1 /*- 2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 3 * Copyright (c) 2004-2005 Atheros Communications, Inc. 4 * Copyright (c) 2006 Devicescape Software, Inc. 5 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com> 6 * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu> 7 * 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer, 15 * without modification. 16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 17 * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any 18 * redistribution must be conditioned upon including a substantially 19 * similar Disclaimer requirement for further binary redistribution. 20 * 3. Neither the names of the above-listed copyright holders nor the names 21 * of any contributors may be used to endorse or promote products derived 22 * from this software without specific prior written permission. 23 * 24 * Alternatively, this software may be distributed under the terms of the 25 * GNU General Public License ("GPL") version 2 as published by the Free 26 * Software Foundation. 27 * 28 * NO WARRANTY 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY 32 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL 33 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, 34 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 35 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 36 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER 37 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 38 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 39 * THE POSSIBILITY OF SUCH DAMAGES. 40 * 41 */ 42 43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 44 45 #include <linux/module.h> 46 #include <linux/delay.h> 47 #include <linux/dma-mapping.h> 48 #include <linux/hardirq.h> 49 #include <linux/if.h> 50 #include <linux/io.h> 51 #include <linux/netdevice.h> 52 #include <linux/cache.h> 53 #include <linux/ethtool.h> 54 #include <linux/uaccess.h> 55 #include <linux/slab.h> 56 #include <linux/etherdevice.h> 57 #include <linux/nl80211.h> 58 59 #include <net/cfg80211.h> 60 #include <net/ieee80211_radiotap.h> 61 62 #include <asm/unaligned.h> 63 64 #include <net/mac80211.h> 65 #include "base.h" 66 #include "reg.h" 67 #include "debug.h" 68 #include "ani.h" 69 #include "ath5k.h" 70 #include "../regd.h" 71 72 #define CREATE_TRACE_POINTS 73 #include "trace.h" 74 75 bool ath5k_modparam_nohwcrypt; 76 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO); 77 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 78 79 static bool modparam_fastchanswitch; 80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO); 81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios."); 82 83 static bool ath5k_modparam_no_hw_rfkill_switch; 84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch, 85 bool, S_IRUGO); 86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state"); 87 88 89 /* Module info */ 90 MODULE_AUTHOR("Jiri Slaby"); 91 MODULE_AUTHOR("Nick Kossifidis"); 92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards."); 93 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards"); 94 MODULE_LICENSE("Dual BSD/GPL"); 95 96 static int ath5k_init(struct ieee80211_hw *hw); 97 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan, 98 bool skip_pcu); 99 100 /* Known SREVs */ 101 static const struct ath5k_srev_name srev_names[] = { 102 { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 }, 103 { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 }, 104 { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A }, 105 { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B }, 106 { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 }, 107 { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 }, 108 { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 }, 109 { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A }, 110 { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 }, 111 { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 }, 112 { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 }, 113 { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 }, 114 { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 }, 115 { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 }, 116 { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 }, 117 { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 }, 118 { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 }, 119 { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 }, 120 { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN }, 121 { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 }, 122 { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 }, 123 { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A }, 124 { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 }, 125 { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 }, 126 { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A }, 127 { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B }, 128 { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 }, 129 { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A }, 130 { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B }, 131 { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 }, 132 { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 }, 133 { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 }, 134 { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 }, 135 { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN }, 136 }; 137 138 static const struct ieee80211_rate ath5k_rates[] = { 139 { .bitrate = 10, 140 .hw_value = ATH5K_RATE_CODE_1M, }, 141 { .bitrate = 20, 142 .hw_value = ATH5K_RATE_CODE_2M, 143 .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE, 144 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 145 { .bitrate = 55, 146 .hw_value = ATH5K_RATE_CODE_5_5M, 147 .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE, 148 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 149 { .bitrate = 110, 150 .hw_value = ATH5K_RATE_CODE_11M, 151 .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE, 152 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 153 { .bitrate = 60, 154 .hw_value = ATH5K_RATE_CODE_6M, 155 .flags = IEEE80211_RATE_SUPPORTS_5MHZ | 156 IEEE80211_RATE_SUPPORTS_10MHZ }, 157 { .bitrate = 90, 158 .hw_value = ATH5K_RATE_CODE_9M, 159 .flags = IEEE80211_RATE_SUPPORTS_5MHZ | 160 IEEE80211_RATE_SUPPORTS_10MHZ }, 161 { .bitrate = 120, 162 .hw_value = ATH5K_RATE_CODE_12M, 163 .flags = IEEE80211_RATE_SUPPORTS_5MHZ | 164 IEEE80211_RATE_SUPPORTS_10MHZ }, 165 { .bitrate = 180, 166 .hw_value = ATH5K_RATE_CODE_18M, 167 .flags = IEEE80211_RATE_SUPPORTS_5MHZ | 168 IEEE80211_RATE_SUPPORTS_10MHZ }, 169 { .bitrate = 240, 170 .hw_value = ATH5K_RATE_CODE_24M, 171 .flags = IEEE80211_RATE_SUPPORTS_5MHZ | 172 IEEE80211_RATE_SUPPORTS_10MHZ }, 173 { .bitrate = 360, 174 .hw_value = ATH5K_RATE_CODE_36M, 175 .flags = IEEE80211_RATE_SUPPORTS_5MHZ | 176 IEEE80211_RATE_SUPPORTS_10MHZ }, 177 { .bitrate = 480, 178 .hw_value = ATH5K_RATE_CODE_48M, 179 .flags = IEEE80211_RATE_SUPPORTS_5MHZ | 180 IEEE80211_RATE_SUPPORTS_10MHZ }, 181 { .bitrate = 540, 182 .hw_value = ATH5K_RATE_CODE_54M, 183 .flags = IEEE80211_RATE_SUPPORTS_5MHZ | 184 IEEE80211_RATE_SUPPORTS_10MHZ }, 185 }; 186 187 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp) 188 { 189 u64 tsf = ath5k_hw_get_tsf64(ah); 190 191 if ((tsf & 0x7fff) < rstamp) 192 tsf -= 0x8000; 193 194 return (tsf & ~0x7fff) | rstamp; 195 } 196 197 const char * 198 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val) 199 { 200 const char *name = "xxxxx"; 201 unsigned int i; 202 203 for (i = 0; i < ARRAY_SIZE(srev_names); i++) { 204 if (srev_names[i].sr_type != type) 205 continue; 206 207 if ((val & 0xf0) == srev_names[i].sr_val) 208 name = srev_names[i].sr_name; 209 210 if ((val & 0xff) == srev_names[i].sr_val) { 211 name = srev_names[i].sr_name; 212 break; 213 } 214 } 215 216 return name; 217 } 218 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset) 219 { 220 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv; 221 return ath5k_hw_reg_read(ah, reg_offset); 222 } 223 224 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset) 225 { 226 struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv; 227 ath5k_hw_reg_write(ah, val, reg_offset); 228 } 229 230 static const struct ath_ops ath5k_common_ops = { 231 .read = ath5k_ioread32, 232 .write = ath5k_iowrite32, 233 }; 234 235 /***********************\ 236 * Driver Initialization * 237 \***********************/ 238 239 static void ath5k_reg_notifier(struct wiphy *wiphy, 240 struct regulatory_request *request) 241 { 242 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); 243 struct ath5k_hw *ah = hw->priv; 244 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); 245 246 ath_reg_notifier_apply(wiphy, request, regulatory); 247 } 248 249 /********************\ 250 * Channel/mode setup * 251 \********************/ 252 253 /* 254 * Returns true for the channel numbers used. 255 */ 256 #ifdef CONFIG_ATH5K_TEST_CHANNELS 257 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band) 258 { 259 return true; 260 } 261 262 #else 263 static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band) 264 { 265 if (band == IEEE80211_BAND_2GHZ && chan <= 14) 266 return true; 267 268 return /* UNII 1,2 */ 269 (((chan & 3) == 0 && chan >= 36 && chan <= 64) || 270 /* midband */ 271 ((chan & 3) == 0 && chan >= 100 && chan <= 140) || 272 /* UNII-3 */ 273 ((chan & 3) == 1 && chan >= 149 && chan <= 165) || 274 /* 802.11j 5.030-5.080 GHz (20MHz) */ 275 (chan == 8 || chan == 12 || chan == 16) || 276 /* 802.11j 4.9GHz (20MHz) */ 277 (chan == 184 || chan == 188 || chan == 192 || chan == 196)); 278 } 279 #endif 280 281 static unsigned int 282 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels, 283 unsigned int mode, unsigned int max) 284 { 285 unsigned int count, size, freq, ch; 286 enum ieee80211_band band; 287 288 switch (mode) { 289 case AR5K_MODE_11A: 290 /* 1..220, but 2GHz frequencies are filtered by check_channel */ 291 size = 220; 292 band = IEEE80211_BAND_5GHZ; 293 break; 294 case AR5K_MODE_11B: 295 case AR5K_MODE_11G: 296 size = 26; 297 band = IEEE80211_BAND_2GHZ; 298 break; 299 default: 300 ATH5K_WARN(ah, "bad mode, not copying channels\n"); 301 return 0; 302 } 303 304 count = 0; 305 for (ch = 1; ch <= size && count < max; ch++) { 306 freq = ieee80211_channel_to_frequency(ch, band); 307 308 if (freq == 0) /* mapping failed - not a standard channel */ 309 continue; 310 311 /* Write channel info, needed for ath5k_channel_ok() */ 312 channels[count].center_freq = freq; 313 channels[count].band = band; 314 channels[count].hw_value = mode; 315 316 /* Check if channel is supported by the chipset */ 317 if (!ath5k_channel_ok(ah, &channels[count])) 318 continue; 319 320 if (!ath5k_is_standard_channel(ch, band)) 321 continue; 322 323 count++; 324 } 325 326 return count; 327 } 328 329 static void 330 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b) 331 { 332 u8 i; 333 334 for (i = 0; i < AR5K_MAX_RATES; i++) 335 ah->rate_idx[b->band][i] = -1; 336 337 for (i = 0; i < b->n_bitrates; i++) { 338 ah->rate_idx[b->band][b->bitrates[i].hw_value] = i; 339 if (b->bitrates[i].hw_value_short) 340 ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i; 341 } 342 } 343 344 static int 345 ath5k_setup_bands(struct ieee80211_hw *hw) 346 { 347 struct ath5k_hw *ah = hw->priv; 348 struct ieee80211_supported_band *sband; 349 int max_c, count_c = 0; 350 int i; 351 352 BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS); 353 max_c = ARRAY_SIZE(ah->channels); 354 355 /* 2GHz band */ 356 sband = &ah->sbands[IEEE80211_BAND_2GHZ]; 357 sband->band = IEEE80211_BAND_2GHZ; 358 sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0]; 359 360 if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) { 361 /* G mode */ 362 memcpy(sband->bitrates, &ath5k_rates[0], 