xref: /linux/drivers/net/wireless/ath/ath5k/base.c (revision cff4fa8415a3224a5abdd2b1dd7f431e4ea49366)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/hardirq.h>
47 #include <linux/if.h>
48 #include <linux/io.h>
49 #include <linux/netdevice.h>
50 #include <linux/cache.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
53 #include <linux/slab.h>
54 #include <linux/etherdevice.h>
55 
56 #include <net/ieee80211_radiotap.h>
57 
58 #include <asm/unaligned.h>
59 
60 #include "base.h"
61 #include "reg.h"
62 #include "debug.h"
63 #include "ani.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include "trace.h"
67 
68 int ath5k_modparam_nohwcrypt;
69 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
70 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
71 
72 static int modparam_all_channels;
73 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
74 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
75 
76 static int modparam_fastchanswitch;
77 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
78 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
79 
80 
81 /* Module info */
82 MODULE_AUTHOR("Jiri Slaby");
83 MODULE_AUTHOR("Nick Kossifidis");
84 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
85 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
86 MODULE_LICENSE("Dual BSD/GPL");
87 
88 static int ath5k_init(struct ieee80211_hw *hw);
89 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
90 								bool skip_pcu);
91 
92 /* Known SREVs */
93 static const struct ath5k_srev_name srev_names[] = {
94 #ifdef CONFIG_ATHEROS_AR231X
95 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
96 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
97 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
98 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
99 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
100 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
101 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
102 #else
103 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
104 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
105 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
106 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
107 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
108 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
109 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
110 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
111 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
112 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
113 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
114 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
115 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
116 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
117 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
118 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
119 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
120 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
121 #endif
122 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
123 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
124 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
125 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
126 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
127 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
128 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
129 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
130 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
131 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
132 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
133 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
134 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
135 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
136 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
137 #ifdef CONFIG_ATHEROS_AR231X
138 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
139 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
140 #endif
141 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
142 };
143 
144 static const struct ieee80211_rate ath5k_rates[] = {
145 	{ .bitrate = 10,
146 	  .hw_value = ATH5K_RATE_CODE_1M, },
147 	{ .bitrate = 20,
148 	  .hw_value = ATH5K_RATE_CODE_2M,
149 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
150 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
151 	{ .bitrate = 55,
152 	  .hw_value = ATH5K_RATE_CODE_5_5M,
153 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
154 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
155 	{ .bitrate = 110,
156 	  .hw_value = ATH5K_RATE_CODE_11M,
157 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
158 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
159 	{ .bitrate = 60,
160 	  .hw_value = ATH5K_RATE_CODE_6M,
161 	  .flags = 0 },
162 	{ .bitrate = 90,
163 	  .hw_value = ATH5K_RATE_CODE_9M,
164 	  .flags = 0 },
165 	{ .bitrate = 120,
166 	  .hw_value = ATH5K_RATE_CODE_12M,
167 	  .flags = 0 },
168 	{ .bitrate = 180,
169 	  .hw_value = ATH5K_RATE_CODE_18M,
170 	  .flags = 0 },
171 	{ .bitrate = 240,
172 	  .hw_value = ATH5K_RATE_CODE_24M,
173 	  .flags = 0 },
174 	{ .bitrate = 360,
175 	  .hw_value = ATH5K_RATE_CODE_36M,
176 	  .flags = 0 },
177 	{ .bitrate = 480,
178 	  .hw_value = ATH5K_RATE_CODE_48M,
179 	  .flags = 0 },
180 	{ .bitrate = 540,
181 	  .hw_value = ATH5K_RATE_CODE_54M,
182 	  .flags = 0 },
183 	/* XR missing */
184 };
185 
186 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
187 {
188 	u64 tsf = ath5k_hw_get_tsf64(ah);
189 
190 	if ((tsf & 0x7fff) < rstamp)
191 		tsf -= 0x8000;
192 
193 	return (tsf & ~0x7fff) | rstamp;
194 }
195 
196 const char *
197 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
198 {
199 	const char *name = "xxxxx";
200 	unsigned int i;
201 
202 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
203 		if (srev_names[i].sr_type != type)
204 			continue;
205 
206 		if ((val & 0xf0) == srev_names[i].sr_val)
207 			name = srev_names[i].sr_name;
208 
209 		if ((val & 0xff) == srev_names[i].sr_val) {
210 			name = srev_names[i].sr_name;
211 			break;
212 		}
213 	}
214 
215 	return name;
216 }
217 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
218 {
219 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
220 	return ath5k_hw_reg_read(ah, reg_offset);
221 }
222 
223 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
224 {
225 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
226 	ath5k_hw_reg_write(ah, val, reg_offset);
227 }
228 
229 static const struct ath_ops ath5k_common_ops = {
230 	.read = ath5k_ioread32,
231 	.write = ath5k_iowrite32,
232 };
233 
234 /***********************\
235 * Driver Initialization *
236 \***********************/
237 
238 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
239 {
240 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
241 	struct ath5k_hw *ah = hw->priv;
242 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
243 
244 	return ath_reg_notifier_apply(wiphy, request, regulatory);
245 }
246 
247 /********************\
248 * Channel/mode setup *
249 \********************/
250 
251 /*
252  * Returns true for the channel numbers used without all_channels modparam.
253  */
254 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
255 {
256 	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
257 		return true;
258 
259 	return	/* UNII 1,2 */
260 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
261 		/* midband */
262 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
263 		/* UNII-3 */
264 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
265 		/* 802.11j 5.030-5.080 GHz (20MHz) */
266 		(chan == 8 || chan == 12 || chan == 16) ||
267 		/* 802.11j 4.9GHz (20MHz) */
268 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
269 }
270 
271 static unsigned int
272 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
273 		unsigned int mode, unsigned int max)
274 {
275 	unsigned int count, size, chfreq, freq, ch;
276 	enum ieee80211_band band;
277 
278 	switch (mode) {
279 	case AR5K_MODE_11A:
280 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
281 		size = 220;
282 		chfreq = CHANNEL_5GHZ;
283 		band = IEEE80211_BAND_5GHZ;
284 		break;
285 	case AR5K_MODE_11B:
286 	case AR5K_MODE_11G:
287 		size = 26;
288 		chfreq = CHANNEL_2GHZ;
289 		band = IEEE80211_BAND_2GHZ;
290 		break;
291 	default:
292 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
293 		return 0;
294 	}
295 
296 	count = 0;
297 	for (ch = 1; ch <= size && count < max; ch++) {
298 		freq = ieee80211_channel_to_frequency(ch, band);
299 
300 		if (freq == 0) /* mapping failed - not a standard channel */
301 			continue;
302 
303 		/* Check if channel is supported by the chipset */
304 		if (!ath5k_channel_ok(ah, freq, chfreq))
305 			continue;
306 
307 		if (!modparam_all_channels &&
308 		    !ath5k_is_standard_channel(ch, band))
309 			continue;
310 
311 		/* Write channel info and increment counter */
312 		channels[count].center_freq = freq;
313 		channels[count].band = band;
314 		switch (mode) {
315 		case AR5K_MODE_11A:
316 		case AR5K_MODE_11G:
317 			channels[count].hw_value = chfreq | CHANNEL_OFDM;
318 			break;
319 		case AR5K_MODE_11B:
320 			channels[count].hw_value = CHANNEL_B;
321 		}
322 
323 		count++;
324 	}
325 
326 	return count;
327 }
328 
329 static void
330 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
331 {
332 	u8 i;
333 
334 	for (i = 0; i < AR5K_MAX_RATES; i++)
335 		ah->rate_idx[b->band][i] = -1;
336 
337 	for (i = 0; i < b->n_bitrates; i++) {
338 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
339 		if (b->bitrates[i].hw_value_short)
340 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
341 	}
342 }
343 
344 static int
345 ath5k_setup_bands(struct ieee80211_hw *hw)
346 {
347 	struct ath5k_hw *ah = hw->priv;
348 	struct ieee80211_supported_band *sband;
349 	int max_c, count_c = 0;
350 	int i;
351 
352 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
353 	max_c = ARRAY_SIZE(ah->channels);
354 
355 	/* 2GHz band */
356 	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
357 	sband->band = IEEE80211_BAND_2GHZ;
358 	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
359 
360 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
361 		/* G mode */
362 		memcpy(sband->bitrates, &ath5k_rates[0],
363 		       sizeof(struct ieee80211_rate) * 12);
364 		sband->n_bitrates = 12;
365 
366 		sband->channels = ah->channels;
367 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
368 					AR5K_MODE_11G, max_c);
369 
370 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
371 		count_c = sband->n_channels;
372 		max_c -= count_c;
373 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
374 		/* B mode */
375 		memcpy(sband->bitrates, &ath5k_rates[0],
376 		       sizeof(struct ieee80211_rate) * 4);
377 		sband->n_bitrates = 4;
378 
379 		/* 5211 only supports B rates and uses 4bit rate codes
380 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
381 		 * fix them up here:
382 		 */
383 		if (ah->ah_version == AR5K_AR5211) {
384 			for (i = 0; i < 4; i++) {
385 				sband->bitrates[i].hw_value =
386 					sband->bitrates[i].hw_value & 0xF;
387 				sband->bitrates[i].hw_value_short =
388 					sband->bitrates[i].hw_value_short & 0xF;
389 			}
390 		}
391 
392 		sband->channels = ah->channels;
393 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
394 					AR5K_MODE_11B, max_c);
395 
396 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
397 		count_c = sband->n_channels;
398 		max_c -= count_c;
399 	}
400 	ath5k_setup_rate_idx(ah, sband);
401 
402 	/* 5GHz band, A mode */
403 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
404 		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
405 		sband->band = IEEE80211_BAND_5GHZ;
406 		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
407 
408 		memcpy(sband->bitrates, &ath5k_rates[4],
409 		       sizeof(struct ieee80211_rate) * 8);
410 		sband->n_bitrates = 8;
411 
412 		sband->channels = &ah->channels[count_c];
413 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
414 					AR5K_MODE_11A, max_c);
415 
416 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
417 	}
418 	ath5k_setup_rate_idx(ah, sband);
419 
420 	ath5k_debug_dump_bands(ah);
421 
422 	return 0;
423 }
424 
425 /*
426  * Set/change channels. We always reset the chip.
427  * To accomplish this we must first cleanup any pending DMA,
428  * then restart stuff after a la  ath5k_init.
429  *
430  * Called with ah->lock.
431  */
432 int
433 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
434 {
435 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
436 		  "channel set, resetting (%u -> %u MHz)\n",
437 		  ah->curchan->center_freq, chan->center_freq);
438 
439 	/*
440 	 * To switch channels clear any pending DMA operations;
441 	 * wait long enough for the RX fifo to drain, reset the
442 	 * hardware at the new frequency, and then re-enable
443 	 * the relevant bits of the h/w.
444 	 */
445 	return ath5k_reset(ah, chan, true);
446 }
447 
448 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
449 {
450 	struct ath5k_vif_iter_data *iter_data = data;
451 	int i;
452 	struct ath5k_vif *avf = (void *)vif->drv_priv;
453 
454 	if (iter_data->hw_macaddr)
455 		for (i = 0; i < ETH_ALEN; i++)
456 			iter_data->mask[i] &=
457 				~(iter_data->hw_macaddr[i] ^ mac[i]);
458 
459 	if (!iter_data->found_active) {
460 		iter_data->found_active = true;
461 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
462 	}
463 
464 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
465 		if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
466 			iter_data->need_set_hw_addr = false;
467 
468 	if (!iter_data->any_assoc) {
469 		if (avf->assoc)
470 			iter_data->any_assoc = true;
471 	}
472 
473 	/* Calculate combined mode - when APs are active, operate in AP mode.
