xref: /linux/drivers/net/wireless/ath/ath5k/base.c (revision a508da6cc0093171833efb8376b00473f24221b9)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58 
59 #include <net/ieee80211_radiotap.h>
60 
61 #include <asm/unaligned.h>
62 
63 #include "base.h"
64 #include "reg.h"
65 #include "debug.h"
66 #include "ani.h"
67 #include "ath5k.h"
68 #include "../regd.h"
69 
70 #define CREATE_TRACE_POINTS
71 #include "trace.h"
72 
73 bool ath5k_modparam_nohwcrypt;
74 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
75 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
76 
77 static bool modparam_all_channels;
78 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
79 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
80 
81 static bool modparam_fastchanswitch;
82 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
83 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
84 
85 static bool ath5k_modparam_no_hw_rfkill_switch;
86 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
87 								bool, S_IRUGO);
88 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
89 
90 
91 /* Module info */
92 MODULE_AUTHOR("Jiri Slaby");
93 MODULE_AUTHOR("Nick Kossifidis");
94 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
95 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
96 MODULE_LICENSE("Dual BSD/GPL");
97 
98 static int ath5k_init(struct ieee80211_hw *hw);
99 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
100 								bool skip_pcu);
101 
102 /* Known SREVs */
103 static const struct ath5k_srev_name srev_names[] = {
104 #ifdef CONFIG_ATHEROS_AR231X
105 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
106 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
107 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
108 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
109 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
110 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
111 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
112 #else
113 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
114 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
115 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
116 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
117 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
118 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
119 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
120 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
121 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
122 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
123 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
124 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
125 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
126 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
127 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
128 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
129 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
130 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
131 #endif
132 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
133 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
134 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
135 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
136 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
137 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
138 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
139 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
140 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
141 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
142 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
143 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
144 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
145 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
146 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
147 #ifdef CONFIG_ATHEROS_AR231X
148 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
149 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
150 #endif
151 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
152 };
153 
154 static const struct ieee80211_rate ath5k_rates[] = {
155 	{ .bitrate = 10,
156 	  .hw_value = ATH5K_RATE_CODE_1M, },
157 	{ .bitrate = 20,
158 	  .hw_value = ATH5K_RATE_CODE_2M,
159 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
160 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
161 	{ .bitrate = 55,
162 	  .hw_value = ATH5K_RATE_CODE_5_5M,
163 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
164 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
165 	{ .bitrate = 110,
166 	  .hw_value = ATH5K_RATE_CODE_11M,
167 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
168 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
169 	{ .bitrate = 60,
170 	  .hw_value = ATH5K_RATE_CODE_6M,
171 	  .flags = 0 },
172 	{ .bitrate = 90,
173 	  .hw_value = ATH5K_RATE_CODE_9M,
174 	  .flags = 0 },
175 	{ .bitrate = 120,
176 	  .hw_value = ATH5K_RATE_CODE_12M,
177 	  .flags = 0 },
178 	{ .bitrate = 180,
179 	  .hw_value = ATH5K_RATE_CODE_18M,
180 	  .flags = 0 },
181 	{ .bitrate = 240,
182 	  .hw_value = ATH5K_RATE_CODE_24M,
183 	  .flags = 0 },
184 	{ .bitrate = 360,
185 	  .hw_value = ATH5K_RATE_CODE_36M,
186 	  .flags = 0 },
187 	{ .bitrate = 480,
188 	  .hw_value = ATH5K_RATE_CODE_48M,
189 	  .flags = 0 },
190 	{ .bitrate = 540,
191 	  .hw_value = ATH5K_RATE_CODE_54M,
192 	  .flags = 0 },
193 };
194 
195 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
196 {
197 	u64 tsf = ath5k_hw_get_tsf64(ah);
198 
199 	if ((tsf & 0x7fff) < rstamp)
200 		tsf -= 0x8000;
201 
202 	return (tsf & ~0x7fff) | rstamp;
203 }
204 
205 const char *
206 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
207 {
208 	const char *name = "xxxxx";
209 	unsigned int i;
210 
211 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
212 		if (srev_names[i].sr_type != type)
213 			continue;
214 
215 		if ((val & 0xf0) == srev_names[i].sr_val)
216 			name = srev_names[i].sr_name;
217 
218 		if ((val & 0xff) == srev_names[i].sr_val) {
219 			name = srev_names[i].sr_name;
220 			break;
221 		}
222 	}
223 
224 	return name;
225 }
226 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
227 {
228 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
229 	return ath5k_hw_reg_read(ah, reg_offset);
230 }
231 
232 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
233 {
234 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
235 	ath5k_hw_reg_write(ah, val, reg_offset);
236 }
237 
238 static const struct ath_ops ath5k_common_ops = {
239 	.read = ath5k_ioread32,
240 	.write = ath5k_iowrite32,
241 };
242 
243 /***********************\
244 * Driver Initialization *
245 \***********************/
246 
247 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
248 {
249 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
250 	struct ath5k_hw *ah = hw->priv;
251 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
252 
253 	return ath_reg_notifier_apply(wiphy, request, regulatory);
254 }
255 
256 /********************\
257 * Channel/mode setup *
258 \********************/
259 
260 /*
261  * Returns true for the channel numbers used without all_channels modparam.
262  */
263 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
264 {
265 	if (band == IEEE80211_BAND_2GHZ && chan <= 14)
266 		return true;
267 
268 	return	/* UNII 1,2 */
269 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
270 		/* midband */
271 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
272 		/* UNII-3 */
273 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
274 		/* 802.11j 5.030-5.080 GHz (20MHz) */
275 		(chan == 8 || chan == 12 || chan == 16) ||
276 		/* 802.11j 4.9GHz (20MHz) */
277 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
278 }
279 
280 static unsigned int
281 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
282 		unsigned int mode, unsigned int max)
283 {
284 	unsigned int count, size, freq, ch;
285 	enum ieee80211_band band;
286 
287 	switch (mode) {
288 	case AR5K_MODE_11A:
289 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
290 		size = 220;
291 		band = IEEE80211_BAND_5GHZ;
292 		break;
293 	case AR5K_MODE_11B:
294 	case AR5K_MODE_11G:
295 		size = 26;
296 		band = IEEE80211_BAND_2GHZ;
297 		break;
298 	default:
299 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
300 		return 0;
301 	}
302 
303 	count = 0;
304 	for (ch = 1; ch <= size && count < max; ch++) {
305 		freq = ieee80211_channel_to_frequency(ch, band);
306 
307 		if (freq == 0) /* mapping failed - not a standard channel */
308 			continue;
309 
310 		/* Write channel info, needed for ath5k_channel_ok() */
311 		channels[count].center_freq = freq;
312 		channels[count].band = band;
313 		channels[count].hw_value = mode;
314 
315 		/* Check if channel is supported by the chipset */
316 		if (!ath5k_channel_ok(ah, &channels[count]))
317 			continue;
318 
319 		if (!modparam_all_channels &&
320 		    !ath5k_is_standard_channel(ch, band))
321 			continue;
322 
323 		count++;
324 	}
325 
326 	return count;
327 }
328 
329 static void
330 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
331 {
332 	u8 i;
333 
334 	for (i = 0; i < AR5K_MAX_RATES; i++)
335 		ah->rate_idx[b->band][i] = -1;
336 
337 	for (i = 0; i < b->n_bitrates; i++) {
338 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
339 		if (b->bitrates[i].hw_value_short)
340 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
341 	}
342 }
343 
344 static int
345 ath5k_setup_bands(struct ieee80211_hw *hw)
346 {
347 	struct ath5k_hw *ah = hw->priv;
348 	struct ieee80211_supported_band *sband;
349 	int max_c, count_c = 0;
350 	int i;
351 
352 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
353 	max_c = ARRAY_SIZE(ah->channels);
354 
355 	/* 2GHz band */
356 	sband = &ah->sbands[IEEE80211_BAND_2GHZ];
357 	sband->band = IEEE80211_BAND_2GHZ;
358 	sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
359 
360 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
361 		/* G mode */
362 		memcpy(sband->bitrates, &ath5k_rates[0],
363 		       sizeof(struct ieee80211_rate) * 12);
364 		sband->n_bitrates = 12;
365 
366 		sband->channels = ah->channels;
367 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
368 					AR5K_MODE_11G, max_c);
369 
370 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
371 		count_c = sband->n_channels;
372 		max_c -= count_c;
373 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
374 		/* B mode */
375 		memcpy(sband->bitrates, &ath5k_rates[0],
376 		       sizeof(struct ieee80211_rate) * 4);
377 		sband->n_bitrates = 4;
378 
379 		/* 5211 only supports B rates and uses 4bit rate codes
380 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
381 		 * fix them up here:
382 		 */
383 		if (ah->ah_version == AR5K_AR5211) {
384 			for (i = 0; i < 4; i++) {
385 				sband->bitrates[i].hw_value =
386 					sband->bitrates[i].hw_value & 0xF;
387 				sband->bitrates[i].hw_value_short =
388 					sband->bitrates[i].hw_value_short & 0xF;
389 			}
390 		}
391 
392 		sband->channels = ah->channels;
393 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
394 					AR5K_MODE_11B, max_c);
395 
396 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
397 		count_c = sband->n_channels;
398 		max_c -= count_c;
399 	}
400 	ath5k_setup_rate_idx(ah, sband);
401 
402 	/* 5GHz band, A mode */
403 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
404 		sband = &ah->sbands[IEEE80211_BAND_5GHZ];
405 		sband->band = IEEE80211_BAND_5GHZ;
406 		sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
407 
408 		memcpy(sband->bitrates, &ath5k_rates[4],
409 		       sizeof(struct ieee80211_rate) * 8);
410 		sband->n_bitrates = 8;
411 
412 		sband->channels = &ah->channels[count_c];
413 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
414 					AR5K_MODE_11A, max_c);
415 
416 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
417 	}
418 	ath5k_setup_rate_idx(ah, sband);
419 
420 	ath5k_debug_dump_bands(ah);
421 
422 	return 0;
423 }
424 
425 /*
426  * Set/change channels. We always reset the chip.
427  * To accomplish this we must first cleanup any pending DMA,
428  * then restart stuff after a la  ath5k_init.
429  *
430  * Called with ah->lock.
431  */
432 int
433 ath5k_chan_set(struct ath5k_hw *ah, struct ieee80211_channel *chan)
434 {
435 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
436 		  "channel set, resetting (%u -> %u MHz)\n",
437 		  ah->curchan->center_freq, chan->center_freq);
438 
439 	/*
440 	 * To switch channels clear any pending DMA operations;
441 	 * wait long enough for the RX fifo to drain, reset the
442 	 * hardware at the new frequency, and then re-enable
443 	 * the relevant bits of the h/w.
444 	 */
445 	return ath5k_reset(ah, chan, true);
446 }
447 
448 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
449 {
450 	struct ath5k_vif_iter_data *iter_data = data;
451 	int i;
452 	struct ath5k_vif *avf = (void *)vif->drv_priv;
453 
454 	if (iter_data->hw_macaddr)
455 		for (i = 0; i < ETH_ALEN; i++)
456 			iter_data->mask[i] &=
457 				~(iter_data->hw_macaddr[i] ^ mac[i]);
458 
459 	if (!iter_data->found_active) {
460 		iter_data->found_active = true;
461 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
462 	}
463 
464 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
465 		if (ether_addr_equal(iter_data->hw_macaddr, mac))
466 			iter_data->need_set_hw_addr = false;
467 
468 	if (!iter_data->any_assoc) {
469 		if (avf->assoc)
470 			iter_data->any_assoc = true;
471 	}
472 
473 	/* Calculate combined mode - when APs are active, operate in AP mode.
474 	 * Otherwise use the mode of the new interface. This can currently
475 	 * only deal with combinations of APs and STAs. Only one ad-hoc
476 	 * interfaces is allowed.