363 sizeof(struct ieee80211_rate) * 12); 364 sband->n_bitrates = 12; 365 366 sband->channels = ah->channels; 367 sband->n_channels = ath5k_setup_channels(ah, sband->channels, 368 AR5K_MODE_11G, max_c); 369 370 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband; 371 count_c = sband->n_channels; 372 max_c -= count_c; 373 } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) { 374 /* B mode */ 375 memcpy(sband->bitrates, &ath5k_rates[0], 376 sizeof(struct ieee80211_rate) * 4); 377 sband->n_bitrates = 4; 378 379 /* 5211 only supports B rates and uses 4bit rate codes 380 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B) 381 * fix them up here: 382 */ 383 if (ah->ah_version == AR5K_AR5211) { 384 for (i = 0; i < 4; i++) { 385 sband->bitrates[i].hw_value = 386 sband->bitrates[i].hw_value & 0xF; 387 sband->bitrates[i].hw_value_short = 388 sband->bitrates[i].hw_value_short & 0xF; 389 } 390 } 391 392 sband->channels = ah->channels; 393 sband->n_channels = ath5k_setup_channels(ah, sband->channels, 394 AR5K_MODE_11B, max_c); 395 396 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband; 397 count_c = sband->n_channels; 398 max_c -= count_c; 399 } 400 ath5k_setup_rate_idx(ah, sband); 401 402 /* 5GHz band, A mode */ 403 if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) { 404 sband = &ah->sbands[IEEE80211_BAND_5GHZ]; 405 sband->band = IEEE80211_BAND_5GHZ; 406 sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0]; 407 408 memcpy(sband->bitrates, &ath5k_rates[4], 409 sizeof(struct ieee80211_rate) * 8); 410 sband->n_bitrates = 8; 411 412 sband->channels = &ah->channels[count_c]; 413 sband->n_channels = ath5k_setup_channels(ah, sband->channels, 414 AR5K_MODE_11A, max_c); 415 416 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband; 417 } 418 ath5k_setup_rate_idx(ah, sband); 419 420 ath5k_debug_dump_bands(ah); 421 422 return 0; 423 } 424 425 /* 426 * Set/change channels. We always reset the chip. 427 * To accomplish this we must first cleanup any pending DMA, 428 * then restart stuff after a la ath5k_init. 429 * 430 * Called with ah->lock. 431 */ 432 int 433 ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef) 434 { 435 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 436 "channel set, resetting (%u -> %u MHz)\n", 437 ah->curchan->center_freq, chandef->chan->center_freq); 438 439 switch (chandef->width) { 440 case NL80211_CHAN_WIDTH_20: 441 case NL80211_CHAN_WIDTH_20_NOHT: 442 ah->ah_bwmode = AR5K_BWMODE_DEFAULT; 443 break; 444 case NL80211_CHAN_WIDTH_5: 445 ah->ah_bwmode = AR5K_BWMODE_5MHZ; 446 break; 447 case NL80211_CHAN_WIDTH_10: 448 ah->ah_bwmode = AR5K_BWMODE_10MHZ; 449 break; 450 default: 451 WARN_ON(1); 452 return -EINVAL; 453 } 454 455 /* 456 * To switch channels clear any pending DMA operations; 457 * wait long enough for the RX fifo to drain, reset the 458 * hardware at the new frequency, and then re-enable 459 * the relevant bits of the h/w. 460 */ 461 return ath5k_reset(ah, chandef->chan, true); 462 } 463 464 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) 465 { 466 struct ath5k_vif_iter_data *iter_data = data; 467 int i; 468 struct ath5k_vif *avf = (void *)vif->drv_priv; 469 470 if (iter_data->hw_macaddr) 471 for (i = 0; i < ETH_ALEN; i++) 472 iter_data->mask[i] &= 473 ~(iter_data->hw_macaddr[i] ^ mac[i]); 474 475 if (!iter_data->found_active) { 476 iter_data->found_active = true; 477 memcpy(iter_data->active_mac, mac, ETH_ALEN); 478 } 479 480 if (iter_data->need_set_hw_addr && iter_data->hw_macaddr) 481 if (ether_addr_equal(iter_data->hw_macaddr, mac)) 482 iter_data->need_set_hw_addr = false; 483 484 if (!iter_data->any_assoc) { 485 if (avf->assoc) 486 iter_data->any_assoc = true; 487 } 488 489 /* Calculate combined mode - when APs are active, operate in AP mode. 490 * Otherwise use the mode of the new interface. This can currently 491 * only deal with combinations of APs and STAs. Only one ad-hoc 492 * interfaces is allowed. 493 */ 494 if (avf->opmode == NL80211_IFTYPE_AP) 495 iter_data->opmode = NL80211_IFTYPE_AP; 496 else { 497 if (avf->opmode == NL80211_IFTYPE_STATION) 498 iter_data->n_stas++; 499 if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED) 500 iter_data->opmode = avf->opmode; 501 } 502 } 503 504 void 505 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah, 506 struct ieee80211_vif *vif) 507 { 508 struct ath_common *common = ath5k_hw_common(ah); 509 struct ath5k_vif_iter_data iter_data; 510 u32 rfilt; 511 512 /* 513 * Use the hardware MAC address as reference, the hardware uses it 514 * together with the BSSID mask when matching addresses. 515 */ 516 iter_data.hw_macaddr = common->macaddr; 517 memset(&iter_data.mask, 0xff, ETH_ALEN); 518 iter_data.found_active = false; 519 iter_data.need_set_hw_addr = true; 520 iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED; 521 iter_data.n_stas = 0; 522 523 if (vif) 524 ath5k_vif_iter(&iter_data, vif->addr, vif); 525 526 /* Get list of all active MAC addresses */ 527 ieee80211_iterate_active_interfaces_atomic( 528 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 529 ath5k_vif_iter, &iter_data); 530 memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN); 531 532 ah->opmode = iter_data.opmode; 533 if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED) 534 /* Nothing active, default to station mode */ 535 ah->opmode = NL80211_IFTYPE_STATION; 536 537 ath5k_hw_set_opmode(ah, ah->opmode); 538 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n", 539 ah->opmode, ath_opmode_to_string(ah->opmode)); 540 541 if (iter_data.need_set_hw_addr && iter_data.found_active) 542 ath5k_hw_set_lladdr(ah, iter_data.active_mac); 543 544 if (ath5k_hw_hasbssidmask(ah)) 545 ath5k_hw_set_bssid_mask(ah, ah->bssidmask); 546 547 /* Set up RX Filter */ 548 if (iter_data.n_stas > 1) { 549 /* If you have multiple STA interfaces connected to 550 * different APs, ARPs are not received (most of the time?) 551 * Enabling PROMISC appears to fix that problem. 552 */ 553 ah->filter_flags |= AR5K_RX_FILTER_PROM; 554 } 555 556 rfilt = ah->filter_flags; 557 ath5k_hw_set_rx_filter(ah, rfilt); 558 ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt); 559 } 560 561 static inline int 562 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix) 563 { 564 int rix; 565 566 /* return base rate on errors */ 567 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES, 568 "hw_rix out of bounds: %x\n", hw_rix)) 569 return 0; 570 571 rix = ah->rate_idx[ah->curchan->band][hw_rix]; 572 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix)) 573 rix = 0; 574 575 return rix; 576 } 577 578 /***************\ 579 * Buffers setup * 580 \***************/ 581 582 static 583 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr) 584 { 585 struct ath_common *common = ath5k_hw_common(ah); 586 struct sk_buff *skb; 587 588 /* 589 * Allocate buffer with headroom_needed space for the 590 * fake physical layer header at the start. 591 */ 592 skb = ath_rxbuf_alloc(common, 593 common->rx_bufsize, 594 GFP_ATOMIC); 595 596 if (!skb) { 597 ATH5K_ERR(ah, "can't alloc skbuff of size %u\n", 598 common->rx_bufsize); 599 return NULL; 600 } 601 602 *skb_addr = dma_map_single(ah->dev, 603 skb->data, common->rx_bufsize, 604 DMA_FROM_DEVICE); 605 606 if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) { 607 ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__); 608 dev_kfree_skb(skb); 609 return NULL; 610 } 611 return skb; 612 } 613 614 static int 615 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf) 616 { 617 struct sk_buff *skb = bf->skb; 618 struct ath5k_desc *ds; 619 int ret; 620 621 if (!skb) { 622 skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr); 623 if (!skb) 624 return -ENOMEM; 625 bf->skb = skb; 626 } 627 628 /* 629 * Setup descriptors. For receive we always terminate 630 * the descriptor list with a self-linked entry so we'll 631 * not get overrun under high load (as can happen with a 632 * 5212 when ANI processing enables PHY error frames). 633 * 634 * To ensure the last descriptor is self-linked we create 635 * each descriptor as self-linked and add it to the end. As 636 * each additional descriptor is added the previous self-linked 637 * entry is "fixed" naturally. This should be safe even 638 * if DMA is happening. When processing RX interrupts we 639 * never remove/process the last, self-linked, entry on the 640 * descriptor list. This ensures the hardware always has 641 * someplace to write a new frame. 642 */ 643 ds = bf->desc; 644 ds->ds_link = bf->daddr; /* link to self */ 645 ds->ds_data = bf->skbaddr; 646 ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0); 647 if (ret) { 648 ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__); 649 return ret; 650 } 651 652 if (ah->rxlink != NULL) 653 *ah->rxlink = bf->daddr; 654 ah->rxlink = &ds->ds_link; 655 return 0; 656 } 657 658 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb) 659 { 660 struct ieee80211_hdr *hdr; 661 enum ath5k_pkt_type htype; 662 __le16 fc; 663 664 hdr = (struct ieee80211_hdr *)skb->data; 665 fc = hdr->frame_control; 666 667 if (ieee80211_is_beacon(fc)) 668 htype = AR5K_PKT_TYPE_BEACON; 669 else if (ieee80211_is_probe_resp(fc)) 670 htype = AR5K_PKT_TYPE_PROBE_RESP; 671 else if (ieee80211_is_atim(fc)) 672 htype = AR5K_PKT_TYPE_ATIM; 673 else if (ieee80211_is_pspoll(fc)) 674 htype = AR5K_PKT_TYPE_PSPOLL; 675 else 676 htype = AR5K_PKT_TYPE_NORMAL; 677 678 return htype; 679 } 680 681 static struct ieee80211_rate * 682 ath5k_get_rate(const struct ieee80211_hw *hw, 683 const struct ieee80211_tx_info *info, 684 struct ath5k_buf *bf, int idx) 685 { 686 /* 687 * convert a ieee80211_tx_rate RC-table entry to 688 * the respective ieee80211_rate struct 689 */ 690 if (bf->rates[idx].idx < 0) { 691 return NULL; 692 } 693 694 return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ]; 695 } 696 697 static u16 698 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw, 699 const struct ieee80211_tx_info *info, 700 struct ath5k_buf *bf, int idx) 701 { 702 struct ieee80211_rate *rate; 703 u16 hw_rate; 704 u8 rc_flags; 705 706 rate = ath5k_get_rate(hw, info, bf, idx); 707 if (!rate) 708 return 0; 709 710 rc_flags = bf->rates[idx].flags; 711 hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ? 