xref: /linux/drivers/net/wireless/ath/ath5k/base.c (revision 6000fc4d6f3e55ad52cce8d76317187fe01af2aa)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
46 #include <linux/if.h>
47 #include <linux/io.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/pci.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
53 
54 #include <net/ieee80211_radiotap.h>
55 
56 #include <asm/unaligned.h>
57 
58 #include "base.h"
59 #include "reg.h"
60 #include "debug.h"
61 
62 static int ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
63 static int modparam_nohwcrypt;
64 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
65 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
66 
67 static int modparam_all_channels;
68 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
69 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
70 
71 
72 /******************\
73 * Internal defines *
74 \******************/
75 
76 /* Module info */
77 MODULE_AUTHOR("Jiri Slaby");
78 MODULE_AUTHOR("Nick Kossifidis");
79 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
80 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
81 MODULE_LICENSE("Dual BSD/GPL");
82 MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
83 
84 
85 /* Known PCI ids */
86 static const struct pci_device_id ath5k_pci_id_table[] = {
87 	{ PCI_VDEVICE(ATHEROS, 0x0207), .driver_data = AR5K_AR5210 }, /* 5210 early */
88 	{ PCI_VDEVICE(ATHEROS, 0x0007), .driver_data = AR5K_AR5210 }, /* 5210 */
89 	{ PCI_VDEVICE(ATHEROS, 0x0011), .driver_data = AR5K_AR5211 }, /* 5311 - this is on AHB bus !*/
90 	{ PCI_VDEVICE(ATHEROS, 0x0012), .driver_data = AR5K_AR5211 }, /* 5211 */
91 	{ PCI_VDEVICE(ATHEROS, 0x0013), .driver_data = AR5K_AR5212 }, /* 5212 */
92 	{ PCI_VDEVICE(3COM_2,  0x0013), .driver_data = AR5K_AR5212 }, /* 3com 5212 */
93 	{ PCI_VDEVICE(3COM,    0x0013), .driver_data = AR5K_AR5212 }, /* 3com 3CRDAG675 5212 */
94 	{ PCI_VDEVICE(ATHEROS, 0x1014), .driver_data = AR5K_AR5212 }, /* IBM minipci 5212 */
95 	{ PCI_VDEVICE(ATHEROS, 0x0014), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
96 	{ PCI_VDEVICE(ATHEROS, 0x0015), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
97 	{ PCI_VDEVICE(ATHEROS, 0x0016), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
98 	{ PCI_VDEVICE(ATHEROS, 0x0017), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
99 	{ PCI_VDEVICE(ATHEROS, 0x0018), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
100 	{ PCI_VDEVICE(ATHEROS, 0x0019), .driver_data = AR5K_AR5212 }, /* 5212 combatible */
101 	{ PCI_VDEVICE(ATHEROS, 0x001a), .driver_data = AR5K_AR5212 }, /* 2413 Griffin-lite */
102 	{ PCI_VDEVICE(ATHEROS, 0x001b), .driver_data = AR5K_AR5212 }, /* 5413 Eagle */
103 	{ PCI_VDEVICE(ATHEROS, 0x001c), .driver_data = AR5K_AR5212 }, /* PCI-E cards */
104 	{ PCI_VDEVICE(ATHEROS, 0x001d), .driver_data = AR5K_AR5212 }, /* 2417 Nala */
105 	{ 0 }
106 };
107 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
108 
109 /* Known SREVs */
110 static const struct ath5k_srev_name srev_names[] = {
111 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
112 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
113 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
114 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
115 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
116 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
117 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
118 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
119 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
120 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
121 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
122 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
123 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
124 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
125 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
126 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
127 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
128 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
129 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
130 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
131 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
132 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
133 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
134 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
135 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
136 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
137 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
138 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
139 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
140 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
141 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
142 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
143 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
144 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
145 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
146 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
147 };
148 
149 static const struct ieee80211_rate ath5k_rates[] = {
150 	{ .bitrate = 10,
151 	  .hw_value = ATH5K_RATE_CODE_1M, },
152 	{ .bitrate = 20,
153 	  .hw_value = ATH5K_RATE_CODE_2M,
154 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
155 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
156 	{ .bitrate = 55,
157 	  .hw_value = ATH5K_RATE_CODE_5_5M,
158 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
159 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
160 	{ .bitrate = 110,
161 	  .hw_value = ATH5K_RATE_CODE_11M,
162 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
163 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
164 	{ .bitrate = 60,
165 	  .hw_value = ATH5K_RATE_CODE_6M,
166 	  .flags = 0 },
167 	{ .bitrate = 90,
168 	  .hw_value = ATH5K_RATE_CODE_9M,
169 	  .flags = 0 },
170 	{ .bitrate = 120,
171 	  .hw_value = ATH5K_RATE_CODE_12M,
172 	  .flags = 0 },
173 	{ .bitrate = 180,
174 	  .hw_value = ATH5K_RATE_CODE_18M,
175 	  .flags = 0 },
176 	{ .bitrate = 240,
177 	  .hw_value = ATH5K_RATE_CODE_24M,
178 	  .flags = 0 },
179 	{ .bitrate = 360,
180 	  .hw_value = ATH5K_RATE_CODE_36M,
181 	  .flags = 0 },
182 	{ .bitrate = 480,
183 	  .hw_value = ATH5K_RATE_CODE_48M,
184 	  .flags = 0 },
185 	{ .bitrate = 540,
186 	  .hw_value = ATH5K_RATE_CODE_54M,
187 	  .flags = 0 },
188 	/* XR missing */
189 };
190 
191 /*
192  * Prototypes - PCI stack related functions
193  */
194 static int __devinit	ath5k_pci_probe(struct pci_dev *pdev,
195 				const struct pci_device_id *id);
196 static void __devexit	ath5k_pci_remove(struct pci_dev *pdev);
197 #ifdef CONFIG_PM
198 static int		ath5k_pci_suspend(struct pci_dev *pdev,
199 					pm_message_t state);
200 static int		ath5k_pci_resume(struct pci_dev *pdev);
201 #else
202 #define ath5k_pci_suspend NULL
203 #define ath5k_pci_resume NULL
204 #endif /* CONFIG_PM */
205 
206 static struct pci_driver ath5k_pci_driver = {
207 	.name		= KBUILD_MODNAME,
208 	.id_table	= ath5k_pci_id_table,
209 	.probe		= ath5k_pci_probe,
210 	.remove		= __devexit_p(ath5k_pci_remove),
211 	.suspend	= ath5k_pci_suspend,
212 	.resume		= ath5k_pci_resume,
213 };
214 
215 
216 
217 /*
218  * Prototypes - MAC 802.11 stack related functions
219  */
220 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
221 static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan);
222 static int ath5k_reset_wake(struct ath5k_softc *sc);
223 static int ath5k_start(struct ieee80211_hw *hw);
224 static void ath5k_stop(struct ieee80211_hw *hw);
225 static int ath5k_add_interface(struct ieee80211_hw *hw,
226 		struct ieee80211_if_init_conf *conf);
227 static void ath5k_remove_interface(struct ieee80211_hw *hw,
228 		struct ieee80211_if_init_conf *conf);
229 static int ath5k_config(struct ieee80211_hw *hw, u32 changed);
230 static void ath5k_configure_filter(struct ieee80211_hw *hw,
231 		unsigned int changed_flags,
232 		unsigned int *new_flags,
233 		int mc_count, struct dev_mc_list *mclist);
234 static int ath5k_set_key(struct ieee80211_hw *hw,
235 		enum set_key_cmd cmd,
236 		struct ieee80211_vif *vif, struct ieee80211_sta *sta,
237 		struct ieee80211_key_conf *key);
238 static int ath5k_get_stats(struct ieee80211_hw *hw,
239 		struct ieee80211_low_level_stats *stats);
240 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
241 		struct ieee80211_tx_queue_stats *stats);
242 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
243 static void ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf);
244 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
245 static int ath5k_beacon_update(struct ieee80211_hw *hw,
246 		struct ieee80211_vif *vif);
247 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
248 		struct ieee80211_vif *vif,
249 		struct ieee80211_bss_conf *bss_conf,
250 		u32 changes);
251 
252 static const struct ieee80211_ops ath5k_hw_ops = {
253 	.tx 		= ath5k_tx,
254 	.start 		= ath5k_start,
255 	.stop 		= ath5k_stop,
256 	.add_interface 	= ath5k_add_interface,
257 	.remove_interface = ath5k_remove_interface,
258 	.config 	= ath5k_config,
259 	.configure_filter = ath5k_configure_filter,
260 	.set_key 	= ath5k_set_key,
261 	.get_stats 	= ath5k_get_stats,
262 	.conf_tx 	= NULL,
263 	.get_tx_stats 	= ath5k_get_tx_stats,
264 	.get_tsf 	= ath5k_get_tsf,
265 	.set_tsf 	= ath5k_set_tsf,
266 	.reset_tsf 	= ath5k_reset_tsf,
267 	.bss_info_changed = ath5k_bss_info_changed,
268 };
269 
270 /*
271  * Prototypes - Internal functions
272  */
273 /* Attach detach */
274 static int 	ath5k_attach(struct pci_dev *pdev,
275 			struct ieee80211_hw *hw);
276 static void 	ath5k_detach(struct pci_dev *pdev,
277 			struct ieee80211_hw *hw);
278 /* Channel/mode setup */
279 static inline short ath5k_ieee2mhz(short chan);
280 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
281 				struct ieee80211_channel *channels,
282 				unsigned int mode,
283 				unsigned int max);
284 static int 	ath5k_setup_bands(struct ieee80211_hw *hw);
285 static int 	ath5k_chan_set(struct ath5k_softc *sc,
286 				struct ieee80211_channel *chan);
287 static void	ath5k_setcurmode(struct ath5k_softc *sc,
288 				unsigned int mode);
289 static void	ath5k_mode_setup(struct ath5k_softc *sc);
290 
291 /* Descriptor setup */
292 static int	ath5k_desc_alloc(struct ath5k_softc *sc,
293 				struct pci_dev *pdev);
294 static void	ath5k_desc_free(struct ath5k_softc *sc,
295 				struct pci_dev *pdev);
296 /* Buffers setup */
297 static int 	ath5k_rxbuf_setup(struct ath5k_softc *sc,
298 				struct ath5k_buf *bf);
299 static int 	ath5k_txbuf_setup(struct ath5k_softc *sc,
300 				struct ath5k_buf *bf);
301 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
302 				struct ath5k_buf *bf)
303 {
304 	BUG_ON(!bf);
305 	if (!bf->skb)
306 		return;
307 	pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
308 			PCI_DMA_TODEVICE);
309 	dev_kfree_skb_any(bf->skb);
310 	bf->skb = NULL;
311 }
312 
313 static inline void ath5k_rxbuf_free(struct ath5k_softc *sc,
314 				struct ath5k_buf *bf)
315 {
316 	BUG_ON(!bf);
317 	if (!bf->skb)
318 		return;
319 	pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
320 			PCI_DMA_FROMDEVICE);
321 	dev_kfree_skb_any(bf->skb);
322 	bf->skb = NULL;
323 }
324 
325 
326 /* Queues setup */
327 static struct 	ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
328 				int qtype, int subtype);
329 static int 	ath5k_beaconq_setup(struct ath5k_hw *ah);
330 static int 	ath5k_beaconq_config(struct ath5k_softc *sc);
331 static void 	ath5k_txq_drainq(struct ath5k_softc *sc,
332 				struct ath5k_txq *txq);
333 static void 	ath5k_txq_cleanup(struct ath5k_softc *sc);
334 static void 	ath5k_txq_release(struct ath5k_softc *sc);
335 /* Rx handling */
336 static int 	ath5k_rx_start(struct ath5k_softc *sc);
337 static void 	ath5k_rx_stop(struct ath5k_softc *sc);
338 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
339 					struct ath5k_desc *ds,
340 					struct sk_buff *skb,
341 					struct ath5k_rx_status *rs);
342 static void 	ath5k_tasklet_rx(unsigned long data);
343 /* Tx handling */
344 static void 	ath5k_tx_processq(struct ath5k_softc *sc,
345 				struct ath5k_txq *txq);
346 static void 	ath5k_tasklet_tx(unsigned long data);
347 /* Beacon handling */
348 static int 	ath5k_beacon_setup(struct ath5k_softc *sc,
349 					struct ath5k_buf *bf);
350 static void 	ath5k_beacon_send(struct ath5k_softc *sc);
351 static void 	ath5k_beacon_config(struct ath5k_softc *sc);
352 static void	ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
353 static void	ath5k_tasklet_beacon(unsigned long data);
354 
355 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
356 {
357 	u64 tsf = ath5k_hw_get_tsf64(ah);
358 
359 	if ((tsf & 0x7fff) < rstamp)
360 		tsf -= 0x8000;
361 
362 	return (tsf & ~0x7fff) | rstamp;
363 }
364 
365 /* Interrupt handling */
366 static int 	ath5k_init(struct ath5k_softc *sc);
367 static int 	ath5k_stop_locked(struct ath5k_softc *sc);
368 static int 	ath5k_stop_hw(struct ath5k_softc *sc);
369 static irqreturn_t ath5k_intr(int irq, void *dev_id);
370 static void 	ath5k_tasklet_reset(unsigned long data);
371 
372 static void 	ath5k_calibrate(unsigned long data);
373 
374 /*
375  * Module init/exit functions
376  */
377 static int __init
378 init_ath5k_pci(void)
379 {
380 	int ret;
381 
382 	ath5k_debug_init();
383 
384 	ret = pci_register_driver(&ath5k_pci_driver);
385 	if (ret) {
386 		printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
387 		return ret;
388 	}
389 
390 	return 0;
391 }
392 
393 static void __exit
394 exit_ath5k_pci(void)
395 {
396 	pci_unregister_driver(&ath5k_pci_driver);
397 
398 	ath5k_debug_finish();
399 }
400 
401 module_init(init_ath5k_pci);
402 module_exit(exit_ath5k_pci);
403 
404 
405 /********************\
406 * PCI Initialization *
407 \********************/
408 
409 static const char *
410 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
411 {
412 	const char *name = "xxxxx";
413 	unsigned int i;
414 
415 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
416 		if (srev_names[i].sr_type != type)
417 			continue;
418 
419 		if ((val & 0xf0) == srev_names[i].sr_val)
420 			name = srev_names[i].sr_name;
421 
422 		if ((val & 0xff) == srev_names[i].sr_val) {
423 			name = srev_names[i].sr_name;
424 			break;
425 		}
426 	}
427 
428 	return name;
429 }
430 
431 static int __devinit
432 ath5k_pci_probe(struct pci_dev *pdev,
433 		const struct pci_device_id *id)
434 {
435 	void __iomem *mem;
436 	struct ath5k_softc *sc;
437 	struct ieee80211_hw *hw;
438 	int ret;
439 	u8 csz;
440 
441 	ret = pci_enable_device(pdev);
442 	if (ret) {
443 		dev_err(&pdev->dev, "can't enable device\n");
444 		goto err;
445 	}
446 
447 	/* XXX 32-bit addressing only */
448 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
449 	if (ret) {
450 		dev_err(&pdev->dev, "32-bit DMA not available\n");
451 		goto err_dis;
452 	}
453 
454 	/*
455 	 * Cache line size is used to size and align various
456 	 * structures used to communicate with the hardware.
