xref: /linux/drivers/net/wireless/ath/ath5k/base.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*-
2  * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3  * Copyright (c) 2004-2005 Atheros Communications, Inc.
4  * Copyright (c) 2006 Devicescape Software, Inc.
5  * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
6  * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer,
15  *    without modification.
16  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
18  *    redistribution must be conditioned upon including a substantially
19  *    similar Disclaimer requirement for further binary redistribution.
20  * 3. Neither the names of the above-listed copyright holders nor the names
21  *    of any contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * Alternatively, this software may be distributed under the terms of the
25  * GNU General Public License ("GPL") version 2 as published by the Free
26  * Software Foundation.
27  *
28  * NO WARRANTY
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
32  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
33  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
34  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
37  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
39  * THE POSSIBILITY OF SUCH DAMAGES.
40  *
41  */
42 
43 #include <linux/module.h>
44 #include <linux/delay.h>
45 #include <linux/hardirq.h>
46 #include <linux/if.h>
47 #include <linux/io.h>
48 #include <linux/netdevice.h>
49 #include <linux/cache.h>
50 #include <linux/pci.h>
51 #include <linux/ethtool.h>
52 #include <linux/uaccess.h>
53 
54 #include <net/ieee80211_radiotap.h>
55 
56 #include <asm/unaligned.h>
57 
58 #include "base.h"
59 #include "reg.h"
60 #include "debug.h"
61 
62 static u8 ath5k_calinterval = 10; /* Calibrate PHY every 10 secs (TODO: Fixme) */
63 static int modparam_nohwcrypt;
64 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
65 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
66 
67 static int modparam_all_channels;
68 module_param_named(all_channels, modparam_all_channels, bool, S_IRUGO);
69 MODULE_PARM_DESC(all_channels, "Expose all channels the device can use.");
70 
71 
72 /******************\
73 * Internal defines *
74 \******************/
75 
76 /* Module info */
77 MODULE_AUTHOR("Jiri Slaby");
78 MODULE_AUTHOR("Nick Kossifidis");
79 MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
80 MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
81 MODULE_LICENSE("Dual BSD/GPL");
82 MODULE_VERSION("0.6.0 (EXPERIMENTAL)");
83 
84 
85 /* Known PCI ids */
86 static const struct pci_device_id ath5k_pci_id_table[] = {
87 	{ PCI_VDEVICE(ATHEROS, 0x0207) }, /* 5210 early */
88 	{ PCI_VDEVICE(ATHEROS, 0x0007) }, /* 5210 */
89 	{ PCI_VDEVICE(ATHEROS, 0x0011) }, /* 5311 - this is on AHB bus !*/
90 	{ PCI_VDEVICE(ATHEROS, 0x0012) }, /* 5211 */
91 	{ PCI_VDEVICE(ATHEROS, 0x0013) }, /* 5212 */
92 	{ PCI_VDEVICE(3COM_2,  0x0013) }, /* 3com 5212 */
93 	{ PCI_VDEVICE(3COM,    0x0013) }, /* 3com 3CRDAG675 5212 */
94 	{ PCI_VDEVICE(ATHEROS, 0x1014) }, /* IBM minipci 5212 */
95 	{ PCI_VDEVICE(ATHEROS, 0x0014) }, /* 5212 combatible */
96 	{ PCI_VDEVICE(ATHEROS, 0x0015) }, /* 5212 combatible */
97 	{ PCI_VDEVICE(ATHEROS, 0x0016) }, /* 5212 combatible */
98 	{ PCI_VDEVICE(ATHEROS, 0x0017) }, /* 5212 combatible */
99 	{ PCI_VDEVICE(ATHEROS, 0x0018) }, /* 5212 combatible */
100 	{ PCI_VDEVICE(ATHEROS, 0x0019) }, /* 5212 combatible */
101 	{ PCI_VDEVICE(ATHEROS, 0x001a) }, /* 2413 Griffin-lite */
102 	{ PCI_VDEVICE(ATHEROS, 0x001b) }, /* 5413 Eagle */
103 	{ PCI_VDEVICE(ATHEROS, 0x001c) }, /* PCI-E cards */
104 	{ PCI_VDEVICE(ATHEROS, 0x001d) }, /* 2417 Nala */
105 	{ 0 }
106 };
107 MODULE_DEVICE_TABLE(pci, ath5k_pci_id_table);
108 
109 /* Known SREVs */
110 static const struct ath5k_srev_name srev_names[] = {
111 	{ "5210",	AR5K_VERSION_MAC,	AR5K_SREV_AR5210 },
112 	{ "5311",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311 },
113 	{ "5311A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311A },
114 	{ "5311B",	AR5K_VERSION_MAC,	AR5K_SREV_AR5311B },
115 	{ "5211",	AR5K_VERSION_MAC,	AR5K_SREV_AR5211 },
116 	{ "5212",	AR5K_VERSION_MAC,	AR5K_SREV_AR5212 },
117 	{ "5213",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213 },
118 	{ "5213A",	AR5K_VERSION_MAC,	AR5K_SREV_AR5213A },
119 	{ "2413",	AR5K_VERSION_MAC,	AR5K_SREV_AR2413 },
120 	{ "2414",	AR5K_VERSION_MAC,	AR5K_SREV_AR2414 },
121 	{ "5424",	AR5K_VERSION_MAC,	AR5K_SREV_AR5424 },
122 	{ "5413",	AR5K_VERSION_MAC,	AR5K_SREV_AR5413 },
123 	{ "5414",	AR5K_VERSION_MAC,	AR5K_SREV_AR5414 },
124 	{ "2415",	AR5K_VERSION_MAC,	AR5K_SREV_AR2415 },
125 	{ "5416",	AR5K_VERSION_MAC,	AR5K_SREV_AR5416 },
126 	{ "5418",	AR5K_VERSION_MAC,	AR5K_SREV_AR5418 },
127 	{ "2425",	AR5K_VERSION_MAC,	AR5K_SREV_AR2425 },
128 	{ "2417",	AR5K_VERSION_MAC,	AR5K_SREV_AR2417 },
129 	{ "xxxxx",	AR5K_VERSION_MAC,	AR5K_SREV_UNKNOWN },
130 	{ "5110",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5110 },
131 	{ "5111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111 },
132 	{ "5111A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5111A },
133 	{ "2111",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2111 },
134 	{ "5112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112 },
135 	{ "5112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112A },
136 	{ "5112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5112B },
137 	{ "2112",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112 },
138 	{ "2112A",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112A },
139 	{ "2112B",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2112B },
140 	{ "2413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2413 },
141 	{ "5413",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5413 },
142 	{ "2316",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2316 },
143 	{ "2317",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_2317 },
144 	{ "5424",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5424 },
145 	{ "5133",	AR5K_VERSION_RAD,	AR5K_SREV_RAD_5133 },
146 	{ "xxxxx",	AR5K_VERSION_RAD,	AR5K_SREV_UNKNOWN },
147 };
148 
149 static const struct ieee80211_rate ath5k_rates[] = {
150 	{ .bitrate = 10,
151 	  .hw_value = ATH5K_RATE_CODE_1M, },
152 	{ .bitrate = 20,
153 	  .hw_value = ATH5K_RATE_CODE_2M,
154 	  .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
155 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
156 	{ .bitrate = 55,
157 	  .hw_value = ATH5K_RATE_CODE_5_5M,
158 	  .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
159 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
160 	{ .bitrate = 110,
161 	  .hw_value = ATH5K_RATE_CODE_11M,
162 	  .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
163 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
164 	{ .bitrate = 60,
165 	  .hw_value = ATH5K_RATE_CODE_6M,
166 	  .flags = 0 },
167 	{ .bitrate = 90,
168 	  .hw_value = ATH5K_RATE_CODE_9M,
169 	  .flags = 0 },
170 	{ .bitrate = 120,
171 	  .hw_value = ATH5K_RATE_CODE_12M,
172 	  .flags = 0 },
173 	{ .bitrate = 180,
174 	  .hw_value = ATH5K_RATE_CODE_18M,
175 	  .flags = 0 },
176 	{ .bitrate = 240,
177 	  .hw_value = ATH5K_RATE_CODE_24M,
178 	  .flags = 0 },
179 	{ .bitrate = 360,
180 	  .hw_value = ATH5K_RATE_CODE_36M,
181 	  .flags = 0 },
182 	{ .bitrate = 480,
183 	  .hw_value = ATH5K_RATE_CODE_48M,
184 	  .flags = 0 },
185 	{ .bitrate = 540,
186 	  .hw_value = ATH5K_RATE_CODE_54M,
187 	  .flags = 0 },
188 	/* XR missing */
189 };
190 
191 /*
192  * Prototypes - PCI stack related functions
193  */
194 static int __devinit	ath5k_pci_probe(struct pci_dev *pdev,
195 				const struct pci_device_id *id);
196 static void __devexit	ath5k_pci_remove(struct pci_dev *pdev);
197 #ifdef CONFIG_PM
198 static int		ath5k_pci_suspend(struct device *dev);
199 static int		ath5k_pci_resume(struct device *dev);
200 
201 SIMPLE_DEV_PM_OPS(ath5k_pm_ops, ath5k_pci_suspend, ath5k_pci_resume);
202 #define ATH5K_PM_OPS	(&ath5k_pm_ops)
203 #else
204 #define ATH5K_PM_OPS	NULL
205 #endif /* CONFIG_PM */
206 
207 static struct pci_driver ath5k_pci_driver = {
208 	.name		= KBUILD_MODNAME,
209 	.id_table	= ath5k_pci_id_table,
210 	.probe		= ath5k_pci_probe,
211 	.remove		= __devexit_p(ath5k_pci_remove),
212 	.driver.pm	= ATH5K_PM_OPS,
213 };
214 
215 
216 
217 /*
218  * Prototypes - MAC 802.11 stack related functions
219  */
220 static int ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb);
221 static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
222 		struct ath5k_txq *txq);
223 static int ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan);
224 static int ath5k_reset_wake(struct ath5k_softc *sc);
225 static int ath5k_start(struct ieee80211_hw *hw);
226 static void ath5k_stop(struct ieee80211_hw *hw);
227 static int ath5k_add_interface(struct ieee80211_hw *hw,
228 		struct ieee80211_if_init_conf *conf);
229 static void ath5k_remove_interface(struct ieee80211_hw *hw,
230 		struct ieee80211_if_init_conf *conf);
231 static int ath5k_config(struct ieee80211_hw *hw, u32 changed);
232 static u64 ath5k_prepare_multicast(struct ieee80211_hw *hw,
233 				   int mc_count, struct dev_addr_list *mc_list);
234 static void ath5k_configure_filter(struct ieee80211_hw *hw,
235 		unsigned int changed_flags,
236 		unsigned int *new_flags,
237 		u64 multicast);
238 static int ath5k_set_key(struct ieee80211_hw *hw,
239 		enum set_key_cmd cmd,
240 		struct ieee80211_vif *vif, struct ieee80211_sta *sta,
241 		struct ieee80211_key_conf *key);
242 static int ath5k_get_stats(struct ieee80211_hw *hw,
243 		struct ieee80211_low_level_stats *stats);
244 static int ath5k_get_tx_stats(struct ieee80211_hw *hw,
245 		struct ieee80211_tx_queue_stats *stats);
246 static u64 ath5k_get_tsf(struct ieee80211_hw *hw);
247 static void ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf);
248 static void ath5k_reset_tsf(struct ieee80211_hw *hw);
249 static int ath5k_beacon_update(struct ieee80211_hw *hw,
250 		struct ieee80211_vif *vif);
251 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
252 		struct ieee80211_vif *vif,
253 		struct ieee80211_bss_conf *bss_conf,
254 		u32 changes);
255 static void ath5k_sw_scan_start(struct ieee80211_hw *hw);
256 static void ath5k_sw_scan_complete(struct ieee80211_hw *hw);
257 
258 static const struct ieee80211_ops ath5k_hw_ops = {
259 	.tx 		= ath5k_tx,
260 	.start 		= ath5k_start,
261 	.stop 		= ath5k_stop,
262 	.add_interface 	= ath5k_add_interface,
263 	.remove_interface = ath5k_remove_interface,
264 	.config 	= ath5k_config,
265 	.prepare_multicast = ath5k_prepare_multicast,
266 	.configure_filter = ath5k_configure_filter,
267 	.set_key 	= ath5k_set_key,
268 	.get_stats 	= ath5k_get_stats,
269 	.conf_tx 	= NULL,
270 	.get_tx_stats 	= ath5k_get_tx_stats,
271 	.get_tsf 	= ath5k_get_tsf,
272 	.set_tsf 	= ath5k_set_tsf,
273 	.reset_tsf 	= ath5k_reset_tsf,
274 	.bss_info_changed = ath5k_bss_info_changed,
275 	.sw_scan_start	= ath5k_sw_scan_start,
276 	.sw_scan_complete = ath5k_sw_scan_complete,
277 };
278 
279 /*
280  * Prototypes - Internal functions
281  */
282 /* Attach detach */
283 static int 	ath5k_attach(struct pci_dev *pdev,
284 			struct ieee80211_hw *hw);
285 static void 	ath5k_detach(struct pci_dev *pdev,
286 			struct ieee80211_hw *hw);
287 /* Channel/mode setup */
288 static inline short ath5k_ieee2mhz(short chan);
289 static unsigned int ath5k_copy_channels(struct ath5k_hw *ah,
290 				struct ieee80211_channel *channels,
291 				unsigned int mode,
292 				unsigned int max);
293 static int 	ath5k_setup_bands(struct ieee80211_hw *hw);
294 static int 	ath5k_chan_set(struct ath5k_softc *sc,
295 				struct ieee80211_channel *chan);
296 static void	ath5k_setcurmode(struct ath5k_softc *sc,
297 				unsigned int mode);
298 static void	ath5k_mode_setup(struct ath5k_softc *sc);
299 
300 /* Descriptor setup */
301 static int	ath5k_desc_alloc(struct ath5k_softc *sc,
302 				struct pci_dev *pdev);
303 static void	ath5k_desc_free(struct ath5k_softc *sc,
304 				struct pci_dev *pdev);
305 /* Buffers setup */
306 static int 	ath5k_rxbuf_setup(struct ath5k_softc *sc,
307 				struct ath5k_buf *bf);
308 static int 	ath5k_txbuf_setup(struct ath5k_softc *sc,
309 				struct ath5k_buf *bf,
310 				struct ath5k_txq *txq);
311 static inline void ath5k_txbuf_free(struct ath5k_softc *sc,
312 				struct ath5k_buf *bf)
313 {
314 	BUG_ON(!bf);
315 	if (!bf->skb)
316 		return;
317 	pci_unmap_single(sc->pdev, bf->skbaddr, bf->skb->len,
318 			PCI_DMA_TODEVICE);
319 	dev_kfree_skb_any(bf->skb);
320 	bf->skb = NULL;
321 }
322 
323 static inline void ath5k_rxbuf_free(struct ath5k_softc *sc,
324 				struct ath5k_buf *bf)
325 {
326 	struct ath5k_hw *ah = sc->ah;
327 	struct ath_common *common = ath5k_hw_common(ah);
328 
329 	BUG_ON(!bf);
330 	if (!bf->skb)
331 		return;
