xref: /linux/drivers/net/wireless/ath/ath5k/base.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
46 #include <linux/if.h>
47 #include <linux/io.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/pci.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
53 #include <linux/slab.h>
54 
55 #include <net/ieee80211_radiotap.h>
56 
57 #include <asm/unaligned.h>
58 
59 #include "base.h"
60 #include "reg.h"
61 #include "debug.h"
62 #include "ani.h"
63 
64 static int modparam_nohwcrypt;
65 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
66 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
67 
68 static int modparam_all_channels;
69 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
70 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
71 
72 
73 /******************\
74 * Internal defines *
75 \******************/
76 
77 /* Module info */
78 MODULE_AUTHOR("Jiri Slaby");
79 MODULE_AUTHOR("Nick Kossifidis");
80 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
81 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
82 MODULE_LICENSE("Dual BSD/GPL");
83 MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
84 
85 
86 /* Known PCI ids */
87 static DEFINE_PCI_DEVICE_TABLE(ath5k_pci_id_table) = {
88 	{ PCI_VDEVICE(ATHEROS, 0x0207) }, /* 5210 early */
89 	{ PCI_VDEVICE(ATHEROS, 0x0007) }, /* 5210 */
90 	{ PCI_VDEVICE(ATHEROS, 0x0011) }, /* 5311 - this is on AHB bus !*/
91 	{ PCI_VDEVICE(ATHEROS, 0x0012) }, /* 5211 */
92 	{ PCI_VDEVICE(ATHEROS, 0x0013) }, /* 5212 */
93 	{ PCI_VDEVICE(3COM_2,  0x0013) }, /* 3com 5212 */
94 	{ PCI_VDEVICE(3COM,    0x0013) }, /* 3com 3CRDAG675 5212 */
95 	{ PCI_VDEVICE(ATHEROS, 0x1014) }, /* IBM minipci 5212 */
96 	{ PCI_VDEVICE(ATHEROS, 0x0014) }, /* 5212 combatible */
97 	{ PCI_VDEVICE(ATHEROS, 0x0015) }, /* 5212 combatible */
98 	{ PCI_VDEVICE(ATHEROS, 0x0016) }, /* 5212 combatible */
99 	{ PCI_VDEVICE(ATHEROS, 0x0017) }, /* 5212 combatible */
100 	{ PCI_VDEVICE(ATHEROS, 0x0018) }, /* 5212 combatible */
101 	{ PCI_VDEVICE(ATHEROS, 0x0019) }, /* 5212 combatible */
102 	{ PCI_VDEVICE(ATHEROS, 0x001a) }, /* 2413 Griffin-lite */
103 	{ PCI_VDEVICE(ATHEROS, 0x001b) }, /* 5413 Eagle */
104 	{ PCI_VDEVICE(ATHEROS, 0x001c) }, /* PCI-E cards */
105 	{ PCI_VDEVICE(ATHEROS, 0x001d) }, /* 2417 Nala */
106 	{ 0 }
107 };
108 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
109 
110 /* Known SREVs */
111 static const struct ath5k_srev_name srev_names[] = {
112 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
113 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
114 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
115 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
116 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
117 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
118 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
119 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
120 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
121 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
122 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
123 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
124 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
125 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
126 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
127 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
128 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
129 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
130 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
131 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
132 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
133 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
134 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
135 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
136 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
137 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
138 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
139 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
140 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
141 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
142 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
143 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
144 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
145 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
146 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
147 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
148 };
149 
150 static const struct ieee80211_rate ath5k_rates[] = {
151 	{ .bitrate = 10,
152 	  .hw_value = ATH5K_RATE_CODE_1M, },
153 	{ .bitrate = 20,
154 	  .hw_value = ATH5K_RATE_CODE_2M,
155 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
156 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
157 	{ .bitrate = 55,
158 	  .hw_value = ATH5K_RATE_CODE_5_5M,
159 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
160 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
161 	{ .bitrate = 110,
162 	  .hw_value = ATH5K_RATE_CODE_11M,
163 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
164 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
165 	{ .bitrate = 60,
166 	  .hw_value = ATH5K_RATE_CODE_6M,
167 	  .flags = 0 },
168 	{ .bitrate = 90,
169 	  .hw_value = ATH5K_RATE_CODE_9M,
170 	  .flags = 0 },
171 	{ .bitrate = 120,
172 	  .hw_value = ATH5K_RATE_CODE_12M,
173 	  .flags = 0 },
174 	{ .bitrate = 180,
175 	  .hw_value = ATH5K_RATE_CODE_18M,
176 	  .flags = 0 },
177 	{ .bitrate = 240,
178 	  .hw_value = ATH5K_RATE_CODE_24M,
179 	  .flags = 0 },
180 	{ .bitrate = 360,
181 	  .hw_value = ATH5K_RATE_CODE_36M,
182 	  .flags = 0 },
183 	{ .bitrate = 480,
184 	  .hw_value = ATH5K_RATE_CODE_48M,
185 	  .flags = 0 },
186 	{ .bitrate = 540,
187 	  .hw_value = ATH5K_RATE_CODE_54M,
188 	  .flags = 0 },
189 	/* XR missing */
190 };
191 
192 /*
193  * Prototypes - PCI stack related functions
194  */
195 static int __devinit	ath5k_pci_probe(struct pci_dev *pdev,
196 				const struct pci_device_id *id);
197 static void __devexit	ath5k_pci_remove(struct pci_dev *pdev);
198 #ifdef CONFIG_PM_SLEEP
199 static int		ath5k_pci_suspend(struct device *dev);
200 static int		ath5k_pci_resume(struct device *dev);
201 
202 static SIMPLE_DEV_PM_OPS(ath5k_pm_ops, ath5k_pci_suspend, ath5k_pci_resume);
203 #define ATH5K_PM_OPS	(&ath5k_pm_ops)
204 #else
205 #define ATH5K_PM_OPS	NULL
206 #endif /* CONFIG_PM_SLEEP */
207 
208 static struct pci_driver ath5k_pci_driver = {
209 	.name		= KBUILD_MODNAME,
210 	.id_table	= ath5k_pci_id_table,
211 	.probe		= ath5k_pci_probe,
212 	.remove		= __devexit_p(ath5k_pci_remove),
213 	.driver.pm	= ATH5K_PM_OPS,
214 };
215 
216 
217 
218 /*
219  * Prototypes - MAC 802.11 stack related functions
220  */
221 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
222 static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
223 		struct ath5k_txq *txq);
224 static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan);
225 static int ath5k_start(struct ieee80211_hw *hw);
226 static void ath5k_stop(struct ieee80211_hw *hw);
227 static int ath5k_add_interface(struct ieee80211_hw *hw,
228 		struct ieee80211_vif *vif);
229 static void ath5k_remove_interface(struct ieee80211_hw *hw,
230 		struct ieee80211_vif *vif);
231 static int ath5k_config(struct ieee80211_hw *hw, u32 changed);
232 static u64 ath5k_prepare_multicast(struct ieee80211_hw *hw,
233 				   struct netdev_hw_addr_list *mc_list);
234 static void ath5k_configure_filter(struct ieee80211_hw *hw,
235 		unsigned int changed_flags,
236 		unsigned int *new_flags,
237 		u64 multicast);
238 static int ath5k_set_key(struct ieee80211_hw *hw,
239 		enum set_key_cmd cmd,
240 		struct ieee80211_vif *vif, struct ieee80211_sta *sta,
241 		struct ieee80211_key_conf *key);
242 static int ath5k_get_stats(struct ieee80211_hw *hw,
243 		struct ieee80211_low_level_stats *stats);
244 static int ath5k_get_survey(struct ieee80211_hw *hw,
245 		int idx, struct survey_info *survey);
246 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
247 static void ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf);
248 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
249 static int ath5k_beacon_update(struct ieee80211_hw *hw,
250 		struct ieee80211_vif *vif);
251 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
252 		struct ieee80211_vif *vif,
253 		struct ieee80211_bss_conf *bss_conf,
254 		u32 changes);
255 static void ath5k_sw_scan_start(struct ieee80211_hw *hw);
256 static void ath5k_sw_scan_complete(struct ieee80211_hw *hw);
257 static void ath5k_set_coverage_class(struct ieee80211_hw *hw,
258 		u8 coverage_class);
259 
260 static const struct ieee80211_ops ath5k_hw_ops = {
261 	.tx 		= ath5k_tx,
262 	.start 		= ath5k_start,
263 	.stop 		= ath5k_stop,
264 	.add_interface 	= ath5k_add_interface,
265 	.remove_interface = ath5k_remove_interface,
266 	.config 	= ath5k_config,
267 	.prepare_multicast = ath5k_prepare_multicast,
268 	.configure_filter = ath5k_configure_filter,
269 	.set_key 	= ath5k_set_key,
270 	.get_stats 	= ath5k_get_stats,
271 	.get_survey	= ath5k_get_survey,
272 	.conf_tx 	= NULL,
273 	.get_tsf 	= ath5k_get_tsf,
274 	.set_tsf 	= ath5k_set_tsf,
275 	.reset_tsf 	= ath5k_reset_tsf,
276 	.bss_info_changed = ath5k_bss_info_changed,
277 	.sw_scan_start	= ath5k_sw_scan_start,
278 	.sw_scan_complete = ath5k_sw_scan_complete,
279 	.set_coverage_class = ath5k_set_coverage_class,
280 };
281 
282 /*
283  * Prototypes - Internal functions
284  */
285 /* Attach detach */
286 static int 	ath5k_attach(struct pci_dev *pdev,
287 			struct ieee80211_hw *hw);
288 static void 	ath5k_detach(struct pci_dev *pdev,
289 			struct ieee80211_hw *hw);
290 /* Channel/mode setup */
291 static inline short ath5k_ieee2mhz(short chan);
292 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
293 				struct ieee80211_channel *channels,
294 				unsigned int mode,
295 				unsigned int max);
296 static int 	ath5k_setup_bands(struct ieee80211_hw *hw);
297 static int 	ath5k_chan_set(struct ath5k_softc *sc,
298 				struct ieee80211_channel *chan);
299 static void	ath5k_setcurmode(struct ath5k_softc *sc,
300 				unsigned int mode);
301 static void	ath5k_mode_setup(struct ath5k_softc *sc);
302 
303 /* Descriptor setup */
304 static int	ath5k_desc_alloc(struct ath5k_softc *sc,
305 				struct pci_dev *pdev);
306 static void	ath5k_desc_free(struct ath5k_softc *sc,
307 				struct pci_dev *pdev);
308 /* Buffers setup */
309 static int 	ath5k_rxbuf_setup(struct ath5k_softc *sc,
310 				struct ath5k_buf *bf);
311 static int 	ath5k_txbuf_setup(struct ath5k_softc *sc,
312 				struct ath5k_buf *bf,
313 				struct ath5k_txq *txq, int padsize);
314 
315 static inline void ath5k_txbuf_free_skb(struct ath5k_softc *sc,
316 				struct ath5k_buf *bf)
317 {
318 	BUG_ON(!bf);
319 	if (!bf->skb)
320 		return;
321 	pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
322 			PCI_DMA_TODEVICE);
323 	dev_kfree_skb_any(bf->skb);
324 	bf->skb = NULL;
325 	bf->skbaddr = 0;
326 	bf->desc->ds_data = 0;
327 }
328 
329 static inline void ath5k_rxbuf_free_skb(struct ath5k_softc *sc,
330 				struct ath5k_buf *bf)
331 {
332 	struct ath5k_hw *ah = sc->ah;
333 	struct ath_common *common = ath5k_hw_common(ah);
334 
335 	BUG_ON(!bf);
336 	if (!bf->skb)
337 		return;
338 	pci_unmap_single(sc->pdev, bf->skbaddr, common->rx_bufsize,
339 			PCI_DMA_FROMDEVICE);
340 	dev_kfree_skb_any(bf->skb);
341 	bf->skb = NULL;
342 	bf->skbaddr = 0;
343 	bf->desc->ds_data = 0;
344 }
345 
346 
347 /* Queues setup */
348 static struct 	ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
349 				int qtype, int subtype);
350 static int 	ath5k_beaconq_setup(struct ath5k_hw *ah);
351 static int 	ath5k_beaconq_config(struct ath5k_softc *sc);
352 static void 	ath5k_txq_drainq(struct ath5k_softc *sc,
353 				struct ath5k_txq *txq);
354 static void 	ath5k_txq_cleanup(struct ath5k_softc *sc);
355 static void 	ath5k_txq_release(struct ath5k_softc *sc);
356 /* Rx handling */
357 static int 	ath5k_rx_start(struct ath5k_softc *sc);
358 static void 	ath5k_rx_stop(struct ath5k_softc *sc);
359 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
360 					struct sk_buff *skb,
361 					struct ath5k_rx_status *rs);
362 static void 	ath5k_tasklet_rx(unsigned long data);
363 /* Tx handling */
364 static void 	ath5k_tx_processq(struct ath5k_softc *sc,
365 				struct ath5k_txq *txq);
366 static void 	ath5k_tasklet_tx(unsigned long data);
367 /* Beacon handling */
368 static int 	ath5k_beacon_setup(struct ath5k_softc *sc,
369 					struct ath5k_buf *bf);
370 static void 	ath5k_beacon_send(struct ath5k_softc *sc);
371 static void 	ath5k_beacon_config(struct ath5k_softc *sc);
372 static void	ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
373 static void	ath5k_tasklet_beacon(unsigned long data);
374 static void	ath5k_tasklet_ani(unsigned long data);
375 
376 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
377 {
378 	u64 tsf = ath5k_hw_get_tsf64(ah);
379 
380 	if ((tsf & 0x7fff) < rstamp)
381 		tsf -= 0x8000;
382 
383 	return (tsf & ~0x7fff) | rstamp;
384 }
385 
386 /* Interrupt handling */
387 static int 	ath5k_init(struct ath5k_softc *sc);
388 static int 	ath5k_stop_locked(struct ath5k_softc *sc);
389 static int 	ath5k_stop_hw(struct ath5k_softc *sc);
390 static irqreturn_t ath5k_intr(int irq, void *dev_id);
391 static void ath5k_reset_work(struct work_struct *work);
392 
393 static void 	ath5k_tasklet_calibrate(unsigned long data);
394 
395 /*
396  * Module init/exit functions
397  */
398 static int __init
399 init_ath5k_pci(void)
400 {
401 	int ret;
402 
403 	ath5k_debug_init();
404 
405 	ret = pci_register_driver(&ath5k_pci_driver);
406 	if (ret) {
407 		printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
408 		return ret;
409 	}
410 
411 	return 0;
412 }
413 
414 static void __exit
415 exit_ath5k_pci(void)
416 {
417 	pci_unregister_driver(&ath5k_pci_driver);
418 
419 	ath5k_debug_finish();
420 }
421 
422 module_init(init_ath5k_pci);
423 module_exit(exit_ath5k_pci);
424 
425 
426 /********************\
427 * PCI Initialization *
428 \********************/
429 
430 static const char *
431 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
432 {
433 	const char *name = "xxxxx";
434 	unsigned int i;
435 
436 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
437 		if (srev_names[i].sr_type != type)
438 			continue;
439 
440 		if ((val & 0xf0) == srev_names[i].sr_val)
441 			name = srev_names[i].sr_name;
442 
443 		if ((val & 0xff) == srev_names[i].sr_val) {
444 			name = srev_names[i].sr_name;
445 			break;
446 		}
447 	}
448 
449 	return name;
450 }
451 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
452 {
453 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
454 	return ath5k_hw_reg_read(ah, reg_offset);
455 }
456 
457 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
458 {
459 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
460 	ath5k_hw_reg_write(ah, val, reg_offset);
461 }
462 
463 static const struct ath_ops ath5k_common_ops = {
464 	.read = ath5k_ioread32,
465 	.write = ath5k_iowrite32,
466 };
467 
468 static int __devinit
469 ath5k_pci_probe(struct pci_dev *pdev,
470 		const struct pci_device_id *id)
471 {
472 	void __iomem *mem;
473 	struct ath5k_softc *sc;
474 	struct ath_common *common;
475 	struct ieee80211_hw *hw;
476 	int ret;
477 	u8 csz;
478 
479 	ret = pci_enable_device(pdev);
480 	if (ret) {
481 		dev_err(&pdev->dev, "can't enable device\n");
482 		goto err;
483 	}
484 
485 	/* XXX 32-bit addressing only */
486 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
487 	if (ret) {
488 		dev_err(&pdev->dev, "32-bit DMA not available\n");
489 		goto err_dis;
490 	}
491 
492 	/*
493 	 * Cache line size is used to size and align various
494 	 * structures used to communicate with the hardware.