477 	 */
478 	if (avf->opmode == NL80211_IFTYPE_AP)
479 		iter_data->opmode = NL80211_IFTYPE_AP;
480 	else {
481 		if (avf->opmode == NL80211_IFTYPE_STATION)
482 			iter_data->n_stas++;
483 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
484 			iter_data->opmode = avf->opmode;
485 	}
486 }
487 
488 void
489 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
490 				   struct ieee80211_vif *vif)
491 {
492 	struct ath_common *common = ath5k_hw_common(ah);
493 	struct ath5k_vif_iter_data iter_data;
494 	u32 rfilt;
495 
496 	/*
497 	 * Use the hardware MAC address as reference, the hardware uses it
498 	 * together with the BSSID mask when matching addresses.
499 	 */
500 	iter_data.hw_macaddr = common->macaddr;
501 	memset(&iter_data.mask, 0xff, ETH_ALEN);
502 	iter_data.found_active = false;
503 	iter_data.need_set_hw_addr = true;
504 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
505 	iter_data.n_stas = 0;
506 
507 	if (vif)
508 		ath5k_vif_iter(&iter_data, vif->addr, vif);
509 
510 	/* Get list of all active MAC addresses */
511 	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
512 						   &iter_data);
513 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
514 
515 	ah->opmode = iter_data.opmode;
516 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
517 		/* Nothing active, default to station mode */
518 		ah->opmode = NL80211_IFTYPE_STATION;
519 
520 	ath5k_hw_set_opmode(ah, ah->opmode);
521 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
522 		  ah->opmode, ath_opmode_to_string(ah->opmode));
523 
524 	if (iter_data.need_set_hw_addr && iter_data.found_active)
525 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
526 
527 	if (ath5k_hw_hasbssidmask(ah))
528 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
529 
530 	/* Set up RX Filter */
531 	if (iter_data.n_stas > 1) {
532 		/* If you have multiple STA interfaces connected to
533 		 * different APs, ARPs are not received (most of the time?)
534 		 * Enabling PROMISC appears to fix that problem.
535 		 */
536 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
537 	}
538 
539 	rfilt = ah->filter_flags;
540 	ath5k_hw_set_rx_filter(ah, rfilt);
541 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
542 }
543 
544 static inline int
545 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
546 {
547 	int rix;
548 
549 	/* return base rate on errors */
550 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
551 			"hw_rix out of bounds: %x\n", hw_rix))
552 		return 0;
553 
554 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
555 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
556 		rix = 0;
557 
558 	return rix;
559 }
560 
561 /***************\
562 * Buffers setup *
563 \***************/
564 
565 static
566 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
567 {
568 	struct ath_common *common = ath5k_hw_common(ah);
569 	struct sk_buff *skb;
570 
571 	/*
572 	 * Allocate buffer with headroom_needed space for the
573 	 * fake physical layer header at the start.
574 	 */
575 	skb = ath_rxbuf_alloc(common,
576 			      common->rx_bufsize,
577 			      GFP_ATOMIC);
578 
579 	if (!skb) {
580 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
581 				common->rx_bufsize);
582 		return NULL;
583 	}
584 
585 	*skb_addr = dma_map_single(ah->dev,
586 				   skb->data, common->rx_bufsize,
587 				   DMA_FROM_DEVICE);
588 
589 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
590 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
591 		dev_kfree_skb(skb);
592 		return NULL;
593 	}
594 	return skb;
595 }
596 
597 static int
598 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
599 {
600 	struct sk_buff *skb = bf->skb;
601 	struct ath5k_desc *ds;
602 	int ret;
603 
604 	if (!skb) {
605 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
606 		if (!skb)
607 			return -ENOMEM;
608 		bf->skb = skb;
609 	}
610 
611 	/*
612 	 * Setup descriptors.  For receive we always terminate
613 	 * the descriptor list with a self-linked entry so we'll
614 	 * not get overrun under high load (as can happen with a
615 	 * 5212 when ANI processing enables PHY error frames).
616 	 *
617 	 * To ensure the last descriptor is self-linked we create
618 	 * each descriptor as self-linked and add it to the end.  As
619 	 * each additional descriptor is added the previous self-linked
620 	 * entry is "fixed" naturally.  This should be safe even
621 	 * if DMA is happening.  When processing RX interrupts we
622 	 * never remove/process the last, self-linked, entry on the
623 	 * descriptor list.  This ensures the hardware always has
624 	 * someplace to write a new frame.
625 	 */
626 	ds = bf->desc;
627 	ds->ds_link = bf->daddr;	/* link to self */
628 	ds->ds_data = bf->skbaddr;
629 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
630 	if (ret) {
631 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
632 		return ret;
633 	}
634 
635 	if (ah->rxlink != NULL)
636 		*ah->rxlink = bf->daddr;
637 	ah->rxlink = &ds->ds_link;
638 	return 0;
639 }
640 
641 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
642 {
643 	struct ieee80211_hdr *hdr;
644 	enum ath5k_pkt_type htype;
645 	__le16 fc;
646 
647 	hdr = (struct ieee80211_hdr *)skb->data;
648 	fc = hdr->frame_control;
649 
650 	if (ieee80211_is_beacon(fc))
651 		htype = AR5K_PKT_TYPE_BEACON;
652 	else if (ieee80211_is_probe_resp(fc))
653 		htype = AR5K_PKT_TYPE_PROBE_RESP;
654 	else if (ieee80211_is_atim(fc))
655 		htype = AR5K_PKT_TYPE_ATIM;
656 	else if (ieee80211_is_pspoll(fc))
657 		htype = AR5K_PKT_TYPE_PSPOLL;
658 	else
659 		htype = AR5K_PKT_TYPE_NORMAL;
660 
661 	return htype;
662 }
663 
664 static int
665 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
666 		  struct ath5k_txq *txq, int padsize)
667 {
668 	struct ath5k_desc *ds = bf->desc;
669 	struct sk_buff *skb = bf->skb;
670 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
671 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
672 	struct ieee80211_rate *rate;
673 	unsigned int mrr_rate[3], mrr_tries[3];
674 	int i, ret;
675 	u16 hw_rate;
676 	u16 cts_rate = 0;
677 	u16 duration = 0;
678 	u8 rc_flags;
679 
680 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
681 
682 	/* XXX endianness */
683 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
684 			DMA_TO_DEVICE);
685 
686 	rate = ieee80211_get_tx_rate(ah->hw, info);
687 	if (!rate) {
688 		ret = -EINVAL;
689 		goto err_unmap;
690 	}
691 
692 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
693 		flags |= AR5K_TXDESC_NOACK;
694 
695 	rc_flags = info->control.rates[0].flags;
696 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
697 		rate->hw_value_short : rate->hw_value;
698 
699 	pktlen = skb->len;
700 
701 	/* FIXME: If we are in g mode and rate is a CCK rate
702 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
703 	 * from tx power (value is in dB units already) */
704 	if (info->control.hw_key) {
705 		keyidx = info->control.hw_key->hw_key_idx;
706 		pktlen += info->control.hw_key->icv_len;
707 	}
708 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
709 		flags |= AR5K_TXDESC_RTSENA;
710 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
711 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
712 			info->control.vif, pktlen, info));
713 	}
714 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
715 		flags |= AR5K_TXDESC_CTSENA;
716 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
717 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
718 			info->control.vif, pktlen, info));
719 	}
720 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
721 		ieee80211_get_hdrlen_from_skb(skb), padsize,
722 		get_hw_packet_type(skb),
723 		(ah->power_level * 2),
724 		hw_rate,
725 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
726 		cts_rate, duration);
727 	if (ret)
728 		goto err_unmap;
729 
730 	/* Set up MRR descriptor */
731 	if (ah->ah_capabilities.cap_has_mrr_support) {
732 		memset(mrr_rate, 0, sizeof(mrr_rate));
733 		memset(mrr_tries, 0, sizeof(mrr_tries));
734 		for (i = 0; i < 3; i++) {
735 			rate = ieee80211_get_alt_retry_rate(ah->hw, info, i);
736 			if (!rate)
737 				break;
738 
739 			mrr_rate[i] = rate->hw_value;
740 			mrr_tries[i] = info->control.rates[i + 1].count;
741 		}
742 
743 		ath5k_hw_setup_mrr_tx_desc(ah, ds,
744 			mrr_rate[0], mrr_tries[0],
745 			mrr_rate[1], mrr_tries[1],
746 			mrr_rate[2], mrr_tries[2]);
747 	}
748 
749 	ds->ds_link = 0;
750 	ds->ds_data = bf->skbaddr;
751 
752 	spin_lock_bh(&txq->lock);
753 	list_add_tail(&bf->list, &txq->q);
754 	txq->txq_len++;
755 	if (txq->link == NULL) /* is this first packet? */
756 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
757 	else /* no, so only link it */
758 		*txq->link = bf->daddr;
759 
760 	txq->link = &ds->ds_link;
761 	ath5k_hw_start_tx_dma(ah, txq->qnum);
762 	mmiowb();
763 	spin_unlock_bh(&txq->lock);
764 
765 	return 0;
766 err_unmap:
767 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
768 	return ret;
769 }
770 
771 /*******************\
772 * Descriptors setup *
773 \*******************/
774 
775 static int
776 ath5k_desc_alloc(struct ath5k_hw *ah)
777 {
778 	struct ath5k_desc *ds;
779 	struct ath5k_buf *bf;
780 	dma_addr_t da;
781 	unsigned int i;
782 	int ret;
783 
784 	/* allocate descriptors */
785 	ah->desc_len = sizeof(struct ath5k_desc) *
786 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
787 
788 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
789 				&ah->desc_daddr, GFP_KERNEL);
790 	if (ah->desc == NULL) {
791 		ATH5K_ERR(ah, "can't allocate descriptors\n");
792 		ret = -ENOMEM;
793 		goto err;
794 	}
795 	ds = ah->desc;
796 	da = ah->desc_daddr;
797 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
798 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
799 
800 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
801 			sizeof(struct ath5k_buf), GFP_KERNEL);
802 	if (bf == NULL) {
803 		ATH5K_ERR(ah, "can't allocate bufptr\n");
804 		ret = -ENOMEM;
805 		goto err_free;
806 	}
807 	ah->bufptr = bf;
808 
809 	INIT_LIST_HEAD(&ah->rxbuf);
810 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
811 		bf->desc = ds;
812 		bf->daddr = da;
813 		list_add_tail(&bf->list, &ah->rxbuf);
814 	}
815 
816 	INIT_LIST_HEAD(&ah->txbuf);
817 	ah->txbuf_len = ATH_TXBUF;
818 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
819 		bf->desc = ds;
820 		bf->daddr = da;
821 		list_add_tail(&bf->list, &ah->txbuf);
822 	}
823 
824 	/* beacon buffers */
825 	INIT_LIST_HEAD(&ah->bcbuf);
826 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
827 		bf->desc = ds;
828 		bf->daddr = da;
829 		list_add_tail(&bf->list, &ah->bcbuf);
830 	}
831 
832 	return 0;
833 err_free:
834 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
835 err:
836 	ah->desc = NULL;
837 	return ret;
838 }
839 
840 void
841 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
842 {
843 	BUG_ON(!bf);
844 	if (!bf->skb)
845 		return;
846 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
847 			DMA_TO_DEVICE);
848 	dev_kfree_skb_any(bf->skb);
849 	bf->skb = NULL;
850 	bf->skbaddr = 0;
851 	bf->desc->ds_data = 0;
852 }
853 
854 void
855 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
856 {
857 	struct ath_common *common = ath5k_hw_common(ah);
858 
859 	BUG_ON(!bf);
860 	if (!bf->skb)
861 		return;
862 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
863 			DMA_FROM_DEVICE);
864 	dev_kfree_skb_any(bf->skb);
865 	bf->skb = NULL;
866 	bf->skbaddr = 0;
867 	bf->desc->ds_data = 0;
868 }
869 
870 static void
871 ath5k_desc_free(struct ath5k_hw *ah)
872 {
873 	struct ath5k_buf *bf;
874 
875 	list_for_each_entry(bf, &ah->txbuf, list)
876 		ath5k_txbuf_free_skb(ah, bf);
877 	list_for_each_entry(bf, &ah->rxbuf, list)
878 		ath5k_rxbuf_free_skb(ah, bf);
879 	list_for_each_entry(bf, &ah->bcbuf, list)
880 		ath5k_txbuf_free_skb(ah, bf);
881 
882 	/* Free memory associated with all descriptors */
883 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
884 	ah->desc = NULL;
885 	ah->desc_daddr = 0;
886 
887 	kfree(ah->bufptr);
888 	ah->bufptr = NULL;
889 }
890 
891 
892 /**************\
893 * Queues setup *
894 \**************/
895 
896 static struct ath5k_txq *
897 ath5k_txq_setup(struct ath5k_hw *ah,
898 		int qtype, int subtype)
899 {
900 	struct ath5k_txq *txq;
901 	struct ath5k_txq_info qi = {
902 		.tqi_subtype = subtype,
903 		/* XXX: default values not correct for B and XR channels,
904 		 * but who cares? */
905 		.tqi_aifs = AR5K_TUNE_AIFS,
906 		.tqi_cw_min = AR5K_TUNE_CWMIN,
907 		.tqi_cw_max = AR5K_TUNE_CWMAX
908 	};
909 	int qnum;
910 
911 	/*
912 	 * Enable interrupts only for EOL and DESC conditions.
