454 		ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
455 		AR5K_EEPROM_READ(o++, val);
456 		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
457 		ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
458 		break;
459 	}
460 
461 	/* return new offset */
462 	*offset = o;
463 
464 	return 0;
465 }
466 
467 /* Read mode-specific data (except power calibration data) */
468 static int
469 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
470 {
471 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
472 	u32 mode_offset[3];
473 	unsigned int mode;
474 	u32 offset;
475 	int ret;
476 
477 	/*
478 	 * Get values for all modes
479 	 */
480 	mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
481 	mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
482 	mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
483 
484 	ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
485 		AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
486 
487 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
488 		offset = mode_offset[mode];
489 
490 		ret = ath5k_eeprom_read_ants(ah, &offset, mode);
491 		if (ret)
492 			return ret;
493 
494 		ret = ath5k_eeprom_read_modes(ah, &offset, mode);
495 		if (ret)
496 			return ret;
497 
498 		ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
499 		if (ret)
500 			return ret;
501 	}
502 
503 	/* override for older eeprom versions for better performance */
504 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
505 		ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
506 		ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
507 		ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
508 	}
509 
510 	return 0;
511 }
512 
513 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
514  * frequency mask) */
515 static inline int
516 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
517 			struct ath5k_chan_pcal_info *pc, unsigned int mode)
518 {
519 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
520 	int o = *offset;
521 	int i = 0;
522 	u8 freq1, freq2;
523 	int ret;
524 	u16 val;
525 
526 	ee->ee_n_piers[mode] = 0;
527 	while(i < max) {
528 		AR5K_EEPROM_READ(o++, val);
529 
530 		freq1 = val & 0xff;
531 		if (!freq1)
532 			break;
533 
534 		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
535 				freq1, mode);
536 		ee->ee_n_piers[mode]++;
537 
538 		freq2 = (val >> 8) & 0xff;
539 		if (!freq2)
540 			break;
541 
542 		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
543 				freq2, mode);
544 		ee->ee_n_piers[mode]++;
545 	}
546 
547 	/* return new offset */
548 	*offset = o;
549 
550 	return 0;
551 }
552 
553 /* Read frequency piers for 802.11a */
554 static int
555 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
556 {
557 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
558 	struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
559 	int i, ret;
560 	u16 val;
561 	u8 mask;
562 
563 	if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
564 		ath5k_eeprom_read_freq_list(ah, &offset,
565 			AR5K_EEPROM_N_5GHZ_CHAN, pcal,
566 			AR5K_EEPROM_MODE_11A);
567 	} else {
568 		mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
569 
570 		AR5K_EEPROM_READ(offset++, val);
571 		pcal[0].freq  = (val >> 9) & mask;
572 		pcal[1].freq  = (val >> 2) & mask;
573 		pcal[2].freq  = (val << 5) & mask;
574 
575 		AR5K_EEPROM_READ(offset++, val);
576 		pcal[2].freq |= (val >> 11) & 0x1f;
577 		pcal[3].freq  = (val >> 4) & mask;
578 		pcal[4].freq  = (val << 3) & mask;
579 
580 		AR5K_EEPROM_READ(offset++, val);
581 		pcal[4].freq |= (val >> 13) & 0x7;
582 		pcal[5].freq  = (val >> 6) & mask;
583 		pcal[6].freq  = (val << 1) & mask;
584 
585 		AR5K_EEPROM_READ(offset++, val);
586 		pcal[6].freq |= (val >> 15) & 0x1;
587 		pcal[7].freq  = (val >> 8) & mask;
588 		pcal[8].freq  = (val >> 1) & mask;
589 		pcal[9].freq  = (val << 6) & mask;
590 
591 		AR5K_EEPROM_READ(offset++, val);
592 		pcal[9].freq |= (val >> 10) & 0x3f;
593 
594 		/* Fixed number of piers */
595 		ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
596 
597 		for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
598 			pcal[i].freq = ath5k_eeprom_bin2freq(ee,
599 				pcal[i].freq, AR5K_EEPROM_MODE_11A);
600 		}
601 	}
602 
603 	return 0;
604 }
605 
606 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
607 static inline int
608 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
609 {
610 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
611 	struct ath5k_chan_pcal_info *pcal;
612 
613 	switch(mode) {
614 	case AR5K_EEPROM_MODE_11B:
615 		pcal = ee->ee_pwr_cal_b;
616 		break;
617 	case AR5K_EEPROM_MODE_11G:
618 		pcal = ee->ee_pwr_cal_g;
619 		break;
620 	default:
621 		return -EINVAL;
622 	}
623 
624 	ath5k_eeprom_read_freq_list(ah, &offset,
625 		AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
626 		mode);
627 
628 	return 0;
629 }
630 
631 /*
632  * Read power calibration for RF5111 chips
633  *
634  * For RF5111 we have an XPD -eXternal Power Detector- curve
635  * for each calibrated channel. Each curve has 0,5dB Power steps
636  * on x axis and PCDAC steps (offsets) on y axis and looks like an
637  * exponential function. To recreate the curve we read 11 points
638  * here and interpolate later.