474 	 * Otherwise use the mode of the new interface. This can currently
475 	 * only deal with combinations of APs and STAs. Only one ad-hoc
476 	 * interfaces is allowed.
477 	 */
478 	if (avf->opmode == NL80211_IFTYPE_AP)
479 		iter_data->opmode = NL80211_IFTYPE_AP;
480 	else {
481 		if (avf->opmode == NL80211_IFTYPE_STATION)
482 			iter_data->n_stas++;
483 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
484 			iter_data->opmode = avf->opmode;
485 	}
486 }
487 
488 void
489 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
490 				   struct ieee80211_vif *vif)
491 {
492 	struct ath_common *common = ath5k_hw_common(ah);
493 	struct ath5k_vif_iter_data iter_data;
494 	u32 rfilt;
495 
496 	/*
497 	 * Use the hardware MAC address as reference, the hardware uses it
498 	 * together with the BSSID mask when matching addresses.
499 	 */
500 	iter_data.hw_macaddr = common->macaddr;
501 	memset(&iter_data.mask, 0xff, ETH_ALEN);
502 	iter_data.found_active = false;
503 	iter_data.need_set_hw_addr = true;
504 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
505 	iter_data.n_stas = 0;
506 
507 	if (vif)
508 		ath5k_vif_iter(&iter_data, vif->addr, vif);
509 
510 	/* Get list of all active MAC addresses */
511 	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
512 						   &iter_data);
513 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
514 
515 	ah->opmode = iter_data.opmode;
516 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
517 		/* Nothing active, default to station mode */
518 		ah->opmode = NL80211_IFTYPE_STATION;
519 
520 	ath5k_hw_set_opmode(ah, ah->opmode);
521 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
522 		  ah->opmode, ath_opmode_to_string(ah->opmode));
523 
524 	if (iter_data.need_set_hw_addr && iter_data.found_active)
525 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
526 
527 	if (ath5k_hw_hasbssidmask(ah))
528 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
529 
530 	/* Set up RX Filter */
531 	if (iter_data.n_stas > 1) {
532 		/* If you have multiple STA interfaces connected to
533 		 * different APs, ARPs are not received (most of the time?)
534 		 * Enabling PROMISC appears to fix that problem.
535 		 */
536 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
537 	}
538 
539 	rfilt = ah->filter_flags;
540 	ath5k_hw_set_rx_filter(ah, rfilt);
541 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
542 }
543 
544 static inline int
545 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
546 {
547 	int rix;
548 
549 	/* return base rate on errors */
550 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
551 			"hw_rix out of bounds: %x\n", hw_rix))
552 		return 0;
553 
554 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
555 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
556 		rix = 0;
557 
558 	return rix;
559 }
560 
561 /***************\
562 * Buffers setup *
563 \***************/
564 
565 static
566 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
567 {
568 	struct ath_common *common = ath5k_hw_common(ah);
569 	struct sk_buff *skb;
570 
571 	/*
572 	 * Allocate buffer with headroom_needed space for the
573 	 * fake physical layer header at the start.
574 	 */
575 	skb = ath_rxbuf_alloc(common,
576 			      common->rx_bufsize,
577 			      GFP_ATOMIC);
578 
579 	if (!skb) {
580 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
581 				common->rx_bufsize);
582 		return NULL;
583 	}
584 
585 	*skb_addr = dma_map_single(ah->dev,
586 				   skb->data, common->rx_bufsize,
587 				   DMA_FROM_DEVICE);
588 
589 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
590 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
591 		dev_kfree_skb(skb);
592 		return NULL;
593 	}
594 	return skb;
595 }
596 
597 static int
598 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
599 {
600 	struct sk_buff *skb = bf->skb;
601 	struct ath5k_desc *ds;
602 	int ret;
603 
604 	if (!skb) {
605 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
606 		if (!skb)
607 			return -ENOMEM;
608 		bf->skb = skb;
609 	}
610 
611 	/*
612 	 * Setup descriptors.  For receive we always terminate
613 	 * the descriptor list with a self-linked entry so we'll
614 	 * not get overrun under high load (as can happen with a
615 	 * 5212 when ANI processing enables PHY error frames).
616 	 *
617 	 * To ensure the last descriptor is self-linked we create
618 	 * each descriptor as self-linked and add it to the end.  As
619 	 * each additional descriptor is added the previous self-linked
620 	 * entry is "fixed" naturally.  This should be safe even
621 	 * if DMA is happening.  When processing RX interrupts we
622 	 * never remove/process the last, self-linked, entry on the
623 	 * descriptor list.  This ensures the hardware always has
624 	 * someplace to write a new frame.
625 	 */
626 	ds = bf->desc;
627 	ds->ds_link = bf->daddr;	/* link to self */
628 	ds->ds_data = bf->skbaddr;
629 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
630 	if (ret) {
631 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
632 		return ret;
633 	}
634 
635 	if (ah->rxlink != NULL)
636 		*ah->rxlink = bf->daddr;
637 	ah->rxlink = &ds->ds_link;
638 	return 0;
639 }
640 
641 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
642 {
643 	struct ieee80211_hdr *hdr;
644 	enum ath5k_pkt_type htype;
645 	__le16 fc;
646 
647 	hdr = (struct ieee80211_hdr *)skb->data;
648 	fc = hdr->frame_control;
649 
650 	if (ieee80211_is_beacon(fc))
651 		htype = AR5K_PKT_TYPE_BEACON;
652 	else if (ieee80211_is_probe_resp(fc))
653 		htype = AR5K_PKT_TYPE_PROBE_RESP;
654 	else if (ieee80211_is_atim(fc))
655 		htype = AR5K_PKT_TYPE_ATIM;
656 	else if (ieee80211_is_pspoll(fc))
657 		htype = AR5K_PKT_TYPE_PSPOLL;
658 	else
659 		htype = AR5K_PKT_TYPE_NORMAL;
660 
661 	return htype;
662 }
663 
664 static int
665 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
666 		  struct ath5k_txq *txq, int padsize)
667 {
668 	struct ath5k_desc *ds = bf->desc;
669 	struct sk_buff *skb = bf->skb;
670 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
671 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
672 	struct ieee80211_rate *rate;
673 	unsigned int mrr_rate[3], mrr_tries[3];
674 	int i, ret;
675 	u16 hw_rate;
676 	u16 cts_rate = 0;
677 	u16 duration = 0;
678 	u8 rc_flags;
679 
680 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
681 
682 	/* XXX endianness */
683 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
684 			DMA_TO_DEVICE);
685 
686 	rate = ieee80211_get_tx_rate(ah->hw, info);
687 	if (!rate) {
688 		ret = -EINVAL;
689 		goto err_unmap;
690 	}
691 
692 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
693 		flags |= AR5K_TXDESC_NOACK;
694 
695 	rc_flags = info->control.rates[0].flags;
696 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
697 		rate->hw_value_short : rate->hw_value;
698 
699 	pktlen = skb->len;
700 
701 	/* FIXME: If we are in g mode and rate is a CCK rate
702 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
703 	 * from tx power (value is in dB units already) */
704 	if (info->control.hw_key) {
705 		keyidx = info->control.hw_key->hw_key_idx;
706 		pktlen += info->control.hw_key->icv_len;
707 	}
708 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
709 		flags |= AR5K_TXDESC_RTSENA;
710 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
711 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
712 			info->control.vif, pktlen, info));
713 	}
714 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
715 		flags |= AR5K_TXDESC_CTSENA;
716 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
717 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
718 			info->control.vif, pktlen, info));
719 	}
720 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
721 		ieee80211_get_hdrlen_from_skb(skb), padsize,
722 		get_hw_packet_type(skb),
723 		(ah->power_level * 2),
724 		hw_rate,
725 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
726 		cts_rate, duration);
727 	if (ret)
728 		goto err_unmap;
729 
730 	memset(mrr_rate, 0, sizeof(mrr_rate));
731 	memset(mrr_tries, 0, sizeof(mrr_tries));
732 	for (i = 0; i < 3; i++) {
733 		rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
734 		if (!rate)
735 			break;
736 
737 		mrr_rate[i] = rate->hw_value;
738 		mrr_tries[i] = info->control.rates[i + 1].count;
739 	}
740 
741 	ath5k_hw_setup_mrr_tx_desc(ah, ds,
742 		mrr_rate[0], mrr_tries[0],
743 		mrr_rate[1], mrr_tries[1],
744 		mrr_rate[2], mrr_tries[2]);
745 
746 	ds->ds_link = 0;
747 	ds->ds_data = bf->skbaddr;
748 
749 	spin_lock_bh(&txq->lock);
750 	list_add_tail(&bf->list, &txq->q);
751 	txq->txq_len++;
752 	if (txq->link == NULL) /* is this first packet? */
753 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
754 	else /* no, so only link it */
755 		*txq->link = bf->daddr;
756 
757 	txq->link = &ds->ds_link;
758 	ath5k_hw_start_tx_dma(ah, txq->qnum);
759 	mmiowb();
760 	spin_unlock_bh(&txq->lock);
761 
762 	return 0;
763 err_unmap:
764 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
765 	return ret;
766 }
767 
768 /*******************\
769 * Descriptors setup *
770 \*******************/
771 
772 static int
773 ath5k_desc_alloc(struct ath5k_hw *ah)
774 {
775 	struct ath5k_desc *ds;
776 	struct ath5k_buf *bf;
777 	dma_addr_t da;
778 	unsigned int i;
779 	int ret;
780 
781 	/* allocate descriptors */
782 	ah->desc_len = sizeof(struct ath5k_desc) *
783 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
784 
785 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
786 				&ah->desc_daddr, GFP_KERNEL);
787 	if (ah->desc == NULL) {
788 		ATH5K_ERR(ah, "can't allocate descriptors\n");
789 		ret = -ENOMEM;
790 		goto err;
791 	}
792 	ds = ah->desc;
793 	da = ah->desc_daddr;
794 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
795 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
796 
797 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
798 			sizeof(struct ath5k_buf), GFP_KERNEL);
799 	if (bf == NULL) {
800 		ATH5K_ERR(ah, "can't allocate bufptr\n");
801 		ret = -ENOMEM;
802 		goto err_free;
803 	}
804 	ah->bufptr = bf;
805 
806 	INIT_LIST_HEAD(&ah->rxbuf);
807 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
808 		bf->desc = ds;
809 		bf->daddr = da;
810 		list_add_tail(&bf->list, &ah->rxbuf);
811 	}
812 
813 	INIT_LIST_HEAD(&ah->txbuf);
814 	ah->txbuf_len = ATH_TXBUF;
815 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
816 		bf->desc = ds;
817 		bf->daddr = da;
818 		list_add_tail(&bf->list, &ah->txbuf);
819 	}
820 
821 	/* beacon buffers */
822 	INIT_LIST_HEAD(&ah->bcbuf);
823 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
824 		bf->desc = ds;
825 		bf->daddr = da;
826 		list_add_tail(&bf->list, &ah->bcbuf);
827 	}
828 
829 	return 0;
830 err_free:
831 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
832 err:
833 	ah->desc = NULL;
834 	return ret;
835 }
836 
837 void
838 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
839 {
840 	BUG_ON(!bf);
841 	if (!bf->skb)
842 		return;
843 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
844 			DMA_TO_DEVICE);
845 	dev_kfree_skb_any(bf->skb);
846 	bf->skb = NULL;
847 	bf->skbaddr = 0;
848 	bf->desc->ds_data = 0;
849 }
850 
851 void
852 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
853 {
854 	struct ath_common *common = ath5k_hw_common(ah);
855 
856 	BUG_ON(!bf);
857 	if (!bf->skb)
858 		return;
859 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
860 			DMA_FROM_DEVICE);
861 	dev_kfree_skb_any(bf->skb);
862 	bf->skb = NULL;
863 	bf->skbaddr = 0;
864 	bf->desc->ds_data = 0;
865 }
866 
867 static void
868 ath5k_desc_free(struct ath5k_hw *ah)
869 {
870 	struct ath5k_buf *bf;
871 
872 	list_for_each_entry(bf, &ah->txbuf, list)
873 		ath5k_txbuf_free_skb(ah, bf);
874 	list_for_each_entry(bf, &ah->rxbuf, list)
875 		ath5k_rxbuf_free_skb(ah, bf);
876 	list_for_each_entry(bf, &ah->bcbuf, list)
877 		ath5k_txbuf_free_skb(ah, bf);
878 
879 	/* Free memory associated with all descriptors */
880 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
881 	ah->desc = NULL;
882 	ah->desc_daddr = 0;
883 
884 	kfree(ah->bufptr);
885 	ah->bufptr = NULL;
886 }
887 
888 
889 /**************\
890 * Queues setup *
891 \**************/
892 
893 static struct ath5k_txq *
894 ath5k_txq_setup(struct ath5k_hw *ah,
895 		int qtype, int subtype)
896 {
897 	struct ath5k_txq *txq;
898 	struct ath5k_txq_info qi = {
899 		.tqi_subtype = subtype,
900 		/* XXX: default values not correct for B and XR channels,
901 		 * but who cares? */
902 		.tqi_aifs = AR5K_TUNE_AIFS,
903 		.tqi_cw_min = AR5K_TUNE_CWMIN,
904 		.tqi_cw_max = AR5K_TUNE_CWMAX
905 	};
906 	int qnum;
907 
908 	/*
909 	 * Enable interrupts only for EOL and DESC conditions.