712 rate->hw_value_short : rate->hw_value; 713 714 return hw_rate; 715 } 716 717 static int 718 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf, 719 struct ath5k_txq *txq, int padsize, 720 struct ieee80211_tx_control *control) 721 { 722 struct ath5k_desc *ds = bf->desc; 723 struct sk_buff *skb = bf->skb; 724 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 725 unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID; 726 struct ieee80211_rate *rate; 727 unsigned int mrr_rate[3], mrr_tries[3]; 728 int i, ret; 729 u16 hw_rate; 730 u16 cts_rate = 0; 731 u16 duration = 0; 732 u8 rc_flags; 733 734 flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK; 735 736 /* XXX endianness */ 737 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len, 738 DMA_TO_DEVICE); 739 740 if (dma_mapping_error(ah->dev, bf->skbaddr)) 741 return -ENOSPC; 742 743 ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates, 744 ARRAY_SIZE(bf->rates)); 745 746 rate = ath5k_get_rate(ah->hw, info, bf, 0); 747 748 if (!rate) { 749 ret = -EINVAL; 750 goto err_unmap; 751 } 752 753 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 754 flags |= AR5K_TXDESC_NOACK; 755 756 rc_flags = info->control.rates[0].flags; 757 758 hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0); 759 760 pktlen = skb->len; 761 762 /* FIXME: If we are in g mode and rate is a CCK rate 763 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta 764 * from tx power (value is in dB units already) */ 765 if (info->control.hw_key) { 766 keyidx = info->control.hw_key->hw_key_idx; 767 pktlen += info->control.hw_key->icv_len; 768 } 769 if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 770 flags |= AR5K_TXDESC_RTSENA; 771 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value; 772 duration = le16_to_cpu(ieee80211_rts_duration(ah->hw, 773 info->control.vif, pktlen, info)); 774 } 775 if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 776 flags |= AR5K_TXDESC_CTSENA; 777 cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value; 778 duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw, 779 info->control.vif, pktlen, info)); 780 } 781 782 ret = ah->ah_setup_tx_desc(ah, ds, pktlen, 783 ieee80211_get_hdrlen_from_skb(skb), padsize, 784 get_hw_packet_type(skb), 785 (ah->ah_txpower.txp_requested * 2), 786 hw_rate, 787 bf->rates[0].count, keyidx, ah->ah_tx_ant, flags, 788 cts_rate, duration); 789 if (ret) 790 goto err_unmap; 791 792 /* Set up MRR descriptor */ 793 if (ah->ah_capabilities.cap_has_mrr_support) { 794 memset(mrr_rate, 0, sizeof(mrr_rate)); 795 memset(mrr_tries, 0, sizeof(mrr_tries)); 796 797 for (i = 0; i < 3; i++) { 798 799 rate = ath5k_get_rate(ah->hw, info, bf, i); 800 if (!rate) 801 break; 802 803 mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i); 804 mrr_tries[i] = bf->rates[i].count; 805 } 806 807 ath5k_hw_setup_mrr_tx_desc(ah, ds, 808 mrr_rate[0], mrr_tries[0], 809 mrr_rate[1], mrr_tries[1], 810 mrr_rate[2], mrr_tries[2]); 811 } 812 813 ds->ds_link = 0; 814 ds->ds_data = bf->skbaddr; 815 816 spin_lock_bh(&txq->lock); 817 list_add_tail(&bf->list, &txq->q); 818 txq->txq_len++; 819 if (txq->link == NULL) /* is this first packet? */ 820 ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr); 821 else /* no, so only link it */ 822 *txq->link = bf->daddr; 823 824 txq->link = &ds->ds_link; 825 ath5k_hw_start_tx_dma(ah, txq->qnum); 826 mmiowb(); 827 spin_unlock_bh(&txq->lock); 828 829 return 0; 830 err_unmap: 831 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE); 832 return ret; 833 } 834 835 /*******************\ 836 * Descriptors setup * 837 \*******************/ 838 839 static int 840 ath5k_desc_alloc(struct ath5k_hw *ah) 841 { 842 struct ath5k_desc *ds; 843 struct ath5k_buf *bf; 844 dma_addr_t da; 845 unsigned int i; 846 int ret; 847 848 /* allocate descriptors */ 849 ah->desc_len = sizeof(struct ath5k_desc) * 850 (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1); 851 852 ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len, 853 &ah->desc_daddr, GFP_KERNEL); 854 if (ah->desc == NULL) { 855 ATH5K_ERR(ah, "can't allocate descriptors\n"); 856 ret = -ENOMEM; 857 goto err; 858 } 859 ds = ah->desc; 860 da = ah->desc_daddr; 861 ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n", 862 ds, ah->desc_len, (unsigned long long)ah->desc_daddr); 863 864 bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF, 865 sizeof(struct ath5k_buf), GFP_KERNEL); 866 if (bf == NULL) { 867 ATH5K_ERR(ah, "can't allocate bufptr\n"); 868 ret = -ENOMEM; 869 goto err_free; 870 } 871 ah->bufptr = bf; 872 873 INIT_LIST_HEAD(&ah->rxbuf); 874 for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) { 875 bf->desc = ds; 876 bf->daddr = da; 877 list_add_tail(&bf->list, &ah->rxbuf); 878 } 879 880 INIT_LIST_HEAD(&ah->txbuf); 881 ah->txbuf_len = ATH_TXBUF; 882 for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) { 883 bf->desc = ds; 884 bf->daddr = da; 885 list_add_tail(&bf->list, &ah->txbuf); 886 } 887 888 /* beacon buffers */ 889 INIT_LIST_HEAD(&ah->bcbuf); 890 for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) { 891 bf->desc = ds; 892 bf->daddr = da; 893 list_add_tail(&bf->list, &ah->bcbuf); 894 } 895 896 return 0; 897 err_free: 898 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr); 899 err: 900 ah->desc = NULL; 901 return ret; 902 } 903 904 void 905 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf) 906 { 907 BUG_ON(!bf); 908 if (!bf->skb) 909 return; 910 dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len, 911 DMA_TO_DEVICE); 912 ieee80211_free_txskb(ah->hw, bf->skb); 913 bf->skb = NULL; 914 bf->skbaddr = 0; 915 bf->desc->ds_data = 0; 916 } 917 918 void 919 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf) 920 { 921 struct ath_common *common = ath5k_hw_common(ah); 922 923 BUG_ON(!bf); 924 if (!bf->skb) 925 return; 926 dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize, 927 DMA_FROM_DEVICE); 928 dev_kfree_skb_any(bf->skb); 929 bf->skb = NULL; 930 bf->skbaddr = 0; 931 bf->desc->ds_data = 0; 932 } 933 934 static void 935 ath5k_desc_free(struct ath5k_hw *ah) 936 { 937 struct ath5k_buf *bf; 938 939 list_for_each_entry(bf, &ah->txbuf, list) 940 ath5k_txbuf_free_skb(ah, bf); 941 list_for_each_entry(bf, &ah->rxbuf, list) 942 ath5k_rxbuf_free_skb(ah, bf); 943 list_for_each_entry(bf, &ah->bcbuf, list) 944 ath5k_txbuf_free_skb(ah, bf); 945 946 /* Free memory associated with all descriptors */ 947 dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr); 948 ah->desc = NULL; 949 ah->desc_daddr = 0; 950 951 kfree(ah->bufptr); 952 ah->bufptr = NULL; 953 } 954 955 956 /**************\ 957 * Queues setup * 958 \**************/ 959 960 static struct ath5k_txq * 961 ath5k_txq_setup(struct ath5k_hw *ah, 962 int qtype, int subtype) 963 { 964 struct ath5k_txq *txq; 965 struct ath5k_txq_info qi = { 966 .tqi_subtype = subtype, 967 /* XXX: default values not correct for B and XR channels, 968 * but who cares? */ 969 .tqi_aifs = AR5K_TUNE_AIFS, 970 .tqi_cw_min = AR5K_TUNE_CWMIN, 971 .tqi_cw_max = AR5K_TUNE_CWMAX 972 }; 973 int qnum; 974 975 /* 976 * Enable interrupts only for EOL and DESC conditions. 977 * We mark tx descriptors to receive a DESC interrupt 978 * when a tx queue gets deep; otherwise we wait for the 979 * EOL to reap descriptors. Note that this is done to 980 * reduce interrupt load and this only defers reaping 981 * descriptors, never transmitting frames. Aside from 982 * reducing interrupts this also permits more concurrency. 983 * The only potential downside is if the tx queue backs 984 * up in which case the top half of the kernel may backup 985 * due to a lack of tx descriptors. 986 */ 987 qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE | 988 AR5K_TXQ_FLAG_TXDESCINT_ENABLE; 989 qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi); 990 if (qnum < 0) { 991 /* 992 * NB: don't print a message, this happens 993 * normally on parts with too few tx queues 994 */ 995 return ERR_PTR(qnum); 996 } 997 txq = &ah->txqs[qnum]; 998 if (!txq->setup) { 999 txq->qnum = qnum; 1000 txq->link = NULL; 1001 INIT_LIST_HEAD(&txq->q); 1002 spin_lock_init(&txq->lock); 1003 txq->setup = true; 1004 txq->txq_len = 0; 1005 txq->txq_max = ATH5K_TXQ_LEN_MAX; 1006 txq->txq_poll_mark = false; 1007 txq->txq_stuck = 0; 1008 } 1009 return &ah->txqs[qnum]; 1010 } 1011 1012 static int 1013 ath5k_beaconq_setup(struct ath5k_hw *ah) 1014 { 1015 struct ath5k_txq_info qi = { 1016 /* XXX: default values not correct for B and XR channels, 1017 * but who cares? */ 1018 .tqi_aifs = AR5K_TUNE_AIFS, 1019 .tqi_cw_min = AR5K_TUNE_CWMIN, 1020 .tqi_cw_max = AR5K_TUNE_CWMAX, 1021 /* NB: for dynamic turbo, don't enable any other interrupts */ 1022 .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE 1023 }; 1024 1025 return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi); 1026 } 1027 1028 static int 1029 ath5k_beaconq_config(struct ath5k_hw *ah) 1030 { 1031 struct ath5k_txq_info qi; 1032 int ret; 1033 1034 ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi); 1035 if (ret) 1036 goto err; 1037 1038 if (ah->opmode == NL80211_IFTYPE_AP || 1039 ah->opmode == NL80211_IFTYPE_MESH_POINT) { 1040 /* 1041 * Always burst out beacon and CAB traffic 1042 * (aifs = cwmin = cwmax = 0) 1043 */ 1044 qi.tqi_aifs = 0; 1045 qi.tqi_cw_min = 0; 1046 qi.tqi_cw_max = 0; 1047 } else if (ah->opmode == NL80211_IFTYPE_ADHOC) { 1048 /* 1049 * Adhoc mode; backoff between 0 and (2 * cw_min). 1050 */ 1051 qi.tqi_aifs = 0; 1052 qi.tqi_cw_min = 0; 1053 qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN; 1054 } 1055 1056 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1057 "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n", 1058 qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max); 1059 1060 ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi); 1061 if (ret) { 1062 ATH5K_ERR(ah, "%s: unable to update parameters for beacon " 1063 "hardware queue!\n", __func__); 1064 goto err; 1065 } 1066 ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */ 1067 if (ret) 1068 goto err; 1069 1070 /* reconfigure cabq with ready time to 80% of beacon_interval */ 1071 ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi); 1072 if (ret) 1073 goto err; 1074 1075 qi.tqi_ready_time = (ah->bintval * 80) / 100; 1076 ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi); 1077 if (ret) 1078 goto err; 1079 1080 ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB); 1081 err: 1082 return ret; 1083 } 1084 1085 /** 1086 * ath5k_drain_tx_buffs - Empty tx buffers 1087 * 1088 * @ah The &struct ath5k_hw 1089 * 1090 * Empty tx buffers from all queues in preparation 1091 * of a reset or during shutdown. 1092 * 1093 * NB: this assumes output has been stopped and 1094 * we do not need to block ath5k_tx_tasklet 1095 */ 1096 static void 1097 ath5k_drain_tx_buffs(struct ath5k_hw *ah) 1098 { 1099 struct ath5k_txq *txq; 1100 struct ath5k_buf *bf, *bf0; 1101 int i; 1102 1103 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) { 1104 if (ah->txqs[i].setup) { 1105 txq = &ah->txqs[i]; 1106 spin_lock_bh(&txq->lock); 1107 list_for_each_entry_safe(bf, bf0, &txq->q, list) { 1108 ath5k_debug_printtxbuf(ah, bf); 1109 1110 ath5k_txbuf_free_skb(ah, bf); 1111 1112 spin_lock(&ah->txbuflock); 1113 list_move_tail(&bf->list, &ah->txbuf); 1114 ah->txbuf_len++; 1115 txq->txq_len--; 1116 spin_unlock(&ah->txbuflock); 1117 } 1118 txq->link = NULL; 1119 txq->txq_poll_mark = false; 1120 spin_unlock_bh(&txq->lock); 1121 } 1122 } 1123 } 1124 1125 static void 1126 ath5k_txq_release(struct ath5k_hw *ah) 1127 { 1128 struct ath5k_txq *txq = ah->txqs; 1129 unsigned int i; 1130 1131 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++) 1132 if (txq->setup) { 1133 ath5k_hw_release_tx_queue(ah, txq->qnum); 1134 txq->setup = false; 1135 } 1136 } 1137 1138 1139 /*************\ 1140 * RX Handling * 1141 \*************/ 1142 1143 /* 1144 * Enable the receive h/w following a reset. 1145 */ 1146 static int 1147 ath5k_rx_start(struct ath5k_hw *ah) 1148 { 1149 struct ath_common *common = ath5k_hw_common(ah); 1150 struct ath5k_buf *bf; 1151 int ret; 1152 1153 common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz); 1154 1155 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n", 1156 common->cachelsz, common->rx_bufsize); 1157 1158 spin_lock_bh(&ah->rxbuflock); 1159 ah->rxlink = NULL; 1160 list_for_each_entry(bf, &ah->rxbuf, list) { 1161 ret = ath5k_rxbuf_setup(ah, bf); 1162 if (ret != 0) { 1163 spin_unlock_bh(&ah->rxbuflock); 1164 goto err; 1165 } 1166 } 1167 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list); 1168 ath5k_hw_set_rxdp(ah, bf->daddr); 1169 spin_unlock_bh(&ah->rxbuflock); 1170 1171 ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */ 1172 ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */ 1173 ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */ 1174 1175 return 0; 1176 err: 1177 return ret; 1178 } 1179 1180 /* 1181 * Disable the receive logic on PCU (DRU) 1182 * In preparation for a shutdown. 1183 * 1184 * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop 1185 * does. 1186 */ 1187 static void 1188 ath5k_rx_stop(struct ath5k_hw *ah) 1189 { 1190 1191 ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */ 1192 ath5k_hw_stop_rx_pcu(ah); /* disable PCU */ 1193 1194 ath5k_debug_printrxbuffs(ah); 1195 } 1196 1197 static unsigned int 1198 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb, 1199 struct ath5k_rx_status *rs) 1200 { 1201 struct ath_common *common = ath5k_hw_common(ah); 1202 struct ieee80211_hdr *hdr = (void *)skb->data; 1203 unsigned int keyix, hlen; 1204 1205 if (!