639  */
640 
641 /* Used to match PCDAC steps with power values on RF5111 chips
642  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
643  * steps that match with the power values we read from eeprom. On
644  * older eeprom versions (< 3.2) these steps are equaly spaced at
645  * 10% of the pcdac curve -until the curve reaches it's maximum-
646  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
647  * these 11 steps are spaced in a different way. This function returns
648  * the pcdac steps based on eeprom version and curve min/max so that we
649  * can have pcdac/pwr points.
650  */
651 static inline void
652 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
653 {
654 	static const u16 intercepts3[] =
655 		{ 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
656 	static const u16 intercepts3_2[] =
657 		{ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
658 	const u16 *ip;
659 	int i;
660 
661 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
662 		ip = intercepts3_2;
663 	else
664 		ip = intercepts3;
665 
666 	for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
667 		vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
668 }
669 
670 /* Convert RF5111 specific data to generic raw data
671  * used by interpolation code */
672 static int
673 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
674 				struct ath5k_chan_pcal_info *chinfo)
675 {
676 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
677 	struct ath5k_chan_pcal_info_rf5111 *pcinfo;
678 	struct ath5k_pdgain_info *pd;
679 	u8 pier, point, idx;
680 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
681 
682 	/* Fill raw data for each calibration pier */
683 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
684 
685 		pcinfo = &chinfo[pier].rf5111_info;
686 
687 		/* Allocate pd_curves for this cal pier */
688 		chinfo[pier].pd_curves =
689 			kcalloc(AR5K_EEPROM_N_PD_CURVES,
690 				sizeof(struct ath5k_pdgain_info),
691 				GFP_KERNEL);
692 
693 		if (!chinfo[pier].pd_curves)
694 			return -ENOMEM;
695 
696 		/* Only one curve for RF5111
697 		 * find out which one and place
698 		 * in in pd_curves.
699 		 * Note: ee_x_gain is reversed here */
700 		for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
701 
702 			if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
703 				pdgain_idx[0] = idx;
704 				break;
705 			}
706 		}
707 
708 		ee->ee_pd_gains[mode] = 1;
709 
710 		pd = &chinfo[pier].pd_curves[idx];
711 
712 		pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
713 
714 		/* Allocate pd points for this curve */
715 		pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
716 					sizeof(u8), GFP_KERNEL);
717 		if (!pd->pd_step)
718 			return -ENOMEM;
719 
720 		pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
721 					sizeof(s16), GFP_KERNEL);
722 		if (!pd->pd_pwr)
723 			return -ENOMEM;
724 
725 		/* Fill raw dataset
726 		 * (convert power to 0.25dB units
727 		 * for RF5112 combatibility) */
728 		for (point = 0; point < pd->pd_points; point++) {
729 
730 			/* Absolute values */
731 			pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
732 
733 			/* Already sorted */
734 			pd->pd_step[point] = pcinfo->pcdac[point];
735 		}
736 
737 		/* Set min/max pwr */
738 		chinfo[pier].min_pwr = pd->pd_pwr[0];
739 		chinfo[pier].max_pwr = pd->pd_pwr[10];
740 
741 	}
742 
743 	return 0;
744 }
745 
746 /* Parse EEPROM data */
747 static int
748 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
749 {
750 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
751 	struct ath5k_chan_pcal_info *pcal;
752 	int offset, ret;
753 	int i;
754 	u16 val;
755 
756 	offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
757 	switch(mode) {
758 	case AR5K_EEPROM_MODE_11A:
759 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
760 			return 0;
761 
762 		ret = ath5k_eeprom_init_11a_pcal_freq(ah,
763 			offset + AR5K_EEPROM_GROUP1_OFFSET);
764 		if (ret < 0)
765 			return ret;
766 
767 		offset += AR5K_EEPROM_GROUP2_OFFSET;
768 		pcal = ee->ee_pwr_cal_a;
769 		break;
770 	case AR5K_EEPROM_MODE_11B:
771 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
772 		    !AR5K_EEPROM_HDR_11G(ee->ee_header))
773 			return 0;
774 
775 		pcal = ee->ee_pwr_cal_b;
776 		offset += AR5K_EEPROM_GROUP3_OFFSET;
777 
778 		/* fixed piers */
779 		pcal[0].freq = 2412;
780 		pcal[1].freq = 2447;
781 		pcal[2].freq = 2484;
782 		ee->ee_n_piers[mode] = 3;
783 		break;
784 	case AR5K_EEPROM_MODE_11G:
785 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
786 			return 0;
787 
788 		pcal = ee->ee_pwr_cal_g;
789 		offset += AR5K_EEPROM_GROUP4_OFFSET;
790 
791 		/* fixed piers */
792 		pcal[0].freq = 2312;
793 		pcal[1].freq = 2412;
794 		pcal[2].freq = 2484;
795 		ee->ee_n_piers[mode] = 3;
796 		break;
797 	default:
798 		return -EINVAL;
799 	}
800 
801 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
802 		struct ath5k_chan_pcal_info_rf5111 *cdata =
803 			&pcal[i].rf5111_info;
804 
805 		AR5K_EEPROM_READ(offset++, val);
806 		cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
807 		cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
808 		cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
809 
810 		AR5K_EEPROM_READ(offset++, val);
811 		cdata->pwr[0] |= ((val >> 14) & 0x3);
812 		cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
813 		cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
814 		cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
815 
816 		AR5K_EEPROM_READ(offset++, val);
817 		cdata->pwr[3] |= ((val >> 12) & 0xf);
818 		cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
819 		cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
820 
821 		AR5K_EEPROM_READ(offset++, val);
822 		cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
823 		cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
824 		cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
825 
826 		AR5K_EEPROM_READ(offset++, val);
827 		cdata->pwr[8] |= ((val >> 14) & 0x3);
828 		cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
829 		cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
830 
831 		ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
832 			cdata->pcdac_max, cdata->pcdac);
833 	}
834 
835 	return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
836 }
837 
838 
839 /*
840  * Read power calibration for RF5112 chips
841  *
842  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
843  * for each calibrated channel on 0, -6, -12 and -18dbm but we only
844  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
845  * power steps on x axis and PCDAC steps on y axis and looks like a
846  * linear function. To recreate the curve and pass the power values
847  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
848  * and 3 points for xpd 3 (higher gain -> lower power) here and
849  * interpolate later.