495 	 */
496 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
497 	if (csz == 0) {
498 		/*
499 		 * Linux 2.4.18 (at least) writes the cache line size
500 		 * register as a 16-bit wide register which is wrong.
501 		 * We must have this setup properly for rx buffer
502 		 * DMA to work so force a reasonable value here if it
503 		 * comes up zero.
504 		 */
505 		csz = L1_CACHE_BYTES >> 2;
506 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
507 	}
508 	/*
509 	 * The default setting of latency timer yields poor results,
510 	 * set it to the value used by other systems.  It may be worth
511 	 * tweaking this setting more.
512 	 */
513 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
514 
515 	/* Enable bus mastering */
516 	pci_set_master(pdev);
517 
518 	/*
519 	 * Disable the RETRY_TIMEOUT register (0x41) to keep
520 	 * PCI Tx retries from interfering with C3 CPU state.
521 	 */
522 	pci_write_config_byte(pdev, 0x41, 0);
523 
524 	ret = pci_request_region(pdev, 0, "ath5k");
525 	if (ret) {
526 		dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
527 		goto err_dis;
528 	}
529 
530 	mem = pci_iomap(pdev, 0, 0);
531 	if (!mem) {
532 		dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
533 		ret = -EIO;
534 		goto err_reg;
535 	}
536 
537 	/*
538 	 * Allocate hw (mac80211 main struct)
539 	 * and hw->priv (driver private data)
540 	 */
541 	hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
542 	if (hw == NULL) {
543 		dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
544 		ret = -ENOMEM;
545 		goto err_map;
546 	}
547 
548 	dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
549 
550 	/* Initialize driver private data */
551 	SET_IEEE80211_DEV(hw, &pdev->dev);
552 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
553 		    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
554 		    IEEE80211_HW_SIGNAL_DBM;
555 
556 	hw->wiphy->interface_modes =
557 		BIT(NL80211_IFTYPE_AP) |
558 		BIT(NL80211_IFTYPE_STATION) |
559 		BIT(NL80211_IFTYPE_ADHOC) |
560 		BIT(NL80211_IFTYPE_MESH_POINT);
561 
562 	hw->extra_tx_headroom = 2;
563 	hw->channel_change_time = 5000;
564 	sc = hw->priv;
565 	sc->hw = hw;
566 	sc->pdev = pdev;
567 
568 	ath5k_debug_init_device(sc);
569 
570 	/*
571 	 * Mark the device as detached to avoid processing
572 	 * interrupts until setup is complete.
573 	 */
574 	__set_bit(ATH_STAT_INVALID, sc->status);
575 
576 	sc->iobase = mem; /* So we can unmap it on detach */
577 	sc->opmode = NL80211_IFTYPE_STATION;
578 	sc->bintval = 1000;
579 	mutex_init(&sc->lock);
580 	spin_lock_init(&sc->rxbuflock);
581 	spin_lock_init(&sc->txbuflock);
582 	spin_lock_init(&sc->block);
583 
584 	/* Set private data */
585 	pci_set_drvdata(pdev, sc);
586 
587 	/* Setup interrupt handler */
588 	ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
589 	if (ret) {
590 		ATH5K_ERR(sc, "request_irq failed\n");
591 		goto err_free;
592 	}
593 
594 	/*If we passed the test malloc a ath5k_hw struct*/
595 	sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
596 	if (!sc->ah) {
597 		ret = -ENOMEM;
598 		ATH5K_ERR(sc, "out of memory\n");
599 		goto err_irq;
600 	}
601 
602 	sc->ah->ah_sc = sc;
603 	sc->ah->ah_iobase = sc->iobase;
604 	common = ath5k_hw_common(sc->ah);
605 	common->ops = &ath5k_common_ops;
606 	common->ah = sc->ah;
607 	common->hw = hw;
608 	common->cachelsz = csz << 2; /* convert to bytes */
609 
610 	/* Initialize device */
611 	ret = ath5k_hw_attach(sc);
612 	if (ret) {
613 		goto err_free_ah;
614 	}
615 
616 	/* set up multi-rate retry capabilities */
617 	if (sc->ah->ah_version == AR5K_AR5212) {
618 		hw->max_rates = 4;
619 		hw->max_rate_tries = 11;
620 	}
621 
622 	/* Finish private driver data initialization */
623 	ret = ath5k_attach(pdev, hw);
624 	if (ret)
625 		goto err_ah;
626 
627 	ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
628 			ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
629 					sc->ah->ah_mac_srev,
630 					sc->ah->ah_phy_revision);
631 
632 	if (!sc->ah->ah_single_chip) {
633 		/* Single chip radio (!RF5111) */
634 		if (sc->ah->ah_radio_5ghz_revision &&
635 			!sc->ah->ah_radio_2ghz_revision) {
636 			/* No 5GHz support -> report 2GHz radio */
637 			if (!test_bit(AR5K_MODE_11A,
638 				sc->ah->ah_capabilities.cap_mode)) {
639 				ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
640 					ath5k_chip_name(AR5K_VERSION_RAD,
641 						sc->ah->ah_radio_5ghz_revision),
642 						sc->ah->ah_radio_5ghz_revision);
643 			/* No 2GHz support (5110 and some
644 			 * 5Ghz only cards) -> report 5Ghz radio */
645 			} else if (!test_bit(AR5K_MODE_11B,
646 				sc->ah->ah_capabilities.cap_mode)) {
647 				ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
648 					ath5k_chip_name(AR5K_VERSION_RAD,
649 						sc->ah->ah_radio_5ghz_revision),
650 						sc->ah->ah_radio_5ghz_revision);
651 			/* Multiband radio */
652 			} else {
653 				ATH5K_INFO(sc, "RF%s multiband radio found"
654 					" (0x%x)\n",
655 					ath5k_chip_name(AR5K_VERSION_RAD,
656 						sc->ah->ah_radio_5ghz_revision),
657 						sc->ah->ah_radio_5ghz_revision);
658 			}
659 		}
660 		/* Multi chip radio (RF5111 - RF2111) ->
661 		 * report both 2GHz/5GHz radios */
662 		else if (sc->ah->ah_radio_5ghz_revision &&
663 				sc->ah->ah_radio_2ghz_revision){
664 			ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
665 				ath5k_chip_name(AR5K_VERSION_RAD,
666 					sc->ah->ah_radio_5ghz_revision),
667 					sc->ah->ah_radio_5ghz_revision);
668 			ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
669 				ath5k_chip_name(AR5K_VERSION_RAD,
670 					sc->ah->ah_radio_2ghz_revision),
671 					sc->ah->ah_radio_2ghz_revision);
672 		}
673 	}
674 
675 
676 	/* ready to process interrupts */
677 	__clear_bit(ATH_STAT_INVALID, sc->status);
678 
679 	return 0;
680 err_ah:
681 	ath5k_hw_detach(sc->ah);
682 err_irq:
683 	free_irq(pdev->irq, sc);
684 err_free_ah:
685 	kfree(sc->ah);
686 err_free:
687 	ieee80211_free_hw(hw);
688 err_map:
689 	pci_iounmap(pdev, mem);
690 err_reg:
691 	pci_release_region(pdev, 0);
692 err_dis:
693 	pci_disable_device(pdev);
694 err:
695 	return ret;
696 }
697 
698 static void __devexit
699 ath5k_pci_remove(struct pci_dev *pdev)
700 {
701 	struct ath5k_softc *sc = pci_get_drvdata(pdev);
702 
703 	ath5k_debug_finish_device(sc);
704 	ath5k_detach(pdev, sc->hw);
705 	ath5k_hw_detach(sc->ah);
706 	kfree(sc->ah);
707 	free_irq(pdev->irq, sc);
708 	pci_iounmap(pdev, sc->iobase);
709 	pci_release_region(pdev, 0);
710 	pci_disable_device(pdev);
711 	ieee80211_free_hw(sc->hw);
712 }
713 
714 #ifdef CONFIG_PM_SLEEP
715 static int ath5k_pci_suspend(struct device *dev)
716 {
717 	struct ath5k_softc *sc = pci_get_drvdata(to_pci_dev(dev));
718 
719 	ath5k_led_off(sc);
720 	return 0;
721 }
722 
723 static int ath5k_pci_resume(struct device *dev)
724 {
725 	struct pci_dev *pdev = to_pci_dev(dev);
726 	struct ath5k_softc *sc = pci_get_drvdata(pdev);
727 
728 	/*
729 	 * Suspend/Resume resets the PCI configuration space, so we have to
730 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep
731 	 * PCI Tx retries from interfering with C3 CPU state
732 	 */
733 	pci_write_config_byte(pdev, 0x41, 0);
734 
735 	ath5k_led_enable(sc);
736 	return 0;
737 }
738 #endif /* CONFIG_PM_SLEEP */
739 
740 
741 /***********************\
742 * Driver Initialization *
743 \***********************/
744 
745 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
746 {
747 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
748 	struct ath5k_softc *sc = hw->priv;
749 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
750 
751 	return ath_reg_notifier_apply(wiphy, request, regulatory);
752 }
753 
754 static int
755 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
756 {
757 	struct ath5k_softc *sc = hw->priv;
758 	struct ath5k_hw *ah = sc->ah;
759 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
760 	u8 mac[ETH_ALEN] = {};
761 	int ret;
762 
763 	ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
764 
765 	/*
766 	 * Check if the MAC has multi-rate retry support.
767 	 * We do this by trying to setup a fake extended
768 	 * descriptor.  MAC's that don't have support will
769 	 * return false w/o doing anything.  MAC's that do
770 	 * support it will return true w/o doing anything.
771 	 */
772 	ret = ath5k_hw_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
773 
774 	if (ret < 0)
775 		goto err;
776 	if (ret > 0)
777 		__set_bit(ATH_STAT_MRRETRY, sc->status);
778 
779 	/*
780 	 * Collect the channel list.  The 802.11 layer
781 	 * is resposible for filtering this list based
782 	 * on settings like the phy mode and regulatory
783 	 * domain restrictions.
784 	 */
785 	ret = ath5k_setup_bands(hw);
786 	if (ret) {
787 		ATH5K_ERR(sc, "can't get channels\n");
788 		goto err;
789 	}
790 
791 	/* NB: setup here so ath5k_rate_update is happy */
792 	if (test_bit(AR5K_MODE_11A, ah->ah_modes))
793 		ath5k_setcurmode(sc, AR5K_MODE_11A);
794 	else
795 		ath5k_setcurmode(sc, AR5K_MODE_11B);
796 
797 	/*
798 	 * Allocate tx+rx descriptors and populate the lists.
799 	 */
800 	ret = ath5k_desc_alloc(sc, pdev);
801 	if (ret) {
802 		ATH5K_ERR(sc, "can't allocate descriptors\n");
803 		goto err;
804 	}
805 
806 	/*
807 	 * Allocate hardware transmit queues: one queue for
808 	 * beacon frames and one data queue for each QoS
809 	 * priority.  Note that hw functions handle reseting
810 	 * these queues at the needed time.
811 	 */
812 	ret = ath5k_beaconq_setup(ah);
813 	if (ret < 0) {
814 		ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
815 		goto err_desc;
816 	}
817 	sc->bhalq = ret;
818 	sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
819 	if (IS_ERR(sc->cabq)) {
820 		ATH5K_ERR(sc, "can't setup cab queue\n");
821 		ret = PTR_ERR(sc->cabq);
822 		goto err_bhal;
823 	}
824 
825 	sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
826 	if (IS_ERR(sc->txq)) {
827 		ATH5K_ERR(sc, "can't setup xmit queue\n");
828 		ret = PTR_ERR(sc->txq);
829 		goto err_queues;
830 	}
831 
832 	tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
833 	tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
834 	tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
835 	tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
836 	tasklet_init(&sc->ani_tasklet, ath5k_tasklet_ani, (unsigned long)sc);
837 
838 	INIT_WORK(&sc->reset_work, ath5k_reset_work);
839 
840 	ret = ath5k_eeprom_read_mac(ah, mac);
841 	if (ret) {
842 		ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
843 			sc->pdev->device);
844 		goto err_queues;
845 	}
846 
847 	SET_IEEE80211_PERM_ADDR(hw, mac);
848 	/* All MAC address bits matter for ACKs */
849 	memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
850 	ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
851 
852 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
853 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
854 	if (ret) {
855 		ATH5K_ERR(sc, "can't initialize regulatory system\n");
856 		goto err_queues;
857 	}
858 
859 	ret = ieee80211_register_hw(hw);
860 	if (ret) {
861 		ATH5K_ERR(sc, "can't register ieee80211 hw\n");
862 		goto err_queues;
863 	}
864 
865 	if (!ath_is_world_regd(regulatory))
866 		regulatory_hint(hw->wiphy, regulatory->alpha2);
867 
868 	ath5k_init_leds(sc);
869 
870 	ath5k_sysfs_register(sc);
871 
872 	return 0;
873 err_queues:
874 	ath5k_txq_release(sc);
875 err_bhal:
876 	ath5k_hw_release_tx_queue(ah, sc->bhalq);
877 err_desc:
878 	ath5k_desc_free(sc, pdev);
879 err:
880 	return ret;
881 }
882 
883 static void
884 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
885 {
886 	struct ath5k_softc *sc = hw->priv;
887 
888 	/*
889 	 * NB: the order of these is important:
890 	 * o call the 802.11 layer before detaching ath5k_hw to
891 	 *   insure callbacks into the driver to delete global
892 	 *   key cache entries can be handled
893 	 * o reclaim the tx queue data structures after calling
894 	 *   the 802.11 layer as we'll get called back to reclaim
895 	 *   node state and potentially want to use them
896 	 * o to cleanup the tx queues the hal is called, so detach
897 	 *   it last
898 	 * XXX: ??? detach ath5k_hw ???
