xref: /linux/drivers/net/wireless/ath/ath5k/base.c (revision cd2c5486526b744fb505e18c9d981b35feaf283a)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
46 #include <linux/if.h>
47 #include <linux/io.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/ethtool.h>
51 #include <linux/uaccess.h>
52 #include <linux/slab.h>
53 #include <linux/etherdevice.h>
54 
55 #include <net/ieee80211_radiotap.h>
56 
57 #include <asm/unaligned.h>
58 
59 #include "base.h"
60 #include "reg.h"
61 #include "debug.h"
62 #include "ani.h"
63 
64 int modparam_nohwcrypt;
65 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
66 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
67 
68 static int modparam_all_channels;
69 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
70 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
71 
72 /* Module info */
73 MODULE_AUTHOR("Jiri Slaby");
74 MODULE_AUTHOR("Nick Kossifidis");
75 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
76 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
77 MODULE_LICENSE("Dual BSD/GPL");
78 
79 static int ath5k_init(struct ieee80211_hw *hw);
80 static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
81 								bool skip_pcu);
82 int ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
83 void ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
84 
85 /* Known SREVs */
86 static const struct ath5k_srev_name srev_names[] = {
87 #ifdef CONFIG_ATHEROS_AR231X
88 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
89 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
90 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
91 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
92 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
93 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
94 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
95 #else
96 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
97 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
98 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
99 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
100 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
101 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
102 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
103 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
104 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
105 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
106 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
107 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
108 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
109 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
110 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
111 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
112 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
113 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
114 #endif
115 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
116 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
117 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
118 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
119 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
120 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
121 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
122 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
123 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
124 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
125 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
126 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
127 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
128 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
129 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
130 #ifdef CONFIG_ATHEROS_AR231X
131 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
132 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
133 #endif
134 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
135 };
136 
137 static const struct ieee80211_rate ath5k_rates[] = {
138 	{ .bitrate = 10,
139 	  .hw_value = ATH5K_RATE_CODE_1M, },
140 	{ .bitrate = 20,
141 	  .hw_value = ATH5K_RATE_CODE_2M,
142 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
143 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
144 	{ .bitrate = 55,
145 	  .hw_value = ATH5K_RATE_CODE_5_5M,
146 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
147 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
148 	{ .bitrate = 110,
149 	  .hw_value = ATH5K_RATE_CODE_11M,
150 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
151 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
152 	{ .bitrate = 60,
153 	  .hw_value = ATH5K_RATE_CODE_6M,
154 	  .flags = 0 },
155 	{ .bitrate = 90,
156 	  .hw_value = ATH5K_RATE_CODE_9M,
157 	  .flags = 0 },
158 	{ .bitrate = 120,
159 	  .hw_value = ATH5K_RATE_CODE_12M,
160 	  .flags = 0 },
161 	{ .bitrate = 180,
162 	  .hw_value = ATH5K_RATE_CODE_18M,
163 	  .flags = 0 },
164 	{ .bitrate = 240,
165 	  .hw_value = ATH5K_RATE_CODE_24M,
166 	  .flags = 0 },
167 	{ .bitrate = 360,
168 	  .hw_value = ATH5K_RATE_CODE_36M,
169 	  .flags = 0 },
170 	{ .bitrate = 480,
171 	  .hw_value = ATH5K_RATE_CODE_48M,
172 	  .flags = 0 },
173 	{ .bitrate = 540,
174 	  .hw_value = ATH5K_RATE_CODE_54M,
175 	  .flags = 0 },
176 	/* XR missing */
177 };
178 
179 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
180 {
181 	u64 tsf = ath5k_hw_get_tsf64(ah);
182 
183 	if ((tsf & 0x7fff) < rstamp)
184 		tsf -= 0x8000;
185 
186 	return (tsf & ~0x7fff) | rstamp;
187 }
188 
189 const char *
190 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
191 {
192 	const char *name = "xxxxx";
193 	unsigned int i;
194 
195 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
196 		if (srev_names[i].sr_type != type)
197 			continue;
198 
199 		if ((val & 0xf0) == srev_names[i].sr_val)
200 			name = srev_names[i].sr_name;
201 
202 		if ((val & 0xff) == srev_names[i].sr_val) {
203 			name = srev_names[i].sr_name;
204 			break;
205 		}
206 	}
207 
208 	return name;
209 }
210 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
211 {
212 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
213 	return ath5k_hw_reg_read(ah, reg_offset);
214 }
215 
216 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
217 {
218 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
219 	ath5k_hw_reg_write(ah, val, reg_offset);
220 }
221 
222 static const struct ath_ops ath5k_common_ops = {
223 	.read = ath5k_ioread32,
224 	.write = ath5k_iowrite32,
225 };
226 
227 /***********************\
228 * Driver Initialization *
229 \***********************/
230 
231 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
232 {
233 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
234 	struct ath5k_softc *sc = hw->priv;
235 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
236 
237 	return ath_reg_notifier_apply(wiphy, request, regulatory);
238 }
239 
240 /********************\
241 * Channel/mode setup *
242 \********************/
243 
244 /*
245  * Convert IEEE channel number to MHz frequency.
246  */
247 static inline short
248 ath5k_ieee2mhz(short chan)
249 {
250 	if (chan <= 14 || chan >= 27)
251 		return ieee80211chan2mhz(chan);
252 	else
253 		return 2212 + chan * 20;
254 }
255 
256 /*
257  * Returns true for the channel numbers used without all_channels modparam.
258  */
259 static bool ath5k_is_standard_channel(short chan)
260 {
261 	return ((chan <= 14) ||
262 		/* UNII 1,2 */
263 		((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
264 		/* midband */
265 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
266 		/* UNII-3 */
267 		((chan & 3) == 1 && chan >= 149 && chan <= 165));
268 }
269 
270 static unsigned int
271 ath5k_copy_channels(struct ath5k_hw *ah,
272 		struct ieee80211_channel *channels,
273 		unsigned int mode,
274 		unsigned int max)
275 {
276 	unsigned int i, count, size, chfreq, freq, ch;
277 
278 	if (!test_bit(mode, ah->ah_modes))
279 		return 0;
280 
281 	switch (mode) {
282 	case AR5K_MODE_11A:
283 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
284 		size = 220 ;
285 		chfreq = CHANNEL_5GHZ;
286 		break;
287 	case AR5K_MODE_11B:
288 	case AR5K_MODE_11G:
289 		size = 26;
290 		chfreq = CHANNEL_2GHZ;
291 		break;
292 	default:
293 		ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
294 		return 0;
295 	}
296 
297 	for (i = 0, count = 0; i < size && max > 0; i++) {
298 		ch = i + 1 ;
299 		freq = ath5k_ieee2mhz(ch);
300 
301 		/* Check if channel is supported by the chipset */
302 		if (!ath5k_channel_ok(ah, freq, chfreq))
303 			continue;
304 
305 		if (!modparam_all_channels && !ath5k_is_standard_channel(ch))
306 			continue;
307 
308 		/* Write channel info and increment counter */
309 		channels[count].center_freq = freq;
310 		channels[count].band = (chfreq == CHANNEL_2GHZ) ?
311 			IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
312 		switch (mode) {
313 		case AR5K_MODE_11A:
314 		case AR5K_MODE_11G:
315 			channels[count].hw_value = chfreq | CHANNEL_OFDM;
316 			break;
317 		case AR5K_MODE_11B:
318 			channels[count].hw_value = CHANNEL_B;
319 		}
320 
321 		count++;
322 		max--;
323 	}
324 
325 	return count;
326 }
327 
328 static void
329 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
330 {
331 	u8 i;
332 
333 	for (i = 0; i < AR5K_MAX_RATES; i++)
334 		sc->rate_idx[b->band][i] = -1;
335 
336 	for (i = 0; i < b->n_bitrates; i++) {
337 		sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
338 		if (b->bitrates[i].hw_value_short)
339 			sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
340 	}
341 }
342 
343 static int
344 ath5k_setup_bands(struct ieee80211_hw *hw)
345 {
346 	struct ath5k_softc *sc = hw->priv;
347 	struct ath5k_hw *ah = sc->ah;
348 	struct ieee80211_supported_band *sband;
349 	int max_c, count_c = 0;
350 	int i;
351 
352 	BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
353 	max_c = ARRAY_SIZE(sc->channels);
354 
355 	/* 2GHz band */
356 	sband = &sc->sbands[IEEE80211_BAND_2GHZ];
357 	sband->band = IEEE80211_BAND_2GHZ;
358 	sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
359 
360 	if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
361 		/* G mode */
362 		memcpy(sband->bitrates, &ath5k_rates[0],
363 		       sizeof(struct ieee80211_rate) * 12);
364 		sband->n_bitrates = 12;
365 
366 		sband->channels = sc->channels;
367 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
368 					AR5K_MODE_11G, max_c);
369 
370 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
371 		count_c = sband->n_channels;
372 		max_c -= count_c;
373 	} else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
374 		/* B mode */
375 		memcpy(sband->bitrates, &ath5k_rates[0],
376 		       sizeof(struct ieee80211_rate) * 4);
377 		sband->n_bitrates = 4;
378 
379 		/* 5211 only supports B rates and uses 4bit rate codes
380 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
381 		 * fix them up here:
382 		 */
383 		if (ah->ah_version == AR5K_AR5211) {
384 			for (i = 0; i < 4; i++) {
385 				sband->bitrates[i].hw_value =
386 					sband->bitrates[i].hw_value & 0xF;
387 				sband->bitrates[i].hw_value_short =
388 					sband->bitrates[i].hw_value_short & 0xF;
389 			}
390 		}
391 
392 		sband->channels = sc->channels;
393 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
394 					AR5K_MODE_11B, max_c);
395 
396 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
397 		count_c = sband->n_channels;
398 		max_c -= count_c;
399 	}
400 	ath5k_setup_rate_idx(sc, sband);
401 
402 	/* 5GHz band, A mode */
403 	if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
404 		sband = &sc->sbands[IEEE80211_BAND_5GHZ];
405 		sband->band = IEEE80211_BAND_5GHZ;
406 		sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
407 
408 		memcpy(sband->bitrates, &ath5k_rates[4],
409 		       sizeof(struct ieee80211_rate) * 8);
410 		sband->n_bitrates = 8;
411 
412 		sband->channels = &sc->channels[count_c];
413 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
414 					AR5K_MODE_11A, max_c);
415 
416 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
417 	}
418 	ath5k_setup_rate_idx(sc, sband);
419 
420 	ath5k_debug_dump_bands(sc);
421 
422 	return 0;
423 }
424 
425 /*
426  * Set/change channels. We always reset the chip.
427  * To accomplish this we must first cleanup any pending DMA,
428  * then restart stuff after a la  ath5k_init.
429  *
430  * Called with sc->lock.
431  */
432 int
433 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
434 {
435 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
436 		  "channel set, resetting (%u -> %u MHz)\n",
437 		  sc->curchan->center_freq, chan->center_freq);
438 
439 	/*
440 	 * To switch channels clear any pending DMA operations;
441 	 * wait long enough for the RX fifo to drain, reset the
442 	 * hardware at the new frequency, and then re-enable
443 	 * the relevant bits of the h/w.
444 	 */
445 	return ath5k_reset(sc, chan, true);
446 }
447 
448 static void
449 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
450 {
451 	sc->curmode = mode;
452 
453 	if (mode == AR5K_MODE_11A) {
454 		sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
455 	} else {
456 		sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
457 	}
458 }
459 
460 struct ath_vif_iter_data {
461 	const u8	*hw_macaddr;
462 	u8		mask[ETH_ALEN];
463 	u8		active_mac[ETH_ALEN]; /* first active MAC */
464 	bool		need_set_hw_addr;
465 	bool		found_active;
466 	bool		any_assoc;
467 	enum nl80211_iftype opmode;
468 };
469 
470 static void ath_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
471 {
472 	struct ath_vif_iter_data *iter_data = data;
473 	int i;
474 	struct ath5k_vif *avf = (void *)vif->drv_priv;
475 
476 	if (iter_data->hw_macaddr)
477 		for (i = 0; i < ETH_ALEN; i++)
478 			iter_data->mask[i] &=
479 				~(iter_data->hw_macaddr[i] ^ mac[i]);
480 
481 	if (!iter_data->found_active) {
482 		iter_data->found_active = true;
483 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
484 	}
485 
486 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
487 		if (compare_ether_addr(iter_data->hw_macaddr, mac) == 0)
488 			iter_data->need_set_hw_addr = false;
489 
490 	if (!iter_data->any_assoc) {
491 		if (avf->assoc)
492 			iter_data->any_assoc = true;
493 	}
494 
495 	/* Calculate combined mode - when APs are active, operate in AP mode.