913 	 * We mark tx descriptors to receive a DESC interrupt
914 	 * when a tx queue gets deep; otherwise we wait for the
915 	 * EOL to reap descriptors.  Note that this is done to
916 	 * reduce interrupt load and this only defers reaping
917 	 * descriptors, never transmitting frames.  Aside from
918 	 * reducing interrupts this also permits more concurrency.
919 	 * The only potential downside is if the tx queue backs
920 	 * up in which case the top half of the kernel may backup
921 	 * due to a lack of tx descriptors.
922 	 */
923 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
924 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
925 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
926 	if (qnum < 0) {
927 		/*
928 		 * NB: don't print a message, this happens
929 		 * normally on parts with too few tx queues
930 		 */
931 		return ERR_PTR(qnum);
932 	}
933 	txq = &ah->txqs[qnum];
934 	if (!txq->setup) {
935 		txq->qnum = qnum;
936 		txq->link = NULL;
937 		INIT_LIST_HEAD(&txq->q);
938 		spin_lock_init(&txq->lock);
939 		txq->setup = true;
940 		txq->txq_len = 0;
941 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
942 		txq->txq_poll_mark = false;
943 		txq->txq_stuck = 0;
944 	}
945 	return &ah->txqs[qnum];
946 }
947 
948 static int
949 ath5k_beaconq_setup(struct ath5k_hw *ah)
950 {
951 	struct ath5k_txq_info qi = {
952 		/* XXX: default values not correct for B and XR channels,
953 		 * but who cares? */
954 		.tqi_aifs = AR5K_TUNE_AIFS,
955 		.tqi_cw_min = AR5K_TUNE_CWMIN,
956 		.tqi_cw_max = AR5K_TUNE_CWMAX,
957 		/* NB: for dynamic turbo, don't enable any other interrupts */
958 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
959 	};
960 
961 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
962 }
963 
964 static int
965 ath5k_beaconq_config(struct ath5k_hw *ah)
966 {
967 	struct ath5k_txq_info qi;
968 	int ret;
969 
970 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
971 	if (ret)
972 		goto err;
973 
974 	if (ah->opmode == NL80211_IFTYPE_AP ||
975 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
976 		/*
977 		 * Always burst out beacon and CAB traffic
978 		 * (aifs = cwmin = cwmax = 0)
979 		 */
980 		qi.tqi_aifs = 0;
981 		qi.tqi_cw_min = 0;
982 		qi.tqi_cw_max = 0;
983 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
984 		/*
985 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
986 		 */
987 		qi.tqi_aifs = 0;
988 		qi.tqi_cw_min = 0;
989 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
990 	}
991 
992 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
993 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
994 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
995 
996 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
997 	if (ret) {
998 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
999 			"hardware queue!\n", __func__);
1000 		goto err;
1001 	}
1002 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1003 	if (ret)
1004 		goto err;
1005 
1006 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1007 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1008 	if (ret)
1009 		goto err;
1010 
1011 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1012 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1013 	if (ret)
1014 		goto err;
1015 
1016 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1017 err:
1018 	return ret;
1019 }
1020 
1021 /**
1022  * ath5k_drain_tx_buffs - Empty tx buffers
1023  *
1024  * @ah The &struct ath5k_hw
1025  *
1026  * Empty tx buffers from all queues in preparation
1027  * of a reset or during shutdown.
1028  *
1029  * NB:	this assumes output has been stopped and
1030  *	we do not need to block ath5k_tx_tasklet
1031  */
1032 static void
1033 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1034 {
1035 	struct ath5k_txq *txq;
1036 	struct ath5k_buf *bf, *bf0;
1037 	int i;
1038 
1039 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1040 		if (ah->txqs[i].setup) {
1041 			txq = &ah->txqs[i];
1042 			spin_lock_bh(&txq->lock);
1043 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1044 				ath5k_debug_printtxbuf(ah, bf);
1045 
1046 				ath5k_txbuf_free_skb(ah, bf);
1047 
1048 				spin_lock_bh(&ah->txbuflock);
1049 				list_move_tail(&bf->list, &ah->txbuf);
1050 				ah->txbuf_len++;
1051 				txq->txq_len--;
1052 				spin_unlock_bh(&ah->txbuflock);
1053 			}
1054 			txq->link = NULL;
1055 			txq->txq_poll_mark = false;
1056 			spin_unlock_bh(&txq->lock);
1057 		}
1058 	}
1059 }
1060 
1061 static void
1062 ath5k_txq_release(struct ath5k_hw *ah)
1063 {
1064 	struct ath5k_txq *txq = ah->txqs;
1065 	unsigned int i;
1066 
1067 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1068 		if (txq->setup) {
1069 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1070 			txq->setup = false;
1071 		}
1072 }
1073 
1074 
1075 /*************\
1076 * RX Handling *
1077 \*************/
1078 
1079 /*
1080  * Enable the receive h/w following a reset.
1081  */
1082 static int
1083 ath5k_rx_start(struct ath5k_hw *ah)
1084 {
1085 	struct ath_common *common = ath5k_hw_common(ah);
1086 	struct ath5k_buf *bf;
1087 	int ret;
1088 
1089 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1090 
1091 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1092 		  common->cachelsz, common->rx_bufsize);
1093 
1094 	spin_lock_bh(&ah->rxbuflock);
1095 	ah->rxlink = NULL;
1096 	list_for_each_entry(bf, &ah->rxbuf, list) {
1097 		ret = ath5k_rxbuf_setup(ah, bf);
1098 		if (ret != 0) {
1099 			spin_unlock_bh(&ah->rxbuflock);
1100 			goto err;
1101 		}
1102 	}
1103 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1104 	ath5k_hw_set_rxdp(ah, bf->daddr);
1105 	spin_unlock_bh(&ah->rxbuflock);
1106 
1107 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1108 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1109 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1110 
1111 	return 0;
1112 err:
1113 	return ret;
1114 }
1115 
1116 /*
1117  * Disable the receive logic on PCU (DRU)
1118  * In preparation for a shutdown.
1119  *
1120  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1121  * does.
1122  */
1123 static void
1124 ath5k_rx_stop(struct ath5k_hw *ah)
1125 {
1126 
1127 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1128 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1129 
1130 	ath5k_debug_printrxbuffs(ah);
1131 }
1132 
1133 static unsigned int
1134 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1135 		   struct ath5k_rx_status *rs)
1136 {
1137 	struct ath_common *common = ath5k_hw_common(ah);
1138 	struct ieee80211_hdr *hdr = (void *)skb->data;
1139 	unsigned int keyix, hlen;
1140 
1141 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1142 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1143 		return RX_FLAG_DECRYPTED;
1144 
1145 	/* Apparently when a default key is used to decrypt the packet
1146 	   the hw does not set the index used to decrypt.  In such cases
1147 	   get the index from the packet. */
1148 	hlen = ieee80211_hdrlen(hdr->frame_control);
1149 	if (ieee80211_has_protected(hdr->frame_control) &&
1150 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1151 	    skb->len >= hlen + 4) {
1152 		keyix = skb->data[hlen + 3] >> 6;
1153 
1154 		if (test_bit(keyix, common->keymap))
1155 			return RX_FLAG_DECRYPTED;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 
1162 static void
1163 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1164 		     struct ieee80211_rx_status *rxs)
1165 {
1166 	struct ath_common *common = ath5k_hw_common(ah);
1167 	u64 tsf, bc_tstamp;
1168 	u32 hw_tu;
1169 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1170 
1171 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1172 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1173 	    ether_addr_equal(mgmt->bssid, common->curbssid)) {
1174 		/*
1175 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1176 		 * have updated the local TSF. We have to work around various
1177 		 * hardware bugs, though...
1178 		 */
1179 		tsf = ath5k_hw_get_tsf64(ah);
1180 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1181 		hw_tu = TSF_TO_TU(tsf);
1182 
1183 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1184 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1185 			(unsigned long long)bc_tstamp,
1186 			(unsigned long long)rxs->mactime,
1187 			(unsigned long long)(rxs->mactime - bc_tstamp),
1188 			(unsigned long long)tsf);
1189 
1190 		/*
1191 		 * Sometimes the HW will give us a wrong tstamp in the rx
1192 		 * status, causing the timestamp extension to go wrong.
1193 		 * (This seems to happen especially with beacon frames bigger
1194 		 * than 78 byte (incl. FCS))
1195 		 * But we know that the receive timestamp must be later than the
1196 		 * timestamp of the beacon since HW must have synced to that.
1197 		 *
1198 		 * NOTE: here we assume mactime to be after the frame was
1199 		 * received, not like mac80211 which defines it at the start.
1200 		 */
1201 		if (bc_tstamp > rxs->mactime) {
1202 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1203 				"fixing mactime from %llx to %llx\n",
1204 				(unsigned long long)rxs->mactime,
1205 				(unsigned long long)tsf);
1206 			rxs->mactime = tsf;
1207 		}
1208 
1209 		/*
1210 		 * Local TSF might have moved higher than our beacon timers,
1211 		 * in that case we have to update them to continue sending
1212 		 * beacons. This also takes care of synchronizing beacon sending
1213 		 * times with other stations.
1214 		 */
1215 		if (hw_tu >= ah->nexttbtt)
1216 			ath5k_beacon_update_timers(ah, bc_tstamp);
1217 
1218 		/* Check if the beacon timers are still correct, because a TSF
1219 		 * update might have created a window between them - for a
1220 		 * longer description see the comment of this function: */
1221 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1222 			ath5k_beacon_update_timers(ah, bc_tstamp);
1223 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1224 				"fixed beacon timers after beacon receive\n");
1225 		}
1226 	}
1227 }
1228 
1229 static void
1230 ath5k_update_beacon_rssi(struct ath5k_hw *ah, struct sk_buff *skb, int rssi)
1231 {
1232 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1233 	struct ath_common *common = ath5k_hw_common(ah);
1234 
1235 	/* only beacons from our BSSID */
1236 	if (!ieee80211_is_beacon(mgmt->frame_control) ||
1237 	    !ether_addr_equal(mgmt->bssid, common->curbssid))
1238 		return;
1239 
1240 	ewma_add(&ah->ah_beacon_rssi_avg, rssi);
1241 
1242 	/* in IBSS mode we should keep RSSI statistics per neighbour */
1243 	/* le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS */
1244 }
1245 
1246 /*
1247  * Compute padding position. skb must contain an IEEE 802.11 frame
1248  */
1249 static int ath5k_common_padpos(struct sk_buff *skb)
1250 {
1251 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1252 	__le16 frame_control = hdr->frame_control;
1253 	int padpos = 24;
1254 
1255 	if (ieee80211_has_a4(frame_control))
1256 		padpos += ETH_ALEN;
1257 
1258 	if (ieee80211_is_data_qos(frame_control))
1259 		padpos += IEEE80211_QOS_CTL_LEN;
1260 
1261 	return padpos;
1262 }
1263 
1264 /*
1265  * This function expects an 802.11 frame and returns the number of
1266  * bytes added, or -1 if we don't have enough header room.