(rs->rs_status & AR5K_RXERR_DECRYPT) && 1206 rs->rs_keyix != AR5K_RXKEYIX_INVALID) 1207 return RX_FLAG_DECRYPTED; 1208 1209 /* Apparently when a default key is used to decrypt the packet 1210 the hw does not set the index used to decrypt. In such cases 1211 get the index from the packet. */ 1212 hlen = ieee80211_hdrlen(hdr->frame_control); 1213 if (ieee80211_has_protected(hdr->frame_control) && 1214 !(rs->rs_status & AR5K_RXERR_DECRYPT) && 1215 skb->len >= hlen + 4) { 1216 keyix = skb->data[hlen + 3] >> 6; 1217 1218 if (test_bit(keyix, common->keymap)) 1219 return RX_FLAG_DECRYPTED; 1220 } 1221 1222 return 0; 1223 } 1224 1225 1226 static void 1227 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb, 1228 struct ieee80211_rx_status *rxs) 1229 { 1230 u64 tsf, bc_tstamp; 1231 u32 hw_tu; 1232 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data; 1233 1234 if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) { 1235 /* 1236 * Received an IBSS beacon with the same BSSID. Hardware *must* 1237 * have updated the local TSF. We have to work around various 1238 * hardware bugs, though... 1239 */ 1240 tsf = ath5k_hw_get_tsf64(ah); 1241 bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp); 1242 hw_tu = TSF_TO_TU(tsf); 1243 1244 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 1245 "beacon %llx mactime %llx (diff %lld) tsf now %llx\n", 1246 (unsigned long long)bc_tstamp, 1247 (unsigned long long)rxs->mactime, 1248 (unsigned long long)(rxs->mactime - bc_tstamp), 1249 (unsigned long long)tsf); 1250 1251 /* 1252 * Sometimes the HW will give us a wrong tstamp in the rx 1253 * status, causing the timestamp extension to go wrong. 1254 * (This seems to happen especially with beacon frames bigger 1255 * than 78 byte (incl. FCS)) 1256 * But we know that the receive timestamp must be later than the 1257 * timestamp of the beacon since HW must have synced to that. 1258 * 1259 * NOTE: here we assume mactime to be after the frame was 1260 * received, not like mac80211 which defines it at the start. 1261 */ 1262 if (bc_tstamp > rxs->mactime) { 1263 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 1264 "fixing mactime from %llx to %llx\n", 1265 (unsigned long long)rxs->mactime, 1266 (unsigned long long)tsf); 1267 rxs->mactime = tsf; 1268 } 1269 1270 /* 1271 * Local TSF might have moved higher than our beacon timers, 1272 * in that case we have to update them to continue sending 1273 * beacons. This also takes care of synchronizing beacon sending 1274 * times with other stations. 1275 */ 1276 if (hw_tu >= ah->nexttbtt) 1277 ath5k_beacon_update_timers(ah, bc_tstamp); 1278 1279 /* Check if the beacon timers are still correct, because a TSF 1280 * update might have created a window between them - for a 1281 * longer description see the comment of this function: */ 1282 if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) { 1283 ath5k_beacon_update_timers(ah, bc_tstamp); 1284 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 1285 "fixed beacon timers after beacon receive\n"); 1286 } 1287 } 1288 } 1289 1290 /* 1291 * Compute padding position. skb must contain an IEEE 802.11 frame 1292 */ 1293 static int ath5k_common_padpos(struct sk_buff *skb) 1294 { 1295 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1296 __le16 frame_control = hdr->frame_control; 1297 int padpos = 24; 1298 1299 if (ieee80211_has_a4(frame_control)) 1300 padpos += ETH_ALEN; 1301 1302 if (ieee80211_is_data_qos(frame_control)) 1303 padpos += IEEE80211_QOS_CTL_LEN; 1304 1305 return padpos; 1306 } 1307 1308 /* 1309 * This function expects an 802.11 frame and returns the number of 1310 * bytes added, or -1 if we don't have enough header room. 1311 */ 1312 static int ath5k_add_padding(struct sk_buff *skb) 1313 { 1314 int padpos = ath5k_common_padpos(skb); 1315 int padsize = padpos & 3; 1316 1317 if (padsize && skb->len > padpos) { 1318 1319 if (skb_headroom(skb) < padsize) 1320 return -1; 1321 1322 skb_push(skb, padsize); 1323 memmove(skb->data, skb->data + padsize, padpos); 1324 return padsize; 1325 } 1326 1327 return 0; 1328 } 1329 1330 /* 1331 * The MAC header is padded to have 32-bit boundary if the 1332 * packet payload is non-zero. The general calculation for 1333 * padsize would take into account odd header lengths: 1334 * padsize = 4 - (hdrlen & 3); however, since only 1335 * even-length headers are used, padding can only be 0 or 2 1336 * bytes and we can optimize this a bit. We must not try to 1337 * remove padding from short control frames that do not have a 1338 * payload. 1339 * 1340 * This function expects an 802.11 frame and returns the number of 1341 * bytes removed. 1342 */ 1343 static int ath5k_remove_padding(struct sk_buff *skb) 1344 { 1345 int padpos = ath5k_common_padpos(skb); 1346 int padsize = padpos & 3; 1347 1348 if (padsize && skb->len >= padpos + padsize) { 1349 memmove(skb->data + padsize, skb->data, padpos); 1350 skb_pull(skb, padsize); 1351 return padsize; 1352 } 1353 1354 return 0; 1355 } 1356 1357 static void 1358 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb, 1359 struct ath5k_rx_status *rs) 1360 { 1361 struct ieee80211_rx_status *rxs; 1362 struct ath_common *common = ath5k_hw_common(ah); 1363 1364 ath5k_remove_padding(skb); 1365 1366 rxs = IEEE80211_SKB_RXCB(skb); 1367 1368 rxs->flag = 0; 1369 if (unlikely(rs->rs_status & AR5K_RXERR_MIC)) 1370 rxs->flag |= RX_FLAG_MMIC_ERROR; 1371 if (unlikely(rs->rs_status & AR5K_RXERR_CRC)) 1372 rxs->flag |= RX_FLAG_FAILED_FCS_CRC; 1373 1374 1375 /* 1376 * always extend the mac timestamp, since this information is 1377 * also needed for proper IBSS merging. 1378 * 1379 * XXX: it might be too late to do it here, since rs_tstamp is 1380 * 15bit only. that means TSF extension has to be done within 1381 * 32768usec (about 32ms). it might be necessary to move this to 1382 * the interrupt handler, like it is done in madwifi. 1383 */ 1384 rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp); 1385 rxs->flag |= RX_FLAG_MACTIME_END; 1386 1387 rxs->freq = ah->curchan->center_freq; 1388 rxs->band = ah->curchan->band; 1389 1390 rxs->signal = ah->ah_noise_floor + rs->rs_rssi; 1391 1392 rxs->antenna = rs->rs_antenna; 1393 1394 if (rs->rs_antenna > 0 && rs->rs_antenna < 5) 1395 ah->stats.antenna_rx[rs->rs_antenna]++; 1396 else 1397 ah->stats.antenna_rx[0]++; /* invalid */ 1398 1399 rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate); 1400 rxs->flag |= ath5k_rx_decrypted(ah, skb, rs); 1401 switch (ah->ah_bwmode) { 1402 case AR5K_BWMODE_5MHZ: 1403 rxs->flag |= RX_FLAG_5MHZ; 1404 break; 1405 case AR5K_BWMODE_10MHZ: 1406 rxs->flag |= RX_FLAG_10MHZ; 1407 break; 1408 default: 1409 break; 1410 } 1411 1412 if (rs->rs_rate == 1413 ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short) 1414 rxs->flag |= RX_FLAG_SHORTPRE; 1415 1416 trace_ath5k_rx(ah, skb); 1417 1418 if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) { 1419 ewma_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi); 1420 1421 /* check beacons in IBSS mode */ 1422 if (ah->opmode == NL80211_IFTYPE_ADHOC) 1423 ath5k_check_ibss_tsf(ah, skb, rxs); 1424 } 1425 1426 ieee80211_rx(ah->hw, skb); 1427 } 1428 1429 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not? 1430 * 1431 * Check if we want to further process this frame or not. Also update 1432 * statistics. Return true if we want this frame, false if not. 1433 */ 1434 static bool 1435 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs) 1436 { 1437 ah->stats.rx_all_count++; 1438 ah->stats.rx_bytes_count += rs->rs_datalen; 1439 1440 if (unlikely(rs->rs_status)) { 1441 unsigned int filters; 1442 1443 if (rs->rs_status & AR5K_RXERR_CRC) 1444 ah->stats.rxerr_crc++; 1445 if (rs->rs_status & AR5K_RXERR_FIFO) 1446 ah->stats.rxerr_fifo++; 1447 if (rs->rs_status & AR5K_RXERR_PHY) { 1448 ah->stats.rxerr_phy++; 1449 if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32) 1450 ah->stats.rxerr_phy_code[rs->rs_phyerr]++; 1451 1452 /* 1453 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC. 1454 * These restarts happen when the radio resynchronizes to a stronger frame 1455 * while receiving a weaker frame. Here we receive the prefix of the weak 1456 * frame. Since these are incomplete packets, mark their CRC as invalid. 1457 */ 1458 if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART || 1459 rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) { 1460 rs->rs_status |= AR5K_RXERR_CRC; 1461 rs->rs_status &= ~AR5K_RXERR_PHY; 1462 } else { 1463 return false; 1464 } 1465 } 1466 if (rs->rs_status & AR5K_RXERR_DECRYPT) { 1467 /* 1468 * Decrypt error. If the error occurred 1469 * because there was no hardware key, then 1470 * let the frame through so the upper layers 1471 * can process it. This is necessary for 5210 1472 * parts which have no way to setup a ``clear'' 1473 * key cache entry. 1474 * 1475 * XXX do key cache faulting 1476 */ 1477 ah->stats.rxerr_decrypt++; 1478 if (rs->rs_keyix == AR5K_RXKEYIX_INVALID && 1479 !(rs->rs_status & AR5K_RXERR_CRC)) 1480 return true; 1481 } 1482 if (rs->rs_status & AR5K_RXERR_MIC) { 1483 ah->stats.rxerr_mic++; 1484 return true; 1485 } 1486 1487 /* 1488 * Reject any frames with non-crypto errors, and take into account the 1489 * current FIF_* filters. 1490 */ 1491 filters = AR5K_RXERR_DECRYPT; 1492 if (ah->fif_filter_flags & FIF_FCSFAIL) 1493 filters |= AR5K_RXERR_CRC; 1494 1495 if (rs->rs_status & ~filters) 1496 return false; 1497 } 1498 1499 if (unlikely(rs->rs_more)) { 1500 ah->stats.rxerr_jumbo++; 1501 return false; 1502 } 1503 return true; 1504 } 1505 1506 static void 1507 ath5k_set_current_imask(struct ath5k_hw *ah) 1508 { 1509 enum ath5k_int imask; 1510 unsigned long flags; 1511 1512 spin_lock_irqsave(&ah->irqlock, flags); 1513 imask = ah->imask; 1514 if (ah->rx_pending) 1515 imask &= ~AR5K_INT_RX_ALL; 1516 if (ah->tx_pending) 1517 imask &= ~AR5K_INT_TX_ALL; 1518 ath5k_hw_set_imr(ah, imask); 1519 spin_unlock_irqrestore(&ah->irqlock, flags); 1520 } 1521 1522 static void 1523 ath5k_tasklet_rx(unsigned long data) 1524 { 1525 struct ath5k_rx_status rs = {}; 1526 struct sk_buff *skb, *next_skb; 1527 dma_addr_t next_skb_addr; 1528 struct ath5k_hw *ah = (void *)data; 1529 struct ath_common *common = ath5k_hw_common(ah); 1530 struct ath5k_buf *bf; 1531 struct ath5k_desc *ds; 1532 int ret; 1533 1534 spin_lock(&ah->rxbuflock); 1535 if (list_empty(&ah->rxbuf)) { 1536 ATH5K_WARN(ah, "empty rx buf pool\n"); 1537 goto unlock; 1538 } 1539 do { 1540 bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list); 1541 BUG_ON(bf->skb == NULL); 1542 skb = bf->skb; 1543 ds = bf->desc; 1544 1545 /* bail if HW is still using self-linked descriptor */ 1546 if (ath5k_hw_get_rxdp(ah) == bf->daddr) 1547 break; 1548 1549 ret = ah->ah_proc_rx_desc(ah, ds, &rs); 1550 if (unlikely(ret == -EINPROGRESS)) 1551 break; 1552 else if (unlikely(ret)) { 1553 ATH5K_ERR(ah, "error in processing rx descriptor\n"); 1554 ah->stats.rxerr_proc++; 1555 break; 1556 } 1557 1558 if (ath5k_receive_frame_ok(ah, &rs)) { 1559 next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr); 1560 1561 /* 1562 * If we can't replace bf->skb with a new skb under 1563 * memory pressure, just skip this packet 1564 */ 1565 if (!next_skb) 1566 goto next; 1567 1568 dma_unmap_single(ah->dev, bf->skbaddr, 1569 common->rx_bufsize, 1570 DMA_FROM_DEVICE); 1571 1572 skb_put(skb, rs.rs_datalen); 1573 1574 ath5k_receive_frame(ah, skb, &rs); 1575 1576 bf->skb = next_skb; 1577 bf->skbaddr = next_skb_addr; 1578 } 1579 next: 1580 list_move_tail(&bf->list, &ah->rxbuf); 1581 } while (ath5k_rxbuf_setup(ah, bf) == 0); 1582 unlock: 1583 spin_unlock(&ah->rxbuflock); 1584 ah->rx_pending = false; 1585 ath5k_set_current_imask(ah); 1586 } 1587 1588 1589 /*************\ 1590 * TX Handling * 1591 \*************/ 1592 1593 void 1594 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb, 1595 struct ath5k_txq *txq, struct ieee80211_tx_control *control) 1596 { 1597 struct ath5k_hw *ah = hw->priv; 1598 struct ath5k_buf *bf; 1599 unsigned long flags; 1600 int padsize; 1601 1602 trace_ath5k_tx(ah, skb, txq); 1603 1604 /* 1605 * The hardware expects the header padded to 4 byte boundaries. 