899 	 * Other than that, it's straightforward...
900 	 */
901 	ieee80211_unregister_hw(hw);
902 	ath5k_desc_free(sc, pdev);
903 	ath5k_txq_release(sc);
904 	ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
905 	ath5k_unregister_leds(sc);
906 
907 	ath5k_sysfs_unregister(sc);
908 	/*
909 	 * NB: can't reclaim these until after ieee80211_ifdetach
910 	 * returns because we'll get called back to reclaim node
911 	 * state and potentially want to use them.
912 	 */
913 }
914 
915 
916 
917 
918 /********************\
919 * Channel/mode setup *
920 \********************/
921 
922 /*
923  * Convert IEEE channel number to MHz frequency.
924  */
925 static inline short
926 ath5k_ieee2mhz(short chan)
927 {
928 	if (chan <= 14 || chan >= 27)
929 		return ieee80211chan2mhz(chan);
930 	else
931 		return 2212 + chan * 20;
932 }
933 
934 /*
935  * Returns true for the channel numbers used without all_channels modparam.
936  */
937 static bool ath5k_is_standard_channel(short chan)
938 {
939 	return ((chan <= 14) ||
940 		/* UNII 1,2 */
941 		((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
942 		/* midband */
943 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
944 		/* UNII-3 */
945 		((chan & 3) == 1 && chan >= 149 && chan <= 165));
946 }
947 
948 static unsigned int
949 ath5k_copy_channels(struct ath5k_hw *ah,
950 		struct ieee80211_channel *channels,
951 		unsigned int mode,
952 		unsigned int max)
953 {
954 	unsigned int i, count, size, chfreq, freq, ch;
955 
956 	if (!test_bit(mode, ah->ah_modes))
957 		return 0;
958 
959 	switch (mode) {
960 	case AR5K_MODE_11A:
961 	case AR5K_MODE_11A_TURBO:
962 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
963 		size = 220 ;
964 		chfreq = CHANNEL_5GHZ;
965 		break;
966 	case AR5K_MODE_11B:
967 	case AR5K_MODE_11G:
968 	case AR5K_MODE_11G_TURBO:
969 		size = 26;
970 		chfreq = CHANNEL_2GHZ;
971 		break;
972 	default:
973 		ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
974 		return 0;
975 	}
976 
977 	for (i = 0, count = 0; i < size && max > 0; i++) {
978 		ch = i + 1 ;
979 		freq = ath5k_ieee2mhz(ch);
980 
981 		/* Check if channel is supported by the chipset */
982 		if (!ath5k_channel_ok(ah, freq, chfreq))
983 			continue;
984 
985 		if (!modparam_all_channels && !ath5k_is_standard_channel(ch))
986 			continue;
987 
988 		/* Write channel info and increment counter */
989 		channels[count].center_freq = freq;
990 		channels[count].band = (chfreq == CHANNEL_2GHZ) ?
991 			IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
992 		switch (mode) {
993 		case AR5K_MODE_11A:
994 		case AR5K_MODE_11G:
995 			channels[count].hw_value = chfreq | CHANNEL_OFDM;
996 			break;
997 		case AR5K_MODE_11A_TURBO:
998 		case AR5K_MODE_11G_TURBO:
999 			channels[count].hw_value = chfreq |
1000 				CHANNEL_OFDM | CHANNEL_TURBO;
1001 			break;
1002 		case AR5K_MODE_11B:
1003 			channels[count].hw_value = CHANNEL_B;
1004 		}
1005 
1006 		count++;
1007 		max--;
1008 	}
1009 
1010 	return count;
1011 }
1012 
1013 static void
1014 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
1015 {
1016 	u8 i;
1017 
1018 	for (i = 0; i < AR5K_MAX_RATES; i++)
1019 		sc->rate_idx[b->band][i] = -1;
1020 
1021 	for (i = 0; i < b->n_bitrates; i++) {
1022 		sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
1023 		if (b->bitrates[i].hw_value_short)
1024 			sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
1025 	}
1026 }
1027 
1028 static int
1029 ath5k_setup_bands(struct ieee80211_hw *hw)
1030 {
1031 	struct ath5k_softc *sc = hw->priv;
1032 	struct ath5k_hw *ah = sc->ah;
1033 	struct ieee80211_supported_band *sband;
1034 	int max_c, count_c = 0;
1035 	int i;
1036 
1037 	BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
1038 	max_c = ARRAY_SIZE(sc->channels);
1039 
1040 	/* 2GHz band */
1041 	sband = &sc->sbands[IEEE80211_BAND_2GHZ];
1042 	sband->band = IEEE80211_BAND_2GHZ;
1043 	sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
1044 
1045 	if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
1046 		/* G mode */
1047 		memcpy(sband->bitrates, &ath5k_rates[0],
1048 		       sizeof(struct ieee80211_rate) * 12);
1049 		sband->n_bitrates = 12;
1050 
1051 		sband->channels = sc->channels;
1052 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1053 					AR5K_MODE_11G, max_c);
1054 
1055 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
1056 		count_c = sband->n_channels;
1057 		max_c -= count_c;
1058 	} else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
1059 		/* B mode */
1060 		memcpy(sband->bitrates, &ath5k_rates[0],
1061 		       sizeof(struct ieee80211_rate) * 4);
1062 		sband->n_bitrates = 4;
1063 
1064 		/* 5211 only supports B rates and uses 4bit rate codes
1065 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
1066 		 * fix them up here:
1067 		 */
1068 		if (ah->ah_version == AR5K_AR5211) {
1069 			for (i = 0; i < 4; i++) {
1070 				sband->bitrates[i].hw_value =
1071 					sband->bitrates[i].hw_value & 0xF;
1072 				sband->bitrates[i].hw_value_short =
1073 					sband->bitrates[i].hw_value_short & 0xF;
1074 			}
1075 		}
1076 
1077 		sband->channels = sc->channels;
1078 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1079 					AR5K_MODE_11B, max_c);
1080 
1081 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
1082 		count_c = sband->n_channels;
1083 		max_c -= count_c;
1084 	}
1085 	ath5k_setup_rate_idx(sc, sband);
1086 
1087 	/* 5GHz band, A mode */
1088 	if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
1089 		sband = &sc->sbands[IEEE80211_BAND_5GHZ];
1090 		sband->band = IEEE80211_BAND_5GHZ;
1091 		sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
1092 
1093 		memcpy(sband->bitrates, &ath5k_rates[4],
1094 		       sizeof(struct ieee80211_rate) * 8);
1095 		sband->n_bitrates = 8;
1096 
1097 		sband->channels = &sc->channels[count_c];
1098 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1099 					AR5K_MODE_11A, max_c);
1100 
1101 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
1102 	}
1103 	ath5k_setup_rate_idx(sc, sband);
1104 
1105 	ath5k_debug_dump_bands(sc);
1106 
1107 	return 0;
1108 }
1109 
1110 /*
1111  * Set/change channels. We always reset the chip.
1112  * To accomplish this we must first cleanup any pending DMA,
1113  * then restart stuff after a la  ath5k_init.
1114  *
1115  * Called with sc->lock.
1116  */
1117 static int
1118 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1119 {
1120 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
1121 		  "channel set, resetting (%u -> %u MHz)\n",
1122 		  sc->curchan->center_freq, chan->center_freq);
1123 
1124 	/*
1125 	 * To switch channels clear any pending DMA operations;
1126 	 * wait long enough for the RX fifo to drain, reset the
1127 	 * hardware at the new frequency, and then re-enable
1128 	 * the relevant bits of the h/w.
1129 	 */
1130 	return ath5k_reset(sc, chan);
1131 }
1132 
1133 static void
1134 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1135 {
1136 	sc->curmode = mode;
1137 
1138 	if (mode == AR5K_MODE_11A) {
1139 		sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1140 	} else {
1141 		sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1142 	}
1143 }
1144 
1145 static void
1146 ath5k_mode_setup(struct ath5k_softc *sc)
1147 {
1148 	struct ath5k_hw *ah = sc->ah;
1149 	u32 rfilt;
1150 
1151 	/* configure rx filter */
1152 	rfilt = sc->filter_flags;
1153 	ath5k_hw_set_rx_filter(ah, rfilt);
1154 
1155 	if (ath5k_hw_hasbssidmask(ah))
1156 		ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1157 
1158 	/* configure operational mode */
1159 	ath5k_hw_set_opmode(ah, sc->opmode);
1160 
1161 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "mode setup opmode %d\n", sc->opmode);
1162 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1163 }
1164 
1165 static inline int
1166 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
1167 {
1168 	int rix;
1169 
1170 	/* return base rate on errors */
1171 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
1172 			"hw_rix out of bounds: %x\n", hw_rix))
1173 		return 0;
1174 
1175 	rix = sc->rate_idx[sc->curband->band][hw_rix];
1176 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
1177 		rix = 0;
1178 
1179 	return rix;
1180 }
1181 
1182 /***************\
1183 * Buffers setup *
1184 \***************/
1185 
1186 static
1187 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
1188 {
1189 	struct ath_common *common = ath5k_hw_common(sc->ah);
1190 	struct sk_buff *skb;
1191 
1192 	/*
1193 	 * Allocate buffer with headroom_needed space for the
1194 	 * fake physical layer header at the start.
1195 	 */
1196 	skb = ath_rxbuf_alloc(common,
1197 			      common->rx_bufsize,
1198 			      GFP_ATOMIC);
1199 
1200 	if (!skb) {
1201 		ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1202 				common->rx_bufsize);
1203 		return NULL;
1204 	}
1205 
1206 	*skb_addr = pci_map_single(sc->pdev,
1207 				   skb->data, common->rx_bufsize,
1208 				   PCI_DMA_FROMDEVICE);
1209 	if (unlikely(pci_dma_mapping_error(sc->pdev, *skb_addr))) {
1210 		ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1211 		dev_kfree_skb(skb);
1212 		return NULL;
1213 	}
1214 	return skb;
1215 }
1216 
1217 static int
1218 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1219 {
1220 	struct ath5k_hw *ah = sc->ah;
1221 	struct sk_buff *skb = bf->skb;
1222 	struct ath5k_desc *ds;
1223 	int ret;
1224 
1225 	if (!skb) {
1226 		skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
1227 		if (!skb)
1228 			return -ENOMEM;
1229 		bf->skb = skb;
1230 	}
1231 
1232 	/*
1233 	 * Setup descriptors.  For receive we always terminate
1234 	 * the descriptor list with a self-linked entry so we'll
1235 	 * not get overrun under high load (as can happen with a
1236 	 * 5212 when ANI processing enables PHY error frames).
1237 	 *
1238 	 * To ensure the last descriptor is self-linked we create
1239 	 * each descriptor as self-linked and add it to the end.  As
1240 	 * each additional descriptor is added the previous self-linked
1241 	 * entry is "fixed" naturally.  This should be safe even
1242 	 * if DMA is happening.  When processing RX interrupts we
1243 	 * never remove/process the last, self-linked, entry on the
1244 	 * descriptor list.  This ensures the hardware always has
1245 	 * someplace to write a new frame.
1246 	 */
1247 	ds = bf->desc;
1248 	ds->ds_link = bf->daddr;	/* link to self */
1249 	ds->ds_data = bf->skbaddr;
1250 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
1251 	if (ret) {
1252 		ATH5K_ERR(sc, "%s: could not setup RX desc\n", __func__);
1253 		return ret;
1254 	}
1255 
1256 	if (sc->rxlink != NULL)
1257 		*sc->rxlink = bf->daddr;
1258 	sc->rxlink = &ds->ds_link;
1259 	return 0;
1260 }
1261 
1262 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1263 {
1264 	struct ieee80211_hdr *hdr;
1265 	enum ath5k_pkt_type htype;
1266 	__le16 fc;
1267 
1268 	hdr = (struct ieee80211_hdr *)skb->data;
1269 	fc = hdr->frame_control;
1270 
1271 	if (ieee80211_is_beacon(fc))
1272 		htype = AR5K_PKT_TYPE_BEACON;
1273 	else if (ieee80211_is_probe_resp(fc))
1274 		htype = AR5K_PKT_TYPE_PROBE_RESP;
1275 	else if (ieee80211_is_atim(fc))
1276 		htype = AR5K_PKT_TYPE_ATIM;
1277 	else if (ieee80211_is_pspoll(fc))
1278 		htype = AR5K_PKT_TYPE_PSPOLL;
1279 	else
1280 		htype = AR5K_PKT_TYPE_NORMAL;
1281 
1282 	return htype;
1283 }
1284 
1285 static int
1286 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
1287 		  struct ath5k_txq *txq, int padsize)
1288 {
1289 	struct ath5k_hw *ah = sc->ah;
1290 	struct ath5k_desc *ds = bf->desc;
1291 	struct sk_buff *skb = bf->skb;
1292 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1293 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1294 	struct ieee80211_rate *rate;
1295 	unsigned int mrr_rate[3], mrr_tries[3];
1296 	int i, ret;
1297 	u16 hw_rate;
1298 	u16 cts_rate = 0;
1299 	u16 duration = 0;
1300 	u8 rc_flags;
1301 
1302 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1303 
1304 	/* XXX endianness */
1305 	bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1306 			PCI_DMA_TODEVICE);
1307 
1308 	rate = ieee80211_get_tx_rate(sc->hw, info);
1309 
1310 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1311 		flags |= AR5K_TXDESC_NOACK;
1312 
1313 	rc_flags = info->control.rates[0].flags;
1314 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
1315 		rate->hw_value_short : rate->hw_value;
1316 
1317 	pktlen = skb->len;
1318 
1319 	/* FIXME: If we are in g mode and rate is a CCK rate
1320 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1321 	 * from tx power (value is in dB units already) */
1322 	if (info->control.hw_key) {
1323 		keyidx = info->control.hw_key->hw_key_idx;
1324 		pktlen += info->control.hw_key->icv_len;
1325 	}
1326 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1327 		flags |= AR5K_TXDESC_RTSENA;
1328 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
1329 		duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
1330 			sc->vif, pktlen, info));
1331 	}
1332 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1333 		flags |= AR5K_TXDESC_CTSENA;
1334 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
1335 		duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
1336 			sc->vif, pktlen, info));
1337 	}
1338 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1339 		ieee80211_get_hdrlen_from_skb(skb), padsize,
1340 		get_hw_packet_type(skb),
1341 		(sc->power_level * 2),
1342 		hw_rate,
1343 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
1344 		cts_rate, duration);
1345 	if (ret)
1346 		goto err_unmap;
1347 
1348 	memset(mrr_rate, 0, sizeof(mrr_rate));
1349 	memset(mrr_tries, 0, sizeof(mrr_tries));
1350 	for (i = 0; i < 3; i++) {
1351 		rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
1352 		if (!rate)
1353 			break;
1354 
1355 		mrr_rate[i] = rate->hw_value;
1356 		mrr_tries[i] = info->control.rates[i + 1].count;
1357 	}
1358 
1359 	ath5k_hw_setup_mrr_tx_desc(ah, ds,
1360 		mrr_rate[0], mrr_tries[0],
1361 		mrr_rate[1], mrr_tries[1],
1362 		mrr_rate[2], mrr_tries[2]);
1363 
1364 	ds->ds_link = 0;
1365 	ds->ds_data = bf->skbaddr;
1366 
1367 	spin_lock_bh(&txq->lock);
1368 	list_add_tail(&bf->list, &txq->q);
1369 	if (txq->link == NULL) /* is this first packet? */
1370 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
1371 	else /* no, so only link it */
1372 		*txq->link = bf->daddr;
1373 
1374 	txq->link = &ds->ds_link;
1375 	ath5k_hw_start_tx_dma(ah, txq->qnum);
1376 	mmiowb();
1377 	spin_unlock_bh(&txq->lock);
1378 
1379 	return 0;
1380 err_unmap:
1381 	pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1382 	return ret;
1383 }
1384 
1385 /*******************\
1386 * Descriptors setup *
1387 \*******************/
1388 
1389 static int
1390 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1391 {
1392 	struct ath5k_desc *ds;
1393 	struct ath5k_buf *bf;
1394 	dma_addr_t da;
1395 	unsigned int i;
1396 	int ret;
1397 
1398 	/* allocate descriptors */
1399 	sc->desc_len = sizeof(struct ath5k_desc) *
1400 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1401 	sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1402 	if (sc->desc == NULL) {
1403 		ATH5K_ERR(sc, "can't allocate descriptors\n");
1404 		ret = -ENOMEM;
1405 		goto err;
1406 	}
1407 	ds = sc->desc;
1408 	da = sc->desc_daddr;
1409 	ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1410 		ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1411 
1412 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1413 			sizeof(struct ath5k_buf), GFP_KERNEL);
1414 	if (bf == NULL) {
1415 		ATH5K_ERR(sc, "can't allocate bufptr\n");
1416 		ret = -ENOMEM;
1417 		goto err_free;
1418 	}
1419 	sc->bufptr = bf;
1420 
1421 	INIT_LIST_HEAD(&sc->rxbuf);
1422 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1423 		bf->desc = ds;
1424 		bf->daddr = da;
1425 		list_add_tail(&bf->list, &sc->rxbuf);
1426 	}
1427 
1428 	INIT_LIST_HEAD(&sc->txbuf);
1429 	sc->txbuf_len = ATH_TXBUF;
1430 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1431 			da += sizeof(*ds)) {
1432 		bf->desc = ds;
1433 		bf->daddr = da;
1434 		list_add_tail(&bf->list, &sc->txbuf);
1435 	}
1436 
1437 	/* beacon buffer */
1438 	bf->desc = ds;
1439 	bf->daddr = da;
1440 	sc->bbuf = bf;
1441 
1442 	return 0;
1443 err_free:
1444 	pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1445 err:
1446 	sc->desc = NULL;
1447 	return ret;
1448 }
1449 
1450 static void
1451 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1452 {
1453 	struct ath5k_buf *bf;
1454 
1455 	ath5k_txbuf_free_skb(sc, sc->bbuf);
1456 	list_for_each_entry(bf, &sc->txbuf, list)
1457 		ath5k_txbuf_free_skb(sc, bf);
1458 	list_for_each_entry(bf, &sc->rxbuf, list)
1459 		ath5k_rxbuf_free_skb(sc, bf);
1460 
1461 	/* Free memory associated with all descriptors */
1462 	pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1463 	sc->desc = NULL;
1464 	sc->desc_daddr = 0;
1465 
1466 	kfree(sc->bufptr);
1467 	sc->bufptr = NULL;
1468 	sc->bbuf = NULL;
1469 }
1470 
1471 
1472 
1473 
1474 
1475 /**************\
1476 * Queues setup *
1477 \**************/
1478 
1479 static struct ath5k_txq *
1480 ath5k_txq_setup(struct ath5k_softc *sc,
1481 		int qtype, int subtype)
1482 {
1483 	struct ath5k_hw *ah = sc->ah;
1484 	struct ath5k_txq *txq;
1485 	struct ath5k_txq_info qi = {
1486 		.tqi_subtype = subtype,
1487 		.tqi_aifs = AR5K_TXQ_USEDEFAULT,
1488 		.tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1489 		.tqi_cw_max = AR5K_TXQ_USEDEFAULT
1490 	};
1491 	int qnum;
1492 
1493 	/*
1494 	 * Enable interrupts only for EOL and DESC conditions.
