xref: /linux/drivers/net/wireless/ath/ath5k/base.c (revision 3ba84ac69b53e6ee07c31d54554e00793d7b144f)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 
45 #include <linux/module.h>
46 #include <linux/delay.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/hardirq.h>
49 #include <linux/if.h>
50 #include <linux/io.h>
51 #include <linux/netdevice.h>
52 #include <linux/cache.h>
53 #include <linux/ethtool.h>
54 #include <linux/uaccess.h>
55 #include <linux/slab.h>
56 #include <linux/etherdevice.h>
57 #include <linux/nl80211.h>
58 
59 #include <net/cfg80211.h>
60 #include <net/ieee80211_radiotap.h>
61 
62 #include <linux/unaligned.h>
63 
64 #include <net/mac80211.h>
65 #include "base.h"
66 #include "reg.h"
67 #include "debug.h"
68 #include "ani.h"
69 #include "ath5k.h"
70 #include "../regd.h"
71 
72 #define CREATE_TRACE_POINTS
73 #include "trace.h"
74 
75 bool ath5k_modparam_nohwcrypt;
76 module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, 0444);
77 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
78 
79 static bool modparam_fastchanswitch;
80 module_param_named(fastchanswitch, modparam_fastchanswitch, bool, 0444);
81 MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
82 
83 static bool ath5k_modparam_no_hw_rfkill_switch;
84 module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
85 		   bool, 0444);
86 MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
87 
88 
89 /* Module info */
90 MODULE_AUTHOR("Jiri Slaby");
91 MODULE_AUTHOR("Nick Kossifidis");
92 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
93 MODULE_LICENSE("Dual BSD/GPL");
94 
95 static int ath5k_init(struct ieee80211_hw *hw);
96 static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
97 								bool skip_pcu);
98 
99 /* Known SREVs */
100 static const struct ath5k_srev_name srev_names[] = {
101 #ifdef CONFIG_ATH5K_AHB
102 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R2 },
103 	{ "5312",	AR5K_VERSION_MAC,	AR5K_SREV_AR5312_R7 },
104 	{ "2313",	AR5K_VERSION_MAC,	AR5K_SREV_AR2313_R8 },
105 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R6 },
106 	{ "2315",	AR5K_VERSION_MAC,	AR5K_SREV_AR2315_R7 },
107 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R1 },
108 	{ "2317",	AR5K_VERSION_MAC,	AR5K_SREV_AR2317_R2 },
109 #else
110 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
111 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
112 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
113 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
114 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
115 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
116 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
117 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
118 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
119 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
120 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
121 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
122 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
123 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
124 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
125 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
126 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
127 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
128 #endif
129 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
130 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
131 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
132 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
133 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
134 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
135 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
136 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
137 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
138 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
139 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
140 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
141 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
142 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
143 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
144 #ifdef CONFIG_ATH5K_AHB
145 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
146 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
147 #endif
148 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
149 };
150 
151 static const struct ieee80211_rate ath5k_rates[] = {
152 	{ .bitrate = 10,
153 	  .hw_value = ATH5K_RATE_CODE_1M, },
154 	{ .bitrate = 20,
155 	  .hw_value = ATH5K_RATE_CODE_2M,
156 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
157 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
158 	{ .bitrate = 55,
159 	  .hw_value = ATH5K_RATE_CODE_5_5M,
160 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
161 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
162 	{ .bitrate = 110,
163 	  .hw_value = ATH5K_RATE_CODE_11M,
164 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
165 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
166 	{ .bitrate = 60,
167 	  .hw_value = ATH5K_RATE_CODE_6M,
168 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
169 		   IEEE80211_RATE_SUPPORTS_10MHZ },
170 	{ .bitrate = 90,
171 	  .hw_value = ATH5K_RATE_CODE_9M,
172 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
173 		   IEEE80211_RATE_SUPPORTS_10MHZ },
174 	{ .bitrate = 120,
175 	  .hw_value = ATH5K_RATE_CODE_12M,
176 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
177 		   IEEE80211_RATE_SUPPORTS_10MHZ },
178 	{ .bitrate = 180,
179 	  .hw_value = ATH5K_RATE_CODE_18M,
180 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
181 		   IEEE80211_RATE_SUPPORTS_10MHZ },
182 	{ .bitrate = 240,
183 	  .hw_value = ATH5K_RATE_CODE_24M,
184 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
185 		   IEEE80211_RATE_SUPPORTS_10MHZ },
186 	{ .bitrate = 360,
187 	  .hw_value = ATH5K_RATE_CODE_36M,
188 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
189 		   IEEE80211_RATE_SUPPORTS_10MHZ },
190 	{ .bitrate = 480,
191 	  .hw_value = ATH5K_RATE_CODE_48M,
192 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
193 		   IEEE80211_RATE_SUPPORTS_10MHZ },
194 	{ .bitrate = 540,
195 	  .hw_value = ATH5K_RATE_CODE_54M,
196 	  .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
197 		   IEEE80211_RATE_SUPPORTS_10MHZ },
198 };
199 
200 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
201 {
202 	u64 tsf = ath5k_hw_get_tsf64(ah);
203 
204 	if ((tsf & 0x7fff) < rstamp)
205 		tsf -= 0x8000;
206 
207 	return (tsf & ~0x7fff) | rstamp;
208 }
209 
210 const char *
211 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
212 {
213 	const char *name = "xxxxx";
214 	unsigned int i;
215 
216 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
217 		if (srev_names[i].sr_type != type)
218 			continue;
219 
220 		if ((val & 0xf0) == srev_names[i].sr_val)
221 			name = srev_names[i].sr_name;
222 
223 		if ((val & 0xff) == srev_names[i].sr_val) {
224 			name = srev_names[i].sr_name;
225 			break;
226 		}
227 	}
228 
229 	return name;
230 }
231 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
232 {
233 	struct ath5k_hw *ah = hw_priv;
234 	return ath5k_hw_reg_read(ah, reg_offset);
235 }
236 
237 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
238 {
239 	struct ath5k_hw *ah = hw_priv;
240 	ath5k_hw_reg_write(ah, val, reg_offset);
241 }
242 
243 static const struct ath_ops ath5k_common_ops = {
244 	.read = ath5k_ioread32,
245 	.write = ath5k_iowrite32,
246 };
247 
248 /***********************\
249 * Driver Initialization *
250 \***********************/
251 
252 static void ath5k_reg_notifier(struct wiphy *wiphy,
253 			       struct regulatory_request *request)
254 {
255 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
256 	struct ath5k_hw *ah = hw->priv;
257 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
258 
259 	ath_reg_notifier_apply(wiphy, request, regulatory);
260 }
261 
262 /********************\
263 * Channel/mode setup *
264 \********************/
265 
266 /*
267  * Returns true for the channel numbers used.
268  */
269 #ifdef CONFIG_ATH5K_TEST_CHANNELS
270 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
271 {
272 	return true;
273 }
274 
275 #else
276 static bool ath5k_is_standard_channel(short chan, enum nl80211_band band)
277 {
278 	if (band == NL80211_BAND_2GHZ && chan <= 14)
279 		return true;
280 
281 	return	/* UNII 1,2 */
282 		(((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
283 		/* midband */
284 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
285 		/* UNII-3 */
286 		((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
287 		/* 802.11j 5.030-5.080 GHz (20MHz) */
288 		(chan == 8 || chan == 12 || chan == 16) ||
289 		/* 802.11j 4.9GHz (20MHz) */
290 		(chan == 184 || chan == 188 || chan == 192 || chan == 196));
291 }
292 #endif
293 
294 static unsigned int
295 ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
296 		unsigned int mode, unsigned int max)
297 {
298 	unsigned int count, size, freq, ch;
299 	enum nl80211_band band;
300 
301 	switch (mode) {
302 	case AR5K_MODE_11A:
303 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
304 		size = 220;
305 		band = NL80211_BAND_5GHZ;
306 		break;
307 	case AR5K_MODE_11B:
308 	case AR5K_MODE_11G:
309 		size = 26;
310 		band = NL80211_BAND_2GHZ;
311 		break;
312 	default:
313 		ATH5K_WARN(ah, "bad mode, not copying channels\n");
314 		return 0;
315 	}
316 
317 	count = 0;
318 	for (ch = 1; ch <= size && count < max; ch++) {
319 		freq = ieee80211_channel_to_frequency(ch, band);
320 
321 		if (freq == 0) /* mapping failed - not a standard channel */
322 			continue;
323 
324 		/* Write channel info, needed for ath5k_channel_ok() */
325 		channels[count].center_freq = freq;
326 		channels[count].band = band;
327 		channels[count].hw_value = mode;
328 
329 		/* Check if channel is supported by the chipset */
330 		if (!ath5k_channel_ok(ah, &channels[count]))
331 			continue;
332 
333 		if (!ath5k_is_standard_channel(ch, band))
334 			continue;
335 
336 		count++;
337 	}
338 
339 	return count;
340 }
341 
342 static void
343 ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
344 {
345 	u8 i;
346 
347 	for (i = 0; i < AR5K_MAX_RATES; i++)
348 		ah->rate_idx[b->band][i] = -1;
349 
350 	for (i = 0; i < b->n_bitrates; i++) {
351 		ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
352 		if (b->bitrates[i].hw_value_short)
353 			ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
354 	}
355 }
356 
357 static int
358 ath5k_setup_bands(struct ieee80211_hw *hw)
359 {
360 	struct ath5k_hw *ah = hw->priv;
361 	struct ieee80211_supported_band *sband;
362 	int max_c, count_c = 0;
363 	int i;
364 
365 	BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < NUM_NL80211_BANDS);
366 	max_c = ARRAY_SIZE(ah->channels);
367 
368 	/* 2GHz band */
369 	sband = &ah->sbands[NL80211_BAND_2GHZ];
370 	sband->band = NL80211_BAND_2GHZ;
371 	sband->bitrates = &ah->rates[NL80211_BAND_2GHZ][0];
372 
373 	if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
374 		/* G mode */
375 		memcpy(sband->bitrates, &ath5k_rates[0],
376 		       sizeof(struct ieee80211_rate) * 12);
377 		sband->n_bitrates = 12;
378 
379 		sband->channels = ah->channels;
380 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
381 					AR5K_MODE_11G, max_c);
382 
383 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
384 		count_c = sband->n_channels;
385 		max_c -= count_c;
386 	} else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
387 		/* B mode */
388 		memcpy(sband->bitrates, &ath5k_rates[0],
389 		       sizeof(struct ieee80211_rate) * 4);
390 		sband->n_bitrates = 4;
391 
392 		/* 5211 only supports B rates and uses 4bit rate codes
393 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
394 		 * fix them up here:
395 		 */
396 		if (ah->ah_version == AR5K_AR5211) {
397 			for (i = 0; i < 4; i++) {
398 				sband->bitrates[i].hw_value =
399 					sband->bitrates[i].hw_value & 0xF;
400 				sband->bitrates[i].hw_value_short =
401 					sband->bitrates[i].hw_value_short & 0xF;
402 			}
403 		}
404 
405 		sband->channels = ah->channels;
406 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
407 					AR5K_MODE_11B, max_c);
408 
409 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
410 		count_c = sband->n_channels;
411 		max_c -= count_c;
412 	}
413 	ath5k_setup_rate_idx(ah, sband);
414 
415 	/* 5GHz band, A mode */
416 	if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
417 		sband = &ah->sbands[NL80211_BAND_5GHZ];
418 		sband->band = NL80211_BAND_5GHZ;
419 		sband->bitrates = &ah->rates[NL80211_BAND_5GHZ][0];
420 
421 		memcpy(sband->bitrates, &ath5k_rates[4],
422 		       sizeof(struct ieee80211_rate) * 8);
423 		sband->n_bitrates = 8;
424 
425 		sband->channels = &ah->channels[count_c];
426 		sband->n_channels = ath5k_setup_channels(ah, sband->channels,
427 					AR5K_MODE_11A, max_c);
428 
429 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
430 	}
431 	ath5k_setup_rate_idx(ah, sband);
432 
433 	ath5k_debug_dump_bands(ah);
434 
435 	return 0;
436 }
437 
438 /*
439  * Set/change channels. We always reset the chip.
440  * To accomplish this we must first cleanup any pending DMA,
441  * then restart stuff after a la  ath5k_init.
442  *
443  * Called with ah->lock.
444  */
445 int
446 ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
447 {
448 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
449 		  "channel set, resetting (%u -> %u MHz)\n",
450 		  ah->curchan->center_freq, chandef->chan->center_freq);
451 
452 	switch (chandef->width) {
453 	case NL80211_CHAN_WIDTH_20:
454 	case NL80211_CHAN_WIDTH_20_NOHT:
455 		ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
456 		break;
457 	case NL80211_CHAN_WIDTH_5:
458 		ah->ah_bwmode = AR5K_BWMODE_5MHZ;
459 		break;
460 	case NL80211_CHAN_WIDTH_10:
461 		ah->ah_bwmode = AR5K_BWMODE_10MHZ;
462 		break;
463 	default:
464 		WARN_ON(1);
465 		return -EINVAL;
466 	}
467 
468 	/*
469 	 * To switch channels clear any pending DMA operations;
470 	 * wait long enough for the RX fifo to drain, reset the
471 	 * hardware at the new frequency, and then re-enable
472 	 * the relevant bits of the h/w.