496 	 * Otherwise use the mode of the new interface. This can currently
497 	 * only deal with combinations of APs and STAs. Only one ad-hoc
498 	 * interfaces is allowed.
499 	 */
500 	if (avf->opmode == NL80211_IFTYPE_AP)
501 		iter_data->opmode = NL80211_IFTYPE_AP;
502 	else
503 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
504 			iter_data->opmode = avf->opmode;
505 }
506 
507 void
508 ath5k_update_bssid_mask_and_opmode(struct ath5k_softc *sc,
509 				   struct ieee80211_vif *vif)
510 {
511 	struct ath_common *common = ath5k_hw_common(sc->ah);
512 	struct ath_vif_iter_data iter_data;
513 
514 	/*
515 	 * Use the hardware MAC address as reference, the hardware uses it
516 	 * together with the BSSID mask when matching addresses.
517 	 */
518 	iter_data.hw_macaddr = common->macaddr;
519 	memset(&iter_data.mask, 0xff, ETH_ALEN);
520 	iter_data.found_active = false;
521 	iter_data.need_set_hw_addr = true;
522 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
523 
524 	if (vif)
525 		ath_vif_iter(&iter_data, vif->addr, vif);
526 
527 	/* Get list of all active MAC addresses */
528 	ieee80211_iterate_active_interfaces_atomic(sc->hw, ath_vif_iter,
529 						   &iter_data);
530 	memcpy(sc->bssidmask, iter_data.mask, ETH_ALEN);
531 
532 	sc->opmode = iter_data.opmode;
533 	if (sc->opmode == NL80211_IFTYPE_UNSPECIFIED)
534 		/* Nothing active, default to station mode */
535 		sc->opmode = NL80211_IFTYPE_STATION;
536 
537 	ath5k_hw_set_opmode(sc->ah, sc->opmode);
538 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
539 		  sc->opmode, ath_opmode_to_string(sc->opmode));
540 
541 	if (iter_data.need_set_hw_addr && iter_data.found_active)
542 		ath5k_hw_set_lladdr(sc->ah, iter_data.active_mac);
543 
544 	if (ath5k_hw_hasbssidmask(sc->ah))
545 		ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
546 }
547 
548 void
549 ath5k_mode_setup(struct ath5k_softc *sc, struct ieee80211_vif *vif)
550 {
551 	struct ath5k_hw *ah = sc->ah;
552 	u32 rfilt;
553 
554 	/* configure rx filter */
555 	rfilt = sc->filter_flags;
556 	ath5k_hw_set_rx_filter(ah, rfilt);
557 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
558 
559 	ath5k_update_bssid_mask_and_opmode(sc, vif);
560 }
561 
562 static inline int
563 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
564 {
565 	int rix;
566 
567 	/* return base rate on errors */
568 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
569 			"hw_rix out of bounds: %x\n", hw_rix))
570 		return 0;
571 
572 	rix = sc->rate_idx[sc->curband->band][hw_rix];
573 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
574 		rix = 0;
575 
576 	return rix;
577 }
578 
579 /***************\
580 * Buffers setup *
581 \***************/
582 
583 static
584 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
585 {
586 	struct ath_common *common = ath5k_hw_common(sc->ah);
587 	struct sk_buff *skb;
588 
589 	/*
590 	 * Allocate buffer with headroom_needed space for the
591 	 * fake physical layer header at the start.
592 	 */
593 	skb = ath_rxbuf_alloc(common,
594 			      common->rx_bufsize,
595 			      GFP_ATOMIC);
596 
597 	if (!skb) {
598 		ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
599 				common->rx_bufsize);
600 		return NULL;
601 	}
602 
603 	*skb_addr = dma_map_single(sc->dev,
604 				   skb->data, common->rx_bufsize,
605 				   DMA_FROM_DEVICE);
606 
607 	if (unlikely(dma_mapping_error(sc->dev, *skb_addr))) {
608 		ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
609 		dev_kfree_skb(skb);
610 		return NULL;
611 	}
612 	return skb;
613 }
614 
615 static int
616 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
617 {
618 	struct ath5k_hw *ah = sc->ah;
619 	struct sk_buff *skb = bf->skb;
620 	struct ath5k_desc *ds;
621 	int ret;
622 
623 	if (!skb) {
624 		skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
625 		if (!skb)
626 			return -ENOMEM;
627 		bf->skb = skb;
628 	}
629 
630 	/*
631 	 * Setup descriptors.  For receive we always terminate
632 	 * the descriptor list with a self-linked entry so we'll
633 	 * not get overrun under high load (as can happen with a
634 	 * 5212 when ANI processing enables PHY error frames).
635 	 *
636 	 * To ensure the last descriptor is self-linked we create
637 	 * each descriptor as self-linked and add it to the end.  As
638 	 * each additional descriptor is added the previous self-linked
639 	 * entry is "fixed" naturally.  This should be safe even
640 	 * if DMA is happening.  When processing RX interrupts we
641 	 * never remove/process the last, self-linked, entry on the
642 	 * descriptor list.  This ensures the hardware always has
643 	 * someplace to write a new frame.
644 	 */
645 	ds = bf->desc;
646 	ds->ds_link = bf->daddr;	/* link to self */
647 	ds->ds_data = bf->skbaddr;
648 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
649 	if (ret) {
650 		ATH5K_ERR(sc, "%s: could not setup RX desc\n", __func__);
651 		return ret;
652 	}
653 
654 	if (sc->rxlink != NULL)
655 		*sc->rxlink = bf->daddr;
656 	sc->rxlink = &ds->ds_link;
657 	return 0;
658 }
659 
660 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
661 {
662 	struct ieee80211_hdr *hdr;
663 	enum ath5k_pkt_type htype;
664 	__le16 fc;
665 
666 	hdr = (struct ieee80211_hdr *)skb->data;
667 	fc = hdr->frame_control;
668 
669 	if (ieee80211_is_beacon(fc))
670 		htype = AR5K_PKT_TYPE_BEACON;
671 	else if (ieee80211_is_probe_resp(fc))
672 		htype = AR5K_PKT_TYPE_PROBE_RESP;
673 	else if (ieee80211_is_atim(fc))
674 		htype = AR5K_PKT_TYPE_ATIM;
675 	else if (ieee80211_is_pspoll(fc))
676 		htype = AR5K_PKT_TYPE_PSPOLL;
677 	else
678 		htype = AR5K_PKT_TYPE_NORMAL;
679 
680 	return htype;
681 }
682 
683 static int
684 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
685 		  struct ath5k_txq *txq, int padsize)
686 {
687 	struct ath5k_hw *ah = sc->ah;
688 	struct ath5k_desc *ds = bf->desc;
689 	struct sk_buff *skb = bf->skb;
690 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
691 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
692 	struct ieee80211_rate *rate;
693 	unsigned int mrr_rate[3], mrr_tries[3];
694 	int i, ret;
695 	u16 hw_rate;
696 	u16 cts_rate = 0;
697 	u16 duration = 0;
698 	u8 rc_flags;
699 
700 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
701 
702 	/* XXX endianness */
703 	bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
704 			DMA_TO_DEVICE);
705 
706 	rate = ieee80211_get_tx_rate(sc->hw, info);
707 	if (!rate) {
708 		ret = -EINVAL;
709 		goto err_unmap;
710 	}
711 
712 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
713 		flags |= AR5K_TXDESC_NOACK;
714 
715 	rc_flags = info->control.rates[0].flags;
716 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
717 		rate->hw_value_short : rate->hw_value;
718 
719 	pktlen = skb->len;
720 
721 	/* FIXME: If we are in g mode and rate is a CCK rate
722 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
723 	 * from tx power (value is in dB units already) */
724 	if (info->control.hw_key) {
725 		keyidx = info->control.hw_key->hw_key_idx;
726 		pktlen += info->control.hw_key->icv_len;
727 	}
728 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
729 		flags |= AR5K_TXDESC_RTSENA;
730 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
731 		duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
732 			info->control.vif, pktlen, info));
733 	}
734 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
735 		flags |= AR5K_TXDESC_CTSENA;
736 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
737 		duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
738 			info->control.vif, pktlen, info));
739 	}
740 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
741 		ieee80211_get_hdrlen_from_skb(skb), padsize,
742 		get_hw_packet_type(skb),
743 		(sc->power_level * 2),
744 		hw_rate,
745 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
746 		cts_rate, duration);
747 	if (ret)
748 		goto err_unmap;
749 
750 	memset(mrr_rate, 0, sizeof(mrr_rate));
751 	memset(mrr_tries, 0, sizeof(mrr_tries));
752 	for (i = 0; i < 3; i++) {
753 		rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
754 		if (!rate)
755 			break;
756 
757 		mrr_rate[i] = rate->hw_value;
758 		mrr_tries[i] = info->control.rates[i + 1].count;
759 	}
760 
761 	ath5k_hw_setup_mrr_tx_desc(ah, ds,
762 		mrr_rate[0], mrr_tries[0],
763 		mrr_rate[1], mrr_tries[1],
764 		mrr_rate[2], mrr_tries[2]);
765 
766 	ds->ds_link = 0;
767 	ds->ds_data = bf->skbaddr;
768 
769 	spin_lock_bh(&txq->lock);
770 	list_add_tail(&bf->list, &txq->q);
771 	txq->txq_len++;
772 	if (txq->link == NULL) /* is this first packet? */
773 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
774 	else /* no, so only link it */
775 		*txq->link = bf->daddr;
776 
777 	txq->link = &ds->ds_link;
778 	ath5k_hw_start_tx_dma(ah, txq->qnum);
779 	mmiowb();
780 	spin_unlock_bh(&txq->lock);
781 
782 	return 0;
783 err_unmap:
784 	dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
785 	return ret;
786 }
787 
788 /*******************\
789 * Descriptors setup *
790 \*******************/
791 
792 static int
793 ath5k_desc_alloc(struct ath5k_softc *sc)
794 {
795 	struct ath5k_desc *ds;
796 	struct ath5k_buf *bf;
797 	dma_addr_t da;
798 	unsigned int i;
799 	int ret;
800 
801 	/* allocate descriptors */
802 	sc->desc_len = sizeof(struct ath5k_desc) *
803 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
804 
805 	sc->desc = dma_alloc_coherent(sc->dev, sc->desc_len,
806 				&sc->desc_daddr, GFP_KERNEL);
807 	if (sc->desc == NULL) {
808 		ATH5K_ERR(sc, "can't allocate descriptors\n");
809 		ret = -ENOMEM;
810 		goto err;
811 	}
812 	ds = sc->desc;
813 	da = sc->desc_daddr;
814 	ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
815 		ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
816 
817 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
818 			sizeof(struct ath5k_buf), GFP_KERNEL);
819 	if (bf == NULL) {
820 		ATH5K_ERR(sc, "can't allocate bufptr\n");
821 		ret = -ENOMEM;
822 		goto err_free;
823 	}
824 	sc->bufptr = bf;
825 
826 	INIT_LIST_HEAD(&sc->rxbuf);
827 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
828 		bf->desc = ds;
829 		bf->daddr = da;
830 		list_add_tail(&bf->list, &sc->rxbuf);
831 	}
832 
833 	INIT_LIST_HEAD(&sc->txbuf);
834 	sc->txbuf_len = ATH_TXBUF;
835 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
836 			da += sizeof(*ds)) {
837 		bf->desc = ds;
838 		bf->daddr = da;
839 		list_add_tail(&bf->list, &sc->txbuf);
840 	}
841 
842 	/* beacon buffers */
843 	INIT_LIST_HEAD(&sc->bcbuf);
844 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
845 		bf->desc = ds;
846 		bf->daddr = da;
847 		list_add_tail(&bf->list, &sc->bcbuf);
848 	}
849 
850 	return 0;
851 err_free:
852 	dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
853 err:
854 	sc->desc = NULL;
855 	return ret;
856 }
857 
858 void
859 ath5k_txbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
860 {
861 	BUG_ON(!bf);
862 	if (!bf->skb)
863 		return;
864 	dma_unmap_single(sc->dev, bf->skbaddr, bf->skb->len,
865 			DMA_TO_DEVICE);
866 	dev_kfree_skb_any(bf->skb);
867 	bf->skb = NULL;
868 	bf->skbaddr = 0;
869 	bf->desc->ds_data = 0;
870 }
871 
872 void
873 ath5k_rxbuf_free_skb(struct ath5k_softc *sc, struct ath5k_buf *bf)
874 {
875 	struct ath5k_hw *ah = sc->ah;
876 	struct ath_common *common = ath5k_hw_common(ah);
877 
878 	BUG_ON(!bf);
879 	if (!bf->skb)
880 		return;
881 	dma_unmap_single(sc->dev, bf->skbaddr, common->rx_bufsize,
882 			DMA_FROM_DEVICE);
883 	dev_kfree_skb_any(bf->skb);
884 	bf->skb = NULL;
885 	bf->skbaddr = 0;
886 	bf->desc->ds_data = 0;
887 }
888 
889 static void
890 ath5k_desc_free(struct ath5k_softc *sc)
891 {
892 	struct ath5k_buf *bf;
893 
894 	list_for_each_entry(bf, &sc->txbuf, list)
895 		ath5k_txbuf_free_skb(sc, bf);
896 	list_for_each_entry(bf, &sc->rxbuf, list)
897 		ath5k_rxbuf_free_skb(sc, bf);
898 	list_for_each_entry(bf, &sc->bcbuf, list)
899 		ath5k_txbuf_free_skb(sc, bf);
900 
901 	/* Free memory associated with all descriptors */
902 	dma_free_coherent(sc->dev, sc->desc_len, sc->desc, sc->desc_daddr);
903 	sc->desc = NULL;
904 	sc->desc_daddr = 0;
905 
906 	kfree(sc->bufptr);
907 	sc->bufptr = NULL;
908 }
909 
910 
911 /**************\
912 * Queues setup *
913 \**************/
914 
915 static struct ath5k_txq *
916 ath5k_txq_setup(struct ath5k_softc *sc,
917 		int qtype, int subtype)
918 {
919 	struct ath5k_hw *ah = sc->ah;
920 	struct ath5k_txq *txq;
921 	struct ath5k_txq_info qi = {
922 		.tqi_subtype = subtype,
923 		/* XXX: default values not correct for B and XR channels,
924 		 * but who cares? */
925 		.tqi_aifs = AR5K_TUNE_AIFS,
926 		.tqi_cw_min = AR5K_TUNE_CWMIN,
927 		.tqi_cw_max = AR5K_TUNE_CWMAX
928 	};
929 	int qnum;
930 
931 	/*
932 	 * Enable interrupts only for EOL and DESC conditions.