332 	pci_unmap_single(sc->pdev, bf->skbaddr, common->rx_bufsize,
333 			PCI_DMA_FROMDEVICE);
334 	dev_kfree_skb_any(bf->skb);
335 	bf->skb = NULL;
336 }
337 
338 
339 /* Queues setup */
340 static struct 	ath5k_txq *ath5k_txq_setup(struct ath5k_softc *sc,
341 				int qtype, int subtype);
342 static int 	ath5k_beaconq_setup(struct ath5k_hw *ah);
343 static int 	ath5k_beaconq_config(struct ath5k_softc *sc);
344 static void 	ath5k_txq_drainq(struct ath5k_softc *sc,
345 				struct ath5k_txq *txq);
346 static void 	ath5k_txq_cleanup(struct ath5k_softc *sc);
347 static void 	ath5k_txq_release(struct ath5k_softc *sc);
348 /* Rx handling */
349 static int 	ath5k_rx_start(struct ath5k_softc *sc);
350 static void 	ath5k_rx_stop(struct ath5k_softc *sc);
351 static unsigned int ath5k_rx_decrypted(struct ath5k_softc *sc,
352 					struct ath5k_desc *ds,
353 					struct sk_buff *skb,
354 					struct ath5k_rx_status *rs);
355 static void 	ath5k_tasklet_rx(unsigned long data);
356 /* Tx handling */
357 static void 	ath5k_tx_processq(struct ath5k_softc *sc,
358 				struct ath5k_txq *txq);
359 static void 	ath5k_tasklet_tx(unsigned long data);
360 /* Beacon handling */
361 static int 	ath5k_beacon_setup(struct ath5k_softc *sc,
362 					struct ath5k_buf *bf);
363 static void 	ath5k_beacon_send(struct ath5k_softc *sc);
364 static void 	ath5k_beacon_config(struct ath5k_softc *sc);
365 static void	ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf);
366 static void	ath5k_tasklet_beacon(unsigned long data);
367 
368 static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
369 {
370 	u64 tsf = ath5k_hw_get_tsf64(ah);
371 
372 	if ((tsf & 0x7fff) < rstamp)
373 		tsf -= 0x8000;
374 
375 	return (tsf & ~0x7fff) | rstamp;
376 }
377 
378 /* Interrupt handling */
379 static int 	ath5k_init(struct ath5k_softc *sc);
380 static int 	ath5k_stop_locked(struct ath5k_softc *sc);
381 static int 	ath5k_stop_hw(struct ath5k_softc *sc);
382 static irqreturn_t ath5k_intr(int irq, void *dev_id);
383 static void 	ath5k_tasklet_reset(unsigned long data);
384 
385 static void 	ath5k_tasklet_calibrate(unsigned long data);
386 
387 /*
388  * Module init/exit functions
389  */
390 static int __init
391 init_ath5k_pci(void)
392 {
393 	int ret;
394 
395 	ath5k_debug_init();
396 
397 	ret = pci_register_driver(&ath5k_pci_driver);
398 	if (ret) {
399 		printk(KERN_ERR "ath5k_pci: can't register pci driver\n");
400 		return ret;
401 	}
402 
403 	return 0;
404 }
405 
406 static void __exit
407 exit_ath5k_pci(void)
408 {
409 	pci_unregister_driver(&ath5k_pci_driver);
410 
411 	ath5k_debug_finish();
412 }
413 
414 module_init(init_ath5k_pci);
415 module_exit(exit_ath5k_pci);
416 
417 
418 /********************\
419 * PCI Initialization *
420 \********************/
421 
422 static const char *
423 ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
424 {
425 	const char *name = "xxxxx";
426 	unsigned int i;
427 
428 	for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
429 		if (srev_names[i].sr_type != type)
430 			continue;
431 
432 		if ((val & 0xf0) == srev_names[i].sr_val)
433 			name = srev_names[i].sr_name;
434 
435 		if ((val & 0xff) == srev_names[i].sr_val) {
436 			name = srev_names[i].sr_name;
437 			break;
438 		}
439 	}
440 
441 	return name;
442 }
443 static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
444 {
445 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
446 	return ath5k_hw_reg_read(ah, reg_offset);
447 }
448 
449 static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
450 {
451 	struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
452 	ath5k_hw_reg_write(ah, val, reg_offset);
453 }
454 
455 static const struct ath_ops ath5k_common_ops = {
456 	.read = ath5k_ioread32,
457 	.write = ath5k_iowrite32,
458 };
459 
460 static int __devinit
461 ath5k_pci_probe(struct pci_dev *pdev,
462 		const struct pci_device_id *id)
463 {
464 	void __iomem *mem;
465 	struct ath5k_softc *sc;
466 	struct ath_common *common;
467 	struct ieee80211_hw *hw;
468 	int ret;
469 	u8 csz;
470 
471 	ret = pci_enable_device(pdev);
472 	if (ret) {
473 		dev_err(&pdev->dev, "can't enable device\n");
474 		goto err;
475 	}
476 
477 	/* XXX 32-bit addressing only */
478 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
479 	if (ret) {
480 		dev_err(&pdev->dev, "32-bit DMA not available\n");
481 		goto err_dis;
482 	}
483 
484 	/*
485 	 * Cache line size is used to size and align various
486 	 * structures used to communicate with the hardware.
487 	 */
488 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &csz);
489 	if (csz == 0) {
490 		/*
491 		 * Linux 2.4.18 (at least) writes the cache line size
492 		 * register as a 16-bit wide register which is wrong.
493 		 * We must have this setup properly for rx buffer
494 		 * DMA to work so force a reasonable value here if it
495 		 * comes up zero.
496 		 */
497 		csz = L1_CACHE_BYTES >> 2;
498 		pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, csz);
499 	}
500 	/*
501 	 * The default setting of latency timer yields poor results,
502 	 * set it to the value used by other systems.  It may be worth
503 	 * tweaking this setting more.
504 	 */
505 	pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xa8);
506 
507 	/* Enable bus mastering */
508 	pci_set_master(pdev);
509 
510 	/*
511 	 * Disable the RETRY_TIMEOUT register (0x41) to keep
512 	 * PCI Tx retries from interfering with C3 CPU state.
513 	 */
514 	pci_write_config_byte(pdev, 0x41, 0);
515 
516 	ret = pci_request_region(pdev, 0, "ath5k");
517 	if (ret) {
518 		dev_err(&pdev->dev, "cannot reserve PCI memory region\n");
519 		goto err_dis;
520 	}
521 
522 	mem = pci_iomap(pdev, 0, 0);
523 	if (!mem) {
524 		dev_err(&pdev->dev, "cannot remap PCI memory region\n") ;
525 		ret = -EIO;
526 		goto err_reg;
527 	}
528 
529 	/*
530 	 * Allocate hw (mac80211 main struct)
531 	 * and hw->priv (driver private data)
532 	 */
533 	hw = ieee80211_alloc_hw(sizeof(*sc), &ath5k_hw_ops);
534 	if (hw == NULL) {
535 		dev_err(&pdev->dev, "cannot allocate ieee80211_hw\n");
536 		ret = -ENOMEM;
537 		goto err_map;
538 	}
539 
540 	dev_info(&pdev->dev, "registered as '%s'\n", wiphy_name(hw->wiphy));
541 
542 	/* Initialize driver private data */
543 	SET_IEEE80211_DEV(hw, &pdev->dev);
544 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
545 		    IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
546 		    IEEE80211_HW_SIGNAL_DBM |
547 		    IEEE80211_HW_NOISE_DBM;
548 
549 	hw->wiphy->interface_modes =
550 		BIT(NL80211_IFTYPE_AP) |
551 		BIT(NL80211_IFTYPE_STATION) |
552 		BIT(NL80211_IFTYPE_ADHOC) |
553 		BIT(NL80211_IFTYPE_MESH_POINT);
554 
555 	hw->extra_tx_headroom = 2;
556 	hw->channel_change_time = 5000;
557 	sc = hw->priv;
558 	sc->hw = hw;
559 	sc->pdev = pdev;
560 
561 	ath5k_debug_init_device(sc);
562 
563 	/*
564 	 * Mark the device as detached to avoid processing
565 	 * interrupts until setup is complete.
566 	 */
567 	__set_bit(ATH_STAT_INVALID, sc->status);
568 
569 	sc->iobase = mem; /* So we can unmap it on detach */
570 	sc->opmode = NL80211_IFTYPE_STATION;
571 	sc->bintval = 1000;
572 	mutex_init(&sc->lock);
573 	spin_lock_init(&sc->rxbuflock);
574 	spin_lock_init(&sc->txbuflock);
575 	spin_lock_init(&sc->block);
576 
577 	/* Set private data */
578 	pci_set_drvdata(pdev, hw);
579 
580 	/* Setup interrupt handler */
581 	ret = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
582 	if (ret) {
583 		ATH5K_ERR(sc, "request_irq failed\n");
584 		goto err_free;
585 	}
586 
587 	/*If we passed the test malloc a ath5k_hw struct*/
588 	sc->ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
589 	if (!sc->ah) {
590 		ret = -ENOMEM;
591 		ATH5K_ERR(sc, "out of memory\n");
592 		goto err_irq;
593 	}
594 
595 	sc->ah->ah_sc = sc;
596 	sc->ah->ah_iobase = sc->iobase;
597 	common = ath5k_hw_common(sc->ah);
598 	common->ops = &ath5k_common_ops;
599 	common->ah = sc->ah;
600 	common->hw = hw;
601 	common->cachelsz = csz << 2; /* convert to bytes */
602 
603 	/* Initialize device */
604 	ret = ath5k_hw_attach(sc);
605 	if (ret) {
606 		goto err_free_ah;
607 	}
608 
609 	/* set up multi-rate retry capabilities */
610 	if (sc->ah->ah_version == AR5K_AR5212) {
611 		hw->max_rates = 4;
612 		hw->max_rate_tries = 11;
613 	}
614 
615 	/* Finish private driver data initialization */
616 	ret = ath5k_attach(pdev, hw);
617 	if (ret)
618 		goto err_ah;
619 
620 	ATH5K_INFO(sc, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
621 			ath5k_chip_name(AR5K_VERSION_MAC, sc->ah->ah_mac_srev),
622 					sc->ah->ah_mac_srev,
623 					sc->ah->ah_phy_revision);
624 
625 	if (!sc->ah->ah_single_chip) {
626 		/* Single chip radio (!RF5111) */
627 		if (sc->ah->ah_radio_5ghz_revision &&
628 			!sc->ah->ah_radio_2ghz_revision) {
629 			/* No 5GHz support -> report 2GHz radio */
630 			if (!test_bit(AR5K_MODE_11A,
631 				sc->ah->ah_capabilities.cap_mode)) {
632 				ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
633 					ath5k_chip_name(AR5K_VERSION_RAD,
634 						sc->ah->ah_radio_5ghz_revision),
635 						sc->ah->ah_radio_5ghz_revision);
636 			/* No 2GHz support (5110 and some
637 			 * 5Ghz only cards) -> report 5Ghz radio */
638 			} else if (!test_bit(AR5K_MODE_11B,
639 				sc->ah->ah_capabilities.cap_mode)) {
640 				ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
641 					ath5k_chip_name(AR5K_VERSION_RAD,
642 						sc->ah->ah_radio_5ghz_revision),
643 						sc->ah->ah_radio_5ghz_revision);
644 			/* Multiband radio */
645 			} else {
646 				ATH5K_INFO(sc, "RF%s multiband radio found"
647 					" (0x%x)\n",
648 					ath5k_chip_name(AR5K_VERSION_RAD,
649 						sc->ah->ah_radio_5ghz_revision),
650 						sc->ah->ah_radio_5ghz_revision);
651 			}
652 		}
653 		/* Multi chip radio (RF5111 - RF2111) ->
654 		 * report both 2GHz/5GHz radios */
655 		else if (sc->ah->ah_radio_5ghz_revision &&
656 				sc->ah->ah_radio_2ghz_revision){
657 			ATH5K_INFO(sc, "RF%s 5GHz radio found (0x%x)\n",
658 				ath5k_chip_name(AR5K_VERSION_RAD,
659 					sc->ah->ah_radio_5ghz_revision),
660 					sc->ah->ah_radio_5ghz_revision);
661 			ATH5K_INFO(sc, "RF%s 2GHz radio found (0x%x)\n",
662 				ath5k_chip_name(AR5K_VERSION_RAD,
663 					sc->ah->ah_radio_2ghz_revision),
664 					sc->ah->ah_radio_2ghz_revision);
665 		}
666 	}
667 
668 
669 	/* ready to process interrupts */
670 	__clear_bit(ATH_STAT_INVALID, sc->status);
671 
672 	return 0;
673 err_ah:
674 	ath5k_hw_detach(sc->ah);
675 err_irq:
676 	free_irq(pdev->irq, sc);
677 err_free_ah:
678 	kfree(sc->ah);
679 err_free:
680 	ieee80211_free_hw(hw);
681 err_map:
682 	pci_iounmap(pdev, mem);
683 err_reg:
684 	pci_release_region(pdev, 0);
685 err_dis:
686 	pci_disable_device(pdev);
687 err:
688 	return ret;
689 }
690 
691 static void __devexit
692 ath5k_pci_remove(struct pci_dev *pdev)
693 {
694 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
695 	struct ath5k_softc *sc = hw->priv;
696 
697 	ath5k_debug_finish_device(sc);
698 	ath5k_detach(pdev, hw);
699 	ath5k_hw_detach(sc->ah);
700 	kfree(sc->ah);
701 	free_irq(pdev->irq, sc);
702 	pci_iounmap(pdev, sc->iobase);
703 	pci_release_region(pdev, 0);
704 	pci_disable_device(pdev);
705 	ieee80211_free_hw(hw);
706 }
707 
708 #ifdef CONFIG_PM
709 static int ath5k_pci_suspend(struct device *dev)
710 {
711 	struct ieee80211_hw *hw = pci_get_drvdata(to_pci_dev(dev));
712 	struct ath5k_softc *sc = hw->priv;
713 
714 	ath5k_led_off(sc);
715 	return 0;
716 }
717 
718 static int ath5k_pci_resume(struct device *dev)
719 {
720 	struct pci_dev *pdev = to_pci_dev(dev);
721 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
722 	struct ath5k_softc *sc = hw->priv;
723 
724 	/*
725 	 * Suspend/Resume resets the PCI configuration space, so we have to
726 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep
727 	 * PCI Tx retries from interfering with C3 CPU state
728 	 */
729 	pci_write_config_byte(pdev, 0x41, 0);
730 
731 	ath5k_led_enable(sc);
732 	return 0;
733 }
734 #endif /* CONFIG_PM */
735 
736 
737 /***********************\
738 * Driver Initialization *
739 \***********************/
740 
741 static int ath5k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request)
742 {
743 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
744 	struct ath5k_softc *sc = hw->priv;
745 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(sc->ah);
746 
747 	return ath_reg_notifier_apply(wiphy, request, regulatory);
748 }
749 
750 static int
751 ath5k_attach(struct pci_dev *pdev, struct ieee80211_hw *hw)
752 {
753 	struct ath5k_softc *sc = hw->priv;
754 	struct ath5k_hw *ah = sc->ah;
755 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
756 	u8 mac[ETH_ALEN] = {};
757 	int ret;
758 
759 	ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "devid 0x%x\n", pdev->device);
760 
761 	/*
762 	 * Check if the MAC has multi-rate retry support.