457 	 */
458 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
459 	if (csz == 0) {
460 		/*
461 		 * Linux 2.4.18 (at least) writes the cache line size
462 		 * register as a 16-bit wide register which is wrong.
463 		 * We must have this setup properly for rx buffer
464 		 * DMA to work so force a reasonable value here if it
465 		 * comes up zero.
466 		 */
467 		csz = L1_CACHE_BYTES / sizeof(u32);
468 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
469 	}
470 	/*
471 	 * The default setting of latency timer yields poor results,
472 	 * set it to the value used by other systems.  It may be worth
473 	 * tweaking this setting more.
474 	 */
475 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
476 
477 	/* Enable bus mastering */
478 	pci_set_master(pdev);
479 
480 	/*
481 	 * Disable the RETRY_TIMEOUT register (0x41) to keep
482 	 * PCI Tx retries from interfering with C3 CPU state.
483 	 */
484 	pci_write_config_byte(pdev, 0x41, 0);
485 
486 	ret = pci_request_region(pdev, 0, "ath5k");
487 	if (ret) {
488 		dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
489 		goto err_dis;
490 	}
491 
492 	mem = pci_iomap(pdev, 0, 0);
493 	if (!mem) {
494 		dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
495 		ret = -EIO;
496 		goto err_reg;
497 	}
498 
499 	/*
500 	 * Allocate hw (mac80211 main struct)
501 	 * and hw->priv (driver private data)
502 	 */
503 	hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
504 	if (hw == NULL) {
505 		dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
506 		ret = -ENOMEM;
507 		goto err_map;
508 	}
509 
510 	dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
511 
512 	/* Initialize driver private data */
513 	SET_IEEE80211_DEV(hw, &pdev->dev);
514 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
515 		    IEEE80211_HW_SIGNAL_DBM |
516 		    IEEE80211_HW_NOISE_DBM;
517 
518 	hw->wiphy->interface_modes =
519 		BIT(NL80211_IFTYPE_AP) |
520 		BIT(NL80211_IFTYPE_STATION) |
521 		BIT(NL80211_IFTYPE_ADHOC) |
522 		BIT(NL80211_IFTYPE_MESH_POINT);
523 
524 	hw->extra_tx_headroom = 2;
525 	hw->channel_change_time = 5000;
526 	sc = hw->priv;
527 	sc->hw = hw;
528 	sc->pdev = pdev;
529 
530 	ath5k_debug_init_device(sc);
531 
532 	/*
533 	 * Mark the device as detached to avoid processing
534 	 * interrupts until setup is complete.
535 	 */
536 	__set_bit(ATH_STAT_INVALID, sc->status);
537 
538 	sc->iobase = mem; /* So we can unmap it on detach */
539 	sc->cachelsz = csz * sizeof(u32); /* convert to bytes */
540 	sc->opmode = NL80211_IFTYPE_STATION;
541 	sc->bintval = 1000;
542 	mutex_init(&sc->lock);
543 	spin_lock_init(&sc->rxbuflock);
544 	spin_lock_init(&sc->txbuflock);
545 	spin_lock_init(&sc->block);
546 
547 	/* Set private data */
548 	pci_set_drvdata(pdev, hw);
549 
550 	/* Setup interrupt handler */
551 	ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
552 	if (ret) {
553 		ATH5K_ERR(sc, "request_irq failed\n");
554 		goto err_free;
555 	}
556 
557 	/* Initialize device */
558 	sc->ah = ath5k_hw_attach(sc, id->driver_data);
559 	if (IS_ERR(sc->ah)) {
560 		ret = PTR_ERR(sc->ah);
561 		goto err_irq;
562 	}
563 
564 	/* set up multi-rate retry capabilities */
565 	if (sc->ah->ah_version == AR5K_AR5212) {
566 		hw->max_rates = 4;
567 		hw->max_rate_tries = 11;
568 	}
569 
570 	/* Finish private driver data initialization */
571 	ret = ath5k_attach(pdev, hw);
572 	if (ret)
573 		goto err_ah;
574 
575 	ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
576 			ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
577 					sc->ah->ah_mac_srev,
578 					sc->ah->ah_phy_revision);
579 
580 	if (!sc->ah->ah_single_chip) {
581 		/* Single chip radio (!RF5111) */
582 		if (sc->ah->ah_radio_5ghz_revision &&
583 			!sc->ah->ah_radio_2ghz_revision) {
584 			/* No 5GHz support -> report 2GHz radio */
585 			if (!test_bit(AR5K_MODE_11A,
586 				sc->ah->ah_capabilities.cap_mode)) {
587 				ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
588 					ath5k_chip_name(AR5K_VERSION_RAD,
589 						sc->ah->ah_radio_5ghz_revision),
590 						sc->ah->ah_radio_5ghz_revision);
591 			/* No 2GHz support (5110 and some
592 			 * 5Ghz only cards) -> report 5Ghz radio */
593 			} else if (!test_bit(AR5K_MODE_11B,
594 				sc->ah->ah_capabilities.cap_mode)) {
595 				ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
596 					ath5k_chip_name(AR5K_VERSION_RAD,
597 						sc->ah->ah_radio_5ghz_revision),
598 						sc->ah->ah_radio_5ghz_revision);
599 			/* Multiband radio */
600 			} else {
601 				ATH5K_INFO(sc, "RF%s multiband radio found"
602 					" (0x%x)\n",
603 					ath5k_chip_name(AR5K_VERSION_RAD,
604 						sc->ah->ah_radio_5ghz_revision),
605 						sc->ah->ah_radio_5ghz_revision);
606 			}
607 		}
608 		/* Multi chip radio (RF5111 - RF2111) ->
609 		 * report both 2GHz/5GHz radios */
610 		else if (sc->ah->ah_radio_5ghz_revision &&
611 				sc->ah->ah_radio_2ghz_revision){
612 			ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
613 				ath5k_chip_name(AR5K_VERSION_RAD,
614 					sc->ah->ah_radio_5ghz_revision),
615 					sc->ah->ah_radio_5ghz_revision);
616 			ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
617 				ath5k_chip_name(AR5K_VERSION_RAD,
618 					sc->ah->ah_radio_2ghz_revision),
619 					sc->ah->ah_radio_2ghz_revision);
620 		}
621 	}
622 
623 
624 	/* ready to process interrupts */
625 	__clear_bit(ATH_STAT_INVALID, sc->status);
626 
627 	return 0;
628 err_ah:
629 	ath5k_hw_detach(sc->ah);
630 err_irq:
631 	free_irq(pdev->irq, sc);
632 err_free:
633 	ieee80211_free_hw(hw);
634 err_map:
635 	pci_iounmap(pdev, mem);
636 err_reg:
637 	pci_release_region(pdev, 0);
638 err_dis:
639 	pci_disable_device(pdev);
640 err:
641 	return ret;
642 }
643 
644 static void __devexit
645 ath5k_pci_remove(struct pci_dev *pdev)
646 {
647 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
648 	struct ath5k_softc *sc = hw->priv;
649 
650 	ath5k_debug_finish_device(sc);
651 	ath5k_detach(pdev, hw);
652 	ath5k_hw_detach(sc->ah);
653 	free_irq(pdev->irq, sc);
654 	pci_iounmap(pdev, sc->iobase);
655 	pci_release_region(pdev, 0);
656 	pci_disable_device(pdev);
657 	ieee80211_free_hw(hw);
658 }
659 
660 #ifdef CONFIG_PM
661 static int
662 ath5k_pci_suspend(struct pci_dev *pdev, pm_message_t state)
663 {
664 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
665 	struct ath5k_softc *sc = hw->priv;
666 
667 	ath5k_led_off(sc);
668 
669 	free_irq(pdev->irq, sc);
670 	pci_save_state(pdev);
671 	pci_disable_device(pdev);
672 	pci_set_power_state(pdev, PCI_D3hot);
673 
674 	return 0;
675 }
676 
677 static int
678 ath5k_pci_resume(struct pci_dev *pdev)
679 {
680 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
681 	struct ath5k_softc *sc = hw->priv;
682 	int err;
683 
684 	pci_restore_state(pdev);
685 
686 	err = pci_enable_device(pdev);
687 	if (err)
688 		return err;
689 
690 	/*
691 	 * Suspend/Resume resets the PCI configuration space, so we have to
692 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep
693 	 * PCI Tx retries from interfering with C3 CPU state
694 	 */
695 	pci_write_config_byte(pdev, 0x41, 0);
696 
697 	err = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
698 	if (err) {
699 		ATH5K_ERR(sc, "request_irq failed\n");
700 		goto err_no_irq;
701 	}
702 
703 	ath5k_led_enable(sc);
704 	return 0;
705 
706 err_no_irq:
707 	pci_disable_device(pdev);
708 	return err;
709 }
710 #endif /* CONFIG_PM */
711 
712 
713 /***********************\
714 * Driver Initialization *
715 \***********************/
716 
717 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
718 {
719 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
720 	struct ath5k_softc *sc = hw->priv;
721 	struct ath_regulatory *reg = &sc->ah->ah_regulatory;
722 
723 	return ath_reg_notifier_apply(wiphy, request, reg);
724 }
725 
726 static int
727 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
728 {
729 	struct ath5k_softc *sc = hw->priv;
730 	struct ath5k_hw *ah = sc->ah;
731 	u8 mac[ETH_ALEN] = {};
732 	int ret;
733 
734 	ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
735 
736 	/*
737 	 * Check if the MAC has multi-rate retry support.
738 	 * We do this by trying to setup a fake extended
739 	 * descriptor.  MAC's that don't have support will
740 	 * return false w/o doing anything.  MAC's that do
741 	 * support it will return true w/o doing anything.
742 	 */
743 	ret = ah->ah_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
744 	if (ret < 0)
745 		goto err;
746 	if (ret > 0)
747 		__set_bit(ATH_STAT_MRRETRY, sc->status);
748 
749 	/*
750 	 * Collect the channel list.  The 802.11 layer
751 	 * is resposible for filtering this list based
752 	 * on settings like the phy mode and regulatory
753 	 * domain restrictions.
754 	 */
755 	ret = ath5k_setup_bands(hw);
756 	if (ret) {
757 		ATH5K_ERR(sc, "can't get channels\n");
758 		goto err;
759 	}
760 
761 	/* NB: setup here so ath5k_rate_update is happy */
762 	if (test_bit(AR5K_MODE_11A, ah->ah_modes))
763 		ath5k_setcurmode(sc, AR5K_MODE_11A);
764 	else
765 		ath5k_setcurmode(sc, AR5K_MODE_11B);
766 
767 	/*
768 	 * Allocate tx+rx descriptors and populate the lists.
769 	 */
770 	ret = ath5k_desc_alloc(sc, pdev);
771 	if (ret) {
772 		ATH5K_ERR(sc, "can't allocate descriptors\n");
773 		goto err;
774 	}
775 
776 	/*
777 	 * Allocate hardware transmit queues: one queue for
778 	 * beacon frames and one data queue for each QoS
779 	 * priority.  Note that hw functions handle reseting
780 	 * these queues at the needed time.