850  *
851  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
852  */
853 
854 /* Convert RF5112 specific data to generic raw data
855  * used by interpolation code */
856 static int
857 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
858 				struct ath5k_chan_pcal_info *chinfo)
859 {
860 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
861 	struct ath5k_chan_pcal_info_rf5112 *pcinfo;
862 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
863 	unsigned int pier, pdg, point;
864 
865 	/* Fill raw data for each calibration pier */
866 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
867 
868 		pcinfo = &chinfo[pier].rf5112_info;
869 
870 		/* Allocate pd_curves for this cal pier */
871 		chinfo[pier].pd_curves =
872 				kcalloc(AR5K_EEPROM_N_PD_CURVES,
873 					sizeof(struct ath5k_pdgain_info),
874 					GFP_KERNEL);
875 
876 		if (!chinfo[pier].pd_curves)
877 			return -ENOMEM;
878 
879 		/* Fill pd_curves */
880 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
881 
882 			u8 idx = pdgain_idx[pdg];
883 			struct ath5k_pdgain_info *pd =
884 					&chinfo[pier].pd_curves[idx];
885 
886 			/* Lowest gain curve (max power) */
887 			if (pdg == 0) {
888 				/* One more point for better accuracy */
889 				pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
890 
891 				/* Allocate pd points for this curve */
892 				pd->pd_step = kcalloc(pd->pd_points,
893 						sizeof(u8), GFP_KERNEL);
894 
895 				if (!pd->pd_step)
896 					return -ENOMEM;
897 
898 				pd->pd_pwr = kcalloc(pd->pd_points,
899 						sizeof(s16), GFP_KERNEL);
900 
901 				if (!pd->pd_pwr)
902 					return -ENOMEM;
903 
904 
905 				/* Fill raw dataset
906 				 * (all power levels are in 0.25dB units) */
907 				pd->pd_step[0] = pcinfo->pcdac_x0[0];
908 				pd->pd_pwr[0] = pcinfo->pwr_x0[0];
909 
910 				for (point = 1; point < pd->pd_points;
911 				point++) {
912 					/* Absolute values */
913 					pd->pd_pwr[point] =
914 						pcinfo->pwr_x0[point];
915 
916 					/* Deltas */
917 					pd->pd_step[point] =
918 						pd->pd_step[point - 1] +
919 						pcinfo->pcdac_x0[point];
920 				}
921 
922 				/* Set min power for this frequency */
923 				chinfo[pier].min_pwr = pd->pd_pwr[0];
924 
925 			/* Highest gain curve (min power) */
926 			} else if (pdg == 1) {
927 
928 				pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
929 
930 				/* Allocate pd points for this curve */
931 				pd->pd_step = kcalloc(pd->pd_points,
932 						sizeof(u8), GFP_KERNEL);
933 
934 				if (!pd->pd_step)
935 					return -ENOMEM;
936 
937 				pd->pd_pwr = kcalloc(pd->pd_points,
938 						sizeof(s16), GFP_KERNEL);
939 
940 				if (!pd->pd_pwr)
941 					return -ENOMEM;
942 
943 				/* Fill raw dataset
944 				 * (all power levels are in 0.25dB units) */
945 				for (point = 0; point < pd->pd_points;
946 				point++) {
947 					/* Absolute values */
948 					pd->pd_pwr[point] =
949 						pcinfo->pwr_x3[point];
950 
951 					/* Fixed points */
952 					pd->pd_step[point] =
953 						pcinfo->pcdac_x3[point];
954 				}
955 
956 				/* Since we have a higher gain curve
957 				 * override min power */
958 				chinfo[pier].min_pwr = pd->pd_pwr[0];
959 			}
960 		}
961 	}
962 
963 	return 0;
964 }
965 
966 /* Parse EEPROM data */
967 static int
968 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
969 {
970 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
971 	struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
972 	struct ath5k_chan_pcal_info *gen_chan_info;
973 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
974 	u32 offset;
975 	u8 i, c;
976 	u16 val;
977 	int ret;
978 	u8 pd_gains = 0;
979 
980 	/* Count how many curves we have and
981 	 * identify them (which one of the 4
982 	 * available curves we have on each count).