933 	 * We mark tx descriptors to receive a DESC interrupt
934 	 * when a tx queue gets deep; otherwise we wait for the
935 	 * EOL to reap descriptors.  Note that this is done to
936 	 * reduce interrupt load and this only defers reaping
937 	 * descriptors, never transmitting frames.  Aside from
938 	 * reducing interrupts this also permits more concurrency.
939 	 * The only potential downside is if the tx queue backs
940 	 * up in which case the top half of the kernel may backup
941 	 * due to a lack of tx descriptors.
942 	 */
943 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
944 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
945 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
946 	if (qnum < 0) {
947 		/*
948 		 * NB: don't print a message, this happens
949 		 * normally on parts with too few tx queues
950 		 */
951 		return ERR_PTR(qnum);
952 	}
953 	if (qnum >= ARRAY_SIZE(sc->txqs)) {
954 		ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
955 			qnum, ARRAY_SIZE(sc->txqs));
956 		ath5k_hw_release_tx_queue(ah, qnum);
957 		return ERR_PTR(-EINVAL);
958 	}
959 	txq = &sc->txqs[qnum];
960 	if (!txq->setup) {
961 		txq->qnum = qnum;
962 		txq->link = NULL;
963 		INIT_LIST_HEAD(&txq->q);
964 		spin_lock_init(&txq->lock);
965 		txq->setup = true;
966 		txq->txq_len = 0;
967 		txq->txq_poll_mark = false;
968 		txq->txq_stuck = 0;
969 	}
970 	return &sc->txqs[qnum];
971 }
972 
973 static int
974 ath5k_beaconq_setup(struct ath5k_hw *ah)
975 {
976 	struct ath5k_txq_info qi = {
977 		/* XXX: default values not correct for B and XR channels,
978 		 * but who cares? */
979 		.tqi_aifs = AR5K_TUNE_AIFS,
980 		.tqi_cw_min = AR5K_TUNE_CWMIN,
981 		.tqi_cw_max = AR5K_TUNE_CWMAX,
982 		/* NB: for dynamic turbo, don't enable any other interrupts */
983 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
984 	};
985 
986 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
987 }
988 
989 static int
990 ath5k_beaconq_config(struct ath5k_softc *sc)
991 {
992 	struct ath5k_hw *ah = sc->ah;
993 	struct ath5k_txq_info qi;
994 	int ret;
995 
996 	ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
997 	if (ret)
998 		goto err;
999 
1000 	if (sc->opmode == NL80211_IFTYPE_AP ||
1001 		sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1002 		/*
1003 		 * Always burst out beacon and CAB traffic
1004 		 * (aifs = cwmin = cwmax = 0)
1005 		 */
1006 		qi.tqi_aifs = 0;
1007 		qi.tqi_cw_min = 0;
1008 		qi.tqi_cw_max = 0;
1009 	} else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1010 		/*
1011 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1012 		 */
1013 		qi.tqi_aifs = 0;
1014 		qi.tqi_cw_min = 0;
1015 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1016 	}
1017 
1018 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1019 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1020 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1021 
1022 	ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1023 	if (ret) {
1024 		ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1025 			"hardware queue!\n", __func__);
1026 		goto err;
1027 	}
1028 	ret = ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */
1029 	if (ret)
1030 		goto err;
1031 
1032 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1033 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1034 	if (ret)
1035 		goto err;
1036 
1037 	qi.tqi_ready_time = (sc->bintval * 80) / 100;
1038 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1039 	if (ret)
1040 		goto err;
1041 
1042 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1043 err:
1044 	return ret;
1045 }
1046 
1047 /**
1048  * ath5k_drain_tx_buffs - Empty tx buffers
1049  *
1050  * @sc The &struct ath5k_softc
1051  *
1052  * Empty tx buffers from all queues in preparation
1053  * of a reset or during shutdown.
1054  *
1055  * NB:	this assumes output has been stopped and
1056  *	we do not need to block ath5k_tx_tasklet
1057  */
1058 static void
1059 ath5k_drain_tx_buffs(struct ath5k_softc *sc)
1060 {
1061 	struct ath5k_txq *txq;
1062 	struct ath5k_buf *bf, *bf0;
1063 	int i;
1064 
1065 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
1066 		if (sc->txqs[i].setup) {
1067 			txq = &sc->txqs[i];
1068 			spin_lock_bh(&txq->lock);
1069 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1070 				ath5k_debug_printtxbuf(sc, bf);
1071 
1072 				ath5k_txbuf_free_skb(sc, bf);
1073 
1074 				spin_lock_bh(&sc->txbuflock);
1075 				list_move_tail(&bf->list, &sc->txbuf);
1076 				sc->txbuf_len++;
1077 				txq->txq_len--;
1078 				spin_unlock_bh(&sc->txbuflock);
1079 			}
1080 			txq->link = NULL;
1081 			txq->txq_poll_mark = false;
1082 			spin_unlock_bh(&txq->lock);
1083 		}
1084 	}
1085 }
1086 
1087 static void
1088 ath5k_txq_release(struct ath5k_softc *sc)
1089 {
1090 	struct ath5k_txq *txq = sc->txqs;
1091 	unsigned int i;
1092 
1093 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1094 		if (txq->setup) {
1095 			ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1096 			txq->setup = false;
1097 		}
1098 }
1099 
1100 
1101 /*************\
1102 * RX Handling *
1103 \*************/
1104 
1105 /*
1106  * Enable the receive h/w following a reset.
1107  */
1108 static int
1109 ath5k_rx_start(struct ath5k_softc *sc)
1110 {
1111 	struct ath5k_hw *ah = sc->ah;
1112 	struct ath_common *common = ath5k_hw_common(ah);
1113 	struct ath5k_buf *bf;
1114 	int ret;
1115 
1116 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1117 
1118 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1119 		  common->cachelsz, common->rx_bufsize);
1120 
1121 	spin_lock_bh(&sc->rxbuflock);
1122 	sc->rxlink = NULL;
1123 	list_for_each_entry(bf, &sc->rxbuf, list) {
1124 		ret = ath5k_rxbuf_setup(sc, bf);
1125 		if (ret != 0) {
1126 			spin_unlock_bh(&sc->rxbuflock);
1127 			goto err;
1128 		}
1129 	}
1130 	bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1131 	ath5k_hw_set_rxdp(ah, bf->daddr);
1132 	spin_unlock_bh(&sc->rxbuflock);
1133 
1134 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1135 	ath5k_mode_setup(sc, NULL);		/* set filters, etc. */
1136 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1137 
1138 	return 0;
1139 err:
1140 	return ret;
1141 }
1142 
1143 /*
1144  * Disable the receive logic on PCU (DRU)
1145  * In preparation for a shutdown.
1146  *
1147  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1148  * does.
1149  */
1150 static void
1151 ath5k_rx_stop(struct ath5k_softc *sc)
1152 {
1153 	struct ath5k_hw *ah = sc->ah;
1154 
1155 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1156 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1157 
1158 	ath5k_debug_printrxbuffs(sc, ah);
1159 }
1160 
1161 static unsigned int
1162 ath5k_rx_decrypted(struct ath5k_softc *sc, struct sk_buff *skb,
1163 		   struct ath5k_rx_status *rs)
1164 {
1165 	struct ath5k_hw *ah = sc->ah;
1166 	struct ath_common *common = ath5k_hw_common(ah);
1167 	struct ieee80211_hdr *hdr = (void *)skb->data;
1168 	unsigned int keyix, hlen;
1169 
1170 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1171 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1172 		return RX_FLAG_DECRYPTED;
1173 
1174 	/* Apparently when a default key is used to decrypt the packet
1175 	   the hw does not set the index used to decrypt.  In such cases
1176 	   get the index from the packet. */
1177 	hlen = ieee80211_hdrlen(hdr->frame_control);
1178 	if (ieee80211_has_protected(hdr->frame_control) &&
1179 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1180 	    skb->len >= hlen + 4) {
1181 		keyix = skb->data[hlen + 3] >> 6;
1182 
1183 		if (test_bit(keyix, common->keymap))
1184 			return RX_FLAG_DECRYPTED;
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 
1191 static void
1192 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1193 		     struct ieee80211_rx_status *rxs)
1194 {
1195 	struct ath_common *common = ath5k_hw_common(sc->ah);
1196 	u64 tsf, bc_tstamp;
1197 	u32 hw_tu;
1198 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1199 
1200 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1201 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1202 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1203 		/*
1204 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1205 		 * have updated the local TSF. We have to work around various
1206 		 * hardware bugs, though...
1207 		 */
1208 		tsf = ath5k_hw_get_tsf64(sc->ah);
1209 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1210 		hw_tu = TSF_TO_TU(tsf);
1211 
1212 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1213 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1214 			(unsigned long long)bc_tstamp,
1215 			(unsigned long long)rxs->mactime,
1216 			(unsigned long long)(rxs->mactime - bc_tstamp),
1217 			(unsigned long long)tsf);
1218 
1219 		/*
1220 		 * Sometimes the HW will give us a wrong tstamp in the rx
1221 		 * status, causing the timestamp extension to go wrong.
1222 		 * (This seems to happen especially with beacon frames bigger
1223 		 * than 78 byte (incl. FCS))
1224 		 * But we know that the receive timestamp must be later than the
1225 		 * timestamp of the beacon since HW must have synced to that.
1226 		 *
1227 		 * NOTE: here we assume mactime to be after the frame was
1228 		 * received, not like mac80211 which defines it at the start.
1229 		 */
1230 		if (bc_tstamp > rxs->mactime) {
1231 			ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1232 				"fixing mactime from %llx to %llx\n",
1233 				(unsigned long long)rxs->mactime,
1234 				(unsigned long long)tsf);
1235 			rxs->mactime = tsf;
1236 		}
1237 
1238 		/*
1239 		 * Local TSF might have moved higher than our beacon timers,
1240 		 * in that case we have to update them to continue sending
1241 		 * beacons. This also takes care of synchronizing beacon sending
1242 		 * times with other stations.