473 	 */
474 	return ath5k_reset(ah, chandef->chan, true);
475 }
476 
477 void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
478 {
479 	struct ath5k_vif_iter_data *iter_data = data;
480 	int i;
481 	struct ath5k_vif *avf = (void *)vif->drv_priv;
482 
483 	if (iter_data->hw_macaddr)
484 		for (i = 0; i < ETH_ALEN; i++)
485 			iter_data->mask[i] &=
486 				~(iter_data->hw_macaddr[i] ^ mac[i]);
487 
488 	if (!iter_data->found_active) {
489 		iter_data->found_active = true;
490 		memcpy(iter_data->active_mac, mac, ETH_ALEN);
491 	}
492 
493 	if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
494 		if (ether_addr_equal(iter_data->hw_macaddr, mac))
495 			iter_data->need_set_hw_addr = false;
496 
497 	if (!iter_data->any_assoc) {
498 		if (avf->assoc)
499 			iter_data->any_assoc = true;
500 	}
501 
502 	/* Calculate combined mode - when APs are active, operate in AP mode.
503 	 * Otherwise use the mode of the new interface. This can currently
504 	 * only deal with combinations of APs and STAs. Only one ad-hoc
505 	 * interfaces is allowed.
506 	 */
507 	if (avf->opmode == NL80211_IFTYPE_AP)
508 		iter_data->opmode = NL80211_IFTYPE_AP;
509 	else {
510 		if (avf->opmode == NL80211_IFTYPE_STATION)
511 			iter_data->n_stas++;
512 		if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
513 			iter_data->opmode = avf->opmode;
514 	}
515 }
516 
517 void
518 ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
519 				   struct ieee80211_vif *vif)
520 {
521 	struct ath_common *common = ath5k_hw_common(ah);
522 	struct ath5k_vif_iter_data iter_data;
523 	u32 rfilt;
524 
525 	/*
526 	 * Use the hardware MAC address as reference, the hardware uses it
527 	 * together with the BSSID mask when matching addresses.
528 	 */
529 	iter_data.hw_macaddr = common->macaddr;
530 	eth_broadcast_addr(iter_data.mask);
531 	iter_data.found_active = false;
532 	iter_data.need_set_hw_addr = true;
533 	iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
534 	iter_data.n_stas = 0;
535 
536 	if (vif)
537 		ath5k_vif_iter(&iter_data, vif->addr, vif);
538 
539 	/* Get list of all active MAC addresses */
540 	ieee80211_iterate_active_interfaces_atomic(
541 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
542 		ath5k_vif_iter, &iter_data);
543 	memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
544 
545 	ah->opmode = iter_data.opmode;
546 	if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
547 		/* Nothing active, default to station mode */
548 		ah->opmode = NL80211_IFTYPE_STATION;
549 
550 	ath5k_hw_set_opmode(ah, ah->opmode);
551 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
552 		  ah->opmode, ath_opmode_to_string(ah->opmode));
553 
554 	if (iter_data.need_set_hw_addr && iter_data.found_active)
555 		ath5k_hw_set_lladdr(ah, iter_data.active_mac);
556 
557 	if (ath5k_hw_hasbssidmask(ah))
558 		ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
559 
560 	/* Set up RX Filter */
561 	if (iter_data.n_stas > 1) {
562 		/* If you have multiple STA interfaces connected to
563 		 * different APs, ARPs are not received (most of the time?)
564 		 * Enabling PROMISC appears to fix that problem.
565 		 */
566 		ah->filter_flags |= AR5K_RX_FILTER_PROM;
567 	}
568 
569 	rfilt = ah->filter_flags;
570 	ath5k_hw_set_rx_filter(ah, rfilt);
571 	ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
572 }
573 
574 static inline int
575 ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
576 {
577 	int rix;
578 
579 	/* return base rate on errors */
580 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
581 			"hw_rix out of bounds: %x\n", hw_rix))
582 		return 0;
583 
584 	rix = ah->rate_idx[ah->curchan->band][hw_rix];
585 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
586 		rix = 0;
587 
588 	return rix;
589 }
590 
591 /***************\
592 * Buffers setup *
593 \***************/
594 
595 static
596 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
597 {
598 	struct ath_common *common = ath5k_hw_common(ah);
599 	struct sk_buff *skb;
600 
601 	/*
602 	 * Allocate buffer with headroom_needed space for the
603 	 * fake physical layer header at the start.
604 	 */
605 	skb = ath_rxbuf_alloc(common,
606 			      common->rx_bufsize,
607 			      GFP_ATOMIC);
608 
609 	if (!skb) {
610 		ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
611 				common->rx_bufsize);
612 		return NULL;
613 	}
614 
615 	*skb_addr = dma_map_single(ah->dev,
616 				   skb->data, common->rx_bufsize,
617 				   DMA_FROM_DEVICE);
618 
619 	if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
620 		ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
621 		dev_kfree_skb(skb);
622 		return NULL;
623 	}
624 	return skb;
625 }
626 
627 static int
628 ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
629 {
630 	struct sk_buff *skb = bf->skb;
631 	struct ath5k_desc *ds;
632 	int ret;
633 
634 	if (!skb) {
635 		skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
636 		if (!skb)
637 			return -ENOMEM;
638 		bf->skb = skb;
639 	}
640 
641 	/*
642 	 * Setup descriptors.  For receive we always terminate
643 	 * the descriptor list with a self-linked entry so we'll
644 	 * not get overrun under high load (as can happen with a
645 	 * 5212 when ANI processing enables PHY error frames).
646 	 *
647 	 * To ensure the last descriptor is self-linked we create
648 	 * each descriptor as self-linked and add it to the end.  As
649 	 * each additional descriptor is added the previous self-linked
650 	 * entry is "fixed" naturally.  This should be safe even
651 	 * if DMA is happening.  When processing RX interrupts we
652 	 * never remove/process the last, self-linked, entry on the
653 	 * descriptor list.  This ensures the hardware always has
654 	 * someplace to write a new frame.
655 	 */
656 	ds = bf->desc;
657 	ds->ds_link = bf->daddr;	/* link to self */
658 	ds->ds_data = bf->skbaddr;
659 	ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
660 	if (ret) {
661 		ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
662 		return ret;
663 	}
664 
665 	if (ah->rxlink != NULL)
666 		*ah->rxlink = bf->daddr;
667 	ah->rxlink = &ds->ds_link;
668 	return 0;
669 }
670 
671 static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
672 {
673 	struct ieee80211_hdr *hdr;
674 	enum ath5k_pkt_type htype;
675 	__le16 fc;
676 
677 	hdr = (struct ieee80211_hdr *)skb->data;
678 	fc = hdr->frame_control;
679 
680 	if (ieee80211_is_beacon(fc))
681 		htype = AR5K_PKT_TYPE_BEACON;
682 	else if (ieee80211_is_probe_resp(fc))
683 		htype = AR5K_PKT_TYPE_PROBE_RESP;
684 	else if (ieee80211_is_atim(fc))
685 		htype = AR5K_PKT_TYPE_ATIM;
686 	else if (ieee80211_is_pspoll(fc))
687 		htype = AR5K_PKT_TYPE_PSPOLL;
688 	else
689 		htype = AR5K_PKT_TYPE_NORMAL;
690 
691 	return htype;
692 }
693 
694 static struct ieee80211_rate *
695 ath5k_get_rate(const struct ieee80211_hw *hw,
696 	       const struct ieee80211_tx_info *info,
697 	       struct ath5k_buf *bf, int idx)
698 {
699 	/*
700 	* convert a ieee80211_tx_rate RC-table entry to
701 	* the respective ieee80211_rate struct
702 	*/
703 	if (bf->rates[idx].idx < 0) {
704 		return NULL;
705 	}
706 
707 	return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
708 }
709 
710 static u16
711 ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
712 			const struct ieee80211_tx_info *info,
713 			struct ath5k_buf *bf, int idx)
714 {
715 	struct ieee80211_rate *rate;
716 	u16 hw_rate;
717 	u8 rc_flags;
718 
719 	rate = ath5k_get_rate(hw, info, bf, idx);
720 	if (!rate)
721 		return 0;
722 
723 	rc_flags = bf->rates[idx].flags;
724 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
725 		   rate->hw_value_short : rate->hw_value;
726 
727 	return hw_rate;
728 }
729 
730 static bool ath5k_merge_ratetbl(struct ieee80211_sta *sta,
731 				struct ath5k_buf *bf,
732 				struct ieee80211_tx_info *tx_info)
733 {
734 	struct ieee80211_sta_rates *ratetbl;
735 	u8 i;
736 
737 	if (!sta)
738 		return false;
739 
740 	ratetbl = rcu_dereference(sta->rates);
741 	if (!ratetbl)
742 		return false;
743 
744 	if (tx_info->control.rates[0].idx < 0 ||
745 	    tx_info->control.rates[0].count == 0)
746 	{
747 		i = 0;
748 	} else {
749 		bf->rates[0] = tx_info->control.rates[0];
750 		i = 1;
751 	}
752 
753 	for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
754 		bf->rates[i].idx = ratetbl->rate[i].idx;
755 		bf->rates[i].flags = ratetbl->rate[i].flags;
756 		if (tx_info->control.use_rts)
757 			bf->rates[i].count = ratetbl->rate[i].count_rts;
758 		else if (tx_info->control.use_cts_prot)
759 			bf->rates[i].count = ratetbl->rate[i].count_cts;
760 		else
761 			bf->rates[i].count = ratetbl->rate[i].count;
762 	}
763 
764 	return true;
765 }
766 
767 static int
768 ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
769 		  struct ath5k_txq *txq, int padsize,
770 		  struct ieee80211_tx_control *control)
771 {
772 	struct ath5k_desc *ds = bf->desc;
773 	struct sk_buff *skb = bf->skb;
774 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
775 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
776 	struct ieee80211_rate *rate;
777 	struct ieee80211_sta *sta;
778 	unsigned int mrr_rate[3], mrr_tries[3];
779 	int i, ret;
780 	u16 hw_rate;
781 	u16 cts_rate = 0;
782 	u16 duration = 0;
783 	u8 rc_flags;
784 
785 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
786 
787 	/* XXX endianness */
788 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
789 			DMA_TO_DEVICE);
790 
791 	if (dma_mapping_error(ah->dev, bf->skbaddr))
792 		return -ENOSPC;
793 
794 	if (control)
795 		sta = control->sta;
796 	else
797 		sta = NULL;
798 
799 	if (!ath5k_merge_ratetbl(sta, bf, info)) {
800 		ieee80211_get_tx_rates(info->control.vif,
801 				       sta, skb, bf->rates,
802 				       ARRAY_SIZE(bf->rates));
803 	}
804 
805 	rate = ath5k_get_rate(ah->hw, info, bf, 0);
806 
807 	if (!rate) {
808 		ret = -EINVAL;
809 		goto err_unmap;
810 	}
811 
812 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
813 		flags |= AR5K_TXDESC_NOACK;
814 
815 	rc_flags = bf->rates[0].flags;
816 
817 	hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
818 
819 	pktlen = skb->len;
820 
821 	/* FIXME: If we are in g mode and rate is a CCK rate
822 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
823 	 * from tx power (value is in dB units already) */
824 	if (info->control.hw_key) {
825 		keyidx = info->control.hw_key->hw_key_idx;
826 		pktlen += info->control.hw_key->icv_len;
827 	}
828 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
829 		flags |= AR5K_TXDESC_RTSENA;
830 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
831 		duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
832 			info->control.vif, pktlen, info));
833 	}
834 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
835 		flags |= AR5K_TXDESC_CTSENA;
836 		cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
837 		duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
838 			info->control.vif, pktlen, info));
839 	}
840 
841 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
842 		ieee80211_get_hdrlen_from_skb(skb), padsize,
843 		get_hw_packet_type(skb),
844 		(ah->ah_txpower.txp_requested * 2),
845 		hw_rate,
846 		bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
847 		cts_rate, duration);
848 	if (ret)
849 		goto err_unmap;
850 
851 	/* Set up MRR descriptor */
852 	if (ah->ah_capabilities.cap_has_mrr_support) {
853 		memset(mrr_rate, 0, sizeof(mrr_rate));
854 		memset(mrr_tries, 0, sizeof(mrr_tries));
855 
856 		for (i = 0; i < 3; i++) {
857 
858 			rate = ath5k_get_rate(ah->hw, info, bf, i);
859 			if (!rate)
860 				break;
861 
862 			mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
863 			mrr_tries[i] = bf->rates[i].count;
864 		}
865 
866 		ath5k_hw_setup_mrr_tx_desc(ah, ds,
867 			mrr_rate[0], mrr_tries[0],
868 			mrr_rate[1], mrr_tries[1],
869 			mrr_rate[2], mrr_tries[2]);
870 	}
871 
872 	ds->ds_link = 0;
873 	ds->ds_data = bf->skbaddr;
874 
875 	spin_lock_bh(&txq->lock);
876 	list_add_tail(&bf->list, &txq->q);
877 	txq->txq_len++;
878 	if (txq->link == NULL) /* is this first packet? */
879 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
880 	else /* no, so only link it */
881 		*txq->link = bf->daddr;
882 
883 	txq->link = &ds->ds_link;
884 	ath5k_hw_start_tx_dma(ah, txq->qnum);
885 	spin_unlock_bh(&txq->lock);
886 
887 	return 0;
888 err_unmap:
889 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
890 	return ret;
891 }
892 
893 /*******************\
894 * Descriptors setup *
895 \*******************/