983 	 * Curves are stored from lower (x0) to
984 	 * higher (x3) gain */
985 	for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
986 		/* ee_x_gain[mode] is x gain mask */
987 		if ((ee->ee_x_gain[mode] >> i) & 0x1)
988 			pdgain_idx[pd_gains++] = i;
989 	}
990 	ee->ee_pd_gains[mode] = pd_gains;
991 
992 	if (pd_gains == 0 || pd_gains > 2)
993 		return -EINVAL;
994 
995 	switch (mode) {
996 	case AR5K_EEPROM_MODE_11A:
997 		/*
998 		 * Read 5GHz EEPROM channels
999 		 */
1000 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1001 		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1002 
1003 		offset += AR5K_EEPROM_GROUP2_OFFSET;
1004 		gen_chan_info = ee->ee_pwr_cal_a;
1005 		break;
1006 	case AR5K_EEPROM_MODE_11B:
1007 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1008 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1009 			offset += AR5K_EEPROM_GROUP3_OFFSET;
1010 
1011 		/* NB: frequency piers parsed during mode init */
1012 		gen_chan_info = ee->ee_pwr_cal_b;
1013 		break;
1014 	case AR5K_EEPROM_MODE_11G:
1015 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1016 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1017 			offset += AR5K_EEPROM_GROUP4_OFFSET;
1018 		else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1019 			offset += AR5K_EEPROM_GROUP2_OFFSET;
1020 
1021 		/* NB: frequency piers parsed during mode init */
1022 		gen_chan_info = ee->ee_pwr_cal_g;
1023 		break;
1024 	default:
1025 		return -EINVAL;
1026 	}
1027 
1028 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1029 		chan_pcal_info = &gen_chan_info[i].rf5112_info;
1030 
1031 		/* Power values in quarter dB
1032 		 * for the lower xpd gain curve
1033 		 * (0 dBm -> higher output power) */
1034 		for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1035 			AR5K_EEPROM_READ(offset++, val);
1036 			chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1037 			chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1038 		}
1039 
1040 		/* PCDAC steps
1041 		 * corresponding to the above power
1042 		 * measurements */
1043 		AR5K_EEPROM_READ(offset++, val);
1044 		chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1045 		chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1046 		chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1047 
1048 		/* Power values in quarter dB
1049 		 * for the higher xpd gain curve
1050 		 * (18 dBm -> lower output power) */
1051 		AR5K_EEPROM_READ(offset++, val);
1052 		chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1053 		chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1054 
1055 		AR5K_EEPROM_READ(offset++, val);
1056 		chan_pcal_info->pwr_x3[2] = (val & 0xff);
1057 
1058 		/* PCDAC steps
1059 		 * corresponding to the above power
1060 		 * measurements (fixed) */
1061 		chan_pcal_info->pcdac_x3[0] = 20;
1062 		chan_pcal_info->pcdac_x3[1] = 35;
1063 		chan_pcal_info->pcdac_x3[2] = 63;
1064 
1065 		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1066 			chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1067 
1068 			/* Last xpd0 power level is also channel maximum */
1069 			gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1070 		} else {
1071 			chan_pcal_info->pcdac_x0[0] = 1;
1072 			gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1073 		}
1074 
1075 	}
1076 
1077 	return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1078 }
1079 
1080 
1081 /*
1082  * Read power calibration for RF2413 chips
1083  *
1084  * For RF2413 we have a Power to PDDAC table (Power Detector)
1085  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1086  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1087  * axis and looks like an exponential function like the RF5111 curve.
1088  *
1089  * To recreate the curves we read here the points and interpolate
1090  * later. Note that in most cases only 2 (higher and lower) curves are
1091  * used (like RF5112) but vendors have the oportunity to include all
1092  * 4 curves on eeprom. The final curve (higher power) has an extra
1093  * point for better accuracy like RF5112.
1094  */
1095 
1096 /* For RF2413 power calibration data doesn't start on a fixed location and
1097  * if a mode is not supported, it's section is missing -not zeroed-.