1606 * If this is not the case, we add the padding after the header. 1607 */ 1608 padsize = ath5k_add_padding(skb); 1609 if (padsize < 0) { 1610 ATH5K_ERR(ah, "tx hdrlen not %%4: not enough" 1611 " headroom to pad"); 1612 goto drop_packet; 1613 } 1614 1615 if (txq->txq_len >= txq->txq_max && 1616 txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX) 1617 ieee80211_stop_queue(hw, txq->qnum); 1618 1619 spin_lock_irqsave(&ah->txbuflock, flags); 1620 if (list_empty(&ah->txbuf)) { 1621 ATH5K_ERR(ah, "no further txbuf available, dropping packet\n"); 1622 spin_unlock_irqrestore(&ah->txbuflock, flags); 1623 ieee80211_stop_queues(hw); 1624 goto drop_packet; 1625 } 1626 bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list); 1627 list_del(&bf->list); 1628 ah->txbuf_len--; 1629 if (list_empty(&ah->txbuf)) 1630 ieee80211_stop_queues(hw); 1631 spin_unlock_irqrestore(&ah->txbuflock, flags); 1632 1633 bf->skb = skb; 1634 1635 if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) { 1636 bf->skb = NULL; 1637 spin_lock_irqsave(&ah->txbuflock, flags); 1638 list_add_tail(&bf->list, &ah->txbuf); 1639 ah->txbuf_len++; 1640 spin_unlock_irqrestore(&ah->txbuflock, flags); 1641 goto drop_packet; 1642 } 1643 return; 1644 1645 drop_packet: 1646 ieee80211_free_txskb(hw, skb); 1647 } 1648 1649 static void 1650 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb, 1651 struct ath5k_txq *txq, struct ath5k_tx_status *ts, 1652 struct ath5k_buf *bf) 1653 { 1654 struct ieee80211_tx_info *info; 1655 u8 tries[3]; 1656 int i; 1657 int size = 0; 1658 1659 ah->stats.tx_all_count++; 1660 ah->stats.tx_bytes_count += skb->len; 1661 info = IEEE80211_SKB_CB(skb); 1662 1663 size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates)); 1664 memcpy(info->status.rates, bf->rates, size); 1665 1666 tries[0] = info->status.rates[0].count; 1667 tries[1] = info->status.rates[1].count; 1668 tries[2] = info->status.rates[2].count; 1669 1670 ieee80211_tx_info_clear_status(info); 1671 1672 for (i = 0; i < ts->ts_final_idx; i++) { 1673 struct ieee80211_tx_rate *r = 1674 &info->status.rates[i]; 1675 1676 r->count = tries[i]; 1677 } 1678 1679 info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry; 1680 info->status.rates[ts->ts_final_idx + 1].idx = -1; 1681 1682 if (unlikely(ts->ts_status)) { 1683 ah->stats.ack_fail++; 1684 if (ts->ts_status & AR5K_TXERR_FILT) { 1685 info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 1686 ah->stats.txerr_filt++; 1687 } 1688 if (ts->ts_status & AR5K_TXERR_XRETRY) 1689 ah->stats.txerr_retry++; 1690 if (ts->ts_status & AR5K_TXERR_FIFO) 1691 ah->stats.txerr_fifo++; 1692 } else { 1693 info->flags |= IEEE80211_TX_STAT_ACK; 1694 info->status.ack_signal = ts->ts_rssi; 1695 1696 /* count the successful attempt as well */ 1697 info->status.rates[ts->ts_final_idx].count++; 1698 } 1699 1700 /* 1701 * Remove MAC header padding before giving the frame 1702 * back to mac80211. 1703 */ 1704 ath5k_remove_padding(skb); 1705 1706 if (ts->ts_antenna > 0 && ts->ts_antenna < 5) 1707 ah->stats.antenna_tx[ts->ts_antenna]++; 1708 else 1709 ah->stats.antenna_tx[0]++; /* invalid */ 1710 1711 trace_ath5k_tx_complete(ah, skb, txq, ts); 1712 ieee80211_tx_status(ah->hw, skb); 1713 } 1714 1715 static void 1716 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq) 1717 { 1718 struct ath5k_tx_status ts = {}; 1719 struct ath5k_buf *bf, *bf0; 1720 struct ath5k_desc *ds; 1721 struct sk_buff *skb; 1722 int ret; 1723 1724 spin_lock(&txq->lock); 1725 list_for_each_entry_safe(bf, bf0, &txq->q, list) { 1726 1727 txq->txq_poll_mark = false; 1728 1729 /* skb might already have been processed last time. */ 1730 if (bf->skb != NULL) { 1731 ds = bf->desc; 1732 1733 ret = ah->ah_proc_tx_desc(ah, ds, &ts); 1734 if (unlikely(ret == -EINPROGRESS)) 1735 break; 1736 else if (unlikely(ret)) { 1737 ATH5K_ERR(ah, 1738 "error %d while processing " 1739 "queue %u\n", ret, txq->qnum); 1740 break; 1741 } 1742 1743 skb = bf->skb; 1744 bf->skb = NULL; 1745 1746 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, 1747 DMA_TO_DEVICE); 1748 ath5k_tx_frame_completed(ah, skb, txq, &ts, bf); 1749 } 1750 1751 /* 1752 * It's possible that the hardware can say the buffer is 1753 * completed when it hasn't yet loaded the ds_link from 1754 * host memory and moved on. 1755 * Always keep the last descriptor to avoid HW races... 1756 */ 1757 if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) { 1758 spin_lock(&ah->txbuflock); 1759 list_move_tail(&bf->list, &ah->txbuf); 1760 ah->txbuf_len++; 1761 txq->txq_len--; 1762 spin_unlock(&ah->txbuflock); 1763 } 1764 } 1765 spin_unlock(&txq->lock); 1766 if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4) 1767 ieee80211_wake_queue(ah->hw, txq->qnum); 1768 } 1769 1770 static void 1771 ath5k_tasklet_tx(unsigned long data) 1772 { 1773 int i; 1774 struct ath5k_hw *ah = (void *)data; 1775 1776 for (i = 0; i < AR5K_NUM_TX_QUEUES; i++) 1777 if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i))) 1778 ath5k_tx_processq(ah, &ah->txqs[i]); 1779 1780 ah->tx_pending = false; 1781 ath5k_set_current_imask(ah); 1782 } 1783 1784 1785 /*****************\ 1786 * Beacon handling * 1787 \*****************/ 1788 1789 /* 1790 * Setup the beacon frame for transmit. 1791 */ 1792 static int 1793 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf) 1794 { 1795 struct sk_buff *skb = bf->skb; 1796 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1797 struct ath5k_desc *ds; 1798 int ret = 0; 1799 u8 antenna; 1800 u32 flags; 1801 const int padsize = 0; 1802 1803 bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len, 1804 DMA_TO_DEVICE); 1805 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] " 1806 "skbaddr %llx\n", skb, skb->data, skb->len, 1807 (unsigned long long)bf->skbaddr); 1808 1809 if (dma_mapping_error(ah->dev, bf->skbaddr)) { 1810 ATH5K_ERR(ah, "beacon DMA mapping failed\n"); 1811 dev_kfree_skb_any(skb); 1812 bf->skb = NULL; 1813 return -EIO; 1814 } 1815 1816 ds = bf->desc; 1817 antenna = ah->ah_tx_ant; 1818 1819 flags = AR5K_TXDESC_NOACK; 1820 if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) { 1821 ds->ds_link = bf->daddr; /* self-linked */ 1822 flags |= AR5K_TXDESC_VEOL; 1823 } else 1824 ds->ds_link = 0; 1825 1826 /* 1827 * If we use multiple antennas on AP and use 1828 * the Sectored AP scenario, switch antenna every 1829 * 4 beacons to make sure everybody hears our AP. 1830 * When a client tries to associate, hw will keep 1831 * track of the tx antenna to be used for this client 1832 * automatically, based on ACKed packets. 1833 * 1834 * Note: AP still listens and transmits RTS on the 1835 * default antenna which is supposed to be an omni. 1836 * 1837 * Note2: On sectored scenarios it's possible to have 1838 * multiple antennas (1 omni -- the default -- and 14 1839 * sectors), so if we choose to actually support this 1840 * mode, we need to allow the user to set how many antennas 1841 * we have and tweak the code below to send beacons 1842 * on all of them. 1843 */ 1844 if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP) 1845 antenna = ah->bsent & 4 ? 2 : 1; 1846 1847 1848 /* FIXME: If we are in g mode and rate is a CCK rate 1849 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta 1850 * from tx power (value is in dB units already) */ 1851 ds->ds_data = bf->skbaddr; 1852 ret = ah->ah_setup_tx_desc(ah, ds, skb->len, 1853 ieee80211_get_hdrlen_from_skb(skb), padsize, 1854 AR5K_PKT_TYPE_BEACON, 1855 (ah->ah_txpower.txp_requested * 2), 1856 ieee80211_get_tx_rate(ah->hw, info)->hw_value, 1857 1, AR5K_TXKEYIX_INVALID, 1858 antenna, flags, 0, 0); 1859 if (ret) 1860 goto err_unmap; 1861 1862 return 0; 1863 err_unmap: 1864 dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE); 1865 return ret; 1866 } 1867 1868 /* 1869 * Updates the beacon that is sent by ath5k_beacon_send. For adhoc, 1870 * this is called only once at config_bss time, for AP we do it every 1871 * SWBA interrupt so that the TIM will reflect buffered frames. 1872 * 1873 * Called with the beacon lock. 1874 */ 1875 int 1876 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1877 { 1878 int ret; 1879 struct ath5k_hw *ah = hw->priv; 1880 struct ath5k_vif *avf; 1881 struct sk_buff *skb; 1882 1883 if (WARN_ON(!vif)) { 1884 ret = -EINVAL; 1885 goto out; 1886 } 1887 1888 skb = ieee80211_beacon_get(hw, vif); 1889 1890 if (!skb) { 1891 ret = -ENOMEM; 1892 goto out; 1893 } 1894 1895 avf = (void *)vif->drv_priv; 1896 ath5k_txbuf_free_skb(ah, avf->bbuf); 1897 avf->bbuf->skb = skb; 1898 ret = ath5k_beacon_setup(ah, avf->bbuf); 1899 out: 1900 return ret; 1901 } 1902 1903 /* 1904 * Transmit a beacon frame at SWBA. Dynamic updates to the 1905 * frame contents are done as needed and the slot time is 1906 * also adjusted based on current state. 1907 * 1908 * This is called from software irq context (beacontq tasklets) 1909 * or user context from ath5k_beacon_config. 1910 */ 1911 static void 1912 ath5k_beacon_send(struct ath5k_hw *ah) 1913 { 1914 struct ieee80211_vif *vif; 1915 struct ath5k_vif *avf; 1916 struct ath5k_buf *bf; 1917 struct sk_buff *skb; 1918 int err; 1919 1920 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n"); 1921 1922 /* 1923 * Check if the previous beacon has gone out. If 1924 * not, don't don't try to post another: skip this 1925 * period and wait for the next. Missed beacons 1926 * indicate a problem and should not occur. If we 1927 * miss too many consecutive beacons reset the device. 1928 */ 1929 if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) { 1930 ah->bmisscount++; 1931 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1932 "missed %u consecutive beacons\n", ah->bmisscount); 1933 if (ah->bmisscount > 10) { /* NB: 10 is a guess */ 1934 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1935 "stuck beacon time (%u missed)\n", 1936 ah->bmisscount); 1937 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 1938 "stuck beacon, resetting\n"); 1939 ieee80211_queue_work(ah->hw, &ah->reset_work); 1940 } 1941 return; 1942 } 1943 if (unlikely(ah->bmisscount != 0)) { 1944 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1945 "resume beacon xmit after %u misses\n", 1946 ah->bmisscount); 1947 ah->bmisscount = 0; 1948 } 1949 1950 if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs + 1951 ah->num_mesh_vifs > 1) || 1952 ah->opmode == NL80211_IFTYPE_MESH_POINT) { 1953 u64 tsf = ath5k_hw_get_tsf64(ah); 1954 u32 tsftu = TSF_TO_TU(tsf); 1955 int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval; 1956 vif = ah->bslot[(slot + 1) % ATH_BCBUF]; 1957 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 1958 "tsf %llx tsftu %x intval %u slot %u vif %p\n", 1959 (unsigned long long)tsf, tsftu, ah->bintval, slot, vif); 1960 } else /* only one interface */ 1961 vif = ah->bslot[0]; 1962 1963 if (!vif) 1964 return; 1965 1966 avf = (void *)vif->drv_priv; 1967 bf = avf->bbuf; 1968 1969 /* 1970 * Stop any current dma and put the new frame on the queue. 1971 * This should never fail since we check above that no frames 1972 * are still pending on the queue. 