896 
897 static int
898 ath5k_desc_alloc(struct ath5k_hw *ah)
899 {
900 	struct ath5k_desc *ds;
901 	struct ath5k_buf *bf;
902 	dma_addr_t da;
903 	unsigned int i;
904 	int ret;
905 
906 	/* allocate descriptors */
907 	ah->desc_len = sizeof(struct ath5k_desc) *
908 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
909 
910 	ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
911 				&ah->desc_daddr, GFP_KERNEL);
912 	if (ah->desc == NULL) {
913 		ATH5K_ERR(ah, "can't allocate descriptors\n");
914 		ret = -ENOMEM;
915 		goto err;
916 	}
917 	ds = ah->desc;
918 	da = ah->desc_daddr;
919 	ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
920 		ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
921 
922 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
923 			sizeof(struct ath5k_buf), GFP_KERNEL);
924 	if (bf == NULL) {
925 		ATH5K_ERR(ah, "can't allocate bufptr\n");
926 		ret = -ENOMEM;
927 		goto err_free;
928 	}
929 	ah->bufptr = bf;
930 
931 	INIT_LIST_HEAD(&ah->rxbuf);
932 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
933 		bf->desc = ds;
934 		bf->daddr = da;
935 		list_add_tail(&bf->list, &ah->rxbuf);
936 	}
937 
938 	INIT_LIST_HEAD(&ah->txbuf);
939 	ah->txbuf_len = ATH_TXBUF;
940 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
941 		bf->desc = ds;
942 		bf->daddr = da;
943 		list_add_tail(&bf->list, &ah->txbuf);
944 	}
945 
946 	/* beacon buffers */
947 	INIT_LIST_HEAD(&ah->bcbuf);
948 	for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
949 		bf->desc = ds;
950 		bf->daddr = da;
951 		list_add_tail(&bf->list, &ah->bcbuf);
952 	}
953 
954 	return 0;
955 err_free:
956 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
957 err:
958 	ah->desc = NULL;
959 	return ret;
960 }
961 
962 void
963 ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
964 {
965 	BUG_ON(!bf);
966 	if (!bf->skb)
967 		return;
968 	dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
969 			DMA_TO_DEVICE);
970 	ieee80211_free_txskb(ah->hw, bf->skb);
971 	bf->skb = NULL;
972 	bf->skbaddr = 0;
973 	bf->desc->ds_data = 0;
974 }
975 
976 void
977 ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
978 {
979 	struct ath_common *common = ath5k_hw_common(ah);
980 
981 	BUG_ON(!bf);
982 	if (!bf->skb)
983 		return;
984 	dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
985 			DMA_FROM_DEVICE);
986 	dev_kfree_skb_any(bf->skb);
987 	bf->skb = NULL;
988 	bf->skbaddr = 0;
989 	bf->desc->ds_data = 0;
990 }
991 
992 static void
993 ath5k_desc_free(struct ath5k_hw *ah)
994 {
995 	struct ath5k_buf *bf;
996 
997 	list_for_each_entry(bf, &ah->txbuf, list)
998 		ath5k_txbuf_free_skb(ah, bf);
999 	list_for_each_entry(bf, &ah->rxbuf, list)
1000 		ath5k_rxbuf_free_skb(ah, bf);
1001 	list_for_each_entry(bf, &ah->bcbuf, list)
1002 		ath5k_txbuf_free_skb(ah, bf);
1003 
1004 	/* Free memory associated with all descriptors */
1005 	dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
1006 	ah->desc = NULL;
1007 	ah->desc_daddr = 0;
1008 
1009 	kfree(ah->bufptr);
1010 	ah->bufptr = NULL;
1011 }
1012 
1013 
1014 /**************\
1015 * Queues setup *
1016 \**************/
1017 
1018 static struct ath5k_txq *
1019 ath5k_txq_setup(struct ath5k_hw *ah,
1020 		int qtype, int subtype)
1021 {
1022 	struct ath5k_txq *txq;
1023 	struct ath5k_txq_info qi = {
1024 		.tqi_subtype = subtype,
1025 		/* XXX: default values not correct for B and XR channels,
1026 		 * but who cares? */
1027 		.tqi_aifs = AR5K_TUNE_AIFS,
1028 		.tqi_cw_min = AR5K_TUNE_CWMIN,
1029 		.tqi_cw_max = AR5K_TUNE_CWMAX
1030 	};
1031 	int qnum;
1032 
1033 	/*
1034 	 * Enable interrupts only for EOL and DESC conditions.
1035 	 * We mark tx descriptors to receive a DESC interrupt
1036 	 * when a tx queue gets deep; otherwise we wait for the
1037 	 * EOL to reap descriptors.  Note that this is done to
1038 	 * reduce interrupt load and this only defers reaping
1039 	 * descriptors, never transmitting frames.  Aside from
1040 	 * reducing interrupts this also permits more concurrency.
1041 	 * The only potential downside is if the tx queue backs
1042 	 * up in which case the top half of the kernel may backup
1043 	 * due to a lack of tx descriptors.
1044 	 */
1045 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1046 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1047 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1048 	if (qnum < 0) {
1049 		/*
1050 		 * NB: don't print a message, this happens
1051 		 * normally on parts with too few tx queues
1052 		 */
1053 		return ERR_PTR(qnum);
1054 	}
1055 	txq = &ah->txqs[qnum];
1056 	if (!txq->setup) {
1057 		txq->qnum = qnum;
1058 		txq->link = NULL;
1059 		INIT_LIST_HEAD(&txq->q);
1060 		spin_lock_init(&txq->lock);
1061 		txq->setup = true;
1062 		txq->txq_len = 0;
1063 		txq->txq_max = ATH5K_TXQ_LEN_MAX;
1064 		txq->txq_poll_mark = false;
1065 		txq->txq_stuck = 0;
1066 	}
1067 	return &ah->txqs[qnum];
1068 }
1069 
1070 static int
1071 ath5k_beaconq_setup(struct ath5k_hw *ah)
1072 {
1073 	struct ath5k_txq_info qi = {
1074 		/* XXX: default values not correct for B and XR channels,
1075 		 * but who cares? */
1076 		.tqi_aifs = AR5K_TUNE_AIFS,
1077 		.tqi_cw_min = AR5K_TUNE_CWMIN,
1078 		.tqi_cw_max = AR5K_TUNE_CWMAX,
1079 		/* NB: for dynamic turbo, don't enable any other interrupts */
1080 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1081 	};
1082 
1083 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1084 }
1085 
1086 static int
1087 ath5k_beaconq_config(struct ath5k_hw *ah)
1088 {
1089 	struct ath5k_txq_info qi;
1090 	int ret;
1091 
1092 	ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
1093 	if (ret)
1094 		goto err;
1095 
1096 	if (ah->opmode == NL80211_IFTYPE_AP ||
1097 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
1098 		/*
1099 		 * Always burst out beacon and CAB traffic
1100 		 * (aifs = cwmin = cwmax = 0)
1101 		 */
1102 		qi.tqi_aifs = 0;
1103 		qi.tqi_cw_min = 0;
1104 		qi.tqi_cw_max = 0;
1105 	} else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
1106 		/*
1107 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1108 		 */
1109 		qi.tqi_aifs = 0;
1110 		qi.tqi_cw_min = 0;
1111 		qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
1112 	}
1113 
1114 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1115 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1116 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1117 
1118 	ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
1119 	if (ret) {
1120 		ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
1121 			"hardware queue!\n", __func__);
1122 		goto err;
1123 	}
1124 	ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
1125 	if (ret)
1126 		goto err;
1127 
1128 	/* reconfigure cabq with ready time to 80% of beacon_interval */
1129 	ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1130 	if (ret)
1131 		goto err;
1132 
1133 	qi.tqi_ready_time = (ah->bintval * 80) / 100;
1134 	ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
1135 	if (ret)
1136 		goto err;
1137 
1138 	ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
1139 err:
1140 	return ret;
1141 }
1142 
1143 /**
1144  * ath5k_drain_tx_buffs - Empty tx buffers
1145  *
1146  * @ah: The &struct ath5k_hw
1147  *
1148  * Empty tx buffers from all queues in preparation
1149  * of a reset or during shutdown.
1150  *
1151  * NB:	this assumes output has been stopped and
1152  *	we do not need to block ath5k_tx_tasklet
1153  */
1154 static void
1155 ath5k_drain_tx_buffs(struct ath5k_hw *ah)
1156 {
1157 	struct ath5k_txq *txq;
1158 	struct ath5k_buf *bf, *bf0;
1159 	int i;
1160 
1161 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
1162 		if (ah->txqs[i].setup) {
1163 			txq = &ah->txqs[i];
1164 			spin_lock_bh(&txq->lock);
1165 			list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1166 				ath5k_debug_printtxbuf(ah, bf);
1167 
1168 				ath5k_txbuf_free_skb(ah, bf);
1169 
1170 				spin_lock(&ah->txbuflock);
1171 				list_move_tail(&bf->list, &ah->txbuf);
1172 				ah->txbuf_len++;
1173 				txq->txq_len--;
1174 				spin_unlock(&ah->txbuflock);
1175 			}
1176 			txq->link = NULL;
1177 			txq->txq_poll_mark = false;
1178 			spin_unlock_bh(&txq->lock);
1179 		}
1180 	}
1181 }
1182 
1183 static void
1184 ath5k_txq_release(struct ath5k_hw *ah)
1185 {
1186 	struct ath5k_txq *txq = ah->txqs;
1187 	unsigned int i;
1188 
1189 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
1190 		if (txq->setup) {
1191 			ath5k_hw_release_tx_queue(ah, txq->qnum);
1192 			txq->setup = false;
1193 		}
1194 }
1195 
1196 
1197 /*************\
1198 * RX Handling *
1199 \*************/
1200 
1201 /*
1202  * Enable the receive h/w following a reset.
1203  */
1204 static int
1205 ath5k_rx_start(struct ath5k_hw *ah)
1206 {
1207 	struct ath_common *common = ath5k_hw_common(ah);
1208 	struct ath5k_buf *bf;
1209 	int ret;
1210 
1211 	common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
1212 
1213 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1214 		  common->cachelsz, common->rx_bufsize);
1215 
1216 	spin_lock_bh(&ah->rxbuflock);
1217 	ah->rxlink = NULL;
1218 	list_for_each_entry(bf, &ah->rxbuf, list) {
1219 		ret = ath5k_rxbuf_setup(ah, bf);
1220 		if (ret != 0) {
1221 			spin_unlock_bh(&ah->rxbuflock);
1222 			goto err;
1223 		}
1224 	}
1225 	bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1226 	ath5k_hw_set_rxdp(ah, bf->daddr);
1227 	spin_unlock_bh(&ah->rxbuflock);
1228 
1229 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1230 	ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
1231 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1232 
1233 	return 0;
1234 err:
1235 	return ret;
1236 }
1237 
1238 /*
1239  * Disable the receive logic on PCU (DRU)
1240  * In preparation for a shutdown.
1241  *
1242  * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
1243  * does.
1244  */
1245 static void
1246 ath5k_rx_stop(struct ath5k_hw *ah)
1247 {
1248 
1249 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1250 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1251 
1252 	ath5k_debug_printrxbuffs(ah);
1253 }
1254 
1255 static unsigned int
1256 ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
1257 		   struct ath5k_rx_status *rs)
1258 {
1259 	struct ath_common *common = ath5k_hw_common(ah);
1260 	struct ieee80211_hdr *hdr = (void *)skb->data;
1261 	unsigned int keyix, hlen;
1262 
1263 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1264 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1265 		return RX_FLAG_DECRYPTED;
1266 
1267 	/* Apparently when a default key is used to decrypt the packet
1268 	   the hw does not set the index used to decrypt.  In such cases
1269 	   get the index from the packet. */
1270 	hlen = ieee80211_hdrlen(hdr->frame_control);
1271 	if (ieee80211_has_protected(hdr->frame_control) &&
1272 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1273 	    skb->len >= hlen + 4) {
1274 		keyix = skb->data[hlen + 3] >> 6;
1275 
1276 		if (test_bit(keyix, common->keymap))
1277 			return RX_FLAG_DECRYPTED;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 
1284 static void
1285 ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
1286 		     struct ieee80211_rx_status *rxs)
1287 {
1288 	u64 tsf, bc_tstamp;
1289 	u32 hw_tu;
1290 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1291 
1292 	if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
1293 		/*
1294 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1295 		 * have updated the local TSF. We have to work around various
1296 		 * hardware bugs, though...
1297 		 */
1298 		tsf = ath5k_hw_get_tsf64(ah);
1299 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1300 		hw_tu = TSF_TO_TU(tsf);
1301 
1302 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1303 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1304 			(unsigned long long)bc_tstamp,
1305 			(unsigned long long)rxs->mactime,
1306 			(unsigned long long)(rxs->mactime - bc_tstamp),
1307 			(unsigned long long)tsf);
1308 
1309 		/*
1310 		 * Sometimes the HW will give us a wrong tstamp in the rx
1311 		 * status, causing the timestamp extension to go wrong.
1312 		 * (This seems to happen especially with beacon frames bigger
1313 		 * than 78 byte (incl. FCS))
1314 		 * But we know that the receive timestamp must be later than the
1315 		 * timestamp of the beacon since HW must have synced to that.
1316 		 *
1317 		 * NOTE: here we assume mactime to be after the frame was
1318 		 * received, not like mac80211 which defines it at the start.