763 	 * We do this by trying to setup a fake extended
764 	 * descriptor.  MAC's that don't have support will
765 	 * return false w/o doing anything.  MAC's that do
766 	 * support it will return true w/o doing anything.
767 	 */
768 	ret = ah->ah_setup_mrr_tx_desc(ah, NULL, 0, 0, 0, 0, 0, 0);
769 	if (ret < 0)
770 		goto err;
771 	if (ret > 0)
772 		__set_bit(ATH_STAT_MRRETRY, sc->status);
773 
774 	/*
775 	 * Collect the channel list.  The 802.11 layer
776 	 * is resposible for filtering this list based
777 	 * on settings like the phy mode and regulatory
778 	 * domain restrictions.
779 	 */
780 	ret = ath5k_setup_bands(hw);
781 	if (ret) {
782 		ATH5K_ERR(sc, "can't get channels\n");
783 		goto err;
784 	}
785 
786 	/* NB: setup here so ath5k_rate_update is happy */
787 	if (test_bit(AR5K_MODE_11A, ah->ah_modes))
788 		ath5k_setcurmode(sc, AR5K_MODE_11A);
789 	else
790 		ath5k_setcurmode(sc, AR5K_MODE_11B);
791 
792 	/*
793 	 * Allocate tx+rx descriptors and populate the lists.
794 	 */
795 	ret = ath5k_desc_alloc(sc, pdev);
796 	if (ret) {
797 		ATH5K_ERR(sc, "can't allocate descriptors\n");
798 		goto err;
799 	}
800 
801 	/*
802 	 * Allocate hardware transmit queues: one queue for
803 	 * beacon frames and one data queue for each QoS
804 	 * priority.  Note that hw functions handle reseting
805 	 * these queues at the needed time.
806 	 */
807 	ret = ath5k_beaconq_setup(ah);
808 	if (ret < 0) {
809 		ATH5K_ERR(sc, "can't setup a beacon xmit queue\n");
810 		goto err_desc;
811 	}
812 	sc->bhalq = ret;
813 	sc->cabq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_CAB, 0);
814 	if (IS_ERR(sc->cabq)) {
815 		ATH5K_ERR(sc, "can't setup cab queue\n");
816 		ret = PTR_ERR(sc->cabq);
817 		goto err_bhal;
818 	}
819 
820 	sc->txq = ath5k_txq_setup(sc, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
821 	if (IS_ERR(sc->txq)) {
822 		ATH5K_ERR(sc, "can't setup xmit queue\n");
823 		ret = PTR_ERR(sc->txq);
824 		goto err_queues;
825 	}
826 
827 	tasklet_init(&sc->rxtq, ath5k_tasklet_rx, (unsigned long)sc);
828 	tasklet_init(&sc->txtq, ath5k_tasklet_tx, (unsigned long)sc);
829 	tasklet_init(&sc->restq, ath5k_tasklet_reset, (unsigned long)sc);
830 	tasklet_init(&sc->calib, ath5k_tasklet_calibrate, (unsigned long)sc);
831 	tasklet_init(&sc->beacontq, ath5k_tasklet_beacon, (unsigned long)sc);
832 
833 	ret = ath5k_eeprom_read_mac(ah, mac);
834 	if (ret) {
835 		ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
836 			sc->pdev->device);
837 		goto err_queues;
838 	}
839 
840 	SET_IEEE80211_PERM_ADDR(hw, mac);
841 	/* All MAC address bits matter for ACKs */
842 	memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
843 	ath5k_hw_set_bssid_mask(sc->ah, sc->bssidmask);
844 
845 	regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
846 	ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
847 	if (ret) {
848 		ATH5K_ERR(sc, "can't initialize regulatory system\n");
849 		goto err_queues;
850 	}
851 
852 	ret = ieee80211_register_hw(hw);
853 	if (ret) {
854 		ATH5K_ERR(sc, "can't register ieee80211 hw\n");
855 		goto err_queues;
856 	}
857 
858 	if (!ath_is_world_regd(regulatory))
859 		regulatory_hint(hw->wiphy, regulatory->alpha2);
860 
861 	ath5k_init_leds(sc);
862 
863 	return 0;
864 err_queues:
865 	ath5k_txq_release(sc);
866 err_bhal:
867 	ath5k_hw_release_tx_queue(ah, sc->bhalq);
868 err_desc:
869 	ath5k_desc_free(sc, pdev);
870 err:
871 	return ret;
872 }
873 
874 static void
875 ath5k_detach(struct pci_dev *pdev, struct ieee80211_hw *hw)
876 {
877 	struct ath5k_softc *sc = hw->priv;
878 
879 	/*
880 	 * NB: the order of these is important:
881 	 * o call the 802.11 layer before detaching ath5k_hw to
882 	 *   insure callbacks into the driver to delete global
883 	 *   key cache entries can be handled
884 	 * o reclaim the tx queue data structures after calling
885 	 *   the 802.11 layer as we'll get called back to reclaim
886 	 *   node state and potentially want to use them
887 	 * o to cleanup the tx queues the hal is called, so detach
888 	 *   it last
889 	 * XXX: ??? detach ath5k_hw ???
890 	 * Other than that, it's straightforward...
891 	 */
892 	ieee80211_unregister_hw(hw);
893 	ath5k_desc_free(sc, pdev);
894 	ath5k_txq_release(sc);
895 	ath5k_hw_release_tx_queue(sc->ah, sc->bhalq);
896 	ath5k_unregister_leds(sc);
897 
898 	/*
899 	 * NB: can't reclaim these until after ieee80211_ifdetach
900 	 * returns because we'll get called back to reclaim node
901 	 * state and potentially want to use them.
902 	 */
903 }
904 
905 
906 
907 
908 /********************\
909 * Channel/mode setup *
910 \********************/
911 
912 /*
913  * Convert IEEE channel number to MHz frequency.
914  */
915 static inline short
916 ath5k_ieee2mhz(short chan)
917 {
918 	if (chan <= 14 || chan >= 27)
919 		return ieee80211chan2mhz(chan);
920 	else
921 		return 2212 + chan * 20;
922 }
923 
924 /*
925  * Returns true for the channel numbers used without all_channels modparam.
926  */
927 static bool ath5k_is_standard_channel(short chan)
928 {
929 	return ((chan <= 14) ||
930 		/* UNII 1,2 */
931 		((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
932 		/* midband */
933 		((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
934 		/* UNII-3 */
935 		((chan & 3) == 1 && chan >= 149 && chan <= 165));
936 }
937 
938 static unsigned int
939 ath5k_copy_channels(struct ath5k_hw *ah,
940 		struct ieee80211_channel *channels,
941 		unsigned int mode,
942 		unsigned int max)
943 {
944 	unsigned int i, count, size, chfreq, freq, ch;
945 
946 	if (!test_bit(mode, ah->ah_modes))
947 		return 0;
948 
949 	switch (mode) {
950 	case AR5K_MODE_11A:
951 	case AR5K_MODE_11A_TURBO:
952 		/* 1..220, but 2GHz frequencies are filtered by check_channel */
953 		size = 220 ;
954 		chfreq = CHANNEL_5GHZ;
955 		break;
956 	case AR5K_MODE_11B:
957 	case AR5K_MODE_11G:
958 	case AR5K_MODE_11G_TURBO:
959 		size = 26;
960 		chfreq = CHANNEL_2GHZ;
961 		break;
962 	default:
963 		ATH5K_WARN(ah->ah_sc, "bad mode, not copying channels\n");
964 		return 0;
965 	}
966 
967 	for (i = 0, count = 0; i < size && max > 0; i++) {
968 		ch = i + 1 ;
969 		freq = ath5k_ieee2mhz(ch);
970 
971 		/* Check if channel is supported by the chipset */
972 		if (!ath5k_channel_ok(ah, freq, chfreq))
973 			continue;
974 
975 		if (!modparam_all_channels && !ath5k_is_standard_channel(ch))
976 			continue;
977 
978 		/* Write channel info and increment counter */
979 		channels[count].center_freq = freq;
980 		channels[count].band = (chfreq == CHANNEL_2GHZ) ?
981 			IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
982 		switch (mode) {
983 		case AR5K_MODE_11A:
984 		case AR5K_MODE_11G:
985 			channels[count].hw_value = chfreq | CHANNEL_OFDM;
986 			break;
987 		case AR5K_MODE_11A_TURBO:
988 		case AR5K_MODE_11G_TURBO:
989 			channels[count].hw_value = chfreq |
990 				CHANNEL_OFDM | CHANNEL_TURBO;
991 			break;
992 		case AR5K_MODE_11B:
993 			channels[count].hw_value = CHANNEL_B;
994 		}
995 
996 		count++;
997 		max--;
998 	}
999 
1000 	return count;
1001 }
1002 
1003 static void
1004 ath5k_setup_rate_idx(struct ath5k_softc *sc, struct ieee80211_supported_band *b)
1005 {
1006 	u8 i;
1007 
1008 	for (i = 0; i < AR5K_MAX_RATES; i++)
1009 		sc->rate_idx[b->band][i] = -1;
1010 
1011 	for (i = 0; i < b->n_bitrates; i++) {
1012 		sc->rate_idx[b->band][b->bitrates[i].hw_value] = i;
1013 		if (b->bitrates[i].hw_value_short)
1014 			sc->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
1015 	}
1016 }
1017 
1018 static int
1019 ath5k_setup_bands(struct ieee80211_hw *hw)
1020 {
1021 	struct ath5k_softc *sc = hw->priv;
1022 	struct ath5k_hw *ah = sc->ah;
1023 	struct ieee80211_supported_band *sband;
1024 	int max_c, count_c = 0;
1025 	int i;
1026 
1027 	BUILD_BUG_ON(ARRAY_SIZE(sc->sbands) < IEEE80211_NUM_BANDS);
1028 	max_c = ARRAY_SIZE(sc->channels);
1029 
1030 	/* 2GHz band */
1031 	sband = &sc->sbands[IEEE80211_BAND_2GHZ];
1032 	sband->band = IEEE80211_BAND_2GHZ;
1033 	sband->bitrates = &sc->rates[IEEE80211_BAND_2GHZ][0];
1034 
1035 	if (test_bit(AR5K_MODE_11G, sc->ah->ah_capabilities.cap_mode)) {
1036 		/* G mode */
1037 		memcpy(sband->bitrates, &ath5k_rates[0],
1038 		       sizeof(struct ieee80211_rate) * 12);
1039 		sband->n_bitrates = 12;
1040 
1041 		sband->channels = sc->channels;
1042 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1043 					AR5K_MODE_11G, max_c);
1044 
1045 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
1046 		count_c = sband->n_channels;
1047 		max_c -= count_c;
1048 	} else if (test_bit(AR5K_MODE_11B, sc->ah->ah_capabilities.cap_mode)) {
1049 		/* B mode */
1050 		memcpy(sband->bitrates, &ath5k_rates[0],
1051 		       sizeof(struct ieee80211_rate) * 4);
1052 		sband->n_bitrates = 4;
1053 
1054 		/* 5211 only supports B rates and uses 4bit rate codes
1055 		 * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
1056 		 * fix them up here:
1057 		 */
1058 		if (ah->ah_version == AR5K_AR5211) {
1059 			for (i = 0; i < 4; i++) {
1060 				sband->bitrates[i].hw_value =
1061 					sband->bitrates[i].hw_value & 0xF;
1062 				sband->bitrates[i].hw_value_short =
1063 					sband->bitrates[i].hw_value_short & 0xF;
1064 			}
1065 		}
1066 
1067 		sband->channels = sc->channels;
1068 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1069 					AR5K_MODE_11B, max_c);
1070 
1071 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
1072 		count_c = sband->n_channels;
1073 		max_c -= count_c;
1074 	}
1075 	ath5k_setup_rate_idx(sc, sband);
1076 
1077 	/* 5GHz band, A mode */
1078 	if (test_bit(AR5K_MODE_11A, sc->ah->ah_capabilities.cap_mode)) {
1079 		sband = &sc->sbands[IEEE80211_BAND_5GHZ];
1080 		sband->band = IEEE80211_BAND_5GHZ;
1081 		sband->bitrates = &sc->rates[IEEE80211_BAND_5GHZ][0];
1082 
1083 		memcpy(sband->bitrates, &ath5k_rates[4],
1084 		       sizeof(struct ieee80211_rate) * 8);
1085 		sband->n_bitrates = 8;
1086 
1087 		sband->channels = &sc->channels[count_c];
1088 		sband->n_channels = ath5k_copy_channels(ah, sband->channels,
1089 					AR5K_MODE_11A, max_c);
1090 
1091 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
1092 	}
1093 	ath5k_setup_rate_idx(sc, sband);
1094 
1095 	ath5k_debug_dump_bands(sc);
1096 
1097 	return 0;
1098 }
1099 
1100 /*
1101  * Set/change channels. We always reset the chip.