1495 	 * We mark tx descriptors to receive a DESC interrupt
1496 	 * when a tx queue gets deep; otherwise waiting for the
1497 	 * EOL to reap descriptors.  Note that this is done to
1498 	 * reduce interrupt load and this only defers reaping
1499 	 * descriptors, never transmitting frames.  Aside from
1500 	 * reducing interrupts this also permits more concurrency.
1501 	 * The only potential downside is if the tx queue backs
1502 	 * up in which case the top half of the kernel may backup
1503 	 * due to a lack of tx descriptors.
1504 	 */
1505 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1506 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1507 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1508 	if (qnum < 0) {
1509 		/*
1510 		 * NB: don't print a message, this happens
1511 		 * normally on parts with too few tx queues
1512 		 */
1513 		return ERR_PTR(qnum);
1514 	}
1515 	if (qnum >= ARRAY_SIZE(sc->txqs)) {
1516 		ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1517 			qnum, ARRAY_SIZE(sc->txqs));
1518 		ath5k_hw_release_tx_queue(ah, qnum);
1519 		return ERR_PTR(-EINVAL);
1520 	}
1521 	txq = &sc->txqs[qnum];
1522 	if (!txq->setup) {
1523 		txq->qnum = qnum;
1524 		txq->link = NULL;
1525 		INIT_LIST_HEAD(&txq->q);
1526 		spin_lock_init(&txq->lock);
1527 		txq->setup = true;
1528 	}
1529 	return &sc->txqs[qnum];
1530 }
1531 
1532 static int
1533 ath5k_beaconq_setup(struct ath5k_hw *ah)
1534 {
1535 	struct ath5k_txq_info qi = {
1536 		.tqi_aifs = AR5K_TXQ_USEDEFAULT,
1537 		.tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1538 		.tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1539 		/* NB: for dynamic turbo, don't enable any other interrupts */
1540 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1541 	};
1542 
1543 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1544 }
1545 
1546 static int
1547 ath5k_beaconq_config(struct ath5k_softc *sc)
1548 {
1549 	struct ath5k_hw *ah = sc->ah;
1550 	struct ath5k_txq_info qi;
1551 	int ret;
1552 
1553 	ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1554 	if (ret)
1555 		goto err;
1556 
1557 	if (sc->opmode == NL80211_IFTYPE_AP ||
1558 		sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1559 		/*
1560 		 * Always burst out beacon and CAB traffic
1561 		 * (aifs = cwmin = cwmax = 0)
1562 		 */
1563 		qi.tqi_aifs = 0;
1564 		qi.tqi_cw_min = 0;
1565 		qi.tqi_cw_max = 0;
1566 	} else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1567 		/*
1568 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1569 		 */
1570 		qi.tqi_aifs = 0;
1571 		qi.tqi_cw_min = 0;
1572 		qi.tqi_cw_max = 2 * ah->ah_cw_min;
1573 	}
1574 
1575 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1576 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1577 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1578 
1579 	ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1580 	if (ret) {
1581 		ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1582 			"hardware queue!\n", __func__);
1583 		goto err;
1584 	}
1585 	ret = ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */
1586 	if (ret)
1587 		goto err;
1588 
1589 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1590 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1591 	if (ret)
1592 		goto err;
1593 
1594 	qi.tqi_ready_time = (sc->bintval * 80) / 100;
1595 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1596 	if (ret)
1597 		goto err;
1598 
1599 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1600 err:
1601 	return ret;
1602 }
1603 
1604 static void
1605 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1606 {
1607 	struct ath5k_buf *bf, *bf0;
1608 
1609 	/*
1610 	 * NB: this assumes output has been stopped and
1611 	 *     we do not need to block ath5k_tx_tasklet
1612 	 */
1613 	spin_lock_bh(&txq->lock);
1614 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1615 		ath5k_debug_printtxbuf(sc, bf);
1616 
1617 		ath5k_txbuf_free_skb(sc, bf);
1618 
1619 		spin_lock_bh(&sc->txbuflock);
1620 		list_move_tail(&bf->list, &sc->txbuf);
1621 		sc->txbuf_len++;
1622 		spin_unlock_bh(&sc->txbuflock);
1623 	}
1624 	txq->link = NULL;
1625 	spin_unlock_bh(&txq->lock);
1626 }
1627 
1628 /*
1629  * Drain the transmit queues and reclaim resources.
1630  */
1631 static void
1632 ath5k_txq_cleanup(struct ath5k_softc *sc)
1633 {
1634 	struct ath5k_hw *ah = sc->ah;
1635 	unsigned int i;
1636 
1637 	/* XXX return value */
1638 	if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1639 		/* don't touch the hardware if marked invalid */
1640 		ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1641 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1642 			ath5k_hw_get_txdp(ah, sc->bhalq));
1643 		for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1644 			if (sc->txqs[i].setup) {
1645 				ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1646 				ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1647 					"link %p\n",
1648 					sc->txqs[i].qnum,
1649 					ath5k_hw_get_txdp(ah,
1650 							sc->txqs[i].qnum),
1651 					sc->txqs[i].link);
1652 			}
1653 	}
1654 
1655 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1656 		if (sc->txqs[i].setup)
1657 			ath5k_txq_drainq(sc, &sc->txqs[i]);
1658 }
1659 
1660 static void
1661 ath5k_txq_release(struct ath5k_softc *sc)
1662 {
1663 	struct ath5k_txq *txq = sc->txqs;
1664 	unsigned int i;
1665 
1666 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1667 		if (txq->setup) {
1668 			ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1669 			txq->setup = false;
1670 		}
1671 }
1672 
1673 
1674 
1675 
1676 /*************\
1677 * RX Handling *
1678 \*************/
1679 
1680 /*
1681  * Enable the receive h/w following a reset.
1682  */
1683 static int
1684 ath5k_rx_start(struct ath5k_softc *sc)
1685 {
1686 	struct ath5k_hw *ah = sc->ah;
1687 	struct ath_common *common = ath5k_hw_common(ah);
1688 	struct ath5k_buf *bf;
1689 	int ret;
1690 
1691 	common->rx_bufsize = roundup(IEEE80211_MAX_LEN, common->cachelsz);
1692 
1693 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1694 		  common->cachelsz, common->rx_bufsize);
1695 
1696 	spin_lock_bh(&sc->rxbuflock);
1697 	sc->rxlink = NULL;
1698 	list_for_each_entry(bf, &sc->rxbuf, list) {
1699 		ret = ath5k_rxbuf_setup(sc, bf);
1700 		if (ret != 0) {
1701 			spin_unlock_bh(&sc->rxbuflock);
1702 			goto err;
1703 		}
1704 	}
1705 	bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1706 	ath5k_hw_set_rxdp(ah, bf->daddr);
1707 	spin_unlock_bh(&sc->rxbuflock);
1708 
1709 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1710 	ath5k_mode_setup(sc);		/* set filters, etc. */
1711 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1712 
1713 	return 0;
1714 err:
1715 	return ret;
1716 }
1717 
1718 /*
1719  * Disable the receive h/w in preparation for a reset.
1720  */
1721 static void
1722 ath5k_rx_stop(struct ath5k_softc *sc)
1723 {
1724 	struct ath5k_hw *ah = sc->ah;
1725 
1726 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1727 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1728 	ath5k_hw_stop_rx_dma(ah);	/* disable DMA engine */
1729 
1730 	ath5k_debug_printrxbuffs(sc, ah);
1731 }
1732 
1733 static unsigned int
1734 ath5k_rx_decrypted(struct ath5k_softc *sc, struct sk_buff *skb,
1735 		   struct ath5k_rx_status *rs)
1736 {
1737 	struct ath5k_hw *ah = sc->ah;
1738 	struct ath_common *common = ath5k_hw_common(ah);
1739 	struct ieee80211_hdr *hdr = (void *)skb->data;
1740 	unsigned int keyix, hlen;
1741 
1742 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1743 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1744 		return RX_FLAG_DECRYPTED;
1745 
1746 	/* Apparently when a default key is used to decrypt the packet
1747 	   the hw does not set the index used to decrypt.  In such cases
1748 	   get the index from the packet. */
1749 	hlen = ieee80211_hdrlen(hdr->frame_control);
1750 	if (ieee80211_has_protected(hdr->frame_control) &&
1751 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1752 	    skb->len >= hlen + 4) {
1753 		keyix = skb->data[hlen + 3] >> 6;
1754 
1755 		if (test_bit(keyix, common->keymap))
1756 			return RX_FLAG_DECRYPTED;
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 
1763 static void
1764 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1765 		     struct ieee80211_rx_status *rxs)
1766 {
1767 	struct ath_common *common = ath5k_hw_common(sc->ah);
1768 	u64 tsf, bc_tstamp;
1769 	u32 hw_tu;
1770 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1771 
1772 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1773 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1774 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1775 		/*
1776 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1777 		 * have updated the local TSF. We have to work around various
1778 		 * hardware bugs, though...
1779 		 */
1780 		tsf = ath5k_hw_get_tsf64(sc->ah);
1781 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1782 		hw_tu = TSF_TO_TU(tsf);
1783 
1784 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1785 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1786 			(unsigned long long)bc_tstamp,
1787 			(unsigned long long)rxs->mactime,
1788 			(unsigned long long)(rxs->mactime - bc_tstamp),
1789 			(unsigned long long)tsf);
1790 
1791 		/*
1792 		 * Sometimes the HW will give us a wrong tstamp in the rx
1793 		 * status, causing the timestamp extension to go wrong.
1794 		 * (This seems to happen especially with beacon frames bigger
1795 		 * than 78 byte (incl. FCS))
1796 		 * But we know that the receive timestamp must be later than the
1797 		 * timestamp of the beacon since HW must have synced to that.
1798 		 *
1799 		 * NOTE: here we assume mactime to be after the frame was
1800 		 * received, not like mac80211 which defines it at the start.
1801 		 */
1802 		if (bc_tstamp > rxs->mactime) {
1803 			ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1804 				"fixing mactime from %llx to %llx\n",
1805 				(unsigned long long)rxs->mactime,
1806 				(unsigned long long)tsf);
1807 			rxs->mactime = tsf;
1808 		}
1809 
1810 		/*
1811 		 * Local TSF might have moved higher than our beacon timers,
1812 		 * in that case we have to update them to continue sending
1813 		 * beacons. This also takes care of synchronizing beacon sending
1814 		 * times with other stations.
1815 		 */
1816 		if (hw_tu >= sc->nexttbtt)
1817 			ath5k_beacon_update_timers(sc, bc_tstamp);
1818 	}
1819 }
1820 
1821 static void
1822 ath5k_update_beacon_rssi(struct ath5k_softc *sc, struct sk_buff *skb, int rssi)
1823 {
1824 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1825 	struct ath5k_hw *ah = sc->ah;
1826 	struct ath_common *common = ath5k_hw_common(ah);
1827 
1828 	/* only beacons from our BSSID */
1829 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1830 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) != 0)
1831 		return;
1832 
1833 	ah->ah_beacon_rssi_avg = ath5k_moving_average(ah->ah_beacon_rssi_avg,
1834 						      rssi);
1835 
1836 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1837 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1838 }
1839 
1840 /*
1841  * Compute padding position. skb must contains an IEEE 802.11 frame
1842  */
1843 static int ath5k_common_padpos(struct sk_buff *skb)
1844 {
1845 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
1846 	__le16 frame_control = hdr->frame_control;
1847 	int padpos = 24;
1848 
1849 	if (ieee80211_has_a4(frame_control)) {
1850 		padpos += ETH_ALEN;
1851 	}
1852 	if (ieee80211_is_data_qos(frame_control)) {
1853 		padpos += IEEE80211_QOS_CTL_LEN;
1854 	}
1855 
1856 	return padpos;
1857 }
1858 
1859 /*
1860  * This function expects a 802.11 frame and returns the number of
1861  * bytes added, or -1 if we don't have enought header room.