1319 		 */
1320 		if (bc_tstamp > rxs->mactime) {
1321 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1322 				"fixing mactime from %llx to %llx\n",
1323 				(unsigned long long)rxs->mactime,
1324 				(unsigned long long)tsf);
1325 			rxs->mactime = tsf;
1326 		}
1327 
1328 		/*
1329 		 * Local TSF might have moved higher than our beacon timers,
1330 		 * in that case we have to update them to continue sending
1331 		 * beacons. This also takes care of synchronizing beacon sending
1332 		 * times with other stations.
1333 		 */
1334 		if (hw_tu >= ah->nexttbtt)
1335 			ath5k_beacon_update_timers(ah, bc_tstamp);
1336 
1337 		/* Check if the beacon timers are still correct, because a TSF
1338 		 * update might have created a window between them - for a
1339 		 * longer description see the comment of this function: */
1340 		if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
1341 			ath5k_beacon_update_timers(ah, bc_tstamp);
1342 			ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
1343 				"fixed beacon timers after beacon receive\n");
1344 		}
1345 	}
1346 }
1347 
1348 /*
1349  * Compute padding position. skb must contain an IEEE 802.11 frame
1350  */
1351 static int ath5k_common_padpos(struct sk_buff *skb)
1352 {
1353 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1354 	__le16 frame_control = hdr->frame_control;
1355 	int padpos = 24;
1356 
1357 	if (ieee80211_has_a4(frame_control))
1358 		padpos += ETH_ALEN;
1359 
1360 	if (ieee80211_is_data_qos(frame_control))
1361 		padpos += IEEE80211_QOS_CTL_LEN;
1362 
1363 	return padpos;
1364 }
1365 
1366 /*
1367  * This function expects an 802.11 frame and returns the number of
1368  * bytes added, or -1 if we don't have enough header room.
1369  */
1370 static int ath5k_add_padding(struct sk_buff *skb)
1371 {
1372 	int padpos = ath5k_common_padpos(skb);
1373 	int padsize = padpos & 3;
1374 
1375 	if (padsize && skb->len > padpos) {
1376 
1377 		if (skb_headroom(skb) < padsize)
1378 			return -1;
1379 
1380 		skb_push(skb, padsize);
1381 		memmove(skb->data, skb->data + padsize, padpos);
1382 		return padsize;
1383 	}
1384 
1385 	return 0;
1386 }
1387 
1388 /*
1389  * The MAC header is padded to have 32-bit boundary if the
1390  * packet payload is non-zero. The general calculation for
1391  * padsize would take into account odd header lengths:
1392  * padsize = 4 - (hdrlen & 3); however, since only
1393  * even-length headers are used, padding can only be 0 or 2
1394  * bytes and we can optimize this a bit.  We must not try to
1395  * remove padding from short control frames that do not have a
1396  * payload.
1397  *
1398  * This function expects an 802.11 frame and returns the number of
1399  * bytes removed.
1400  */
1401 static int ath5k_remove_padding(struct sk_buff *skb)
1402 {
1403 	int padpos = ath5k_common_padpos(skb);
1404 	int padsize = padpos & 3;
1405 
1406 	if (padsize && skb->len >= padpos + padsize) {
1407 		memmove(skb->data + padsize, skb->data, padpos);
1408 		skb_pull(skb, padsize);
1409 		return padsize;
1410 	}
1411 
1412 	return 0;
1413 }
1414 
1415 static void
1416 ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
1417 		    struct ath5k_rx_status *rs)
1418 {
1419 	struct ieee80211_rx_status *rxs;
1420 	struct ath_common *common = ath5k_hw_common(ah);
1421 
1422 	ath5k_remove_padding(skb);
1423 
1424 	rxs = IEEE80211_SKB_RXCB(skb);
1425 
1426 	rxs->flag = 0;
1427 	if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
1428 		rxs->flag |= RX_FLAG_MMIC_ERROR;
1429 	if (unlikely(rs->rs_status & AR5K_RXERR_CRC))
1430 		rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
1431 
1432 
1433 	/*
1434 	 * always extend the mac timestamp, since this information is
1435 	 * also needed for proper IBSS merging.
1436 	 *
1437 	 * XXX: it might be too late to do it here, since rs_tstamp is
1438 	 * 15bit only. that means TSF extension has to be done within
1439 	 * 32768usec (about 32ms). it might be necessary to move this to
1440 	 * the interrupt handler, like it is done in madwifi.
1441 	 */
1442 	rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
1443 	rxs->flag |= RX_FLAG_MACTIME_END;
1444 
1445 	rxs->freq = ah->curchan->center_freq;
1446 	rxs->band = ah->curchan->band;
1447 
1448 	rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
1449 
1450 	rxs->antenna = rs->rs_antenna;
1451 
1452 	if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
1453 		ah->stats.antenna_rx[rs->rs_antenna]++;
1454 	else
1455 		ah->stats.antenna_rx[0]++; /* invalid */
1456 
1457 	rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
1458 	rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
1459 	switch (ah->ah_bwmode) {
1460 	case AR5K_BWMODE_5MHZ:
1461 		rxs->bw = RATE_INFO_BW_5;
1462 		break;
1463 	case AR5K_BWMODE_10MHZ:
1464 		rxs->bw = RATE_INFO_BW_10;
1465 		break;
1466 	default:
1467 		break;
1468 	}
1469 
1470 	if (rs->rs_rate ==
1471 	    ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
1472 		rxs->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1473 
1474 	trace_ath5k_rx(ah, skb);
1475 
1476 	if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
1477 		ewma_beacon_rssi_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
1478 
1479 		/* check beacons in IBSS mode */
1480 		if (ah->opmode == NL80211_IFTYPE_ADHOC)
1481 			ath5k_check_ibss_tsf(ah, skb, rxs);
1482 	}
1483 
1484 	ieee80211_rx(ah->hw, skb);
1485 }
1486 
1487 /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
1488  *
1489  * Check if we want to further process this frame or not. Also update
1490  * statistics. Return true if we want this frame, false if not.
1491  */
1492 static bool
1493 ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
1494 {
1495 	ah->stats.rx_all_count++;
1496 	ah->stats.rx_bytes_count += rs->rs_datalen;
1497 
1498 	if (unlikely(rs->rs_status)) {
1499 		unsigned int filters;
1500 
1501 		if (rs->rs_status & AR5K_RXERR_CRC)
1502 			ah->stats.rxerr_crc++;
1503 		if (rs->rs_status & AR5K_RXERR_FIFO)
1504 			ah->stats.rxerr_fifo++;
1505 		if (rs->rs_status & AR5K_RXERR_PHY) {
1506 			ah->stats.rxerr_phy++;
1507 			if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
1508 				ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
1509 
1510 			/*
1511 			 * Treat packets that underwent a CCK or OFDM reset as having a bad CRC.
1512 			 * These restarts happen when the radio resynchronizes to a stronger frame
1513 			 * while receiving a weaker frame. Here we receive the prefix of the weak
1514 			 * frame. Since these are incomplete packets, mark their CRC as invalid.
1515 			 */
1516 			if (rs->rs_phyerr == AR5K_RX_PHY_ERROR_OFDM_RESTART ||
1517 			    rs->rs_phyerr == AR5K_RX_PHY_ERROR_CCK_RESTART) {
1518 				rs->rs_status |= AR5K_RXERR_CRC;
1519 				rs->rs_status &= ~AR5K_RXERR_PHY;
1520 			} else {
1521 				return false;
1522 			}
1523 		}
1524 		if (rs->rs_status & AR5K_RXERR_DECRYPT) {
1525 			/*
1526 			 * Decrypt error.  If the error occurred
1527 			 * because there was no hardware key, then
1528 			 * let the frame through so the upper layers
1529 			 * can process it.  This is necessary for 5210
1530 			 * parts which have no way to setup a ``clear''
1531 			 * key cache entry.
1532 			 *
1533 			 * XXX do key cache faulting
1534 			 */
1535 			ah->stats.rxerr_decrypt++;
1536 			if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
1537 			    !(rs->rs_status & AR5K_RXERR_CRC))
1538 				return true;
1539 		}
1540 		if (rs->rs_status & AR5K_RXERR_MIC) {
1541 			ah->stats.rxerr_mic++;
1542 			return true;
1543 		}
1544 
1545 		/*
1546 		 * Reject any frames with non-crypto errors, and take into account the
1547 		 * current FIF_* filters.
1548 		 */
1549 		filters = AR5K_RXERR_DECRYPT;
1550 		if (ah->fif_filter_flags & FIF_FCSFAIL)
1551 			filters |= AR5K_RXERR_CRC;
1552 
1553 		if (rs->rs_status & ~filters)
1554 			return false;
1555 	}
1556 
1557 	if (unlikely(rs->rs_more)) {
1558 		ah->stats.rxerr_jumbo++;
1559 		return false;
1560 	}
1561 	return true;
1562 }
1563 
1564 static void
1565 ath5k_set_current_imask(struct ath5k_hw *ah)
1566 {
1567 	enum ath5k_int imask;
1568 	unsigned long flags;
1569 
1570 	if (test_bit(ATH_STAT_RESET, ah->status))
1571 		return;
1572 
1573 	spin_lock_irqsave(&ah->irqlock, flags);
1574 	imask = ah->imask;
1575 	if (ah->rx_pending)
1576 		imask &= ~AR5K_INT_RX_ALL;
1577 	if (ah->tx_pending)
1578 		imask &= ~AR5K_INT_TX_ALL;
1579 	ath5k_hw_set_imr(ah, imask);
1580 	spin_unlock_irqrestore(&ah->irqlock, flags);
1581 }
1582 
1583 static void
1584 ath5k_tasklet_rx(struct tasklet_struct *t)
1585 {
1586 	struct ath5k_rx_status rs = {};
1587 	struct sk_buff *skb, *next_skb;
1588 	dma_addr_t next_skb_addr;
1589 	struct ath5k_hw *ah = from_tasklet(ah, t, rxtq);
1590 	struct ath_common *common = ath5k_hw_common(ah);
1591 	struct ath5k_buf *bf;
1592 	struct ath5k_desc *ds;
1593 	int ret;
1594 
1595 	spin_lock(&ah->rxbuflock);
1596 	if (list_empty(&ah->rxbuf)) {
1597 		ATH5K_WARN(ah, "empty rx buf pool\n");
1598 		goto unlock;
1599 	}
1600 	do {
1601 		bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
1602 		BUG_ON(bf->skb == NULL);
1603 		skb = bf->skb;
1604 		ds = bf->desc;
1605 
1606 		/* bail if HW is still using self-linked descriptor */
1607 		if (ath5k_hw_get_rxdp(ah) == bf->daddr)
1608 			break;
1609 
1610 		ret = ah->ah_proc_rx_desc(ah, ds, &rs);
1611 		if (unlikely(ret == -EINPROGRESS))
1612 			break;
1613 		else if (unlikely(ret)) {
1614 			ATH5K_ERR(ah, "error in processing rx descriptor\n");
1615 			ah->stats.rxerr_proc++;
1616 			break;
1617 		}
1618 
1619 		if (ath5k_receive_frame_ok(ah, &rs)) {
1620 			next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
1621 
1622 			/*
1623 			 * If we can't replace bf->skb with a new skb under
1624 			 * memory pressure, just skip this packet
1625 			 */
1626 			if (!next_skb)
1627 				goto next;
1628 
1629 			dma_unmap_single(ah->dev, bf->skbaddr,
1630 					 common->rx_bufsize,
1631 					 DMA_FROM_DEVICE);
1632 
1633 			skb_put(skb, rs.rs_datalen);
1634 
1635 			ath5k_receive_frame(ah, skb, &rs);
1636 
1637 			bf->skb = next_skb;
1638 			bf->skbaddr = next_skb_addr;
1639 		}
1640 next:
1641 		list_move_tail(&bf->list, &ah->rxbuf);
1642 	} while (ath5k_rxbuf_setup(ah, bf) == 0);
1643 unlock:
1644 	spin_unlock(&ah->rxbuflock);
1645 	ah->rx_pending = false;
1646 	ath5k_set_current_imask(ah);
1647 }
1648 
1649 
1650 /*************\
1651 * TX Handling *
1652 \*************/
1653 
1654 void
1655 ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
1656 	       struct ath5k_txq *txq, struct ieee80211_tx_control *control)
1657 {
1658 	struct ath5k_hw *ah = hw->priv;
1659 	struct ath5k_buf *bf;
1660 	unsigned long flags;
1661 	int padsize;
1662 
1663 	trace_ath5k_tx(ah, skb, txq);
1664 
1665 	/*
1666 	 * The hardware expects the header padded to 4 byte boundaries.
1667 	 * If this is not the case, we add the padding after the header.