1973 */ 1974 if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) { 1975 ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq); 1976 /* NB: hw still stops DMA, so proceed */ 1977 } 1978 1979 /* refresh the beacon for AP or MESH mode */ 1980 if (ah->opmode == NL80211_IFTYPE_AP || 1981 ah->opmode == NL80211_IFTYPE_MESH_POINT) { 1982 err = ath5k_beacon_update(ah->hw, vif); 1983 if (err) 1984 return; 1985 } 1986 1987 if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION || 1988 ah->opmode == NL80211_IFTYPE_MONITOR)) { 1989 ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb); 1990 return; 1991 } 1992 1993 trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]); 1994 1995 ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr); 1996 ath5k_hw_start_tx_dma(ah, ah->bhalq); 1997 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n", 1998 ah->bhalq, (unsigned long long)bf->daddr, bf->desc); 1999 2000 skb = ieee80211_get_buffered_bc(ah->hw, vif); 2001 while (skb) { 2002 ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL); 2003 2004 if (ah->cabq->txq_len >= ah->cabq->txq_max) 2005 break; 2006 2007 skb = ieee80211_get_buffered_bc(ah->hw, vif); 2008 } 2009 2010 ah->bsent++; 2011 } 2012 2013 /** 2014 * ath5k_beacon_update_timers - update beacon timers 2015 * 2016 * @ah: struct ath5k_hw pointer we are operating on 2017 * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a 2018 * beacon timer update based on the current HW TSF. 2019 * 2020 * Calculate the next target beacon transmit time (TBTT) based on the timestamp 2021 * of a received beacon or the current local hardware TSF and write it to the 2022 * beacon timer registers. 2023 * 2024 * This is called in a variety of situations, e.g. when a beacon is received, 2025 * when a TSF update has been detected, but also when an new IBSS is created or 2026 * when we otherwise know we have to update the timers, but we keep it in this 2027 * function to have it all together in one place. 2028 */ 2029 void 2030 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf) 2031 { 2032 u32 nexttbtt, intval, hw_tu, bc_tu; 2033 u64 hw_tsf; 2034 2035 intval = ah->bintval & AR5K_BEACON_PERIOD; 2036 if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs 2037 + ah->num_mesh_vifs > 1) { 2038 intval /= ATH_BCBUF; /* staggered multi-bss beacons */ 2039 if (intval < 15) 2040 ATH5K_WARN(ah, "intval %u is too low, min 15\n", 2041 intval); 2042 } 2043 if (WARN_ON(!intval)) 2044 return; 2045 2046 /* beacon TSF converted to TU */ 2047 bc_tu = TSF_TO_TU(bc_tsf); 2048 2049 /* current TSF converted to TU */ 2050 hw_tsf = ath5k_hw_get_tsf64(ah); 2051 hw_tu = TSF_TO_TU(hw_tsf); 2052 2053 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3) 2054 /* We use FUDGE to make sure the next TBTT is ahead of the current TU. 2055 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer 2056 * configuration we need to make sure it is bigger than that. */ 2057 2058 if (bc_tsf == -1) { 2059 /* 2060 * no beacons received, called internally. 2061 * just need to refresh timers based on HW TSF. 2062 */ 2063 nexttbtt = roundup(hw_tu + FUDGE, intval); 2064 } else if (bc_tsf == 0) { 2065 /* 2066 * no beacon received, probably called by ath5k_reset_tsf(). 2067 * reset TSF to start with 0. 2068 */ 2069 nexttbtt = intval; 2070 intval |= AR5K_BEACON_RESET_TSF; 2071 } else if (bc_tsf > hw_tsf) { 2072 /* 2073 * beacon received, SW merge happened but HW TSF not yet updated. 2074 * not possible to reconfigure timers yet, but next time we 2075 * receive a beacon with the same BSSID, the hardware will 2076 * automatically update the TSF and then we need to reconfigure 2077 * the timers. 2078 */ 2079 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2080 "need to wait for HW TSF sync\n"); 2081 return; 2082 } else { 2083 /* 2084 * most important case for beacon synchronization between STA. 2085 * 2086 * beacon received and HW TSF has been already updated by HW. 2087 * update next TBTT based on the TSF of the beacon, but make 2088 * sure it is ahead of our local TSF timer. 2089 */ 2090 nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval); 2091 } 2092 #undef FUDGE 2093 2094 ah->nexttbtt = nexttbtt; 2095 2096 intval |= AR5K_BEACON_ENA; 2097 ath5k_hw_init_beacon_timers(ah, nexttbtt, intval); 2098 2099 /* 2100 * debugging output last in order to preserve the time critical aspect 2101 * of this function 2102 */ 2103 if (bc_tsf == -1) 2104 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2105 "reconfigured timers based on HW TSF\n"); 2106 else if (bc_tsf == 0) 2107 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2108 "reset HW TSF and timers\n"); 2109 else 2110 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2111 "updated timers based on beacon TSF\n"); 2112 2113 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, 2114 "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n", 2115 (unsigned long long) bc_tsf, 2116 (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt); 2117 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n", 2118 intval & AR5K_BEACON_PERIOD, 2119 intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "", 2120 intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : ""); 2121 } 2122 2123 /** 2124 * ath5k_beacon_config - Configure the beacon queues and interrupts 2125 * 2126 * @ah: struct ath5k_hw pointer we are operating on 2127 * 2128 * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA 2129 * interrupts to detect TSF updates only. 2130 */ 2131 void 2132 ath5k_beacon_config(struct ath5k_hw *ah) 2133 { 2134 spin_lock_bh(&ah->block); 2135 ah->bmisscount = 0; 2136 ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA); 2137 2138 if (ah->enable_beacon) { 2139 /* 2140 * In IBSS mode we use a self-linked tx descriptor and let the 2141 * hardware send the beacons automatically. We have to load it 2142 * only once here. 2143 * We use the SWBA interrupt only to keep track of the beacon 2144 * timers in order to detect automatic TSF updates. 2145 */ 2146 ath5k_beaconq_config(ah); 2147 2148 ah->imask |= AR5K_INT_SWBA; 2149 2150 if (ah->opmode == NL80211_IFTYPE_ADHOC) { 2151 if (ath5k_hw_hasveol(ah)) 2152 ath5k_beacon_send(ah); 2153 } else 2154 ath5k_beacon_update_timers(ah, -1); 2155 } else { 2156 ath5k_hw_stop_beacon_queue(ah, ah->bhalq); 2157 } 2158 2159 ath5k_hw_set_imr(ah, ah->imask); 2160 mmiowb(); 2161 spin_unlock_bh(&ah->block); 2162 } 2163 2164 static void ath5k_tasklet_beacon(unsigned long data) 2165 { 2166 struct ath5k_hw *ah = (struct ath5k_hw *) data; 2167 2168 /* 2169 * Software beacon alert--time to send a beacon. 2170 * 2171 * In IBSS mode we use this interrupt just to 2172 * keep track of the next TBTT (target beacon 2173 * transmission time) in order to detect whether 2174 * automatic TSF updates happened. 2175 */ 2176 if (ah->opmode == NL80211_IFTYPE_ADHOC) { 2177 /* XXX: only if VEOL supported */ 2178 u64 tsf = ath5k_hw_get_tsf64(ah); 2179 ah->nexttbtt += ah->bintval; 2180 ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, 2181 "SWBA nexttbtt: %x hw_tu: %x " 2182 "TSF: %llx\n", 2183 ah->nexttbtt, 2184 TSF_TO_TU(tsf), 2185 (unsigned long long) tsf); 2186 } else { 2187 spin_lock(&ah->block); 2188 ath5k_beacon_send(ah); 2189 spin_unlock(&ah->block); 2190 } 2191 } 2192 2193 2194 /********************\ 2195 * Interrupt handling * 2196 \********************/ 2197 2198 static void 2199 ath5k_intr_calibration_poll(struct ath5k_hw *ah) 2200 { 2201 if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) && 2202 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) && 2203 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) { 2204 2205 /* Run ANI only when calibration is not active */ 2206 2207 ah->ah_cal_next_ani = jiffies + 2208 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI); 2209 tasklet_schedule(&ah->ani_tasklet); 2210 2211 } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) && 2212 !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) && 2213 !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) { 2214 2215 /* Run calibration only when another calibration 2216 * is not running. 2217 * 2218 * Note: This is for both full/short calibration, 2219 * if it's time for a full one, ath5k_calibrate_work will deal 2220 * with it. */ 2221 2222 ah->ah_cal_next_short = jiffies + 2223 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT); 2224 ieee80211_queue_work(ah->hw, &ah->calib_work); 2225 } 2226 /* we could use SWI to generate enough interrupts to meet our 2227 * calibration interval requirements, if necessary: 2228 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */ 2229 } 2230 2231 static void 2232 ath5k_schedule_rx(struct ath5k_hw *ah) 2233 { 2234 ah->rx_pending = true; 2235 tasklet_schedule(&ah->rxtq); 2236 } 2237 2238 static void 2239 ath5k_schedule_tx(struct ath5k_hw *ah) 2240 { 2241 ah->tx_pending = true; 2242 tasklet_schedule(&ah->txtq); 2243 } 2244 2245 static irqreturn_t 2246 ath5k_intr(int irq, void *dev_id) 2247 { 2248 struct ath5k_hw *ah = dev_id; 2249 enum ath5k_int status; 2250 unsigned int counter = 1000; 2251 2252 2253 /* 2254 * If hw is not ready (or detached) and we get an 2255 * interrupt, or if we have no interrupts pending 2256 * (that means it's not for us) skip it. 2257 * 2258 * NOTE: Group 0/1 PCI interface registers are not 2259 * supported on WiSOCs, so we can't check for pending 2260 * interrupts (ISR belongs to another register group 2261 * so we are ok). 2262 */ 2263 if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) || 2264 ((ath5k_get_bus_type(ah) != ATH_AHB) && 2265 !ath5k_hw_is_intr_pending(ah)))) 2266 return IRQ_NONE; 2267 2268 /** Main loop **/ 2269 do { 2270 ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */ 2271 2272 ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n", 2273 status, ah->imask); 2274 2275 /* 2276 * Fatal hw error -> Log and reset 2277 * 2278 * Fatal errors are unrecoverable so we have to 2279 * reset the card. These errors include bus and 2280 * dma errors. 2281 */ 2282 if (unlikely(status & AR5K_INT_FATAL)) { 2283 2284 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2285 "fatal int, resetting\n"); 2286 ieee80211_queue_work(ah->hw, &ah->reset_work); 2287 2288 /* 2289 * RX Overrun -> Count and reset if needed 2290 * 2291 * Receive buffers are full. Either the bus is busy or 2292 * the CPU is not fast enough to process all received 2293 * frames. 2294 */ 2295 } else if (unlikely(status & AR5K_INT_RXORN)) { 2296 2297 /* 2298 * Older chipsets need a reset to come out of this 2299 * condition, but we treat it as RX for newer chips. 2300 * We don't know exactly which versions need a reset 2301 * this guess is copied from the HAL. 2302 */ 2303 ah->stats.rxorn_intr++; 2304 2305 if (ah->ah_mac_srev < AR5K_SREV_AR5212) { 2306 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2307 "rx overrun, resetting\n"); 2308 ieee80211_queue_work(ah->hw, &ah->reset_work); 2309 } else 2310 ath5k_schedule_rx(ah); 2311 2312 } else { 2313 2314 /* Software Beacon Alert -> Schedule beacon tasklet */ 2315 if (status & AR5K_INT_SWBA) 2316 tasklet_hi_schedule(&ah->beacontq); 2317 2318 /* 2319 * No more RX descriptors -> Just count 2320 * 2321 * NB: the hardware should re-read the link when 2322 * RXE bit is written, but it doesn't work at 2323 * least on older hardware revs. 2324 */ 2325 if (status & AR5K_INT_RXEOL) 2326 ah->stats.rxeol_intr++; 2327 2328 2329 /* TX Underrun -> Bump tx trigger level */ 2330 if (status & AR5K_INT_TXURN) 2331 ath5k_hw_update_tx_triglevel(ah, true); 2332 2333 /* RX -> Schedule rx tasklet */ 2334 if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR)) 2335 ath5k_schedule_rx(ah); 2336 2337 /* TX -> Schedule tx tasklet */ 2338 if (status & (AR5K_INT_TXOK 2339 | AR5K_INT_TXDESC 2340 | AR5K_INT_TXERR 2341 | AR5K_INT_TXEOL)) 2342 ath5k_schedule_tx(ah); 2343 2344 /* Missed beacon -> TODO 2345 if (status & AR5K_INT_BMISS) 2346 */ 2347 2348 /* MIB event -> Update counters and notify ANI */ 2349 if (status & AR5K_INT_MIB) { 2350 ah->stats.mib_intr++; 2351 ath5k_hw_update_mib_counters(ah); 2352 ath5k_ani_mib_intr(ah); 2353 } 2354 2355 /* GPIO -> Notify RFKill layer */ 2356 if (status & AR5K_INT_GPIO) 2357 tasklet_schedule(&ah->rf_kill.toggleq); 2358 2359 } 2360 2361 if (ath5k_get_bus_type(ah) == ATH_AHB) 2362 break; 2363 2364 } while (ath5k_hw_is_intr_pending(ah) && --counter > 0); 2365 2366 /* 2367 * Until we handle rx/tx interrupts mask them on IMR 2368 * 2369 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets 2370 * and unset after we 've handled the interrupts. 