910 	 * We mark tx descriptors to receive a DESC interrupt
911 	 * when a tx queue gets deep; otherwise we wait for the
912 	 * EOL to reap descriptors.  Note that this is done to
913 	 * reduce interrupt load and this only defers reaping
914 	 * descriptors, never transmitting frames.  Aside from
915 	 * reducing interrupts this also permits more concurrency.
916 	 * The only potential downside is if the tx queue backs
917 	 * up in which case the top half of the kernel may backup
918 	 * due to a lack of tx descriptors.
919 	 */
920 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
921 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
922 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
923 	if (qnum < 0) {
924 		/*
925 		 * NB: don't print a message, this happens
926 		 * normally on parts with too few tx queues
927 		 */
928 		return ERR_PTR(qnum);
929 	}
930 	if (qnum >= ARRAY_SIZE(ah->txqs)) {
931 		ATH5K_ERR(ah, "hw qnum %u out of range, max %tu!\n",
932 			qnum, ARRAY_SIZE(ah->txqs));
933 		ath5k_hw_release_tx_queue(ah, qnum);
934 		return ERR_PTR(-EINVAL);
935 	}
936 	txq = &ah->txqs[qnum];
937 	if (!txq->setup) {
938 		txq->qnum = qnum;
939 		txq->link = NULL;
940 		INIT_LIST_HEAD(&txq->q);
941 		spin_lock_init(&txq->lock);
942 		txq->setup = true;
943 		txq->txq_len = 0;
944 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
945 		txq->txq_poll_mark = false;
946 		txq->txq_stuck = 0;
947 	}
948 	return &ah->txqs[qnum];
949 }
950 
951 static int
952 ath5k_beaconq_setup(struct ath5k_hw *ah)
953 {
954 	struct ath5k_txq_info qi = {
955 		/* XXX: default values not correct for B and XR channels,
956 		 * but who cares? */
957 		.tqi_aifs = AR5K_TUNE_AIFS,
958 		.tqi_cw_min = AR5K_TUNE_CWMIN,
959 		.tqi_cw_max = AR5K_TUNE_CWMAX,
960 		/* NB: for dynamic turbo, don't enable any other interrupts */
961 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
962 	};
963 
964 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
965 }
966 
967 static int
968 ath5k_beaconq_config(struct ath5k_hw *ah)
969 {
970 	struct ath5k_txq_info qi;
971 	int ret;
972 
973 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
974 	if (ret)
975 		goto err;
976 
977 	if (ah->opmode == NL80211_IFTYPE_AP ||
978 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
979 		/*
980 		 * Always burst out beacon and CAB traffic
981 		 * (aifs = cwmin = cwmax = 0)
982 		 */
983 		qi.tqi_aifs = 0;
984 		qi.tqi_cw_min = 0;
985 		qi.tqi_cw_max = 0;
986 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
987 		/*
988 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
989 		 */
990 		qi.tqi_aifs = 0;
991 		qi.tqi_cw_min = 0;
992 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
993 	}
994 
995 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
996 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
997 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
998 
999 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1000 	if (ret) {
1001 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1002 			"hardware queue!\n", __func__);
1003 		goto err;
1004 	}
1005 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1006 	if (ret)
1007 		goto err;
1008 
1009 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1010 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1011 	if (ret)
1012 		goto err;
1013 
1014 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1015 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1016 	if (ret)
1017 		goto err;
1018 
1019 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1020 err:
1021 	return ret;
1022 }
1023 
1024 /**
1025  * ath5k_drain_tx_buffs - Empty tx buffers
1026  *
1027  * @ah The &struct ath5k_hw
1028  *
1029  * Empty tx buffers from all queues in preparation
1030  * of a reset or during shutdown.
1031  *
1032  * NB:	this assumes output has been stopped and
1033  *	we do not need to block ath5k_tx_tasklet
1034  */
1035 static void
1036 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1037 {
1038 	struct ath5k_txq *txq;
1039 	struct ath5k_buf *bf, *bf0;
1040 	int i;
1041 
1042 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1043 		if (ah->txqs[i].setup) {
1044 			txq = &ah->txqs[i];
1045 			spin_lock_bh(&txq->lock);
1046 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1047 				ath5k_debug_printtxbuf(ah, bf);
1048 
1049 				ath5k_txbuf_free_skb(ah, bf);
1050 
1051 				spin_lock_bh(&ah->txbuflock);
1052 				list_move_tail(&bf->list, &ah->txbuf);
1053 				ah->txbuf_len++;
1054 				txq->txq_len--;
1055 				spin_unlock_bh(&ah->txbuflock);
1056 			}
1057 			txq->link = NULL;
1058 			txq->txq_poll_mark = false;
1059 			spin_unlock_bh(&txq->lock);
1060 		}
1061 	}
1062 }
1063 
1064 static void
1065 ath5k_txq_release(struct ath5k_hw *ah)
1066 {
1067 	struct ath5k_txq *txq = ah->txqs;
1068 	unsigned int i;
1069 
1070 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1071 		if (txq->setup) {
1072 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1073 			txq->setup = false;
1074 		}
1075 }
1076 
1077 
1078 /*************\
1079 * RX Handling *
1080 \*************/
1081 
1082 /*
1083  * Enable the receive h/w following a reset.
1084  */
1085 static int
1086 ath5k_rx_start(struct ath5k_hw *ah)
1087 {
1088 	struct ath_common *common = ath5k_hw_common(ah);
1089 	struct ath5k_buf *bf;
1090 	int ret;
1091 
1092 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1093 
1094 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1095 		  common->cachelsz, common->rx_bufsize);
1096 
1097 	spin_lock_bh(&ah->rxbuflock);
1098 	ah->rxlink = NULL;
1099 	list_for_each_entry(bf, &ah->rxbuf, list) {
1100 		ret = ath5k_rxbuf_setup(ah, bf);
1101 		if (ret != 0) {
1102 			spin_unlock_bh(&ah->rxbuflock);
1103 			goto err;
1104 		}
1105 	}
1106 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1107 	ath5k_hw_set_rxdp(ah, bf->daddr);
1108 	spin_unlock_bh(&ah->rxbuflock);
1109 
1110 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1111 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1112 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1113 
1114 	return 0;
1115 err:
1116 	return ret;
1117 }
1118 
1119 /*
1120  * Disable the receive logic on PCU (DRU)
1121  * In preparation for a shutdown.
1122  *
1123  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1124  * does.
1125  */
1126 static void
1127 ath5k_rx_stop(struct ath5k_hw *ah)
1128 {
1129 
1130 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1131 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1132 
1133 	ath5k_debug_printrxbuffs(ah);
1134 }
1135 
1136 static unsigned int
1137 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1138 		   struct ath5k_rx_status *rs)
1139 {
1140 	struct ath_common *common = ath5k_hw_common(ah);
1141 	struct ieee80211_hdr *hdr = (void *)skb->data;
1142 	unsigned int keyix, hlen;
1143 
1144 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1145 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1146 		return RX_FLAG_DECRYPTED;
1147 
1148 	/* Apparently when a default key is used to decrypt the packet
1149 	   the hw does not set the index used to decrypt.  In such cases
1150 	   get the index from the packet. */
1151 	hlen = ieee80211_hdrlen(hdr->frame_control);
1152 	if (ieee80211_has_protected(hdr->frame_control) &&
1153 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1154 	    skb->len >= hlen + 4) {
1155 		keyix = skb->data[hlen + 3] >> 6;
1156 
1157 		if (test_bit(keyix, common->keymap))
1158 			return RX_FLAG_DECRYPTED;
1159 	}
1160 
1161 	return 0;
1162 }
1163 
1164 
1165 static void
1166 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1167 		     struct ieee80211_rx_status *rxs)
1168 {
1169 	struct ath_common *common = ath5k_hw_common(ah);
1170 	u64 tsf, bc_tstamp;
1171 	u32 hw_tu;
1172 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1173 
1174 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1175 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1176 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1177 		/*
1178 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1179 		 * have updated the local TSF. We have to work around various
1180 		 * hardware bugs, though...
1181 		 */
1182 		tsf = ath5k_hw_get_tsf64(ah);
1183 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1184 		hw_tu = TSF_TO_TU(tsf);
1185 
1186 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1187 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1188 			(unsigned long long)bc_tstamp,
1189 			(unsigned long long)rxs->mactime,
1190 			(unsigned long long)(rxs->mactime - bc_tstamp),
1191 			(unsigned long long)tsf);
1192 
1193 		/*
1194 		 * Sometimes the HW will give us a wrong tstamp in the rx
1195 		 * status, causing the timestamp extension to go wrong.
1196 		 * (This seems to happen especially with beacon frames bigger
1197 		 * than 78 byte (incl. FCS))
1198 		 * But we know that the receive timestamp must be later than the
1199 		 * timestamp of the beacon since HW must have synced to that.
1200 		 *
1201 		 * NOTE: here we assume mactime to be after the frame was
1202 		 * received, not like mac80211 which defines it at the start.