1668 	 */
1669 	padsize = ath5k_add_padding(skb);
1670 	if (padsize < 0) {
1671 		ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
1672 			  " headroom to pad");
1673 		goto drop_packet;
1674 	}
1675 
1676 	if (txq->txq_len >= txq->txq_max &&
1677 	    txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
1678 		ieee80211_stop_queue(hw, txq->qnum);
1679 
1680 	spin_lock_irqsave(&ah->txbuflock, flags);
1681 	if (list_empty(&ah->txbuf)) {
1682 		ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
1683 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1684 		ieee80211_stop_queues(hw);
1685 		goto drop_packet;
1686 	}
1687 	bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
1688 	list_del(&bf->list);
1689 	ah->txbuf_len--;
1690 	if (list_empty(&ah->txbuf))
1691 		ieee80211_stop_queues(hw);
1692 	spin_unlock_irqrestore(&ah->txbuflock, flags);
1693 
1694 	bf->skb = skb;
1695 
1696 	if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
1697 		bf->skb = NULL;
1698 		spin_lock_irqsave(&ah->txbuflock, flags);
1699 		list_add_tail(&bf->list, &ah->txbuf);
1700 		ah->txbuf_len++;
1701 		spin_unlock_irqrestore(&ah->txbuflock, flags);
1702 		goto drop_packet;
1703 	}
1704 	return;
1705 
1706 drop_packet:
1707 	ieee80211_free_txskb(hw, skb);
1708 }
1709 
1710 static void
1711 ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
1712 			 struct ath5k_txq *txq, struct ath5k_tx_status *ts,
1713 			 struct ath5k_buf *bf)
1714 {
1715 	struct ieee80211_tx_info *info;
1716 	u8 tries[3];
1717 	int i;
1718 	int size = 0;
1719 
1720 	ah->stats.tx_all_count++;
1721 	ah->stats.tx_bytes_count += skb->len;
1722 	info = IEEE80211_SKB_CB(skb);
1723 
1724 	size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
1725 	memcpy(info->status.rates, bf->rates, size);
1726 
1727 	tries[0] = info->status.rates[0].count;
1728 	tries[1] = info->status.rates[1].count;
1729 	tries[2] = info->status.rates[2].count;
1730 
1731 	ieee80211_tx_info_clear_status(info);
1732 
1733 	for (i = 0; i < ts->ts_final_idx; i++) {
1734 		struct ieee80211_tx_rate *r =
1735 			&info->status.rates[i];
1736 
1737 		r->count = tries[i];
1738 	}
1739 
1740 	info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
1741 	info->status.rates[ts->ts_final_idx + 1].idx = -1;
1742 
1743 	if (unlikely(ts->ts_status)) {
1744 		ah->stats.ack_fail++;
1745 		if (ts->ts_status & AR5K_TXERR_FILT) {
1746 			info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1747 			ah->stats.txerr_filt++;
1748 		}
1749 		if (ts->ts_status & AR5K_TXERR_XRETRY)
1750 			ah->stats.txerr_retry++;
1751 		if (ts->ts_status & AR5K_TXERR_FIFO)
1752 			ah->stats.txerr_fifo++;
1753 	} else {
1754 		info->flags |= IEEE80211_TX_STAT_ACK;
1755 		info->status.ack_signal = ts->ts_rssi;
1756 
1757 		/* count the successful attempt as well */
1758 		info->status.rates[ts->ts_final_idx].count++;
1759 	}
1760 
1761 	/*
1762 	* Remove MAC header padding before giving the frame
1763 	* back to mac80211.
1764 	*/
1765 	ath5k_remove_padding(skb);
1766 
1767 	if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
1768 		ah->stats.antenna_tx[ts->ts_antenna]++;
1769 	else
1770 		ah->stats.antenna_tx[0]++; /* invalid */
1771 
1772 	trace_ath5k_tx_complete(ah, skb, txq, ts);
1773 	ieee80211_tx_status_skb(ah->hw, skb);
1774 }
1775 
1776 static void
1777 ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
1778 {
1779 	struct ath5k_tx_status ts = {};
1780 	struct ath5k_buf *bf, *bf0;
1781 	struct ath5k_desc *ds;
1782 	struct sk_buff *skb;
1783 	int ret;
1784 
1785 	spin_lock(&txq->lock);
1786 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1787 
1788 		txq->txq_poll_mark = false;
1789 
1790 		/* skb might already have been processed last time. */
1791 		if (bf->skb != NULL) {
1792 			ds = bf->desc;
1793 
1794 			ret = ah->ah_proc_tx_desc(ah, ds, &ts);
1795 			if (unlikely(ret == -EINPROGRESS))
1796 				break;
1797 			else if (unlikely(ret)) {
1798 				ATH5K_ERR(ah,
1799 					"error %d while processing "
1800 					"queue %u\n", ret, txq->qnum);
1801 				break;
1802 			}
1803 
1804 			skb = bf->skb;
1805 			bf->skb = NULL;
1806 
1807 			dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
1808 					DMA_TO_DEVICE);
1809 			ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
1810 		}
1811 
1812 		/*
1813 		 * It's possible that the hardware can say the buffer is
1814 		 * completed when it hasn't yet loaded the ds_link from
1815 		 * host memory and moved on.
1816 		 * Always keep the last descriptor to avoid HW races...
1817 		 */
1818 		if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
1819 			spin_lock(&ah->txbuflock);
1820 			list_move_tail(&bf->list, &ah->txbuf);
1821 			ah->txbuf_len++;
1822 			txq->txq_len--;
1823 			spin_unlock(&ah->txbuflock);
1824 		}
1825 	}
1826 	spin_unlock(&txq->lock);
1827 	if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
1828 		ieee80211_wake_queue(ah->hw, txq->qnum);
1829 }
1830 
1831 static void
1832 ath5k_tasklet_tx(struct tasklet_struct *t)
1833 {
1834 	int i;
1835 	struct ath5k_hw *ah = from_tasklet(ah, t, txtq);
1836 
1837 	for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
1838 		if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
1839 			ath5k_tx_processq(ah, &ah->txqs[i]);
1840 
1841 	ah->tx_pending = false;
1842 	ath5k_set_current_imask(ah);
1843 }
1844 
1845 
1846 /*****************\
1847 * Beacon handling *
1848 \*****************/
1849 
1850 /*
1851  * Setup the beacon frame for transmit.
1852  */
1853 static int
1854 ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
1855 {
1856 	struct sk_buff *skb = bf->skb;
1857 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1858 	struct ath5k_desc *ds;
1859 	int ret = 0;
1860 	u8 antenna;
1861 	u32 flags;
1862 	const int padsize = 0;
1863 
1864 	bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
1865 			DMA_TO_DEVICE);
1866 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
1867 			"skbaddr %llx\n", skb, skb->data, skb->len,
1868 			(unsigned long long)bf->skbaddr);
1869 
1870 	if (dma_mapping_error(ah->dev, bf->skbaddr)) {
1871 		ATH5K_ERR(ah, "beacon DMA mapping failed\n");
1872 		dev_kfree_skb_any(skb);
1873 		bf->skb = NULL;
1874 		return -EIO;
1875 	}
1876 
1877 	ds = bf->desc;
1878 	antenna = ah->ah_tx_ant;
1879 
1880 	flags = AR5K_TXDESC_NOACK;
1881 	if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
1882 		ds->ds_link = bf->daddr;	/* self-linked */
1883 		flags |= AR5K_TXDESC_VEOL;
1884 	} else
1885 		ds->ds_link = 0;
1886 
1887 	/*
1888 	 * If we use multiple antennas on AP and use
1889 	 * the Sectored AP scenario, switch antenna every
1890 	 * 4 beacons to make sure everybody hears our AP.
1891 	 * When a client tries to associate, hw will keep
1892 	 * track of the tx antenna to be used for this client
1893 	 * automatically, based on ACKed packets.
1894 	 *
1895 	 * Note: AP still listens and transmits RTS on the
1896 	 * default antenna which is supposed to be an omni.
1897 	 *
1898 	 * Note2: On sectored scenarios it's possible to have
1899 	 * multiple antennas (1 omni -- the default -- and 14
1900 	 * sectors), so if we choose to actually support this
1901 	 * mode, we need to allow the user to set how many antennas
1902 	 * we have and tweak the code below to send beacons
1903 	 * on all of them.
1904 	 */
1905 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
1906 		antenna = ah->bsent & 4 ? 2 : 1;
1907 
1908 
1909 	/* FIXME: If we are in g mode and rate is a CCK rate
1910 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1911 	 * from tx power (value is in dB units already) */
1912 	ds->ds_data = bf->skbaddr;
1913 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
1914 			ieee80211_get_hdrlen_from_skb(skb), padsize,
1915 			AR5K_PKT_TYPE_BEACON,
1916 			(ah->ah_txpower.txp_requested * 2),
1917 			ieee80211_get_tx_rate(ah->hw, info)->hw_value,
1918 			1, AR5K_TXKEYIX_INVALID,
1919 			antenna, flags, 0, 0);
1920 	if (ret)
1921 		goto err_unmap;
1922 
1923 	return 0;
1924 err_unmap:
1925 	dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
1926 	return ret;
1927 }
1928 
1929 /*
1930  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
1931  * this is called only once at config_bss time, for AP we do it every
1932  * SWBA interrupt so that the TIM will reflect buffered frames.
1933  *
1934  * Called with the beacon lock.
1935  */
1936 int
1937 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1938 {
1939 	int ret;
1940 	struct ath5k_hw *ah = hw->priv;
1941 	struct ath5k_vif *avf;
1942 	struct sk_buff *skb;
1943 
1944 	if (WARN_ON(!vif)) {
1945 		ret = -EINVAL;
1946 		goto out;
1947 	}
1948 
1949 	skb = ieee80211_beacon_get(hw, vif, 0);
1950 
1951 	if (!skb) {
1952 		ret = -ENOMEM;
1953 		goto out;
1954 	}
1955 
1956 	avf = (void *)vif->drv_priv;
1957 	ath5k_txbuf_free_skb(ah, avf->bbuf);
1958 	avf->bbuf->skb = skb;
1959 	ret = ath5k_beacon_setup(ah, avf->bbuf);
1960 out:
1961 	return ret;
1962 }
1963 
1964 /*
1965  * Transmit a beacon frame at SWBA.  Dynamic updates to the
1966  * frame contents are done as needed and the slot time is
1967  * also adjusted based on current state.
1968  *
1969  * This is called from software irq context (beacontq tasklets)
1970  * or user context from ath5k_beacon_config.
1971  */
1972 static void
1973 ath5k_beacon_send(struct ath5k_hw *ah)
1974 {
1975 	struct ieee80211_vif *vif;
1976 	struct ath5k_vif *avf;
1977 	struct ath5k_buf *bf;
1978 	struct sk_buff *skb;
1979 	int err;
1980 
1981 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
1982 
1983 	/*
1984 	 * Check if the previous beacon has gone out.  If
1985 	 * not, don't try to post another: skip this
1986 	 * period and wait for the next.  Missed beacons
1987 	 * indicate a problem and should not occur.  If we
1988 	 * miss too many consecutive beacons reset the device.
1989 	 */
1990 	if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
1991 		ah->bmisscount++;
1992 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1993 			"missed %u consecutive beacons\n", ah->bmisscount);
1994 		if (ah->bmisscount > 10) {	/* NB: 10 is a guess */
1995 			ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
1996 				"stuck beacon time (%u missed)\n",
1997 				ah->bmisscount);
1998 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
1999 				  "stuck beacon, resetting\n");
2000 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2001 		}
2002 		return;
2003 	}
2004 	if (unlikely(ah->bmisscount != 0)) {
2005 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2006 			"resume beacon xmit after %u misses\n",
2007 			ah->bmisscount);
2008 		ah->bmisscount = 0;
2009 	}
2010 
2011 	if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
2012 			ah->num_mesh_vifs > 1) ||
2013 			ah->opmode == NL80211_IFTYPE_MESH_POINT) {
2014 		u64 tsf = ath5k_hw_get_tsf64(ah);
2015 		u32 tsftu = TSF_TO_TU(tsf);
2016 		int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
2017 		vif = ah->bslot[(slot + 1) % ATH_BCBUF];
2018 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2019 			"tsf %llx tsftu %x intval %u slot %u vif %p\n",
2020 			(unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
2021 	} else /* only one interface */
2022 		vif = ah->bslot[0];
2023 
2024 	if (!vif)
2025 		return;
2026 
2027 	avf = (void *)vif->drv_priv;
2028 	bf = avf->bbuf;
2029 
2030 	/*
2031 	 * Stop any current dma and put the new frame on the queue.
2032 	 * This should never fail since we check above that no frames
2033 	 * are still pending on the queue.
2034 	 */
2035 	if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
2036 		ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
2037 		/* NB: hw still stops DMA, so proceed */
2038 	}
2039 
2040 	/* refresh the beacon for AP or MESH mode */
2041 	if (ah->opmode == NL80211_IFTYPE_AP ||
2042 	    ah->opmode == NL80211_IFTYPE_MESH_POINT) {
2043 		err = ath5k_beacon_update(ah->hw, vif);
2044 		if (err)
2045 			return;
2046 	}
2047 
2048 	if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
2049 		     ah->opmode == NL80211_IFTYPE_MONITOR)) {
2050 		ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
2051 		return;
2052 	}
2053 
2054 	trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
2055 
2056 	ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
2057 	ath5k_hw_start_tx_dma(ah, ah->bhalq);
2058 	ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2059 		ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
2060 
2061 	skb = ieee80211_get_buffered_bc(ah->hw, vif);
2062 	while (skb) {
2063 		ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
2064 
2065 		if (ah->cabq->txq_len >= ah->cabq->txq_max)
2066 			break;
2067 
2068 		skb = ieee80211_get_buffered_bc(ah->hw, vif);
2069 	}
2070 
2071 	ah->bsent++;
2072 }
2073 
2074 /**
2075  * ath5k_beacon_update_timers - update beacon timers
2076  *
2077  * @ah: struct ath5k_hw pointer we are operating on
2078  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2079  *          beacon timer update based on the current HW TSF.
2080  *
2081  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2082  * of a received beacon or the current local hardware TSF and write it to the
2083  * beacon timer registers.
2084  *
2085  * This is called in a variety of situations, e.g. when a beacon is received,
2086  * when a TSF update has been detected, but also when an new IBSS is created or
2087  * when we otherwise know we have to update the timers, but we keep it in this
2088  * function to have it all together in one place.