1243 		 */
1244 		if (hw_tu >= sc->nexttbtt)
1245 			ath5k_beacon_update_timers(sc, bc_tstamp);
1246 
1247 		/* Check if the beacon timers are still correct, because a TSF
1248 		 * update might have created a window between them - for a
1249 		 * longer description see the comment of this function: */
1250 		if (!ath5k_hw_check_beacon_timers(sc->ah, sc->bintval)) {
1251 			ath5k_beacon_update_timers(sc, bc_tstamp);
1252 			ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1253 				"fixed beacon timers after beacon receive\n");
1254 		}
1255 	}
1256 }
1257 
1258 static void
1259 ath5k_update_beacon_rssi(struct ath5k_softc *sc, struct sk_buff *skb, int rssi)
1260 {
1261 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1262 	struct ath5k_hw *ah = sc->ah;
1263 	struct ath_common *common = ath5k_hw_common(ah);
1264 
1265 	/* only beacons from our BSSID */
1266 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1267 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1268 		return;
1269 
1270 	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1271 
1272 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1273 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1274 }
1275 
1276 /*
1277  * Compute padding position. skb must contain an IEEE 802.11 frame
1278  */
1279 static int ath5k_common_padpos(struct sk_buff *skb)
1280 {
1281 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1282 	__le16 frame_control = hdr->frame_control;
1283 	int padpos = 24;
1284 
1285 	if (ieee80211_has_a4(frame_control)) {
1286 		padpos += ETH_ALEN;
1287 	}
1288 	if (ieee80211_is_data_qos(frame_control)) {
1289 		padpos += IEEE80211_QOS_CTL_LEN;
1290 	}
1291 
1292 	return padpos;
1293 }
1294 
1295 /*
1296  * This function expects an 802.11 frame and returns the number of
1297  * bytes added, or -1 if we don't have enough header room.
1298  */
1299 static int ath5k_add_padding(struct sk_buff *skb)
1300 {
1301 	int padpos = ath5k_common_padpos(skb);
1302 	int padsize = padpos & 3;
1303 
1304 	if (padsize && skb->len>padpos) {
1305 
1306 		if (skb_headroom(skb) < padsize)
1307 			return -1;
1308 
1309 		skb_push(skb, padsize);
1310 		memmove(skb->data, skb->data+padsize, padpos);
1311 		return padsize;
1312 	}
1313 
1314 	return 0;
1315 }
1316 
1317 /*
1318  * The MAC header is padded to have 32-bit boundary if the
1319  * packet payload is non-zero. The general calculation for
1320  * padsize would take into account odd header lengths:
1321  * padsize = 4 - (hdrlen & 3); however, since only
1322  * even-length headers are used, padding can only be 0 or 2
1323  * bytes and we can optimize this a bit.  We must not try to
1324  * remove padding from short control frames that do not have a
1325  * payload.
1326  *
1327  * This function expects an 802.11 frame and returns the number of
1328  * bytes removed.
1329  */
1330 static int ath5k_remove_padding(struct sk_buff *skb)
1331 {
1332 	int padpos = ath5k_common_padpos(skb);
1333 	int padsize = padpos & 3;
1334 
1335 	if (padsize && skb->len>=padpos+padsize) {
1336 		memmove(skb->data + padsize, skb->data, padpos);
1337 		skb_pull(skb, padsize);
1338 		return padsize;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static void
1345 ath5k_receive_frame(struct ath5k_softc *sc, struct sk_buff *skb,
1346 		    struct ath5k_rx_status *rs)
1347 {
1348 	struct ieee80211_rx_status *rxs;
1349 
1350 	ath5k_remove_padding(skb);
1351 
1352 	rxs = IEEE80211_SKB_RXCB(skb);
1353 
1354 	rxs->flag = 0;
1355 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1356 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1357 
1358 	/*
1359 	 * always extend the mac timestamp, since this information is
1360 	 * also needed for proper IBSS merging.
1361 	 *
1362 	 * XXX: it might be too late to do it here, since rs_tstamp is
1363 	 * 15bit only. that means TSF extension has to be done within
1364 	 * 32768usec (about 32ms). it might be necessary to move this to
1365 	 * the interrupt handler, like it is done in madwifi.
1366 	 *
1367 	 * Unfortunately we don't know when the hardware takes the rx
1368 	 * timestamp (beginning of phy frame, data frame, end of rx?).
1369 	 * The only thing we know is that it is hardware specific...
1370 	 * On AR5213 it seems the rx timestamp is at the end of the
1371 	 * frame, but i'm not sure.
1372 	 *
1373 	 * NOTE: mac80211 defines mactime at the beginning of the first
1374 	 * data symbol. Since we don't have any time references it's
1375 	 * impossible to comply to that. This affects IBSS merge only
1376 	 * right now, so it's not too bad...
1377 	 */
1378 	rxs->mactime = ath5k_extend_tsf(sc->ah, rs->rs_tstamp);
1379 	rxs->flag |= RX_FLAG_TSFT;
1380 
1381 	rxs->freq = sc->curchan->center_freq;
1382 	rxs->band = sc->curband->band;
1383 
1384 	rxs->signal = sc->ah->ah_noise_floor + rs->rs_rssi;
1385 
1386 	rxs->antenna = rs->rs_antenna;
1387 
1388 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1389 		sc->stats.antenna_rx[rs->rs_antenna]++;
1390 	else
1391 		sc->stats.antenna_rx[0]++; /* invalid */
1392 
1393 	rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs->rs_rate);
1394 	rxs->flag |= ath5k_rx_decrypted(sc, skb, rs);
1395 
1396 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1397 	    sc->curband->bitrates[rxs->rate_idx].hw_value_short)
1398 		rxs->flag |= RX_FLAG_SHORTPRE;
1399 
1400 	ath5k_debug_dump_skb(sc, skb, "RX  ", 0);
1401 
1402 	ath5k_update_beacon_rssi(sc, skb, rs->rs_rssi);
1403 
1404 	/* check beacons in IBSS mode */
1405 	if (sc->opmode == NL80211_IFTYPE_ADHOC)
1406 		ath5k_check_ibss_tsf(sc, skb, rxs);
1407 
1408 	ieee80211_rx(sc->hw, skb);
1409 }
1410 
1411 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1412  *
1413  * Check if we want to further process this frame or not. Also update
1414  * statistics. Return true if we want this frame, false if not.
1415  */
1416 static bool
1417 ath5k_receive_frame_ok(struct ath5k_softc *sc, struct ath5k_rx_status *rs)
1418 {
1419 	sc->stats.rx_all_count++;
1420 	sc->stats.rx_bytes_count += rs->rs_datalen;
1421 
1422 	if (unlikely(rs->rs_status)) {
1423 		if (rs->rs_status & AR5K_RXERR_CRC)
1424 			sc->stats.rxerr_crc++;
1425 		if (rs->rs_status & AR5K_RXERR_FIFO)
1426 			sc->stats.rxerr_fifo++;
1427 		if (rs->rs_status & AR5K_RXERR_PHY) {
1428 			sc->stats.rxerr_phy++;
1429 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1430 				sc->stats.rxerr_phy_code[rs->rs_phyerr]++;
1431 			return false;
1432 		}
1433 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1434 			/*
1435 			 * Decrypt error.  If the error occurred
1436 			 * because there was no hardware key, then
1437 			 * let the frame through so the upper layers
1438 			 * can process it.  This is necessary for 5210
1439 			 * parts which have no way to setup a ``clear''
1440 			 * key cache entry.
1441 			 *
1442 			 * XXX do key cache faulting
1443 			 */
1444 			sc->stats.rxerr_decrypt++;
1445 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1446 			    !(rs->rs_status & AR5K_RXERR_CRC))
1447 				return true;
1448 		}
1449 		if (rs->rs_status & AR5K_RXERR_MIC) {
1450 			sc->stats.rxerr_mic++;
1451 			return true;
1452 		}
1453 
1454 		/* reject any frames with non-crypto errors */
1455 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1456 			return false;
1457 	}
1458 
1459 	if (unlikely(rs->rs_more)) {
1460 		sc->stats.rxerr_jumbo++;
1461 		return false;
1462 	}
1463 	return true;
1464 }
1465 
1466 static void
1467 ath5k_tasklet_rx(unsigned long data)
1468 {
1469 	struct ath5k_rx_status rs = {};
1470 	struct sk_buff *skb, *next_skb;
1471 	dma_addr_t next_skb_addr;
1472 	struct ath5k_softc *sc = (void *)data;
1473 	struct ath5k_hw *ah = sc->ah;
1474 	struct ath_common *common = ath5k_hw_common(ah);
1475 	struct ath5k_buf *bf;
1476 	struct ath5k_desc *ds;
1477 	int ret;
1478 
1479 	spin_lock(&sc->rxbuflock);
1480 	if (list_empty(&sc->rxbuf)) {
1481 		ATH5K_WARN(sc, "empty rx buf pool\n");
1482 		goto unlock;
1483 	}
1484 	do {
1485 		bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1486 		BUG_ON(bf->skb == NULL);
1487 		skb = bf->skb;
1488 		ds = bf->desc;
1489 
1490 		/* bail if HW is still using self-linked descriptor */
1491 		if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1492 			break;
1493 
1494 		ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1495 		if (unlikely(ret == -EINPROGRESS))
1496 			break;
1497 		else if (unlikely(ret)) {
1498 			ATH5K_ERR(sc, "error in processing rx descriptor\n");
1499 			sc->stats.rxerr_proc++;
1500 			break;
1501 		}
1502 
1503 		if (ath5k_receive_frame_ok(sc, &rs)) {
1504 			next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
1505 
1506 			/*
1507 			 * If we can't replace bf->skb with a new skb under
1508 			 * memory pressure, just skip this packet
1509 			 */
1510 			if (!next_skb)
1511 				goto next;
1512 
1513 			dma_unmap_single(sc->dev, bf->skbaddr,
1514 					 common->rx_bufsize,
1515 					 DMA_FROM_DEVICE);
1516 
1517 			skb_put(skb, rs.rs_datalen);
1518 
1519 			ath5k_receive_frame(sc, skb, &rs);
1520 
1521 			bf->skb = next_skb;
1522 			bf->skbaddr = next_skb_addr;
1523 		}
1524 next:
1525 		list_move_tail(&bf->list, &sc->rxbuf);
1526 	} while (ath5k_rxbuf_setup(sc, bf) == 0);
1527 unlock:
1528 	spin_unlock(&sc->rxbuflock);
1529 }
1530 
1531 
1532 /*************\
1533 * TX Handling *
1534 \*************/
1535 
1536 int
1537 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1538 	       struct ath5k_txq *txq)
1539 {
1540 	struct ath5k_softc *sc = hw->priv;
1541 	struct ath5k_buf *bf;
1542 	unsigned long flags;
1543 	int padsize;
1544 
1545 	ath5k_debug_dump_skb(sc, skb, "TX  ", 1);
1546 
1547 	/*
1548 	 * The hardware expects the header padded to 4 byte boundaries.
1549 	 * If this is not the case, we add the padding after the header.