1203 		 */
1204 		if (bc_tstamp > rxs->mactime) {
1205 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1206 				"fixing mactime from %llx to %llx\n",
1207 				(unsigned long long)rxs->mactime,
1208 				(unsigned long long)tsf);
1209 			rxs->mactime = tsf;
1210 		}
1211 
1212 		/*
1213 		 * Local TSF might have moved higher than our beacon timers,
1214 		 * in that case we have to update them to continue sending
1215 		 * beacons. This also takes care of synchronizing beacon sending
1216 		 * times with other stations.
1217 		 */
1218 		if (hw_tu >= ah->nexttbtt)
1219 			ath5k_beacon_update_timers(ah, bc_tstamp);
1220 
1221 		/* Check if the beacon timers are still correct, because a TSF
1222 		 * update might have created a window between them - for a
1223 		 * longer description see the comment of this function: */
1224 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1225 			ath5k_beacon_update_timers(ah, bc_tstamp);
1226 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1227 				"fixed beacon timers after beacon receive\n");
1228 		}
1229 	}
1230 }
1231 
1232 static void
1233 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1234 {
1235 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1236 	struct ath_common *common = ath5k_hw_common(ah);
1237 
1238 	/* only beacons from our BSSID */
1239 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1240 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1241 		return;
1242 
1243 	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1244 
1245 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1246 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1247 }
1248 
1249 /*
1250  * Compute padding position. skb must contain an IEEE 802.11 frame
1251  */
1252 static int ath5k_common_padpos(struct sk_buff *skb)
1253 {
1254 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1255 	__le16 frame_control = hdr->frame_control;
1256 	int padpos = 24;
1257 
1258 	if (ieee80211_has_a4(frame_control))
1259 		padpos += ETH_ALEN;
1260 
1261 	if (ieee80211_is_data_qos(frame_control))
1262 		padpos += IEEE80211_QOS_CTL_LEN;
1263 
1264 	return padpos;
1265 }
1266 
1267 /*
1268  * This function expects an 802.11 frame and returns the number of
1269  * bytes added, or -1 if we don't have enough header room.
1270  */
1271 static int ath5k_add_padding(struct sk_buff *skb)
1272 {
1273 	int padpos = ath5k_common_padpos(skb);
1274 	int padsize = padpos & 3;
1275 
1276 	if (padsize && skb->len > padpos) {
1277 
1278 		if (skb_headroom(skb) < padsize)
1279 			return -1;
1280 
1281 		skb_push(skb, padsize);
1282 		memmove(skb->data, skb->data + padsize, padpos);
1283 		return padsize;
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 /*
1290  * The MAC header is padded to have 32-bit boundary if the
1291  * packet payload is non-zero. The general calculation for
1292  * padsize would take into account odd header lengths:
1293  * padsize = 4 - (hdrlen & 3); however, since only
1294  * even-length headers are used, padding can only be 0 or 2
1295  * bytes and we can optimize this a bit.  We must not try to
1296  * remove padding from short control frames that do not have a
1297  * payload.
1298  *
1299  * This function expects an 802.11 frame and returns the number of
1300  * bytes removed.
1301  */
1302 static int ath5k_remove_padding(struct sk_buff *skb)
1303 {
1304 	int padpos = ath5k_common_padpos(skb);
1305 	int padsize = padpos & 3;
1306 
1307 	if (padsize && skb->len >= padpos + padsize) {
1308 		memmove(skb->data + padsize, skb->data, padpos);
1309 		skb_pull(skb, padsize);
1310 		return padsize;
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 static void
1317 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1318 		    struct ath5k_rx_status *rs)
1319 {
1320 	struct ieee80211_rx_status *rxs;
1321 
1322 	ath5k_remove_padding(skb);
1323 
1324 	rxs = IEEE80211_SKB_RXCB(skb);
1325 
1326 	rxs->flag = 0;
1327 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1328 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1329 
1330 	/*
1331 	 * always extend the mac timestamp, since this information is
1332 	 * also needed for proper IBSS merging.
1333 	 *
1334 	 * XXX: it might be too late to do it here, since rs_tstamp is
1335 	 * 15bit only. that means TSF extension has to be done within
1336 	 * 32768usec (about 32ms). it might be necessary to move this to
1337 	 * the interrupt handler, like it is done in madwifi.
1338 	 *
1339 	 * Unfortunately we don't know when the hardware takes the rx
1340 	 * timestamp (beginning of phy frame, data frame, end of rx?).
1341 	 * The only thing we know is that it is hardware specific...
1342 	 * On AR5213 it seems the rx timestamp is at the end of the
1343 	 * frame, but I'm not sure.
1344 	 *
1345 	 * NOTE: mac80211 defines mactime at the beginning of the first
1346 	 * data symbol. Since we don't have any time references it's
1347 	 * impossible to comply to that. This affects IBSS merge only
1348 	 * right now, so it's not too bad...
1349 	 */
1350 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1351 	rxs->flag |= RX_FLAG_MACTIME_MPDU;
1352 
1353 	rxs->freq = ah->curchan->center_freq;
1354 	rxs->band = ah->curchan->band;
1355 
1356 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1357 
1358 	rxs->antenna = rs->rs_antenna;
1359 
1360 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1361 		ah->stats.antenna_rx[rs->rs_antenna]++;
1362 	else
1363 		ah->stats.antenna_rx[0]++; /* invalid */
1364 
1365 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1366 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1367 
1368 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1369 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1370 		rxs->flag |= RX_FLAG_SHORTPRE;
1371 
1372 	trace_ath5k_rx(ah, skb);
1373 
1374 	ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1375 
1376 	/* check beacons in IBSS mode */
1377 	if (ah->opmode == NL80211_IFTYPE_ADHOC)
1378 		ath5k_check_ibss_tsf(ah, skb, rxs);
1379 
1380 	ieee80211_rx(ah->hw, skb);
1381 }
1382 
1383 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1384  *
1385  * Check if we want to further process this frame or not. Also update
1386  * statistics. Return true if we want this frame, false if not.
1387  */
1388 static bool
1389 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1390 {
1391 	ah->stats.rx_all_count++;
1392 	ah->stats.rx_bytes_count += rs->rs_datalen;
1393 
1394 	if (unlikely(rs->rs_status)) {
1395 		if (rs->rs_status & AR5K_RXERR_CRC)
1396 			ah->stats.rxerr_crc++;
1397 		if (rs->rs_status & AR5K_RXERR_FIFO)
1398 			ah->stats.rxerr_fifo++;
1399 		if (rs->rs_status & AR5K_RXERR_PHY) {
1400 			ah->stats.rxerr_phy++;
1401 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1402 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1403 			return false;
1404 		}
1405 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1406 			/*
1407 			 * Decrypt error.  If the error occurred
1408 			 * because there was no hardware key, then
1409 			 * let the frame through so the upper layers
1410 			 * can process it.  This is necessary for 5210
1411 			 * parts which have no way to setup a ``clear''
1412 			 * key cache entry.
1413 			 *
1414 			 * XXX do key cache faulting
1415 			 */
1416 			ah->stats.rxerr_decrypt++;
1417 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1418 			    !(rs->rs_status & AR5K_RXERR_CRC))
1419 				return true;
1420 		}
1421 		if (rs->rs_status & AR5K_RXERR_MIC) {
1422 			ah->stats.rxerr_mic++;
1423 			return true;
1424 		}
1425 
1426 		/* reject any frames with non-crypto errors */
1427 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1428 			return false;
1429 	}
1430 
1431 	if (unlikely(rs->rs_more)) {
1432 		ah->stats.rxerr_jumbo++;
1433 		return false;
1434 	}
1435 	return true;
1436 }
1437 
1438 static void
1439 ath5k_set_current_imask(struct ath5k_hw *ah)
1440 {
1441 	enum ath5k_int imask;
1442 	unsigned long flags;
1443 
1444 	spin_lock_irqsave(&ah->irqlock, flags);
1445 	imask = ah->imask;
1446 	if (ah->rx_pending)
1447 		imask &= ~AR5K_INT_RX_ALL;
1448 	if (ah->tx_pending)
1449 		imask &= ~AR5K_INT_TX_ALL;
1450 	ath5k_hw_set_imr(ah, imask);
1451 	spin_unlock_irqrestore(&ah->irqlock, flags);
1452 }
1453 
1454 static void
1455 ath5k_tasklet_rx(unsigned long data)
1456 {
1457 	struct ath5k_rx_status rs = {};
1458 	struct sk_buff *skb, *next_skb;
1459 	dma_addr_t next_skb_addr;
1460 	struct ath5k_hw *ah = (void *)data;
1461 	struct ath_common *common = ath5k_hw_common(ah);
1462 	struct ath5k_buf *bf;
1463 	struct ath5k_desc *ds;
1464 	int ret;
1465 
1466 	spin_lock(&ah->rxbuflock);
1467 	if (list_empty(&ah->rxbuf)) {
1468 		ATH5K_WARN(ah, "empty rx buf pool\n");
1469 		goto unlock;
1470 	}
1471 	do {
1472 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1473 		BUG_ON(bf->skb == NULL);
1474 		skb = bf->skb;
1475 		ds = bf->desc;
1476 
1477 		/* bail if HW is still using self-linked descriptor */
1478 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1479 			break;
1480 
1481 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1482 		if (unlikely(ret == -EINPROGRESS))
1483 			break;
1484 		else if (unlikely(ret)) {
1485 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1486 			ah->stats.rxerr_proc++;
1487 			break;
1488 		}
1489 
1490 		if (ath5k_receive_frame_ok(ah, &rs)) {
1491 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1492 
1493 			/*
1494 			 * If we can't replace bf->skb with a new skb under
1495 			 * memory pressure, just skip this packet
1496 			 */
1497 			if (!next_skb)
1498 				goto next;
1499 
1500 			dma_unmap_single(ah->dev, bf->skbaddr,
1501 					 common->rx_bufsize,
1502 					 DMA_FROM_DEVICE);
1503 
1504 			skb_put(skb, rs.rs_datalen);
1505 
1506 			ath5k_receive_frame(ah, skb, &rs);
1507 
1508 			bf->skb = next_skb;
1509 			bf->skbaddr = next_skb_addr;
1510 		}
1511 next:
1512 		list_move_tail(&bf->list, &ah->rxbuf);
1513 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1514 unlock:
1515 	spin_unlock(&ah->rxbuflock);
1516 	ah->rx_pending = false;
1517 	ath5k_set_current_imask(ah);
1518 }
1519 
1520 
1521 /*************\
1522 * TX Handling *
1523 \*************/
1524 
1525 void
1526 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1527 	       struct ath5k_txq *txq)
1528 {
1529 	struct ath5k_hw *ah = hw->priv;
1530 	struct ath5k_buf *bf;
1531 	unsigned long flags;
1532 	int padsize;
1533 
1534 	trace_ath5k_tx(ah, skb, txq);
1535 
1536 	/*
1537 	 * The hardware expects the header padded to 4 byte boundaries.
1538 	 * If this is not the case, we add the padding after the header.