2371 */ 2372 if (ah->rx_pending || ah->tx_pending) 2373 ath5k_set_current_imask(ah); 2374 2375 if (unlikely(!counter)) 2376 ATH5K_WARN(ah, "too many interrupts, giving up for now\n"); 2377 2378 /* Fire up calibration poll */ 2379 ath5k_intr_calibration_poll(ah); 2380 2381 return IRQ_HANDLED; 2382 } 2383 2384 /* 2385 * Periodically recalibrate the PHY to account 2386 * for temperature/environment changes. 2387 */ 2388 static void 2389 ath5k_calibrate_work(struct work_struct *work) 2390 { 2391 struct ath5k_hw *ah = container_of(work, struct ath5k_hw, 2392 calib_work); 2393 2394 /* Should we run a full calibration ? */ 2395 if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) { 2396 2397 ah->ah_cal_next_full = jiffies + 2398 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL); 2399 ah->ah_cal_mask |= AR5K_CALIBRATION_FULL; 2400 2401 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, 2402 "running full calibration\n"); 2403 2404 if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) { 2405 /* 2406 * Rfgain is out of bounds, reset the chip 2407 * to load new gain values. 2408 */ 2409 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2410 "got new rfgain, resetting\n"); 2411 ieee80211_queue_work(ah->hw, &ah->reset_work); 2412 } 2413 } else 2414 ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT; 2415 2416 2417 ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n", 2418 ieee80211_frequency_to_channel(ah->curchan->center_freq), 2419 ah->curchan->hw_value); 2420 2421 if (ath5k_hw_phy_calibrate(ah, ah->curchan)) 2422 ATH5K_ERR(ah, "calibration of channel %u failed\n", 2423 ieee80211_frequency_to_channel( 2424 ah->curchan->center_freq)); 2425 2426 /* Clear calibration flags */ 2427 if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL) 2428 ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL; 2429 else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT) 2430 ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT; 2431 } 2432 2433 2434 static void 2435 ath5k_tasklet_ani(unsigned long data) 2436 { 2437 struct ath5k_hw *ah = (void *)data; 2438 2439 ah->ah_cal_mask |= AR5K_CALIBRATION_ANI; 2440 ath5k_ani_calibration(ah); 2441 ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI; 2442 } 2443 2444 2445 static void 2446 ath5k_tx_complete_poll_work(struct work_struct *work) 2447 { 2448 struct ath5k_hw *ah = container_of(work, struct ath5k_hw, 2449 tx_complete_work.work); 2450 struct ath5k_txq *txq; 2451 int i; 2452 bool needreset = false; 2453 2454 if (!test_bit(ATH_STAT_STARTED, ah->status)) 2455 return; 2456 2457 mutex_lock(&ah->lock); 2458 2459 for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) { 2460 if (ah->txqs[i].setup) { 2461 txq = &ah->txqs[i]; 2462 spin_lock_bh(&txq->lock); 2463 if (txq->txq_len > 1) { 2464 if (txq->txq_poll_mark) { 2465 ATH5K_DBG(ah, ATH5K_DEBUG_XMIT, 2466 "TX queue stuck %d\n", 2467 txq->qnum); 2468 needreset = true; 2469 txq->txq_stuck++; 2470 spin_unlock_bh(&txq->lock); 2471 break; 2472 } else { 2473 txq->txq_poll_mark = true; 2474 } 2475 } 2476 spin_unlock_bh(&txq->lock); 2477 } 2478 } 2479 2480 if (needreset) { 2481 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2482 "TX queues stuck, resetting\n"); 2483 ath5k_reset(ah, NULL, true); 2484 } 2485 2486 mutex_unlock(&ah->lock); 2487 2488 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work, 2489 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT)); 2490 } 2491 2492 2493 /*************************\ 2494 * Initialization routines * 2495 \*************************/ 2496 2497 static const struct ieee80211_iface_limit if_limits[] = { 2498 { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) }, 2499 { .max = 4, .types = 2500 #ifdef CONFIG_MAC80211_MESH 2501 BIT(NL80211_IFTYPE_MESH_POINT) | 2502 #endif 2503 BIT(NL80211_IFTYPE_AP) }, 2504 }; 2505 2506 static const struct ieee80211_iface_combination if_comb = { 2507 .limits = if_limits, 2508 .n_limits = ARRAY_SIZE(if_limits), 2509 .max_interfaces = 2048, 2510 .num_different_channels = 1, 2511 }; 2512 2513 int 2514 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops) 2515 { 2516 struct ieee80211_hw *hw = ah->hw; 2517 struct ath_common *common; 2518 int ret; 2519 int csz; 2520 2521 /* Initialize driver private data */ 2522 SET_IEEE80211_DEV(hw, ah->dev); 2523 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | 2524 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | 2525 IEEE80211_HW_SIGNAL_DBM | 2526 IEEE80211_HW_MFP_CAPABLE | 2527 IEEE80211_HW_REPORTS_TX_ACK_STATUS | 2528 IEEE80211_HW_SUPPORTS_RC_TABLE; 2529 2530 hw->wiphy->interface_modes = 2531 BIT(NL80211_IFTYPE_AP) | 2532 BIT(NL80211_IFTYPE_STATION) | 2533 BIT(NL80211_IFTYPE_ADHOC) | 2534 BIT(NL80211_IFTYPE_MESH_POINT); 2535 2536 hw->wiphy->iface_combinations = &if_comb; 2537 hw->wiphy->n_iface_combinations = 1; 2538 2539 /* SW support for IBSS_RSN is provided by mac80211 */ 2540 hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 2541 2542 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ; 2543 2544 /* both antennas can be configured as RX or TX */ 2545 hw->wiphy->available_antennas_tx = 0x3; 2546 hw->wiphy->available_antennas_rx = 0x3; 2547 2548 hw->extra_tx_headroom = 2; 2549 2550 /* 2551 * Mark the device as detached to avoid processing 2552 * interrupts until setup is complete. 2553 */ 2554 __set_bit(ATH_STAT_INVALID, ah->status); 2555 2556 ah->opmode = NL80211_IFTYPE_STATION; 2557 ah->bintval = 1000; 2558 mutex_init(&ah->lock); 2559 spin_lock_init(&ah->rxbuflock); 2560 spin_lock_init(&ah->txbuflock); 2561 spin_lock_init(&ah->block); 2562 spin_lock_init(&ah->irqlock); 2563 2564 /* Setup interrupt handler */ 2565 ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah); 2566 if (ret) { 2567 ATH5K_ERR(ah, "request_irq failed\n"); 2568 goto err; 2569 } 2570 2571 common = ath5k_hw_common(ah); 2572 common->ops = &ath5k_common_ops; 2573 common->bus_ops = bus_ops; 2574 common->ah = ah; 2575 common->hw = hw; 2576 common->priv = ah; 2577 common->clockrate = 40; 2578 2579 /* 2580 * Cache line size is used to size and align various 2581 * structures used to communicate with the hardware. 2582 */ 2583 ath5k_read_cachesize(common, &csz); 2584 common->cachelsz = csz << 2; /* convert to bytes */ 2585 2586 spin_lock_init(&common->cc_lock); 2587 2588 /* Initialize device */ 2589 ret = ath5k_hw_init(ah); 2590 if (ret) 2591 goto err_irq; 2592 2593 /* Set up multi-rate retry capabilities */ 2594 if (ah->ah_capabilities.cap_has_mrr_support) { 2595 hw->max_rates = 4; 2596 hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT, 2597 AR5K_INIT_RETRY_LONG); 2598 } 2599 2600 hw->vif_data_size = sizeof(struct ath5k_vif); 2601 2602 /* Finish private driver data initialization */ 2603 ret = ath5k_init(hw); 2604 if (ret) 2605 goto err_ah; 2606 2607 ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n", 2608 ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev), 2609 ah->ah_mac_srev, 2610 ah->ah_phy_revision); 2611 2612 if (!ah->ah_single_chip) { 2613 /* Single chip radio (!RF5111) */ 2614 if (ah->ah_radio_5ghz_revision && 2615 !ah->ah_radio_2ghz_revision) { 2616 /* No 5GHz support -> report 2GHz radio */ 2617 if (!test_bit(AR5K_MODE_11A, 2618 ah->ah_capabilities.cap_mode)) { 2619 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n", 2620 ath5k_chip_name(AR5K_VERSION_RAD, 2621 ah->ah_radio_5ghz_revision), 2622 ah->ah_radio_5ghz_revision); 2623 /* No 2GHz support (5110 and some 2624 * 5GHz only cards) -> report 5GHz radio */ 2625 } else if (!test_bit(AR5K_MODE_11B, 2626 ah->ah_capabilities.cap_mode)) { 2627 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n", 2628 ath5k_chip_name(AR5K_VERSION_RAD, 2629 ah->ah_radio_5ghz_revision), 2630 ah->ah_radio_5ghz_revision); 2631 /* Multiband radio */ 2632 } else { 2633 ATH5K_INFO(ah, "RF%s multiband radio found" 2634 " (0x%x)\n", 2635 ath5k_chip_name(AR5K_VERSION_RAD, 2636 ah->ah_radio_5ghz_revision), 2637 ah->ah_radio_5ghz_revision); 2638 } 2639 } 2640 /* Multi chip radio (RF5111 - RF2111) -> 2641 * report both 2GHz/5GHz radios */ 2642 else if (ah->ah_radio_5ghz_revision && 2643 ah->ah_radio_2ghz_revision) { 2644 ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n", 2645 ath5k_chip_name(AR5K_VERSION_RAD, 2646 ah->ah_radio_5ghz_revision), 2647 ah->ah_radio_5ghz_revision); 2648 ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n", 2649 ath5k_chip_name(AR5K_VERSION_RAD, 2650 ah->ah_radio_2ghz_revision), 2651 ah->ah_radio_2ghz_revision); 2652 } 2653 } 2654 2655 ath5k_debug_init_device(ah); 2656 2657 /* ready to process interrupts */ 2658 __clear_bit(ATH_STAT_INVALID, ah->status); 2659 2660 return 0; 2661 err_ah: 2662 ath5k_hw_deinit(ah); 2663 err_irq: 2664 free_irq(ah->irq, ah); 2665 err: 2666 return ret; 2667 } 2668 2669 static int 2670 ath5k_stop_locked(struct ath5k_hw *ah) 2671 { 2672 2673 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n", 2674 test_bit(ATH_STAT_INVALID, ah->status)); 2675 2676 /* 2677 * Shutdown the hardware and driver: 2678 * stop output from above 2679 * disable interrupts 2680 * turn off timers 2681 * turn off the radio 2682 * clear transmit machinery 2683 * clear receive machinery 2684 * drain and release tx queues 2685 * reclaim beacon resources 2686 * power down hardware 2687 * 2688 * Note that some of this work is not possible if the 2689 * hardware is gone (invalid). 2690 */ 2691 ieee80211_stop_queues(ah->hw); 2692 2693 if (!test_bit(ATH_STAT_INVALID, ah->status)) { 2694 ath5k_led_off(ah); 2695 ath5k_hw_set_imr(ah, 0); 2696 synchronize_irq(ah->irq); 2697 ath5k_rx_stop(ah); 2698 ath5k_hw_dma_stop(ah); 2699 ath5k_drain_tx_buffs(ah); 2700 ath5k_hw_phy_disable(ah); 2701 } 2702 2703 return 0; 2704 } 2705 2706 int ath5k_start(struct ieee80211_hw *hw) 2707 { 2708 struct ath5k_hw *ah = hw->priv; 2709 struct ath_common *common = ath5k_hw_common(ah); 2710 int ret, i; 2711 2712 mutex_lock(&ah->lock); 2713 2714 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode); 2715 2716 /* 2717 * Stop anything previously setup. This is safe 2718 * no matter this is the first time through or not. 2719 */ 2720 ath5k_stop_locked(ah); 2721 2722 /* 2723 * The basic interface to setting the hardware in a good 2724 * state is ``reset''. On return the hardware is known to 2725 * be powered up and with interrupts disabled. This must 2726 * be followed by initialization of the appropriate bits 2727 * and then setup of the interrupt mask. 2728 */ 2729 ah->curchan = ah->hw->conf.chandef.chan; 2730 ah->imask = AR5K_INT_RXOK 2731 | AR5K_INT_RXERR 2732 | AR5K_INT_RXEOL 2733 | AR5K_INT_RXORN 2734 | AR5K_INT_TXDESC 2735 | AR5K_INT_TXEOL 2736 | AR5K_INT_FATAL 2737 | AR5K_INT_GLOBAL 2738 | AR5K_INT_MIB; 2739 2740 ret = ath5k_reset(ah, NULL, false); 2741 if (ret) 2742 goto done; 2743 2744 if (!ath5k_modparam_no_hw_rfkill_switch) 2745 ath5k_rfkill_hw_start(ah); 2746 2747 /* 2748 * Reset the key cache since some parts do not reset the 2749 * contents on initial power up or resume from suspend. 2750 */ 2751 for (i = 0; i < common->keymax; i++) 2752 ath_hw_keyreset(common, (u16) i); 2753 2754 /* Use higher rates for acks instead of base 2755 * rate */ 2756 ah->ah_ack_bitrate_high = true; 2757 2758 for (i = 0; i < ARRAY_SIZE(ah->bslot); i++) 2759 ah->bslot[i] = NULL; 2760 2761 ret = 0; 2762 done: 2763 mmiowb(); 2764 mutex_unlock(&ah->lock); 2765 2766 set_bit(ATH_STAT_STARTED, ah->status); 2767 ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work, 2768 msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT)); 2769 2770 return ret; 2771 } 2772 2773 static void ath5k_stop_tasklets(struct ath5k_hw *ah) 2774 { 2775 ah->rx_pending = false; 2776 ah->tx_pending = false; 2777 tasklet_kill(&ah->rxtq); 2778 tasklet_kill(&ah->txtq); 2779 tasklet_kill(&ah->beacontq); 2780 tasklet_kill(&ah->ani_tasklet); 2781 } 2782 2783 /* 2784 * Stop the device, grabbing the top-level lock to protect 2785 * against concurrent entry through ath5k_init (which can happen 2786 * if another thread does a system call and the thread doing the 2787 * stop is preempted). 