1267  */
1268 static int ath5k_add_padding(struct sk_buff *skb)
1269 {
1270 	int padpos = ath5k_common_padpos(skb);
1271 	int padsize = padpos & 3;
1272 
1273 	if (padsize && skb->len > padpos) {
1274 
1275 		if (skb_headroom(skb) < padsize)
1276 			return -1;
1277 
1278 		skb_push(skb, padsize);
1279 		memmove(skb->data, skb->data + padsize, padpos);
1280 		return padsize;
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 /*
1287  * The MAC header is padded to have 32-bit boundary if the
1288  * packet payload is non-zero. The general calculation for
1289  * padsize would take into account odd header lengths:
1290  * padsize = 4 - (hdrlen & 3); however, since only
1291  * even-length headers are used, padding can only be 0 or 2
1292  * bytes and we can optimize this a bit.  We must not try to
1293  * remove padding from short control frames that do not have a
1294  * payload.
1295  *
1296  * This function expects an 802.11 frame and returns the number of
1297  * bytes removed.
1298  */
1299 static int ath5k_remove_padding(struct sk_buff *skb)
1300 {
1301 	int padpos = ath5k_common_padpos(skb);
1302 	int padsize = padpos & 3;
1303 
1304 	if (padsize && skb->len >= padpos + padsize) {
1305 		memmove(skb->data + padsize, skb->data, padpos);
1306 		skb_pull(skb, padsize);
1307 		return padsize;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 static void
1314 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1315 		    struct ath5k_rx_status *rs)
1316 {
1317 	struct ieee80211_rx_status *rxs;
1318 
1319 	ath5k_remove_padding(skb);
1320 
1321 	rxs = IEEE80211_SKB_RXCB(skb);
1322 
1323 	rxs->flag = 0;
1324 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1325 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1326 
1327 	/*
1328 	 * always extend the mac timestamp, since this information is
1329 	 * also needed for proper IBSS merging.
1330 	 *
1331 	 * XXX: it might be too late to do it here, since rs_tstamp is
1332 	 * 15bit only. that means TSF extension has to be done within
1333 	 * 32768usec (about 32ms). it might be necessary to move this to
1334 	 * the interrupt handler, like it is done in madwifi.
1335 	 *
1336 	 * Unfortunately we don't know when the hardware takes the rx
1337 	 * timestamp (beginning of phy frame, data frame, end of rx?).
1338 	 * The only thing we know is that it is hardware specific...
1339 	 * On AR5213 it seems the rx timestamp is at the end of the
1340 	 * frame, but I'm not sure.
1341 	 *
1342 	 * NOTE: mac80211 defines mactime at the beginning of the first
1343 	 * data symbol. Since we don't have any time references it's
1344 	 * impossible to comply to that. This affects IBSS merge only
1345 	 * right now, so it's not too bad...
1346 	 */
1347 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1348 	rxs->flag |= RX_FLAG_MACTIME_MPDU;
1349 
1350 	rxs->freq = ah->curchan->center_freq;
1351 	rxs->band = ah->curchan->band;
1352 
1353 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1354 
1355 	rxs->antenna = rs->rs_antenna;
1356 
1357 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1358 		ah->stats.antenna_rx[rs->rs_antenna]++;
1359 	else
1360 		ah->stats.antenna_rx[0]++; /* invalid */
1361 
1362 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1363 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1364 
1365 	if (rxs->rate_idx >= 0 && rs->rs_rate ==
1366 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1367 		rxs->flag |= RX_FLAG_SHORTPRE;
1368 
1369 	trace_ath5k_rx(ah, skb);
1370 
1371 	ath5k_update_beacon_rssi(ah, skb, rs->rs_rssi);
1372 
1373 	/* check beacons in IBSS mode */
1374 	if (ah->opmode == NL80211_IFTYPE_ADHOC)
1375 		ath5k_check_ibss_tsf(ah, skb, rxs);
1376 
1377 	ieee80211_rx(ah->hw, skb);
1378 }
1379 
1380 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1381  *
1382  * Check if we want to further process this frame or not. Also update
1383  * statistics. Return true if we want this frame, false if not.
1384  */
1385 static bool
1386 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1387 {
1388 	ah->stats.rx_all_count++;
1389 	ah->stats.rx_bytes_count += rs->rs_datalen;
1390 
1391 	if (unlikely(rs->rs_status)) {
1392 		if (rs->rs_status & AR5K_RXERR_CRC)
1393 			ah->stats.rxerr_crc++;
1394 		if (rs->rs_status & AR5K_RXERR_FIFO)
1395 			ah->stats.rxerr_fifo++;
1396 		if (rs->rs_status & AR5K_RXERR_PHY) {
1397 			ah->stats.rxerr_phy++;
1398 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1399 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1400 			return false;
1401 		}
1402 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1403 			/*
1404 			 * Decrypt error.  If the error occurred
1405 			 * because there was no hardware key, then
1406 			 * let the frame through so the upper layers
1407 			 * can process it.  This is necessary for 5210
1408 			 * parts which have no way to setup a ``clear''
1409 			 * key cache entry.
1410 			 *
1411 			 * XXX do key cache faulting
1412 			 */
1413 			ah->stats.rxerr_decrypt++;
1414 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1415 			    !(rs->rs_status & AR5K_RXERR_CRC))
1416 				return true;
1417 		}
1418 		if (rs->rs_status & AR5K_RXERR_MIC) {
1419 			ah->stats.rxerr_mic++;
1420 			return true;
1421 		}
1422 
1423 		/* reject any frames with non-crypto errors */
1424 		if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
1425 			return false;
1426 	}
1427 
1428 	if (unlikely(rs->rs_more)) {
1429 		ah->stats.rxerr_jumbo++;
1430 		return false;
1431 	}
1432 	return true;
1433 }
1434 
1435 static void
1436 ath5k_set_current_imask(struct ath5k_hw *ah)
1437 {
1438 	enum ath5k_int imask;
1439 	unsigned long flags;
1440 
1441 	spin_lock_irqsave(&ah->irqlock, flags);
1442 	imask = ah->imask;
1443 	if (ah->rx_pending)
1444 		imask &= ~AR5K_INT_RX_ALL;
1445 	if (ah->tx_pending)
1446 		imask &= ~AR5K_INT_TX_ALL;
1447 	ath5k_hw_set_imr(ah, imask);
1448 	spin_unlock_irqrestore(&ah->irqlock, flags);
1449 }
1450 
1451 static void
1452 ath5k_tasklet_rx(unsigned long data)
1453 {
1454 	struct ath5k_rx_status rs = {};
1455 	struct sk_buff *skb, *next_skb;
1456 	dma_addr_t next_skb_addr;
1457 	struct ath5k_hw *ah = (void *)data;
1458 	struct ath_common *common = ath5k_hw_common(ah);
1459 	struct ath5k_buf *bf;
1460 	struct ath5k_desc *ds;
1461 	int ret;
1462 
1463 	spin_lock(&ah->rxbuflock);
1464 	if (list_empty(&ah->rxbuf)) {
1465 		ATH5K_WARN(ah, "empty rx buf pool\n");
1466 		goto unlock;
1467 	}
1468 	do {
1469 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1470 		BUG_ON(bf->skb == NULL);
1471 		skb = bf->skb;
1472 		ds = bf->desc;
1473 
1474 		/* bail if HW is still using self-linked descriptor */
1475 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1476 			break;
1477 
1478 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1479 		if (unlikely(ret == -EINPROGRESS))
1480 			break;
1481 		else if (unlikely(ret)) {
1482 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1483 			ah->stats.rxerr_proc++;
1484 			break;
1485 		}
1486 
1487 		if (ath5k_receive_frame_ok(ah, &rs)) {
1488 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1489 
1490 			/*
1491 			 * If we can't replace bf->skb with a new skb under
1492 			 * memory pressure, just skip this packet
1493 			 */
1494 			if (!next_skb)
1495 				goto next;
1496 
1497 			dma_unmap_single(ah->dev, bf->skbaddr,
1498 					 common->rx_bufsize,
1499 					 DMA_FROM_DEVICE);
1500 
1501 			skb_put(skb, rs.rs_datalen);
1502 
1503 			ath5k_receive_frame(ah, skb, &rs);
1504 
1505 			bf->skb = next_skb;
1506 			bf->skbaddr = next_skb_addr;
1507 		}
1508 next:
1509 		list_move_tail(&bf->list, &ah->rxbuf);
1510 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1511 unlock:
1512 	spin_unlock(&ah->rxbuflock);
1513 	ah->rx_pending = false;
1514 	ath5k_set_current_imask(ah);
1515 }
1516 
1517 
1518 /*************\
1519 * TX Handling *
1520 \*************/
1521 
1522 void
1523 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1524 	       struct ath5k_txq *txq)
1525 {
1526 	struct ath5k_hw *ah = hw->priv;
1527 	struct ath5k_buf *bf;
1528 	unsigned long flags;
1529 	int padsize;
1530 
1531 	trace_ath5k_tx(ah, skb, txq);
1532 
1533 	/*
1534 	 * The hardware expects the header padded to 4 byte boundaries.
1535 	 * If this is not the case, we add the padding after the header.
1536 	 */
1537 	padsize = ath5k_add_padding(skb);
1538 	if (padsize < 0) {
1539 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1540 			  " headroom to pad");
1541 		goto drop_packet;
1542 	}
1543 
1544 	if (txq->txq_len >= txq->txq_max &&
1545 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1546 		ieee80211_stop_queue(hw, txq->qnum);
1547 
1548 	spin_lock_irqsave(&ah->txbuflock, flags);
1549 	if (list_empty(&ah->txbuf)) {
1550 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1551 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1552 		ieee80211_stop_queues(hw);
1553 		goto drop_packet;
1554 	}
1555 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1556 	list_del(&bf->list);
1557 	ah->txbuf_len--;
1558 	if (list_empty(&ah->txbuf))
1559 		ieee80211_stop_queues(hw);
1560 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1561 
1562 	bf->skb = skb;
1563 
1564 	if (ath5k_txbuf_setup(ah, bf, txq, padsize)) {
1565 		bf->skb = NULL;
1566 		spin_lock_irqsave(&ah->txbuflock, flags);
1567 		list_add_tail(&bf->list, &ah->txbuf);
1568 		ah->txbuf_len++;
1569 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1570 		goto drop_packet;
1571 	}
1572 	return;
1573 
1574 drop_packet:
1575 	dev_kfree_skb_any(skb);
1576 }
1577 
1578 static void
1579 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1580 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts)
1581 {
1582 	struct ieee80211_tx_info *info;
1583 	u8 tries[3];
1584 	int i;
1585 
1586 	ah->stats.tx_all_count++;
1587 	ah->stats.tx_bytes_count += skb->len;
1588 	info = IEEE80211_SKB_CB(skb);
1589 
1590 	tries[0] = info->status.rates[0].count;
1591 	tries[1] = info->status.rates[1].count;
1592 	tries[2] = info->status.rates[2].count;
1593 
1594 	ieee80211_tx_info_clear_status(info);
1595 
1596 	for (i = 0; i < ts->ts_final_idx; i++) {
1597 		struct ieee80211_tx_rate *r =
1598 			&info->status.rates[i];
1599 
1600 		r->count = tries[i];
1601 	}
1602 
1603 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1604 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1605 
1606 	if (unlikely(ts->ts_status)) {
1607 		ah->stats.ack_fail++;
1608 		if (ts->ts_status & AR5K_TXERR_FILT) {
1609 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1610 			ah->stats.txerr_filt++;
1611 		}
1612 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1613 			ah->stats.txerr_retry++;
1614 		if (ts->ts_status & AR5K_TXERR_FIFO)
1615 			ah->stats.txerr_fifo++;
1616 	} else {
1617 		info->flags |= IEEE80211_TX_STAT_ACK;
1618 		info->status.ack_signal = ts->ts_rssi;
1619 
1620 		/* count the successful attempt as well */
1621 		info->status.rates[ts->ts_final_idx].count++;
1622 	}
1623 
1624 	/*
1625 	* Remove MAC header padding before giving the frame
1626 	* back to mac80211.