1539 	 */
1540 	padsize = ath5k_add_padding(skb);
1541 	if (padsize < 0) {
1542 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1543 			  " headroom to pad");
1544 		goto drop_packet;
1545 	}
1546 
1547 	if (txq->txq_len >= txq->txq_max &&
1548 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1549 		ieee80211_stop_queue(hw, txq->qnum);
1550 
1551 	spin_lock_irqsave(&ah->txbuflock, flags);
1552 	if (list_empty(&ah->txbuf)) {
1553 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1554 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1555 		ieee80211_stop_queues(hw);
1556 		goto drop_packet;
1557 	}
1558 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1559 	list_del(&bf->list);
1560 	ah->txbuf_len--;
1561 	if (list_empty(&ah->txbuf))
1562 		ieee80211_stop_queues(hw);
1563 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1564 
1565 	bf->skb = skb;
1566 
1567 	if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1568 		bf->skb = NULL;
1569 		spin_lock_irqsave(&ah->txbuflock, flags);
1570 		list_add_tail(&bf->list, &ah->txbuf);
1571 		ah->txbuf_len++;
1572 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1573 		goto drop_packet;
1574 	}
1575 	return;
1576 
1577 drop_packet:
1578 	dev_kfree_skb_any(skb);
1579 }
1580 
1581 static void
1582 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1583 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1584 {
1585 	struct ieee80211_tx_info *info;
1586 	u8 tries[3];
1587 	int i;
1588 
1589 	ah->stats.tx_all_count++;
1590 	ah->stats.tx_bytes_count += skb->len;
1591 	info = IEEE80211_SKB_CB(skb);
1592 
1593 	tries[0] = info->status.rates[0].count;
1594 	tries[1] = info->status.rates[1].count;
1595 	tries[2] = info->status.rates[2].count;
1596 
1597 	ieee80211_tx_info_clear_status(info);
1598 
1599 	for (i = 0; i < ts->ts_final_idx; i++) {
1600 		struct ieee80211_tx_rate *r =
1601 			&info->status.rates[i];
1602 
1603 		r->count = tries[i];
1604 	}
1605 
1606 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1607 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1608 
1609 	if (unlikely(ts->ts_status)) {
1610 		ah->stats.ack_fail++;
1611 		if (ts->ts_status & AR5K_TXERR_FILT) {
1612 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1613 			ah->stats.txerr_filt++;
1614 		}
1615 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1616 			ah->stats.txerr_retry++;
1617 		if (ts->ts_status & AR5K_TXERR_FIFO)
1618 			ah->stats.txerr_fifo++;
1619 	} else {
1620 		info->flags |= IEEE80211_TX_STAT_ACK;
1621 		info->status.ack_signal = ts->ts_rssi;
1622 
1623 		/* count the successful attempt as well */
1624 		info->status.rates[ts->ts_final_idx].count++;
1625 	}
1626 
1627 	/*
1628 	* Remove MAC header padding before giving the frame
1629 	* back to mac80211.
1630 	*/
1631 	ath5k_remove_padding(skb);
1632 
1633 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1634 		ah->stats.antenna_tx[ts->ts_antenna]++;
1635 	else
1636 		ah->stats.antenna_tx[0]++; /* invalid */
1637 
1638 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1639 	ieee80211_tx_status(ah->hw, skb);
1640 }
1641 
1642 static void
1643 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1644 {
1645 	struct ath5k_tx_status ts = {};
1646 	struct ath5k_buf *bf, *bf0;
1647 	struct ath5k_desc *ds;
1648 	struct sk_buff *skb;
1649 	int ret;
1650 
1651 	spin_lock(&txq->lock);
1652 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1653 
1654 		txq->txq_poll_mark = false;
1655 
1656 		/* skb might already have been processed last time. */
1657 		if (bf->skb != NULL) {
1658 			ds = bf->desc;
1659 
1660 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1661 			if (unlikely(ret == -EINPROGRESS))
1662 				break;
1663 			else if (unlikely(ret)) {
1664 				ATH5K_ERR(ah,
1665 					"error %d while processing "
1666 					"queue %u\n", ret, txq->qnum);
1667 				break;
1668 			}
1669 
1670 			skb = bf->skb;
1671 			bf->skb = NULL;
1672 
1673 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1674 					DMA_TO_DEVICE);
1675 			ath5k_tx_frame_completed(ah, skb, txq, &ts);
1676 		}
1677 
1678 		/*
1679 		 * It's possible that the hardware can say the buffer is
1680 		 * completed when it hasn't yet loaded the ds_link from
1681 		 * host memory and moved on.
1682 		 * Always keep the last descriptor to avoid HW races...
1683 		 */
1684 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1685 			spin_lock(&ah->txbuflock);
1686 			list_move_tail(&bf->list, &ah->txbuf);
1687 			ah->txbuf_len++;
1688 			txq->txq_len--;
1689 			spin_unlock(&ah->txbuflock);
1690 		}
1691 	}
1692 	spin_unlock(&txq->lock);
1693 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1694 		ieee80211_wake_queue(ah->hw, txq->qnum);
1695 }
1696 
1697 static void
1698 ath5k_tasklet_tx(unsigned long data)
1699 {
1700 	int i;
1701 	struct ath5k_hw *ah = (void *)data;
1702 
1703 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1704 		if (ah->txqs[i].setup && (ah->ah_txq_isr & BIT(i)))
1705 			ath5k_tx_processq(ah, &ah->txqs[i]);
1706 
1707 	ah->tx_pending = false;
1708 	ath5k_set_current_imask(ah);
1709 }
1710 
1711 
1712 /*****************\
1713 * Beacon handling *
1714 \*****************/
1715 
1716 /*
1717  * Setup the beacon frame for transmit.
1718  */
1719 static int
1720 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1721 {
1722 	struct sk_buff *skb = bf->skb;
1723 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1724 	struct ath5k_desc *ds;
1725 	int ret = 0;
1726 	u8 antenna;
1727 	u32 flags;
1728 	const int padsize = 0;
1729 
1730 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1731 			DMA_TO_DEVICE);
1732 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1733 			"skbaddr %llx\n", skb, skb->data, skb->len,
1734 			(unsigned long long)bf->skbaddr);
1735 
1736 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1737 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1738 		dev_kfree_skb_any(skb);
1739 		bf->skb = NULL;
1740 		return -EIO;
1741 	}
1742 
1743 	ds = bf->desc;
1744 	antenna = ah->ah_tx_ant;
1745 
1746 	flags = AR5K_TXDESC_NOACK;
1747 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1748 		ds->ds_link = bf->daddr;	/* self-linked */
1749 		flags |= AR5K_TXDESC_VEOL;
1750 	} else
1751 		ds->ds_link = 0;
1752 
1753 	/*
1754 	 * If we use multiple antennas on AP and use
1755 	 * the Sectored AP scenario, switch antenna every
1756 	 * 4 beacons to make sure everybody hears our AP.
1757 	 * When a client tries to associate, hw will keep
1758 	 * track of the tx antenna to be used for this client
1759 	 * automatically, based on ACKed packets.
1760 	 *
1761 	 * Note: AP still listens and transmits RTS on the
1762 	 * default antenna which is supposed to be an omni.
1763 	 *
1764 	 * Note2: On sectored scenarios it's possible to have
1765 	 * multiple antennas (1 omni -- the default -- and 14
1766 	 * sectors), so if we choose to actually support this
1767 	 * mode, we need to allow the user to set how many antennas
1768 	 * we have and tweak the code below to send beacons
1769 	 * on all of them.
1770 	 */
1771 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1772 		antenna = ah->bsent & 4 ? 2 : 1;
1773 
1774 
1775 	/* FIXME: If we are in g mode and rate is a CCK rate
1776 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1777 	 * from tx power (value is in dB units already) */
1778 	ds->ds_data = bf->skbaddr;
1779 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1780 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1781 			AR5K_PKT_TYPE_BEACON, (ah->power_level * 2),
1782 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1783 			1, AR5K_TXKEYIX_INVALID,
1784 			antenna, flags, 0, 0);
1785 	if (ret)
1786 		goto err_unmap;
1787 
1788 	return 0;
1789 err_unmap:
1790 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1791 	return ret;
1792 }
1793 
1794 /*
1795  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1796  * this is called only once at config_bss time, for AP we do it every
1797  * SWBA interrupt so that the TIM will reflect buffered frames.
1798  *
1799  * Called with the beacon lock.
1800  */
1801 int
1802 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1803 {
1804 	int ret;
1805 	struct ath5k_hw *ah = hw->priv;
1806 	struct ath5k_vif *avf = (void *)vif->drv_priv;
1807 	struct sk_buff *skb;
1808 
1809 	if (WARN_ON(!vif)) {
1810 		ret = -EINVAL;
1811 		goto out;
1812 	}
1813 
1814 	skb = ieee80211_beacon_get(hw, vif);
1815 
1816 	if (!skb) {
1817 		ret = -ENOMEM;
1818 		goto out;
1819 	}
1820 
1821 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1822 	avf->bbuf->skb = skb;
1823 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1824 out:
1825 	return ret;
1826 }
1827 
1828 /*
1829  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1830  * frame contents are done as needed and the slot time is
1831  * also adjusted based on current state.
1832  *
1833  * This is called from software irq context (beacontq tasklets)
1834  * or user context from ath5k_beacon_config.
1835  */
1836 static void
1837 ath5k_beacon_send(struct ath5k_hw *ah)
1838 {
1839 	struct ieee80211_vif *vif;
1840 	struct ath5k_vif *avf;
1841 	struct ath5k_buf *bf;
1842 	struct sk_buff *skb;
1843 	int err;
1844 
1845 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1846 
1847 	/*
1848 	 * Check if the previous beacon has gone out.  If
1849 	 * not, don't don't try to post another: skip this
1850 	 * period and wait for the next.  Missed beacons
1851 	 * indicate a problem and should not occur.  If we
1852 	 * miss too many consecutive beacons reset the device.
1853 	 */
1854 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1855 		ah->bmisscount++;
1856 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1857 			"missed %u consecutive beacons\n", ah->bmisscount);
1858 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1859 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1860 				"stuck beacon time (%u missed)\n",
1861 				ah->bmisscount);
1862 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1863 				  "stuck beacon, resetting\n");
1864 			ieee80211_queue_work(ah->hw, &ah->reset_work);
1865 		}
1866 		return;
1867 	}
1868 	if (unlikely(ah->bmisscount != 0)) {
1869 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1870 			"resume beacon xmit after %u misses\n",
1871 			ah->bmisscount);
1872 		ah->bmisscount = 0;
1873 	}
1874 
1875 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) ||
1876 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1877 		u64 tsf = ath5k_hw_get_tsf64(ah);
1878 		u32 tsftu = TSF_TO_TU(tsf);
1879 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1880 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1881 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1882 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1883 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1884 	} else /* only one interface */
1885 		vif = ah->bslot[0];
1886 
1887 	if (!vif)
1888 		return;
1889 
1890 	avf = (void *)vif->drv_priv;
1891 	bf = avf->bbuf;
1892 
1893 	/*
1894 	 * Stop any current dma and put the new frame on the queue.
1895 	 * This should never fail since we check above that no frames
1896 	 * are still pending on the queue.
1897 	 */
1898 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1899 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1900 		/* NB: hw still stops DMA, so proceed */
1901 	}
1902 
1903 	/* refresh the beacon for AP or MESH mode */
1904 	if (ah->opmode == NL80211_IFTYPE_AP ||
1905 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1906 		err = ath5k_beacon_update(ah->hw, vif);
1907 		if (err)
1908 			return;
1909 	}
1910 
1911 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1912 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1913 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1914 		return;
1915 	}
1916 
1917 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1918 
1919 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1920 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1921 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1922 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1923 
1924 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1925 	while (skb) {
1926 		ath5k_tx_queue(ah->hw, skb, ah->cabq);
1927 
1928 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1929 			break;
1930 
1931 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1932 	}
1933 
1934 	ah->bsent++;
1935 }
1936 
1937 /**
1938  * ath5k_beacon_update_timers - update beacon timers
1939  *
1940  * @ah: struct ath5k_hw pointer we are operating on
1941  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1942  *          beacon timer update based on the current HW TSF.