1098  * So we need to calculate the starting offset for each section by using
1099  * these two functions */
1100 
1101 /* Return the size of each section based on the mode and the number of pd
1102  * gains available (maximum 4). */
1103 static inline unsigned int
1104 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1105 {
1106 	static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1107 	unsigned int sz;
1108 
1109 	sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1110 	sz *= ee->ee_n_piers[mode];
1111 
1112 	return sz;
1113 }
1114 
1115 /* Return the starting offset for a section based on the modes supported
1116  * and each section's size. */
1117 static unsigned int
1118 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1119 {
1120 	u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1121 
1122 	switch(mode) {
1123 	case AR5K_EEPROM_MODE_11G:
1124 		if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1125 			offset += ath5k_pdgains_size_2413(ee,
1126 					AR5K_EEPROM_MODE_11B) +
1127 					AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1128 		/* fall through */
1129 	case AR5K_EEPROM_MODE_11B:
1130 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1131 			offset += ath5k_pdgains_size_2413(ee,
1132 					AR5K_EEPROM_MODE_11A) +
1133 					AR5K_EEPROM_N_5GHZ_CHAN / 2;
1134 		/* fall through */
1135 	case AR5K_EEPROM_MODE_11A:
1136 		break;
1137 	default:
1138 		break;
1139 	}
1140 
1141 	return offset;
1142 }
1143 
1144 /* Convert RF2413 specific data to generic raw data
1145  * used by interpolation code */
1146 static int
1147 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1148 				struct ath5k_chan_pcal_info *chinfo)
1149 {
1150 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1151 	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1152 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1153 	unsigned int pier, pdg, point;
1154 
1155 	/* Fill raw data for each calibration pier */
1156 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1157 
1158 		pcinfo = &chinfo[pier].rf2413_info;
1159 
1160 		/* Allocate pd_curves for this cal pier */
1161 		chinfo[pier].pd_curves =
1162 				kcalloc(AR5K_EEPROM_N_PD_CURVES,
1163 					sizeof(struct ath5k_pdgain_info),
1164 					GFP_KERNEL);
1165 
1166 		if (!chinfo[pier].pd_curves)
1167 			return -ENOMEM;
1168 
1169 		/* Fill pd_curves */
1170 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1171 
1172 			u8 idx = pdgain_idx[pdg];
1173 			struct ath5k_pdgain_info *pd =
1174 					&chinfo[pier].pd_curves[idx];
1175 
1176 			/* One more point for the highest power
1177 			 * curve (lowest gain) */
1178 			if (pdg == ee->ee_pd_gains[mode] - 1)
1179 				pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1180 			else
1181 				pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1182 
1183 			/* Allocate pd points for this curve */
1184 			pd->pd_step = kcalloc(pd->pd_points,
1185 					sizeof(u8), GFP_KERNEL);
1186 
1187 			if (!pd->pd_step)
1188 				return -ENOMEM;
1189 
1190 			pd->pd_pwr = kcalloc(pd->pd_points,
1191 					sizeof(s16), GFP_KERNEL);
1192 
1193 			if (!pd->pd_pwr)
1194 				return -ENOMEM;
1195 
1196 			/* Fill raw dataset
1197 			 * convert all pwr levels to
1198 			 * quarter dB for RF5112 combatibility */
1199 			pd->pd_step[0] = pcinfo->pddac_i[pdg];
1200 			pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1201 
1202 			for (point = 1; point < pd->pd_points; point++) {
1203 
1204 				pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1205 					2 * pcinfo->pwr[pdg][point - 1];
1206 
1207 				pd->pd_step[point] = pd->pd_step[point - 1] +
1208 						pcinfo->pddac[pdg][point - 1];
1209 
1210 			}
1211 
1212 			/* Highest gain curve -> min power */
1213 			if (pdg == 0)
1214 				chinfo[pier].min_pwr = pd->pd_pwr[0];
1215 
1216 			/* Lowest gain curve -> max power */
1217 			if (pdg == ee->ee_pd_gains[mode] - 1)
1218 				chinfo[pier].max_pwr =
1219 					pd->pd_pwr[pd->pd_points - 1];
1220 		}
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 /* Parse EEPROM data */
1227 static int
1228 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1229 {
1230 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1231 	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1232 	struct ath5k_chan_pcal_info *chinfo;
1233 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1234 	u32 offset;
1235 	int idx, i, ret;
1236 	u16 val;
1237 	u8 pd_gains = 0;
1238 
1239 	/* Count how many curves we have and
1240 	 * identify them (which one of the 4
1241 	 * available curves we have on each count).
1242 	 * Curves are stored from higher to
1243 	 * lower gain so we go backwards */
1244 	for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1245 		/* ee_x_gain[mode] is x gain mask */
1246 		if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1247 			pdgain_idx[pd_gains++] = idx;
1248 
1249 	}
1250 	ee->ee_pd_gains[mode] = pd_gains;
1251 
1252 	if (pd_gains == 0)
1253 		return -EINVAL;
1254 
1255 	offset = ath5k_cal_data_offset_2413(ee, mode);
1256 	switch (mode) {
1257 	case AR5K_EEPROM_MODE_11A:
1258 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1259 			return 0;
1260 
1261 		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1262 		offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1263 		chinfo = ee->ee_pwr_cal_a;
1264 		break;
1265 	case AR5K_EEPROM_MODE_11B:
1266 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1267 			return 0;
1268 
1269 		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1270 		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1271 		chinfo = ee->ee_pwr_cal_b;
1272 		break;
1273 	case AR5K_EEPROM_MODE_11G:
1274 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1275 			return 0;
1276 
1277 		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1278 		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1279 		chinfo = ee->ee_pwr_cal_g;
1280 		break;
1281 	default:
1282 		return -EINVAL;
1283 	}
1284 
1285 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1286 		pcinfo = &chinfo[i].rf2413_info;
1287 
1288 		/*
1289 		 * Read pwr_i, pddac_i and the first
1290 		 * 2 pd points (pwr, pddac)
1291 		 */
1292 		AR5K_EEPROM_READ(offset++, val);
1293 		pcinfo->pwr_i[0] = val & 0x1f;
1294 		pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1295 		pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1296 
1297 		AR5K_EEPROM_READ(offset++, val);
1298 		pcinfo->pddac[0][0] = val & 0x3f;
1299 		pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1300 		pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1301 
1302 		AR5K_EEPROM_READ(offset++, val);
1303 		pcinfo->pwr[0][2] = val & 0xf;
1304 		pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1305 
1306 		pcinfo->pwr[0][3] = 0;
1307 		pcinfo->pddac[0][3] = 0;
1308 
1309 		if (pd_gains > 1) {
1310 			/*
1311 			 * Pd gain 0 is not the last pd gain
1312 			 * so it only has 2 pd points.