781 	 */
782 	ret = ath5k_beaconq_setup(ah);
783 	if (ret < 0) {
784 		ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
785 		goto err_desc;
786 	}
787 	sc->bhalq = ret;
788 
789 	sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
790 	if (IS_ERR(sc->txq)) {
791 		ATH5K_ERR(sc, "can't setup xmit queue\n");
792 		ret = PTR_ERR(sc->txq);
793 		goto err_bhal;
794 	}
795 
796 	tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
797 	tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
798 	tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
799 	tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
800 	setup_timer(&sc->calib_tim, ath5k_calibrate, (unsigned long)sc);
801 
802 	ret = ath5k_eeprom_read_mac(ah, mac);
803 	if (ret) {
804 		ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
805 			sc->pdev->device);
806 		goto err_queues;
807 	}
808 
809 	SET_IEEE80211_PERM_ADDR(hw, mac);
810 	/* All MAC address bits matter for ACKs */
811 	memset(sc->bssidmask, 0xff, ETH_ALEN);
812 	ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
813 
814 	ah->ah_regulatory.current_rd =
815 		ah->ah_capabilities.cap_eeprom.ee_regdomain;
816 	ret = ath_regd_init(&ah->ah_regulatory, hw->wiphy, ath5k_reg_notifier);
817 	if (ret) {
818 		ATH5K_ERR(sc, "can't initialize regulatory system\n");
819 		goto err_queues;
820 	}
821 
822 	ret = ieee80211_register_hw(hw);
823 	if (ret) {
824 		ATH5K_ERR(sc, "can't register ieee80211 hw\n");
825 		goto err_queues;
826 	}
827 
828 	if (!ath_is_world_regd(&sc->ah->ah_regulatory))
829 		regulatory_hint(hw->wiphy, sc->ah->ah_regulatory.alpha2);
830 
831 	ath5k_init_leds(sc);
832 
833 	return 0;
834 err_queues:
835 	ath5k_txq_release(sc);
836 err_bhal:
837 	ath5k_hw_release_tx_queue(ah, sc->bhalq);
838 err_desc:
839 	ath5k_desc_free(sc, pdev);
840 err:
841 	return ret;
842 }
843 
844 static void
845 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
846 {
847 	struct ath5k_softc *sc = hw->priv;
848 
849 	/*
850 	 * NB: the order of these is important:
851 	 * o call the 802.11 layer before detaching ath5k_hw to
852 	 *   insure callbacks into the driver to delete global
853 	 *   key cache entries can be handled
854 	 * o reclaim the tx queue data structures after calling
855 	 *   the 802.11 layer as we'll get called back to reclaim
856 	 *   node state and potentially want to use them
857 	 * o to cleanup the tx queues the hal is called, so detach
858 	 *   it last
859 	 * XXX: ??? detach ath5k_hw ???
860 	 * Other than that, it's straightforward...
861 	 */
862 	ieee80211_unregister_hw(hw);
863 	ath5k_desc_free(sc, pdev);
864 	ath5k_txq_release(sc);
865 	ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
866 	ath5k_unregister_leds(sc);
867 
868 	/*
869 	 * NB: can't reclaim these until after ieee80211_ifdetach
870 	 * returns because we'll get called back to reclaim node
871 	 * state and potentially want to use them.
872 	 */
873 }
874 
875 
876 
877 
878 /********************\
879 * Channel/mode setup *
880 \********************/
881 
882 /*
883  * Convert IEEE channel number to MHz frequency.
884  */
885 static inline short
886 ath5k_ieee2mhz(short chan)
887 {
888 	if (chan <= 14 || chan >= 27)
889 		return ieee80211chan2mhz(chan);
890 	else
891 		return 2212 + chan * 20;
892 }
893 
894 /*
895  * Returns true for the channel numbers used without all_channels modparam.
896  */
897 static bool ath5k_is_standard_channel(short chan)
898 {
899 	return ((chan <= 14) ||
900 		/* UNII 1,2 */
901 		((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
902 		/* midband */
903 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
904 		/* UNII-3 */
905 		((chan & 3) == 1 && chan >= 149 && chan <= 165));
906 }
907 
908 static unsigned int
909 ath5k_copy_channels(struct ath5k_hw *ah,
910 		struct ieee80211_channel *channels,
911 		unsigned int mode,
912 		unsigned int max)
913 {
914 	unsigned int i, count, size, chfreq, freq, ch;
915 
916 	if (!test_bit(mode, ah->ah_modes))
917 		return 0;
918 
919 	switch (mode) {
920 	case AR5K_MODE_11A:
921 	case AR5K_MODE_11A_TURBO:
922 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
923 		size = 220 ;
924 		chfreq = CHANNEL_5GHZ;
925 		break;
926 	case AR5K_MODE_11B:
927 	case AR5K_MODE_11G:
928 	case AR5K_MODE_11G_TURBO:
929 		size = 26;
930 		chfreq = CHANNEL_2GHZ;
931 		break;
932 	default:
933 		ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
934 		return 0;
935 	}
936 
937 	for (i = 0, count = 0; i < size && max > 0; i++) {
938 		ch = i + 1 ;
939 		freq = ath5k_ieee2mhz(ch);
940 
941 		/* Check if channel is supported by the chipset */
942 		if (!ath5k_channel_ok(ah, freq, chfreq))
943 			continue;
944 
945 		if (!modparam_all_channels && !ath5k_is_standard_channel(ch))
946 			continue;
947 
948 		/* Write channel info and increment counter */
949 		channels[count].center_freq = freq;
950 		channels[count].band = (chfreq == CHANNEL_2GHZ) ?
951 			IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
952 		switch (mode) {
953 		case AR5K_MODE_11A:
954 		case AR5K_MODE_11G:
955 			channels[count].hw_value = chfreq | CHANNEL_OFDM;
956 			break;
957 		case AR5K_MODE_11A_TURBO:
958 		case AR5K_MODE_11G_TURBO:
959 			channels[count].hw_value = chfreq |
960 				CHANNEL_OFDM | CHANNEL_TURBO;
961 			break;
962 		case AR5K_MODE_11B:
963 			channels[count].hw_value = CHANNEL_B;
964 		}
965 
966 		count++;
967 		max--;
968 	}
969 
970 	return count;
971 }
972 
973 static void
974 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
975 {
976 	u8 i;
977 
978 	for (i = 0; i < AR5K_MAX_RATES; i++)
979 		sc->rate_idx[b->band][i] = -1;
980 
981 	for (i = 0; i < b->n_bitrates; i++) {
982 		sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
983 		if (b->bitrates[i].hw_value_short)
984 			sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
985 	}
986 }
987 
988 static int
989 ath5k_setup_bands(struct ieee80211_hw *hw)
990 {
991 	struct ath5k_softc *sc = hw->priv;
992 	struct ath5k_hw *ah = sc->ah;
993 	struct ieee80211_supported_band *sband;
994 	int max_c, count_c = 0;
995 	int i;
996 
997 	BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
998 	max_c = ARRAY_SIZE(sc->channels);
999 
1000 	/* 2GHz band */
1001 	sband = &sc->sbands[IEEE80211_BAND_2GHZ];
1002 	sband->band = IEEE80211_BAND_2GHZ;
1003 	sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
1004 
1005 	if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
1006 		/* G mode */
1007 		memcpy(sband->bitrates, &ath5k_rates[0],
1008 		       sizeof(struct ieee80211_rate) * 12);
1009 		sband->n_bitrates = 12;
1010 
1011 		sband->channels = sc->channels;
1012 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1013 					AR5K_MODE_11G, max_c);
1014 
1015 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
1016 		count_c = sband->n_channels;
1017 		max_c -= count_c;
1018 	} else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
1019 		/* B mode */
1020 		memcpy(sband->bitrates, &ath5k_rates[0],
1021 		       sizeof(struct ieee80211_rate) * 4);
1022 		sband->n_bitrates = 4;
1023 
1024 		/* 5211 only supports B rates and uses 4bit rate codes
1025 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
1026 		 * fix them up here:
1027 		 */
1028 		if (ah->ah_version == AR5K_AR5211) {
1029 			for (i = 0; i < 4; i++) {
1030 				sband->bitrates[i].hw_value =
1031 					sband->bitrates[i].hw_value & 0xF;
1032 				sband->bitrates[i].hw_value_short =
1033 					sband->bitrates[i].hw_value_short & 0xF;
1034 			}
1035 		}
1036 
1037 		sband->channels = sc->channels;
1038 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1039 					AR5K_MODE_11B, max_c);
1040 
1041 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
1042 		count_c = sband->n_channels;
1043 		max_c -= count_c;
1044 	}
1045 	ath5k_setup_rate_idx(sc, sband);
1046 
1047 	/* 5GHz band, A mode */
1048 	if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
1049 		sband = &sc->sbands[IEEE80211_BAND_5GHZ];
1050 		sband->band = IEEE80211_BAND_5GHZ;
1051 		sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
1052 
1053 		memcpy(sband->bitrates, &ath5k_rates[4],
1054 		       sizeof(struct ieee80211_rate) * 8);
1055 		sband->n_bitrates = 8;
1056 
1057 		sband->channels = &sc->channels[count_c];
1058 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1059 					AR5K_MODE_11A, max_c);
1060 
1061 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
1062 	}
1063 	ath5k_setup_rate_idx(sc, sband);
1064 
1065 	ath5k_debug_dump_bands(sc);
1066 
1067 	return 0;
1068 }
1069 
1070 /*
1071  * Set/change channels.  If the channel is really being changed,
1072  * it's done by reseting the chip.  To accomplish this we must
1073  * first cleanup any pending DMA, then restart stuff after a la
1074  * ath5k_init.
1075  *
1076  * Called with sc->lock.
1077  */
1078 static int
1079 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1080 {
1081 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
1082 		sc->curchan->center_freq, chan->center_freq);
1083 
1084 	if (chan->center_freq != sc->curchan->center_freq ||
1085 		chan->hw_value != sc->curchan->hw_value) {
1086 
1087 		/*
1088 		 * To switch channels clear any pending DMA operations;
1089 		 * wait long enough for the RX fifo to drain, reset the
1090 		 * hardware at the new frequency, and then re-enable
1091 		 * the relevant bits of the h/w.
1092 		 */
1093 		return ath5k_reset(sc, chan);
1094 	}
1095 
1096 	return 0;
1097 }
1098 
1099 static void
1100 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1101 {
1102 	sc->curmode = mode;
1103 
1104 	if (mode == AR5K_MODE_11A) {
1105 		sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1106 	} else {
1107 		sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1108 	}
1109 }
1110 
1111 static void
1112 ath5k_mode_setup(struct ath5k_softc *sc)
1113 {
1114 	struct ath5k_hw *ah = sc->ah;
1115 	u32 rfilt;
1116 
1117 	/* configure rx filter */
1118 	rfilt = sc->filter_flags;
1119 	ath5k_hw_set_rx_filter(ah, rfilt);
1120 
1121 	if (ath5k_hw_hasbssidmask(ah))
1122 		ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1123 
1124 	/* configure operational mode */
1125 	ath5k_hw_set_opmode(ah);
1126 
1127 	ath5k_hw_set_mcast_filter(ah, 0, 0);
1128 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1129 }
1130 
1131 static inline int
1132 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
1133 {
1134 	int rix;
1135 
1136 	/* return base rate on errors */
1137 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
1138 			"hw_rix out of bounds: %x\n", hw_rix))
1139 		return 0;
1140 
1141 	rix = sc->rate_idx[sc->curband->band][hw_rix];
1142 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
1143 		rix = 0;
1144 
1145 	return rix;
1146 }
1147 
1148 /***************\
1149 * Buffers setup *
1150 \***************/
1151 
1152 static
1153 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
1154 {
1155 	struct sk_buff *skb;
1156 	unsigned int off;
1157 
1158 	/*
1159 	 * Allocate buffer with headroom_needed space for the
1160 	 * fake physical layer header at the start.
1161 	 */
1162 	skb = dev_alloc_skb(sc->rxbufsize + sc->cachelsz - 1);
1163 
1164 	if (!skb) {
1165 		ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1166 				sc->rxbufsize + sc->cachelsz - 1);
1167 		return NULL;
1168 	}
1169 	/*
1170 	 * Cache-line-align.  This is important (for the
1171 	 * 5210 at least) as not doing so causes bogus data
1172 	 * in rx'd frames.
1173 	 */
1174 	off = ((unsigned long)skb->data) % sc->cachelsz;
1175 	if (off != 0)
1176 		skb_reserve(skb, sc->cachelsz - off);
1177 
1178 	*skb_addr = pci_map_single(sc->pdev,
1179 		skb->data, sc->rxbufsize, PCI_DMA_FROMDEVICE);
1180 	if (unlikely(pci_dma_mapping_error(sc->pdev, *skb_addr))) {
1181 		ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1182 		dev_kfree_skb(skb);
1183 		return NULL;
1184 	}
1185 	return skb;
1186 }
1187 
1188 static int
1189 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1190 {
1191 	struct ath5k_hw *ah = sc->ah;
1192 	struct sk_buff *skb = bf->skb;
1193 	struct ath5k_desc *ds;
1194 
1195 	if (!skb) {
1196 		skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
1197 		if (!skb)
1198 			return -ENOMEM;
1199 		bf->skb = skb;
1200 	}
1201 
1202 	/*
1203 	 * Setup descriptors.  For receive we always terminate
1204 	 * the descriptor list with a self-linked entry so we'll
1205 	 * not get overrun under high load (as can happen with a
1206 	 * 5212 when ANI processing enables PHY error frames).
1207 	 *
1208 	 * To insure the last descriptor is self-linked we create
1209 	 * each descriptor as self-linked and add it to the end.  As
1210 	 * each additional descriptor is added the previous self-linked
1211 	 * entry is ``fixed'' naturally.  This should be safe even
1212 	 * if DMA is happening.  When processing RX interrupts we
1213 	 * never remove/process the last, self-linked, entry on the
1214 	 * descriptor list.  This insures the hardware always has
1215 	 * someplace to write a new frame.