1627 	*/
1628 	ath5k_remove_padding(skb);
1629 
1630 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1631 		ah->stats.antenna_tx[ts->ts_antenna]++;
1632 	else
1633 		ah->stats.antenna_tx[0]++; /* invalid */
1634 
1635 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1636 	ieee80211_tx_status(ah->hw, skb);
1637 }
1638 
1639 static void
1640 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1641 {
1642 	struct ath5k_tx_status ts = {};
1643 	struct ath5k_buf *bf, *bf0;
1644 	struct ath5k_desc *ds;
1645 	struct sk_buff *skb;
1646 	int ret;
1647 
1648 	spin_lock(&txq->lock);
1649 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1650 
1651 		txq->txq_poll_mark = false;
1652 
1653 		/* skb might already have been processed last time. */
1654 		if (bf->skb != NULL) {
1655 			ds = bf->desc;
1656 
1657 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1658 			if (unlikely(ret == -EINPROGRESS))
1659 				break;
1660 			else if (unlikely(ret)) {
1661 				ATH5K_ERR(ah,
1662 					"error %d while processing "
1663 					"queue %u\n", ret, txq->qnum);
1664 				break;
1665 			}
1666 
1667 			skb = bf->skb;
1668 			bf->skb = NULL;
1669 
1670 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1671 					DMA_TO_DEVICE);
1672 			ath5k_tx_frame_completed(ah, skb, txq, &ts);
1673 		}
1674 
1675 		/*
1676 		 * It's possible that the hardware can say the buffer is
1677 		 * completed when it hasn't yet loaded the ds_link from
1678 		 * host memory and moved on.
1679 		 * Always keep the last descriptor to avoid HW races...
1680 		 */
1681 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1682 			spin_lock(&ah->txbuflock);
1683 			list_move_tail(&bf->list, &ah->txbuf);
1684 			ah->txbuf_len++;
1685 			txq->txq_len--;
1686 			spin_unlock(&ah->txbuflock);
1687 		}
1688 	}
1689 	spin_unlock(&txq->lock);
1690 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1691 		ieee80211_wake_queue(ah->hw, txq->qnum);
1692 }
1693 
1694 static void
1695 ath5k_tasklet_tx(unsigned long data)
1696 {
1697 	int i;
1698 	struct ath5k_hw *ah = (void *)data;
1699 
1700 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1701 		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1702 			ath5k_tx_processq(ah, &ah->txqs[i]);
1703 
1704 	ah->tx_pending = false;
1705 	ath5k_set_current_imask(ah);
1706 }
1707 
1708 
1709 /*****************\
1710 * Beacon handling *
1711 \*****************/
1712 
1713 /*
1714  * Setup the beacon frame for transmit.
1715  */
1716 static int
1717 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1718 {
1719 	struct sk_buff *skb = bf->skb;
1720 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1721 	struct ath5k_desc *ds;
1722 	int ret = 0;
1723 	u8 antenna;
1724 	u32 flags;
1725 	const int padsize = 0;
1726 
1727 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1728 			DMA_TO_DEVICE);
1729 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1730 			"skbaddr %llx\n", skb, skb->data, skb->len,
1731 			(unsigned long long)bf->skbaddr);
1732 
1733 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1734 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1735 		dev_kfree_skb_any(skb);
1736 		bf->skb = NULL;
1737 		return -EIO;
1738 	}
1739 
1740 	ds = bf->desc;
1741 	antenna = ah->ah_tx_ant;
1742 
1743 	flags = AR5K_TXDESC_NOACK;
1744 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1745 		ds->ds_link = bf->daddr;	/* self-linked */
1746 		flags |= AR5K_TXDESC_VEOL;
1747 	} else
1748 		ds->ds_link = 0;
1749 
1750 	/*
1751 	 * If we use multiple antennas on AP and use
1752 	 * the Sectored AP scenario, switch antenna every
1753 	 * 4 beacons to make sure everybody hears our AP.
1754 	 * When a client tries to associate, hw will keep
1755 	 * track of the tx antenna to be used for this client
1756 	 * automatically, based on ACKed packets.
1757 	 *
1758 	 * Note: AP still listens and transmits RTS on the
1759 	 * default antenna which is supposed to be an omni.
1760 	 *
1761 	 * Note2: On sectored scenarios it's possible to have
1762 	 * multiple antennas (1 omni -- the default -- and 14
1763 	 * sectors), so if we choose to actually support this
1764 	 * mode, we need to allow the user to set how many antennas
1765 	 * we have and tweak the code below to send beacons
1766 	 * on all of them.
1767 	 */
1768 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1769 		antenna = ah->bsent & 4 ? 2 : 1;
1770 
1771 
1772 	/* FIXME: If we are in g mode and rate is a CCK rate
1773 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1774 	 * from tx power (value is in dB units already) */
1775 	ds->ds_data = bf->skbaddr;
1776 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1777 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1778 			AR5K_PKT_TYPE_BEACON, (ah->power_level * 2),
1779 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1780 			1, AR5K_TXKEYIX_INVALID,
1781 			antenna, flags, 0, 0);
1782 	if (ret)
1783 		goto err_unmap;
1784 
1785 	return 0;
1786 err_unmap:
1787 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1788 	return ret;
1789 }
1790 
1791 /*
1792  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1793  * this is called only once at config_bss time, for AP we do it every
1794  * SWBA interrupt so that the TIM will reflect buffered frames.
1795  *
1796  * Called with the beacon lock.
1797  */
1798 int
1799 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1800 {
1801 	int ret;
1802 	struct ath5k_hw *ah = hw->priv;
1803 	struct ath5k_vif *avf = (void *)vif->drv_priv;
1804 	struct sk_buff *skb;
1805 
1806 	if (WARN_ON(!vif)) {
1807 		ret = -EINVAL;
1808 		goto out;
1809 	}
1810 
1811 	skb = ieee80211_beacon_get(hw, vif);
1812 
1813 	if (!skb) {
1814 		ret = -ENOMEM;
1815 		goto out;
1816 	}
1817 
1818 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1819 	avf->bbuf->skb = skb;
1820 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1821 out:
1822 	return ret;
1823 }
1824 
1825 /*
1826  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1827  * frame contents are done as needed and the slot time is
1828  * also adjusted based on current state.
1829  *
1830  * This is called from software irq context (beacontq tasklets)
1831  * or user context from ath5k_beacon_config.
1832  */
1833 static void
1834 ath5k_beacon_send(struct ath5k_hw *ah)
1835 {
1836 	struct ieee80211_vif *vif;
1837 	struct ath5k_vif *avf;
1838 	struct ath5k_buf *bf;
1839 	struct sk_buff *skb;
1840 	int err;
1841 
1842 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1843 
1844 	/*
1845 	 * Check if the previous beacon has gone out.  If
1846 	 * not, don't don't try to post another: skip this
1847 	 * period and wait for the next.  Missed beacons
1848 	 * indicate a problem and should not occur.  If we
1849 	 * miss too many consecutive beacons reset the device.
1850 	 */
1851 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1852 		ah->bmisscount++;
1853 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1854 			"missed %u consecutive beacons\n", ah->bmisscount);
1855 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1856 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1857 				"stuck beacon time (%u missed)\n",
1858 				ah->bmisscount);
1859 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1860 				  "stuck beacon, resetting\n");
1861 			ieee80211_queue_work(ah->hw, &ah->reset_work);
1862 		}
1863 		return;
1864 	}
1865 	if (unlikely(ah->bmisscount != 0)) {
1866 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1867 			"resume beacon xmit after %u misses\n",
1868 			ah->bmisscount);
1869 		ah->bmisscount = 0;
1870 	}
1871 
1872 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
1873 			ah->num_mesh_vifs > 1) ||
1874 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1875 		u64 tsf = ath5k_hw_get_tsf64(ah);
1876 		u32 tsftu = TSF_TO_TU(tsf);
1877 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
1878 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
1879 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1880 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
1881 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
1882 	} else /* only one interface */
1883 		vif = ah->bslot[0];
1884 
1885 	if (!vif)
1886 		return;
1887 
1888 	avf = (void *)vif->drv_priv;
1889 	bf = avf->bbuf;
1890 
1891 	/*
1892 	 * Stop any current dma and put the new frame on the queue.
1893 	 * This should never fail since we check above that no frames
1894 	 * are still pending on the queue.
1895 	 */
1896 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
1897 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
1898 		/* NB: hw still stops DMA, so proceed */
1899 	}
1900 
1901 	/* refresh the beacon for AP or MESH mode */
1902 	if (ah->opmode == NL80211_IFTYPE_AP ||
1903 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1904 		err = ath5k_beacon_update(ah->hw, vif);
1905 		if (err)
1906 			return;
1907 	}
1908 
1909 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
1910 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
1911 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
1912 		return;
1913 	}
1914 
1915 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
1916 
1917 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
1918 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
1919 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
1920 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
1921 
1922 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
1923 	while (skb) {
1924 		ath5k_tx_queue(ah->hw, skb, ah->cabq);
1925 
1926 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
1927 			break;
1928 
1929 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
1930 	}
1931 
1932 	ah->bsent++;
1933 }
1934 
1935 /**
1936  * ath5k_beacon_update_timers - update beacon timers
1937  *
1938  * @ah: struct ath5k_hw pointer we are operating on
1939  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
1940  *          beacon timer update based on the current HW TSF.
1941  *
1942  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
1943  * of a received beacon or the current local hardware TSF and write it to the
1944  * beacon timer registers.
1945  *
1946  * This is called in a variety of situations, e.g. when a beacon is received,
1947  * when a TSF update has been detected, but also when an new IBSS is created or
1948  * when we otherwise know we have to update the timers, but we keep it in this
1949  * function to have it all together in one place.
1950  */
1951 void
1952 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
1953 {
1954 	u32 nexttbtt, intval, hw_tu, bc_tu;
1955 	u64 hw_tsf;
1956 
1957 	intval = ah->bintval & AR5K_BEACON_PERIOD;
1958 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
1959 		+ ah->num_mesh_vifs > 1) {
1960 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
1961 		if (intval < 15)
1962 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
1963 				   intval);
1964 	}
1965 	if (WARN_ON(!intval))
1966 		return;
1967 
1968 	/* beacon TSF converted to TU */
1969 	bc_tu = TSF_TO_TU(bc_tsf);
1970 
1971 	/* current TSF converted to TU */
1972 	hw_tsf = ath5k_hw_get_tsf64(ah);
1973 	hw_tu = TSF_TO_TU(hw_tsf);
1974 
1975 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
1976 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
1977 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
1978 	 * configuration we need to make sure it is bigger than that. */
1979 
1980 	if (bc_tsf == -1) {
1981 		/*
1982 		 * no beacons received, called internally.