1313 			 * Continue wih pd gain 1.
1314 			 */
1315 			pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1316 
1317 			pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1318 			AR5K_EEPROM_READ(offset++, val);
1319 			pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1320 
1321 			pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1322 			pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1323 
1324 			AR5K_EEPROM_READ(offset++, val);
1325 			pcinfo->pwr[1][1] = val & 0xf;
1326 			pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1327 			pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1328 
1329 			pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1330 			AR5K_EEPROM_READ(offset++, val);
1331 			pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1332 
1333 			pcinfo->pwr[1][3] = 0;
1334 			pcinfo->pddac[1][3] = 0;
1335 		} else if (pd_gains == 1) {
1336 			/*
1337 			 * Pd gain 0 is the last one so
1338 			 * read the extra point.
1339 			 */
1340 			pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1341 
1342 			pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1343 			AR5K_EEPROM_READ(offset++, val);
1344 			pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1345 		}
1346 
1347 		/*
1348 		 * Proceed with the other pd_gains
1349 		 * as above.
1350 		 */
1351 		if (pd_gains > 2) {
1352 			pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1353 			pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1354 
1355 			AR5K_EEPROM_READ(offset++, val);
1356 			pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1357 			pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1358 			pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1359 
1360 			pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1361 			AR5K_EEPROM_READ(offset++, val);
1362 			pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1363 
1364 			pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1365 			pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1366 
1367 			pcinfo->pwr[2][3] = 0;
1368 			pcinfo->pddac[2][3] = 0;
1369 		} else if (pd_gains == 2) {
1370 			pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1371 			pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1372 		}
1373 
1374 		if (pd_gains > 3) {
1375 			pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1376 			AR5K_EEPROM_READ(offset++, val);
1377 			pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1378 
1379 			pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1380 			pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1381 			pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1382 
1383 			AR5K_EEPROM_READ(offset++, val);
1384 			pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1385 			pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1386 			pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1387 
1388 			pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1389 			AR5K_EEPROM_READ(offset++, val);
1390 			pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1391 
1392 			pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1393 			pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1394 
1395 			pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1396 			AR5K_EEPROM_READ(offset++, val);
1397 			pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1398 		} else if (pd_gains == 3) {
1399 			pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1400 			AR5K_EEPROM_READ(offset++, val);
1401 			pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1402 
1403 			pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1404 		}
1405 	}
1406 
1407 	return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1408 }
1409 
1410 
1411 /*
1412  * Read per rate target power (this is the maximum tx power
1413  * supported by the card). This info is used when setting
1414  * tx power, no matter the channel.
1415  *
1416  * This also works for v5 EEPROMs.
1417  */
1418 static int
1419 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1420 {
1421 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1422 	struct ath5k_rate_pcal_info *rate_pcal_info;
1423 	u8 *rate_target_pwr_num;
1424 	u32 offset;
1425 	u16 val;
1426 	int ret, i;
1427 
1428 	offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1429 	rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1430 	switch (mode) {
1431 	case AR5K_EEPROM_MODE_11A:
1432 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1433 		rate_pcal_info = ee->ee_rate_tpwr_a;
1434 		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1435 		break;
1436 	case AR5K_EEPROM_MODE_11B:
1437 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1438 		rate_pcal_info = ee->ee_rate_tpwr_b;
1439 		ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1440 		break;
1441 	case AR5K_EEPROM_MODE_11G:
1442 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1443 		rate_pcal_info = ee->ee_rate_tpwr_g;
1444 		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1445 		break;
1446 	default:
1447 		return -EINVAL;
1448 	}
1449 
1450 	/* Different freq mask for older eeproms (<= v3.2) */
1451 	if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1452 		for (i = 0; i < (*rate_target_pwr_num); i++) {
1453 			AR5K_EEPROM_READ(offset++, val);
1454 			rate_pcal_info[i].freq =
1455 			    ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1456 
1457 			rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1458 			rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1459 
1460 			AR5K_EEPROM_READ(offset++, val);
1461 
1462 			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1463 			    val == 0) {
1464 				(*rate_target_pwr_num) = i;
1465 				break;
1466 			}
1467 
1468 			rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1469 			rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1470 			rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1471 		}
1472 	} else {
1473 		for (i = 0; i < (*rate_target_pwr_num); i++) {
1474 			AR5K_EEPROM_READ(offset++, val);
1475 			rate_pcal_info[i].freq =
1476 			    ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1477 
1478 			rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1479 			rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1480 
1481 			AR5K_EEPROM_READ(offset++, val);
1482 
1483 			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1484 			    val == 0) {
1485 				(*rate_target_pwr_num) = i;
1486 				break;
1487 			}
1488 
1489 			rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1490 			rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1491 			rate_pcal_info[i].target_power_54 = (val & 0x3f);
1492 		}
1493 	}
1494 
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Read per channel calibration info from EEPROM
1500  *
1501  * This info is used to calibrate the baseband power table. Imagine
1502  * that for each channel there is a power curve that's hw specific
1503  * (depends on amplifier etc) and we try to "correct" this curve using
1504  * offests we pass on to phy chip (baseband -> before amplifier) so that
1505  * it can use accurate power values when setting tx power (takes amplifier's
1506  * performance on each channel into account).