1943  *
1944  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1945  * of a received beacon or the current local hardware TSF and write it to the
1946  * beacon timer registers.
1947  *
1948  * This is called in a variety of situations, e.g. when a beacon is received,
1949  * when a TSF update has been detected, but also when an new IBSS is created or
1950  * when we otherwise know we have to update the timers, but we keep it in this
1951  * function to have it all together in one place.
1952  */
1953 void
1954 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1955 {
1956 	u32 nexttbtt, intval, hw_tu, bc_tu;
1957 	u64 hw_tsf;
1958 
1959 	intval = ah->bintval & AR5K_BEACON_PERIOD;
1960 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs > 1) {
1961 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
1962 		if (intval < 15)
1963 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1964 				   intval);
1965 	}
1966 	if (WARN_ON(!intval))
1967 		return;
1968 
1969 	/* beacon TSF converted to TU */
1970 	bc_tu = TSF_TO_TU(bc_tsf);
1971 
1972 	/* current TSF converted to TU */
1973 	hw_tsf = ath5k_hw_get_tsf64(ah);
1974 	hw_tu = TSF_TO_TU(hw_tsf);
1975 
1976 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1977 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1978 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1979 	 * configuration we need to make sure it is bigger than that. */
1980 
1981 	if (bc_tsf == -1) {
1982 		/*
1983 		 * no beacons received, called internally.
1984 		 * just need to refresh timers based on HW TSF.
1985 		 */
1986 		nexttbtt = roundup(hw_tu + FUDGE, intval);
1987 	} else if (bc_tsf == 0) {
1988 		/*
1989 		 * no beacon received, probably called by ath5k_reset_tsf().
1990 		 * reset TSF to start with 0.
1991 		 */
1992 		nexttbtt = intval;
1993 		intval |= AR5K_BEACON_RESET_TSF;
1994 	} else if (bc_tsf > hw_tsf) {
1995 		/*
1996 		 * beacon received, SW merge happened but HW TSF not yet updated.
1997 		 * not possible to reconfigure timers yet, but next time we
1998 		 * receive a beacon with the same BSSID, the hardware will
1999 		 * automatically update the TSF and then we need to reconfigure
2000 		 * the timers.
2001 		 */
2002 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2003 			"need to wait for HW TSF sync\n");
2004 		return;
2005 	} else {
2006 		/*
2007 		 * most important case for beacon synchronization between STA.
2008 		 *
2009 		 * beacon received and HW TSF has been already updated by HW.
2010 		 * update next TBTT based on the TSF of the beacon, but make
2011 		 * sure it is ahead of our local TSF timer.
2012 		 */
2013 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2014 	}
2015 #undef FUDGE
2016 
2017 	ah->nexttbtt = nexttbtt;
2018 
2019 	intval |= AR5K_BEACON_ENA;
2020 	ath5k_hw_init_beacon(ah, nexttbtt, intval);
2021 
2022 	/*
2023 	 * debugging output last in order to preserve the time critical aspect
2024 	 * of this function
2025 	 */
2026 	if (bc_tsf == -1)
2027 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2028 			"reconfigured timers based on HW TSF\n");
2029 	else if (bc_tsf == 0)
2030 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2031 			"reset HW TSF and timers\n");
2032 	else
2033 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2034 			"updated timers based on beacon TSF\n");
2035 
2036 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2037 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2038 			  (unsigned long long) bc_tsf,
2039 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2040 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2041 		intval & AR5K_BEACON_PERIOD,
2042 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2043 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2044 }
2045 
2046 /**
2047  * ath5k_beacon_config - Configure the beacon queues and interrupts
2048  *
2049  * @ah: struct ath5k_hw pointer we are operating on
2050  *
2051  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2052  * interrupts to detect TSF updates only.
2053  */
2054 void
2055 ath5k_beacon_config(struct ath5k_hw *ah)
2056 {
2057 	unsigned long flags;
2058 
2059 	spin_lock_irqsave(&ah->block, flags);
2060 	ah->bmisscount = 0;
2061 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2062 
2063 	if (ah->enable_beacon) {
2064 		/*
2065 		 * In IBSS mode we use a self-linked tx descriptor and let the
2066 		 * hardware send the beacons automatically. We have to load it
2067 		 * only once here.
2068 		 * We use the SWBA interrupt only to keep track of the beacon
2069 		 * timers in order to detect automatic TSF updates.
2070 		 */
2071 		ath5k_beaconq_config(ah);
2072 
2073 		ah->imask |= AR5K_INT_SWBA;
2074 
2075 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2076 			if (ath5k_hw_hasveol(ah))
2077 				ath5k_beacon_send(ah);
2078 		} else
2079 			ath5k_beacon_update_timers(ah, -1);
2080 	} else {
2081 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2082 	}
2083 
2084 	ath5k_hw_set_imr(ah, ah->imask);
2085 	mmiowb();
2086 	spin_unlock_irqrestore(&ah->block, flags);
2087 }
2088 
2089 static void ath5k_tasklet_beacon(unsigned long data)
2090 {
2091 	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2092 
2093 	/*
2094 	 * Software beacon alert--time to send a beacon.
2095 	 *
2096 	 * In IBSS mode we use this interrupt just to
2097 	 * keep track of the next TBTT (target beacon
2098 	 * transmission time) in order to detect whether
2099 	 * automatic TSF updates happened.
2100 	 */
2101 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2102 		/* XXX: only if VEOL supported */
2103 		u64 tsf = ath5k_hw_get_tsf64(ah);
2104 		ah->nexttbtt += ah->bintval;
2105 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2106 				"SWBA nexttbtt: %x hw_tu: %x "
2107 				"TSF: %llx\n",
2108 				ah->nexttbtt,
2109 				TSF_TO_TU(tsf),
2110 				(unsigned long long) tsf);
2111 	} else {
2112 		spin_lock(&ah->block);
2113 		ath5k_beacon_send(ah);
2114 		spin_unlock(&ah->block);
2115 	}
2116 }
2117 
2118 
2119 /********************\
2120 * Interrupt handling *
2121 \********************/
2122 
2123 static void
2124 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2125 {
2126 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2127 	    !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2128 		/* run ANI only when full calibration is not active */
2129 		ah->ah_cal_next_ani = jiffies +
2130 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2131 		tasklet_schedule(&ah->ani_tasklet);
2132 
2133 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2134 		ah->ah_cal_next_full = jiffies +
2135 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2136 		tasklet_schedule(&ah->calib);
2137 	}
2138 	/* we could use SWI to generate enough interrupts to meet our
2139 	 * calibration interval requirements, if necessary:
2140 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2141 }
2142 
2143 static void
2144 ath5k_schedule_rx(struct ath5k_hw *ah)
2145 {
2146 	ah->rx_pending = true;
2147 	tasklet_schedule(&ah->rxtq);
2148 }
2149 
2150 static void
2151 ath5k_schedule_tx(struct ath5k_hw *ah)
2152 {
2153 	ah->tx_pending = true;
2154 	tasklet_schedule(&ah->txtq);
2155 }
2156 
2157 static irqreturn_t
2158 ath5k_intr(int irq, void *dev_id)
2159 {
2160 	struct ath5k_hw *ah = dev_id;
2161 	enum ath5k_int status;
2162 	unsigned int counter = 1000;
2163 
2164 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2165 		((ath5k_get_bus_type(ah) != ATH_AHB) &&
2166 				!ath5k_hw_is_intr_pending(ah))))
2167 		return IRQ_NONE;
2168 
2169 	do {
2170 		ath5k_hw_get_isr(ah, &status);		/* NB: clears IRQ too */
2171 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2172 				status, ah->imask);
2173 		if (unlikely(status & AR5K_INT_FATAL)) {
2174 			/*
2175 			 * Fatal errors are unrecoverable.
2176 			 * Typically these are caused by DMA errors.
2177 			 */
2178 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2179 				  "fatal int, resetting\n");
2180 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2181 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2182 			/*
2183 			 * Receive buffers are full. Either the bus is busy or
2184 			 * the CPU is not fast enough to process all received
2185 			 * frames.
2186 			 * Older chipsets need a reset to come out of this
2187 			 * condition, but we treat it as RX for newer chips.
2188 			 * We don't know exactly which versions need a reset -
2189 			 * this guess is copied from the HAL.
2190 			 */
2191 			ah->stats.rxorn_intr++;
2192 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2193 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2194 					  "rx overrun, resetting\n");
2195 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2196 			} else
2197 				ath5k_schedule_rx(ah);
2198 		} else {
2199 			if (status & AR5K_INT_SWBA)
2200 				tasklet_hi_schedule(&ah->beacontq);
2201 
2202 			if (status & AR5K_INT_RXEOL) {
2203 				/*
2204 				* NB: the hardware should re-read the link when
2205 				*     RXE bit is written, but it doesn't work at
2206 				*     least on older hardware revs.
2207 				*/
2208 				ah->stats.rxeol_intr++;
2209 			}
2210 			if (status & AR5K_INT_TXURN) {
2211 				/* bump tx trigger level */
2212 				ath5k_hw_update_tx_triglevel(ah, true);
2213 			}
2214 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2215 				ath5k_schedule_rx(ah);
2216 			if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2217 					| AR5K_INT_TXERR | AR5K_INT_TXEOL))
2218 				ath5k_schedule_tx(ah);
2219 			if (status & AR5K_INT_BMISS) {
2220 				/* TODO */
2221 			}
2222 			if (status & AR5K_INT_MIB) {
2223 				ah->stats.mib_intr++;
2224 				ath5k_hw_update_mib_counters(ah);
2225 				ath5k_ani_mib_intr(ah);
2226 			}
2227 			if (status & AR5K_INT_GPIO)
2228 				tasklet_schedule(&ah->rf_kill.toggleq);
2229 
2230 		}
2231 
2232 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2233 			break;
2234 
2235 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2236 
2237 	if (ah->rx_pending || ah->tx_pending)
2238 		ath5k_set_current_imask(ah);
2239 
2240 	if (unlikely(!counter))
2241 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2242 
2243 	ath5k_intr_calibration_poll(ah);
2244 
2245 	return IRQ_HANDLED;
2246 }
2247 
2248 /*
2249  * Periodically recalibrate the PHY to account
2250  * for temperature/environment changes.
2251  */
2252 static void
2253 ath5k_tasklet_calibrate(unsigned long data)
2254 {
2255 	struct ath5k_hw *ah = (void *)data;
2256 
2257 	/* Only full calibration for now */
2258 	ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2259 
2260 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2261 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2262 		ah->curchan->hw_value);
2263 
2264 	if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2265 		/*
2266 		 * Rfgain is out of bounds, reset the chip
2267 		 * to load new gain values.
2268 		 */
2269 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2270 		ieee80211_queue_work(ah->hw, &ah->reset_work);
2271 	}
2272 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2273 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2274 			ieee80211_frequency_to_channel(
2275 				ah->curchan->center_freq));
2276 
2277 	/* Noise floor calibration interrupts rx/tx path while I/Q calibration
2278 	 * doesn't.
2279 	 * TODO: We should stop TX here, so that it doesn't interfere.