1983 		 * just need to refresh timers based on HW TSF.
1984 		 */
1985 		nexttbtt = roundup(hw_tu + FUDGE, intval);
1986 	} else if (bc_tsf == 0) {
1987 		/*
1988 		 * no beacon received, probably called by ath5k_reset_tsf().
1989 		 * reset TSF to start with 0.
1990 		 */
1991 		nexttbtt = intval;
1992 		intval |= AR5K_BEACON_RESET_TSF;
1993 	} else if (bc_tsf > hw_tsf) {
1994 		/*
1995 		 * beacon received, SW merge happened but HW TSF not yet updated.
1996 		 * not possible to reconfigure timers yet, but next time we
1997 		 * receive a beacon with the same BSSID, the hardware will
1998 		 * automatically update the TSF and then we need to reconfigure
1999 		 * the timers.
2000 		 */
2001 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2002 			"need to wait for HW TSF sync\n");
2003 		return;
2004 	} else {
2005 		/*
2006 		 * most important case for beacon synchronization between STA.
2007 		 *
2008 		 * beacon received and HW TSF has been already updated by HW.
2009 		 * update next TBTT based on the TSF of the beacon, but make
2010 		 * sure it is ahead of our local TSF timer.
2011 		 */
2012 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2013 	}
2014 #undef FUDGE
2015 
2016 	ah->nexttbtt = nexttbtt;
2017 
2018 	intval |= AR5K_BEACON_ENA;
2019 	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2020 
2021 	/*
2022 	 * debugging output last in order to preserve the time critical aspect
2023 	 * of this function
2024 	 */
2025 	if (bc_tsf == -1)
2026 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2027 			"reconfigured timers based on HW TSF\n");
2028 	else if (bc_tsf == 0)
2029 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2030 			"reset HW TSF and timers\n");
2031 	else
2032 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2033 			"updated timers based on beacon TSF\n");
2034 
2035 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2036 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2037 			  (unsigned long long) bc_tsf,
2038 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2039 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2040 		intval & AR5K_BEACON_PERIOD,
2041 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2042 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2043 }
2044 
2045 /**
2046  * ath5k_beacon_config - Configure the beacon queues and interrupts
2047  *
2048  * @ah: struct ath5k_hw pointer we are operating on
2049  *
2050  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2051  * interrupts to detect TSF updates only.
2052  */
2053 void
2054 ath5k_beacon_config(struct ath5k_hw *ah)
2055 {
2056 	unsigned long flags;
2057 
2058 	spin_lock_irqsave(&ah->block, flags);
2059 	ah->bmisscount = 0;
2060 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2061 
2062 	if (ah->enable_beacon) {
2063 		/*
2064 		 * In IBSS mode we use a self-linked tx descriptor and let the
2065 		 * hardware send the beacons automatically. We have to load it
2066 		 * only once here.
2067 		 * We use the SWBA interrupt only to keep track of the beacon
2068 		 * timers in order to detect automatic TSF updates.
2069 		 */
2070 		ath5k_beaconq_config(ah);
2071 
2072 		ah->imask |= AR5K_INT_SWBA;
2073 
2074 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2075 			if (ath5k_hw_hasveol(ah))
2076 				ath5k_beacon_send(ah);
2077 		} else
2078 			ath5k_beacon_update_timers(ah, -1);
2079 	} else {
2080 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2081 	}
2082 
2083 	ath5k_hw_set_imr(ah, ah->imask);
2084 	mmiowb();
2085 	spin_unlock_irqrestore(&ah->block, flags);
2086 }
2087 
2088 static void ath5k_tasklet_beacon(unsigned long data)
2089 {
2090 	struct ath5k_hw *ah = (struct ath5k_hw *) data;
2091 
2092 	/*
2093 	 * Software beacon alert--time to send a beacon.
2094 	 *
2095 	 * In IBSS mode we use this interrupt just to
2096 	 * keep track of the next TBTT (target beacon
2097 	 * transmission time) in order to detect whether
2098 	 * automatic TSF updates happened.
2099 	 */
2100 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2101 		/* XXX: only if VEOL supported */
2102 		u64 tsf = ath5k_hw_get_tsf64(ah);
2103 		ah->nexttbtt += ah->bintval;
2104 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2105 				"SWBA nexttbtt: %x hw_tu: %x "
2106 				"TSF: %llx\n",
2107 				ah->nexttbtt,
2108 				TSF_TO_TU(tsf),
2109 				(unsigned long long) tsf);
2110 	} else {
2111 		spin_lock(&ah->block);
2112 		ath5k_beacon_send(ah);
2113 		spin_unlock(&ah->block);
2114 	}
2115 }
2116 
2117 
2118 /********************\
2119 * Interrupt handling *
2120 \********************/
2121 
2122 static void
2123 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2124 {
2125 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2126 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2127 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2128 
2129 		/* Run ANI only when calibration is not active */
2130 
2131 		ah->ah_cal_next_ani = jiffies +
2132 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2133 		tasklet_schedule(&ah->ani_tasklet);
2134 
2135 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2136 		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2137 		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2138 
2139 		/* Run calibration only when another calibration
2140 		 * is not running.
2141 		 *
2142 		 * Note: This is for both full/short calibration,
2143 		 * if it's time for a full one, ath5k_calibrate_work will deal
2144 		 * with it. */
2145 
2146 		ah->ah_cal_next_short = jiffies +
2147 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2148 		ieee80211_queue_work(ah->hw, &ah->calib_work);
2149 	}
2150 	/* we could use SWI to generate enough interrupts to meet our
2151 	 * calibration interval requirements, if necessary:
2152 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2153 }
2154 
2155 static void
2156 ath5k_schedule_rx(struct ath5k_hw *ah)
2157 {
2158 	ah->rx_pending = true;
2159 	tasklet_schedule(&ah->rxtq);
2160 }
2161 
2162 static void
2163 ath5k_schedule_tx(struct ath5k_hw *ah)
2164 {
2165 	ah->tx_pending = true;
2166 	tasklet_schedule(&ah->txtq);
2167 }
2168 
2169 static irqreturn_t
2170 ath5k_intr(int irq, void *dev_id)
2171 {
2172 	struct ath5k_hw *ah = dev_id;
2173 	enum ath5k_int status;
2174 	unsigned int counter = 1000;
2175 
2176 
2177 	/*
2178 	 * If hw is not ready (or detached) and we get an
2179 	 * interrupt, or if we have no interrupts pending
2180 	 * (that means it's not for us) skip it.
2181 	 *
2182 	 * NOTE: Group 0/1 PCI interface registers are not
2183 	 * supported on WiSOCs, so we can't check for pending
2184 	 * interrupts (ISR belongs to another register group
2185 	 * so we are ok).
2186 	 */
2187 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2188 			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2189 			!ath5k_hw_is_intr_pending(ah))))
2190 		return IRQ_NONE;
2191 
2192 	/** Main loop **/
2193 	do {
2194 		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2195 
2196 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2197 				status, ah->imask);
2198 
2199 		/*
2200 		 * Fatal hw error -> Log and reset
2201 		 *
2202 		 * Fatal errors are unrecoverable so we have to
2203 		 * reset the card. These errors include bus and
2204 		 * dma errors.
2205 		 */
2206 		if (unlikely(status & AR5K_INT_FATAL)) {
2207 
2208 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2209 				  "fatal int, resetting\n");
2210 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2211 
2212 		/*
2213 		 * RX Overrun -> Count and reset if needed
2214 		 *
2215 		 * Receive buffers are full. Either the bus is busy or
2216 		 * the CPU is not fast enough to process all received
2217 		 * frames.
2218 		 */
2219 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2220 
2221 			/*
2222 			 * Older chipsets need a reset to come out of this
2223 			 * condition, but we treat it as RX for newer chips.
2224 			 * We don't know exactly which versions need a reset
2225 			 * this guess is copied from the HAL.
2226 			 */
2227 			ah->stats.rxorn_intr++;
2228 
2229 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2230 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2231 					  "rx overrun, resetting\n");
2232 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2233 			} else
2234 				ath5k_schedule_rx(ah);
2235 
2236 		} else {
2237 
2238 			/* Software Beacon Alert -> Schedule beacon tasklet */
2239 			if (status & AR5K_INT_SWBA)
2240 				tasklet_hi_schedule(&ah->beacontq);
2241 
2242 			/*
2243 			 * No more RX descriptors -> Just count
2244 			 *
2245 			 * NB: the hardware should re-read the link when
2246 			 *     RXE bit is written, but it doesn't work at
2247 			 *     least on older hardware revs.
2248 			 */
2249 			if (status & AR5K_INT_RXEOL)
2250 				ah->stats.rxeol_intr++;
2251 
2252 
2253 			/* TX Underrun -> Bump tx trigger level */
2254 			if (status & AR5K_INT_TXURN)
2255 				ath5k_hw_update_tx_triglevel(ah, true);
2256 
2257 			/* RX -> Schedule rx tasklet */
2258 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2259 				ath5k_schedule_rx(ah);
2260 
2261 			/* TX -> Schedule tx tasklet */
2262 			if (status & (AR5K_INT_TXOK
2263 					| AR5K_INT_TXDESC
2264 					| AR5K_INT_TXERR
2265 					| AR5K_INT_TXEOL))
2266 				ath5k_schedule_tx(ah);
2267 
2268 			/* Missed beacon -> TODO
2269 			if (status & AR5K_INT_BMISS)
2270 			*/
2271 
2272 			/* MIB event -> Update counters and notify ANI */
2273 			if (status & AR5K_INT_MIB) {
2274 				ah->stats.mib_intr++;
2275 				ath5k_hw_update_mib_counters(ah);
2276 				ath5k_ani_mib_intr(ah);
2277 			}
2278 
2279 			/* GPIO -> Notify RFKill layer */
2280 			if (status & AR5K_INT_GPIO)
2281 				tasklet_schedule(&ah->rf_kill.toggleq);
2282 
2283 		}
2284 
2285 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2286 			break;
2287 
2288 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2289 
2290 	/*
2291 	 * Until we handle rx/tx interrupts mask them on IMR
2292 	 *
2293 	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2294 	 * and unset after we 've handled the interrupts.
2295 	 */
2296 	if (ah->rx_pending || ah->tx_pending)
2297 		ath5k_set_current_imask(ah);
2298 
2299 	if (unlikely(!counter))
2300 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2301 
2302 	/* Fire up calibration poll */
2303 	ath5k_intr_calibration_poll(ah);
2304 
2305 	return IRQ_HANDLED;
2306 }
2307 
2308 /*
2309  * Periodically recalibrate the PHY to account
2310  * for temperature/environment changes.
2311  */
2312 static void
2313 ath5k_calibrate_work(struct work_struct *work)
2314 {
2315 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2316 		calib_work);
2317 
2318 	/* Should we run a full calibration ? */
2319 	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2320 
2321 		ah->ah_cal_next_full = jiffies +
2322 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2323 		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2324 
2325 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2326 				"running full calibration\n");
2327 
2328 		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2329 			/*
2330 			 * Rfgain is out of bounds, reset the chip
2331 			 * to load new gain values.