1102  * To accomplish this we must first cleanup any pending DMA,
1103  * then restart stuff after a la  ath5k_init.
1104  *
1105  * Called with sc->lock.
1106  */
1107 static int
1108 ath5k_chan_set(struct ath5k_softc *sc, struct ieee80211_channel *chan)
1109 {
1110 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "(%u MHz) -> (%u MHz)\n",
1111 		sc->curchan->center_freq, chan->center_freq);
1112 
1113 	/*
1114 	 * To switch channels clear any pending DMA operations;
1115 	 * wait long enough for the RX fifo to drain, reset the
1116 	 * hardware at the new frequency, and then re-enable
1117 	 * the relevant bits of the h/w.
1118 	 */
1119 	return ath5k_reset(sc, chan);
1120 }
1121 
1122 static void
1123 ath5k_setcurmode(struct ath5k_softc *sc, unsigned int mode)
1124 {
1125 	sc->curmode = mode;
1126 
1127 	if (mode == AR5K_MODE_11A) {
1128 		sc->curband = &sc->sbands[IEEE80211_BAND_5GHZ];
1129 	} else {
1130 		sc->curband = &sc->sbands[IEEE80211_BAND_2GHZ];
1131 	}
1132 }
1133 
1134 static void
1135 ath5k_mode_setup(struct ath5k_softc *sc)
1136 {
1137 	struct ath5k_hw *ah = sc->ah;
1138 	u32 rfilt;
1139 
1140 	ah->ah_op_mode = sc->opmode;
1141 
1142 	/* configure rx filter */
1143 	rfilt = sc->filter_flags;
1144 	ath5k_hw_set_rx_filter(ah, rfilt);
1145 
1146 	if (ath5k_hw_hasbssidmask(ah))
1147 		ath5k_hw_set_bssid_mask(ah, sc->bssidmask);
1148 
1149 	/* configure operational mode */
1150 	ath5k_hw_set_opmode(ah);
1151 
1152 	ATH5K_DBG(sc, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
1153 }
1154 
1155 static inline int
1156 ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
1157 {
1158 	int rix;
1159 
1160 	/* return base rate on errors */
1161 	if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
1162 			"hw_rix out of bounds: %x\n", hw_rix))
1163 		return 0;
1164 
1165 	rix = sc->rate_idx[sc->curband->band][hw_rix];
1166 	if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
1167 		rix = 0;
1168 
1169 	return rix;
1170 }
1171 
1172 /***************\
1173 * Buffers setup *
1174 \***************/
1175 
1176 static
1177 struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_softc *sc, dma_addr_t *skb_addr)
1178 {
1179 	struct ath_common *common = ath5k_hw_common(sc->ah);
1180 	struct sk_buff *skb;
1181 
1182 	/*
1183 	 * Allocate buffer with headroom_needed space for the
1184 	 * fake physical layer header at the start.
1185 	 */
1186 	skb = ath_rxbuf_alloc(common,
1187 			      common->rx_bufsize,
1188 			      GFP_ATOMIC);
1189 
1190 	if (!skb) {
1191 		ATH5K_ERR(sc, "can't alloc skbuff of size %u\n",
1192 				common->rx_bufsize);
1193 		return NULL;
1194 	}
1195 
1196 	*skb_addr = pci_map_single(sc->pdev,
1197 				   skb->data, common->rx_bufsize,
1198 				   PCI_DMA_FROMDEVICE);
1199 	if (unlikely(pci_dma_mapping_error(sc->pdev, *skb_addr))) {
1200 		ATH5K_ERR(sc, "%s: DMA mapping failed\n", __func__);
1201 		dev_kfree_skb(skb);
1202 		return NULL;
1203 	}
1204 	return skb;
1205 }
1206 
1207 static int
1208 ath5k_rxbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1209 {
1210 	struct ath5k_hw *ah = sc->ah;
1211 	struct sk_buff *skb = bf->skb;
1212 	struct ath5k_desc *ds;
1213 
1214 	if (!skb) {
1215 		skb = ath5k_rx_skb_alloc(sc, &bf->skbaddr);
1216 		if (!skb)
1217 			return -ENOMEM;
1218 		bf->skb = skb;
1219 	}
1220 
1221 	/*
1222 	 * Setup descriptors.  For receive we always terminate
1223 	 * the descriptor list with a self-linked entry so we'll
1224 	 * not get overrun under high load (as can happen with a
1225 	 * 5212 when ANI processing enables PHY error frames).
1226 	 *
1227 	 * To insure the last descriptor is self-linked we create
1228 	 * each descriptor as self-linked and add it to the end.  As
1229 	 * each additional descriptor is added the previous self-linked
1230 	 * entry is ``fixed'' naturally.  This should be safe even
1231 	 * if DMA is happening.  When processing RX interrupts we
1232 	 * never remove/process the last, self-linked, entry on the
1233 	 * descriptor list.  This insures the hardware always has
1234 	 * someplace to write a new frame.
1235 	 */
1236 	ds = bf->desc;
1237 	ds->ds_link = bf->daddr;	/* link to self */
1238 	ds->ds_data = bf->skbaddr;
1239 	ah->ah_setup_rx_desc(ah, ds,
1240 		skb_tailroom(skb),	/* buffer size */
1241 		0);
1242 
1243 	if (sc->rxlink != NULL)
1244 		*sc->rxlink = bf->daddr;
1245 	sc->rxlink = &ds->ds_link;
1246 	return 0;
1247 }
1248 
1249 static int
1250 ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf,
1251 		  struct ath5k_txq *txq)
1252 {
1253 	struct ath5k_hw *ah = sc->ah;
1254 	struct ath5k_desc *ds = bf->desc;
1255 	struct sk_buff *skb = bf->skb;
1256 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1257 	unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
1258 	struct ieee80211_rate *rate;
1259 	unsigned int mrr_rate[3], mrr_tries[3];
1260 	int i, ret;
1261 	u16 hw_rate;
1262 	u16 cts_rate = 0;
1263 	u16 duration = 0;
1264 	u8 rc_flags;
1265 
1266 	flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
1267 
1268 	/* XXX endianness */
1269 	bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
1270 			PCI_DMA_TODEVICE);
1271 
1272 	rate = ieee80211_get_tx_rate(sc->hw, info);
1273 
1274 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1275 		flags |= AR5K_TXDESC_NOACK;
1276 
1277 	rc_flags = info->control.rates[0].flags;
1278 	hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
1279 		rate->hw_value_short : rate->hw_value;
1280 
1281 	pktlen = skb->len;
1282 
1283 	/* FIXME: If we are in g mode and rate is a CCK rate
1284 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1285 	 * from tx power (value is in dB units already) */
1286 	if (info->control.hw_key) {
1287 		keyidx = info->control.hw_key->hw_key_idx;
1288 		pktlen += info->control.hw_key->icv_len;
1289 	}
1290 	if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1291 		flags |= AR5K_TXDESC_RTSENA;
1292 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
1293 		duration = le16_to_cpu(ieee80211_rts_duration(sc->hw,
1294 			sc->vif, pktlen, info));
1295 	}
1296 	if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1297 		flags |= AR5K_TXDESC_CTSENA;
1298 		cts_rate = ieee80211_get_rts_cts_rate(sc->hw, info)->hw_value;
1299 		duration = le16_to_cpu(ieee80211_ctstoself_duration(sc->hw,
1300 			sc->vif, pktlen, info));
1301 	}
1302 	ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
1303 		ieee80211_get_hdrlen_from_skb(skb), AR5K_PKT_TYPE_NORMAL,
1304 		(sc->power_level * 2),
1305 		hw_rate,
1306 		info->control.rates[0].count, keyidx, ah->ah_tx_ant, flags,
1307 		cts_rate, duration);
1308 	if (ret)
1309 		goto err_unmap;
1310 
1311 	memset(mrr_rate, 0, sizeof(mrr_rate));
1312 	memset(mrr_tries, 0, sizeof(mrr_tries));
1313 	for (i = 0; i < 3; i++) {
1314 		rate = ieee80211_get_alt_retry_rate(sc->hw, info, i);
1315 		if (!rate)
1316 			break;
1317 
1318 		mrr_rate[i] = rate->hw_value;
1319 		mrr_tries[i] = info->control.rates[i + 1].count;
1320 	}
1321 
1322 	ah->ah_setup_mrr_tx_desc(ah, ds,
1323 		mrr_rate[0], mrr_tries[0],
1324 		mrr_rate[1], mrr_tries[1],
1325 		mrr_rate[2], mrr_tries[2]);
1326 
1327 	ds->ds_link = 0;
1328 	ds->ds_data = bf->skbaddr;
1329 
1330 	spin_lock_bh(&txq->lock);
1331 	list_add_tail(&bf->list, &txq->q);
1332 	sc->tx_stats[txq->qnum].len++;
1333 	if (txq->link == NULL) /* is this first packet? */
1334 		ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
1335 	else /* no, so only link it */
1336 		*txq->link = bf->daddr;
1337 
1338 	txq->link = &ds->ds_link;
1339 	ath5k_hw_start_tx_dma(ah, txq->qnum);
1340 	mmiowb();
1341 	spin_unlock_bh(&txq->lock);
1342 
1343 	return 0;
1344 err_unmap:
1345 	pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
1346 	return ret;
1347 }
1348 
1349 /*******************\
1350 * Descriptors setup *
1351 \*******************/
1352 
1353 static int
1354 ath5k_desc_alloc(struct ath5k_softc *sc, struct pci_dev *pdev)
1355 {
1356 	struct ath5k_desc *ds;
1357 	struct ath5k_buf *bf;
1358 	dma_addr_t da;
1359 	unsigned int i;
1360 	int ret;
1361 
1362 	/* allocate descriptors */
1363 	sc->desc_len = sizeof(struct ath5k_desc) *
1364 			(ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
1365 	sc->desc = pci_alloc_consistent(pdev, sc->desc_len, &sc->desc_daddr);
1366 	if (sc->desc == NULL) {
1367 		ATH5K_ERR(sc, "can't allocate descriptors\n");
1368 		ret = -ENOMEM;
1369 		goto err;
1370 	}
1371 	ds = sc->desc;
1372 	da = sc->desc_daddr;
1373 	ATH5K_DBG(sc, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
1374 		ds, sc->desc_len, (unsigned long long)sc->desc_daddr);
1375 
1376 	bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
1377 			sizeof(struct ath5k_buf), GFP_KERNEL);
1378 	if (bf == NULL) {
1379 		ATH5K_ERR(sc, "can't allocate bufptr\n");
1380 		ret = -ENOMEM;
1381 		goto err_free;
1382 	}
1383 	sc->bufptr = bf;
1384 
1385 	INIT_LIST_HEAD(&sc->rxbuf);
1386 	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
1387 		bf->desc = ds;
1388 		bf->daddr = da;
1389 		list_add_tail(&bf->list, &sc->rxbuf);
1390 	}
1391 
1392 	INIT_LIST_HEAD(&sc->txbuf);
1393 	sc->txbuf_len = ATH_TXBUF;
1394 	for (i = 0; i < ATH_TXBUF; i++, bf++, ds++,
1395 			da += sizeof(*ds)) {
1396 		bf->desc = ds;
1397 		bf->daddr = da;
1398 		list_add_tail(&bf->list, &sc->txbuf);
1399 	}
1400 
1401 	/* beacon buffer */
1402 	bf->desc = ds;
1403 	bf->daddr = da;
1404 	sc->bbuf = bf;
1405 
1406 	return 0;
1407 err_free:
1408 	pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1409 err:
1410 	sc->desc = NULL;
1411 	return ret;
1412 }
1413 
1414 static void
1415 ath5k_desc_free(struct ath5k_softc *sc, struct pci_dev *pdev)
1416 {
1417 	struct ath5k_buf *bf;
1418 
1419 	ath5k_txbuf_free(sc, sc->bbuf);
1420 	list_for_each_entry(bf, &sc->txbuf, list)
1421 		ath5k_txbuf_free(sc, bf);
1422 	list_for_each_entry(bf, &sc->rxbuf, list)
1423 		ath5k_rxbuf_free(sc, bf);
1424 
1425 	/* Free memory associated with all descriptors */
1426 	pci_free_consistent(pdev, sc->desc_len, sc->desc, sc->desc_daddr);
1427 
1428 	kfree(sc->bufptr);
1429 	sc->bufptr = NULL;
1430 }
1431 
1432 
1433 
1434 
1435 
1436 /**************\
1437 * Queues setup *
1438 \**************/
1439 
1440 static struct ath5k_txq *
1441 ath5k_txq_setup(struct ath5k_softc *sc,
1442 		int qtype, int subtype)
1443 {
1444 	struct ath5k_hw *ah = sc->ah;
1445 	struct ath5k_txq *txq;
1446 	struct ath5k_txq_info qi = {
1447 		.tqi_subtype = subtype,
1448 		.tqi_aifs = AR5K_TXQ_USEDEFAULT,
1449 		.tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1450 		.tqi_cw_max = AR5K_TXQ_USEDEFAULT
1451 	};
1452 	int qnum;
1453 
1454 	/*
1455 	 * Enable interrupts only for EOL and DESC conditions.