2280 	 * Note that stopping the queues is not enough to stop TX! */
2281 	if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2282 		ah->ah_cal_next_nf = jiffies +
2283 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2284 		ath5k_hw_update_noise_floor(ah);
2285 	}
2286 
2287 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2288 }
2289 
2290 
2291 static void
2292 ath5k_tasklet_ani(unsigned long data)
2293 {
2294 	struct ath5k_hw *ah = (void *)data;
2295 
2296 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2297 	ath5k_ani_calibration(ah);
2298 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2299 }
2300 
2301 
2302 static void
2303 ath5k_tx_complete_poll_work(struct work_struct *work)
2304 {
2305 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2306 			tx_complete_work.work);
2307 	struct ath5k_txq *txq;
2308 	int i;
2309 	bool needreset = false;
2310 
2311 	mutex_lock(&ah->lock);
2312 
2313 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2314 		if (ah->txqs[i].setup) {
2315 			txq = &ah->txqs[i];
2316 			spin_lock_bh(&txq->lock);
2317 			if (txq->txq_len > 1) {
2318 				if (txq->txq_poll_mark) {
2319 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2320 						  "TX queue stuck %d\n",
2321 						  txq->qnum);
2322 					needreset = true;
2323 					txq->txq_stuck++;
2324 					spin_unlock_bh(&txq->lock);
2325 					break;
2326 				} else {
2327 					txq->txq_poll_mark = true;
2328 				}
2329 			}
2330 			spin_unlock_bh(&txq->lock);
2331 		}
2332 	}
2333 
2334 	if (needreset) {
2335 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2336 			  "TX queues stuck, resetting\n");
2337 		ath5k_reset(ah, NULL, true);
2338 	}
2339 
2340 	mutex_unlock(&ah->lock);
2341 
2342 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2343 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2344 }
2345 
2346 
2347 /*************************\
2348 * Initialization routines *
2349 \*************************/
2350 
2351 int __devinit
2352 ath5k_init_softc(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2353 {
2354 	struct ieee80211_hw *hw = ah->hw;
2355 	struct ath_common *common;
2356 	int ret;
2357 	int csz;
2358 
2359 	/* Initialize driver private data */
2360 	SET_IEEE80211_DEV(hw, ah->dev);
2361 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2362 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2363 			IEEE80211_HW_SIGNAL_DBM |
2364 			IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2365 
2366 	hw->wiphy->interface_modes =
2367 		BIT(NL80211_IFTYPE_AP) |
2368 		BIT(NL80211_IFTYPE_STATION) |
2369 		BIT(NL80211_IFTYPE_ADHOC) |
2370 		BIT(NL80211_IFTYPE_MESH_POINT);
2371 
2372 	/* both antennas can be configured as RX or TX */
2373 	hw->wiphy->available_antennas_tx = 0x3;
2374 	hw->wiphy->available_antennas_rx = 0x3;
2375 
2376 	hw->extra_tx_headroom = 2;
2377 	hw->channel_change_time = 5000;
2378 
2379 	/*
2380 	 * Mark the device as detached to avoid processing
2381 	 * interrupts until setup is complete.
2382 	 */
2383 	__set_bit(ATH_STAT_INVALID, ah->status);
2384 
2385 	ah->opmode = NL80211_IFTYPE_STATION;
2386 	ah->bintval = 1000;
2387 	mutex_init(&ah->lock);
2388 	spin_lock_init(&ah->rxbuflock);
2389 	spin_lock_init(&ah->txbuflock);
2390 	spin_lock_init(&ah->block);
2391 	spin_lock_init(&ah->irqlock);
2392 
2393 	/* Setup interrupt handler */
2394 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2395 	if (ret) {
2396 		ATH5K_ERR(ah, "request_irq failed\n");
2397 		goto err;
2398 	}
2399 
2400 	common = ath5k_hw_common(ah);
2401 	common->ops = &ath5k_common_ops;
2402 	common->bus_ops = bus_ops;
2403 	common->ah = ah;
2404 	common->hw = hw;
2405 	common->priv = ah;
2406 	common->clockrate = 40;
2407 
2408 	/*
2409 	 * Cache line size is used to size and align various
2410 	 * structures used to communicate with the hardware.
2411 	 */
2412 	ath5k_read_cachesize(common, &csz);
2413 	common->cachelsz = csz << 2; /* convert to bytes */
2414 
2415 	spin_lock_init(&common->cc_lock);
2416 
2417 	/* Initialize device */
2418 	ret = ath5k_hw_init(ah);
2419 	if (ret)
2420 		goto err_irq;
2421 
2422 	/* set up multi-rate retry capabilities */
2423 	if (ah->ah_version == AR5K_AR5212) {
2424 		hw->max_rates = 4;
2425 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2426 					 AR5K_INIT_RETRY_LONG);
2427 	}
2428 
2429 	hw->vif_data_size = sizeof(struct ath5k_vif);
2430 
2431 	/* Finish private driver data initialization */
2432 	ret = ath5k_init(hw);
2433 	if (ret)
2434 		goto err_ah;
2435 
2436 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2437 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2438 					ah->ah_mac_srev,
2439 					ah->ah_phy_revision);
2440 
2441 	if (!ah->ah_single_chip) {
2442 		/* Single chip radio (!RF5111) */
2443 		if (ah->ah_radio_5ghz_revision &&
2444 			!ah->ah_radio_2ghz_revision) {
2445 			/* No 5GHz support -> report 2GHz radio */
2446 			if (!test_bit(AR5K_MODE_11A,
2447 				ah->ah_capabilities.cap_mode)) {
2448 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2449 					ath5k_chip_name(AR5K_VERSION_RAD,
2450 						ah->ah_radio_5ghz_revision),
2451 						ah->ah_radio_5ghz_revision);
2452 			/* No 2GHz support (5110 and some
2453 			 * 5GHz only cards) -> report 5GHz radio */
2454 			} else if (!test_bit(AR5K_MODE_11B,
2455 				ah->ah_capabilities.cap_mode)) {
2456 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2457 					ath5k_chip_name(AR5K_VERSION_RAD,
2458 						ah->ah_radio_5ghz_revision),
2459 						ah->ah_radio_5ghz_revision);
2460 			/* Multiband radio */
2461 			} else {
2462 				ATH5K_INFO(ah, "RF%s multiband radio found"
2463 					" (0x%x)\n",
2464 					ath5k_chip_name(AR5K_VERSION_RAD,
2465 						ah->ah_radio_5ghz_revision),
2466 						ah->ah_radio_5ghz_revision);
2467 			}
2468 		}
2469 		/* Multi chip radio (RF5111 - RF2111) ->
2470 		 * report both 2GHz/5GHz radios */
2471 		else if (ah->ah_radio_5ghz_revision &&
2472 				ah->ah_radio_2ghz_revision) {
2473 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2474 				ath5k_chip_name(AR5K_VERSION_RAD,
2475 					ah->ah_radio_5ghz_revision),
2476 					ah->ah_radio_5ghz_revision);
2477 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2478 				ath5k_chip_name(AR5K_VERSION_RAD,
2479 					ah->ah_radio_2ghz_revision),
2480 					ah->ah_radio_2ghz_revision);
2481 		}
2482 	}
2483 
2484 	ath5k_debug_init_device(ah);
2485 
2486 	/* ready to process interrupts */
2487 	__clear_bit(ATH_STAT_INVALID, ah->status);
2488 
2489 	return 0;
2490 err_ah:
2491 	ath5k_hw_deinit(ah);
2492 err_irq:
2493 	free_irq(ah->irq, ah);
2494 err:
2495 	return ret;
2496 }
2497 
2498 static int
2499 ath5k_stop_locked(struct ath5k_hw *ah)
2500 {
2501 
2502 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2503 			test_bit(ATH_STAT_INVALID, ah->status));
2504 
2505 	/*
2506 	 * Shutdown the hardware and driver:
2507 	 *    stop output from above
2508 	 *    disable interrupts
2509 	 *    turn off timers
2510 	 *    turn off the radio
2511 	 *    clear transmit machinery
2512 	 *    clear receive machinery
2513 	 *    drain and release tx queues
2514 	 *    reclaim beacon resources
2515 	 *    power down hardware
2516 	 *
2517 	 * Note that some of this work is not possible if the
2518 	 * hardware is gone (invalid).
2519 	 */
2520 	ieee80211_stop_queues(ah->hw);
2521 
2522 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2523 		ath5k_led_off(ah);
2524 		ath5k_hw_set_imr(ah, 0);
2525 		synchronize_irq(ah->irq);
2526 		ath5k_rx_stop(ah);
2527 		ath5k_hw_dma_stop(ah);
2528 		ath5k_drain_tx_buffs(ah);
2529 		ath5k_hw_phy_disable(ah);
2530 	}
2531 
2532 	return 0;
2533 }
2534 
2535 int ath5k_start(struct ieee80211_hw *hw)
2536 {
2537 	struct ath5k_hw *ah = hw->priv;
2538 	struct ath_common *common = ath5k_hw_common(ah);
2539 	int ret, i;
2540 
2541 	mutex_lock(&ah->lock);
2542 
2543 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2544 
2545 	/*
2546 	 * Stop anything previously setup.  This is safe
2547 	 * no matter this is the first time through or not.
2548 	 */
2549 	ath5k_stop_locked(ah);
2550 
2551 	/*
2552 	 * The basic interface to setting the hardware in a good
2553 	 * state is ``reset''.  On return the hardware is known to
2554 	 * be powered up and with interrupts disabled.  This must
2555 	 * be followed by initialization of the appropriate bits
2556 	 * and then setup of the interrupt mask.
2557 	 */
2558 	ah->curchan = ah->hw->conf.channel;
2559 	ah->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2560 		AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2561 		AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2562 
2563 	ret = ath5k_reset(ah, NULL, false);
2564 	if (ret)
2565 		goto done;
2566 
2567 	ath5k_rfkill_hw_start(ah);
2568 
2569 	/*
2570 	 * Reset the key cache since some parts do not reset the
2571 	 * contents on initial power up or resume from suspend.
2572 	 */
2573 	for (i = 0; i < common->keymax; i++)
2574 		ath_hw_keyreset(common, (u16) i);
2575 
2576 	/* Use higher rates for acks instead of base
2577 	 * rate */
2578 	ah->ah_ack_bitrate_high = true;
2579 
2580 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2581 		ah->bslot[i] = NULL;
2582 
2583 	ret = 0;
2584 done:
2585 	mmiowb();
2586 	mutex_unlock(&ah->lock);
2587 
2588 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2589 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2590 
2591 	return ret;
2592 }
2593 
2594 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2595 {
2596 	ah->rx_pending = false;
2597 	ah->tx_pending = false;
2598 	tasklet_kill(&ah->rxtq);
2599 	tasklet_kill(&ah->txtq);
2600 	tasklet_kill(&ah->calib);
2601 	tasklet_kill(&ah->beacontq);
2602 	tasklet_kill(&ah->ani_tasklet);
2603 }
2604 
2605 /*
2606  * Stop the device, grabbing the top-level lock to protect
2607  * against concurrent entry through ath5k_init (which can happen
2608  * if another thread does a system call and the thread doing the
2609  * stop is preempted).
2610  */
2611 void ath5k_stop(struct ieee80211_hw *hw)
2612 {
2613 	struct ath5k_hw *ah = hw->priv;
2614 	int ret;
2615 
2616 	mutex_lock(&ah->lock);
2617 	ret = ath5k_stop_locked(ah);
2618 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2619 		/*
2620 		 * Don't set the card in full sleep mode!