2089  */
2090 void
2091 ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
2092 {
2093 	u32 nexttbtt, intval, hw_tu, bc_tu;
2094 	u64 hw_tsf;
2095 
2096 	intval = ah->bintval & AR5K_BEACON_PERIOD;
2097 	if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
2098 		+ ah->num_mesh_vifs > 1) {
2099 		intval /= ATH_BCBUF;	/* staggered multi-bss beacons */
2100 		if (intval < 15)
2101 			ATH5K_WARN(ah, "intval %u is too low, min 15\n",
2102 				   intval);
2103 	}
2104 	if (WARN_ON(!intval))
2105 		return;
2106 
2107 	/* beacon TSF converted to TU */
2108 	bc_tu = TSF_TO_TU(bc_tsf);
2109 
2110 	/* current TSF converted to TU */
2111 	hw_tsf = ath5k_hw_get_tsf64(ah);
2112 	hw_tu = TSF_TO_TU(hw_tsf);
2113 
2114 #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
2115 	/* We use FUDGE to make sure the next TBTT is ahead of the current TU.
2116 	 * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
2117 	 * configuration we need to make sure it is bigger than that. */
2118 
2119 	if (bc_tsf == -1) {
2120 		/*
2121 		 * no beacons received, called internally.
2122 		 * just need to refresh timers based on HW TSF.
2123 		 */
2124 		nexttbtt = roundup(hw_tu + FUDGE, intval);
2125 	} else if (bc_tsf == 0) {
2126 		/*
2127 		 * no beacon received, probably called by ath5k_reset_tsf().
2128 		 * reset TSF to start with 0.
2129 		 */
2130 		nexttbtt = intval;
2131 		intval |= AR5K_BEACON_RESET_TSF;
2132 	} else if (bc_tsf > hw_tsf) {
2133 		/*
2134 		 * beacon received, SW merge happened but HW TSF not yet updated.
2135 		 * not possible to reconfigure timers yet, but next time we
2136 		 * receive a beacon with the same BSSID, the hardware will
2137 		 * automatically update the TSF and then we need to reconfigure
2138 		 * the timers.
2139 		 */
2140 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2141 			"need to wait for HW TSF sync\n");
2142 		return;
2143 	} else {
2144 		/*
2145 		 * most important case for beacon synchronization between STA.
2146 		 *
2147 		 * beacon received and HW TSF has been already updated by HW.
2148 		 * update next TBTT based on the TSF of the beacon, but make
2149 		 * sure it is ahead of our local TSF timer.
2150 		 */
2151 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2152 	}
2153 #undef FUDGE
2154 
2155 	ah->nexttbtt = nexttbtt;
2156 
2157 	intval |= AR5K_BEACON_ENA;
2158 	ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
2159 
2160 	/*
2161 	 * debugging output last in order to preserve the time critical aspect
2162 	 * of this function
2163 	 */
2164 	if (bc_tsf == -1)
2165 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2166 			"reconfigured timers based on HW TSF\n");
2167 	else if (bc_tsf == 0)
2168 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2169 			"reset HW TSF and timers\n");
2170 	else
2171 		ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2172 			"updated timers based on beacon TSF\n");
2173 
2174 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
2175 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2176 			  (unsigned long long) bc_tsf,
2177 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2178 	ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2179 		intval & AR5K_BEACON_PERIOD,
2180 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2181 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2182 }
2183 
2184 /**
2185  * ath5k_beacon_config - Configure the beacon queues and interrupts
2186  *
2187  * @ah: struct ath5k_hw pointer we are operating on
2188  *
2189  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2190  * interrupts to detect TSF updates only.
2191  */
2192 void
2193 ath5k_beacon_config(struct ath5k_hw *ah)
2194 {
2195 	spin_lock_bh(&ah->block);
2196 	ah->bmisscount = 0;
2197 	ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2198 
2199 	if (ah->enable_beacon) {
2200 		/*
2201 		 * In IBSS mode we use a self-linked tx descriptor and let the
2202 		 * hardware send the beacons automatically. We have to load it
2203 		 * only once here.
2204 		 * We use the SWBA interrupt only to keep track of the beacon
2205 		 * timers in order to detect automatic TSF updates.
2206 		 */
2207 		ath5k_beaconq_config(ah);
2208 
2209 		ah->imask |= AR5K_INT_SWBA;
2210 
2211 		if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2212 			if (ath5k_hw_hasveol(ah))
2213 				ath5k_beacon_send(ah);
2214 		} else
2215 			ath5k_beacon_update_timers(ah, -1);
2216 	} else {
2217 		ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
2218 	}
2219 
2220 	ath5k_hw_set_imr(ah, ah->imask);
2221 	spin_unlock_bh(&ah->block);
2222 }
2223 
2224 static void ath5k_tasklet_beacon(struct tasklet_struct *t)
2225 {
2226 	struct ath5k_hw *ah = from_tasklet(ah, t, beacontq);
2227 
2228 	/*
2229 	 * Software beacon alert--time to send a beacon.
2230 	 *
2231 	 * In IBSS mode we use this interrupt just to
2232 	 * keep track of the next TBTT (target beacon
2233 	 * transmission time) in order to detect whether
2234 	 * automatic TSF updates happened.
2235 	 */
2236 	if (ah->opmode == NL80211_IFTYPE_ADHOC) {
2237 		/* XXX: only if VEOL supported */
2238 		u64 tsf = ath5k_hw_get_tsf64(ah);
2239 		ah->nexttbtt += ah->bintval;
2240 		ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
2241 				"SWBA nexttbtt: %x hw_tu: %x "
2242 				"TSF: %llx\n",
2243 				ah->nexttbtt,
2244 				TSF_TO_TU(tsf),
2245 				(unsigned long long) tsf);
2246 	} else {
2247 		spin_lock(&ah->block);
2248 		ath5k_beacon_send(ah);
2249 		spin_unlock(&ah->block);
2250 	}
2251 }
2252 
2253 
2254 /********************\
2255 * Interrupt handling *
2256 \********************/
2257 
2258 static void
2259 ath5k_intr_calibration_poll(struct ath5k_hw *ah)
2260 {
2261 	if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
2262 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2263 	   !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2264 
2265 		/* Run ANI only when calibration is not active */
2266 
2267 		ah->ah_cal_next_ani = jiffies +
2268 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2269 		tasklet_schedule(&ah->ani_tasklet);
2270 
2271 	} else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
2272 		!(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
2273 		!(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
2274 
2275 		/* Run calibration only when another calibration
2276 		 * is not running.
2277 		 *
2278 		 * Note: This is for both full/short calibration,
2279 		 * if it's time for a full one, ath5k_calibrate_work will deal
2280 		 * with it. */
2281 
2282 		ah->ah_cal_next_short = jiffies +
2283 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2284 		ieee80211_queue_work(ah->hw, &ah->calib_work);
2285 	}
2286 	/* we could use SWI to generate enough interrupts to meet our
2287 	 * calibration interval requirements, if necessary:
2288 	 * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
2289 }
2290 
2291 static void
2292 ath5k_schedule_rx(struct ath5k_hw *ah)
2293 {
2294 	ah->rx_pending = true;
2295 	tasklet_schedule(&ah->rxtq);
2296 }
2297 
2298 static void
2299 ath5k_schedule_tx(struct ath5k_hw *ah)
2300 {
2301 	ah->tx_pending = true;
2302 	tasklet_schedule(&ah->txtq);
2303 }
2304 
2305 static irqreturn_t
2306 ath5k_intr(int irq, void *dev_id)
2307 {
2308 	struct ath5k_hw *ah = dev_id;
2309 	enum ath5k_int status;
2310 	unsigned int counter = 1000;
2311 
2312 
2313 	/*
2314 	 * If hw is not ready (or detached) and we get an
2315 	 * interrupt, or if we have no interrupts pending
2316 	 * (that means it's not for us) skip it.
2317 	 *
2318 	 * NOTE: Group 0/1 PCI interface registers are not
2319 	 * supported on WiSOCs, so we can't check for pending
2320 	 * interrupts (ISR belongs to another register group
2321 	 * so we are ok).
2322 	 */
2323 	if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
2324 			((ath5k_get_bus_type(ah) != ATH_AHB) &&
2325 			!ath5k_hw_is_intr_pending(ah))))
2326 		return IRQ_NONE;
2327 
2328 	/** Main loop **/
2329 	do {
2330 		ath5k_hw_get_isr(ah, &status);	/* NB: clears IRQ too */
2331 
2332 		ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2333 				status, ah->imask);
2334 
2335 		/*
2336 		 * Fatal hw error -> Log and reset
2337 		 *
2338 		 * Fatal errors are unrecoverable so we have to
2339 		 * reset the card. These errors include bus and
2340 		 * dma errors.
2341 		 */
2342 		if (unlikely(status & AR5K_INT_FATAL)) {
2343 
2344 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2345 				  "fatal int, resetting\n");
2346 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2347 
2348 		/*
2349 		 * RX Overrun -> Count and reset if needed
2350 		 *
2351 		 * Receive buffers are full. Either the bus is busy or
2352 		 * the CPU is not fast enough to process all received
2353 		 * frames.
2354 		 */
2355 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2356 
2357 			/*
2358 			 * Older chipsets need a reset to come out of this
2359 			 * condition, but we treat it as RX for newer chips.
2360 			 * We don't know exactly which versions need a reset
2361 			 * this guess is copied from the HAL.
2362 			 */
2363 			ah->stats.rxorn_intr++;
2364 
2365 			if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
2366 				ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2367 					  "rx overrun, resetting\n");
2368 				ieee80211_queue_work(ah->hw, &ah->reset_work);
2369 			} else
2370 				ath5k_schedule_rx(ah);
2371 
2372 		} else {
2373 
2374 			/* Software Beacon Alert -> Schedule beacon tasklet */
2375 			if (status & AR5K_INT_SWBA)
2376 				tasklet_hi_schedule(&ah->beacontq);
2377 
2378 			/*
2379 			 * No more RX descriptors -> Just count
2380 			 *
2381 			 * NB: the hardware should re-read the link when
2382 			 *     RXE bit is written, but it doesn't work at
2383 			 *     least on older hardware revs.
2384 			 */
2385 			if (status & AR5K_INT_RXEOL)
2386 				ah->stats.rxeol_intr++;
2387 
2388 
2389 			/* TX Underrun -> Bump tx trigger level */
2390 			if (status & AR5K_INT_TXURN)
2391 				ath5k_hw_update_tx_triglevel(ah, true);
2392 
2393 			/* RX -> Schedule rx tasklet */
2394 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2395 				ath5k_schedule_rx(ah);
2396 
2397 			/* TX -> Schedule tx tasklet */
2398 			if (status & (AR5K_INT_TXOK
2399 					| AR5K_INT_TXDESC
2400 					| AR5K_INT_TXERR
2401 					| AR5K_INT_TXEOL))
2402 				ath5k_schedule_tx(ah);
2403 
2404 			/* Missed beacon -> TODO
2405 			if (status & AR5K_INT_BMISS)
2406 			*/
2407 
2408 			/* MIB event -> Update counters and notify ANI */
2409 			if (status & AR5K_INT_MIB) {
2410 				ah->stats.mib_intr++;
2411 				ath5k_hw_update_mib_counters(ah);
2412 				ath5k_ani_mib_intr(ah);
2413 			}
2414 
2415 			/* GPIO -> Notify RFKill layer */
2416 			if (status & AR5K_INT_GPIO)
2417 				tasklet_schedule(&ah->rf_kill.toggleq);
2418 
2419 		}
2420 
2421 		if (ath5k_get_bus_type(ah) == ATH_AHB)
2422 			break;
2423 
2424 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2425 
2426 	/*
2427 	 * Until we handle rx/tx interrupts mask them on IMR
2428 	 *
2429 	 * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
2430 	 * and unset after we 've handled the interrupts.
2431 	 */
2432 	if (ah->rx_pending || ah->tx_pending)
2433 		ath5k_set_current_imask(ah);
2434 
2435 	if (unlikely(!counter))
2436 		ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
2437 
2438 	/* Fire up calibration poll */
2439 	ath5k_intr_calibration_poll(ah);
2440 
2441 	return IRQ_HANDLED;
2442 }
2443 
2444 /*
2445  * Periodically recalibrate the PHY to account
2446  * for temperature/environment changes.
2447  */
2448 static void
2449 ath5k_calibrate_work(struct work_struct *work)
2450 {
2451 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2452 		calib_work);
2453 
2454 	/* Should we run a full calibration ? */
2455 	if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
2456 
2457 		ah->ah_cal_next_full = jiffies +
2458 			msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2459 		ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
2460 
2461 		ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
2462 				"running full calibration\n");
2463 
2464 		if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2465 			/*
2466 			 * Rfgain is out of bounds, reset the chip
2467 			 * to load new gain values.