1862  */
1863 
1864 static int ath5k_add_padding(struct sk_buff *skb)
1865 {
1866 	int padpos = ath5k_common_padpos(skb);
1867 	int padsize = padpos & 3;
1868 
1869 	if (padsize && skb->len>padpos) {
1870 
1871 		if (skb_headroom(skb) < padsize)
1872 			return -1;
1873 
1874 		skb_push(skb, padsize);
1875 		memmove(skb->data, skb->data+padsize, padpos);
1876 		return padsize;
1877 	}
1878 
1879 	return 0;
1880 }
1881 
1882 /*
1883  * This function expects a 802.11 frame and returns the number of
1884  * bytes removed
1885  */
1886 
1887 static int ath5k_remove_padding(struct sk_buff *skb)
1888 {
1889 	int padpos = ath5k_common_padpos(skb);
1890 	int padsize = padpos & 3;
1891 
1892 	if (padsize && skb->len>=padpos+padsize) {
1893 		memmove(skb->data + padsize, skb->data, padpos);
1894 		skb_pull(skb, padsize);
1895 		return padsize;
1896 	}
1897 
1898 	return 0;
1899 }
1900 
1901 static void
1902 ath5k_receive_frame(struct ath5k_softc *sc, struct sk_buff *skb,
1903 		    struct ath5k_rx_status *rs)
1904 {
1905 	struct ieee80211_rx_status *rxs;
1906 
1907 	/* The MAC header is padded to have 32-bit boundary if the
1908 	 * packet payload is non-zero. The general calculation for
1909 	 * padsize would take into account odd header lengths:
1910 	 * padsize = (4 - hdrlen % 4) % 4; However, since only
1911 	 * even-length headers are used, padding can only be 0 or 2
1912 	 * bytes and we can optimize this a bit. In addition, we must
1913 	 * not try to remove padding from short control frames that do
1914 	 * not have payload. */
1915 	ath5k_remove_padding(skb);
1916 
1917 	rxs = IEEE80211_SKB_RXCB(skb);
1918 
1919 	rxs->flag = 0;
1920 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1921 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1922 
1923 	/*
1924 	 * always extend the mac timestamp, since this information is
1925 	 * also needed for proper IBSS merging.
1926 	 *
1927 	 * XXX: it might be too late to do it here, since rs_tstamp is
1928 	 * 15bit only. that means TSF extension has to be done within
1929 	 * 32768usec (about 32ms). it might be necessary to move this to
1930 	 * the interrupt handler, like it is done in madwifi.
1931 	 *
1932 	 * Unfortunately we don't know when the hardware takes the rx
1933 	 * timestamp (beginning of phy frame, data frame, end of rx?).
1934 	 * The only thing we know is that it is hardware specific...
1935 	 * On AR5213 it seems the rx timestamp is at the end of the
1936 	 * frame, but i'm not sure.
1937 	 *
1938 	 * NOTE: mac80211 defines mactime at the beginning of the first
1939 	 * data symbol. Since we don't have any time references it's
1940 	 * impossible to comply to that. This affects IBSS merge only
1941 	 * right now, so it's not too bad...
1942 	 */
1943 	rxs->mactime = ath5k_extend_tsf(sc->ah, rs->rs_tstamp);
1944 	rxs->flag |= RX_FLAG_TSFT;
1945 
1946 	rxs->freq = sc->curchan->center_freq;
1947 	rxs->band = sc->curband->band;
1948 
1949 	rxs->signal = sc->ah->ah_noise_floor + rs->rs_rssi;
1950 
1951 	rxs->antenna = rs->rs_antenna;
1952 
1953 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1954 		sc->stats.antenna_rx[rs->rs_antenna]++;
1955 	else
1956 		sc->stats.antenna_rx[0]++; /* invalid */
1957 
1958 	rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs->rs_rate);
1959 	rxs->flag |= ath5k_rx_decrypted(sc, skb, rs);
1960 
1961 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1962 	    sc->curband->bitrates[rxs->rate_idx].hw_value_short)
1963 		rxs->flag |= RX_FLAG_SHORTPRE;
1964 
1965 	ath5k_debug_dump_skb(sc, skb, "RX  ", 0);
1966 
1967 	ath5k_update_beacon_rssi(sc, skb, rs->rs_rssi);
1968 
1969 	/* check beacons in IBSS mode */
1970 	if (sc->opmode == NL80211_IFTYPE_ADHOC)
1971 		ath5k_check_ibss_tsf(sc, skb, rxs);
1972 
1973 	ieee80211_rx(sc->hw, skb);
1974 }
1975 
1976 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1977  *
1978  * Check if we want to further process this frame or not. Also update
1979  * statistics. Return true if we want this frame, false if not.
1980  */
1981 static bool
1982 ath5k_receive_frame_ok(struct ath5k_softc *sc, struct ath5k_rx_status *rs)
1983 {
1984 	sc->stats.rx_all_count++;
1985 
1986 	if (unlikely(rs->rs_status)) {
1987 		if (rs->rs_status & AR5K_RXERR_CRC)
1988 			sc->stats.rxerr_crc++;
1989 		if (rs->rs_status & AR5K_RXERR_FIFO)
1990 			sc->stats.rxerr_fifo++;
1991 		if (rs->rs_status & AR5K_RXERR_PHY) {
1992 			sc->stats.rxerr_phy++;
1993 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1994 				sc->stats.rxerr_phy_code[rs->rs_phyerr]++;
1995 			return false;
1996 		}
1997 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1998 			/*
1999 			 * Decrypt error.  If the error occurred
2000 			 * because there was no hardware key, then
2001 			 * let the frame through so the upper layers
2002 			 * can process it.  This is necessary for 5210
2003 			 * parts which have no way to setup a ``clear''
2004 			 * key cache entry.
2005 			 *
2006 			 * XXX do key cache faulting
2007 			 */
2008 			sc->stats.rxerr_decrypt++;
2009 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
2010 			    !(rs->rs_status & AR5K_RXERR_CRC))
2011 				return true;
2012 		}
2013 		if (rs->rs_status & AR5K_RXERR_MIC) {
2014 			sc->stats.rxerr_mic++;
2015 			return true;
2016 		}
2017 
2018 		/* let crypto-error packets fall through in MNTR */
2019 		if ((rs->rs_status & ~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
2020 		    sc->opmode != NL80211_IFTYPE_MONITOR)
2021 			return false;
2022 	}
2023 
2024 	if (unlikely(rs->rs_more)) {
2025 		sc->stats.rxerr_jumbo++;
2026 		return false;
2027 	}
2028 	return true;
2029 }
2030 
2031 static void
2032 ath5k_tasklet_rx(unsigned long data)
2033 {
2034 	struct ath5k_rx_status rs = {};
2035 	struct sk_buff *skb, *next_skb;
2036 	dma_addr_t next_skb_addr;
2037 	struct ath5k_softc *sc = (void *)data;
2038 	struct ath5k_hw *ah = sc->ah;
2039 	struct ath_common *common = ath5k_hw_common(ah);
2040 	struct ath5k_buf *bf;
2041 	struct ath5k_desc *ds;
2042 	int ret;
2043 
2044 	spin_lock(&sc->rxbuflock);
2045 	if (list_empty(&sc->rxbuf)) {
2046 		ATH5K_WARN(sc, "empty rx buf pool\n");
2047 		goto unlock;
2048 	}
2049 	do {
2050 		bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
2051 		BUG_ON(bf->skb == NULL);
2052 		skb = bf->skb;
2053 		ds = bf->desc;
2054 
2055 		/* bail if HW is still using self-linked descriptor */
2056 		if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
2057 			break;
2058 
2059 		ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
2060 		if (unlikely(ret == -EINPROGRESS))
2061 			break;
2062 		else if (unlikely(ret)) {
2063 			ATH5K_ERR(sc, "error in processing rx descriptor\n");
2064 			sc->stats.rxerr_proc++;
2065 			break;
2066 		}
2067 
2068 		if (ath5k_receive_frame_ok(sc, &rs)) {
2069 			next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
2070 
2071 			/*
2072 			 * If we can't replace bf->skb with a new skb under
2073 			 * memory pressure, just skip this packet
2074 			 */
2075 			if (!next_skb)
2076 				goto next;
2077 
2078 			pci_unmap_single(sc->pdev, bf->skbaddr,
2079 					 common->rx_bufsize,
2080 					 PCI_DMA_FROMDEVICE);
2081 
2082 			skb_put(skb, rs.rs_datalen);
2083 
2084 			ath5k_receive_frame(sc, skb, &rs);
2085 
2086 			bf->skb = next_skb;
2087 			bf->skbaddr = next_skb_addr;
2088 		}
2089 next:
2090 		list_move_tail(&bf->list, &sc->rxbuf);
2091 	} while (ath5k_rxbuf_setup(sc, bf) == 0);
2092 unlock:
2093 	spin_unlock(&sc->rxbuflock);
2094 }
2095 
2096 
2097 /*************\
2098 * TX Handling *
2099 \*************/
2100 
2101 static void
2102 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
2103 {
2104 	struct ath5k_tx_status ts = {};
2105 	struct ath5k_buf *bf, *bf0;
2106 	struct ath5k_desc *ds;
2107 	struct sk_buff *skb;
2108 	struct ieee80211_tx_info *info;
2109 	int i, ret;
2110 
2111 	spin_lock(&txq->lock);
2112 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
2113 		ds = bf->desc;
2114 
2115 		/*
2116 		 * It's possible that the hardware can say the buffer is
2117 		 * completed when it hasn't yet loaded the ds_link from
2118 		 * host memory and moved on.  If there are more TX
2119 		 * descriptors in the queue, wait for TXDP to change
2120 		 * before processing this one.
2121 		 */
2122 		if (ath5k_hw_get_txdp(sc->ah, txq->qnum) == bf->daddr &&
2123 		    !list_is_last(&bf->list, &txq->q))
2124 			break;
2125 
2126 		ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
2127 		if (unlikely(ret == -EINPROGRESS))
2128 			break;
2129 		else if (unlikely(ret)) {
2130 			ATH5K_ERR(sc, "error %d while processing queue %u\n",
2131 				ret, txq->qnum);
2132 			break;
2133 		}
2134 
2135 		sc->stats.tx_all_count++;
2136 		skb = bf->skb;
2137 		info = IEEE80211_SKB_CB(skb);
2138 		bf->skb = NULL;
2139 
2140 		pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
2141 				PCI_DMA_TODEVICE);
2142 
2143 		ieee80211_tx_info_clear_status(info);
2144 		for (i = 0; i < 4; i++) {
2145 			struct ieee80211_tx_rate *r =
2146 				&info->status.rates[i];
2147 
2148 			if (ts.ts_rate[i]) {
2149 				r->idx = ath5k_hw_to_driver_rix(sc, ts.ts_rate[i]);
2150 				r->count = ts.ts_retry[i];
2151 			} else {
2152 				r->idx = -1;
2153 				r->count = 0;
2154 			}
2155 		}
2156 
2157 		/* count the successful attempt as well */
2158 		info->status.rates[ts.ts_final_idx].count++;
2159 
2160 		if (unlikely(ts.ts_status)) {
2161 			sc->stats.ack_fail++;
2162 			if (ts.ts_status & AR5K_TXERR_FILT) {
2163 				info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2164 				sc->stats.txerr_filt++;
2165 			}
2166 			if (ts.ts_status & AR5K_TXERR_XRETRY)
2167 				sc->stats.txerr_retry++;
2168 			if (ts.ts_status & AR5K_TXERR_FIFO)
2169 				sc->stats.txerr_fifo++;
2170 		} else {
2171 			info->flags |= IEEE80211_TX_STAT_ACK;
2172 			info->status.ack_signal = ts.ts_rssi;
2173 		}
2174 
2175 		/*
2176 		 * Remove MAC header padding before giving the frame
2177 		 * back to mac80211.
2178 		 */
2179 		ath5k_remove_padding(skb);
2180 
2181 		if (ts.ts_antenna > 0 && ts.ts_antenna < 5)
2182 			sc->stats.antenna_tx[ts.ts_antenna]++;
2183 		else
2184 			sc->stats.antenna_tx[0]++; /* invalid */
2185 
2186 		ieee80211_tx_status(sc->hw, skb);
2187 
2188 		spin_lock(&sc->txbuflock);
2189 		list_move_tail(&bf->list, &sc->txbuf);
2190 		sc->txbuf_len++;
2191 		spin_unlock(&sc->txbuflock);
2192 	}
2193 	if (likely(list_empty(&txq->q)))
2194 		txq->link = NULL;
2195 	spin_unlock(&txq->lock);
2196 	if (sc->txbuf_len > ATH_TXBUF / 5)
2197 		ieee80211_wake_queues(sc->hw);
2198 }
2199 
2200 static void
2201 ath5k_tasklet_tx(unsigned long data)
2202 {
2203 	int i;
2204 	struct ath5k_softc *sc = (void *)data;
2205 
2206 	for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
2207 		if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
2208 			ath5k_tx_processq(sc, &sc->txqs[i]);
2209 }
2210 
2211 
2212 /*****************\
2213 * Beacon handling *
2214 \*****************/
2215 
2216 /*
2217  * Setup the beacon frame for transmit.
2218  */
2219 static int
2220 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
2221 {
2222 	struct sk_buff *skb = bf->skb;
2223 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2224 	struct ath5k_hw *ah = sc->ah;
2225 	struct ath5k_desc *ds;
2226 	int ret = 0;
2227 	u8 antenna;
2228 	u32 flags;
2229 	const int padsize = 0;
2230 
2231 	bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
2232 			PCI_DMA_TODEVICE);
2233 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
2234 			"skbaddr %llx\n", skb, skb->data, skb->len,
2235 			(unsigned long long)bf->skbaddr);
2236 	if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
2237 		ATH5K_ERR(sc, "beacon DMA mapping failed\n");
2238 		return -EIO;
2239 	}
2240 
2241 	ds = bf->desc;
2242 	antenna = ah->ah_tx_ant;
2243 
2244 	flags = AR5K_TXDESC_NOACK;
2245 	if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
2246 		ds->ds_link = bf->daddr;	/* self-linked */
2247 		flags |= AR5K_TXDESC_VEOL;
2248 	} else
2249 		ds->ds_link = 0;
2250 
2251 	/*
2252 	 * If we use multiple antennas on AP and use
2253 	 * the Sectored AP scenario, switch antenna every
2254 	 * 4 beacons to make sure everybody hears our AP.