2621 		 *
2622 		 * a) When the device is in this state it must be carefully
2623 		 * woken up or references to registers in the PCI clock
2624 		 * domain may freeze the bus (and system).  This varies
2625 		 * by chip and is mostly an issue with newer parts
2626 		 * (madwifi sources mentioned srev >= 0x78) that go to
2627 		 * sleep more quickly.
2628 		 *
2629 		 * b) On older chips full sleep results a weird behaviour
2630 		 * during wakeup. I tested various cards with srev < 0x78
2631 		 * and they don't wake up after module reload, a second
2632 		 * module reload is needed to bring the card up again.
2633 		 *
2634 		 * Until we figure out what's going on don't enable
2635 		 * full chip reset on any chip (this is what Legacy HAL
2636 		 * and Sam's HAL do anyway). Instead Perform a full reset
2637 		 * on the device (same as initial state after attach) and
2638 		 * leave it idle (keep MAC/BB on warm reset) */
2639 		ret = ath5k_hw_on_hold(ah);
2640 
2641 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2642 				"putting device to sleep\n");
2643 	}
2644 
2645 	mmiowb();
2646 	mutex_unlock(&ah->lock);
2647 
2648 	ath5k_stop_tasklets(ah);
2649 
2650 	cancel_delayed_work_sync(&ah->tx_complete_work);
2651 
2652 	ath5k_rfkill_hw_stop(ah);
2653 }
2654 
2655 /*
2656  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2657  * and change to the given channel.
2658  *
2659  * This should be called with ah->lock.
2660  */
2661 static int
2662 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2663 							bool skip_pcu)
2664 {
2665 	struct ath_common *common = ath5k_hw_common(ah);
2666 	int ret, ani_mode;
2667 	bool fast;
2668 
2669 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2670 
2671 	ath5k_hw_set_imr(ah, 0);
2672 	synchronize_irq(ah->irq);
2673 	ath5k_stop_tasklets(ah);
2674 
2675 	/* Save ani mode and disable ANI during
2676 	 * reset. If we don't we might get false
2677 	 * PHY error interrupts. */
2678 	ani_mode = ah->ani_state.ani_mode;
2679 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2680 
2681 	/* We are going to empty hw queues
2682 	 * so we should also free any remaining
2683 	 * tx buffers */
2684 	ath5k_drain_tx_buffs(ah);
2685 	if (chan)
2686 		ah->curchan = chan;
2687 
2688 	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2689 
2690 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2691 	if (ret) {
2692 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2693 		goto err;
2694 	}
2695 
2696 	ret = ath5k_rx_start(ah);
2697 	if (ret) {
2698 		ATH5K_ERR(ah, "can't start recv logic\n");
2699 		goto err;
2700 	}
2701 
2702 	ath5k_ani_init(ah, ani_mode);
2703 
2704 	ah->ah_cal_next_full = jiffies + msecs_to_jiffies(100);
2705 	ah->ah_cal_next_ani = jiffies;
2706 	ah->ah_cal_next_nf = jiffies;
2707 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2708 
2709 	/* clear survey data and cycle counters */
2710 	memset(&ah->survey, 0, sizeof(ah->survey));
2711 	spin_lock_bh(&common->cc_lock);
2712 	ath_hw_cycle_counters_update(common);
2713 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2714 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2715 	spin_unlock_bh(&common->cc_lock);
2716 
2717 	/*
2718 	 * Change channels and update the h/w rate map if we're switching;
2719 	 * e.g. 11a to 11b/g.
2720 	 *
2721 	 * We may be doing a reset in response to an ioctl that changes the
2722 	 * channel so update any state that might change as a result.
2723 	 *
2724 	 * XXX needed?
2725 	 */
2726 /*	ath5k_chan_change(ah, c); */
2727 
2728 	ath5k_beacon_config(ah);
2729 	/* intrs are enabled by ath5k_beacon_config */
2730 
2731 	ieee80211_wake_queues(ah->hw);
2732 
2733 	return 0;
2734 err:
2735 	return ret;
2736 }
2737 
2738 static void ath5k_reset_work(struct work_struct *work)
2739 {
2740 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2741 		reset_work);
2742 
2743 	mutex_lock(&ah->lock);
2744 	ath5k_reset(ah, NULL, true);
2745 	mutex_unlock(&ah->lock);
2746 }
2747 
2748 static int __devinit
2749 ath5k_init(struct ieee80211_hw *hw)
2750 {
2751 
2752 	struct ath5k_hw *ah = hw->priv;
2753 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2754 	struct ath5k_txq *txq;
2755 	u8 mac[ETH_ALEN] = {};
2756 	int ret;
2757 
2758 
2759 	/*
2760 	 * Check if the MAC has multi-rate retry support.
2761 	 * We do this by trying to setup a fake extended
2762 	 * descriptor.  MACs that don't have support will
2763 	 * return false w/o doing anything.  MACs that do
2764 	 * support it will return true w/o doing anything.
2765 	 */
2766 	ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2767 
2768 	if (ret < 0)
2769 		goto err;
2770 	if (ret > 0)
2771 		__set_bit(ATH_STAT_MRRETRY, ah->status);
2772 
2773 	/*
2774 	 * Collect the channel list.  The 802.11 layer
2775 	 * is responsible for filtering this list based
2776 	 * on settings like the phy mode and regulatory
2777 	 * domain restrictions.
2778 	 */
2779 	ret = ath5k_setup_bands(hw);
2780 	if (ret) {
2781 		ATH5K_ERR(ah, "can't get channels\n");
2782 		goto err;
2783 	}
2784 
2785 	/*
2786 	 * Allocate tx+rx descriptors and populate the lists.
2787 	 */
2788 	ret = ath5k_desc_alloc(ah);
2789 	if (ret) {
2790 		ATH5K_ERR(ah, "can't allocate descriptors\n");
2791 		goto err;
2792 	}
2793 
2794 	/*
2795 	 * Allocate hardware transmit queues: one queue for
2796 	 * beacon frames and one data queue for each QoS
2797 	 * priority.  Note that hw functions handle resetting
2798 	 * these queues at the needed time.
2799 	 */
2800 	ret = ath5k_beaconq_setup(ah);
2801 	if (ret < 0) {
2802 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2803 		goto err_desc;
2804 	}
2805 	ah->bhalq = ret;
2806 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2807 	if (IS_ERR(ah->cabq)) {
2808 		ATH5K_ERR(ah, "can't setup cab queue\n");
2809 		ret = PTR_ERR(ah->cabq);
2810 		goto err_bhal;
2811 	}
2812 
2813 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2814 	 * capability information */
2815 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2816 		/* This order matches mac80211's queue priority, so we can
2817 		* directly use the mac80211 queue number without any mapping */
2818 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2819 		if (IS_ERR(txq)) {
2820 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2821 			ret = PTR_ERR(txq);
2822 			goto err_queues;
2823 		}
2824 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2825 		if (IS_ERR(txq)) {
2826 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2827 			ret = PTR_ERR(txq);
2828 			goto err_queues;
2829 		}
2830 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2831 		if (IS_ERR(txq)) {
2832 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2833 			ret = PTR_ERR(txq);
2834 			goto err_queues;
2835 		}
2836 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2837 		if (IS_ERR(txq)) {
2838 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2839 			ret = PTR_ERR(txq);
2840 			goto err_queues;
2841 		}
2842 		hw->queues = 4;
2843 	} else {
2844 		/* older hardware (5210) can only support one data queue */
2845 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2846 		if (IS_ERR(txq)) {
2847 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2848 			ret = PTR_ERR(txq);
2849 			goto err_queues;
2850 		}
2851 		hw->queues = 1;
2852 	}
2853 
2854 	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2855 	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2856 	tasklet_init(&ah->calib, ath5k_tasklet_calibrate, (unsigned long)ah);
2857 	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2858 	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2859 
2860 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
2861 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2862 
2863 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2864 	if (ret) {
2865 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2866 		goto err_queues;
2867 	}
2868 
2869 	SET_IEEE80211_PERM_ADDR(hw, mac);
2870 	memcpy(&ah->lladdr, mac, ETH_ALEN);
2871 	/* All MAC address bits matter for ACKs */
2872 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
2873 
2874 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2875 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2876 	if (ret) {
2877 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
2878 		goto err_queues;
2879 	}
2880 
2881 	ret = ieee80211_register_hw(hw);
2882 	if (ret) {
2883 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2884 		goto err_queues;
2885 	}
2886 
2887 	if (!ath_is_world_regd(regulatory))
2888 		regulatory_hint(hw->wiphy, regulatory->alpha2);
2889 
2890 	ath5k_init_leds(ah);
2891 
2892 	ath5k_sysfs_register(ah);
2893 
2894 	return 0;
2895 err_queues:
2896 	ath5k_txq_release(ah);
2897 err_bhal:
2898 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
2899 err_desc:
2900 	ath5k_desc_free(ah);
2901 err:
2902 	return ret;
2903 }
2904 
2905 void
2906 ath5k_deinit_softc(struct ath5k_hw *ah)
2907 {
2908 	struct ieee80211_hw *hw = ah->hw;
2909 
2910 	/*
2911 	 * NB: the order of these is important:
2912 	 * o call the 802.11 layer before detaching ath5k_hw to
2913 	 *   ensure callbacks into the driver to delete global
2914 	 *   key cache entries can be handled
2915 	 * o reclaim the tx queue data structures after calling
2916 	 *   the 802.11 layer as we'll get called back to reclaim
2917 	 *   node state and potentially want to use them
2918 	 * o to cleanup the tx queues the hal is called, so detach
2919 	 *   it last
2920 	 * XXX: ??? detach ath5k_hw ???
2921 	 * Other than that, it's straightforward...
2922 	 */
2923 	ieee80211_unregister_hw(hw);
2924 	ath5k_desc_free(ah);
2925 	ath5k_txq_release(ah);
2926 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
2927 	ath5k_unregister_leds(ah);
2928 
2929 	ath5k_sysfs_unregister(ah);
2930 	/*
2931 	 * NB: can't reclaim these until after ieee80211_ifdetach
2932 	 * returns because we'll get called back to reclaim node
2933 	 * state and potentially want to use them.
2934 	 */
2935 	ath5k_hw_deinit(ah);
2936 	free_irq(ah->irq, ah);
2937 }
2938 
2939 bool
2940 ath5k_any_vif_assoc(struct ath5k_hw *ah)
2941 {
2942 	struct ath5k_vif_iter_data iter_data;
2943 	iter_data.hw_macaddr = NULL;
2944 	iter_data.any_assoc = false;
2945 	iter_data.need_set_hw_addr = false;
2946 	iter_data.found_active = true;
2947 
2948 	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
2949 						   &iter_data);
2950 	return iter_data.any_assoc;
2951 }
2952 
2953 void
2954 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2955 {
2956 	struct ath5k_hw *ah = hw->priv;
2957 	u32 rfilt;
2958 	rfilt = ath5k_hw_get_rx_filter(ah);
2959 	if (enable)
2960 		rfilt |= AR5K_RX_FILTER_BEACON;
2961 	else
2962 		rfilt &= ~AR5K_RX_FILTER_BEACON;
2963 	ath5k_hw_set_rx_filter(ah, rfilt);
2964 	ah->filter_flags = rfilt;
2965 }
2966