1456 	 * We mark tx descriptors to receive a DESC interrupt
1457 	 * when a tx queue gets deep; otherwise waiting for the
1458 	 * EOL to reap descriptors.  Note that this is done to
1459 	 * reduce interrupt load and this only defers reaping
1460 	 * descriptors, never transmitting frames.  Aside from
1461 	 * reducing interrupts this also permits more concurrency.
1462 	 * The only potential downside is if the tx queue backs
1463 	 * up in which case the top half of the kernel may backup
1464 	 * due to a lack of tx descriptors.
1465 	 */
1466 	qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
1467 				AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
1468 	qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
1469 	if (qnum < 0) {
1470 		/*
1471 		 * NB: don't print a message, this happens
1472 		 * normally on parts with too few tx queues
1473 		 */
1474 		return ERR_PTR(qnum);
1475 	}
1476 	if (qnum >= ARRAY_SIZE(sc->txqs)) {
1477 		ATH5K_ERR(sc, "hw qnum %u out of range, max %tu!\n",
1478 			qnum, ARRAY_SIZE(sc->txqs));
1479 		ath5k_hw_release_tx_queue(ah, qnum);
1480 		return ERR_PTR(-EINVAL);
1481 	}
1482 	txq = &sc->txqs[qnum];
1483 	if (!txq->setup) {
1484 		txq->qnum = qnum;
1485 		txq->link = NULL;
1486 		INIT_LIST_HEAD(&txq->q);
1487 		spin_lock_init(&txq->lock);
1488 		txq->setup = true;
1489 	}
1490 	return &sc->txqs[qnum];
1491 }
1492 
1493 static int
1494 ath5k_beaconq_setup(struct ath5k_hw *ah)
1495 {
1496 	struct ath5k_txq_info qi = {
1497 		.tqi_aifs = AR5K_TXQ_USEDEFAULT,
1498 		.tqi_cw_min = AR5K_TXQ_USEDEFAULT,
1499 		.tqi_cw_max = AR5K_TXQ_USEDEFAULT,
1500 		/* NB: for dynamic turbo, don't enable any other interrupts */
1501 		.tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
1502 	};
1503 
1504 	return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
1505 }
1506 
1507 static int
1508 ath5k_beaconq_config(struct ath5k_softc *sc)
1509 {
1510 	struct ath5k_hw *ah = sc->ah;
1511 	struct ath5k_txq_info qi;
1512 	int ret;
1513 
1514 	ret = ath5k_hw_get_tx_queueprops(ah, sc->bhalq, &qi);
1515 	if (ret)
1516 		return ret;
1517 	if (sc->opmode == NL80211_IFTYPE_AP ||
1518 		sc->opmode == NL80211_IFTYPE_MESH_POINT) {
1519 		/*
1520 		 * Always burst out beacon and CAB traffic
1521 		 * (aifs = cwmin = cwmax = 0)
1522 		 */
1523 		qi.tqi_aifs = 0;
1524 		qi.tqi_cw_min = 0;
1525 		qi.tqi_cw_max = 0;
1526 	} else if (sc->opmode == NL80211_IFTYPE_ADHOC) {
1527 		/*
1528 		 * Adhoc mode; backoff between 0 and (2 * cw_min).
1529 		 */
1530 		qi.tqi_aifs = 0;
1531 		qi.tqi_cw_min = 0;
1532 		qi.tqi_cw_max = 2 * ah->ah_cw_min;
1533 	}
1534 
1535 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
1536 		"beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
1537 		qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
1538 
1539 	ret = ath5k_hw_set_tx_queueprops(ah, sc->bhalq, &qi);
1540 	if (ret) {
1541 		ATH5K_ERR(sc, "%s: unable to update parameters for beacon "
1542 			"hardware queue!\n", __func__);
1543 		return ret;
1544 	}
1545 
1546 	return ath5k_hw_reset_tx_queue(ah, sc->bhalq); /* push to h/w */;
1547 }
1548 
1549 static void
1550 ath5k_txq_drainq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1551 {
1552 	struct ath5k_buf *bf, *bf0;
1553 
1554 	/*
1555 	 * NB: this assumes output has been stopped and
1556 	 *     we do not need to block ath5k_tx_tasklet
1557 	 */
1558 	spin_lock_bh(&txq->lock);
1559 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1560 		ath5k_debug_printtxbuf(sc, bf);
1561 
1562 		ath5k_txbuf_free(sc, bf);
1563 
1564 		spin_lock_bh(&sc->txbuflock);
1565 		sc->tx_stats[txq->qnum].len--;
1566 		list_move_tail(&bf->list, &sc->txbuf);
1567 		sc->txbuf_len++;
1568 		spin_unlock_bh(&sc->txbuflock);
1569 	}
1570 	txq->link = NULL;
1571 	spin_unlock_bh(&txq->lock);
1572 }
1573 
1574 /*
1575  * Drain the transmit queues and reclaim resources.
1576  */
1577 static void
1578 ath5k_txq_cleanup(struct ath5k_softc *sc)
1579 {
1580 	struct ath5k_hw *ah = sc->ah;
1581 	unsigned int i;
1582 
1583 	/* XXX return value */
1584 	if (likely(!test_bit(ATH_STAT_INVALID, sc->status))) {
1585 		/* don't touch the hardware if marked invalid */
1586 		ath5k_hw_stop_tx_dma(ah, sc->bhalq);
1587 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "beacon queue %x\n",
1588 			ath5k_hw_get_txdp(ah, sc->bhalq));
1589 		for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1590 			if (sc->txqs[i].setup) {
1591 				ath5k_hw_stop_tx_dma(ah, sc->txqs[i].qnum);
1592 				ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "txq [%u] %x, "
1593 					"link %p\n",
1594 					sc->txqs[i].qnum,
1595 					ath5k_hw_get_txdp(ah,
1596 							sc->txqs[i].qnum),
1597 					sc->txqs[i].link);
1598 			}
1599 	}
1600 	ieee80211_wake_queues(sc->hw); /* XXX move to callers */
1601 
1602 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++)
1603 		if (sc->txqs[i].setup)
1604 			ath5k_txq_drainq(sc, &sc->txqs[i]);
1605 }
1606 
1607 static void
1608 ath5k_txq_release(struct ath5k_softc *sc)
1609 {
1610 	struct ath5k_txq *txq = sc->txqs;
1611 	unsigned int i;
1612 
1613 	for (i = 0; i < ARRAY_SIZE(sc->txqs); i++, txq++)
1614 		if (txq->setup) {
1615 			ath5k_hw_release_tx_queue(sc->ah, txq->qnum);
1616 			txq->setup = false;
1617 		}
1618 }
1619 
1620 
1621 
1622 
1623 /*************\
1624 * RX Handling *
1625 \*************/
1626 
1627 /*
1628  * Enable the receive h/w following a reset.
1629  */
1630 static int
1631 ath5k_rx_start(struct ath5k_softc *sc)
1632 {
1633 	struct ath5k_hw *ah = sc->ah;
1634 	struct ath_common *common = ath5k_hw_common(ah);
1635 	struct ath5k_buf *bf;
1636 	int ret;
1637 
1638 	common->rx_bufsize = roundup(IEEE80211_MAX_LEN, common->cachelsz);
1639 
1640 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
1641 		  common->cachelsz, common->rx_bufsize);
1642 
1643 	spin_lock_bh(&sc->rxbuflock);
1644 	sc->rxlink = NULL;
1645 	list_for_each_entry(bf, &sc->rxbuf, list) {
1646 		ret = ath5k_rxbuf_setup(sc, bf);
1647 		if (ret != 0) {
1648 			spin_unlock_bh(&sc->rxbuflock);
1649 			goto err;
1650 		}
1651 	}
1652 	bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1653 	ath5k_hw_set_rxdp(ah, bf->daddr);
1654 	spin_unlock_bh(&sc->rxbuflock);
1655 
1656 	ath5k_hw_start_rx_dma(ah);	/* enable recv descriptors */
1657 	ath5k_mode_setup(sc);		/* set filters, etc. */
1658 	ath5k_hw_start_rx_pcu(ah);	/* re-enable PCU/DMA engine */
1659 
1660 	return 0;
1661 err:
1662 	return ret;
1663 }
1664 
1665 /*
1666  * Disable the receive h/w in preparation for a reset.
1667  */
1668 static void
1669 ath5k_rx_stop(struct ath5k_softc *sc)
1670 {
1671 	struct ath5k_hw *ah = sc->ah;
1672 
1673 	ath5k_hw_stop_rx_pcu(ah);	/* disable PCU */
1674 	ath5k_hw_set_rx_filter(ah, 0);	/* clear recv filter */
1675 	ath5k_hw_stop_rx_dma(ah);	/* disable DMA engine */
1676 
1677 	ath5k_debug_printrxbuffs(sc, ah);
1678 
1679 	sc->rxlink = NULL;		/* just in case */
1680 }
1681 
1682 static unsigned int
1683 ath5k_rx_decrypted(struct ath5k_softc *sc, struct ath5k_desc *ds,
1684 		struct sk_buff *skb, struct ath5k_rx_status *rs)
1685 {
1686 	struct ath5k_hw *ah = sc->ah;
1687 	struct ath_common *common = ath5k_hw_common(ah);
1688 	struct ieee80211_hdr *hdr = (void *)skb->data;
1689 	unsigned int keyix, hlen;
1690 
1691 	if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1692 			rs->rs_keyix != AR5K_RXKEYIX_INVALID)
1693 		return RX_FLAG_DECRYPTED;
1694 
1695 	/* Apparently when a default key is used to decrypt the packet
1696 	   the hw does not set the index used to decrypt.  In such cases
1697 	   get the index from the packet. */
1698 	hlen = ieee80211_hdrlen(hdr->frame_control);
1699 	if (ieee80211_has_protected(hdr->frame_control) &&
1700 	    !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
1701 	    skb->len >= hlen + 4) {
1702 		keyix = skb->data[hlen + 3] >> 6;
1703 
1704 		if (test_bit(keyix, common->keymap))
1705 			return RX_FLAG_DECRYPTED;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 
1712 static void
1713 ath5k_check_ibss_tsf(struct ath5k_softc *sc, struct sk_buff *skb,
1714 		     struct ieee80211_rx_status *rxs)
1715 {
1716 	struct ath_common *common = ath5k_hw_common(sc->ah);
1717 	u64 tsf, bc_tstamp;
1718 	u32 hw_tu;
1719 	struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
1720 
1721 	if (ieee80211_is_beacon(mgmt->frame_control) &&
1722 	    le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS &&
1723 	    memcmp(mgmt->bssid, common->curbssid, ETH_ALEN) == 0) {
1724 		/*
1725 		 * Received an IBSS beacon with the same BSSID. Hardware *must*
1726 		 * have updated the local TSF. We have to work around various
1727 		 * hardware bugs, though...
1728 		 */
1729 		tsf = ath5k_hw_get_tsf64(sc->ah);
1730 		bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
1731 		hw_tu = TSF_TO_TU(tsf);
1732 
1733 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1734 			"beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
1735 			(unsigned long long)bc_tstamp,
1736 			(unsigned long long)rxs->mactime,
1737 			(unsigned long long)(rxs->mactime - bc_tstamp),
1738 			(unsigned long long)tsf);
1739 
1740 		/*
1741 		 * Sometimes the HW will give us a wrong tstamp in the rx
1742 		 * status, causing the timestamp extension to go wrong.
1743 		 * (This seems to happen especially with beacon frames bigger
1744 		 * than 78 byte (incl. FCS))
1745 		 * But we know that the receive timestamp must be later than the
1746 		 * timestamp of the beacon since HW must have synced to that.
1747 		 *
1748 		 * NOTE: here we assume mactime to be after the frame was
1749 		 * received, not like mac80211 which defines it at the start.
1750 		 */
1751 		if (bc_tstamp > rxs->mactime) {
1752 			ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
1753 				"fixing mactime from %llx to %llx\n",
1754 				(unsigned long long)rxs->mactime,
1755 				(unsigned long long)tsf);
1756 			rxs->mactime = tsf;
1757 		}
1758 
1759 		/*
1760 		 * Local TSF might have moved higher than our beacon timers,
1761 		 * in that case we have to update them to continue sending
1762 		 * beacons. This also takes care of synchronizing beacon sending
1763 		 * times with other stations.
1764 		 */
1765 		if (hw_tu >= sc->nexttbtt)
1766 			ath5k_beacon_update_timers(sc, bc_tstamp);
1767 	}
1768 }
1769 
1770 static void
1771 ath5k_tasklet_rx(unsigned long data)
1772 {
1773 	struct ieee80211_rx_status *rxs;
1774 	struct ath5k_rx_status rs = {};
1775 	struct sk_buff *skb, *next_skb;
1776 	dma_addr_t next_skb_addr;
1777 	struct ath5k_softc *sc = (void *)data;
1778 	struct ath5k_hw *ah = sc->ah;
1779 	struct ath_common *common = ath5k_hw_common(ah);
1780 	struct ath5k_buf *bf;
1781 	struct ath5k_desc *ds;
1782 	int ret;
1783 	int hdrlen;
1784 	int padsize;
1785 	int rx_flag;
1786 
1787 	spin_lock(&sc->rxbuflock);
1788 	if (list_empty(&sc->rxbuf)) {
1789 		ATH5K_WARN(sc, "empty rx buf pool\n");
1790 		goto unlock;
1791 	}
1792 	do {
1793 		rx_flag = 0;
1794 
1795 		bf = list_first_entry(&sc->rxbuf, struct ath5k_buf, list);
1796 		BUG_ON(bf->skb == NULL);
1797 		skb = bf->skb;
1798 		ds = bf->desc;
1799 
1800 		/* bail if HW is still using self-linked descriptor */
1801 		if (ath5k_hw_get_rxdp(sc->ah) == bf->daddr)
1802 			break;
1803 
1804 		ret = sc->ah->ah_proc_rx_desc(sc->ah, ds, &rs);
1805 		if (unlikely(ret == -EINPROGRESS))
1806 			break;
1807 		else if (unlikely(ret)) {
1808 			ATH5K_ERR(sc, "error in processing rx descriptor\n");
1809 			spin_unlock(&sc->rxbuflock);
1810 			return;
1811 		}
1812 
1813 		if (unlikely(rs.rs_more)) {
1814 			ATH5K_WARN(sc, "unsupported jumbo\n");
1815 			goto next;
1816 		}
1817 
1818 		if (unlikely(rs.rs_status)) {
1819 			if (rs.rs_status & AR5K_RXERR_PHY)
1820 				goto next;
1821 			if (rs.rs_status & AR5K_RXERR_DECRYPT) {
1822 				/*
1823 				 * Decrypt error.  If the error occurred
1824 				 * because there was no hardware key, then
1825 				 * let the frame through so the upper layers
1826 				 * can process it.  This is necessary for 5210
1827 				 * parts which have no way to setup a ``clear''
1828 				 * key cache entry.