2255 	 * When a client tries to associate, hw will keep
2256 	 * track of the tx antenna to be used for this client
2257 	 * automaticaly, based on ACKed packets.
2258 	 *
2259 	 * Note: AP still listens and transmits RTS on the
2260 	 * default antenna which is supposed to be an omni.
2261 	 *
2262 	 * Note2: On sectored scenarios it's possible to have
2263 	 * multiple antennas (1omni -the default- and 14 sectors)
2264 	 * so if we choose to actually support this mode we need
2265 	 * to allow user to set how many antennas we have and tweak
2266 	 * the code below to send beacons on all of them.
2267 	 */
2268 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
2269 		antenna = sc->bsent & 4 ? 2 : 1;
2270 
2271 
2272 	/* FIXME: If we are in g mode and rate is a CCK rate
2273 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
2274 	 * from tx power (value is in dB units already) */
2275 	ds->ds_data = bf->skbaddr;
2276 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
2277 			ieee80211_get_hdrlen_from_skb(skb), padsize,
2278 			AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
2279 			ieee80211_get_tx_rate(sc->hw, info)->hw_value,
2280 			1, AR5K_TXKEYIX_INVALID,
2281 			antenna, flags, 0, 0);
2282 	if (ret)
2283 		goto err_unmap;
2284 
2285 	return 0;
2286 err_unmap:
2287 	pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
2288 	return ret;
2289 }
2290 
2291 /*
2292  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2293  * frame contents are done as needed and the slot time is
2294  * also adjusted based on current state.
2295  *
2296  * This is called from software irq context (beacontq tasklets)
2297  * or user context from ath5k_beacon_config.
2298  */
2299 static void
2300 ath5k_beacon_send(struct ath5k_softc *sc)
2301 {
2302 	struct ath5k_buf *bf = sc->bbuf;
2303 	struct ath5k_hw *ah = sc->ah;
2304 	struct sk_buff *skb;
2305 
2306 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
2307 
2308 	if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
2309 			sc->opmode == NL80211_IFTYPE_MONITOR)) {
2310 		ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
2311 		return;
2312 	}
2313 	/*
2314 	 * Check if the previous beacon has gone out.  If
2315 	 * not don't don't try to post another, skip this
2316 	 * period and wait for the next.  Missed beacons
2317 	 * indicate a problem and should not occur.  If we
2318 	 * miss too many consecutive beacons reset the device.
2319 	 */
2320 	if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2321 		sc->bmisscount++;
2322 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2323 			"missed %u consecutive beacons\n", sc->bmisscount);
2324 		if (sc->bmisscount > 10) {	/* NB: 10 is a guess */
2325 			ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2326 				"stuck beacon time (%u missed)\n",
2327 				sc->bmisscount);
2328 			ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2329 				  "stuck beacon, resetting\n");
2330 			ieee80211_queue_work(sc->hw, &sc->reset_work);
2331 		}
2332 		return;
2333 	}
2334 	if (unlikely(sc->bmisscount != 0)) {
2335 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2336 			"resume beacon xmit after %u misses\n",
2337 			sc->bmisscount);
2338 		sc->bmisscount = 0;
2339 	}
2340 
2341 	/*
2342 	 * Stop any current dma and put the new frame on the queue.
2343 	 * This should never fail since we check above that no frames
2344 	 * are still pending on the queue.
2345 	 */
2346 	if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2347 		ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
2348 		/* NB: hw still stops DMA, so proceed */
2349 	}
2350 
2351 	/* refresh the beacon for AP mode */
2352 	if (sc->opmode == NL80211_IFTYPE_AP)
2353 		ath5k_beacon_update(sc->hw, sc->vif);
2354 
2355 	ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
2356 	ath5k_hw_start_tx_dma(ah, sc->bhalq);
2357 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2358 		sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2359 
2360 	skb = ieee80211_get_buffered_bc(sc->hw, sc->vif);
2361 	while (skb) {
2362 		ath5k_tx_queue(sc->hw, skb, sc->cabq);
2363 		skb = ieee80211_get_buffered_bc(sc->hw, sc->vif);
2364 	}
2365 
2366 	sc->bsent++;
2367 }
2368 
2369 
2370 /**
2371  * ath5k_beacon_update_timers - update beacon timers
2372  *
2373  * @sc: struct ath5k_softc pointer we are operating on
2374  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2375  *          beacon timer update based on the current HW TSF.
2376  *
2377  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2378  * of a received beacon or the current local hardware TSF and write it to the
2379  * beacon timer registers.
2380  *
2381  * This is called in a variety of situations, e.g. when a beacon is received,
2382  * when a TSF update has been detected, but also when an new IBSS is created or
2383  * when we otherwise know we have to update the timers, but we keep it in this
2384  * function to have it all together in one place.
2385  */
2386 static void
2387 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2388 {
2389 	struct ath5k_hw *ah = sc->ah;
2390 	u32 nexttbtt, intval, hw_tu, bc_tu;
2391 	u64 hw_tsf;
2392 
2393 	intval = sc->bintval & AR5K_BEACON_PERIOD;
2394 	if (WARN_ON(!intval))
2395 		return;
2396 
2397 	/* beacon TSF converted to TU */
2398 	bc_tu = TSF_TO_TU(bc_tsf);
2399 
2400 	/* current TSF converted to TU */
2401 	hw_tsf = ath5k_hw_get_tsf64(ah);
2402 	hw_tu = TSF_TO_TU(hw_tsf);
2403 
2404 #define FUDGE 3
2405 	/* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2406 	if (bc_tsf == -1) {
2407 		/*
2408 		 * no beacons received, called internally.
2409 		 * just need to refresh timers based on HW TSF.
2410 		 */
2411 		nexttbtt = roundup(hw_tu + FUDGE, intval);
2412 	} else if (bc_tsf == 0) {
2413 		/*
2414 		 * no beacon received, probably called by ath5k_reset_tsf().
2415 		 * reset TSF to start with 0.
2416 		 */
2417 		nexttbtt = intval;
2418 		intval |= AR5K_BEACON_RESET_TSF;
2419 	} else if (bc_tsf > hw_tsf) {
2420 		/*
2421 		 * beacon received, SW merge happend but HW TSF not yet updated.
2422 		 * not possible to reconfigure timers yet, but next time we
2423 		 * receive a beacon with the same BSSID, the hardware will
2424 		 * automatically update the TSF and then we need to reconfigure
2425 		 * the timers.
2426 		 */
2427 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2428 			"need to wait for HW TSF sync\n");
2429 		return;
2430 	} else {
2431 		/*
2432 		 * most important case for beacon synchronization between STA.
2433 		 *
2434 		 * beacon received and HW TSF has been already updated by HW.
2435 		 * update next TBTT based on the TSF of the beacon, but make
2436 		 * sure it is ahead of our local TSF timer.
2437 		 */
2438 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2439 	}
2440 #undef FUDGE
2441 
2442 	sc->nexttbtt = nexttbtt;
2443 
2444 	intval |= AR5K_BEACON_ENA;
2445 	ath5k_hw_init_beacon(ah, nexttbtt, intval);
2446 
2447 	/*
2448 	 * debugging output last in order to preserve the time critical aspect
2449 	 * of this function
2450 	 */
2451 	if (bc_tsf == -1)
2452 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2453 			"reconfigured timers based on HW TSF\n");
2454 	else if (bc_tsf == 0)
2455 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2456 			"reset HW TSF and timers\n");
2457 	else
2458 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2459 			"updated timers based on beacon TSF\n");
2460 
2461 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2462 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2463 			  (unsigned long long) bc_tsf,
2464 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2465 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2466 		intval & AR5K_BEACON_PERIOD,
2467 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2468 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2469 }
2470 
2471 
2472 /**
2473  * ath5k_beacon_config - Configure the beacon queues and interrupts
2474  *
2475  * @sc: struct ath5k_softc pointer we are operating on
2476  *
2477  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2478  * interrupts to detect TSF updates only.
2479  */
2480 static void
2481 ath5k_beacon_config(struct ath5k_softc *sc)
2482 {
2483 	struct ath5k_hw *ah = sc->ah;
2484 	unsigned long flags;
2485 
2486 	spin_lock_irqsave(&sc->block, flags);
2487 	sc->bmisscount = 0;
2488 	sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2489 
2490 	if (sc->enable_beacon) {
2491 		/*
2492 		 * In IBSS mode we use a self-linked tx descriptor and let the
2493 		 * hardware send the beacons automatically. We have to load it
2494 		 * only once here.
2495 		 * We use the SWBA interrupt only to keep track of the beacon
2496 		 * timers in order to detect automatic TSF updates.
2497 		 */
2498 		ath5k_beaconq_config(sc);
2499 
2500 		sc->imask |= AR5K_INT_SWBA;
2501 
2502 		if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2503 			if (ath5k_hw_hasveol(ah))
2504 				ath5k_beacon_send(sc);
2505 		} else
2506 			ath5k_beacon_update_timers(sc, -1);
2507 	} else {
2508 		ath5k_hw_stop_tx_dma(sc->ah, sc->bhalq);
2509 	}
2510 
2511 	ath5k_hw_set_imr(ah, sc->imask);
2512 	mmiowb();
2513 	spin_unlock_irqrestore(&sc->block, flags);
2514 }
2515 
2516 static void ath5k_tasklet_beacon(unsigned long data)
2517 {
2518 	struct ath5k_softc *sc = (struct ath5k_softc *) data;
2519 
2520 	/*
2521 	 * Software beacon alert--time to send a beacon.
2522 	 *
2523 	 * In IBSS mode we use this interrupt just to
2524 	 * keep track of the next TBTT (target beacon
2525 	 * transmission time) in order to detect wether
2526 	 * automatic TSF updates happened.
2527 	 */
2528 	if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2529 		/* XXX: only if VEOL suppported */
2530 		u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2531 		sc->nexttbtt += sc->bintval;
2532 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2533 				"SWBA nexttbtt: %x hw_tu: %x "
2534 				"TSF: %llx\n",
2535 				sc->nexttbtt,
2536 				TSF_TO_TU(tsf),
2537 				(unsigned long long) tsf);
2538 	} else {
2539 		spin_lock(&sc->block);
2540 		ath5k_beacon_send(sc);
2541 		spin_unlock(&sc->block);
2542 	}
2543 }
2544 
2545 
2546 /********************\
2547 * Interrupt handling *
2548 \********************/
2549 
2550 static int
2551 ath5k_init(struct ath5k_softc *sc)
2552 {
2553 	struct ath5k_hw *ah = sc->ah;
2554 	int ret, i;
2555 
2556 	mutex_lock(&sc->lock);
2557 
2558 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2559 
2560 	/*
2561 	 * Stop anything previously setup.  This is safe
2562 	 * no matter this is the first time through or not.
2563 	 */
2564 	ath5k_stop_locked(sc);
2565 
2566 	/*
2567 	 * The basic interface to setting the hardware in a good
2568 	 * state is ``reset''.  On return the hardware is known to
2569 	 * be powered up and with interrupts disabled.  This must
2570 	 * be followed by initialization of the appropriate bits
2571 	 * and then setup of the interrupt mask.
2572 	 */
2573 	sc->curchan = sc->hw->conf.channel;
2574 	sc->curband = &sc->sbands[sc->curchan->band];
2575 	sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2576 		AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2577 		AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB;
2578 
2579 	ret = ath5k_reset(sc, NULL);
2580 	if (ret)
2581 		goto done;
2582 
2583 	ath5k_rfkill_hw_start(ah);
2584 
2585 	/*
2586 	 * Reset the key cache since some parts do not reset the
2587 	 * contents on initial power up or resume from suspend.
2588 	 */
2589 	for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
2590 		ath5k_hw_reset_key(ah, i);
2591 
2592 	ath5k_hw_set_ack_bitrate_high(ah, true);
2593 	ret = 0;
2594 done:
2595 	mmiowb();
2596 	mutex_unlock(&sc->lock);
2597 	return ret;
2598 }
2599 
2600 static int
2601 ath5k_stop_locked(struct ath5k_softc *sc)
2602 {
2603 	struct ath5k_hw *ah = sc->ah;
2604 
2605 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2606 			test_bit(ATH_STAT_INVALID, sc->status));
2607 
2608 	/*
2609 	 * Shutdown the hardware and driver:
2610 	 *    stop output from above
2611 	 *    disable interrupts
2612 	 *    turn off timers
2613 	 *    turn off the radio
2614 	 *    clear transmit machinery
2615 	 *    clear receive machinery
2616 	 *    drain and release tx queues
2617 	 *    reclaim beacon resources
2618 	 *    power down hardware
2619 	 *
2620 	 * Note that some of this work is not possible if the
2621 	 * hardware is gone (invalid).
2622 	 */
2623 	ieee80211_stop_queues(sc->hw);
2624 
2625 	if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2626 		ath5k_led_off(sc);
2627 		ath5k_hw_set_imr(ah, 0);
2628 		synchronize_irq(sc->pdev->irq);
2629 	}
2630 	ath5k_txq_cleanup(sc);
2631 	if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2632 		ath5k_rx_stop(sc);
2633 		ath5k_hw_phy_disable(ah);
2634 	}
2635 
2636 	return 0;
2637 }
2638 
2639 static void stop_tasklets(struct ath5k_softc *sc)
2640 {
2641 	tasklet_kill(&sc->rxtq);
2642 	tasklet_kill(&sc->txtq);
2643 	tasklet_kill(&sc->calib);
2644 	tasklet_kill(&sc->beacontq);
2645 	tasklet_kill(&sc->ani_tasklet);
2646 }
2647 
2648 /*
2649  * Stop the device, grabbing the top-level lock to protect
2650  * against concurrent entry through ath5k_init (which can happen
2651  * if another thread does a system call and the thread doing the
2652  * stop is preempted).
2653  */
2654 static int
2655 ath5k_stop_hw(struct ath5k_softc *sc)
2656 {
2657 	int ret;
2658 
2659 	mutex_lock(&sc->lock);
2660 	ret = ath5k_stop_locked(sc);
2661 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2662 		/*
2663 		 * Don't set the card in full sleep mode!
2664 		 *
2665 		 * a) When the device is in this state it must be carefully
2666 		 * woken up or references to registers in the PCI clock
2667 		 * domain may freeze the bus (and system).  This varies
2668 		 * by chip and is mostly an issue with newer parts
2669 		 * (madwifi sources mentioned srev >= 0x78) that go to
2670 		 * sleep more quickly.
2671 		 *
2672 		 * b) On older chips full sleep results a weird behaviour
2673 		 * during wakeup. I tested various cards with srev < 0x78
2674 		 * and they don't wake up after module reload, a second
2675 		 * module reload is needed to bring the card up again.