2468 			 */
2469 			ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2470 					"got new rfgain, resetting\n");
2471 			ieee80211_queue_work(ah->hw, &ah->reset_work);
2472 		}
2473 	} else
2474 		ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
2475 
2476 
2477 	ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2478 		ieee80211_frequency_to_channel(ah->curchan->center_freq),
2479 		ah->curchan->hw_value);
2480 
2481 	if (ath5k_hw_phy_calibrate(ah, ah->curchan))
2482 		ATH5K_ERR(ah, "calibration of channel %u failed\n",
2483 			ieee80211_frequency_to_channel(
2484 				ah->curchan->center_freq));
2485 
2486 	/* Clear calibration flags */
2487 	if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
2488 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
2489 	else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
2490 		ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
2491 }
2492 
2493 
2494 static void
2495 ath5k_tasklet_ani(struct tasklet_struct *t)
2496 {
2497 	struct ath5k_hw *ah = from_tasklet(ah, t, ani_tasklet);
2498 
2499 	ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
2500 	ath5k_ani_calibration(ah);
2501 	ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
2502 }
2503 
2504 
2505 static void
2506 ath5k_tx_complete_poll_work(struct work_struct *work)
2507 {
2508 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
2509 			tx_complete_work.work);
2510 	struct ath5k_txq *txq;
2511 	int i;
2512 	bool needreset = false;
2513 
2514 	if (!test_bit(ATH_STAT_STARTED, ah->status))
2515 		return;
2516 
2517 	mutex_lock(&ah->lock);
2518 
2519 	for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
2520 		if (ah->txqs[i].setup) {
2521 			txq = &ah->txqs[i];
2522 			spin_lock_bh(&txq->lock);
2523 			if (txq->txq_len > 1) {
2524 				if (txq->txq_poll_mark) {
2525 					ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
2526 						  "TX queue stuck %d\n",
2527 						  txq->qnum);
2528 					needreset = true;
2529 					txq->txq_stuck++;
2530 					spin_unlock_bh(&txq->lock);
2531 					break;
2532 				} else {
2533 					txq->txq_poll_mark = true;
2534 				}
2535 			}
2536 			spin_unlock_bh(&txq->lock);
2537 		}
2538 	}
2539 
2540 	if (needreset) {
2541 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2542 			  "TX queues stuck, resetting\n");
2543 		ath5k_reset(ah, NULL, true);
2544 	}
2545 
2546 	mutex_unlock(&ah->lock);
2547 
2548 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2549 		msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2550 }
2551 
2552 
2553 /*************************\
2554 * Initialization routines *
2555 \*************************/
2556 
2557 static const struct ieee80211_iface_limit if_limits[] = {
2558 	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) },
2559 	{ .max = 4,	.types =
2560 #ifdef CONFIG_MAC80211_MESH
2561 				 BIT(NL80211_IFTYPE_MESH_POINT) |
2562 #endif
2563 				 BIT(NL80211_IFTYPE_AP) },
2564 };
2565 
2566 static const struct ieee80211_iface_combination if_comb = {
2567 	.limits = if_limits,
2568 	.n_limits = ARRAY_SIZE(if_limits),
2569 	.max_interfaces = 2048,
2570 	.num_different_channels = 1,
2571 };
2572 
2573 int
2574 ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
2575 {
2576 	struct ieee80211_hw *hw = ah->hw;
2577 	struct ath_common *common;
2578 	int ret;
2579 	int csz;
2580 
2581 	/* Initialize driver private data */
2582 	SET_IEEE80211_DEV(hw, ah->dev);
2583 	ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
2584 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2585 	ieee80211_hw_set(hw, MFP_CAPABLE);
2586 	ieee80211_hw_set(hw, SIGNAL_DBM);
2587 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2588 	ieee80211_hw_set(hw, HOST_BROADCAST_PS_BUFFERING);
2589 
2590 	hw->wiphy->interface_modes =
2591 		BIT(NL80211_IFTYPE_AP) |
2592 		BIT(NL80211_IFTYPE_STATION) |
2593 		BIT(NL80211_IFTYPE_ADHOC) |
2594 		BIT(NL80211_IFTYPE_MESH_POINT);
2595 
2596 	hw->wiphy->iface_combinations = &if_comb;
2597 	hw->wiphy->n_iface_combinations = 1;
2598 
2599 	/* SW support for IBSS_RSN is provided by mac80211 */
2600 	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
2601 
2602 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
2603 
2604 	/* both antennas can be configured as RX or TX */
2605 	hw->wiphy->available_antennas_tx = 0x3;
2606 	hw->wiphy->available_antennas_rx = 0x3;
2607 
2608 	hw->extra_tx_headroom = 2;
2609 
2610 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2611 
2612 	/*
2613 	 * Mark the device as detached to avoid processing
2614 	 * interrupts until setup is complete.
2615 	 */
2616 	__set_bit(ATH_STAT_INVALID, ah->status);
2617 
2618 	ah->opmode = NL80211_IFTYPE_STATION;
2619 	ah->bintval = 1000;
2620 	mutex_init(&ah->lock);
2621 	spin_lock_init(&ah->rxbuflock);
2622 	spin_lock_init(&ah->txbuflock);
2623 	spin_lock_init(&ah->block);
2624 	spin_lock_init(&ah->irqlock);
2625 
2626 	/* Setup interrupt handler */
2627 	ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
2628 	if (ret) {
2629 		ATH5K_ERR(ah, "request_irq failed\n");
2630 		goto err;
2631 	}
2632 
2633 	common = ath5k_hw_common(ah);
2634 	common->ops = &ath5k_common_ops;
2635 	common->bus_ops = bus_ops;
2636 	common->ah = ah;
2637 	common->hw = hw;
2638 	common->priv = ah;
2639 	common->clockrate = 40;
2640 
2641 	/*
2642 	 * Cache line size is used to size and align various
2643 	 * structures used to communicate with the hardware.
2644 	 */
2645 	ath5k_read_cachesize(common, &csz);
2646 	common->cachelsz = csz << 2; /* convert to bytes */
2647 
2648 	spin_lock_init(&common->cc_lock);
2649 
2650 	/* Initialize device */
2651 	ret = ath5k_hw_init(ah);
2652 	if (ret)
2653 		goto err_irq;
2654 
2655 	/* Set up multi-rate retry capabilities */
2656 	if (ah->ah_capabilities.cap_has_mrr_support) {
2657 		hw->max_rates = 4;
2658 		hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
2659 					 AR5K_INIT_RETRY_LONG);
2660 	}
2661 
2662 	hw->vif_data_size = sizeof(struct ath5k_vif);
2663 
2664 	/* Finish private driver data initialization */
2665 	ret = ath5k_init(hw);
2666 	if (ret)
2667 		goto err_ah;
2668 
2669 	ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
2670 			ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
2671 					ah->ah_mac_srev,
2672 					ah->ah_phy_revision);
2673 
2674 	if (!ah->ah_single_chip) {
2675 		/* Single chip radio (!RF5111) */
2676 		if (ah->ah_radio_5ghz_revision &&
2677 			!ah->ah_radio_2ghz_revision) {
2678 			/* No 5GHz support -> report 2GHz radio */
2679 			if (!test_bit(AR5K_MODE_11A,
2680 				ah->ah_capabilities.cap_mode)) {
2681 				ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2682 					ath5k_chip_name(AR5K_VERSION_RAD,
2683 						ah->ah_radio_5ghz_revision),
2684 						ah->ah_radio_5ghz_revision);
2685 			/* No 2GHz support (5110 and some
2686 			 * 5GHz only cards) -> report 5GHz radio */
2687 			} else if (!test_bit(AR5K_MODE_11B,
2688 				ah->ah_capabilities.cap_mode)) {
2689 				ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2690 					ath5k_chip_name(AR5K_VERSION_RAD,
2691 						ah->ah_radio_5ghz_revision),
2692 						ah->ah_radio_5ghz_revision);
2693 			/* Multiband radio */
2694 			} else {
2695 				ATH5K_INFO(ah, "RF%s multiband radio found"
2696 					" (0x%x)\n",
2697 					ath5k_chip_name(AR5K_VERSION_RAD,
2698 						ah->ah_radio_5ghz_revision),
2699 						ah->ah_radio_5ghz_revision);
2700 			}
2701 		}
2702 		/* Multi chip radio (RF5111 - RF2111) ->
2703 		 * report both 2GHz/5GHz radios */
2704 		else if (ah->ah_radio_5ghz_revision &&
2705 				ah->ah_radio_2ghz_revision) {
2706 			ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
2707 				ath5k_chip_name(AR5K_VERSION_RAD,
2708 					ah->ah_radio_5ghz_revision),
2709 					ah->ah_radio_5ghz_revision);
2710 			ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
2711 				ath5k_chip_name(AR5K_VERSION_RAD,
2712 					ah->ah_radio_2ghz_revision),
2713 					ah->ah_radio_2ghz_revision);
2714 		}
2715 	}
2716 
2717 	ath5k_debug_init_device(ah);
2718 
2719 	/* ready to process interrupts */
2720 	__clear_bit(ATH_STAT_INVALID, ah->status);
2721 
2722 	return 0;
2723 err_ah:
2724 	ath5k_hw_deinit(ah);
2725 err_irq:
2726 	free_irq(ah->irq, ah);
2727 err:
2728 	return ret;
2729 }
2730 
2731 static int
2732 ath5k_stop_locked(struct ath5k_hw *ah)
2733 {
2734 
2735 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
2736 			test_bit(ATH_STAT_INVALID, ah->status));
2737 
2738 	/*
2739 	 * Shutdown the hardware and driver:
2740 	 *    stop output from above
2741 	 *    disable interrupts
2742 	 *    turn off timers
2743 	 *    turn off the radio
2744 	 *    clear transmit machinery
2745 	 *    clear receive machinery
2746 	 *    drain and release tx queues
2747 	 *    reclaim beacon resources
2748 	 *    power down hardware
2749 	 *
2750 	 * Note that some of this work is not possible if the
2751 	 * hardware is gone (invalid).
2752 	 */
2753 	ieee80211_stop_queues(ah->hw);
2754 
2755 	if (!test_bit(ATH_STAT_INVALID, ah->status)) {
2756 		ath5k_led_off(ah);
2757 		ath5k_hw_set_imr(ah, 0);
2758 		synchronize_irq(ah->irq);
2759 		ath5k_rx_stop(ah);
2760 		ath5k_hw_dma_stop(ah);
2761 		ath5k_drain_tx_buffs(ah);
2762 		ath5k_hw_phy_disable(ah);
2763 	}
2764 
2765 	return 0;
2766 }
2767 
2768 int ath5k_start(struct ieee80211_hw *hw)
2769 {
2770 	struct ath5k_hw *ah = hw->priv;
2771 	struct ath_common *common = ath5k_hw_common(ah);
2772 	int ret, i;
2773 
2774 	mutex_lock(&ah->lock);
2775 
2776 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
2777 
2778 	/*
2779 	 * Stop anything previously setup.  This is safe
2780 	 * no matter this is the first time through or not.
2781 	 */
2782 	ath5k_stop_locked(ah);
2783 
2784 	/*
2785 	 * The basic interface to setting the hardware in a good
2786 	 * state is ``reset''.  On return the hardware is known to
2787 	 * be powered up and with interrupts disabled.  This must
2788 	 * be followed by initialization of the appropriate bits
2789 	 * and then setup of the interrupt mask.
2790 	 */
2791 	ah->curchan = ah->hw->conf.chandef.chan;
2792 	ah->imask = AR5K_INT_RXOK
2793 		| AR5K_INT_RXERR
2794 		| AR5K_INT_RXEOL
2795 		| AR5K_INT_RXORN
2796 		| AR5K_INT_TXDESC
2797 		| AR5K_INT_TXEOL
2798 		| AR5K_INT_FATAL
2799 		| AR5K_INT_GLOBAL
2800 		| AR5K_INT_MIB;
2801 
2802 	ret = ath5k_reset(ah, NULL, false);
2803 	if (ret)
2804 		goto done;
2805 
2806 	if (!ath5k_modparam_no_hw_rfkill_switch)
2807 		ath5k_rfkill_hw_start(ah);
2808 
2809 	/*
2810 	 * Reset the key cache since some parts do not reset the
2811 	 * contents on initial power up or resume from suspend.
2812 	 */
2813 	for (i = 0; i < common->keymax; i++)
2814 		ath_hw_keyreset(common, (u16) i);
2815 
2816 	/* Use higher rates for acks instead of base
2817 	 * rate */
2818 	ah->ah_ack_bitrate_high = true;
2819 
2820 	for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
2821 		ah->bslot[i] = NULL;
2822 
2823 	ret = 0;
2824 done:
2825 	mutex_unlock(&ah->lock);
2826 
2827 	set_bit(ATH_STAT_STARTED, ah->status);
2828 	ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
2829 			msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
2830 
2831 	return ret;
2832 }
2833 
2834 static void ath5k_stop_tasklets(struct ath5k_hw *ah)
2835 {
2836 	ah->rx_pending = false;
2837 	ah->tx_pending = false;
2838 	tasklet_kill(&ah->rxtq);
2839 	tasklet_kill(&ah->txtq);
2840 	tasklet_kill(&ah->beacontq);
2841 	tasklet_kill(&ah->ani_tasklet);
2842 }
2843 
2844 /*
2845  * Stop the device, grabbing the top-level lock to protect
2846  * against concurrent entry through ath5k_init (which can happen
2847  * if another thread does a system call and the thread doing the
2848  * stop is preempted).
2849  */
2850 void ath5k_stop(struct ieee80211_hw *hw, bool suspend)
2851 {
2852 	struct ath5k_hw *ah = hw->priv;
2853 	int ret;
2854 
2855 	mutex_lock(&ah->lock);
2856 	ret = ath5k_stop_locked(ah);
2857 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
2858 		/*
2859 		 * Don't set the card in full sleep mode!
2860 		 *
2861 		 * a) When the device is in this state it must be carefully
2862 		 * woken up or references to registers in the PCI clock
2863 		 * domain may freeze the bus (and system).  This varies
2864 		 * by chip and is mostly an issue with newer parts
2865 		 * (madwifi sources mentioned srev >= 0x78) that go to
2866 		 * sleep more quickly.