1829 				 *
1830 				 * XXX do key cache faulting
1831 				 */
1832 				if (rs.rs_keyix == AR5K_RXKEYIX_INVALID &&
1833 				    !(rs.rs_status & AR5K_RXERR_CRC))
1834 					goto accept;
1835 			}
1836 			if (rs.rs_status & AR5K_RXERR_MIC) {
1837 				rx_flag |= RX_FLAG_MMIC_ERROR;
1838 				goto accept;
1839 			}
1840 
1841 			/* let crypto-error packets fall through in MNTR */
1842 			if ((rs.rs_status &
1843 				~(AR5K_RXERR_DECRYPT|AR5K_RXERR_MIC)) ||
1844 					sc->opmode != NL80211_IFTYPE_MONITOR)
1845 				goto next;
1846 		}
1847 accept:
1848 		next_skb = ath5k_rx_skb_alloc(sc, &next_skb_addr);
1849 
1850 		/*
1851 		 * If we can't replace bf->skb with a new skb under memory
1852 		 * pressure, just skip this packet
1853 		 */
1854 		if (!next_skb)
1855 			goto next;
1856 
1857 		pci_unmap_single(sc->pdev, bf->skbaddr, common->rx_bufsize,
1858 				PCI_DMA_FROMDEVICE);
1859 		skb_put(skb, rs.rs_datalen);
1860 
1861 		/* The MAC header is padded to have 32-bit boundary if the
1862 		 * packet payload is non-zero. The general calculation for
1863 		 * padsize would take into account odd header lengths:
1864 		 * padsize = (4 - hdrlen % 4) % 4; However, since only
1865 		 * even-length headers are used, padding can only be 0 or 2
1866 		 * bytes and we can optimize this a bit. In addition, we must
1867 		 * not try to remove padding from short control frames that do
1868 		 * not have payload. */
1869 		hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1870 		padsize = ath5k_pad_size(hdrlen);
1871 		if (padsize) {
1872 			memmove(skb->data + padsize, skb->data, hdrlen);
1873 			skb_pull(skb, padsize);
1874 		}
1875 		rxs = IEEE80211_SKB_RXCB(skb);
1876 
1877 		/*
1878 		 * always extend the mac timestamp, since this information is
1879 		 * also needed for proper IBSS merging.
1880 		 *
1881 		 * XXX: it might be too late to do it here, since rs_tstamp is
1882 		 * 15bit only. that means TSF extension has to be done within
1883 		 * 32768usec (about 32ms). it might be necessary to move this to
1884 		 * the interrupt handler, like it is done in madwifi.
1885 		 *
1886 		 * Unfortunately we don't know when the hardware takes the rx
1887 		 * timestamp (beginning of phy frame, data frame, end of rx?).
1888 		 * The only thing we know is that it is hardware specific...
1889 		 * On AR5213 it seems the rx timestamp is at the end of the
1890 		 * frame, but i'm not sure.
1891 		 *
1892 		 * NOTE: mac80211 defines mactime at the beginning of the first
1893 		 * data symbol. Since we don't have any time references it's
1894 		 * impossible to comply to that. This affects IBSS merge only
1895 		 * right now, so it's not too bad...
1896 		 */
1897 		rxs->mactime = ath5k_extend_tsf(sc->ah, rs.rs_tstamp);
1898 		rxs->flag = rx_flag | RX_FLAG_TSFT;
1899 
1900 		rxs->freq = sc->curchan->center_freq;
1901 		rxs->band = sc->curband->band;
1902 
1903 		rxs->noise = sc->ah->ah_noise_floor;
1904 		rxs->signal = rxs->noise + rs.rs_rssi;
1905 
1906 		/* An rssi of 35 indicates you should be able use
1907 		 * 54 Mbps reliably. A more elaborate scheme can be used
1908 		 * here but it requires a map of SNR/throughput for each
1909 		 * possible mode used */
1910 		rxs->qual = rs.rs_rssi * 100 / 35;
1911 
1912 		/* rssi can be more than 35 though, anything above that
1913 		 * should be considered at 100% */
1914 		if (rxs->qual > 100)
1915 			rxs->qual = 100;
1916 
1917 		rxs->antenna = rs.rs_antenna;
1918 		rxs->rate_idx = ath5k_hw_to_driver_rix(sc, rs.rs_rate);
1919 		rxs->flag |= ath5k_rx_decrypted(sc, ds, skb, &rs);
1920 
1921 		if (rxs->rate_idx >= 0 && rs.rs_rate ==
1922 		    sc->curband->bitrates[rxs->rate_idx].hw_value_short)
1923 			rxs->flag |= RX_FLAG_SHORTPRE;
1924 
1925 		ath5k_debug_dump_skb(sc, skb, "RX  ", 0);
1926 
1927 		/* check beacons in IBSS mode */
1928 		if (sc->opmode == NL80211_IFTYPE_ADHOC)
1929 			ath5k_check_ibss_tsf(sc, skb, rxs);
1930 
1931 		ieee80211_rx(sc->hw, skb);
1932 
1933 		bf->skb = next_skb;
1934 		bf->skbaddr = next_skb_addr;
1935 next:
1936 		list_move_tail(&bf->list, &sc->rxbuf);
1937 	} while (ath5k_rxbuf_setup(sc, bf) == 0);
1938 unlock:
1939 	spin_unlock(&sc->rxbuflock);
1940 }
1941 
1942 
1943 
1944 
1945 /*************\
1946 * TX Handling *
1947 \*************/
1948 
1949 static void
1950 ath5k_tx_processq(struct ath5k_softc *sc, struct ath5k_txq *txq)
1951 {
1952 	struct ath5k_tx_status ts = {};
1953 	struct ath5k_buf *bf, *bf0;
1954 	struct ath5k_desc *ds;
1955 	struct sk_buff *skb;
1956 	struct ieee80211_tx_info *info;
1957 	int i, ret;
1958 
1959 	spin_lock(&txq->lock);
1960 	list_for_each_entry_safe(bf, bf0, &txq->q, list) {
1961 		ds = bf->desc;
1962 
1963 		ret = sc->ah->ah_proc_tx_desc(sc->ah, ds, &ts);
1964 		if (unlikely(ret == -EINPROGRESS))
1965 			break;
1966 		else if (unlikely(ret)) {
1967 			ATH5K_ERR(sc, "error %d while processing queue %u\n",
1968 				ret, txq->qnum);
1969 			break;
1970 		}
1971 
1972 		skb = bf->skb;
1973 		info = IEEE80211_SKB_CB(skb);
1974 		bf->skb = NULL;
1975 
1976 		pci_unmap_single(sc->pdev, bf->skbaddr, skb->len,
1977 				PCI_DMA_TODEVICE);
1978 
1979 		ieee80211_tx_info_clear_status(info);
1980 		for (i = 0; i < 4; i++) {
1981 			struct ieee80211_tx_rate *r =
1982 				&info->status.rates[i];
1983 
1984 			if (ts.ts_rate[i]) {
1985 				r->idx = ath5k_hw_to_driver_rix(sc, ts.ts_rate[i]);
1986 				r->count = ts.ts_retry[i];
1987 			} else {
1988 				r->idx = -1;
1989 				r->count = 0;
1990 			}
1991 		}
1992 
1993 		/* count the successful attempt as well */
1994 		info->status.rates[ts.ts_final_idx].count++;
1995 
1996 		if (unlikely(ts.ts_status)) {
1997 			sc->ll_stats.dot11ACKFailureCount++;
1998 			if (ts.ts_status & AR5K_TXERR_FILT)
1999 				info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2000 		} else {
2001 			info->flags |= IEEE80211_TX_STAT_ACK;
2002 			info->status.ack_signal = ts.ts_rssi;
2003 		}
2004 
2005 		ieee80211_tx_status(sc->hw, skb);
2006 		sc->tx_stats[txq->qnum].count++;
2007 
2008 		spin_lock(&sc->txbuflock);
2009 		sc->tx_stats[txq->qnum].len--;
2010 		list_move_tail(&bf->list, &sc->txbuf);
2011 		sc->txbuf_len++;
2012 		spin_unlock(&sc->txbuflock);
2013 	}
2014 	if (likely(list_empty(&txq->q)))
2015 		txq->link = NULL;
2016 	spin_unlock(&txq->lock);
2017 	if (sc->txbuf_len > ATH_TXBUF / 5)
2018 		ieee80211_wake_queues(sc->hw);
2019 }
2020 
2021 static void
2022 ath5k_tasklet_tx(unsigned long data)
2023 {
2024 	int i;
2025 	struct ath5k_softc *sc = (void *)data;
2026 
2027 	for (i=0; i < AR5K_NUM_TX_QUEUES; i++)
2028 		if (sc->txqs[i].setup && (sc->ah->ah_txq_isr & BIT(i)))
2029 			ath5k_tx_processq(sc, &sc->txqs[i]);
2030 }
2031 
2032 
2033 /*****************\
2034 * Beacon handling *
2035 \*****************/
2036 
2037 /*
2038  * Setup the beacon frame for transmit.
2039  */
2040 static int
2041 ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
2042 {
2043 	struct sk_buff *skb = bf->skb;
2044 	struct	ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2045 	struct ath5k_hw *ah = sc->ah;
2046 	struct ath5k_desc *ds;
2047 	int ret = 0;
2048 	u8 antenna;
2049 	u32 flags;
2050 
2051 	bf->skbaddr = pci_map_single(sc->pdev, skb->data, skb->len,
2052 			PCI_DMA_TODEVICE);
2053 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
2054 			"skbaddr %llx\n", skb, skb->data, skb->len,
2055 			(unsigned long long)bf->skbaddr);
2056 	if (pci_dma_mapping_error(sc->pdev, bf->skbaddr)) {
2057 		ATH5K_ERR(sc, "beacon DMA mapping failed\n");
2058 		return -EIO;
2059 	}
2060 
2061 	ds = bf->desc;
2062 	antenna = ah->ah_tx_ant;
2063 
2064 	flags = AR5K_TXDESC_NOACK;
2065 	if (sc->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
2066 		ds->ds_link = bf->daddr;	/* self-linked */
2067 		flags |= AR5K_TXDESC_VEOL;
2068 	} else
2069 		ds->ds_link = 0;
2070 
2071 	/*
2072 	 * If we use multiple antennas on AP and use
2073 	 * the Sectored AP scenario, switch antenna every
2074 	 * 4 beacons to make sure everybody hears our AP.
2075 	 * When a client tries to associate, hw will keep
2076 	 * track of the tx antenna to be used for this client
2077 	 * automaticaly, based on ACKed packets.
2078 	 *
2079 	 * Note: AP still listens and transmits RTS on the
2080 	 * default antenna which is supposed to be an omni.
2081 	 *
2082 	 * Note2: On sectored scenarios it's possible to have
2083 	 * multiple antennas (1omni -the default- and 14 sectors)
2084 	 * so if we choose to actually support this mode we need
2085 	 * to allow user to set how many antennas we have and tweak
2086 	 * the code below to send beacons on all of them.
2087 	 */
2088 	if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
2089 		antenna = sc->bsent & 4 ? 2 : 1;
2090 
2091 
2092 	/* FIXME: If we are in g mode and rate is a CCK rate
2093 	 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
2094 	 * from tx power (value is in dB units already) */
2095 	ds->ds_data = bf->skbaddr;
2096 	ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
2097 			ieee80211_get_hdrlen_from_skb(skb),
2098 			AR5K_PKT_TYPE_BEACON, (sc->power_level * 2),
2099 			ieee80211_get_tx_rate(sc->hw, info)->hw_value,
2100 			1, AR5K_TXKEYIX_INVALID,
2101 			antenna, flags, 0, 0);
2102 	if (ret)
2103 		goto err_unmap;
2104 
2105 	return 0;
2106 err_unmap:
2107 	pci_unmap_single(sc->pdev, bf->skbaddr, skb->len, PCI_DMA_TODEVICE);
2108 	return ret;
2109 }
2110 
2111 /*
2112  * Transmit a beacon frame at SWBA.  Dynamic updates to the
2113  * frame contents are done as needed and the slot time is
2114  * also adjusted based on current state.
2115  *
2116  * This is called from software irq context (beacontq or restq
2117  * tasklets) or user context from ath5k_beacon_config.
2118  */
2119 static void
2120 ath5k_beacon_send(struct ath5k_softc *sc)
2121 {
2122 	struct ath5k_buf *bf = sc->bbuf;
2123 	struct ath5k_hw *ah = sc->ah;
2124 	struct sk_buff *skb;
2125 
2126 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "in beacon_send\n");
2127 
2128 	if (unlikely(bf->skb == NULL || sc->opmode == NL80211_IFTYPE_STATION ||
2129 			sc->opmode == NL80211_IFTYPE_MONITOR)) {
2130 		ATH5K_WARN(sc, "bf=%p bf_skb=%p\n", bf, bf ? bf->skb : NULL);
2131 		return;
2132 	}
2133 	/*
2134 	 * Check if the previous beacon has gone out.  If
2135 	 * not don't don't try to post another, skip this
2136 	 * period and wait for the next.  Missed beacons
2137 	 * indicate a problem and should not occur.  If we
2138 	 * miss too many consecutive beacons reset the device.
2139 	 */
2140 	if (unlikely(ath5k_hw_num_tx_pending(ah, sc->bhalq) != 0)) {
2141 		sc->bmisscount++;
2142 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2143 			"missed %u consecutive beacons\n", sc->bmisscount);
2144 		if (sc->bmisscount > 10) {	/* NB: 10 is a guess */
2145 			ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2146 				"stuck beacon time (%u missed)\n",
2147 				sc->bmisscount);
2148 			tasklet_schedule(&sc->restq);
2149 		}
2150 		return;
2151 	}
2152 	if (unlikely(sc->bmisscount != 0)) {
2153 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2154 			"resume beacon xmit after %u misses\n",
2155 			sc->bmisscount);
2156 		sc->bmisscount = 0;
2157 	}
2158 
2159 	/*
2160 	 * Stop any current dma and put the new frame on the queue.