1216 	 */
1217 	ds = bf->desc;
1218 	ds->ds_link = bf->daddr;	/* link to self */
1219 	ds->ds_data = bf->skbaddr;
1220 	ah->ah_setup_rx_desc(ah, ds,
1221 		skb_tailroom(skb),	/* buffer size */
1222 		0);
1223 
1224 	if (sc->rxlink != NULL)
1225 		*sc->rxlink = bf->daddr;
1226 	sc->rxlink = &ds->ds_link;
1227 	return 0;
1228 }
1229 
1230 static int
1231 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1232 {
1233 	struct ath5k_hw *ah = sc->ah;
1234 	struct ath5k_txq *txq = sc->txq;
1235 	struct ath5k_desc *ds = bf->desc;
1236 	struct sk_buff *skb = bf->skb;
1237 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1238 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1239 	struct ieee80211_rate *rate;
1240 	unsigned int mrr_rate[3], mrr_tries[3];
1241 	int i, ret;
1242 	u16 hw_rate;
1243 	u16 cts_rate = 0;
1244 	u16 duration = 0;
1245 	u8 rc_flags;
1246 
1247 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1248 
1249 	/* XXX endianness */
1250 	bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1251 			PCI_DMA_TODEVICE);
1252 
1253 	rate = ieee80211_get_tx_rate(sc->hw, info);
1254 
1255 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1256 		flags |= AR5K_TXDESC_NOACK;
1257 
1258 	rc_flags = info->control.rates[0].flags;
1259 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
1260 		rate->hw_value_short : rate->hw_value;
1261 
1262 	pktlen = skb->len;
1263 
1264 	/* FIXME: If we are in g mode and rate is a CCK rate
1265 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1266 	 * from tx power (value is in dB units already) */
1267 	if (info->control.hw_key) {
1268 		keyidx = info->control.hw_key->hw_key_idx;
1269 		pktlen += info->control.hw_key->icv_len;
1270 	}
1271 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1272 		flags |= AR5K_TXDESC_RTSENA;
1273 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
1274 		duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
1275 			sc->vif, pktlen, info));
1276 	}
1277 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1278 		flags |= AR5K_TXDESC_CTSENA;
1279 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
1280 		duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
1281 			sc->vif, pktlen, info));
1282 	}
1283 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1284 		ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1285 		(sc->power_level * 2),
1286 		hw_rate,
1287 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
1288 		cts_rate, duration);
1289 	if (ret)
1290 		goto err_unmap;
1291 
1292 	memset(mrr_rate, 0, sizeof(mrr_rate));
1293 	memset(mrr_tries, 0, sizeof(mrr_tries));
1294 	for (i = 0; i < 3; i++) {
1295 		rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
1296 		if (!rate)
1297 			break;
1298 
1299 		mrr_rate[i] = rate->hw_value;
1300 		mrr_tries[i] = info->control.rates[i + 1].count;
1301 	}
1302 
1303 	ah->ah_setup_mrr_tx_desc(ah, ds,
1304 		mrr_rate[0], mrr_tries[0],
1305 		mrr_rate[1], mrr_tries[1],
1306 		mrr_rate[2], mrr_tries[2]);
1307 
1308 	ds->ds_link = 0;
1309 	ds->ds_data = bf->skbaddr;
1310 
1311 	spin_lock_bh(&txq->lock);
1312 	list_add_tail(&bf->list, &txq->q);
1313 	sc->tx_stats[txq->qnum].len++;
1314 	if (txq->link == NULL) /* is this first packet? */
1315 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
1316 	else /* no, so only link it */
1317 		*txq->link = bf->daddr;
1318 
1319 	txq->link = &ds->ds_link;
1320 	ath5k_hw_start_tx_dma(ah, txq->qnum);
1321 	mmiowb();
1322 	spin_unlock_bh(&txq->lock);
1323 
1324 	return 0;
1325 err_unmap:
1326 	pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1327 	return ret;
1328 }
1329 
1330 /*******************\
1331 * Descriptors setup *
1332 \*******************/
1333 
1334 static int
1335 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1336 {
1337 	struct ath5k_desc *ds;
1338 	struct ath5k_buf *bf;
1339 	dma_addr_t da;
1340 	unsigned int i;
1341 	int ret;
1342 
1343 	/* allocate descriptors */
1344 	sc->desc_len = sizeof(struct ath5k_desc) *
1345 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1346 	sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1347 	if (sc->desc == NULL) {
1348 		ATH5K_ERR(sc, "can't allocate descriptors\n");
1349 		ret = -ENOMEM;
1350 		goto err;
1351 	}
1352 	ds = sc->desc;
1353 	da = sc->desc_daddr;
1354 	ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1355 		ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1356 
1357 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1358 			sizeof(struct ath5k_buf), GFP_KERNEL);
1359 	if (bf == NULL) {
1360 		ATH5K_ERR(sc, "can't allocate bufptr\n");
1361 		ret = -ENOMEM;
1362 		goto err_free;
1363 	}
1364 	sc->bufptr = bf;
1365 
1366 	INIT_LIST_HEAD(&sc->rxbuf);
1367 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1368 		bf->desc = ds;
1369 		bf->daddr = da;
1370 		list_add_tail(&bf->list, &sc->rxbuf);
1371 	}
1372 
1373 	INIT_LIST_HEAD(&sc->txbuf);
1374 	sc->txbuf_len = ATH_TXBUF;
1375 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1376 			da += sizeof(*ds)) {
1377 		bf->desc = ds;
1378 		bf->daddr = da;
1379 		list_add_tail(&bf->list, &sc->txbuf);
1380 	}
1381 
1382 	/* beacon buffer */
1383 	bf->desc = ds;
1384 	bf->daddr = da;
1385 	sc->bbuf = bf;
1386 
1387 	return 0;
1388 err_free:
1389 	pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1390 err:
1391 	sc->desc = NULL;
1392 	return ret;
1393 }
1394 
1395 static void
1396 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1397 {
1398 	struct ath5k_buf *bf;
1399 
1400 	ath5k_txbuf_free(sc, sc->bbuf);
1401 	list_for_each_entry(bf, &sc->txbuf, list)
1402 		ath5k_txbuf_free(sc, bf);
1403 	list_for_each_entry(bf, &sc->rxbuf, list)
1404 		ath5k_rxbuf_free(sc, bf);
1405 
1406 	/* Free memory associated with all descriptors */
1407 	pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1408 
1409 	kfree(sc->bufptr);
1410 	sc->bufptr = NULL;
1411 }
1412 
1413 
1414 
1415 
1416 
1417 /**************\
1418 * Queues setup *
1419 \**************/
1420 
1421 static struct ath5k_txq *
1422 ath5k_txq_setup(struct ath5k_softc *sc,
1423 		int qtype, int subtype)
1424 {
1425 	struct ath5k_hw *ah = sc->ah;
1426 	struct ath5k_txq *txq;
1427 	struct ath5k_txq_info qi = {
1428 		.tqi_subtype = subtype,
1429 		.tqi_aifs = AR5K_TXQ_USEDEFAULT,
1430 		.tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1431 		.tqi_cw_max = AR5K_TXQ_USEDEFAULT
1432 	};
1433 	int qnum;
1434 
1435 	/*
1436 	 * Enable interrupts only for EOL and DESC conditions.
1437 	 * We mark tx descriptors to receive a DESC interrupt
1438 	 * when a tx queue gets deep; otherwise waiting for the
1439 	 * EOL to reap descriptors.  Note that this is done to
1440 	 * reduce interrupt load and this only defers reaping
1441 	 * descriptors, never transmitting frames.  Aside from
1442 	 * reducing interrupts this also permits more concurrency.
1443 	 * The only potential downside is if the tx queue backs
1444 	 * up in which case the top half of the kernel may backup
1445 	 * due to a lack of tx descriptors.
1446 	 */
1447 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1448 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1449 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1450 	if (qnum < 0) {
1451 		/*
1452 		 * NB: don't print a message, this happens
1453 		 * normally on parts with too few tx queues
1454 		 */
1455 		return ERR_PTR(qnum);
1456 	}
1457 	if (qnum >= ARRAY_SIZE(sc->txqs)) {
1458 		ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1459 			qnum, ARRAY_SIZE(sc->txqs));
1460 		ath5k_hw_release_tx_queue(ah, qnum);
1461 		return ERR_PTR(-EINVAL);
1462 	}
1463 	txq = &sc->txqs[qnum];
1464 	if (!txq->setup) {
1465 		txq->qnum = qnum;
1466 		txq->link = NULL;
1467 		INIT_LIST_HEAD(&txq->q);
1468 		spin_lock_init(&txq->lock);
1469 		txq->setup = true;
1470 	}
1471 	return &sc->txqs[qnum];
1472 }
1473 
1474 static int
1475 ath5k_beaconq_setup(struct ath5k_hw *ah)
1476 {
1477 	struct ath5k_txq_info qi = {
1478 		.tqi_aifs = AR5K_TXQ_USEDEFAULT,
1479 		.tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1480 		.tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1481 		/* NB: for dynamic turbo, don't enable any other interrupts */
1482 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1483 	};
1484 
1485 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1486 }
1487 
1488 static int
1489 ath5k_beaconq_config(struct ath5k_softc *sc)
1490 {
1491 	struct ath5k_hw *ah = sc->ah;
1492 	struct ath5k_txq_info qi;
1493 	int ret;
1494 
1495 	ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1496 	if (ret)
1497 		return ret;
1498 	if (sc->opmode == NL80211_IFTYPE_AP ||
1499 		sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1500 		/*
1501 		 * Always burst out beacon and CAB traffic
1502 		 * (aifs = cwmin = cwmax = 0)
1503 		 */
1504 		qi.tqi_aifs = 0;
1505 		qi.tqi_cw_min = 0;
1506 		qi.tqi_cw_max = 0;
1507 	} else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1508 		/*
1509 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1510 		 */
1511 		qi.tqi_aifs = 0;
1512 		qi.tqi_cw_min = 0;
1513 		qi.tqi_cw_max = 2 * ah->ah_cw_min;
1514 	}
1515 
1516 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1517 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1518 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1519 
1520 	ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1521 	if (ret) {
1522 		ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1523 			"hardware queue!\n", __func__);
1524 		return ret;
1525 	}
1526 
1527 	return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1528 }
1529 
1530 static void
1531 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1532 {
1533 	struct ath5k_buf *bf, *bf0;
1534 
1535 	/*
1536 	 * NB: this assumes output has been stopped and
1537 	 *     we do not need to block ath5k_tx_tasklet
1538 	 */
1539 	spin_lock_bh(&txq->lock);
1540 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1541 		ath5k_debug_printtxbuf(sc, bf);
1542 
1543 		ath5k_txbuf_free(sc, bf);
1544 
1545 		spin_lock_bh(&sc->txbuflock);
1546 		sc->tx_stats[txq->qnum].len--;
1547 		list_move_tail(&bf->list, &sc->txbuf);
1548 		sc->txbuf_len++;
1549 		spin_unlock_bh(&sc->txbuflock);
1550 	}
1551 	txq->link = NULL;
1552 	spin_unlock_bh(&txq->lock);
1553 }
1554 
1555 /*
1556  * Drain the transmit queues and reclaim resources.
1557  */
1558 static void
1559 ath5k_txq_cleanup(struct ath5k_softc *sc)
1560 {
1561 	struct ath5k_hw *ah = sc->ah;
1562 	unsigned int i;
1563 
1564 	/* XXX return value */
1565 	if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1566 		/* don't touch the hardware if marked invalid */
1567 		ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1568 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1569 			ath5k_hw_get_txdp(ah, sc->bhalq));
1570 		for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1571 			if (sc->txqs[i].setup) {
1572 				ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1573 				ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1574 					"link %p\n",
1575 					sc->txqs[i].qnum,
1576 					ath5k_hw_get_txdp(ah,
1577 							sc->txqs[i].qnum),
1578 					sc->txqs[i].link);
1579 			}
1580 	}
1581 	ieee80211_wake_queues(sc->hw); /* XXX move to callers */
1582 
1583 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1584 		if (sc->txqs[i].setup)
1585 			ath5k_txq_drainq(sc, &sc->txqs[i]);
1586 }
1587 
1588 static void
1589 ath5k_txq_release(struct ath5k_softc *sc)
1590 {
1591 	struct ath5k_txq *txq = sc->txqs;
1592 	unsigned int i;
1593 
1594 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1595 		if (txq->setup) {
1596 			ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1597 			txq->setup = false;
1598 		}
1599 }
1600 
1601 
1602 
1603 
1604 /*************\
1605 * RX Handling *
1606 \*************/
1607 
1608 /*
1609  * Enable the receive h/w following a reset.
1610  */
1611 static int
1612 ath5k_rx_start(struct ath5k_softc *sc)
1613 {
1614 	struct ath5k_hw *ah = sc->ah;
1615 	struct ath5k_buf *bf;
1616 	int ret;
1617 
1618 	sc->rxbufsize = roundup(IEEE80211_MAX_LEN, sc->cachelsz);
1619 
1620 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rxbufsize %u\n",
1621 		sc->cachelsz, sc->rxbufsize);
1622 
1623 	spin_lock_bh(&sc->rxbuflock);
1624 	sc->rxlink = NULL;
1625 	list_for_each_entry(bf, &sc->rxbuf, list) {
1626 		ret = ath5k_rxbuf_setup(sc, bf);
1627 		if (ret != 0) {
1628 			spin_unlock_bh(&sc->rxbuflock);
1629 			goto err;
1630 		}
1631 	}
1632 	bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1633 	ath5k_hw_set_rxdp(ah, bf->daddr);
1634 	spin_unlock_bh(&sc->rxbuflock);
1635 
1636 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1637 	ath5k_mode_setup(sc);		/* set filters, etc. */
1638 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1639 
1640 	return 0;
1641 err:
1642 	return ret;
1643 }
1644 
1645 /*
1646  * Disable the receive h/w in preparation for a reset.