1507  *
1508  * EEPROM provides us with the offsets for some pre-calibrated channels
1509  * and we have to interpolate to create the full table for these channels and
1510  * also the table for any channel.
1511  */
1512 static int
1513 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1514 {
1515 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1516 	int (*read_pcal)(struct ath5k_hw *hw, int mode);
1517 	int mode;
1518 	int err;
1519 
1520 	if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1521 			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1522 		read_pcal = ath5k_eeprom_read_pcal_info_5112;
1523 	else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1524 			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1525 		read_pcal = ath5k_eeprom_read_pcal_info_2413;
1526 	else
1527 		read_pcal = ath5k_eeprom_read_pcal_info_5111;
1528 
1529 
1530 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1531 	mode++) {
1532 		err = read_pcal(ah, mode);
1533 		if (err)
1534 			return err;
1535 
1536 		err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1537 		if (err < 0)
1538 			return err;
1539 	}
1540 
1541 	return 0;
1542 }
1543 
1544 static int
1545 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1546 {
1547 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1548 	struct ath5k_chan_pcal_info *chinfo;
1549 	u8 pier, pdg;
1550 
1551 	switch (mode) {
1552 	case AR5K_EEPROM_MODE_11A:
1553 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1554 			return 0;
1555 		chinfo = ee->ee_pwr_cal_a;
1556 		break;
1557 	case AR5K_EEPROM_MODE_11B:
1558 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1559 			return 0;
1560 		chinfo = ee->ee_pwr_cal_b;
1561 		break;
1562 	case AR5K_EEPROM_MODE_11G:
1563 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1564 			return 0;
1565 		chinfo = ee->ee_pwr_cal_g;
1566 		break;
1567 	default:
1568 		return -EINVAL;
1569 	}
1570 
1571 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1572 		if (!chinfo[pier].pd_curves)
1573 			continue;
1574 
1575 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1576 			struct ath5k_pdgain_info *pd =
1577 					&chinfo[pier].pd_curves[pdg];
1578 
1579 			if (pd != NULL) {
1580 				kfree(pd->pd_step);
1581 				kfree(pd->pd_pwr);
1582 			}
1583 		}
1584 
1585 		kfree(chinfo[pier].pd_curves);
1586 	}
1587 
1588 	return 0;
1589 }
1590 
1591 void
1592 ath5k_eeprom_detach(struct ath5k_hw *ah)
1593 {
1594 	u8 mode;
1595 
1596 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1597 		ath5k_eeprom_free_pcal_info(ah, mode);
1598 }
1599 
1600 /* Read conformance test limits used for regulatory control */
1601 static int
1602 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1603 {
1604 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1605 	struct ath5k_edge_power *rep;
1606 	unsigned int fmask, pmask;
1607 	unsigned int ctl_mode;
1608 	int ret, i, j;
1609 	u32 offset;
1610 	u16 val;
1611 
1612 	pmask = AR5K_EEPROM_POWER_M;
1613 	fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1614 	offset = AR5K_EEPROM_CTL(ee->ee_version);
1615 	ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1616 	for (i = 0; i < ee->ee_ctls; i += 2) {
1617 		AR5K_EEPROM_READ(offset++, val);
1618 		ee->ee_ctl[i] = (val >> 8) & 0xff;
1619 		ee->ee_ctl[i + 1] = val & 0xff;
1620 	}
1621 
1622 	offset = AR5K_EEPROM_GROUP8_OFFSET;
1623 	if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1624 		offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1625 			AR5K_EEPROM_GROUP5_OFFSET;
1626 	else
1627 		offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1628 
1629 	rep = ee->ee_ctl_pwr;
1630 	for(i = 0; i < ee->ee_ctls; i++) {
1631 		switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1632 		case AR5K_CTL_11A:
1633 		case AR5K_CTL_TURBO:
1634 			ctl_mode = AR5K_EEPROM_MODE_11A;
1635 			break;
1636 		default:
1637 			ctl_mode = AR5K_EEPROM_MODE_11G;
1638 			break;
1639 		}
1640 		if (ee->ee_ctl[i] == 0) {
1641 			if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1642 				offset += 8;
1643 			else
1644 				offset += 7;
1645 			rep += AR5K_EEPROM_N_EDGES;
1646 			continue;
1647 		}
1648 		if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1649 			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1650 				AR5K_EEPROM_READ(offset++, val);