2332 			 */
2333 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2334 					"got new rfgain, resetting\n");
2335 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2336 		}
2337 	} else
2338 		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2339 
2340 
2341 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2342 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2343 		ah->curchan->hw_value);
2344 
2345 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2346 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2347 			ieee80211_frequency_to_channel(
2348 				ah->curchan->center_freq));
2349 
2350 	/* Clear calibration flags */
2351 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2352 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2353 	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2354 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2355 }
2356 
2357 
2358 static void
2359 ath5k_tasklet_ani(unsigned long data)
2360 {
2361 	struct ath5k_hw *ah = (void *)data;
2362 
2363 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2364 	ath5k_ani_calibration(ah);
2365 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2366 }
2367 
2368 
2369 static void
2370 ath5k_tx_complete_poll_work(struct work_struct *work)
2371 {
2372 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2373 			tx_complete_work.work);
2374 	struct ath5k_txq *txq;
2375 	int i;
2376 	bool needreset = false;
2377 
2378 	mutex_lock(&ah->lock);
2379 
2380 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2381 		if (ah->txqs[i].setup) {
2382 			txq = &ah->txqs[i];
2383 			spin_lock_bh(&txq->lock);
2384 			if (txq->txq_len > 1) {
2385 				if (txq->txq_poll_mark) {
2386 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2387 						  "TX queue stuck %d\n",
2388 						  txq->qnum);
2389 					needreset = true;
2390 					txq->txq_stuck++;
2391 					spin_unlock_bh(&txq->lock);
2392 					break;
2393 				} else {
2394 					txq->txq_poll_mark = true;
2395 				}
2396 			}
2397 			spin_unlock_bh(&txq->lock);
2398 		}
2399 	}
2400 
2401 	if (needreset) {
2402 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2403 			  "TX queues stuck, resetting\n");
2404 		ath5k_reset(ah, NULL, true);
2405 	}
2406 
2407 	mutex_unlock(&ah->lock);
2408 
2409 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2410 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2411 }
2412 
2413 
2414 /*************************\
2415 * Initialization routines *
2416 \*************************/
2417 
2418 int __devinit
2419 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2420 {
2421 	struct ieee80211_hw *hw = ah->hw;
2422 	struct ath_common *common;
2423 	int ret;
2424 	int csz;
2425 
2426 	/* Initialize driver private data */
2427 	SET_IEEE80211_DEV(hw, ah->dev);
2428 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
2429 			IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
2430 			IEEE80211_HW_SIGNAL_DBM |
2431 			IEEE80211_HW_REPORTS_TX_ACK_STATUS;
2432 
2433 	hw->wiphy->interface_modes =
2434 		BIT(NL80211_IFTYPE_AP) |
2435 		BIT(NL80211_IFTYPE_STATION) |
2436 		BIT(NL80211_IFTYPE_ADHOC) |
2437 		BIT(NL80211_IFTYPE_MESH_POINT);
2438 
2439 	/* SW support for IBSS_RSN is provided by mac80211 */
2440 	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2441 
2442 	/* both antennas can be configured as RX or TX */
2443 	hw->wiphy->available_antennas_tx = 0x3;
2444 	hw->wiphy->available_antennas_rx = 0x3;
2445 
2446 	hw->extra_tx_headroom = 2;
2447 	hw->channel_change_time = 5000;
2448 
2449 	/*
2450 	 * Mark the device as detached to avoid processing
2451 	 * interrupts until setup is complete.
2452 	 */
2453 	__set_bit(ATH_STAT_INVALID, ah->status);
2454 
2455 	ah->opmode = NL80211_IFTYPE_STATION;
2456 	ah->bintval = 1000;
2457 	mutex_init(&ah->lock);
2458 	spin_lock_init(&ah->rxbuflock);
2459 	spin_lock_init(&ah->txbuflock);
2460 	spin_lock_init(&ah->block);
2461 	spin_lock_init(&ah->irqlock);
2462 
2463 	/* Setup interrupt handler */
2464 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2465 	if (ret) {
2466 		ATH5K_ERR(ah, "request_irq failed\n");
2467 		goto err;
2468 	}
2469 
2470 	common = ath5k_hw_common(ah);
2471 	common->ops = &ath5k_common_ops;
2472 	common->bus_ops = bus_ops;
2473 	common->ah = ah;
2474 	common->hw = hw;
2475 	common->priv = ah;
2476 	common->clockrate = 40;
2477 
2478 	/*
2479 	 * Cache line size is used to size and align various
2480 	 * structures used to communicate with the hardware.
2481 	 */
2482 	ath5k_read_cachesize(common, &csz);
2483 	common->cachelsz = csz << 2; /* convert to bytes */
2484 
2485 	spin_lock_init(&common->cc_lock);
2486 
2487 	/* Initialize device */
2488 	ret = ath5k_hw_init(ah);
2489 	if (ret)
2490 		goto err_irq;
2491 
2492 	/* Set up multi-rate retry capabilities */
2493 	if (ah->ah_capabilities.cap_has_mrr_support) {
2494 		hw->max_rates = 4;
2495 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2496 					 AR5K_INIT_RETRY_LONG);
2497 	}
2498 
2499 	hw->vif_data_size = sizeof(struct ath5k_vif);
2500 
2501 	/* Finish private driver data initialization */
2502 	ret = ath5k_init(hw);
2503 	if (ret)
2504 		goto err_ah;
2505 
2506 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2507 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2508 					ah->ah_mac_srev,
2509 					ah->ah_phy_revision);
2510 
2511 	if (!ah->ah_single_chip) {
2512 		/* Single chip radio (!RF5111) */
2513 		if (ah->ah_radio_5ghz_revision &&
2514 			!ah->ah_radio_2ghz_revision) {
2515 			/* No 5GHz support -> report 2GHz radio */
2516 			if (!test_bit(AR5K_MODE_11A,
2517 				ah->ah_capabilities.cap_mode)) {
2518 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2519 					ath5k_chip_name(AR5K_VERSION_RAD,
2520 						ah->ah_radio_5ghz_revision),
2521 						ah->ah_radio_5ghz_revision);
2522 			/* No 2GHz support (5110 and some
2523 			 * 5GHz only cards) -> report 5GHz radio */
2524 			} else if (!test_bit(AR5K_MODE_11B,
2525 				ah->ah_capabilities.cap_mode)) {
2526 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2527 					ath5k_chip_name(AR5K_VERSION_RAD,
2528 						ah->ah_radio_5ghz_revision),
2529 						ah->ah_radio_5ghz_revision);
2530 			/* Multiband radio */
2531 			} else {
2532 				ATH5K_INFO(ah, "RF%s multiband radio found"
2533 					" (0x%x)\n",
2534 					ath5k_chip_name(AR5K_VERSION_RAD,
2535 						ah->ah_radio_5ghz_revision),
2536 						ah->ah_radio_5ghz_revision);
2537 			}
2538 		}
2539 		/* Multi chip radio (RF5111 - RF2111) ->
2540 		 * report both 2GHz/5GHz radios */
2541 		else if (ah->ah_radio_5ghz_revision &&
2542 				ah->ah_radio_2ghz_revision) {
2543 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2544 				ath5k_chip_name(AR5K_VERSION_RAD,
2545 					ah->ah_radio_5ghz_revision),
2546 					ah->ah_radio_5ghz_revision);
2547 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2548 				ath5k_chip_name(AR5K_VERSION_RAD,
2549 					ah->ah_radio_2ghz_revision),
2550 					ah->ah_radio_2ghz_revision);
2551 		}
2552 	}
2553 
2554 	ath5k_debug_init_device(ah);
2555 
2556 	/* ready to process interrupts */
2557 	__clear_bit(ATH_STAT_INVALID, ah->status);
2558 
2559 	return 0;
2560 err_ah:
2561 	ath5k_hw_deinit(ah);
2562 err_irq:
2563 	free_irq(ah->irq, ah);
2564 err:
2565 	return ret;
2566 }
2567 
2568 static int
2569 ath5k_stop_locked(struct ath5k_hw *ah)
2570 {
2571 
2572 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2573 			test_bit(ATH_STAT_INVALID, ah->status));
2574 
2575 	/*
2576 	 * Shutdown the hardware and driver:
2577 	 *    stop output from above
2578 	 *    disable interrupts
2579 	 *    turn off timers
2580 	 *    turn off the radio
2581 	 *    clear transmit machinery
2582 	 *    clear receive machinery
2583 	 *    drain and release tx queues
2584 	 *    reclaim beacon resources
2585 	 *    power down hardware
2586 	 *
2587 	 * Note that some of this work is not possible if the
2588 	 * hardware is gone (invalid).
2589 	 */
2590 	ieee80211_stop_queues(ah->hw);
2591 
2592 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2593 		ath5k_led_off(ah);
2594 		ath5k_hw_set_imr(ah, 0);
2595 		synchronize_irq(ah->irq);
2596 		ath5k_rx_stop(ah);
2597 		ath5k_hw_dma_stop(ah);
2598 		ath5k_drain_tx_buffs(ah);
2599 		ath5k_hw_phy_disable(ah);
2600 	}
2601 
2602 	return 0;
2603 }
2604 
2605 int ath5k_start(struct ieee80211_hw *hw)
2606 {
2607 	struct ath5k_hw *ah = hw->priv;
2608 	struct ath_common *common = ath5k_hw_common(ah);
2609 	int ret, i;
2610 
2611 	mutex_lock(&ah->lock);
2612 
2613 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2614 
2615 	/*
2616 	 * Stop anything previously setup.  This is safe
2617 	 * no matter this is the first time through or not.
2618 	 */
2619 	ath5k_stop_locked(ah);
2620 
2621 	/*
2622 	 * The basic interface to setting the hardware in a good
2623 	 * state is ``reset''.  On return the hardware is known to
2624 	 * be powered up and with interrupts disabled.  This must
2625 	 * be followed by initialization of the appropriate bits
2626 	 * and then setup of the interrupt mask.
2627 	 */
2628 	ah->curchan = ah->hw->conf.channel;
2629 	ah->imask = AR5K_INT_RXOK
2630 		| AR5K_INT_RXERR
2631 		| AR5K_INT_RXEOL
2632 		| AR5K_INT_RXORN
2633 		| AR5K_INT_TXDESC
2634 		| AR5K_INT_TXEOL
2635 		| AR5K_INT_FATAL
2636 		| AR5K_INT_GLOBAL
2637 		| AR5K_INT_MIB;
2638 
2639 	ret = ath5k_reset(ah, NULL, false);
2640 	if (ret)
2641 		goto done;
2642 
2643 	if (!ath5k_modparam_no_hw_rfkill_switch)
2644 		ath5k_rfkill_hw_start(ah);
2645 
2646 	/*
2647 	 * Reset the key cache since some parts do not reset the
2648 	 * contents on initial power up or resume from suspend.
2649 	 */
2650 	for (i = 0; i < common->keymax; i++)
2651 		ath_hw_keyreset(common, (u16) i);
2652 
2653 	/* Use higher rates for acks instead of base
2654 	 * rate */
2655 	ah->ah_ack_bitrate_high = true;
2656 
2657 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2658 		ah->bslot[i] = NULL;
2659 
2660 	ret = 0;
2661 done:
2662 	mmiowb();
2663 	mutex_unlock(&ah->lock);
2664 
2665 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2666 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2667 
2668 	return ret;
2669 }
2670 
2671 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2672 {
2673 	ah->rx_pending = false;
2674 	ah->tx_pending = false;
2675 	tasklet_kill(&ah->rxtq);
2676 	tasklet_kill(&ah->txtq);
2677 	tasklet_kill(&ah->beacontq);
2678 	tasklet_kill(&ah->ani_tasklet);
2679 }
2680 
2681 /*
2682  * Stop the device, grabbing the top-level lock to protect
2683  * against concurrent entry through ath5k_init (which can happen
2684  * if another thread does a system call and the thread doing the
2685  * stop is preempted).
2686  */
2687 void ath5k_stop(struct ieee80211_hw *hw)
2688 {
2689 	struct ath5k_hw *ah = hw->priv;
2690 	int ret;
2691 
2692 	mutex_lock(&ah->lock);
2693 	ret = ath5k_stop_locked(ah);
2694 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2695 		/*
2696 		 * Don't set the card in full sleep mode!