2161 	 * This should never fail since we check above that no frames
2162 	 * are still pending on the queue.
2163 	 */
2164 	if (unlikely(ath5k_hw_stop_tx_dma(ah, sc->bhalq))) {
2165 		ATH5K_WARN(sc, "beacon queue %u didn't start/stop ?\n", sc->bhalq);
2166 		/* NB: hw still stops DMA, so proceed */
2167 	}
2168 
2169 	/* refresh the beacon for AP mode */
2170 	if (sc->opmode == NL80211_IFTYPE_AP)
2171 		ath5k_beacon_update(sc->hw, sc->vif);
2172 
2173 	ath5k_hw_set_txdp(ah, sc->bhalq, bf->daddr);
2174 	ath5k_hw_start_tx_dma(ah, sc->bhalq);
2175 	ATH5K_DBG(sc, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
2176 		sc->bhalq, (unsigned long long)bf->daddr, bf->desc);
2177 
2178 	skb = ieee80211_get_buffered_bc(sc->hw, sc->vif);
2179 	while (skb) {
2180 		ath5k_tx_queue(sc->hw, skb, sc->cabq);
2181 		skb = ieee80211_get_buffered_bc(sc->hw, sc->vif);
2182 	}
2183 
2184 	sc->bsent++;
2185 }
2186 
2187 
2188 /**
2189  * ath5k_beacon_update_timers - update beacon timers
2190  *
2191  * @sc: struct ath5k_softc pointer we are operating on
2192  * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
2193  *          beacon timer update based on the current HW TSF.
2194  *
2195  * Calculate the next target beacon transmit time (TBTT) based on the timestamp
2196  * of a received beacon or the current local hardware TSF and write it to the
2197  * beacon timer registers.
2198  *
2199  * This is called in a variety of situations, e.g. when a beacon is received,
2200  * when a TSF update has been detected, but also when an new IBSS is created or
2201  * when we otherwise know we have to update the timers, but we keep it in this
2202  * function to have it all together in one place.
2203  */
2204 static void
2205 ath5k_beacon_update_timers(struct ath5k_softc *sc, u64 bc_tsf)
2206 {
2207 	struct ath5k_hw *ah = sc->ah;
2208 	u32 nexttbtt, intval, hw_tu, bc_tu;
2209 	u64 hw_tsf;
2210 
2211 	intval = sc->bintval & AR5K_BEACON_PERIOD;
2212 	if (WARN_ON(!intval))
2213 		return;
2214 
2215 	/* beacon TSF converted to TU */
2216 	bc_tu = TSF_TO_TU(bc_tsf);
2217 
2218 	/* current TSF converted to TU */
2219 	hw_tsf = ath5k_hw_get_tsf64(ah);
2220 	hw_tu = TSF_TO_TU(hw_tsf);
2221 
2222 #define FUDGE 3
2223 	/* we use FUDGE to make sure the next TBTT is ahead of the current TU */
2224 	if (bc_tsf == -1) {
2225 		/*
2226 		 * no beacons received, called internally.
2227 		 * just need to refresh timers based on HW TSF.
2228 		 */
2229 		nexttbtt = roundup(hw_tu + FUDGE, intval);
2230 	} else if (bc_tsf == 0) {
2231 		/*
2232 		 * no beacon received, probably called by ath5k_reset_tsf().
2233 		 * reset TSF to start with 0.
2234 		 */
2235 		nexttbtt = intval;
2236 		intval |= AR5K_BEACON_RESET_TSF;
2237 	} else if (bc_tsf > hw_tsf) {
2238 		/*
2239 		 * beacon received, SW merge happend but HW TSF not yet updated.
2240 		 * not possible to reconfigure timers yet, but next time we
2241 		 * receive a beacon with the same BSSID, the hardware will
2242 		 * automatically update the TSF and then we need to reconfigure
2243 		 * the timers.
2244 		 */
2245 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2246 			"need to wait for HW TSF sync\n");
2247 		return;
2248 	} else {
2249 		/*
2250 		 * most important case for beacon synchronization between STA.
2251 		 *
2252 		 * beacon received and HW TSF has been already updated by HW.
2253 		 * update next TBTT based on the TSF of the beacon, but make
2254 		 * sure it is ahead of our local TSF timer.
2255 		 */
2256 		nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
2257 	}
2258 #undef FUDGE
2259 
2260 	sc->nexttbtt = nexttbtt;
2261 
2262 	intval |= AR5K_BEACON_ENA;
2263 	ath5k_hw_init_beacon(ah, nexttbtt, intval);
2264 
2265 	/*
2266 	 * debugging output last in order to preserve the time critical aspect
2267 	 * of this function
2268 	 */
2269 	if (bc_tsf == -1)
2270 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2271 			"reconfigured timers based on HW TSF\n");
2272 	else if (bc_tsf == 0)
2273 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2274 			"reset HW TSF and timers\n");
2275 	else
2276 		ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2277 			"updated timers based on beacon TSF\n");
2278 
2279 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON,
2280 			  "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
2281 			  (unsigned long long) bc_tsf,
2282 			  (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
2283 	ATH5K_DBG_UNLIMIT(sc, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
2284 		intval & AR5K_BEACON_PERIOD,
2285 		intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
2286 		intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
2287 }
2288 
2289 
2290 /**
2291  * ath5k_beacon_config - Configure the beacon queues and interrupts
2292  *
2293  * @sc: struct ath5k_softc pointer we are operating on
2294  *
2295  * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
2296  * interrupts to detect TSF updates only.
2297  */
2298 static void
2299 ath5k_beacon_config(struct ath5k_softc *sc)
2300 {
2301 	struct ath5k_hw *ah = sc->ah;
2302 	unsigned long flags;
2303 
2304 	spin_lock_irqsave(&sc->block, flags);
2305 	sc->bmisscount = 0;
2306 	sc->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
2307 
2308 	if (sc->enable_beacon) {
2309 		/*
2310 		 * In IBSS mode we use a self-linked tx descriptor and let the
2311 		 * hardware send the beacons automatically. We have to load it
2312 		 * only once here.
2313 		 * We use the SWBA interrupt only to keep track of the beacon
2314 		 * timers in order to detect automatic TSF updates.
2315 		 */
2316 		ath5k_beaconq_config(sc);
2317 
2318 		sc->imask |= AR5K_INT_SWBA;
2319 
2320 		if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2321 			if (ath5k_hw_hasveol(ah))
2322 				ath5k_beacon_send(sc);
2323 		} else
2324 			ath5k_beacon_update_timers(sc, -1);
2325 	} else {
2326 		ath5k_hw_stop_tx_dma(sc->ah, sc->bhalq);
2327 	}
2328 
2329 	ath5k_hw_set_imr(ah, sc->imask);
2330 	mmiowb();
2331 	spin_unlock_irqrestore(&sc->block, flags);
2332 }
2333 
2334 static void ath5k_tasklet_beacon(unsigned long data)
2335 {
2336 	struct ath5k_softc *sc = (struct ath5k_softc *) data;
2337 
2338 	/*
2339 	 * Software beacon alert--time to send a beacon.
2340 	 *
2341 	 * In IBSS mode we use this interrupt just to
2342 	 * keep track of the next TBTT (target beacon
2343 	 * transmission time) in order to detect wether
2344 	 * automatic TSF updates happened.
2345 	 */
2346 	if (sc->opmode == NL80211_IFTYPE_ADHOC) {
2347 		/* XXX: only if VEOL suppported */
2348 		u64 tsf = ath5k_hw_get_tsf64(sc->ah);
2349 		sc->nexttbtt += sc->bintval;
2350 		ATH5K_DBG(sc, ATH5K_DEBUG_BEACON,
2351 				"SWBA nexttbtt: %x hw_tu: %x "
2352 				"TSF: %llx\n",
2353 				sc->nexttbtt,
2354 				TSF_TO_TU(tsf),
2355 				(unsigned long long) tsf);
2356 	} else {
2357 		spin_lock(&sc->block);
2358 		ath5k_beacon_send(sc);
2359 		spin_unlock(&sc->block);
2360 	}
2361 }
2362 
2363 
2364 /********************\
2365 * Interrupt handling *
2366 \********************/
2367 
2368 static int
2369 ath5k_init(struct ath5k_softc *sc)
2370 {
2371 	struct ath5k_hw *ah = sc->ah;
2372 	int ret, i;
2373 
2374 	mutex_lock(&sc->lock);
2375 
2376 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "mode %d\n", sc->opmode);
2377 
2378 	/*
2379 	 * Stop anything previously setup.  This is safe
2380 	 * no matter this is the first time through or not.
2381 	 */
2382 	ath5k_stop_locked(sc);
2383 
2384 	/*
2385 	 * The basic interface to setting the hardware in a good
2386 	 * state is ``reset''.  On return the hardware is known to
2387 	 * be powered up and with interrupts disabled.  This must
2388 	 * be followed by initialization of the appropriate bits
2389 	 * and then setup of the interrupt mask.
2390 	 */
2391 	sc->curchan = sc->hw->conf.channel;
2392 	sc->curband = &sc->sbands[sc->curchan->band];
2393 	sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2394 		AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2395 		AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_SWI;
2396 	ret = ath5k_reset(sc, NULL);
2397 	if (ret)
2398 		goto done;
2399 
2400 	ath5k_rfkill_hw_start(ah);
2401 
2402 	/*
2403 	 * Reset the key cache since some parts do not reset the
2404 	 * contents on initial power up or resume from suspend.
2405 	 */
2406 	for (i = 0; i < AR5K_KEYTABLE_SIZE; i++)
2407 		ath5k_hw_reset_key(ah, i);
2408 
2409 	/* Set ack to be sent at low bit-rates */
2410 	ath5k_hw_set_ack_bitrate_high(ah, false);
2411 
2412 	/* Set PHY calibration inteval */
2413 	ah->ah_cal_intval = ath5k_calinterval;
2414 
2415 	ret = 0;
2416 done:
2417 	mmiowb();
2418 	mutex_unlock(&sc->lock);
2419 	return ret;
2420 }
2421 
2422 static int
2423 ath5k_stop_locked(struct ath5k_softc *sc)
2424 {
2425 	struct ath5k_hw *ah = sc->ah;
2426 
2427 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "invalid %u\n",
2428 			test_bit(ATH_STAT_INVALID, sc->status));
2429 
2430 	/*
2431 	 * Shutdown the hardware and driver:
2432 	 *    stop output from above
2433 	 *    disable interrupts
2434 	 *    turn off timers
2435 	 *    turn off the radio
2436 	 *    clear transmit machinery
2437 	 *    clear receive machinery
2438 	 *    drain and release tx queues
2439 	 *    reclaim beacon resources
2440 	 *    power down hardware
2441 	 *
2442 	 * Note that some of this work is not possible if the
2443 	 * hardware is gone (invalid).
2444 	 */
2445 	ieee80211_stop_queues(sc->hw);
2446 
2447 	if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2448 		ath5k_led_off(sc);
2449 		ath5k_hw_set_imr(ah, 0);
2450 		synchronize_irq(sc->pdev->irq);
2451 	}
2452 	ath5k_txq_cleanup(sc);
2453 	if (!test_bit(ATH_STAT_INVALID, sc->status)) {
2454 		ath5k_rx_stop(sc);
2455 		ath5k_hw_phy_disable(ah);
2456 	} else
2457 		sc->rxlink = NULL;
2458 
2459 	return 0;
2460 }
2461 
2462 /*
2463  * Stop the device, grabbing the top-level lock to protect
2464  * against concurrent entry through ath5k_init (which can happen
2465  * if another thread does a system call and the thread doing the
2466  * stop is preempted).
2467  */
2468 static int
2469 ath5k_stop_hw(struct ath5k_softc *sc)
2470 {
2471 	int ret;
2472 
2473 	mutex_lock(&sc->lock);
2474 	ret = ath5k_stop_locked(sc);
2475 	if (ret == 0 && !test_bit(ATH_STAT_INVALID, sc->status)) {
2476 		/*
2477 		 * Don't set the card in full sleep mode!
2478 		 *
2479 		 * a) When the device is in this state it must be carefully
2480 		 * woken up or references to registers in the PCI clock
2481 		 * domain may freeze the bus (and system).  This varies
2482 		 * by chip and is mostly an issue with newer parts
2483 		 * (madwifi sources mentioned srev >= 0x78) that go to
2484 		 * sleep more quickly.
2485 		 *
2486 		 * b) On older chips full sleep results a weird behaviour
2487 		 * during wakeup. I tested various cards with srev < 0x78
2488 		 * and they don't wake up after module reload, a second
2489 		 * module reload is needed to bring the card up again.
2490 		 *
2491 		 * Until we figure out what's going on don't enable
2492 		 * full chip reset on any chip (this is what Legacy HAL
2493 		 * and Sam's HAL do anyway). Instead Perform a full reset
2494 		 * on the device (same as initial state after attach) and
2495 		 * leave it idle (keep MAC/BB on warm reset) */
2496 		ret = ath5k_hw_on_hold(sc->ah);
2497 
2498 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET,
2499 				"putting device to sleep\n");
2500 	}
2501 	ath5k_txbuf_free(sc, sc->bbuf);
2502 
2503 	mmiowb();
2504 	mutex_unlock(&sc->lock);
2505 
2506 	tasklet_kill(&sc->rxtq);
2507 	tasklet_kill(&sc->txtq);
2508 	tasklet_kill(&sc->restq);
2509 	tasklet_kill(&sc->calib);
2510 	tasklet_kill(&sc->beacontq);
2511 
2512 	ath5k_rfkill_hw_stop(sc->ah);
2513 
2514 	return ret;
2515 }
2516 
2517 static irqreturn_t
2518 ath5k_intr(int irq, void *dev_id)
2519 {
2520 	struct ath5k_softc *sc = dev_id;
2521 	struct ath5k_hw *ah = sc->ah;
2522 	enum ath5k_int status;
2523 	unsigned int counter = 1000;
2524 
2525 	if (unlikely(test_bit(ATH_STAT_INVALID, sc->status) ||
2526 				!ath5k_hw_is_intr_pending(ah)))
2527 		return IRQ_NONE;
2528 
2529 	do {
2530 		ath5k_hw_get_isr(ah, &status);		/* NB: clears IRQ too */
2531 		ATH5K_DBG(sc, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
2532 				status, sc->imask);
2533 		if (unlikely(status & AR5K_INT_FATAL)) {
2534 			/*
2535 			 * Fatal errors are unrecoverable.