2788 */ 2789 void ath5k_stop(struct ieee80211_hw *hw) 2790 { 2791 struct ath5k_hw *ah = hw->priv; 2792 int ret; 2793 2794 mutex_lock(&ah->lock); 2795 ret = ath5k_stop_locked(ah); 2796 if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) { 2797 /* 2798 * Don't set the card in full sleep mode! 2799 * 2800 * a) When the device is in this state it must be carefully 2801 * woken up or references to registers in the PCI clock 2802 * domain may freeze the bus (and system). This varies 2803 * by chip and is mostly an issue with newer parts 2804 * (madwifi sources mentioned srev >= 0x78) that go to 2805 * sleep more quickly. 2806 * 2807 * b) On older chips full sleep results a weird behaviour 2808 * during wakeup. I tested various cards with srev < 0x78 2809 * and they don't wake up after module reload, a second 2810 * module reload is needed to bring the card up again. 2811 * 2812 * Until we figure out what's going on don't enable 2813 * full chip reset on any chip (this is what Legacy HAL 2814 * and Sam's HAL do anyway). Instead Perform a full reset 2815 * on the device (same as initial state after attach) and 2816 * leave it idle (keep MAC/BB on warm reset) */ 2817 ret = ath5k_hw_on_hold(ah); 2818 2819 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, 2820 "putting device to sleep\n"); 2821 } 2822 2823 mmiowb(); 2824 mutex_unlock(&ah->lock); 2825 2826 ath5k_stop_tasklets(ah); 2827 2828 clear_bit(ATH_STAT_STARTED, ah->status); 2829 cancel_delayed_work_sync(&ah->tx_complete_work); 2830 2831 if (!ath5k_modparam_no_hw_rfkill_switch) 2832 ath5k_rfkill_hw_stop(ah); 2833 } 2834 2835 /* 2836 * Reset the hardware. If chan is not NULL, then also pause rx/tx 2837 * and change to the given channel. 2838 * 2839 * This should be called with ah->lock. 2840 */ 2841 static int 2842 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan, 2843 bool skip_pcu) 2844 { 2845 struct ath_common *common = ath5k_hw_common(ah); 2846 int ret, ani_mode; 2847 bool fast; 2848 2849 ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n"); 2850 2851 ath5k_hw_set_imr(ah, 0); 2852 synchronize_irq(ah->irq); 2853 ath5k_stop_tasklets(ah); 2854 2855 /* Save ani mode and disable ANI during 2856 * reset. If we don't we might get false 2857 * PHY error interrupts. */ 2858 ani_mode = ah->ani_state.ani_mode; 2859 ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF); 2860 2861 /* We are going to empty hw queues 2862 * so we should also free any remaining 2863 * tx buffers */ 2864 ath5k_drain_tx_buffs(ah); 2865 if (chan) 2866 ah->curchan = chan; 2867 2868 fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0; 2869 2870 ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu); 2871 if (ret) { 2872 ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret); 2873 goto err; 2874 } 2875 2876 ret = ath5k_rx_start(ah); 2877 if (ret) { 2878 ATH5K_ERR(ah, "can't start recv logic\n"); 2879 goto err; 2880 } 2881 2882 ath5k_ani_init(ah, ani_mode); 2883 2884 /* 2885 * Set calibration intervals 2886 * 2887 * Note: We don't need to run calibration imediately 2888 * since some initial calibration is done on reset 2889 * even for fast channel switching. Also on scanning 2890 * this will get set again and again and it won't get 2891 * executed unless we connect somewhere and spend some 2892 * time on the channel (that's what calibration needs 2893 * anyway to be accurate). 2894 */ 2895 ah->ah_cal_next_full = jiffies + 2896 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL); 2897 ah->ah_cal_next_ani = jiffies + 2898 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI); 2899 ah->ah_cal_next_short = jiffies + 2900 msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT); 2901 2902 ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8); 2903 2904 /* clear survey data and cycle counters */ 2905 memset(&ah->survey, 0, sizeof(ah->survey)); 2906 spin_lock_bh(&common->cc_lock); 2907 ath_hw_cycle_counters_update(common); 2908 memset(&common->cc_survey, 0, sizeof(common->cc_survey)); 2909 memset(&common->cc_ani, 0, sizeof(common->cc_ani)); 2910 spin_unlock_bh(&common->cc_lock); 2911 2912 /* 2913 * Change channels and update the h/w rate map if we're switching; 2914 * e.g. 11a to 11b/g. 2915 * 2916 * We may be doing a reset in response to an ioctl that changes the 2917 * channel so update any state that might change as a result. 2918 * 2919 * XXX needed? 2920 */ 2921 /* ath5k_chan_change(ah, c); */ 2922 2923 ath5k_beacon_config(ah); 2924 /* intrs are enabled by ath5k_beacon_config */ 2925 2926 ieee80211_wake_queues(ah->hw); 2927 2928 return 0; 2929 err: 2930 return ret; 2931 } 2932 2933 static void ath5k_reset_work(struct work_struct *work) 2934 { 2935 struct ath5k_hw *ah = container_of(work, struct ath5k_hw, 2936 reset_work); 2937 2938 mutex_lock(&ah->lock); 2939 ath5k_reset(ah, NULL, true); 2940 mutex_unlock(&ah->lock); 2941 } 2942 2943 static int 2944 ath5k_init(struct ieee80211_hw *hw) 2945 { 2946 2947 struct ath5k_hw *ah = hw->priv; 2948 struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah); 2949 struct ath5k_txq *txq; 2950 u8 mac[ETH_ALEN] = {}; 2951 int ret; 2952 2953 2954 /* 2955 * Collect the channel list. The 802.11 layer 2956 * is responsible for filtering this list based 2957 * on settings like the phy mode and regulatory 2958 * domain restrictions. 2959 */ 2960 ret = ath5k_setup_bands(hw); 2961 if (ret) { 2962 ATH5K_ERR(ah, "can't get channels\n"); 2963 goto err; 2964 } 2965 2966 /* 2967 * Allocate tx+rx descriptors and populate the lists. 2968 */ 2969 ret = ath5k_desc_alloc(ah); 2970 if (ret) { 2971 ATH5K_ERR(ah, "can't allocate descriptors\n"); 2972 goto err; 2973 } 2974 2975 /* 2976 * Allocate hardware transmit queues: one queue for 2977 * beacon frames and one data queue for each QoS 2978 * priority. Note that hw functions handle resetting 2979 * these queues at the needed time. 2980 */ 2981 ret = ath5k_beaconq_setup(ah); 2982 if (ret < 0) { 2983 ATH5K_ERR(ah, "can't setup a beacon xmit queue\n"); 2984 goto err_desc; 2985 } 2986 ah->bhalq = ret; 2987 ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0); 2988 if (IS_ERR(ah->cabq)) { 2989 ATH5K_ERR(ah, "can't setup cab queue\n"); 2990 ret = PTR_ERR(ah->cabq); 2991 goto err_bhal; 2992 } 2993 2994 /* 5211 and 5212 usually support 10 queues but we better rely on the 2995 * capability information */ 2996 if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) { 2997 /* This order matches mac80211's queue priority, so we can 2998 * directly use the mac80211 queue number without any mapping */ 2999 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO); 3000 if (IS_ERR(txq)) { 3001 ATH5K_ERR(ah, "can't setup xmit queue\n"); 3002 ret = PTR_ERR(txq); 3003 goto err_queues; 3004 } 3005 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI); 3006 if (IS_ERR(txq)) { 3007 ATH5K_ERR(ah, "can't setup xmit queue\n"); 3008 ret = PTR_ERR(txq); 3009 goto err_queues; 3010 } 3011 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE); 3012 if (IS_ERR(txq)) { 3013 ATH5K_ERR(ah, "can't setup xmit queue\n"); 3014 ret = PTR_ERR(txq); 3015 goto err_queues; 3016 } 3017 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK); 3018 if (IS_ERR(txq)) { 3019 ATH5K_ERR(ah, "can't setup xmit queue\n"); 3020 ret = PTR_ERR(txq); 3021 goto err_queues; 3022 } 3023 hw->queues = 4; 3024 } else { 3025 /* older hardware (5210) can only support one data queue */ 3026 txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE); 3027 if (IS_ERR(txq)) { 3028 ATH5K_ERR(ah, "can't setup xmit queue\n"); 3029 ret = PTR_ERR(txq); 3030 goto err_queues; 3031 } 3032 hw->queues = 1; 3033 } 3034 3035 tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah); 3036 tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah); 3037 tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah); 3038 tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah); 3039 3040 INIT_WORK(&ah->reset_work, ath5k_reset_work); 3041 INIT_WORK(&ah->calib_work, ath5k_calibrate_work); 3042 INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work); 3043 3044 ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac); 3045 if (ret) { 3046 ATH5K_ERR(ah, "unable to read address from EEPROM\n"); 3047 goto err_queues; 3048 } 3049 3050 SET_IEEE80211_PERM_ADDR(hw, mac); 3051 /* All MAC address bits matter for ACKs */ 3052 ath5k_update_bssid_mask_and_opmode(ah, NULL); 3053 3054 regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain; 3055 ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier); 3056 if (ret) { 3057 ATH5K_ERR(ah, "can't initialize regulatory system\n"); 3058 goto err_queues; 3059 } 3060 3061 ret = ieee80211_register_hw(hw); 3062 if (ret) { 3063 ATH5K_ERR(ah, "can't register ieee80211 hw\n"); 3064 goto err_queues; 3065 } 3066 3067 if (!ath_is_world_regd(regulatory)) 3068 regulatory_hint(hw->wiphy, regulatory->alpha2); 3069 3070 ath5k_init_leds(ah); 3071 3072 ath5k_sysfs_register(ah); 3073 3074 return 0; 3075 err_queues: 3076 ath5k_txq_release(ah); 3077 err_bhal: 3078 ath5k_hw_release_tx_queue(ah, ah->bhalq); 3079 err_desc: 3080 ath5k_desc_free(ah); 3081 err: 3082 return ret; 3083 } 3084 3085 void 3086 ath5k_deinit_ah(struct ath5k_hw *ah) 3087 { 3088 struct ieee80211_hw *hw = ah->hw; 3089 3090 /* 3091 * NB: the order of these is important: 3092 * o call the 802.11 layer before detaching ath5k_hw to 3093 * ensure callbacks into the driver to delete global 3094 * key cache entries can be handled 3095 * o reclaim the tx queue data structures after calling 3096 * the 802.11 layer as we'll get called back to reclaim 3097 * node state and potentially want to use them 3098 * o to cleanup the tx queues the hal is called, so detach 3099 * it last 3100 * XXX: ??? detach ath5k_hw ??? 3101 * Other than that, it's straightforward... 3102 */ 3103 ieee80211_unregister_hw(hw); 3104 ath5k_desc_free(ah); 3105 ath5k_txq_release(ah); 3106 ath5k_hw_release_tx_queue(ah, ah->bhalq); 3107 ath5k_unregister_leds(ah); 3108 3109 ath5k_sysfs_unregister(ah); 3110 /* 3111 * NB: can't reclaim these until after ieee80211_ifdetach 3112 * returns because we'll get called back to reclaim node 3113 * state and potentially want to use them. 3114 */ 3115 ath5k_hw_deinit(ah); 3116 free_irq(ah->irq, ah); 3117 } 3118 3119 bool 3120 ath5k_any_vif_assoc(struct ath5k_hw *ah) 3121 { 3122 struct ath5k_vif_iter_data iter_data; 3123 iter_data.hw_macaddr = NULL; 3124 iter_data.any_assoc = false; 3125 iter_data.need_set_hw_addr = false; 3126 iter_data.found_active = true; 3127 3128 ieee80211_iterate_active_interfaces_atomic( 3129 ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 3130 ath5k_vif_iter, &iter_data); 3131 return iter_data.any_assoc; 3132 } 3133 3134 void 3135 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable) 3136 { 3137 struct ath5k_hw *ah = hw->priv; 3138 u32 rfilt; 3139 rfilt = ath5k_hw_get_rx_filter(ah); 3140 if (enable) 3141 rfilt |= AR5K_RX_FILTER_BEACON; 3142 else 3143 rfilt &= ~AR5K_RX_FILTER_BEACON; 3144 ath5k_hw_set_rx_filter(ah, rfilt); 3145 ah->filter_flags = rfilt; 3146 } 3147 3148 void _ath5k_printk(const struct ath5k_hw *ah, const char *level, 3149 const char *fmt, ...) 3150 { 3151 struct va_format vaf; 3152 va_list args; 3153 3154 va_start(args, fmt); 3155 3156 vaf.fmt = fmt; 3157 vaf.va = &args; 3158 3159 if (ah && ah->hw) 3160 printk("%s" pr_fmt("%s: %pV"), 3161 level, wiphy_name(ah->hw->wiphy), &vaf); 3162 else 3163 printk("%s" pr_fmt("%pV"), level, &vaf); 3164 3165 va_end(args); 3166 } 3167