2697 		 *
2698 		 * a) When the device is in this state it must be carefully
2699 		 * woken up or references to registers in the PCI clock
2700 		 * domain may freeze the bus (and system).  This varies
2701 		 * by chip and is mostly an issue with newer parts
2702 		 * (madwifi sources mentioned srev >= 0x78) that go to
2703 		 * sleep more quickly.
2704 		 *
2705 		 * b) On older chips full sleep results a weird behaviour
2706 		 * during wakeup. I tested various cards with srev < 0x78
2707 		 * and they don't wake up after module reload, a second
2708 		 * module reload is needed to bring the card up again.
2709 		 *
2710 		 * Until we figure out what's going on don't enable
2711 		 * full chip reset on any chip (this is what Legacy HAL
2712 		 * and Sam's HAL do anyway). Instead Perform a full reset
2713 		 * on the device (same as initial state after attach) and
2714 		 * leave it idle (keep MAC/BB on warm reset) */
2715 		ret = ath5k_hw_on_hold(ah);
2716 
2717 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2718 				"putting device to sleep\n");
2719 	}
2720 
2721 	mmiowb();
2722 	mutex_unlock(&ah->lock);
2723 
2724 	ath5k_stop_tasklets(ah);
2725 
2726 	cancel_delayed_work_sync(&ah->tx_complete_work);
2727 
2728 	if (!ath5k_modparam_no_hw_rfkill_switch)
2729 		ath5k_rfkill_hw_stop(ah);
2730 }
2731 
2732 /*
2733  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2734  * and change to the given channel.
2735  *
2736  * This should be called with ah->lock.
2737  */
2738 static int
2739 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2740 							bool skip_pcu)
2741 {
2742 	struct ath_common *common = ath5k_hw_common(ah);
2743 	int ret, ani_mode;
2744 	bool fast;
2745 
2746 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2747 
2748 	ath5k_hw_set_imr(ah, 0);
2749 	synchronize_irq(ah->irq);
2750 	ath5k_stop_tasklets(ah);
2751 
2752 	/* Save ani mode and disable ANI during
2753 	 * reset. If we don't we might get false
2754 	 * PHY error interrupts. */
2755 	ani_mode = ah->ani_state.ani_mode;
2756 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2757 
2758 	/* We are going to empty hw queues
2759 	 * so we should also free any remaining
2760 	 * tx buffers */
2761 	ath5k_drain_tx_buffs(ah);
2762 	if (chan)
2763 		ah->curchan = chan;
2764 
2765 	fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
2766 
2767 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2768 	if (ret) {
2769 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2770 		goto err;
2771 	}
2772 
2773 	ret = ath5k_rx_start(ah);
2774 	if (ret) {
2775 		ATH5K_ERR(ah, "can't start recv logic\n");
2776 		goto err;
2777 	}
2778 
2779 	ath5k_ani_init(ah, ani_mode);
2780 
2781 	/*
2782 	 * Set calibration intervals
2783 	 *
2784 	 * Note: We don't need to run calibration imediately
2785 	 * since some initial calibration is done on reset
2786 	 * even for fast channel switching. Also on scanning
2787 	 * this will get set again and again and it won't get
2788 	 * executed unless we connect somewhere and spend some
2789 	 * time on the channel (that's what calibration needs
2790 	 * anyway to be accurate).
2791 	 */
2792 	ah->ah_cal_next_full = jiffies +
2793 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2794 	ah->ah_cal_next_ani = jiffies +
2795 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2796 	ah->ah_cal_next_short = jiffies +
2797 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2798 
2799 	ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
2800 
2801 	/* clear survey data and cycle counters */
2802 	memset(&ah->survey, 0, sizeof(ah->survey));
2803 	spin_lock_bh(&common->cc_lock);
2804 	ath_hw_cycle_counters_update(common);
2805 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2806 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2807 	spin_unlock_bh(&common->cc_lock);
2808 
2809 	/*
2810 	 * Change channels and update the h/w rate map if we're switching;
2811 	 * e.g. 11a to 11b/g.
2812 	 *
2813 	 * We may be doing a reset in response to an ioctl that changes the
2814 	 * channel so update any state that might change as a result.
2815 	 *
2816 	 * XXX needed?
2817 	 */
2818 /*	ath5k_chan_change(ah, c); */
2819 
2820 	ath5k_beacon_config(ah);
2821 	/* intrs are enabled by ath5k_beacon_config */
2822 
2823 	ieee80211_wake_queues(ah->hw);
2824 
2825 	return 0;
2826 err:
2827 	return ret;
2828 }
2829 
2830 static void ath5k_reset_work(struct work_struct *work)
2831 {
2832 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2833 		reset_work);
2834 
2835 	mutex_lock(&ah->lock);
2836 	ath5k_reset(ah, NULL, true);
2837 	mutex_unlock(&ah->lock);
2838 }
2839 
2840 static int __devinit
2841 ath5k_init(struct ieee80211_hw *hw)
2842 {
2843 
2844 	struct ath5k_hw *ah = hw->priv;
2845 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2846 	struct ath5k_txq *txq;
2847 	u8 mac[ETH_ALEN] = {};
2848 	int ret;
2849 
2850 
2851 	/*
2852 	 * Collect the channel list.  The 802.11 layer
2853 	 * is responsible for filtering this list based
2854 	 * on settings like the phy mode and regulatory
2855 	 * domain restrictions.
2856 	 */
2857 	ret = ath5k_setup_bands(hw);
2858 	if (ret) {
2859 		ATH5K_ERR(ah, "can't get channels\n");
2860 		goto err;
2861 	}
2862 
2863 	/*
2864 	 * Allocate tx+rx descriptors and populate the lists.
2865 	 */
2866 	ret = ath5k_desc_alloc(ah);
2867 	if (ret) {
2868 		ATH5K_ERR(ah, "can't allocate descriptors\n");
2869 		goto err;
2870 	}
2871 
2872 	/*
2873 	 * Allocate hardware transmit queues: one queue for
2874 	 * beacon frames and one data queue for each QoS
2875 	 * priority.  Note that hw functions handle resetting
2876 	 * these queues at the needed time.
2877 	 */
2878 	ret = ath5k_beaconq_setup(ah);
2879 	if (ret < 0) {
2880 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
2881 		goto err_desc;
2882 	}
2883 	ah->bhalq = ret;
2884 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
2885 	if (IS_ERR(ah->cabq)) {
2886 		ATH5K_ERR(ah, "can't setup cab queue\n");
2887 		ret = PTR_ERR(ah->cabq);
2888 		goto err_bhal;
2889 	}
2890 
2891 	/* 5211 and 5212 usually support 10 queues but we better rely on the
2892 	 * capability information */
2893 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
2894 		/* This order matches mac80211's queue priority, so we can
2895 		* directly use the mac80211 queue number without any mapping */
2896 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
2897 		if (IS_ERR(txq)) {
2898 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2899 			ret = PTR_ERR(txq);
2900 			goto err_queues;
2901 		}
2902 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
2903 		if (IS_ERR(txq)) {
2904 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2905 			ret = PTR_ERR(txq);
2906 			goto err_queues;
2907 		}
2908 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2909 		if (IS_ERR(txq)) {
2910 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2911 			ret = PTR_ERR(txq);
2912 			goto err_queues;
2913 		}
2914 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
2915 		if (IS_ERR(txq)) {
2916 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2917 			ret = PTR_ERR(txq);
2918 			goto err_queues;
2919 		}
2920 		hw->queues = 4;
2921 	} else {
2922 		/* older hardware (5210) can only support one data queue */
2923 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
2924 		if (IS_ERR(txq)) {
2925 			ATH5K_ERR(ah, "can't setup xmit queue\n");
2926 			ret = PTR_ERR(txq);
2927 			goto err_queues;
2928 		}
2929 		hw->queues = 1;
2930 	}
2931 
2932 	tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
2933 	tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
2934 	tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
2935 	tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
2936 
2937 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
2938 	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
2939 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
2940 
2941 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
2942 	if (ret) {
2943 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
2944 		goto err_queues;
2945 	}
2946 
2947 	SET_IEEE80211_PERM_ADDR(hw, mac);
2948 	/* All MAC address bits matter for ACKs */
2949 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
2950 
2951 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2952 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
2953 	if (ret) {
2954 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
2955 		goto err_queues;
2956 	}
2957 
2958 	ret = ieee80211_register_hw(hw);
2959 	if (ret) {
2960 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
2961 		goto err_queues;
2962 	}
2963 
2964 	if (!ath_is_world_regd(regulatory))
2965 		regulatory_hint(hw->wiphy, regulatory->alpha2);
2966 
2967 	ath5k_init_leds(ah);
2968 
2969 	ath5k_sysfs_register(ah);
2970 
2971 	return 0;
2972 err_queues:
2973 	ath5k_txq_release(ah);
2974 err_bhal:
2975 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
2976 err_desc:
2977 	ath5k_desc_free(ah);
2978 err:
2979 	return ret;
2980 }
2981 
2982 void
2983 ath5k_deinit_ah(struct ath5k_hw *ah)
2984 {
2985 	struct ieee80211_hw *hw = ah->hw;
2986 
2987 	/*
2988 	 * NB: the order of these is important:
2989 	 * o call the 802.11 layer before detaching ath5k_hw to
2990 	 *   ensure callbacks into the driver to delete global
2991 	 *   key cache entries can be handled
2992 	 * o reclaim the tx queue data structures after calling
2993 	 *   the 802.11 layer as we'll get called back to reclaim
2994 	 *   node state and potentially want to use them
2995 	 * o to cleanup the tx queues the hal is called, so detach
2996 	 *   it last
2997 	 * XXX: ??? detach ath5k_hw ???
2998 	 * Other than that, it's straightforward...
2999 	 */
3000 	ieee80211_unregister_hw(hw);
3001 	ath5k_desc_free(ah);
3002 	ath5k_txq_release(ah);
3003 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3004 	ath5k_unregister_leds(ah);
3005 
3006 	ath5k_sysfs_unregister(ah);
3007 	/*
3008 	 * NB: can't reclaim these until after ieee80211_ifdetach
3009 	 * returns because we'll get called back to reclaim node
3010 	 * state and potentially want to use them.
3011 	 */
3012 	ath5k_hw_deinit(ah);
3013 	free_irq(ah->irq, ah);
3014 }
3015 
3016 bool
3017 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3018 {
3019 	struct ath5k_vif_iter_data iter_data;
3020 	iter_data.hw_macaddr = NULL;
3021 	iter_data.any_assoc = false;
3022 	iter_data.need_set_hw_addr = false;
3023 	iter_data.found_active = true;
3024 
3025 	ieee80211_iterate_active_interfaces_atomic(ah->hw, ath5k_vif_iter,
3026 						   &iter_data);
3027 	return iter_data.any_assoc;
3028 }
3029 
3030 void
3031 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3032 {
3033 	struct ath5k_hw *ah = hw->priv;
3034 	u32 rfilt;
3035 	rfilt = ath5k_hw_get_rx_filter(ah);
3036 	if (enable)
3037 		rfilt |= AR5K_RX_FILTER_BEACON;
3038 	else
3039 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3040 	ath5k_hw_set_rx_filter(ah, rfilt);
3041 	ah->filter_flags = rfilt;
3042 }
3043 
3044 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3045 		   const char *fmt, ...)
3046 {
3047 	struct va_format vaf;
3048 	va_list args;
3049 
3050 	va_start(args, fmt);
3051 
3052 	vaf.fmt = fmt;
3053 	vaf.va = &args;
3054 
3055 	if (ah && ah->hw)
3056 		printk("%s" pr_fmt("%s: %pV"),
3057 		       level, wiphy_name(ah->hw->wiphy), &vaf);
3058 	else
3059 		printk("%s" pr_fmt("%pV"), level, &vaf);
3060 
3061 	va_end(args);
3062 }
3063