2867 		 *
2868 		 * b) On older chips full sleep results a weird behaviour
2869 		 * during wakeup. I tested various cards with srev < 0x78
2870 		 * and they don't wake up after module reload, a second
2871 		 * module reload is needed to bring the card up again.
2872 		 *
2873 		 * Until we figure out what's going on don't enable
2874 		 * full chip reset on any chip (this is what Legacy HAL
2875 		 * and Sam's HAL do anyway). Instead Perform a full reset
2876 		 * on the device (same as initial state after attach) and
2877 		 * leave it idle (keep MAC/BB on warm reset) */
2878 		ret = ath5k_hw_on_hold(ah);
2879 
2880 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2881 				"putting device to sleep\n");
2882 	}
2883 
2884 	mutex_unlock(&ah->lock);
2885 
2886 	ath5k_stop_tasklets(ah);
2887 
2888 	clear_bit(ATH_STAT_STARTED, ah->status);
2889 	cancel_delayed_work_sync(&ah->tx_complete_work);
2890 
2891 	if (!ath5k_modparam_no_hw_rfkill_switch)
2892 		ath5k_rfkill_hw_stop(ah);
2893 }
2894 
2895 /*
2896  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2897  * and change to the given channel.
2898  *
2899  * This should be called with ah->lock.
2900  */
2901 static int
2902 ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
2903 							bool skip_pcu)
2904 {
2905 	struct ath_common *common = ath5k_hw_common(ah);
2906 	int ret, ani_mode;
2907 	bool fast = chan && modparam_fastchanswitch ? 1 : 0;
2908 
2909 	ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
2910 
2911 	__set_bit(ATH_STAT_RESET, ah->status);
2912 
2913 	ath5k_hw_set_imr(ah, 0);
2914 	synchronize_irq(ah->irq);
2915 	ath5k_stop_tasklets(ah);
2916 
2917 	/* Save ani mode and disable ANI during
2918 	 * reset. If we don't we might get false
2919 	 * PHY error interrupts. */
2920 	ani_mode = ah->ani_state.ani_mode;
2921 	ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
2922 
2923 	/* We are going to empty hw queues
2924 	 * so we should also free any remaining
2925 	 * tx buffers */
2926 	ath5k_drain_tx_buffs(ah);
2927 
2928 	/* Stop PCU */
2929 	ath5k_hw_stop_rx_pcu(ah);
2930 
2931 	/* Stop DMA
2932 	 *
2933 	 * Note: If DMA didn't stop continue
2934 	 * since only a reset will fix it.
2935 	 */
2936 	ret = ath5k_hw_dma_stop(ah);
2937 
2938 	/* RF Bus grant won't work if we have pending
2939 	 * frames
2940 	 */
2941 	if (ret && fast) {
2942 		ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
2943 			  "DMA didn't stop, falling back to normal reset\n");
2944 		fast = false;
2945 	}
2946 
2947 	if (chan)
2948 		ah->curchan = chan;
2949 
2950 	ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
2951 	if (ret) {
2952 		ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
2953 		goto err;
2954 	}
2955 
2956 	ret = ath5k_rx_start(ah);
2957 	if (ret) {
2958 		ATH5K_ERR(ah, "can't start recv logic\n");
2959 		goto err;
2960 	}
2961 
2962 	ath5k_ani_init(ah, ani_mode);
2963 
2964 	/*
2965 	 * Set calibration intervals
2966 	 *
2967 	 * Note: We don't need to run calibration imediately
2968 	 * since some initial calibration is done on reset
2969 	 * even for fast channel switching. Also on scanning
2970 	 * this will get set again and again and it won't get
2971 	 * executed unless we connect somewhere and spend some
2972 	 * time on the channel (that's what calibration needs
2973 	 * anyway to be accurate).
2974 	 */
2975 	ah->ah_cal_next_full = jiffies +
2976 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
2977 	ah->ah_cal_next_ani = jiffies +
2978 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
2979 	ah->ah_cal_next_short = jiffies +
2980 		msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
2981 
2982 	ewma_beacon_rssi_init(&ah->ah_beacon_rssi_avg);
2983 
2984 	/* clear survey data and cycle counters */
2985 	memset(&ah->survey, 0, sizeof(ah->survey));
2986 	spin_lock_bh(&common->cc_lock);
2987 	ath_hw_cycle_counters_update(common);
2988 	memset(&common->cc_survey, 0, sizeof(common->cc_survey));
2989 	memset(&common->cc_ani, 0, sizeof(common->cc_ani));
2990 	spin_unlock_bh(&common->cc_lock);
2991 
2992 	/*
2993 	 * Change channels and update the h/w rate map if we're switching;
2994 	 * e.g. 11a to 11b/g.
2995 	 *
2996 	 * We may be doing a reset in response to an ioctl that changes the
2997 	 * channel so update any state that might change as a result.
2998 	 *
2999 	 * XXX needed?
3000 	 */
3001 /*	ath5k_chan_change(ah, c); */
3002 
3003 	__clear_bit(ATH_STAT_RESET, ah->status);
3004 
3005 	ath5k_beacon_config(ah);
3006 	/* intrs are enabled by ath5k_beacon_config */
3007 
3008 	ieee80211_wake_queues(ah->hw);
3009 
3010 	return 0;
3011 err:
3012 	return ret;
3013 }
3014 
3015 static void ath5k_reset_work(struct work_struct *work)
3016 {
3017 	struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
3018 		reset_work);
3019 
3020 	mutex_lock(&ah->lock);
3021 	ath5k_reset(ah, NULL, true);
3022 	mutex_unlock(&ah->lock);
3023 }
3024 
3025 static int
3026 ath5k_init(struct ieee80211_hw *hw)
3027 {
3028 
3029 	struct ath5k_hw *ah = hw->priv;
3030 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
3031 	struct ath5k_txq *txq;
3032 	u8 mac[ETH_ALEN] = {};
3033 	int ret;
3034 
3035 
3036 	/*
3037 	 * Collect the channel list.  The 802.11 layer
3038 	 * is responsible for filtering this list based
3039 	 * on settings like the phy mode and regulatory
3040 	 * domain restrictions.
3041 	 */
3042 	ret = ath5k_setup_bands(hw);
3043 	if (ret) {
3044 		ATH5K_ERR(ah, "can't get channels\n");
3045 		goto err;
3046 	}
3047 
3048 	/*
3049 	 * Allocate tx+rx descriptors and populate the lists.
3050 	 */
3051 	ret = ath5k_desc_alloc(ah);
3052 	if (ret) {
3053 		ATH5K_ERR(ah, "can't allocate descriptors\n");
3054 		goto err;
3055 	}
3056 
3057 	/*
3058 	 * Allocate hardware transmit queues: one queue for
3059 	 * beacon frames and one data queue for each QoS
3060 	 * priority.  Note that hw functions handle resetting
3061 	 * these queues at the needed time.
3062 	 */
3063 	ret = ath5k_beaconq_setup(ah);
3064 	if (ret < 0) {
3065 		ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
3066 		goto err_desc;
3067 	}
3068 	ah->bhalq = ret;
3069 	ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
3070 	if (IS_ERR(ah->cabq)) {
3071 		ATH5K_ERR(ah, "can't setup cab queue\n");
3072 		ret = PTR_ERR(ah->cabq);
3073 		goto err_bhal;
3074 	}
3075 
3076 	/* 5211 and 5212 usually support 10 queues but we better rely on the
3077 	 * capability information */
3078 	if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
3079 		/* This order matches mac80211's queue priority, so we can
3080 		* directly use the mac80211 queue number without any mapping */
3081 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
3082 		if (IS_ERR(txq)) {
3083 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3084 			ret = PTR_ERR(txq);
3085 			goto err_queues;
3086 		}
3087 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
3088 		if (IS_ERR(txq)) {
3089 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3090 			ret = PTR_ERR(txq);
3091 			goto err_queues;
3092 		}
3093 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3094 		if (IS_ERR(txq)) {
3095 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3096 			ret = PTR_ERR(txq);
3097 			goto err_queues;
3098 		}
3099 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
3100 		if (IS_ERR(txq)) {
3101 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3102 			ret = PTR_ERR(txq);
3103 			goto err_queues;
3104 		}
3105 		hw->queues = 4;
3106 	} else {
3107 		/* older hardware (5210) can only support one data queue */
3108 		txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
3109 		if (IS_ERR(txq)) {
3110 			ATH5K_ERR(ah, "can't setup xmit queue\n");
3111 			ret = PTR_ERR(txq);
3112 			goto err_queues;
3113 		}
3114 		hw->queues = 1;
3115 	}
3116 
3117 	tasklet_setup(&ah->rxtq, ath5k_tasklet_rx);
3118 	tasklet_setup(&ah->txtq, ath5k_tasklet_tx);
3119 	tasklet_setup(&ah->beacontq, ath5k_tasklet_beacon);
3120 	tasklet_setup(&ah->ani_tasklet, ath5k_tasklet_ani);
3121 
3122 	INIT_WORK(&ah->reset_work, ath5k_reset_work);
3123 	INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
3124 	INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
3125 
3126 	ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
3127 	if (ret) {
3128 		ATH5K_ERR(ah, "unable to read address from EEPROM\n");
3129 		goto err_queues;
3130 	}
3131 
3132 	SET_IEEE80211_PERM_ADDR(hw, mac);
3133 	/* All MAC address bits matter for ACKs */
3134 	ath5k_update_bssid_mask_and_opmode(ah, NULL);
3135 
3136 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
3137 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
3138 	if (ret) {
3139 		ATH5K_ERR(ah, "can't initialize regulatory system\n");
3140 		goto err_queues;
3141 	}
3142 
3143 	ret = ieee80211_register_hw(hw);
3144 	if (ret) {
3145 		ATH5K_ERR(ah, "can't register ieee80211 hw\n");
3146 		goto err_queues;
3147 	}
3148 
3149 	if (!ath_is_world_regd(regulatory))
3150 		regulatory_hint(hw->wiphy, regulatory->alpha2);
3151 
3152 	ath5k_init_leds(ah);
3153 
3154 	ath5k_sysfs_register(ah);
3155 
3156 	return 0;
3157 err_queues:
3158 	ath5k_txq_release(ah);
3159 err_bhal:
3160 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3161 err_desc:
3162 	ath5k_desc_free(ah);
3163 err:
3164 	return ret;
3165 }
3166 
3167 void
3168 ath5k_deinit_ah(struct ath5k_hw *ah)
3169 {
3170 	struct ieee80211_hw *hw = ah->hw;
3171 
3172 	/*
3173 	 * NB: the order of these is important:
3174 	 * o call the 802.11 layer before detaching ath5k_hw to
3175 	 *   ensure callbacks into the driver to delete global
3176 	 *   key cache entries can be handled
3177 	 * o reclaim the tx queue data structures after calling
3178 	 *   the 802.11 layer as we'll get called back to reclaim
3179 	 *   node state and potentially want to use them
3180 	 * o to cleanup the tx queues the hal is called, so detach
3181 	 *   it last
3182 	 * XXX: ??? detach ath5k_hw ???
3183 	 * Other than that, it's straightforward...
3184 	 */
3185 	ieee80211_unregister_hw(hw);
3186 	ath5k_desc_free(ah);
3187 	ath5k_txq_release(ah);
3188 	ath5k_hw_release_tx_queue(ah, ah->bhalq);
3189 	ath5k_unregister_leds(ah);
3190 
3191 	ath5k_sysfs_unregister(ah);
3192 	/*
3193 	 * NB: can't reclaim these until after ieee80211_ifdetach
3194 	 * returns because we'll get called back to reclaim node
3195 	 * state and potentially want to use them.
3196 	 */
3197 	ath5k_hw_deinit(ah);
3198 	free_irq(ah->irq, ah);
3199 }
3200 
3201 bool
3202 ath5k_any_vif_assoc(struct ath5k_hw *ah)
3203 {
3204 	struct ath5k_vif_iter_data iter_data;
3205 	iter_data.hw_macaddr = NULL;
3206 	iter_data.any_assoc = false;
3207 	iter_data.need_set_hw_addr = false;
3208 	iter_data.found_active = true;
3209 
3210 	ieee80211_iterate_active_interfaces_atomic(
3211 		ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
3212 		ath5k_vif_iter, &iter_data);
3213 	return iter_data.any_assoc;
3214 }
3215 
3216 void
3217 ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3218 {
3219 	struct ath5k_hw *ah = hw->priv;
3220 	u32 rfilt;
3221 	rfilt = ath5k_hw_get_rx_filter(ah);
3222 	if (enable)
3223 		rfilt |= AR5K_RX_FILTER_BEACON;
3224 	else
3225 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3226 	ath5k_hw_set_rx_filter(ah, rfilt);
3227 	ah->filter_flags = rfilt;
3228 }
3229 
3230 void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
3231 		   const char *fmt, ...)
3232 {
3233 	struct va_format vaf;
3234 	va_list args;
3235 
3236 	va_start(args, fmt);
3237 
3238 	vaf.fmt = fmt;
3239 	vaf.va = &args;
3240 
3241 	if (ah && ah->hw)
3242 		printk("%s" pr_fmt("%s: %pV"),
3243 		       level, wiphy_name(ah->hw->wiphy), &vaf);
3244 	else
3245 		printk("%s" pr_fmt("%pV"), level, &vaf);
3246 
3247 	va_end(args);
3248 }
3249