2676 		 *
2677 		 * Until we figure out what's going on don't enable
2678 		 * full chip reset on any chip (this is what Legacy HAL
2679 		 * and Sam's HAL do anyway). Instead Perform a full reset
2680 		 * on the device (same as initial state after attach) and
2681 		 * leave it idle (keep MAC/BB on warm reset) */
2682 		ret = ath5k_hw_on_hold(sc->ah);
2683 
2684 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2685 				"putting device to sleep\n");
2686 	}
2687 	ath5k_txbuf_free_skb(sc, sc->bbuf);
2688 
2689 	mmiowb();
2690 	mutex_unlock(&sc->lock);
2691 
2692 	stop_tasklets(sc);
2693 
2694 	ath5k_rfkill_hw_stop(sc->ah);
2695 
2696 	return ret;
2697 }
2698 
2699 static void
2700 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2701 {
2702 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2703 	    !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL)) {
2704 		/* run ANI only when full calibration is not active */
2705 		ah->ah_cal_next_ani = jiffies +
2706 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2707 		tasklet_schedule(&ah->ah_sc->ani_tasklet);
2708 
2709 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2710 		ah->ah_cal_next_full = jiffies +
2711 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2712 		tasklet_schedule(&ah->ah_sc->calib);
2713 	}
2714 	/* we could use SWI to generate enough interrupts to meet our
2715 	 * calibration interval requirements, if necessary:
2716 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2717 }
2718 
2719 static irqreturn_t
2720 ath5k_intr(int irq, void *dev_id)
2721 {
2722 	struct ath5k_softc *sc = dev_id;
2723 	struct ath5k_hw *ah = sc->ah;
2724 	enum ath5k_int status;
2725 	unsigned int counter = 1000;
2726 
2727 	if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2728 				!ath5k_hw_is_intr_pending(ah)))
2729 		return IRQ_NONE;
2730 
2731 	do {
2732 		ath5k_hw_get_isr(ah, &status);		/* NB: clears IRQ too */
2733 		ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2734 				status, sc->imask);
2735 		if (unlikely(status & AR5K_INT_FATAL)) {
2736 			/*
2737 			 * Fatal errors are unrecoverable.
2738 			 * Typically these are caused by DMA errors.
2739 			 */
2740 			ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2741 				  "fatal int, resetting\n");
2742 			ieee80211_queue_work(sc->hw, &sc->reset_work);
2743 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2744 			/*
2745 			 * Receive buffers are full. Either the bus is busy or
2746 			 * the CPU is not fast enough to process all received
2747 			 * frames.
2748 			 * Older chipsets need a reset to come out of this
2749 			 * condition, but we treat it as RX for newer chips.
2750 			 * We don't know exactly which versions need a reset -
2751 			 * this guess is copied from the HAL.
2752 			 */
2753 			sc->stats.rxorn_intr++;
2754 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2755 				ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2756 					  "rx overrun, resetting\n");
2757 				ieee80211_queue_work(sc->hw, &sc->reset_work);
2758 			}
2759 			else
2760 				tasklet_schedule(&sc->rxtq);
2761 		} else {
2762 			if (status & AR5K_INT_SWBA) {
2763 				tasklet_hi_schedule(&sc->beacontq);
2764 			}
2765 			if (status & AR5K_INT_RXEOL) {
2766 				/*
2767 				* NB: the hardware should re-read the link when
2768 				*     RXE bit is written, but it doesn't work at
2769 				*     least on older hardware revs.
2770 				*/
2771 				sc->stats.rxeol_intr++;
2772 			}
2773 			if (status & AR5K_INT_TXURN) {
2774 				/* bump tx trigger level */
2775 				ath5k_hw_update_tx_triglevel(ah, true);
2776 			}
2777 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2778 				tasklet_schedule(&sc->rxtq);
2779 			if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2780 					| AR5K_INT_TXERR | AR5K_INT_TXEOL))
2781 				tasklet_schedule(&sc->txtq);
2782 			if (status & AR5K_INT_BMISS) {
2783 				/* TODO */
2784 			}
2785 			if (status & AR5K_INT_MIB) {
2786 				sc->stats.mib_intr++;
2787 				ath5k_hw_update_mib_counters(ah);
2788 				ath5k_ani_mib_intr(ah);
2789 			}
2790 			if (status & AR5K_INT_GPIO)
2791 				tasklet_schedule(&sc->rf_kill.toggleq);
2792 
2793 		}
2794 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2795 
2796 	if (unlikely(!counter))
2797 		ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2798 
2799 	ath5k_intr_calibration_poll(ah);
2800 
2801 	return IRQ_HANDLED;
2802 }
2803 
2804 /*
2805  * Periodically recalibrate the PHY to account
2806  * for temperature/environment changes.
2807  */
2808 static void
2809 ath5k_tasklet_calibrate(unsigned long data)
2810 {
2811 	struct ath5k_softc *sc = (void *)data;
2812 	struct ath5k_hw *ah = sc->ah;
2813 
2814 	/* Only full calibration for now */
2815 	ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2816 
2817 	ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2818 		ieee80211_frequency_to_channel(sc->curchan->center_freq),
2819 		sc->curchan->hw_value);
2820 
2821 	if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2822 		/*
2823 		 * Rfgain is out of bounds, reset the chip
2824 		 * to load new gain values.
2825 		 */
2826 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2827 		ieee80211_queue_work(sc->hw, &sc->reset_work);
2828 	}
2829 	if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2830 		ATH5K_ERR(sc, "calibration of channel %u failed\n",
2831 			ieee80211_frequency_to_channel(
2832 				sc->curchan->center_freq));
2833 
2834 	/* Noise floor calibration interrupts rx/tx path while I/Q calibration
2835 	 * doesn't. We stop the queues so that calibration doesn't interfere
2836 	 * with TX and don't run it as often */
2837 	if (time_is_before_eq_jiffies(ah->ah_cal_next_nf)) {
2838 		ah->ah_cal_next_nf = jiffies +
2839 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_NF);
2840 		ieee80211_stop_queues(sc->hw);
2841 		ath5k_hw_update_noise_floor(ah);
2842 		ieee80211_wake_queues(sc->hw);
2843 	}
2844 
2845 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2846 }
2847 
2848 
2849 static void
2850 ath5k_tasklet_ani(unsigned long data)
2851 {
2852 	struct ath5k_softc *sc = (void *)data;
2853 	struct ath5k_hw *ah = sc->ah;
2854 
2855 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2856 	ath5k_ani_calibration(ah);
2857 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2858 }
2859 
2860 
2861 /********************\
2862 * Mac80211 functions *
2863 \********************/
2864 
2865 static int
2866 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2867 {
2868 	struct ath5k_softc *sc = hw->priv;
2869 
2870 	return ath5k_tx_queue(hw, skb, sc->txq);
2871 }
2872 
2873 static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
2874 			  struct ath5k_txq *txq)
2875 {
2876 	struct ath5k_softc *sc = hw->priv;
2877 	struct ath5k_buf *bf;
2878 	unsigned long flags;
2879 	int padsize;
2880 
2881 	ath5k_debug_dump_skb(sc, skb, "TX  ", 1);
2882 
2883 	if (sc->opmode == NL80211_IFTYPE_MONITOR)
2884 		ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2885 
2886 	/*
2887 	 * the hardware expects the header padded to 4 byte boundaries
2888 	 * if this is not the case we add the padding after the header
2889 	 */
2890 	padsize = ath5k_add_padding(skb);
2891 	if (padsize < 0) {
2892 		ATH5K_ERR(sc, "tx hdrlen not %%4: not enough"
2893 			  " headroom to pad");
2894 		goto drop_packet;
2895 	}
2896 
2897 	spin_lock_irqsave(&sc->txbuflock, flags);
2898 	if (list_empty(&sc->txbuf)) {
2899 		ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2900 		spin_unlock_irqrestore(&sc->txbuflock, flags);
2901 		ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
2902 		goto drop_packet;
2903 	}
2904 	bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2905 	list_del(&bf->list);
2906 	sc->txbuf_len--;
2907 	if (list_empty(&sc->txbuf))
2908 		ieee80211_stop_queues(hw);
2909 	spin_unlock_irqrestore(&sc->txbuflock, flags);
2910 
2911 	bf->skb = skb;
2912 
2913 	if (ath5k_txbuf_setup(sc, bf, txq, padsize)) {
2914 		bf->skb = NULL;
2915 		spin_lock_irqsave(&sc->txbuflock, flags);
2916 		list_add_tail(&bf->list, &sc->txbuf);
2917 		sc->txbuf_len++;
2918 		spin_unlock_irqrestore(&sc->txbuflock, flags);
2919 		goto drop_packet;
2920 	}
2921 	return NETDEV_TX_OK;
2922 
2923 drop_packet:
2924 	dev_kfree_skb_any(skb);
2925 	return NETDEV_TX_OK;
2926 }
2927 
2928 /*
2929  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2930  * and change to the given channel.
2931  *
2932  * This should be called with sc->lock.
2933  */
2934 static int
2935 ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan)
2936 {
2937 	struct ath5k_hw *ah = sc->ah;
2938 	int ret;
2939 
2940 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2941 
2942 	ath5k_hw_set_imr(ah, 0);
2943 	synchronize_irq(sc->pdev->irq);
2944 	stop_tasklets(sc);
2945 
2946 	if (chan) {
2947 		ath5k_txq_cleanup(sc);
2948 		ath5k_rx_stop(sc);
2949 
2950 		sc->curchan = chan;
2951 		sc->curband = &sc->sbands[chan->band];
2952 	}
2953 	ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, chan != NULL);
2954 	if (ret) {
2955 		ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2956 		goto err;
2957 	}
2958 
2959 	ret = ath5k_rx_start(sc);
2960 	if (ret) {
2961 		ATH5K_ERR(sc, "can't start recv logic\n");
2962 		goto err;
2963 	}
2964 
2965 	ath5k_ani_init(ah, ah->ah_sc->ani_state.ani_mode);
2966 
2967 	ah->ah_cal_next_full = jiffies;
2968 	ah->ah_cal_next_ani = jiffies;
2969 	ah->ah_cal_next_nf = jiffies;
2970 
2971 	/*
2972 	 * Change channels and update the h/w rate map if we're switching;
2973 	 * e.g. 11a to 11b/g.
2974 	 *
2975 	 * We may be doing a reset in response to an ioctl that changes the
2976 	 * channel so update any state that might change as a result.
2977 	 *
2978 	 * XXX needed?
2979 	 */
2980 /*	ath5k_chan_change(sc, c); */
2981 
2982 	ath5k_beacon_config(sc);
2983 	/* intrs are enabled by ath5k_beacon_config */
2984 
2985 	ieee80211_wake_queues(sc->hw);
2986 
2987 	return 0;
2988 err:
2989 	return ret;
2990 }
2991 
2992 static void ath5k_reset_work(struct work_struct *work)
2993 {
2994 	struct ath5k_softc *sc = container_of(work, struct ath5k_softc,
2995 		reset_work);
2996 
2997 	mutex_lock(&sc->lock);
2998 	ath5k_reset(sc, sc->curchan);
2999 	mutex_unlock(&sc->lock);
3000 }
3001 
3002 static int ath5k_start(struct ieee80211_hw *hw)
3003 {
3004 	return ath5k_init(hw->priv);
3005 }
3006 
3007 static void ath5k_stop(struct ieee80211_hw *hw)
3008 {
3009 	ath5k_stop_hw(hw->priv);
3010 }
3011 
3012 static int ath5k_add_interface(struct ieee80211_hw *hw,
3013 		struct ieee80211_vif *vif)
3014 {
3015 	struct ath5k_softc *sc = hw->priv;
3016 	int ret;
3017 
3018 	mutex_lock(&sc->lock);
3019 	if (sc->vif) {
3020 		ret = 0;
3021 		goto end;
3022 	}
3023 
3024 	sc->vif = vif;
3025 
3026 	switch (vif->type) {
3027 	case NL80211_IFTYPE_AP:
3028 	case NL80211_IFTYPE_STATION:
3029 	case NL80211_IFTYPE_ADHOC:
3030 	case NL80211_IFTYPE_MESH_POINT:
3031 	case NL80211_IFTYPE_MONITOR:
3032 		sc->opmode = vif->type;
3033 		break;
3034 	default:
3035 		ret = -EOPNOTSUPP;
3036 		goto end;
3037 	}
3038 
3039 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "add interface mode %d\n", sc->opmode);
3040 
3041 	ath5k_hw_set_lladdr(sc->ah, vif->addr);
3042 	ath5k_mode_setup(sc);
3043 
3044 	ret = 0;
3045 end:
3046 	mutex_unlock(&sc->lock);
3047 	return ret;
3048 }
3049 
3050 static void
3051 ath5k_remove_interface(struct ieee80211_hw *hw,
3052 			struct ieee80211_vif *vif)
3053 {
3054 	struct ath5k_softc *sc = hw->priv;
3055 	u8 mac[ETH_ALEN] = {};
3056 
3057 	mutex_lock(&sc->lock);
3058 	if (sc->vif != vif)
3059 		goto end;
3060 
3061 	ath5k_hw_set_lladdr(sc->ah, mac);
3062 	sc->vif = NULL;
3063 end:
3064 	mutex_unlock(&sc->lock);
3065 }
3066 
3067 /*
3068  * TODO: Phy disable/diversity etc
3069  */
3070 static int
3071 ath5k_config(struct ieee80211_hw *hw, u32 changed)
3072 {
3073 	struct ath5k_softc *sc = hw->priv;
3074 	struct ath5k_hw *ah = sc->ah;
3075 	struct ieee80211_conf *conf = &hw->conf;
3076 	int ret = 0;
3077 
3078 	mutex_lock(&sc->lock);
3079 
3080 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
3081 		ret = ath5k_chan_set(sc, conf->channel);
3082 		if (ret < 0)
3083 			goto unlock;
3084 	}
3085 
3086 	if ((changed & IEEE80211_CONF_CHANGE_POWER) &&
3087 	(sc->power_level != conf->power_level)) {
3088 		sc->power_level = conf->power_level;
3089 
3090 		/* Half dB steps */
3091 		ath5k_hw_set_txpower_limit(ah, (conf->power_level * 2));
3092 	}
3093 
3094 	/* TODO:
3095 	 * 1) Move this on config_interface and handle each case
3096 	 * separately eg. when we have only one STA vif, use
3097 	 * AR5K_ANTMODE_SINGLE_AP
3098 	 *
3099 	 * 2) Allow the user to change antenna mode eg. when only
3100 	 * one antenna is present
3101 	 *
3102 	 * 3) Allow the user to set default/tx antenna when possible
3103 	 *
3104 	 * 4) Default mode should handle 90% of the cases, together
3105 	 * with fixed a/b and single AP modes we should be able to
3106 	 * handle 99%. Sectored modes are extreme cases and i still
3107 	 * haven't found a usage for them. If we decide to support them,
3108 	 * then we must allow the user to set how many tx antennas we
3109 	 * have available
3110 	 */
3111 	ath5k_hw_set_antenna_mode(ah, ah->ah_ant_mode);
3112 
3113 unlock:
3114 	mutex_unlock(&sc->lock);
3115 	return ret;
3116 }
3117 
3118 static u64 ath5k_prepare_multicast(struct ieee80211_hw *hw,
3119 				   struct netdev_hw_addr_list *mc_list)
3120 {
3121 	u32 mfilt[2], val;
3122 	u8 pos;
3123 	struct netdev_hw_addr *ha;
3124 
3125 	mfilt[0] = 0;
3126 	mfilt[1] = 1;
3127 
3128 	netdev_hw_addr_list_for_each(ha, mc_list) {
3129 		/* calculate XOR of eight 6-bit values */
3130 		val = get_unaligned_le32(ha->addr + 0);
3131 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3132 		val = get_unaligned_le32(ha->addr + 3);
3133 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3134 		pos &= 0x3f;
3135 		mfilt[pos / 32] |= (1 << (pos % 32));
3136 		/* XXX: we might be able to just do this instead,
3137 		* but not sure, needs testing, if we do use this we'd
3138 		* neet to inform below to not reset the mcast */
3139 		/* ath5k_hw_set_mcast_filterindex(ah,
3140 		 *      ha->addr[5]); */
3141 	}
3142 
3143 	return ((u64)(mfilt[1]) << 32) | mfilt[0];
3144 }
3145 
3146 #define SUPPORTED_FIF_FLAGS \
3147 	FIF_PROMISC_IN_BSS |  FIF_ALLMULTI | FIF_FCSFAIL | \
3148 	FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
3149 	FIF_BCN_PRBRESP_PROMISC
3150 /*
3151  * o always accept unicast, broadcast, and multicast traffic
3152  * o multicast traffic for all BSSIDs will be enabled if mac80211
3153  *   says it should be
3154  * o maintain current state of phy ofdm or phy cck error reception.