1647  */
1648 static void
1649 ath5k_rx_stop(struct ath5k_softc *sc)
1650 {
1651 	struct ath5k_hw *ah = sc->ah;
1652 
1653 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1654 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1655 	ath5k_hw_stop_rx_dma(ah);	/* disable DMA engine */
1656 
1657 	ath5k_debug_printrxbuffs(sc, ah);
1658 
1659 	sc->rxlink = NULL;		/* just in case */
1660 }
1661 
1662 static unsigned int
1663 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1664 		struct sk_buff *skb, struct ath5k_rx_status *rs)
1665 {
1666 	struct ieee80211_hdr *hdr = (void *)skb->data;
1667 	unsigned int keyix, hlen;
1668 
1669 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1670 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1671 		return RX_FLAG_DECRYPTED;
1672 
1673 	/* Apparently when a default key is used to decrypt the packet
1674 	   the hw does not set the index used to decrypt.  In such cases
1675 	   get the index from the packet. */
1676 	hlen = ieee80211_hdrlen(hdr->frame_control);
1677 	if (ieee80211_has_protected(hdr->frame_control) &&
1678 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1679 	    skb->len >= hlen + 4) {
1680 		keyix = skb->data[hlen + 3] >> 6;
1681 
1682 		if (test_bit(keyix, sc->keymap))
1683 			return RX_FLAG_DECRYPTED;
1684 	}
1685 
1686 	return 0;
1687 }
1688 
1689 
1690 static void
1691 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1692 		     struct ieee80211_rx_status *rxs)
1693 {
1694 	u64 tsf, bc_tstamp;
1695 	u32 hw_tu;
1696 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1697 
1698 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1699 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1700 	    memcmp(mgmt->bssid, sc->ah->ah_bssid, ETH_ALEN) == 0) {
1701 		/*
1702 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1703 		 * have updated the local TSF. We have to work around various
1704 		 * hardware bugs, though...
1705 		 */
1706 		tsf = ath5k_hw_get_tsf64(sc->ah);
1707 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1708 		hw_tu = TSF_TO_TU(tsf);
1709 
1710 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1711 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1712 			(unsigned long long)bc_tstamp,
1713 			(unsigned long long)rxs->mactime,
1714 			(unsigned long long)(rxs->mactime - bc_tstamp),
1715 			(unsigned long long)tsf);
1716 
1717 		/*
1718 		 * Sometimes the HW will give us a wrong tstamp in the rx
1719 		 * status, causing the timestamp extension to go wrong.
1720 		 * (This seems to happen especially with beacon frames bigger
1721 		 * than 78 byte (incl. FCS))
1722 		 * But we know that the receive timestamp must be later than the
1723 		 * timestamp of the beacon since HW must have synced to that.
1724 		 *
1725 		 * NOTE: here we assume mactime to be after the frame was
1726 		 * received, not like mac80211 which defines it at the start.
1727 		 */
1728 		if (bc_tstamp > rxs->mactime) {
1729 			ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1730 				"fixing mactime from %llx to %llx\n",
1731 				(unsigned long long)rxs->mactime,
1732 				(unsigned long long)tsf);
1733 			rxs->mactime = tsf;
1734 		}
1735 
1736 		/*
1737 		 * Local TSF might have moved higher than our beacon timers,
1738 		 * in that case we have to update them to continue sending
1739 		 * beacons. This also takes care of synchronizing beacon sending
1740 		 * times with other stations.
1741 		 */
1742 		if (hw_tu >= sc->nexttbtt)
1743 			ath5k_beacon_update_timers(sc, bc_tstamp);
1744 	}
1745 }
1746 
1747 static void
1748 ath5k_tasklet_rx(unsigned long data)
1749 {
1750 	struct ieee80211_rx_status rxs = {};
1751 	struct ath5k_rx_status rs = {};
1752 	struct sk_buff *skb, *next_skb;
1753 	dma_addr_t next_skb_addr;
1754 	struct ath5k_softc *sc = (void *)data;
1755 	struct ath5k_buf *bf;
1756 	struct ath5k_desc *ds;
1757 	int ret;
1758 	int hdrlen;
1759 	int padsize;
1760 
1761 	spin_lock(&sc->rxbuflock);
1762 	if (list_empty(&sc->rxbuf)) {
1763 		ATH5K_WARN(sc, "empty rx buf pool\n");
1764 		goto unlock;
1765 	}
1766 	do {
1767 		rxs.flag = 0;
1768 
1769 		bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1770 		BUG_ON(bf->skb == NULL);
1771 		skb = bf->skb;
1772 		ds = bf->desc;
1773 
1774 		/* bail if HW is still using self-linked descriptor */
1775 		if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1776 			break;
1777 
1778 		ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1779 		if (unlikely(ret == -EINPROGRESS))
1780 			break;
1781 		else if (unlikely(ret)) {
1782 			ATH5K_ERR(sc, "error in processing rx descriptor\n");
1783 			spin_unlock(&sc->rxbuflock);
1784 			return;
1785 		}
1786 
1787 		if (unlikely(rs.rs_more)) {
1788 			ATH5K_WARN(sc, "unsupported jumbo\n");
1789 			goto next;
1790 		}
1791 
1792 		if (unlikely(rs.rs_status)) {
1793 			if (rs.rs_status & AR5K_RXERR_PHY)
1794 				goto next;
1795 			if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1796 				/*
1797 				 * Decrypt error.  If the error occurred
1798 				 * because there was no hardware key, then
1799 				 * let the frame through so the upper layers
1800 				 * can process it.  This is necessary for 5210
1801 				 * parts which have no way to setup a ``clear''
1802 				 * key cache entry.
1803 				 *
1804 				 * XXX do key cache faulting
1805 				 */
1806 				if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1807 				    !(rs.rs_status & AR5K_RXERR_CRC))
1808 					goto accept;
1809 			}
1810 			if (rs.rs_status & AR5K_RXERR_MIC) {
1811 				rxs.flag |= RX_FLAG_MMIC_ERROR;
1812 				goto accept;
1813 			}
1814 
1815 			/* let crypto-error packets fall through in MNTR */
1816 			if ((rs.rs_status &
1817 				~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1818 					sc->opmode != NL80211_IFTYPE_MONITOR)
1819 				goto next;
1820 		}
1821 accept:
1822 		next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
1823 
1824 		/*
1825 		 * If we can't replace bf->skb with a new skb under memory
1826 		 * pressure, just skip this packet
1827 		 */
1828 		if (!next_skb)
1829 			goto next;
1830 
1831 		pci_unmap_single(sc->pdev, bf->skbaddr, sc->rxbufsize,
1832 				PCI_DMA_FROMDEVICE);
1833 		skb_put(skb, rs.rs_datalen);
1834 
1835 		/* The MAC header is padded to have 32-bit boundary if the
1836 		 * packet payload is non-zero. The general calculation for
1837 		 * padsize would take into account odd header lengths:
1838 		 * padsize = (4 - hdrlen % 4) % 4; However, since only
1839 		 * even-length headers are used, padding can only be 0 or 2
1840 		 * bytes and we can optimize this a bit. In addition, we must
1841 		 * not try to remove padding from short control frames that do
1842 		 * not have payload. */
1843 		hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1844 		padsize = ath5k_pad_size(hdrlen);
1845 		if (padsize) {
1846 			memmove(skb->data + padsize, skb->data, hdrlen);
1847 			skb_pull(skb, padsize);
1848 		}
1849 
1850 		/*
1851 		 * always extend the mac timestamp, since this information is
1852 		 * also needed for proper IBSS merging.
1853 		 *
1854 		 * XXX: it might be too late to do it here, since rs_tstamp is
1855 		 * 15bit only. that means TSF extension has to be done within
1856 		 * 32768usec (about 32ms). it might be necessary to move this to
1857 		 * the interrupt handler, like it is done in madwifi.
1858 		 *
1859 		 * Unfortunately we don't know when the hardware takes the rx
1860 		 * timestamp (beginning of phy frame, data frame, end of rx?).
1861 		 * The only thing we know is that it is hardware specific...
1862 		 * On AR5213 it seems the rx timestamp is at the end of the
1863 		 * frame, but i'm not sure.
1864 		 *
1865 		 * NOTE: mac80211 defines mactime at the beginning of the first
1866 		 * data symbol. Since we don't have any time references it's
1867 		 * impossible to comply to that. This affects IBSS merge only
1868 		 * right now, so it's not too bad...
1869 		 */
1870 		rxs.mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1871 		rxs.flag |= RX_FLAG_TSFT;
1872 
1873 		rxs.freq = sc->curchan->center_freq;
1874 		rxs.band = sc->curband->band;
1875 
1876 		rxs.noise = sc->ah->ah_noise_floor;
1877 		rxs.signal = rxs.noise + rs.rs_rssi;
1878 
1879 		/* An rssi of 35 indicates you should be able use
1880 		 * 54 Mbps reliably. A more elaborate scheme can be used
1881 		 * here but it requires a map of SNR/throughput for each
1882 		 * possible mode used */
1883 		rxs.qual = rs.rs_rssi * 100 / 35;
1884 
1885 		/* rssi can be more than 35 though, anything above that
1886 		 * should be considered at 100% */
1887 		if (rxs.qual > 100)
1888 			rxs.qual = 100;
1889 
1890 		rxs.antenna = rs.rs_antenna;
1891 		rxs.rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1892 		rxs.flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1893 
1894 		if (rxs.rate_idx >= 0 && rs.rs_rate ==
1895 		    sc->curband->bitrates[rxs.rate_idx].hw_value_short)
1896 			rxs.flag |= RX_FLAG_SHORTPRE;
1897 
1898 		ath5k_debug_dump_skb(sc, skb, "RX  ", 0);
1899 
1900 		/* check beacons in IBSS mode */
1901 		if (sc->opmode == NL80211_IFTYPE_ADHOC)
1902 			ath5k_check_ibss_tsf(sc, skb, &rxs);
1903 
1904 		__ieee80211_rx(sc->hw, skb, &rxs);
1905 
1906 		bf->skb = next_skb;
1907 		bf->skbaddr = next_skb_addr;
1908 next:
1909 		list_move_tail(&bf->list, &sc->rxbuf);
1910 	} while (ath5k_rxbuf_setup(sc, bf) == 0);
1911 unlock:
1912 	spin_unlock(&sc->rxbuflock);
1913 }
1914 
1915 
1916 
1917 
1918 /*************\
1919 * TX Handling *
1920 \*************/
1921 
1922 static void
1923 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1924 {
1925 	struct ath5k_tx_status ts = {};
1926 	struct ath5k_buf *bf, *bf0;
1927 	struct ath5k_desc *ds;
1928 	struct sk_buff *skb;
1929 	struct ieee80211_tx_info *info;
1930 	int i, ret;
1931 
1932 	spin_lock(&txq->lock);
1933 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1934 		ds = bf->desc;
1935 
1936 		ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1937 		if (unlikely(ret == -EINPROGRESS))
1938 			break;
1939 		else if (unlikely(ret)) {
1940 			ATH5K_ERR(sc, "error %d while processing queue %u\n",
1941 				ret, txq->qnum);
1942 			break;
1943 		}
1944 
1945 		skb = bf->skb;
1946 		info = IEEE80211_SKB_CB(skb);
1947 		bf->skb = NULL;
1948 
1949 		pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1950 				PCI_DMA_TODEVICE);
1951 
1952 		ieee80211_tx_info_clear_status(info);
1953 		for (i = 0; i < 4; i++) {
1954 			struct ieee80211_tx_rate *r =
1955 				&info->status.rates[i];
1956 
1957 			if (ts.ts_rate[i]) {
1958 				r->idx = ath5k_hw_to_driver_rix(sc, ts.ts_rate[i]);
1959 				r->count = ts.ts_retry[i];
1960 			} else {
1961 				r->idx = -1;
1962 				r->count = 0;
1963 			}
1964 		}
1965 
1966 		/* count the successful attempt as well */
1967 		info->status.rates[ts.ts_final_idx].count++;
1968 
1969 		if (unlikely(ts.ts_status)) {
1970 			sc->ll_stats.dot11ACKFailureCount++;
1971 			if (ts.ts_status & AR5K_TXERR_FILT)
1972 				info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1973 		} else {
1974 			info->flags |= IEEE80211_TX_STAT_ACK;
1975 			info->status.ack_signal = ts.ts_rssi;
1976 		}
1977 
1978 		ieee80211_tx_status(sc->hw, skb);
1979 		sc->tx_stats[txq->qnum].count++;
1980 
1981 		spin_lock(&sc->txbuflock);
1982 		sc->tx_stats[txq->qnum].len--;
1983 		list_move_tail(&bf->list, &sc->txbuf);
1984 		sc->txbuf_len++;
1985 		spin_unlock(&sc->txbuflock);
1986 	}
1987 	if (likely(list_empty(&txq->q)))
1988 		txq->link = NULL;
1989 	spin_unlock(&txq->lock);
1990 	if (sc->txbuf_len > ATH_TXBUF / 5)
1991 		ieee80211_wake_queues(sc->hw);
1992 }
1993 
1994 static void
1995 ath5k_tasklet_tx(unsigned long data)
1996 {
1997 	struct ath5k_softc *sc = (void *)data;
1998 
1999 	ath5k_tx_processq(sc, sc->txq);
2000 }
2001 
2002 
2003 /*****************\
2004 * Beacon handling *
2005 \*****************/
2006 
2007 /*
2008  * Setup the beacon frame for transmit.