1550 	 */
1551 	padsize = ath5k_add_padding(skb);
1552 	if (padsize < 0) {
1553 		ATH5K_ERR(sc, "tx hdrlen not %%4: not enough"
1554 			  " headroom to pad");
1555 		goto drop_packet;
1556 	}
1557 
1558 	if (txq->txq_len >= ATH5K_TXQ_LEN_MAX)
1559 		ieee80211_stop_queue(hw, txq->qnum);
1560 
1561 	spin_lock_irqsave(&sc->txbuflock, flags);
1562 	if (list_empty(&sc->txbuf)) {
1563 		ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
1564 		spin_unlock_irqrestore(&sc->txbuflock, flags);
1565 		ieee80211_stop_queues(hw);
1566 		goto drop_packet;
1567 	}
1568 	bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
1569 	list_del(&bf->list);
1570 	sc->txbuf_len--;
1571 	if (list_empty(&sc->txbuf))
1572 		ieee80211_stop_queues(hw);
1573 	spin_unlock_irqrestore(&sc->txbuflock, flags);
1574 
1575 	bf->skb = skb;
1576 
1577 	if (ath5k_txbuf_setup(sc, bf, txq, padsize)) {
1578 		bf->skb = NULL;
1579 		spin_lock_irqsave(&sc->txbuflock, flags);
1580 		list_add_tail(&bf->list, &sc->txbuf);
1581 		sc->txbuf_len++;
1582 		spin_unlock_irqrestore(&sc->txbuflock, flags);
1583 		goto drop_packet;
1584 	}
1585 	return NETDEV_TX_OK;
1586 
1587 drop_packet:
1588 	dev_kfree_skb_any(skb);
1589 	return NETDEV_TX_OK;
1590 }
1591 
1592 static void
1593 ath5k_tx_frame_completed(struct ath5k_softc *sc, struct sk_buff *skb,
1594 			 struct ath5k_tx_status *ts)
1595 {
1596 	struct ieee80211_tx_info *info;
1597 	int i;
1598 
1599 	sc->stats.tx_all_count++;
1600 	sc->stats.tx_bytes_count += skb->len;
1601 	info = IEEE80211_SKB_CB(skb);
1602 
1603 	ieee80211_tx_info_clear_status(info);
1604 	for (i = 0; i < 4; i++) {
1605 		struct ieee80211_tx_rate *r =
1606 			&info->status.rates[i];
1607 
1608 		if (ts->ts_rate[i]) {
1609 			r->idx = ath5k_hw_to_driver_rix(sc, ts->ts_rate[i]);
1610 			r->count = ts->ts_retry[i];
1611 		} else {
1612 			r->idx = -1;
1613 			r->count = 0;
1614 		}
1615 	}
1616 
1617 	/* count the successful attempt as well */
1618 	info->status.rates[ts->ts_final_idx].count++;
1619 
1620 	if (unlikely(ts->ts_status)) {
1621 		sc->stats.ack_fail++;
1622 		if (ts->ts_status & AR5K_TXERR_FILT) {
1623 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1624 			sc->stats.txerr_filt++;
1625 		}
1626 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1627 			sc->stats.txerr_retry++;
1628 		if (ts->ts_status & AR5K_TXERR_FIFO)
1629 			sc->stats.txerr_fifo++;
1630 	} else {
1631 		info->flags |= IEEE80211_TX_STAT_ACK;
1632 		info->status.ack_signal = ts->ts_rssi;
1633 	}
1634 
1635 	/*
1636 	* Remove MAC header padding before giving the frame
1637 	* back to mac80211.
1638 	*/
1639 	ath5k_remove_padding(skb);
1640 
1641 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1642 		sc->stats.antenna_tx[ts->ts_antenna]++;
1643 	else
1644 		sc->stats.antenna_tx[0]++; /* invalid */
1645 
1646 	ieee80211_tx_status(sc->hw, skb);
1647 }
1648 
1649 static void
1650 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1651 {
1652 	struct ath5k_tx_status ts = {};
1653 	struct ath5k_buf *bf, *bf0;
1654 	struct ath5k_desc *ds;
1655 	struct sk_buff *skb;
1656 	int ret;
1657 
1658 	spin_lock(&txq->lock);
1659 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1660 
1661 		txq->txq_poll_mark = false;
1662 
1663 		/* skb might already have been processed last time. */
1664 		if (bf->skb != NULL) {
1665 			ds = bf->desc;
1666 
1667 			ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1668 			if (unlikely(ret == -EINPROGRESS))
1669 				break;
1670 			else if (unlikely(ret)) {
1671 				ATH5K_ERR(sc,
1672 					"error %d while processing "
1673 					"queue %u\n", ret, txq->qnum);
1674 				break;
1675 			}
1676 
1677 			skb = bf->skb;
1678 			bf->skb = NULL;
1679 
1680 			dma_unmap_single(sc->dev, bf->skbaddr, skb->len,
1681 					DMA_TO_DEVICE);
1682 			ath5k_tx_frame_completed(sc, skb, &ts);
1683 		}
1684 
1685 		/*
1686 		 * It's possible that the hardware can say the buffer is
1687 		 * completed when it hasn't yet loaded the ds_link from
1688 		 * host memory and moved on.
1689 		 * Always keep the last descriptor to avoid HW races...
1690 		 */
1691 		if (ath5k_hw_get_txdp(sc->ah, txq->qnum) != bf->daddr) {
1692 			spin_lock(&sc->txbuflock);
1693 			list_move_tail(&bf->list, &sc->txbuf);
1694 			sc->txbuf_len++;
1695 			txq->txq_len--;
1696 			spin_unlock(&sc->txbuflock);
1697 		}
1698 	}
1699 	spin_unlock(&txq->lock);
1700 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1701 		ieee80211_wake_queue(sc->hw, txq->qnum);
1702 }
1703 
1704 static void
1705 ath5k_tasklet_tx(unsigned long data)
1706 {
1707 	int i;
1708 	struct ath5k_softc *sc = (void *)data;
1709 
1710 	for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
1711 		if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
1712 			ath5k_tx_processq(sc, &sc->txqs[i]);
1713 }
1714 
1715 
1716 /*****************\
1717 * Beacon handling *
1718 \*****************/
1719 
1720 /*
1721  * Setup the beacon frame for transmit.
1722  */
1723 static int
1724 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1725 {
1726 	struct sk_buff *skb = bf->skb;
1727 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1728 	struct ath5k_hw *ah = sc->ah;
1729 	struct ath5k_desc *ds;
1730 	int ret = 0;
1731 	u8 antenna;
1732 	u32 flags;
1733 	const int padsize = 0;
1734 
1735 	bf->skbaddr = dma_map_single(sc->dev, skb->data, skb->len,
1736 			DMA_TO_DEVICE);
1737 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1738 			"skbaddr %llx\n", skb, skb->data, skb->len,
1739 			(unsigned long long)bf->skbaddr);
1740 
1741 	if (dma_mapping_error(sc->dev, bf->skbaddr)) {
1742 		ATH5K_ERR(sc, "beacon DMA mapping failed\n");
1743 		return -EIO;
1744 	}
1745 
1746 	ds = bf->desc;
1747 	antenna = ah->ah_tx_ant;
1748 
1749 	flags = AR5K_TXDESC_NOACK;
1750 	if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1751 		ds->ds_link = bf->daddr;	/* self-linked */
1752 		flags |= AR5K_TXDESC_VEOL;
1753 	} else
1754 		ds->ds_link = 0;
1755 
1756 	/*
1757 	 * If we use multiple antennas on AP and use
1758 	 * the Sectored AP scenario, switch antenna every
1759 	 * 4 beacons to make sure everybody hears our AP.
1760 	 * When a client tries to associate, hw will keep
1761 	 * track of the tx antenna to be used for this client
1762 	 * automaticaly, based on ACKed packets.
1763 	 *
1764 	 * Note: AP still listens and transmits RTS on the
1765 	 * default antenna which is supposed to be an omni.
1766 	 *
1767 	 * Note2: On sectored scenarios it's possible to have
1768 	 * multiple antennas (1 omni -- the default -- and 14
1769 	 * sectors), so if we choose to actually support this
1770 	 * mode, we need to allow the user to set how many antennas
1771 	 * we have and tweak the code below to send beacons
1772 	 * on all of them.
1773 	 */
1774 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1775 		antenna = sc->bsent & 4 ? 2 : 1;
1776 
1777 
1778 	/* FIXME: If we are in g mode and rate is a CCK rate
1779 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1780 	 * from tx power (value is in dB units already) */
1781 	ds->ds_data = bf->skbaddr;
1782 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1783 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1784 			AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
1785 			ieee80211_get_tx_rate(sc->hw, info)->hw_value,
1786 			1, AR5K_TXKEYIX_INVALID,
1787 			antenna, flags, 0, 0);
1788 	if (ret)
1789 		goto err_unmap;
1790 
1791 	return 0;
1792 err_unmap:
1793 	dma_unmap_single(sc->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1794 	return ret;
1795 }
1796 
1797 /*
1798  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1799  * this is called only once at config_bss time, for AP we do it every
1800  * SWBA interrupt so that the TIM will reflect buffered frames.
1801  *
1802  * Called with the beacon lock.
1803  */
1804 int
1805 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1806 {
1807 	int ret;
1808 	struct ath5k_softc *sc = hw->priv;
1809 	struct ath5k_vif *avf = (void *)vif->drv_priv;
1810 	struct sk_buff *skb;
1811 
1812 	if (WARN_ON(!vif)) {
1813 		ret = -EINVAL;
1814 		goto out;
1815 	}
1816 
1817 	skb = ieee80211_beacon_get(hw, vif);
1818 
1819 	if (!skb) {
1820 		ret = -ENOMEM;
1821 		goto out;
1822 	}
1823 
1824 	ath5k_debug_dump_skb(sc, skb, "BC  ", 1);
1825 
1826 	ath5k_txbuf_free_skb(sc, avf->bbuf);
1827 	avf->bbuf->skb = skb;
1828 	ret = ath5k_beacon_setup(sc, avf->bbuf);
1829 	if (ret)
1830 		avf->bbuf->skb = NULL;
1831 out:
1832 	return ret;
1833 }
1834 
1835 /*
1836  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1837  * frame contents are done as needed and the slot time is
1838  * also adjusted based on current state.
1839  *
1840  * This is called from software irq context (beacontq tasklets)
1841  * or user context from ath5k_beacon_config.
1842  */
1843 static void
1844 ath5k_beacon_send(struct ath5k_softc *sc)
1845 {
1846 	struct ath5k_hw *ah = sc->ah;
1847 	struct ieee80211_vif *vif;
1848 	struct ath5k_vif *avf;
1849 	struct ath5k_buf *bf;
1850 	struct sk_buff *skb;
1851 
1852 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1853 
1854 	/*
1855 	 * Check if the previous beacon has gone out.  If
1856 	 * not, don't don't try to post another: skip this
1857 	 * period and wait for the next.  Missed beacons
1858 	 * indicate a problem and should not occur.  If we
1859 	 * miss too many consecutive beacons reset the device.
1860 	 */
1861 	if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
1862 		sc->bmisscount++;
1863 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1864 			"missed %u consecutive beacons\n", sc->bmisscount);
1865 		if (sc->bmisscount > 10) {	/* NB: 10 is a guess */
1866 			ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1867 				"stuck beacon time (%u missed)\n",
1868 				sc->bmisscount);
1869 			ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
1870 				  "stuck beacon, resetting\n");
1871 			ieee80211_queue_work(sc->hw, &sc->reset_work);
1872 		}
1873 		return;
1874 	}
1875 	if (unlikely(sc->bmisscount != 0)) {
1876 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1877 			"resume beacon xmit after %u misses\n",
1878 			sc->bmisscount);
1879 		sc->bmisscount = 0;
1880 	}
1881 
1882 	if ((sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) ||
1883 			sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1884 		u64 tsf = ath5k_hw_get_tsf64(ah);
1885 		u32 tsftu = TSF_TO_TU(tsf);
1886 		int slot = ((tsftu % sc->bintval) * ATH_BCBUF) / sc->bintval;
1887 		vif = sc->bslot[(slot + 1) % ATH_BCBUF];
1888 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1889 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1890 			(unsigned long long)tsf, tsftu, sc->bintval, slot, vif);
1891 	} else /* only one interface */
1892 		vif = sc->bslot[0];
1893 
1894 	if (!vif)
1895 		return;
1896 
1897 	avf = (void *)vif->drv_priv;
1898 	bf = avf->bbuf;
1899 	if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
1900 			sc->opmode == NL80211_IFTYPE_MONITOR)) {
1901 		ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
1902 		return;
1903 	}
1904 
1905 	/*
1906 	 * Stop any current dma and put the new frame on the queue.
1907 	 * This should never fail since we check above that no frames
1908 	 * are still pending on the queue.
1909 	 */
1910 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, sc->bhalq))) {
1911 		ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
1912 		/* NB: hw still stops DMA, so proceed */
1913 	}
1914 
1915 	/* refresh the beacon for AP or MESH mode */
1916 	if (sc->opmode == NL80211_IFTYPE_AP ||
1917 			sc->opmode == NL80211_IFTYPE_MESH_POINT)
1918 		ath5k_beacon_update(sc->hw, vif);
1919 
1920 	ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
1921 	ath5k_hw_start_tx_dma(ah, sc->bhalq);
1922 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1923 		sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
1924 
1925 	skb = ieee80211_get_buffered_bc(sc->hw, vif);
1926 	while (skb) {
1927 		ath5k_tx_queue(sc->hw, skb, sc->cabq);
1928 		skb = ieee80211_get_buffered_bc(sc->hw, vif);
1929 	}
1930 
1931 	sc->bsent++;
1932 }
1933 
1934 /**
1935  * ath5k_beacon_update_timers - update beacon timers
1936  *
1937  * @sc: struct ath5k_softc pointer we are operating on
1938  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1939  *          beacon timer update based on the current HW TSF.