3155  *   If the hardware detects any of these type of errors then
3156  *   ath5k_hw_get_rx_filter() will pass to us the respective
3157  *   hardware filters to be able to receive these type of frames.
3158  * o probe request frames are accepted only when operating in
3159  *   hostap, adhoc, or monitor modes
3160  * o enable promiscuous mode according to the interface state
3161  * o accept beacons:
3162  *   - when operating in adhoc mode so the 802.11 layer creates
3163  *     node table entries for peers,
3164  *   - when operating in station mode for collecting rssi data when
3165  *     the station is otherwise quiet, or
3166  *   - when scanning
3167  */
3168 static void ath5k_configure_filter(struct ieee80211_hw *hw,
3169 		unsigned int changed_flags,
3170 		unsigned int *new_flags,
3171 		u64 multicast)
3172 {
3173 	struct ath5k_softc *sc = hw->priv;
3174 	struct ath5k_hw *ah = sc->ah;
3175 	u32 mfilt[2], rfilt;
3176 
3177 	mutex_lock(&sc->lock);
3178 
3179 	mfilt[0] = multicast;
3180 	mfilt[1] = multicast >> 32;
3181 
3182 	/* Only deal with supported flags */
3183 	changed_flags &= SUPPORTED_FIF_FLAGS;
3184 	*new_flags &= SUPPORTED_FIF_FLAGS;
3185 
3186 	/* If HW detects any phy or radar errors, leave those filters on.
3187 	 * Also, always enable Unicast, Broadcasts and Multicast
3188 	 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
3189 	rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
3190 		(AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
3191 		AR5K_RX_FILTER_MCAST);
3192 
3193 	if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
3194 		if (*new_flags & FIF_PROMISC_IN_BSS) {
3195 			__set_bit(ATH_STAT_PROMISC, sc->status);
3196 		} else {
3197 			__clear_bit(ATH_STAT_PROMISC, sc->status);
3198 		}
3199 	}
3200 
3201 	if (test_bit(ATH_STAT_PROMISC, sc->status))
3202 		rfilt |= AR5K_RX_FILTER_PROM;
3203 
3204 	/* Note, AR5K_RX_FILTER_MCAST is already enabled */
3205 	if (*new_flags & FIF_ALLMULTI) {
3206 		mfilt[0] =  ~0;
3207 		mfilt[1] =  ~0;
3208 	}
3209 
3210 	/* This is the best we can do */
3211 	if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
3212 		rfilt |= AR5K_RX_FILTER_PHYERR;
3213 
3214 	/* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
3215 	* and probes for any BSSID, this needs testing */
3216 	if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
3217 		rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
3218 
3219 	/* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
3220 	 * set we should only pass on control frames for this
3221 	 * station. This needs testing. I believe right now this
3222 	 * enables *all* control frames, which is OK.. but
3223 	 * but we should see if we can improve on granularity */
3224 	if (*new_flags & FIF_CONTROL)
3225 		rfilt |= AR5K_RX_FILTER_CONTROL;
3226 
3227 	/* Additional settings per mode -- this is per ath5k */
3228 
3229 	/* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
3230 
3231 	switch (sc->opmode) {
3232 	case NL80211_IFTYPE_MESH_POINT:
3233 	case NL80211_IFTYPE_MONITOR:
3234 		rfilt |= AR5K_RX_FILTER_CONTROL |
3235 			 AR5K_RX_FILTER_BEACON |
3236 			 AR5K_RX_FILTER_PROBEREQ |
3237 			 AR5K_RX_FILTER_PROM;
3238 		break;
3239 	case NL80211_IFTYPE_AP:
3240 	case NL80211_IFTYPE_ADHOC:
3241 		rfilt |= AR5K_RX_FILTER_PROBEREQ |
3242 			 AR5K_RX_FILTER_BEACON;
3243 		break;
3244 	case NL80211_IFTYPE_STATION:
3245 		if (sc->assoc)
3246 			rfilt |= AR5K_RX_FILTER_BEACON;
3247 	default:
3248 		break;
3249 	}
3250 
3251 	/* Set filters */
3252 	ath5k_hw_set_rx_filter(ah, rfilt);
3253 
3254 	/* Set multicast bits */
3255 	ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
3256 	/* Set the cached hw filter flags, this will alter actually
3257 	 * be set in HW */
3258 	sc->filter_flags = rfilt;
3259 
3260 	mutex_unlock(&sc->lock);
3261 }
3262 
3263 static int
3264 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
3265 	      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
3266 	      struct ieee80211_key_conf *key)
3267 {
3268 	struct ath5k_softc *sc = hw->priv;
3269 	struct ath5k_hw *ah = sc->ah;
3270 	struct ath_common *common = ath5k_hw_common(ah);
3271 	int ret = 0;
3272 
3273 	if (modparam_nohwcrypt)
3274 		return -EOPNOTSUPP;
3275 
3276 	if (sc->opmode == NL80211_IFTYPE_AP)
3277 		return -EOPNOTSUPP;
3278 
3279 	switch (key->alg) {
3280 	case ALG_WEP:
3281 	case ALG_TKIP:
3282 		break;
3283 	case ALG_CCMP:
3284 		if (sc->ah->ah_aes_support)
3285 			break;
3286 
3287 		return -EOPNOTSUPP;
3288 	default:
3289 		WARN_ON(1);
3290 		return -EINVAL;
3291 	}
3292 
3293 	mutex_lock(&sc->lock);
3294 
3295 	switch (cmd) {
3296 	case SET_KEY:
3297 		ret = ath5k_hw_set_key(sc->ah, key->keyidx, key,
3298 				       sta ? sta->addr : NULL);
3299 		if (ret) {
3300 			ATH5K_ERR(sc, "can't set the key\n");
3301 			goto unlock;
3302 		}
3303 		__set_bit(key->keyidx, common->keymap);
3304 		key->hw_key_idx = key->keyidx;
3305 		key->flags |= (IEEE80211_KEY_FLAG_GENERATE_IV |
3306 			       IEEE80211_KEY_FLAG_GENERATE_MMIC);
3307 		break;
3308 	case DISABLE_KEY:
3309 		ath5k_hw_reset_key(sc->ah, key->keyidx);
3310 		__clear_bit(key->keyidx, common->keymap);
3311 		break;
3312 	default:
3313 		ret = -EINVAL;
3314 		goto unlock;
3315 	}
3316 
3317 unlock:
3318 	mmiowb();
3319 	mutex_unlock(&sc->lock);
3320 	return ret;
3321 }
3322 
3323 static int
3324 ath5k_get_stats(struct ieee80211_hw *hw,
3325 		struct ieee80211_low_level_stats *stats)
3326 {
3327 	struct ath5k_softc *sc = hw->priv;
3328 
3329 	/* Force update */
3330 	ath5k_hw_update_mib_counters(sc->ah);
3331 
3332 	stats->dot11ACKFailureCount = sc->stats.ack_fail;
3333 	stats->dot11RTSFailureCount = sc->stats.rts_fail;
3334 	stats->dot11RTSSuccessCount = sc->stats.rts_ok;
3335 	stats->dot11FCSErrorCount = sc->stats.fcs_error;
3336 
3337 	return 0;
3338 }
3339 
3340 static int ath5k_get_survey(struct ieee80211_hw *hw, int idx,
3341 		struct survey_info *survey)
3342 {
3343 	struct ath5k_softc *sc = hw->priv;
3344 	struct ieee80211_conf *conf = &hw->conf;
3345 
3346 	 if (idx != 0)
3347 		return -ENOENT;
3348 
3349 	survey->channel = conf->channel;
3350 	survey->filled = SURVEY_INFO_NOISE_DBM;
3351 	survey->noise = sc->ah->ah_noise_floor;
3352 
3353 	return 0;
3354 }
3355 
3356 static u64
3357 ath5k_get_tsf(struct ieee80211_hw *hw)
3358 {
3359 	struct ath5k_softc *sc = hw->priv;
3360 
3361 	return ath5k_hw_get_tsf64(sc->ah);
3362 }
3363 
3364 static void
3365 ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3366 {
3367 	struct ath5k_softc *sc = hw->priv;
3368 
3369 	ath5k_hw_set_tsf64(sc->ah, tsf);
3370 }
3371 
3372 static void
3373 ath5k_reset_tsf(struct ieee80211_hw *hw)
3374 {
3375 	struct ath5k_softc *sc = hw->priv;
3376 
3377 	/*
3378 	 * in IBSS mode we need to update the beacon timers too.
3379 	 * this will also reset the TSF if we call it with 0
3380 	 */
3381 	if (sc->opmode == NL80211_IFTYPE_ADHOC)
3382 		ath5k_beacon_update_timers(sc, 0);
3383 	else
3384 		ath5k_hw_reset_tsf(sc->ah);
3385 }
3386 
3387 /*
3388  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
3389  * this is called only once at config_bss time, for AP we do it every
3390  * SWBA interrupt so that the TIM will reflect buffered frames.
3391  *
3392  * Called with the beacon lock.
3393  */
3394 static int
3395 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
3396 {
3397 	int ret;
3398 	struct ath5k_softc *sc = hw->priv;
3399 	struct sk_buff *skb;
3400 
3401 	if (WARN_ON(!vif)) {
3402 		ret = -EINVAL;
3403 		goto out;
3404 	}
3405 
3406 	skb = ieee80211_beacon_get(hw, vif);
3407 
3408 	if (!skb) {
3409 		ret = -ENOMEM;
3410 		goto out;
3411 	}
3412 
3413 	ath5k_debug_dump_skb(sc, skb, "BC  ", 1);
3414 
3415 	ath5k_txbuf_free_skb(sc, sc->bbuf);
3416 	sc->bbuf->skb = skb;
3417 	ret = ath5k_beacon_setup(sc, sc->bbuf);
3418 	if (ret)
3419 		sc->bbuf->skb = NULL;
3420 out:
3421 	return ret;
3422 }
3423 
3424 static void
3425 set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3426 {
3427 	struct ath5k_softc *sc = hw->priv;
3428 	struct ath5k_hw *ah = sc->ah;
3429 	u32 rfilt;
3430 	rfilt = ath5k_hw_get_rx_filter(ah);
3431 	if (enable)
3432 		rfilt |= AR5K_RX_FILTER_BEACON;
3433 	else
3434 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3435 	ath5k_hw_set_rx_filter(ah, rfilt);
3436 	sc->filter_flags = rfilt;
3437 }
3438 
3439 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
3440 				    struct ieee80211_vif *vif,
3441 				    struct ieee80211_bss_conf *bss_conf,
3442 				    u32 changes)
3443 {
3444 	struct ath5k_softc *sc = hw->priv;
3445 	struct ath5k_hw *ah = sc->ah;
3446 	struct ath_common *common = ath5k_hw_common(ah);
3447 	unsigned long flags;
3448 
3449 	mutex_lock(&sc->lock);
3450 	if (WARN_ON(sc->vif != vif))
3451 		goto unlock;
3452 
3453 	if (changes & BSS_CHANGED_BSSID) {
3454 		/* Cache for later use during resets */
3455 		memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
3456 		common->curaid = 0;
3457 		ath5k_hw_set_associd(ah);
3458 		mmiowb();
3459 	}
3460 
3461 	if (changes & BSS_CHANGED_BEACON_INT)
3462 		sc->bintval = bss_conf->beacon_int;
3463 
3464 	if (changes & BSS_CHANGED_ASSOC) {
3465 		sc->assoc = bss_conf->assoc;
3466 		if (sc->opmode == NL80211_IFTYPE_STATION)
3467 			set_beacon_filter(hw, sc->assoc);
3468 		ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
3469 			AR5K_LED_ASSOC : AR5K_LED_INIT);
3470 		if (bss_conf->assoc) {
3471 			ATH5K_DBG(sc, ATH5K_DEBUG_ANY,
3472 				  "Bss Info ASSOC %d, bssid: %pM\n",
3473 				  bss_conf->aid, common->curbssid);
3474 			common->curaid = bss_conf->aid;
3475 			ath5k_hw_set_associd(ah);
3476 			/* Once ANI is available you would start it here */
3477 		}
3478 	}
3479 
3480 	if (changes & BSS_CHANGED_BEACON) {
3481 		spin_lock_irqsave(&sc->block, flags);
3482 		ath5k_beacon_update(hw, vif);
3483 		spin_unlock_irqrestore(&sc->block, flags);
3484 	}
3485 
3486 	if (changes & BSS_CHANGED_BEACON_ENABLED)
3487 		sc->enable_beacon = bss_conf->enable_beacon;
3488 
3489 	if (changes & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED |
3490 		       BSS_CHANGED_BEACON_INT))
3491 		ath5k_beacon_config(sc);
3492 
3493  unlock:
3494 	mutex_unlock(&sc->lock);
3495 }
3496 
3497 static void ath5k_sw_scan_start(struct ieee80211_hw *hw)
3498 {
3499 	struct ath5k_softc *sc = hw->priv;
3500 	if (!sc->assoc)
3501 		ath5k_hw_set_ledstate(sc->ah, AR5K_LED_SCAN);
3502 }
3503 
3504 static void ath5k_sw_scan_complete(struct ieee80211_hw *hw)
3505 {
3506 	struct ath5k_softc *sc = hw->priv;
3507 	ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
3508 		AR5K_LED_ASSOC : AR5K_LED_INIT);
3509 }
3510 
3511 /**
3512  * ath5k_set_coverage_class - Set IEEE 802.11 coverage class
3513  *
3514  * @hw: struct ieee80211_hw pointer
3515  * @coverage_class: IEEE 802.11 coverage class number
3516  *
3517  * Mac80211 callback. Sets slot time, ACK timeout and CTS timeout for given
3518  * coverage class. The values are persistent, they are restored after device
3519  * reset.
3520  */
3521 static void ath5k_set_coverage_class(struct ieee80211_hw *hw, u8 coverage_class)
3522 {
3523 	struct ath5k_softc *sc = hw->priv;
3524 
3525 	mutex_lock(&sc->lock);
3526 	ath5k_hw_set_coverage_class(sc->ah, coverage_class);
3527 	mutex_unlock(&sc->lock);
3528 }
3529