2009  */
2010 static int
2011 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
2012 {
2013 	struct sk_buff *skb = bf->skb;
2014 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2015 	struct ath5k_hw *ah = sc->ah;
2016 	struct ath5k_desc *ds;
2017 	int ret = 0;
2018 	u8 antenna;
2019 	u32 flags;
2020 
2021 	bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
2022 			PCI_DMA_TODEVICE);
2023 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
2024 			"skbaddr %llx\n", skb, skb->data, skb->len,
2025 			(unsigned long long)bf->skbaddr);
2026 	if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
2027 		ATH5K_ERR(sc, "beacon DMA mapping failed\n");
2028 		return -EIO;
2029 	}
2030 
2031 	ds = bf->desc;
2032 	antenna = ah->ah_tx_ant;
2033 
2034 	flags = AR5K_TXDESC_NOACK;
2035 	if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
2036 		ds->ds_link = bf->daddr;	/* self-linked */
2037 		flags |= AR5K_TXDESC_VEOL;
2038 	} else
2039 		ds->ds_link = 0;
2040 
2041 	/*
2042 	 * If we use multiple antennas on AP and use
2043 	 * the Sectored AP scenario, switch antenna every
2044 	 * 4 beacons to make sure everybody hears our AP.
2045 	 * When a client tries to associate, hw will keep
2046 	 * track of the tx antenna to be used for this client
2047 	 * automaticaly, based on ACKed packets.
2048 	 *
2049 	 * Note: AP still listens and transmits RTS on the
2050 	 * default antenna which is supposed to be an omni.
2051 	 *
2052 	 * Note2: On sectored scenarios it's possible to have
2053 	 * multiple antennas (1omni -the default- and 14 sectors)
2054 	 * so if we choose to actually support this mode we need
2055 	 * to allow user to set how many antennas we have and tweak
2056 	 * the code below to send beacons on all of them.
2057 	 */
2058 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
2059 		antenna = sc->bsent & 4 ? 2 : 1;
2060 
2061 
2062 	/* FIXME: If we are in g mode and rate is a CCK rate
2063 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
2064 	 * from tx power (value is in dB units already) */
2065 	ds->ds_data = bf->skbaddr;
2066 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
2067 			ieee80211_get_hdrlen_from_skb(skb),
2068 			AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
2069 			ieee80211_get_tx_rate(sc->hw, info)->hw_value,
2070 			1, AR5K_TXKEYIX_INVALID,
2071 			antenna, flags, 0, 0);
2072 	if (ret)
2073 		goto err_unmap;
2074 
2075 	return 0;
2076 err_unmap:
2077 	pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
2078 	return ret;
2079 }
2080 
2081 static void ath5k_beacon_disable(struct ath5k_softc *sc)
2082 {
2083 	sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2084 	ath5k_hw_set_imr(sc->ah, sc->imask);
2085 	ath5k_hw_stop_tx_dma(sc->ah, sc->bhalq);
2086 }
2087 
2088 /*
2089  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2090  * frame contents are done as needed and the slot time is
2091  * also adjusted based on current state.
2092  *
2093  * This is called from software irq context (beacontq or restq
2094  * tasklets) or user context from ath5k_beacon_config.
2095  */
2096 static void
2097 ath5k_beacon_send(struct ath5k_softc *sc)
2098 {
2099 	struct ath5k_buf *bf = sc->bbuf;
2100 	struct ath5k_hw *ah = sc->ah;
2101 
2102 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
2103 
2104 	if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
2105 			sc->opmode == NL80211_IFTYPE_MONITOR)) {
2106 		ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
2107 		return;
2108 	}
2109 	/*
2110 	 * Check if the previous beacon has gone out.  If
2111 	 * not don't don't try to post another, skip this
2112 	 * period and wait for the next.  Missed beacons
2113 	 * indicate a problem and should not occur.  If we
2114 	 * miss too many consecutive beacons reset the device.
2115 	 */
2116 	if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2117 		sc->bmisscount++;
2118 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2119 			"missed %u consecutive beacons\n", sc->bmisscount);
2120 		if (sc->bmisscount > 10) {	/* NB: 10 is a guess */
2121 			ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2122 				"stuck beacon time (%u missed)\n",
2123 				sc->bmisscount);
2124 			tasklet_schedule(&sc->restq);
2125 		}
2126 		return;
2127 	}
2128 	if (unlikely(sc->bmisscount != 0)) {
2129 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2130 			"resume beacon xmit after %u misses\n",
2131 			sc->bmisscount);
2132 		sc->bmisscount = 0;
2133 	}
2134 
2135 	/*
2136 	 * Stop any current dma and put the new frame on the queue.
2137 	 * This should never fail since we check above that no frames
2138 	 * are still pending on the queue.
2139 	 */
2140 	if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2141 		ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
2142 		/* NB: hw still stops DMA, so proceed */
2143 	}
2144 
2145 	/* refresh the beacon for AP mode */
2146 	if (sc->opmode == NL80211_IFTYPE_AP)
2147 		ath5k_beacon_update(sc->hw, sc->vif);
2148 
2149 	ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
2150 	ath5k_hw_start_tx_dma(ah, sc->bhalq);
2151 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2152 		sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2153 
2154 	sc->bsent++;
2155 }
2156 
2157 
2158 /**
2159  * ath5k_beacon_update_timers - update beacon timers
2160  *
2161  * @sc: struct ath5k_softc pointer we are operating on
2162  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2163  *          beacon timer update based on the current HW TSF.
2164  *
2165  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2166  * of a received beacon or the current local hardware TSF and write it to the
2167  * beacon timer registers.
2168  *
2169  * This is called in a variety of situations, e.g. when a beacon is received,
2170  * when a TSF update has been detected, but also when an new IBSS is created or
2171  * when we otherwise know we have to update the timers, but we keep it in this
2172  * function to have it all together in one place.
2173  */
2174 static void
2175 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2176 {
2177 	struct ath5k_hw *ah = sc->ah;
2178 	u32 nexttbtt, intval, hw_tu, bc_tu;
2179 	u64 hw_tsf;
2180 
2181 	intval = sc->bintval & AR5K_BEACON_PERIOD;
2182 	if (WARN_ON(!intval))
2183 		return;
2184 
2185 	/* beacon TSF converted to TU */
2186 	bc_tu = TSF_TO_TU(bc_tsf);
2187 
2188 	/* current TSF converted to TU */
2189 	hw_tsf = ath5k_hw_get_tsf64(ah);
2190 	hw_tu = TSF_TO_TU(hw_tsf);
2191 
2192 #define FUDGE 3
2193 	/* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2194 	if (bc_tsf == -1) {
2195 		/*
2196 		 * no beacons received, called internally.
2197 		 * just need to refresh timers based on HW TSF.
2198 		 */
2199 		nexttbtt = roundup(hw_tu + FUDGE, intval);
2200 	} else if (bc_tsf == 0) {
2201 		/*
2202 		 * no beacon received, probably called by ath5k_reset_tsf().
2203 		 * reset TSF to start with 0.
2204 		 */
2205 		nexttbtt = intval;
2206 		intval |= AR5K_BEACON_RESET_TSF;
2207 	} else if (bc_tsf > hw_tsf) {
2208 		/*
2209 		 * beacon received, SW merge happend but HW TSF not yet updated.
2210 		 * not possible to reconfigure timers yet, but next time we
2211 		 * receive a beacon with the same BSSID, the hardware will
2212 		 * automatically update the TSF and then we need to reconfigure
2213 		 * the timers.
2214 		 */
2215 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2216 			"need to wait for HW TSF sync\n");
2217 		return;
2218 	} else {
2219 		/*
2220 		 * most important case for beacon synchronization between STA.
2221 		 *
2222 		 * beacon received and HW TSF has been already updated by HW.
2223 		 * update next TBTT based on the TSF of the beacon, but make
2224 		 * sure it is ahead of our local TSF timer.
2225 		 */
2226 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2227 	}
2228 #undef FUDGE
2229 
2230 	sc->nexttbtt = nexttbtt;
2231 
2232 	intval |= AR5K_BEACON_ENA;
2233 	ath5k_hw_init_beacon(ah, nexttbtt, intval);
2234 
2235 	/*
2236 	 * debugging output last in order to preserve the time critical aspect
2237 	 * of this function
2238 	 */
2239 	if (bc_tsf == -1)
2240 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2241 			"reconfigured timers based on HW TSF\n");
2242 	else if (bc_tsf == 0)
2243 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2244 			"reset HW TSF and timers\n");
2245 	else
2246 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2247 			"updated timers based on beacon TSF\n");
2248 
2249 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2250 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2251 			  (unsigned long long) bc_tsf,
2252 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2253 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2254 		intval & AR5K_BEACON_PERIOD,
2255 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2256 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2257 }
2258 
2259 
2260 /**
2261  * ath5k_beacon_config - Configure the beacon queues and interrupts
2262  *
2263  * @sc: struct ath5k_softc pointer we are operating on
2264  *
2265  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2266  * interrupts to detect TSF updates only.
2267  */
2268 static void
2269 ath5k_beacon_config(struct ath5k_softc *sc)
2270 {
2271 	struct ath5k_hw *ah = sc->ah;
2272 	unsigned long flags;
2273 
2274 	ath5k_hw_set_imr(ah, 0);
2275 	sc->bmisscount = 0;
2276 	sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2277 
2278 	if (sc->opmode == NL80211_IFTYPE_ADHOC ||
2279 			sc->opmode == NL80211_IFTYPE_MESH_POINT ||
2280 			sc->opmode == NL80211_IFTYPE_AP) {
2281 		/*
2282 		 * In IBSS mode we use a self-linked tx descriptor and let the
2283 		 * hardware send the beacons automatically. We have to load it
2284 		 * only once here.
2285 		 * We use the SWBA interrupt only to keep track of the beacon
2286 		 * timers in order to detect automatic TSF updates.
2287 		 */
2288 		ath5k_beaconq_config(sc);
2289 
2290 		sc->imask |= AR5K_INT_SWBA;
2291 
2292 		if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2293 			if (ath5k_hw_hasveol(ah)) {
2294 				spin_lock_irqsave(&sc->block, flags);
2295 				ath5k_beacon_send(sc);
2296 				spin_unlock_irqrestore(&sc->block, flags);
2297 			}
2298 		} else
2299 			ath5k_beacon_update_timers(sc, -1);
2300 	}
2301 
2302 	ath5k_hw_set_imr(ah, sc->imask);
2303 }
2304 
2305 static void ath5k_tasklet_beacon(unsigned long data)
2306 {
2307 	struct ath5k_softc *sc = (struct ath5k_softc *) data;
2308 
2309 	/*
2310 	 * Software beacon alert--time to send a beacon.
2311 	 *
2312 	 * In IBSS mode we use this interrupt just to
2313 	 * keep track of the next TBTT (target beacon
2314 	 * transmission time) in order to detect wether
2315 	 * automatic TSF updates happened.
2316 	 */
2317 	if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2318 		/* XXX: only if VEOL suppported */
2319 		u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2320 		sc->nexttbtt += sc->bintval;
2321 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2322 				"SWBA nexttbtt: %x hw_tu: %x "
2323 				"TSF: %llx\n",
2324 				sc->nexttbtt,
2325 				TSF_TO_TU(tsf),
2326 				(unsigned long long) tsf);
2327 	} else {
2328 		spin_lock(&sc->block);
2329 		ath5k_beacon_send(sc);
2330 		spin_unlock(&sc->block);
2331 	}
2332 }
2333 
2334 
2335 /********************\
2336 * Interrupt handling *
2337 \********************/
2338 
2339 static int
2340 ath5k_init(struct ath5k_softc *sc)
2341 {
2342 	struct ath5k_hw *ah = sc->ah;
2343 	int ret, i;
2344 
2345 	mutex_lock(&sc->lock);
2346 
2347 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2348 
2349 	/*
2350 	 * Stop anything previously setup.  This is safe
2351 	 * no matter this is the first time through or not.
2352 	 */
2353 	ath5k_stop_locked(sc);
2354 
2355 	/*
2356 	 * The basic interface to setting the hardware in a good
2357 	 * state is ``reset''.  On return the hardware is known to
2358 	 * be powered up and with interrupts disabled.  This must
2359 	 * be followed by initialization of the appropriate bits
2360 	 * and then setup of the interrupt mask.
2361 	 */
2362 	sc->curchan = sc->hw->conf.channel;
2363 	sc->curband = &sc->sbands[sc->curchan->band];
2364 	sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2365 		AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2366 		AR5K_INT_FATAL | AR5K_INT_GLOBAL;
2367 	ret = ath5k_reset(sc, NULL);
2368 	if (ret)
2369 		goto done;
2370 
2371 	ath5k_rfkill_hw_start(ah);
2372 
2373 	/*
2374 	 * Reset the key cache since some parts do not reset the
2375 	 * contents on initial power up or resume from suspend.
2376 	 */
2377 	for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
2378 		ath5k_hw_reset_key(ah, i);
2379 
2380 	/* Set ack to be sent at low bit-rates */
2381 	ath5k_hw_set_ack_bitrate_high(ah, false);
2382 
2383 	mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2384 			msecs_to_jiffies(ath5k_calinterval * 1000)));
2385 
2386 	ret = 0;
2387 done:
2388 	mmiowb();
2389 	mutex_unlock(&sc->lock);
2390 	return ret;
2391 }
2392 
2393 static int
2394 ath5k_stop_locked(struct ath5k_softc *sc)
2395 {
2396 	struct ath5k_hw *ah = sc->ah;
2397 
2398 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2399 			test_bit(ATH_STAT_INVALID, sc->status));
2400 
2401 	/*
2402 	 * Shutdown the hardware and driver:
2403 	 *    stop output from above
2404 	 *    disable interrupts
2405 	 *    turn off timers
2406 	 *    turn off the radio
2407 	 *    clear transmit machinery
2408 	 *    clear receive machinery
2409 	 *    drain and release tx queues
2410 	 *    reclaim beacon resources
2411 	 *    power down hardware
2412 	 *
2413 	 * Note that some of this work is not possible if the
2414 	 * hardware is gone (invalid).