1940  *
1941  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1942  * of a received beacon or the current local hardware TSF and write it to the
1943  * beacon timer registers.
1944  *
1945  * This is called in a variety of situations, e.g. when a beacon is received,
1946  * when a TSF update has been detected, but also when an new IBSS is created or
1947  * when we otherwise know we have to update the timers, but we keep it in this
1948  * function to have it all together in one place.
1949  */
1950 void
1951 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
1952 {
1953 	struct ath5k_hw *ah = sc->ah;
1954 	u32 nexttbtt, intval, hw_tu, bc_tu;
1955 	u64 hw_tsf;
1956 
1957 	intval = sc->bintval & AR5K_BEACON_PERIOD;
1958 	if (sc->opmode == NL80211_IFTYPE_AP && sc->num_ap_vifs > 1) {
1959 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
1960 		if (intval < 15)
1961 			ATH5K_WARN(sc, "intval %u is too low, min 15\n",
1962 				   intval);
1963 	}
1964 	if (WARN_ON(!intval))
1965 		return;
1966 
1967 	/* beacon TSF converted to TU */
1968 	bc_tu = TSF_TO_TU(bc_tsf);
1969 
1970 	/* current TSF converted to TU */
1971 	hw_tsf = ath5k_hw_get_tsf64(ah);
1972 	hw_tu = TSF_TO_TU(hw_tsf);
1973 
1974 #define FUDGE AR5K_TUNE_SW_BEACON_RESP + 3
1975 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1976 	 * Since we later substract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1977 	 * configuration we need to make sure it is bigger than that. */
1978 
1979 	if (bc_tsf == -1) {
1980 		/*
1981 		 * no beacons received, called internally.
1982 		 * just need to refresh timers based on HW TSF.
1983 		 */
1984 		nexttbtt = roundup(hw_tu + FUDGE, intval);
1985 	} else if (bc_tsf == 0) {
1986 		/*
1987 		 * no beacon received, probably called by ath5k_reset_tsf().
1988 		 * reset TSF to start with 0.
1989 		 */
1990 		nexttbtt = intval;
1991 		intval |= AR5K_BEACON_RESET_TSF;
1992 	} else if (bc_tsf > hw_tsf) {
1993 		/*
1994 		 * beacon received, SW merge happend but HW TSF not yet updated.
1995 		 * not possible to reconfigure timers yet, but next time we
1996 		 * receive a beacon with the same BSSID, the hardware will
1997 		 * automatically update the TSF and then we need to reconfigure
1998 		 * the timers.
1999 		 */
2000 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2001 			"need to wait for HW TSF sync\n");
2002 		return;
2003 	} else {
2004 		/*
2005 		 * most important case for beacon synchronization between STA.
2006 		 *
2007 		 * beacon received and HW TSF has been already updated by HW.
2008 		 * update next TBTT based on the TSF of the beacon, but make
2009 		 * sure it is ahead of our local TSF timer.
2010 		 */
2011 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2012 	}
2013 #undef FUDGE
2014 
2015 	sc->nexttbtt = nexttbtt;
2016 
2017 	intval |= AR5K_BEACON_ENA;
2018 	ath5k_hw_init_beacon(ah, nexttbtt, intval);
2019 
2020 	/*
2021 	 * debugging output last in order to preserve the time critical aspect
2022 	 * of this function
2023 	 */
2024 	if (bc_tsf == -1)
2025 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2026 			"reconfigured timers based on HW TSF\n");
2027 	else if (bc_tsf == 0)
2028 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2029 			"reset HW TSF and timers\n");
2030 	else
2031 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2032 			"updated timers based on beacon TSF\n");
2033 
2034 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2035 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2036 			  (unsigned long long) bc_tsf,
2037 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2038 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2039 		intval & AR5K_BEACON_PERIOD,
2040 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2041 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2042 }
2043 
2044 /**
2045  * ath5k_beacon_config - Configure the beacon queues and interrupts
2046  *
2047  * @sc: struct ath5k_softc pointer we are operating on
2048  *
2049  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2050  * interrupts to detect TSF updates only.
2051  */
2052 void
2053 ath5k_beacon_config(struct ath5k_softc *sc)
2054 {
2055 	struct ath5k_hw *ah = sc->ah;
2056 	unsigned long flags;
2057 
2058 	spin_lock_irqsave(&sc->block, flags);
2059 	sc->bmisscount = 0;
2060 	sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2061 
2062 	if (sc->enable_beacon) {
2063 		/*
2064 		 * In IBSS mode we use a self-linked tx descriptor and let the
2065 		 * hardware send the beacons automatically. We have to load it
2066 		 * only once here.
2067 		 * We use the SWBA interrupt only to keep track of the beacon
2068 		 * timers in order to detect automatic TSF updates.
2069 		 */
2070 		ath5k_beaconq_config(sc);
2071 
2072 		sc->imask |= AR5K_INT_SWBA;
2073 
2074 		if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2075 			if (ath5k_hw_hasveol(ah))
2076 				ath5k_beacon_send(sc);
2077 		} else
2078 			ath5k_beacon_update_timers(sc, -1);
2079 	} else {
2080 		ath5k_hw_stop_beacon_queue(sc->ah, sc->bhalq);
2081 	}
2082 
2083 	ath5k_hw_set_imr(ah, sc->imask);
2084 	mmiowb();
2085 	spin_unlock_irqrestore(&sc->block, flags);
2086 }
2087 
2088 static void ath5k_tasklet_beacon(unsigned long data)
2089 {
2090 	struct ath5k_softc *sc = (struct ath5k_softc *) data;
2091 
2092 	/*
2093 	 * Software beacon alert--time to send a beacon.
2094 	 *
2095 	 * In IBSS mode we use this interrupt just to
2096 	 * keep track of the next TBTT (target beacon
2097 	 * transmission time) in order to detect wether
2098 	 * automatic TSF updates happened.
2099 	 */
2100 	if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2101 		/* XXX: only if VEOL suppported */
2102 		u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2103 		sc->nexttbtt += sc->bintval;
2104 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2105 				"SWBA nexttbtt: %x hw_tu: %x "
2106 				"TSF: %llx\n",
2107 				sc->nexttbtt,
2108 				TSF_TO_TU(tsf),
2109 				(unsigned long long) tsf);
2110 	} else {
2111 		spin_lock(&sc->block);
2112 		ath5k_beacon_send(sc);
2113 		spin_unlock(&sc->block);
2114 	}
2115 }
2116 
2117 
2118 /********************\
2119 * Interrupt handling *
2120 \********************/
2121 
2122 static void
2123 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2124 {
2125 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2126 	    !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2127 		/* run ANI only when full calibration is not active */
2128 		ah->ah_cal_next_ani = jiffies +
2129 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2130 		tasklet_schedule(&ah->ah_sc->ani_tasklet);
2131 
2132 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2133 		ah->ah_cal_next_full = jiffies +
2134 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2135 		tasklet_schedule(&ah->ah_sc->calib);
2136 	}
2137 	/* we could use SWI to generate enough interrupts to meet our
2138 	 * calibration interval requirements, if necessary:
2139 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2140 }
2141 
2142 irqreturn_t
2143 ath5k_intr(int irq, void *dev_id)
2144 {
2145 	struct ath5k_softc *sc = dev_id;
2146 	struct ath5k_hw *ah = sc->ah;
2147 	enum ath5k_int status;
2148 	unsigned int counter = 1000;
2149 
2150 	if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2151 		((ath5k_get_bus_type(ah) != ATH_AHB) &&
2152 				!ath5k_hw_is_intr_pending(ah))))
2153 		return IRQ_NONE;
2154 
2155 	do {
2156 		ath5k_hw_get_isr(ah, &status);		/* NB: clears IRQ too */
2157 		ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2158 				status, sc->imask);
2159 		if (unlikely(status & AR5K_INT_FATAL)) {
2160 			/*
2161 			 * Fatal errors are unrecoverable.
2162 			 * Typically these are caused by DMA errors.
2163 			 */
2164 			ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2165 				  "fatal int, resetting\n");
2166 			ieee80211_queue_work(sc->hw, &sc->reset_work);
2167 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2168 			/*
2169 			 * Receive buffers are full. Either the bus is busy or
2170 			 * the CPU is not fast enough to process all received
2171 			 * frames.
2172 			 * Older chipsets need a reset to come out of this
2173 			 * condition, but we treat it as RX for newer chips.
2174 			 * We don't know exactly which versions need a reset -
2175 			 * this guess is copied from the HAL.
2176 			 */
2177 			sc->stats.rxorn_intr++;
2178 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2179 				ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2180 					  "rx overrun, resetting\n");
2181 				ieee80211_queue_work(sc->hw, &sc->reset_work);
2182 			}
2183 			else
2184 				tasklet_schedule(&sc->rxtq);
2185 		} else {
2186 			if (status & AR5K_INT_SWBA) {
2187 				tasklet_hi_schedule(&sc->beacontq);
2188 			}
2189 			if (status & AR5K_INT_RXEOL) {
2190 				/*
2191 				* NB: the hardware should re-read the link when
2192 				*     RXE bit is written, but it doesn't work at
2193 				*     least on older hardware revs.
2194 				*/
2195 				sc->stats.rxeol_intr++;
2196 			}
2197 			if (status & AR5K_INT_TXURN) {
2198 				/* bump tx trigger level */
2199 				ath5k_hw_update_tx_triglevel(ah, true);
2200 			}
2201 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2202 				tasklet_schedule(&sc->rxtq);
2203 			if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2204 					| AR5K_INT_TXERR | AR5K_INT_TXEOL))
2205 				tasklet_schedule(&sc->txtq);
2206 			if (status & AR5K_INT_BMISS) {
2207 				/* TODO */
2208 			}
2209 			if (status & AR5K_INT_MIB) {
2210 				sc->stats.mib_intr++;
2211 				ath5k_hw_update_mib_counters(ah);
2212 				ath5k_ani_mib_intr(ah);
2213 			}
2214 			if (status & AR5K_INT_GPIO)
2215 				tasklet_schedule(&sc->rf_kill.toggleq);
2216 
2217 		}
2218 
2219 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2220 			break;
2221 
2222 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2223 
2224 	if (unlikely(!counter))
2225 		ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2226 
2227 	ath5k_intr_calibration_poll(ah);
2228 
2229 	return IRQ_HANDLED;
2230 }
2231 
2232 /*
2233  * Periodically recalibrate the PHY to account
2234  * for temperature/environment changes.
2235  */
2236 static void
2237 ath5k_tasklet_calibrate(unsigned long data)
2238 {
2239 	struct ath5k_softc *sc = (void *)data;
2240 	struct ath5k_hw *ah = sc->ah;
2241 
2242 	/* Only full calibration for now */
2243 	ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2244 
2245 	ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2246 		ieee80211_frequency_to_channel(sc->curchan->center_freq),
2247 		sc->curchan->hw_value);
2248 
2249 	if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2250 		/*
2251 		 * Rfgain is out of bounds, reset the chip
2252 		 * to load new gain values.
2253 		 */
2254 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2255 		ieee80211_queue_work(sc->hw, &sc->reset_work);
2256 	}
2257 	if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2258 		ATH5K_ERR(sc, "calibration of channel %u failed\n",
2259 			ieee80211_frequency_to_channel(
2260 				sc->curchan->center_freq));
2261 
2262 	/* Noise floor calibration interrupts rx/tx path while I/Q calibration
2263 	 * doesn't.
2264 	 * TODO: We should stop TX here, so that it doesn't interfere.