1651 				rep[j].freq = (val >> 8) & fmask;
1652 				rep[j + 1].freq = val & fmask;
1653 			}
1654 			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1655 				AR5K_EEPROM_READ(offset++, val);
1656 				rep[j].edge = (val >> 8) & pmask;
1657 				rep[j].flag = (val >> 14) & 1;
1658 				rep[j + 1].edge = val & pmask;
1659 				rep[j + 1].flag = (val >> 6) & 1;
1660 			}
1661 		} else {
1662 			AR5K_EEPROM_READ(offset++, val);
1663 			rep[0].freq = (val >> 9) & fmask;
1664 			rep[1].freq = (val >> 2) & fmask;
1665 			rep[2].freq = (val << 5) & fmask;
1666 
1667 			AR5K_EEPROM_READ(offset++, val);
1668 			rep[2].freq |= (val >> 11) & 0x1f;
1669 			rep[3].freq = (val >> 4) & fmask;
1670 			rep[4].freq = (val << 3) & fmask;
1671 
1672 			AR5K_EEPROM_READ(offset++, val);
1673 			rep[4].freq |= (val >> 13) & 0x7;
1674 			rep[5].freq = (val >> 6) & fmask;
1675 			rep[6].freq = (val << 1) & fmask;
1676 
1677 			AR5K_EEPROM_READ(offset++, val);
1678 			rep[6].freq |= (val >> 15) & 0x1;
1679 			rep[7].freq = (val >> 8) & fmask;
1680 
1681 			rep[0].edge = (val >> 2) & pmask;
1682 			rep[1].edge = (val << 4) & pmask;
1683 
1684 			AR5K_EEPROM_READ(offset++, val);
1685 			rep[1].edge |= (val >> 12) & 0xf;
1686 			rep[2].edge = (val >> 6) & pmask;
1687 			rep[3].edge = val & pmask;
1688 
1689 			AR5K_EEPROM_READ(offset++, val);
1690 			rep[4].edge = (val >> 10) & pmask;
1691 			rep[5].edge = (val >> 4) & pmask;
1692 			rep[6].edge = (val << 2) & pmask;
1693 
1694 			AR5K_EEPROM_READ(offset++, val);
1695 			rep[6].edge |= (val >> 14) & 0x3;
1696 			rep[7].edge = (val >> 8) & pmask;
1697 		}
1698 		for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1699 			rep[j].freq = ath5k_eeprom_bin2freq(ee,
1700 				rep[j].freq, ctl_mode);
1701 		}
1702 		rep += AR5K_EEPROM_N_EDGES;
1703 	}
1704 
1705 	return 0;
1706 }
1707 
1708 static int
1709 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1710 {
1711 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1712 	u32 offset;
1713 	u16 val;
1714 	int ret = 0, i;
1715 
1716 	offset = AR5K_EEPROM_CTL(ee->ee_version) +
1717 				AR5K_EEPROM_N_CTLS(ee->ee_version);
1718 
1719 	if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1720 		/* No spur info for 5GHz */
1721 		ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1722 		/* 2 channels for 2GHz (2464/2420) */
1723 		ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1724 		ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1725 		ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1726 	} else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1727 		for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1728 			AR5K_EEPROM_READ(offset, val);
1729 			ee->ee_spur_chans[i][0] = val;
1730 			AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1731 									val);
1732 			ee->ee_spur_chans[i][1] = val;
1733 			offset++;
1734 		}
1735 	}
1736 
1737 	return ret;
1738 }
1739 
1740 /*
1741  * Initialize eeprom data structure
1742  */
1743 int
1744 ath5k_eeprom_init(struct ath5k_hw *ah)
1745 {
1746 	int err;
1747 
1748 	err = ath5k_eeprom_init_header(ah);
1749 	if (err < 0)
1750 		return err;
1751 
1752 	err = ath5k_eeprom_init_modes(ah);
1753 	if (err < 0)
1754 		return err;
1755 
1756 	err = ath5k_eeprom_read_pcal_info(ah);
1757 	if (err < 0)
1758 		return err;
1759 
1760 	err = ath5k_eeprom_read_ctl_info(ah);
1761 	if (err < 0)
1762 		return err;
1763 
1764 	err = ath5k_eeprom_read_spur_chans(ah);
1765 	if (err < 0)
1766 		return err;
1767 
1768 	return 0;
1769 }
1770 
1771 /*
1772  * Read the MAC address from eeprom
1773  */
1774 int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1775 {
1776 	u8 mac_d[ETH_ALEN] = {};
1777 	u32 total, offset;
1778 	u16 data;
1779 	int octet, ret;
1780 
1781 	ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1782 	if (ret)
1783 		return ret;
1784 
1785 	for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1786 		ret = ath5k_hw_eeprom_read(ah, offset, &data);
1787 		if (ret)
1788 			return ret;
1789 
1790 		total += data;
1791 		mac_d[octet + 1] = data & 0xff;
1792 		mac_d[octet] = data >> 8;
1793 		octet += 2;
1794 	}
1795 
1796 	if (!total || total == 3 * 0xffff)
1797 		return -EINVAL;
1798 
1799 	memcpy(mac, mac_d, ETH_ALEN);
1800 
1801 	return 0;
1802 }
1803