2415 	 */
2416 	ieee80211_stop_queues(sc->hw);
2417 
2418 	if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2419 		ath5k_led_off(sc);
2420 		ath5k_hw_set_imr(ah, 0);
2421 		synchronize_irq(sc->pdev->irq);
2422 	}
2423 	ath5k_txq_cleanup(sc);
2424 	if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2425 		ath5k_rx_stop(sc);
2426 		ath5k_hw_phy_disable(ah);
2427 	} else
2428 		sc->rxlink = NULL;
2429 
2430 	return 0;
2431 }
2432 
2433 /*
2434  * Stop the device, grabbing the top-level lock to protect
2435  * against concurrent entry through ath5k_init (which can happen
2436  * if another thread does a system call and the thread doing the
2437  * stop is preempted).
2438  */
2439 static int
2440 ath5k_stop_hw(struct ath5k_softc *sc)
2441 {
2442 	int ret;
2443 
2444 	mutex_lock(&sc->lock);
2445 	ret = ath5k_stop_locked(sc);
2446 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2447 		/*
2448 		 * Set the chip in full sleep mode.  Note that we are
2449 		 * careful to do this only when bringing the interface
2450 		 * completely to a stop.  When the chip is in this state
2451 		 * it must be carefully woken up or references to
2452 		 * registers in the PCI clock domain may freeze the bus
2453 		 * (and system).  This varies by chip and is mostly an
2454 		 * issue with newer parts that go to sleep more quickly.
2455 		 */
2456 		if (sc->ah->ah_mac_srev >= 0x78) {
2457 			/*
2458 			 * XXX
2459 			 * don't put newer MAC revisions > 7.8 to sleep because
2460 			 * of the above mentioned problems
2461 			 */
2462 			ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mac version > 7.8, "
2463 				"not putting device to sleep\n");
2464 		} else {
2465 			ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2466 				"putting device to full sleep\n");
2467 			ath5k_hw_set_power(sc->ah, AR5K_PM_FULL_SLEEP, true, 0);
2468 		}
2469 	}
2470 	ath5k_txbuf_free(sc, sc->bbuf);
2471 
2472 	mmiowb();
2473 	mutex_unlock(&sc->lock);
2474 
2475 	del_timer_sync(&sc->calib_tim);
2476 	tasklet_kill(&sc->rxtq);
2477 	tasklet_kill(&sc->txtq);
2478 	tasklet_kill(&sc->restq);
2479 	tasklet_kill(&sc->beacontq);
2480 
2481 	ath5k_rfkill_hw_stop(sc->ah);
2482 
2483 	return ret;
2484 }
2485 
2486 static irqreturn_t
2487 ath5k_intr(int irq, void *dev_id)
2488 {
2489 	struct ath5k_softc *sc = dev_id;
2490 	struct ath5k_hw *ah = sc->ah;
2491 	enum ath5k_int status;
2492 	unsigned int counter = 1000;
2493 
2494 	if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2495 				!ath5k_hw_is_intr_pending(ah)))
2496 		return IRQ_NONE;
2497 
2498 	do {
2499 		ath5k_hw_get_isr(ah, &status);		/* NB: clears IRQ too */
2500 		ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2501 				status, sc->imask);
2502 		if (unlikely(status & AR5K_INT_FATAL)) {
2503 			/*
2504 			 * Fatal errors are unrecoverable.
2505 			 * Typically these are caused by DMA errors.
2506 			 */
2507 			tasklet_schedule(&sc->restq);
2508 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2509 			tasklet_schedule(&sc->restq);
2510 		} else {
2511 			if (status & AR5K_INT_SWBA) {
2512 				tasklet_hi_schedule(&sc->beacontq);
2513 			}
2514 			if (status & AR5K_INT_RXEOL) {
2515 				/*
2516 				* NB: the hardware should re-read the link when
2517 				*     RXE bit is written, but it doesn't work at
2518 				*     least on older hardware revs.
2519 				*/
2520 				sc->rxlink = NULL;
2521 			}
2522 			if (status & AR5K_INT_TXURN) {
2523 				/* bump tx trigger level */
2524 				ath5k_hw_update_tx_triglevel(ah, true);
2525 			}
2526 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2527 				tasklet_schedule(&sc->rxtq);
2528 			if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2529 					| AR5K_INT_TXERR | AR5K_INT_TXEOL))
2530 				tasklet_schedule(&sc->txtq);
2531 			if (status & AR5K_INT_BMISS) {
2532 				/* TODO */
2533 			}
2534 			if (status & AR5K_INT_MIB) {
2535 				/*
2536 				 * These stats are also used for ANI i think
2537 				 * so how about updating them more often ?
2538 				 */
2539 				ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
2540 			}
2541 			if (status & AR5K_INT_GPIO)
2542 				tasklet_schedule(&sc->rf_kill.toggleq);
2543 
2544 		}
2545 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2546 
2547 	if (unlikely(!counter))
2548 		ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2549 
2550 	return IRQ_HANDLED;
2551 }
2552 
2553 static void
2554 ath5k_tasklet_reset(unsigned long data)
2555 {
2556 	struct ath5k_softc *sc = (void *)data;
2557 
2558 	ath5k_reset_wake(sc);
2559 }
2560 
2561 /*
2562  * Periodically recalibrate the PHY to account
2563  * for temperature/environment changes.
2564  */
2565 static void
2566 ath5k_calibrate(unsigned long data)
2567 {
2568 	struct ath5k_softc *sc = (void *)data;
2569 	struct ath5k_hw *ah = sc->ah;
2570 
2571 	ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2572 		ieee80211_frequency_to_channel(sc->curchan->center_freq),
2573 		sc->curchan->hw_value);
2574 
2575 	if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2576 		/*
2577 		 * Rfgain is out of bounds, reset the chip
2578 		 * to load new gain values.
2579 		 */
2580 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2581 		ath5k_reset_wake(sc);
2582 	}
2583 	if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2584 		ATH5K_ERR(sc, "calibration of channel %u failed\n",
2585 			ieee80211_frequency_to_channel(
2586 				sc->curchan->center_freq));
2587 
2588 	mod_timer(&sc->calib_tim, round_jiffies(jiffies +
2589 			msecs_to_jiffies(ath5k_calinterval * 1000)));
2590 }
2591 
2592 
2593 /********************\
2594 * Mac80211 functions *
2595 \********************/
2596 
2597 static int
2598 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2599 {
2600 	struct ath5k_softc *sc = hw->priv;
2601 	struct ath5k_buf *bf;
2602 	unsigned long flags;
2603 	int hdrlen;
2604 	int padsize;
2605 
2606 	ath5k_debug_dump_skb(sc, skb, "TX  ", 1);
2607 
2608 	if (sc->opmode == NL80211_IFTYPE_MONITOR)
2609 		ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2610 
2611 	/*
2612 	 * the hardware expects the header padded to 4 byte boundaries
2613 	 * if this is not the case we add the padding after the header
2614 	 */
2615 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2616 	padsize = ath5k_pad_size(hdrlen);
2617 	if (padsize) {
2618 
2619 		if (skb_headroom(skb) < padsize) {
2620 			ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2621 				  " headroom to pad %d\n", hdrlen, padsize);
2622 			goto drop_packet;
2623 		}
2624 		skb_push(skb, padsize);
2625 		memmove(skb->data, skb->data+padsize, hdrlen);
2626 	}
2627 
2628 	spin_lock_irqsave(&sc->txbuflock, flags);
2629 	if (list_empty(&sc->txbuf)) {
2630 		ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2631 		spin_unlock_irqrestore(&sc->txbuflock, flags);
2632 		ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
2633 		goto drop_packet;
2634 	}
2635 	bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2636 	list_del(&bf->list);
2637 	sc->txbuf_len--;
2638 	if (list_empty(&sc->txbuf))
2639 		ieee80211_stop_queues(hw);
2640 	spin_unlock_irqrestore(&sc->txbuflock, flags);
2641 
2642 	bf->skb = skb;
2643 
2644 	if (ath5k_txbuf_setup(sc, bf)) {
2645 		bf->skb = NULL;
2646 		spin_lock_irqsave(&sc->txbuflock, flags);
2647 		list_add_tail(&bf->list, &sc->txbuf);
2648 		sc->txbuf_len++;
2649 		spin_unlock_irqrestore(&sc->txbuflock, flags);
2650 		goto drop_packet;
2651 	}
2652 	return NETDEV_TX_OK;
2653 
2654 drop_packet:
2655 	dev_kfree_skb_any(skb);
2656 	return NETDEV_TX_OK;
2657 }
2658 
2659 /*
2660  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2661  * and change to the given channel.
2662  */
2663 static int
2664 ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan)
2665 {
2666 	struct ath5k_hw *ah = sc->ah;
2667 	int ret;
2668 
2669 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2670 
2671 	if (chan) {
2672 		ath5k_hw_set_imr(ah, 0);
2673 		ath5k_txq_cleanup(sc);
2674 		ath5k_rx_stop(sc);
2675 
2676 		sc->curchan = chan;
2677 		sc->curband = &sc->sbands[chan->band];
2678 	}
2679 	ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, true);
2680 	if (ret) {
2681 		ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2682 		goto err;
2683 	}
2684 
2685 	ret = ath5k_rx_start(sc);
2686 	if (ret) {
2687 		ATH5K_ERR(sc, "can't start recv logic\n");
2688 		goto err;
2689 	}
2690 
2691 	/*
2692 	 * Change channels and update the h/w rate map if we're switching;
2693 	 * e.g. 11a to 11b/g.
2694 	 *
2695 	 * We may be doing a reset in response to an ioctl that changes the
2696 	 * channel so update any state that might change as a result.
2697 	 *
2698 	 * XXX needed?
2699 	 */
2700 /*	ath5k_chan_change(sc, c); */
2701 
2702 	ath5k_beacon_config(sc);
2703 	/* intrs are enabled by ath5k_beacon_config */
2704 
2705 	return 0;
2706 err:
2707 	return ret;
2708 }
2709 
2710 static int
2711 ath5k_reset_wake(struct ath5k_softc *sc)
2712 {
2713 	int ret;
2714 
2715 	ret = ath5k_reset(sc, sc->curchan);
2716 	if (!ret)
2717 		ieee80211_wake_queues(sc->hw);
2718 
2719 	return ret;
2720 }
2721 
2722 static int ath5k_start(struct ieee80211_hw *hw)
2723 {
2724 	return ath5k_init(hw->priv);
2725 }
2726 
2727 static void ath5k_stop(struct ieee80211_hw *hw)
2728 {
2729 	ath5k_stop_hw(hw->priv);
2730 }
2731 
2732 static int ath5k_add_interface(struct ieee80211_hw *hw,
2733 		struct ieee80211_if_init_conf *conf)
2734 {
2735 	struct ath5k_softc *sc = hw->priv;
2736 	int ret;
2737 
2738 	mutex_lock(&sc->lock);
2739 	if (sc->vif) {
2740 		ret = 0;
2741 		goto end;
2742 	}
2743 
2744 	sc->vif = conf->vif;
2745 
2746 	switch (conf->type) {
2747 	case NL80211_IFTYPE_AP:
2748 	case NL80211_IFTYPE_STATION:
2749 	case NL80211_IFTYPE_ADHOC:
2750 	case NL80211_IFTYPE_MESH_POINT:
2751 	case NL80211_IFTYPE_MONITOR:
2752 		sc->opmode = conf->type;
2753 		break;
2754 	default:
2755 		ret = -EOPNOTSUPP;
2756 		goto end;
2757 	}
2758 
2759 	ath5k_hw_set_lladdr(sc->ah, conf->mac_addr);
2760 
2761 	ret = 0;
2762 end:
2763 	mutex_unlock(&sc->lock);
2764 	return ret;
2765 }
2766 
2767 static void
2768 ath5k_remove_interface(struct ieee80211_hw *hw,
2769 			struct ieee80211_if_init_conf *conf)
2770 {
2771 	struct ath5k_softc *sc = hw->priv;
2772 	u8 mac[ETH_ALEN] = {};
2773 
2774 	mutex_lock(&sc->lock);
2775 	if (sc->vif != conf->vif)
2776 		goto end;
2777 
2778 	ath5k_hw_set_lladdr(sc->ah, mac);
2779 	ath5k_beacon_disable(sc);
2780 	sc->vif = NULL;
2781 end:
2782 	mutex_unlock(&sc->lock);
2783 }
2784 
2785 /*
2786  * TODO: Phy disable/diversity etc
2787  */
2788 static int
2789 ath5k_config(struct ieee80211_hw *hw, u32 changed)
2790 {
2791 	struct ath5k_softc *sc = hw->priv;
2792 	struct ath5k_hw *ah = sc->ah;
2793 	struct ieee80211_conf *conf = &hw->conf;
2794 	int ret = 0;
2795 
2796 	mutex_lock(&sc->lock);
2797 
2798 	ret = ath5k_chan_set(sc, conf->channel);
2799 	if (ret < 0)
2800 		goto unlock;
2801 
2802 	if ((changed & IEEE80211_CONF_CHANGE_POWER) &&
2803 	(sc->power_level != conf->power_level)) {
2804 		sc->power_level = conf->power_level;
2805 
2806 		/* Half dB steps */
2807 		ath5k_hw_set_txpower_limit(ah, (conf->power_level * 2));
2808 	}
2809 
2810 	/* TODO:
2811 	 * 1) Move this on config_interface and handle each case
2812 	 * separately eg. when we have only one STA vif, use
2813 	 * AR5K_ANTMODE_SINGLE_AP
2814 	 *
2815 	 * 2) Allow the user to change antenna mode eg. when only
2816 	 * one antenna is present
2817 	 *
2818 	 * 3) Allow the user to set default/tx antenna when possible
2819 	 *
2820 	 * 4) Default mode should handle 90% of the cases, together
2821 	 * with fixed a/b and single AP modes we should be able to
2822 	 * handle 99%. Sectored modes are extreme cases and i still
2823 	 * haven't found a usage for them. If we decide to support them,
2824 	 * then we must allow the user to set how many tx antennas we
2825 	 * have available
2826 	 */
2827 	ath5k_hw_set_antenna_mode(ah, AR5K_ANTMODE_DEFAULT);
2828 
2829 unlock:
2830 	mutex_unlock(&sc->lock);
2831 	return ret;
2832 }
2833 
2834 #define SUPPORTED_FIF_FLAGS \
2835 	FIF_PROMISC_IN_BSS |  FIF_ALLMULTI | FIF_FCSFAIL | \
2836 	FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2837 	FIF_BCN_PRBRESP_PROMISC
2838 /*
2839  * o always accept unicast, broadcast, and multicast traffic
2840  * o multicast traffic for all BSSIDs will be enabled if mac80211
2841  *   says it should be
2842  * o maintain current state of phy ofdm or phy cck error reception.