2265 	 * Note that stopping the queues is not enough to stop TX! */
2266 	if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2267 		ah->ah_cal_next_nf = jiffies +
2268 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2269 		ath5k_hw_update_noise_floor(ah);
2270 	}
2271 
2272 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2273 }
2274 
2275 
2276 static void
2277 ath5k_tasklet_ani(unsigned long data)
2278 {
2279 	struct ath5k_softc *sc = (void *)data;
2280 	struct ath5k_hw *ah = sc->ah;
2281 
2282 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2283 	ath5k_ani_calibration(ah);
2284 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2285 }
2286 
2287 
2288 static void
2289 ath5k_tx_complete_poll_work(struct work_struct *work)
2290 {
2291 	struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2292 			tx_complete_work.work);
2293 	struct ath5k_txq *txq;
2294 	int i;
2295 	bool needreset = false;
2296 
2297 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++) {
2298 		if (sc->txqs[i].setup) {
2299 			txq = &sc->txqs[i];
2300 			spin_lock_bh(&txq->lock);
2301 			if (txq->txq_len > 1) {
2302 				if (txq->txq_poll_mark) {
2303 					ATH5K_DBG(sc, ATH5K_DEBUG_XMIT,
2304 						  "TX queue stuck %d\n",
2305 						  txq->qnum);
2306 					needreset = true;
2307 					txq->txq_stuck++;
2308 					spin_unlock_bh(&txq->lock);
2309 					break;
2310 				} else {
2311 					txq->txq_poll_mark = true;
2312 				}
2313 			}
2314 			spin_unlock_bh(&txq->lock);
2315 		}
2316 	}
2317 
2318 	if (needreset) {
2319 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2320 			  "TX queues stuck, resetting\n");
2321 		ath5k_reset(sc, NULL, true);
2322 	}
2323 
2324 	ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2325 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2326 }
2327 
2328 
2329 /*************************\
2330 * Initialization routines *
2331 \*************************/
2332 
2333 int
2334 ath5k_init_softc(struct ath5k_softc *sc, const struct ath_bus_ops *bus_ops)
2335 {
2336 	struct ieee80211_hw *hw = sc->hw;
2337 	struct ath_common *common;
2338 	int ret;
2339 	int csz;
2340 
2341 	/* Initialize driver private data */
2342 	SET_IEEE80211_DEV(hw, sc->dev);
2343 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2344 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2345 			IEEE80211_HW_SIGNAL_DBM |
2346 			IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2347 
2348 	hw->wiphy->interface_modes =
2349 		BIT(NL80211_IFTYPE_AP) |
2350 		BIT(NL80211_IFTYPE_STATION) |
2351 		BIT(NL80211_IFTYPE_ADHOC) |
2352 		BIT(NL80211_IFTYPE_MESH_POINT);
2353 
2354 	/* both antennas can be configured as RX or TX */
2355 	hw->wiphy->available_antennas_tx = 0x3;
2356 	hw->wiphy->available_antennas_rx = 0x3;
2357 
2358 	hw->extra_tx_headroom = 2;
2359 	hw->channel_change_time = 5000;
2360 
2361 	/*
2362 	 * Mark the device as detached to avoid processing
2363 	 * interrupts until setup is complete.
2364 	 */
2365 	__set_bit(ATH_STAT_INVALID, sc->status);
2366 
2367 	sc->opmode = NL80211_IFTYPE_STATION;
2368 	sc->bintval = 1000;
2369 	mutex_init(&sc->lock);
2370 	spin_lock_init(&sc->rxbuflock);
2371 	spin_lock_init(&sc->txbuflock);
2372 	spin_lock_init(&sc->block);
2373 
2374 
2375 	/* Setup interrupt handler */
2376 	ret = request_irq(sc->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
2377 	if (ret) {
2378 		ATH5K_ERR(sc, "request_irq failed\n");
2379 		goto err;
2380 	}
2381 
2382 	/* If we passed the test, malloc an ath5k_hw struct */
2383 	sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
2384 	if (!sc->ah) {
2385 		ret = -ENOMEM;
2386 		ATH5K_ERR(sc, "out of memory\n");
2387 		goto err_irq;
2388 	}
2389 
2390 	sc->ah->ah_sc = sc;
2391 	sc->ah->ah_iobase = sc->iobase;
2392 	common = ath5k_hw_common(sc->ah);
2393 	common->ops = &ath5k_common_ops;
2394 	common->bus_ops = bus_ops;
2395 	common->ah = sc->ah;
2396 	common->hw = hw;
2397 	common->priv = sc;
2398 
2399 	/*
2400 	 * Cache line size is used to size and align various
2401 	 * structures used to communicate with the hardware.
2402 	 */
2403 	ath5k_read_cachesize(common, &csz);
2404 	common->cachelsz = csz << 2; /* convert to bytes */
2405 
2406 	spin_lock_init(&common->cc_lock);
2407 
2408 	/* Initialize device */
2409 	ret = ath5k_hw_init(sc);
2410 	if (ret)
2411 		goto err_free_ah;
2412 
2413 	/* set up multi-rate retry capabilities */
2414 	if (sc->ah->ah_version == AR5K_AR5212) {
2415 		hw->max_rates = 4;
2416 		hw->max_rate_tries = 11;
2417 	}
2418 
2419 	hw->vif_data_size = sizeof(struct ath5k_vif);
2420 
2421 	/* Finish private driver data initialization */
2422 	ret = ath5k_init(hw);
2423 	if (ret)
2424 		goto err_ah;
2425 
2426 	ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2427 			ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
2428 					sc->ah->ah_mac_srev,
2429 					sc->ah->ah_phy_revision);
2430 
2431 	if (!sc->ah->ah_single_chip) {
2432 		/* Single chip radio (!RF5111) */
2433 		if (sc->ah->ah_radio_5ghz_revision &&
2434 			!sc->ah->ah_radio_2ghz_revision) {
2435 			/* No 5GHz support -> report 2GHz radio */
2436 			if (!test_bit(AR5K_MODE_11A,
2437 				sc->ah->ah_capabilities.cap_mode)) {
2438 				ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2439 					ath5k_chip_name(AR5K_VERSION_RAD,
2440 						sc->ah->ah_radio_5ghz_revision),
2441 						sc->ah->ah_radio_5ghz_revision);
2442 			/* No 2GHz support (5110 and some
2443 			 * 5Ghz only cards) -> report 5Ghz radio */
2444 			} else if (!test_bit(AR5K_MODE_11B,
2445 				sc->ah->ah_capabilities.cap_mode)) {
2446 				ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2447 					ath5k_chip_name(AR5K_VERSION_RAD,
2448 						sc->ah->ah_radio_5ghz_revision),
2449 						sc->ah->ah_radio_5ghz_revision);
2450 			/* Multiband radio */
2451 			} else {
2452 				ATH5K_INFO(sc, "RF%s multiband radio found"
2453 					" (0x%x)\n",
2454 					ath5k_chip_name(AR5K_VERSION_RAD,
2455 						sc->ah->ah_radio_5ghz_revision),
2456 						sc->ah->ah_radio_5ghz_revision);
2457 			}
2458 		}
2459 		/* Multi chip radio (RF5111 - RF2111) ->
2460 		 * report both 2GHz/5GHz radios */
2461 		else if (sc->ah->ah_radio_5ghz_revision &&
2462 				sc->ah->ah_radio_2ghz_revision){
2463 			ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
2464 				ath5k_chip_name(AR5K_VERSION_RAD,
2465 					sc->ah->ah_radio_5ghz_revision),
2466 					sc->ah->ah_radio_5ghz_revision);
2467 			ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
2468 				ath5k_chip_name(AR5K_VERSION_RAD,
2469 					sc->ah->ah_radio_2ghz_revision),
2470 					sc->ah->ah_radio_2ghz_revision);
2471 		}
2472 	}
2473 
2474 	ath5k_debug_init_device(sc);
2475 
2476 	/* ready to process interrupts */
2477 	__clear_bit(ATH_STAT_INVALID, sc->status);
2478 
2479 	return 0;
2480 err_ah:
2481 	ath5k_hw_deinit(sc->ah);
2482 err_free_ah:
2483 	kfree(sc->ah);
2484 err_irq:
2485 	free_irq(sc->irq, sc);
2486 err:
2487 	return ret;
2488 }
2489 
2490 static int
2491 ath5k_stop_locked(struct ath5k_softc *sc)
2492 {
2493 	struct ath5k_hw *ah = sc->ah;
2494 
2495 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2496 			test_bit(ATH_STAT_INVALID, sc->status));
2497 
2498 	/*
2499 	 * Shutdown the hardware and driver:
2500 	 *    stop output from above
2501 	 *    disable interrupts
2502 	 *    turn off timers
2503 	 *    turn off the radio
2504 	 *    clear transmit machinery
2505 	 *    clear receive machinery
2506 	 *    drain and release tx queues
2507 	 *    reclaim beacon resources
2508 	 *    power down hardware
2509 	 *
2510 	 * Note that some of this work is not possible if the
2511 	 * hardware is gone (invalid).
2512 	 */
2513 	ieee80211_stop_queues(sc->hw);
2514 
2515 	if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2516 		ath5k_led_off(sc);
2517 		ath5k_hw_set_imr(ah, 0);
2518 		synchronize_irq(sc->irq);
2519 		ath5k_rx_stop(sc);
2520 		ath5k_hw_dma_stop(ah);
2521 		ath5k_drain_tx_buffs(sc);
2522 		ath5k_hw_phy_disable(ah);
2523 	}
2524 
2525 	return 0;
2526 }
2527 
2528 int
2529 ath5k_init_hw(struct ath5k_softc *sc)
2530 {
2531 	struct ath5k_hw *ah = sc->ah;
2532 	struct ath_common *common = ath5k_hw_common(ah);
2533 	int ret, i;
2534 
2535 	mutex_lock(&sc->lock);
2536 
2537 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2538 
2539 	/*
2540 	 * Stop anything previously setup.  This is safe
2541 	 * no matter this is the first time through or not.
2542 	 */
2543 	ath5k_stop_locked(sc);
2544 
2545 	/*
2546 	 * The basic interface to setting the hardware in a good
2547 	 * state is ``reset''.  On return the hardware is known to
2548 	 * be powered up and with interrupts disabled.  This must
2549 	 * be followed by initialization of the appropriate bits
2550 	 * and then setup of the interrupt mask.
2551 	 */
2552 	sc->curchan = sc->hw->conf.channel;
2553 	sc->curband = &sc->sbands[sc->curchan->band];
2554 	sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2555 		AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2556 		AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2557 
2558 	ret = ath5k_reset(sc, NULL, false);
2559 	if (ret)
2560 		goto done;
2561 
2562 	ath5k_rfkill_hw_start(ah);
2563 
2564 	/*
2565 	 * Reset the key cache since some parts do not reset the
2566 	 * contents on initial power up or resume from suspend.
2567 	 */
2568 	for (i = 0; i < common->keymax; i++)
2569 		ath_hw_keyreset(common, (u16) i);
2570 
2571 	/* Use higher rates for acks instead of base
2572 	 * rate */
2573 	ah->ah_ack_bitrate_high = true;
2574 
2575 	for (i = 0; i < ARRAY_SIZE(sc->bslot); i++)
2576 		sc->bslot[i] = NULL;
2577 
2578 	ret = 0;
2579 done:
2580 	mmiowb();
2581 	mutex_unlock(&sc->lock);
2582 
2583 	ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
2584 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2585 
2586 	return ret;
2587 }
2588 
2589 static void stop_tasklets(struct ath5k_softc *sc)
2590 {
2591 	tasklet_kill(&sc->rxtq);
2592 	tasklet_kill(&sc->txtq);
2593 	tasklet_kill(&sc->calib);
2594 	tasklet_kill(&sc->beacontq);
2595 	tasklet_kill(&sc->ani_tasklet);
2596 }
2597 
2598 /*
2599  * Stop the device, grabbing the top-level lock to protect
2600  * against concurrent entry through ath5k_init (which can happen
2601  * if another thread does a system call and the thread doing the
2602  * stop is preempted).
2603  */
2604 int
2605 ath5k_stop_hw(struct ath5k_softc *sc)
2606 {
2607 	int ret;
2608 
2609 	mutex_lock(&sc->lock);
2610 	ret = ath5k_stop_locked(sc);
2611 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2612 		/*
2613 		 * Don't set the card in full sleep mode!
2614 		 *
2615 		 * a) When the device is in this state it must be carefully
2616 		 * woken up or references to registers in the PCI clock
2617 		 * domain may freeze the bus (and system).  This varies
2618 		 * by chip and is mostly an issue with newer parts
2619 		 * (madwifi sources mentioned srev >= 0x78) that go to
2620 		 * sleep more quickly.
2621 		 *
2622 		 * b) On older chips full sleep results a weird behaviour
2623 		 * during wakeup. I tested various cards with srev < 0x78
2624 		 * and they don't wake up after module reload, a second
2625 		 * module reload is needed to bring the card up again.
2626 		 *
2627 		 * Until we figure out what's going on don't enable
2628 		 * full chip reset on any chip (this is what Legacy HAL
2629 		 * and Sam's HAL do anyway). Instead Perform a full reset
2630 		 * on the device (same as initial state after attach) and
2631 		 * leave it idle (keep MAC/BB on warm reset) */
2632 		ret = ath5k_hw_on_hold(sc->ah);
2633 
2634 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2635 				"putting device to sleep\n");
2636 	}
2637 
2638 	mmiowb();
2639 	mutex_unlock(&sc->lock);
2640 
2641 	stop_tasklets(sc);
2642 
2643 	cancel_delayed_work_sync(&sc->tx_complete_work);
2644 
2645 	ath5k_rfkill_hw_stop(sc->ah);
2646 
2647 	return ret;
2648 }
2649 
2650 /*
2651  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2652  * and change to the given channel.
2653  *
2654  * This should be called with sc->lock.
2655  */
2656 static int
2657 ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan,
2658 							bool skip_pcu)
2659 {
2660 	struct ath5k_hw *ah = sc->ah;
2661 	struct ath_common *common = ath5k_hw_common(ah);
2662 	int ret, ani_mode;
2663 
2664 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2665 
2666 	ath5k_hw_set_imr(ah, 0);
2667 	synchronize_irq(sc->irq);
2668 	stop_tasklets(sc);
2669 
2670 	/* Save ani mode and disable ANI durring
2671 	 * reset. If we don't we might get false
2672 	 * PHY error interrupts. */
2673 	ani_mode = ah->ah_sc->ani_state.ani_mode;
2674 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2675 
2676 	/* We are going to empty hw queues
2677 	 * so we should also free any remaining
2678 	 * tx buffers */
2679 	ath5k_drain_tx_buffs(sc);
2680 	if (chan) {
2681 		sc->curchan = chan;
2682 		sc->curband = &sc->sbands[chan->band];
2683 	}
2684 	ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, chan != NULL,
2685 								skip_pcu);
2686 	if (ret) {
2687 		ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2688 		goto err;
2689 	}
2690 
2691 	ret = ath5k_rx_start(sc);
2692 	if (ret) {
2693 		ATH5K_ERR(sc, "can't start recv logic\n");
2694 		goto err;
2695 	}
2696 
2697 	ath5k_ani_init(ah, ani_mode);
2698 
2699 	ah->ah_cal_next_full = jiffies;
2700 	ah->ah_cal_next_ani = jiffies;
2701 	ah->ah_cal_next_nf = jiffies;
2702 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2703 
2704 	/* clear survey data and cycle counters */
2705 	memset(&sc->survey, 0, sizeof(sc->survey));
2706 	spin_lock(&common->cc_lock);
2707 	ath_hw_cycle_counters_update(common);
2708 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2709 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2710 	spin_unlock(&common->cc_lock);
2711 
2712 	/*
2713 	 * Change channels and update the h/w rate map if we're switching;
2714 	 * e.g. 11a to 11b/g.
2715 	 *
2716 	 * We may be doing a reset in response to an ioctl that changes the
2717 	 * channel so update any state that might change as a result.
2718 	 *
2719 	 * XXX needed?
2720 	 */
2721 /*	ath5k_chan_change(sc, c); */
2722 
2723 	ath5k_beacon_config(sc);
2724 	/* intrs are enabled by ath5k_beacon_config */
2725 
2726 	ieee80211_wake_queues(sc->hw);
2727 
2728 	return 0;
2729 err:
2730 	return ret;
2731 }
2732 
2733 static void ath5k_reset_work(struct work_struct *work)
2734 {
2735 	struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2736 		reset_work);
2737 
2738 	mutex_lock(&sc->lock);
2739 	ath5k_reset(sc, NULL, true);
2740 	mutex_unlock(&sc->lock);
2741 }
2742 
2743 static int
2744 ath5k_init(struct ieee80211_hw *hw)
2745 {
2746 
2747 	struct ath5k_softc *sc = hw->priv;
2748 	struct ath5k_hw *ah = sc->ah;
2749 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2750 	struct ath5k_txq *txq;
2751 	u8 mac[ETH_ALEN] = {};
2752 	int ret;
2753 
2754 
2755 	/*
2756 	 * Check if the MAC has multi-rate retry support.
2757 	 * We do this by trying to setup a fake extended
2758 	 * descriptor.  MACs that don't have support will
2759 	 * return false w/o doing anything.  MACs that do
2760 	 * support it will return true w/o doing anything.
2761 	 */
2762 	ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
2763 
2764 	if (ret < 0)
2765 		goto err;
2766 	if (ret > 0)
2767 		__set_bit(ATH_STAT_MRRETRY, sc->status);
2768 
2769 	/*
2770 	 * Collect the channel list.  The 802.11 layer
2771 	 * is resposible for filtering this list based
2772 	 * on settings like the phy mode and regulatory
2773 	 * domain restrictions.
2774 	 */
2775 	ret = ath5k_setup_bands(hw);
2776 	if (ret) {
2777 		ATH5K_ERR(sc, "can't get channels\n");
2778 		goto err;
2779 	}
2780 
2781 	/* NB: setup here so ath5k_rate_update is happy */
2782 	if (test_bit(AR5K_MODE_11A, ah->ah_modes))
2783 		ath5k_setcurmode(sc, AR5K_MODE_11A);
2784 	else
2785 		ath5k_setcurmode(sc, AR5K_MODE_11B);
2786 
2787 	/*
2788 	 * Allocate tx+rx descriptors and populate the lists.
2789 	 */
2790 	ret = ath5k_desc_alloc(sc);
2791 	if (ret) {
2792 		ATH5K_ERR(sc, "can't allocate descriptors\n");
2793 		goto err;
2794 	}
2795 
2796 	/*
2797 	 * Allocate hardware transmit queues: one queue for
2798 	 * beacon frames and one data queue for each QoS
2799 	 * priority.  Note that hw functions handle resetting
2800 	 * these queues at the needed time.
2801 	 */
2802 	ret = ath5k_beaconq_setup(ah);
2803 	if (ret < 0) {
2804 		ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
2805 		goto err_desc;
2806 	}
2807 	sc->bhalq = ret;
2808 	sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
2809 	if (IS_ERR(sc->cabq)) {
2810 		ATH5K_ERR(sc, "can't setup cab queue\n");
2811 		ret = PTR_ERR(sc->cabq);
2812 		goto err_bhal;
2813 	}
2814 
2815 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2816 	 * capability information */
2817 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2818 		/* This order matches mac80211's queue priority, so we can
2819 		* directly use the mac80211 queue number without any mapping */
2820 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2821 		if (IS_ERR(txq)) {
2822 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2823 			ret = PTR_ERR(txq);
2824 			goto err_queues;
2825 		}
2826 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2827 		if (IS_ERR(txq)) {
2828 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2829 			ret = PTR_ERR(txq);
2830 			goto err_queues;
2831 		}
2832 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2833 		if (IS_ERR(txq)) {
2834 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2835 			ret = PTR_ERR(txq);
2836 			goto err_queues;
2837 		}
2838 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2839 		if (IS_ERR(txq)) {
2840 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2841 			ret = PTR_ERR(txq);
2842 			goto err_queues;
2843 		}
2844 		hw->queues = 4;
2845 	} else {
2846 		/* older hardware (5210) can only support one data queue */
2847 		txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2848 		if (IS_ERR(txq)) {
2849 			ATH5K_ERR(sc, "can't setup xmit queue\n");
2850 			ret = PTR_ERR(txq);
2851 			goto err_queues;
2852 		}
2853 		hw->queues = 1;
2854 	}
2855 
2856 	tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
2857 	tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
2858 	tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
2859 	tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
2860 	tasklet_init(&sc->ani_tasklet, ath5k_tasklet_ani, (unsigned long)sc);
2861 
2862 	INIT_WORK(&sc->reset_work, ath5k_reset_work);
2863 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath5k_tx_complete_poll_work);
2864 
2865 	ret = ath5k_eeprom_read_mac(ah, mac);
2866 	if (ret) {
2867 		ATH5K_ERR(sc, "unable to read address from EEPROM\n");
2868 		goto err_queues;
2869 	}
2870 
2871 	SET_IEEE80211_PERM_ADDR(hw, mac);
2872 	memcpy(&sc->lladdr, mac, ETH_ALEN);
2873 	/* All MAC address bits matter for ACKs */
2874 	ath5k_update_bssid_mask_and_opmode(sc, NULL);
2875 
2876 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2877 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2878 	if (ret) {
2879 		ATH5K_ERR(sc, "can't initialize regulatory system\n");
2880 		goto err_queues;
2881 	}
2882 
2883 	ret = ieee80211_register_hw(hw);
2884 	if (ret) {
2885 		ATH5K_ERR(sc, "can't register ieee80211 hw\n");
2886 		goto err_queues;
2887 	}
2888 
2889 	if (!ath_is_world_regd(regulatory))
2890 		regulatory_hint(hw->wiphy, regulatory->alpha2);
2891 
2892 	ath5k_init_leds(sc);
2893 
2894 	ath5k_sysfs_register(sc);
2895 
2896 	return 0;
2897 err_queues:
2898 	ath5k_txq_release(sc);
2899 err_bhal:
2900 	ath5k_hw_release_tx_queue(ah, sc->bhalq);
2901 err_desc:
2902 	ath5k_desc_free(sc);
2903 err:
2904 	return ret;
2905 }
2906 
2907 void
2908 ath5k_deinit_softc(struct ath5k_softc *sc)
2909 {
2910 	struct ieee80211_hw *hw = sc->hw;
2911 
2912 	/*
2913 	 * NB: the order of these is important:
2914 	 * o call the 802.11 layer before detaching ath5k_hw to
2915 	 *   ensure callbacks into the driver to delete global
2916 	 *   key cache entries can be handled
2917 	 * o reclaim the tx queue data structures after calling
2918 	 *   the 802.11 layer as we'll get called back to reclaim
2919 	 *   node state and potentially want to use them
2920 	 * o to cleanup the tx queues the hal is called, so detach
2921 	 *   it last
2922 	 * XXX: ??? detach ath5k_hw ???
2923 	 * Other than that, it's straightforward...
2924 	 */
2925 	ath5k_debug_finish_device(sc);
2926 	ieee80211_unregister_hw(hw);
2927 	ath5k_desc_free(sc);
2928 	ath5k_txq_release(sc);
2929 	ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
2930 	ath5k_unregister_leds(sc);
2931 
2932 	ath5k_sysfs_unregister(sc);
2933 	/*
2934 	 * NB: can't reclaim these until after ieee80211_ifdetach
2935 	 * returns because we'll get called back to reclaim node
2936 	 * state and potentially want to use them.
2937 	 */
2938 	ath5k_hw_deinit(sc->ah);
2939 	free_irq(sc->irq, sc);
2940 }
2941 
2942 bool
2943 ath_any_vif_assoc(struct ath5k_softc *sc)
2944 {
2945 	struct ath_vif_iter_data iter_data;
2946 	iter_data.hw_macaddr = NULL;
2947 	iter_data.any_assoc = false;
2948 	iter_data.need_set_hw_addr = false;
2949 	iter_data.found_active = true;
2950 
2951 	ieee80211_iterate_active_interfaces_atomic(sc->hw, ath_vif_iter,
2952 						   &iter_data);
2953 	return iter_data.any_assoc;
2954 }
2955 
2956 void
2957 set_beacon_filter(struct ieee80211_hw *hw, bool enable)
2958 {
2959 	struct ath5k_softc *sc = hw->priv;
2960 	struct ath5k_hw *ah = sc->ah;
2961 	u32 rfilt;
2962 	rfilt = ath5k_hw_get_rx_filter(ah);
2963 	if (enable)
2964 		rfilt |= AR5K_RX_FILTER_BEACON;
2965 	else
2966 		rfilt &= ~AR5K_RX_FILTER_BEACON;
2967 	ath5k_hw_set_rx_filter(ah, rfilt);
2968 	sc->filter_flags = rfilt;
2969 }
2970