2843  *   If the hardware detects any of these type of errors then
2844  *   ath5k_hw_get_rx_filter() will pass to us the respective
2845  *   hardware filters to be able to receive these type of frames.
2846  * o probe request frames are accepted only when operating in
2847  *   hostap, adhoc, or monitor modes
2848  * o enable promiscuous mode according to the interface state
2849  * o accept beacons:
2850  *   - when operating in adhoc mode so the 802.11 layer creates
2851  *     node table entries for peers,
2852  *   - when operating in station mode for collecting rssi data when
2853  *     the station is otherwise quiet, or
2854  *   - when scanning
2855  */
2856 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2857 		unsigned int changed_flags,
2858 		unsigned int *new_flags,
2859 		int mc_count, struct dev_mc_list *mclist)
2860 {
2861 	struct ath5k_softc *sc = hw->priv;
2862 	struct ath5k_hw *ah = sc->ah;
2863 	u32 mfilt[2], val, rfilt;
2864 	u8 pos;
2865 	int i;
2866 
2867 	mfilt[0] = 0;
2868 	mfilt[1] = 0;
2869 
2870 	/* Only deal with supported flags */
2871 	changed_flags &= SUPPORTED_FIF_FLAGS;
2872 	*new_flags &= SUPPORTED_FIF_FLAGS;
2873 
2874 	/* If HW detects any phy or radar errors, leave those filters on.
2875 	 * Also, always enable Unicast, Broadcasts and Multicast
2876 	 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2877 	rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2878 		(AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2879 		AR5K_RX_FILTER_MCAST);
2880 
2881 	if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2882 		if (*new_flags & FIF_PROMISC_IN_BSS) {
2883 			rfilt |= AR5K_RX_FILTER_PROM;
2884 			__set_bit(ATH_STAT_PROMISC, sc->status);
2885 		} else {
2886 			__clear_bit(ATH_STAT_PROMISC, sc->status);
2887 		}
2888 	}
2889 
2890 	/* Note, AR5K_RX_FILTER_MCAST is already enabled */
2891 	if (*new_flags & FIF_ALLMULTI) {
2892 		mfilt[0] =  ~0;
2893 		mfilt[1] =  ~0;
2894 	} else {
2895 		for (i = 0; i < mc_count; i++) {
2896 			if (!mclist)
2897 				break;
2898 			/* calculate XOR of eight 6-bit values */
2899 			val = get_unaligned_le32(mclist->dmi_addr + 0);
2900 			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2901 			val = get_unaligned_le32(mclist->dmi_addr + 3);
2902 			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2903 			pos &= 0x3f;
2904 			mfilt[pos / 32] |= (1 << (pos % 32));
2905 			/* XXX: we might be able to just do this instead,
2906 			* but not sure, needs testing, if we do use this we'd
2907 			* neet to inform below to not reset the mcast */
2908 			/* ath5k_hw_set_mcast_filterindex(ah,
2909 			 *      mclist->dmi_addr[5]); */
2910 			mclist = mclist->next;
2911 		}
2912 	}
2913 
2914 	/* This is the best we can do */
2915 	if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2916 		rfilt |= AR5K_RX_FILTER_PHYERR;
2917 
2918 	/* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2919 	* and probes for any BSSID, this needs testing */
2920 	if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2921 		rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2922 
2923 	/* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2924 	 * set we should only pass on control frames for this
2925 	 * station. This needs testing. I believe right now this
2926 	 * enables *all* control frames, which is OK.. but
2927 	 * but we should see if we can improve on granularity */
2928 	if (*new_flags & FIF_CONTROL)
2929 		rfilt |= AR5K_RX_FILTER_CONTROL;
2930 
2931 	/* Additional settings per mode -- this is per ath5k */
2932 
2933 	/* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
2934 
2935 	if (sc->opmode == NL80211_IFTYPE_MONITOR)
2936 		rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2937 			AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2938 	if (sc->opmode != NL80211_IFTYPE_STATION)
2939 		rfilt |= AR5K_RX_FILTER_PROBEREQ;
2940 	if (sc->opmode != NL80211_IFTYPE_AP &&
2941 		sc->opmode != NL80211_IFTYPE_MESH_POINT &&
2942 		test_bit(ATH_STAT_PROMISC, sc->status))
2943 		rfilt |= AR5K_RX_FILTER_PROM;
2944 	if ((sc->opmode == NL80211_IFTYPE_STATION && sc->assoc) ||
2945 		sc->opmode == NL80211_IFTYPE_ADHOC ||
2946 		sc->opmode == NL80211_IFTYPE_AP)
2947 		rfilt |= AR5K_RX_FILTER_BEACON;
2948 	if (sc->opmode == NL80211_IFTYPE_MESH_POINT)
2949 		rfilt |= AR5K_RX_FILTER_CONTROL | AR5K_RX_FILTER_BEACON |
2950 			AR5K_RX_FILTER_PROBEREQ | AR5K_RX_FILTER_PROM;
2951 
2952 	/* Set filters */
2953 	ath5k_hw_set_rx_filter(ah, rfilt);
2954 
2955 	/* Set multicast bits */
2956 	ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
2957 	/* Set the cached hw filter flags, this will alter actually
2958 	 * be set in HW */
2959 	sc->filter_flags = rfilt;
2960 }
2961 
2962 static int
2963 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
2964 	      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
2965 	      struct ieee80211_key_conf *key)
2966 {
2967 	struct ath5k_softc *sc = hw->priv;
2968 	int ret = 0;
2969 
2970 	if (modparam_nohwcrypt)
2971 		return -EOPNOTSUPP;
2972 
2973 	if (sc->opmode == NL80211_IFTYPE_AP)
2974 		return -EOPNOTSUPP;
2975 
2976 	switch (key->alg) {
2977 	case ALG_WEP:
2978 	case ALG_TKIP:
2979 		break;
2980 	case ALG_CCMP:
2981 		return -EOPNOTSUPP;
2982 	default:
2983 		WARN_ON(1);
2984 		return -EINVAL;
2985 	}
2986 
2987 	mutex_lock(&sc->lock);
2988 
2989 	switch (cmd) {
2990 	case SET_KEY:
2991 		ret = ath5k_hw_set_key(sc->ah, key->keyidx, key,
2992 				       sta ? sta->addr : NULL);
2993 		if (ret) {
2994 			ATH5K_ERR(sc, "can't set the key\n");
2995 			goto unlock;
2996 		}
2997 		__set_bit(key->keyidx, sc->keymap);
2998 		key->hw_key_idx = key->keyidx;
2999 		key->flags |= (IEEE80211_KEY_FLAG_GENERATE_IV |
3000 			       IEEE80211_KEY_FLAG_GENERATE_MMIC);
3001 		break;
3002 	case DISABLE_KEY:
3003 		ath5k_hw_reset_key(sc->ah, key->keyidx);
3004 		__clear_bit(key->keyidx, sc->keymap);
3005 		break;
3006 	default:
3007 		ret = -EINVAL;
3008 		goto unlock;
3009 	}
3010 
3011 unlock:
3012 	mmiowb();
3013 	mutex_unlock(&sc->lock);
3014 	return ret;
3015 }
3016 
3017 static int
3018 ath5k_get_stats(struct ieee80211_hw *hw,
3019 		struct ieee80211_low_level_stats *stats)
3020 {
3021 	struct ath5k_softc *sc = hw->priv;
3022 	struct ath5k_hw *ah = sc->ah;
3023 
3024 	/* Force update */
3025 	ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
3026 
3027 	memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3028 
3029 	return 0;
3030 }
3031 
3032 static int
3033 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3034 		struct ieee80211_tx_queue_stats *stats)
3035 {
3036 	struct ath5k_softc *sc = hw->priv;
3037 
3038 	memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3039 
3040 	return 0;
3041 }
3042 
3043 static u64
3044 ath5k_get_tsf(struct ieee80211_hw *hw)
3045 {
3046 	struct ath5k_softc *sc = hw->priv;
3047 
3048 	return ath5k_hw_get_tsf64(sc->ah);
3049 }
3050 
3051 static void
3052 ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3053 {
3054 	struct ath5k_softc *sc = hw->priv;
3055 
3056 	ath5k_hw_set_tsf64(sc->ah, tsf);
3057 }
3058 
3059 static void
3060 ath5k_reset_tsf(struct ieee80211_hw *hw)
3061 {
3062 	struct ath5k_softc *sc = hw->priv;
3063 
3064 	/*
3065 	 * in IBSS mode we need to update the beacon timers too.
3066 	 * this will also reset the TSF if we call it with 0
3067 	 */
3068 	if (sc->opmode == NL80211_IFTYPE_ADHOC)
3069 		ath5k_beacon_update_timers(sc, 0);
3070 	else
3071 		ath5k_hw_reset_tsf(sc->ah);
3072 }
3073 
3074 /*
3075  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
3076  * this is called only once at config_bss time, for AP we do it every
3077  * SWBA interrupt so that the TIM will reflect buffered frames.
3078  *
3079  * Called with the beacon lock.
3080  */
3081 static int
3082 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
3083 {
3084 	int ret;
3085 	struct ath5k_softc *sc = hw->priv;
3086 	struct sk_buff *skb;
3087 
3088 	if (WARN_ON(!vif)) {
3089 		ret = -EINVAL;
3090 		goto out;
3091 	}
3092 
3093 	skb = ieee80211_beacon_get(hw, vif);
3094 
3095 	if (!skb) {
3096 		ret = -ENOMEM;
3097 		goto out;
3098 	}
3099 
3100 	ath5k_debug_dump_skb(sc, skb, "BC  ", 1);
3101 
3102 	ath5k_txbuf_free(sc, sc->bbuf);
3103 	sc->bbuf->skb = skb;
3104 	ret = ath5k_beacon_setup(sc, sc->bbuf);
3105 	if (ret)
3106 		sc->bbuf->skb = NULL;
3107 out:
3108 	return ret;
3109 }
3110 
3111 /*
3112  *  Update the beacon and reconfigure the beacon queues.
3113  */
3114 static void
3115 ath5k_beacon_reconfig(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
3116 {
3117 	int ret;
3118 	unsigned long flags;
3119 	struct ath5k_softc *sc = hw->priv;
3120 
3121 	spin_lock_irqsave(&sc->block, flags);
3122 	ret = ath5k_beacon_update(hw, vif);
3123 	spin_unlock_irqrestore(&sc->block, flags);
3124 	if (ret == 0) {
3125 		ath5k_beacon_config(sc);
3126 		mmiowb();
3127 	}
3128 }
3129 
3130 static void
3131 set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3132 {
3133 	struct ath5k_softc *sc = hw->priv;
3134 	struct ath5k_hw *ah = sc->ah;
3135 	u32 rfilt;
3136 	rfilt = ath5k_hw_get_rx_filter(ah);
3137 	if (enable)
3138 		rfilt |= AR5K_RX_FILTER_BEACON;
3139 	else
3140 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3141 	ath5k_hw_set_rx_filter(ah, rfilt);
3142 	sc->filter_flags = rfilt;
3143 }
3144 
3145 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
3146 				    struct ieee80211_vif *vif,
3147 				    struct ieee80211_bss_conf *bss_conf,
3148 				    u32 changes)
3149 {
3150 	struct ath5k_softc *sc = hw->priv;
3151 	struct ath5k_hw *ah = sc->ah;
3152 
3153 	mutex_lock(&sc->lock);
3154 	if (WARN_ON(sc->vif != vif))
3155 		goto unlock;
3156 
3157 	if (changes & BSS_CHANGED_BSSID) {
3158 		/* Cache for later use during resets */
3159 		memcpy(ah->ah_bssid, bss_conf->bssid, ETH_ALEN);
3160 		/* XXX: assoc id is set to 0 for now, mac80211 doesn't have
3161 		 * a clean way of letting us retrieve this yet. */
3162 		ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
3163 		mmiowb();
3164 	}
3165 
3166 	if (changes & BSS_CHANGED_BEACON_INT)
3167 		sc->bintval = bss_conf->beacon_int;
3168 
3169 	if (changes & BSS_CHANGED_ASSOC) {
3170 		sc->assoc = bss_conf->assoc;
3171 		if (sc->opmode == NL80211_IFTYPE_STATION)
3172 			set_beacon_filter(hw, sc->assoc);
3173 	}
3174 
3175 	if (changes & BSS_CHANGED_BEACON &&
3176 	    (vif->type == NL80211_IFTYPE_ADHOC ||
3177 	     vif->type == NL80211_IFTYPE_MESH_POINT ||
3178 	     vif->type == NL80211_IFTYPE_AP)) {
3179 		ath5k_beacon_reconfig(hw, vif);
3180 	}
3181 
3182  unlock:
3183 	mutex_unlock(&sc->lock);
3184 }
3185