2536 			 * Typically these are caused by DMA errors.
2537 			 */
2538 			tasklet_schedule(&sc->restq);
2539 		} else if (unlikely(status & AR5K_INT_RXORN)) {
2540 			tasklet_schedule(&sc->restq);
2541 		} else {
2542 			if (status & AR5K_INT_SWBA) {
2543 				tasklet_hi_schedule(&sc->beacontq);
2544 			}
2545 			if (status & AR5K_INT_RXEOL) {
2546 				/*
2547 				* NB: the hardware should re-read the link when
2548 				*     RXE bit is written, but it doesn't work at
2549 				*     least on older hardware revs.
2550 				*/
2551 				sc->rxlink = NULL;
2552 			}
2553 			if (status & AR5K_INT_TXURN) {
2554 				/* bump tx trigger level */
2555 				ath5k_hw_update_tx_triglevel(ah, true);
2556 			}
2557 			if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
2558 				tasklet_schedule(&sc->rxtq);
2559 			if (status & (AR5K_INT_TXOK | AR5K_INT_TXDESC
2560 					| AR5K_INT_TXERR | AR5K_INT_TXEOL))
2561 				tasklet_schedule(&sc->txtq);
2562 			if (status & AR5K_INT_BMISS) {
2563 				/* TODO */
2564 			}
2565 			if (status & AR5K_INT_SWI) {
2566 				tasklet_schedule(&sc->calib);
2567 			}
2568 			if (status & AR5K_INT_MIB) {
2569 				/*
2570 				 * These stats are also used for ANI i think
2571 				 * so how about updating them more often ?
2572 				 */
2573 				ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
2574 			}
2575 			if (status & AR5K_INT_GPIO)
2576 				tasklet_schedule(&sc->rf_kill.toggleq);
2577 
2578 		}
2579 	} while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
2580 
2581 	if (unlikely(!counter))
2582 		ATH5K_WARN(sc, "too many interrupts, giving up for now\n");
2583 
2584 	ath5k_hw_calibration_poll(ah);
2585 
2586 	return IRQ_HANDLED;
2587 }
2588 
2589 static void
2590 ath5k_tasklet_reset(unsigned long data)
2591 {
2592 	struct ath5k_softc *sc = (void *)data;
2593 
2594 	ath5k_reset_wake(sc);
2595 }
2596 
2597 /*
2598  * Periodically recalibrate the PHY to account
2599  * for temperature/environment changes.
2600  */
2601 static void
2602 ath5k_tasklet_calibrate(unsigned long data)
2603 {
2604 	struct ath5k_softc *sc = (void *)data;
2605 	struct ath5k_hw *ah = sc->ah;
2606 
2607 	/* Only full calibration for now */
2608 	if (ah->ah_swi_mask != AR5K_SWI_FULL_CALIBRATION)
2609 		return;
2610 
2611 	/* Stop queues so that calibration
2612 	 * doesn't interfere with tx */
2613 	ieee80211_stop_queues(sc->hw);
2614 
2615 	ATH5K_DBG(sc, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
2616 		ieee80211_frequency_to_channel(sc->curchan->center_freq),
2617 		sc->curchan->hw_value);
2618 
2619 	if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
2620 		/*
2621 		 * Rfgain is out of bounds, reset the chip
2622 		 * to load new gain values.
2623 		 */
2624 		ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "calibration, resetting\n");
2625 		ath5k_reset_wake(sc);
2626 	}
2627 	if (ath5k_hw_phy_calibrate(ah, sc->curchan))
2628 		ATH5K_ERR(sc, "calibration of channel %u failed\n",
2629 			ieee80211_frequency_to_channel(
2630 				sc->curchan->center_freq));
2631 
2632 	ah->ah_swi_mask = 0;
2633 
2634 	/* Wake queues */
2635 	ieee80211_wake_queues(sc->hw);
2636 
2637 }
2638 
2639 
2640 /********************\
2641 * Mac80211 functions *
2642 \********************/
2643 
2644 static int
2645 ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2646 {
2647 	struct ath5k_softc *sc = hw->priv;
2648 
2649 	return ath5k_tx_queue(hw, skb, sc->txq);
2650 }
2651 
2652 static int ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
2653 			  struct ath5k_txq *txq)
2654 {
2655 	struct ath5k_softc *sc = hw->priv;
2656 	struct ath5k_buf *bf;
2657 	unsigned long flags;
2658 	int hdrlen;
2659 	int padsize;
2660 
2661 	ath5k_debug_dump_skb(sc, skb, "TX  ", 1);
2662 
2663 	if (sc->opmode == NL80211_IFTYPE_MONITOR)
2664 		ATH5K_DBG(sc, ATH5K_DEBUG_XMIT, "tx in monitor (scan?)\n");
2665 
2666 	/*
2667 	 * the hardware expects the header padded to 4 byte boundaries
2668 	 * if this is not the case we add the padding after the header
2669 	 */
2670 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2671 	padsize = ath5k_pad_size(hdrlen);
2672 	if (padsize) {
2673 
2674 		if (skb_headroom(skb) < padsize) {
2675 			ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2676 				  " headroom to pad %d\n", hdrlen, padsize);
2677 			goto drop_packet;
2678 		}
2679 		skb_push(skb, padsize);
2680 		memmove(skb->data, skb->data+padsize, hdrlen);
2681 	}
2682 
2683 	spin_lock_irqsave(&sc->txbuflock, flags);
2684 	if (list_empty(&sc->txbuf)) {
2685 		ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2686 		spin_unlock_irqrestore(&sc->txbuflock, flags);
2687 		ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
2688 		goto drop_packet;
2689 	}
2690 	bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2691 	list_del(&bf->list);
2692 	sc->txbuf_len--;
2693 	if (list_empty(&sc->txbuf))
2694 		ieee80211_stop_queues(hw);
2695 	spin_unlock_irqrestore(&sc->txbuflock, flags);
2696 
2697 	bf->skb = skb;
2698 
2699 	if (ath5k_txbuf_setup(sc, bf, txq)) {
2700 		bf->skb = NULL;
2701 		spin_lock_irqsave(&sc->txbuflock, flags);
2702 		list_add_tail(&bf->list, &sc->txbuf);
2703 		sc->txbuf_len++;
2704 		spin_unlock_irqrestore(&sc->txbuflock, flags);
2705 		goto drop_packet;
2706 	}
2707 	return NETDEV_TX_OK;
2708 
2709 drop_packet:
2710 	dev_kfree_skb_any(skb);
2711 	return NETDEV_TX_OK;
2712 }
2713 
2714 /*
2715  * Reset the hardware.  If chan is not NULL, then also pause rx/tx
2716  * and change to the given channel.
2717  */
2718 static int
2719 ath5k_reset(struct ath5k_softc *sc, struct ieee80211_channel *chan)
2720 {
2721 	struct ath5k_hw *ah = sc->ah;
2722 	int ret;
2723 
2724 	ATH5K_DBG(sc, ATH5K_DEBUG_RESET, "resetting\n");
2725 
2726 	if (chan) {
2727 		ath5k_hw_set_imr(ah, 0);
2728 		ath5k_txq_cleanup(sc);
2729 		ath5k_rx_stop(sc);
2730 
2731 		sc->curchan = chan;
2732 		sc->curband = &sc->sbands[chan->band];
2733 	}
2734 	ret = ath5k_hw_reset(ah, sc->opmode, sc->curchan, chan != NULL);
2735 	if (ret) {
2736 		ATH5K_ERR(sc, "can't reset hardware (%d)\n", ret);
2737 		goto err;
2738 	}
2739 
2740 	ret = ath5k_rx_start(sc);
2741 	if (ret) {
2742 		ATH5K_ERR(sc, "can't start recv logic\n");
2743 		goto err;
2744 	}
2745 
2746 	/*
2747 	 * Change channels and update the h/w rate map if we're switching;
2748 	 * e.g. 11a to 11b/g.
2749 	 *
2750 	 * We may be doing a reset in response to an ioctl that changes the
2751 	 * channel so update any state that might change as a result.
2752 	 *
2753 	 * XXX needed?
2754 	 */
2755 /*	ath5k_chan_change(sc, c); */
2756 
2757 	ath5k_beacon_config(sc);
2758 	/* intrs are enabled by ath5k_beacon_config */
2759 
2760 	return 0;
2761 err:
2762 	return ret;
2763 }
2764 
2765 static int
2766 ath5k_reset_wake(struct ath5k_softc *sc)
2767 {
2768 	int ret;
2769 
2770 	ret = ath5k_reset(sc, sc->curchan);
2771 	if (!ret)
2772 		ieee80211_wake_queues(sc->hw);
2773 
2774 	return ret;
2775 }
2776 
2777 static int ath5k_start(struct ieee80211_hw *hw)
2778 {
2779 	return ath5k_init(hw->priv);
2780 }
2781 
2782 static void ath5k_stop(struct ieee80211_hw *hw)
2783 {
2784 	ath5k_stop_hw(hw->priv);
2785 }
2786 
2787 static int ath5k_add_interface(struct ieee80211_hw *hw,
2788 		struct ieee80211_if_init_conf *conf)
2789 {
2790 	struct ath5k_softc *sc = hw->priv;
2791 	int ret;
2792 
2793 	mutex_lock(&sc->lock);
2794 	if (sc->vif) {
2795 		ret = 0;
2796 		goto end;
2797 	}
2798 
2799 	sc->vif = conf->vif;
2800 
2801 	switch (conf->type) {
2802 	case NL80211_IFTYPE_AP:
2803 	case NL80211_IFTYPE_STATION:
2804 	case NL80211_IFTYPE_ADHOC:
2805 	case NL80211_IFTYPE_MESH_POINT:
2806 	case NL80211_IFTYPE_MONITOR:
2807 		sc->opmode = conf->type;
2808 		break;
2809 	default:
2810 		ret = -EOPNOTSUPP;
2811 		goto end;
2812 	}
2813 
2814 	ath5k_hw_set_lladdr(sc->ah, conf->mac_addr);
2815 	ath5k_mode_setup(sc);
2816 
2817 	ret = 0;
2818 end:
2819 	mutex_unlock(&sc->lock);
2820 	return ret;
2821 }
2822 
2823 static void
2824 ath5k_remove_interface(struct ieee80211_hw *hw,
2825 			struct ieee80211_if_init_conf *conf)
2826 {
2827 	struct ath5k_softc *sc = hw->priv;
2828 	u8 mac[ETH_ALEN] = {};
2829 
2830 	mutex_lock(&sc->lock);
2831 	if (sc->vif != conf->vif)
2832 		goto end;
2833 
2834 	ath5k_hw_set_lladdr(sc->ah, mac);
2835 	sc->vif = NULL;
2836 end:
2837 	mutex_unlock(&sc->lock);
2838 }
2839 
2840 /*
2841  * TODO: Phy disable/diversity etc
2842  */
2843 static int
2844 ath5k_config(struct ieee80211_hw *hw, u32 changed)
2845 {
2846 	struct ath5k_softc *sc = hw->priv;
2847 	struct ath5k_hw *ah = sc->ah;
2848 	struct ieee80211_conf *conf = &hw->conf;
2849 	int ret = 0;
2850 
2851 	mutex_lock(&sc->lock);
2852 
2853 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2854 		ret = ath5k_chan_set(sc, conf->channel);
2855 		if (ret < 0)
2856 			goto unlock;
2857 	}
2858 
2859 	if ((changed & IEEE80211_CONF_CHANGE_POWER) &&
2860 	(sc->power_level != conf->power_level)) {
2861 		sc->power_level = conf->power_level;
2862 
2863 		/* Half dB steps */
2864 		ath5k_hw_set_txpower_limit(ah, (conf->power_level * 2));
2865 	}
2866 
2867 	/* TODO:
2868 	 * 1) Move this on config_interface and handle each case
2869 	 * separately eg. when we have only one STA vif, use
2870 	 * AR5K_ANTMODE_SINGLE_AP
2871 	 *
2872 	 * 2) Allow the user to change antenna mode eg. when only
2873 	 * one antenna is present
2874 	 *
2875 	 * 3) Allow the user to set default/tx antenna when possible
2876 	 *
2877 	 * 4) Default mode should handle 90% of the cases, together
2878 	 * with fixed a/b and single AP modes we should be able to
2879 	 * handle 99%. Sectored modes are extreme cases and i still
2880 	 * haven't found a usage for them. If we decide to support them,
2881 	 * then we must allow the user to set how many tx antennas we
2882 	 * have available
2883 	 */
2884 	ath5k_hw_set_antenna_mode(ah, AR5K_ANTMODE_DEFAULT);
2885 
2886 unlock:
2887 	mutex_unlock(&sc->lock);
2888 	return ret;
2889 }
2890 
2891 static u64 ath5k_prepare_multicast(struct ieee80211_hw *hw,
2892 				   int mc_count, struct dev_addr_list *mclist)
2893 {
2894 	u32 mfilt[2], val;
2895 	int i;
2896 	u8 pos;
2897 
2898 	mfilt[0] = 0;
2899 	mfilt[1] = 1;
2900 
2901 	for (i = 0; i < mc_count; i++) {
2902 		if (!mclist)
2903 			break;
2904 		/* calculate XOR of eight 6-bit values */
2905 		val = get_unaligned_le32(mclist->dmi_addr + 0);
2906 		pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2907 		val = get_unaligned_le32(mclist->dmi_addr + 3);
2908 		pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2909 		pos &= 0x3f;
2910 		mfilt[pos / 32] |= (1 << (pos % 32));
2911 		/* XXX: we might be able to just do this instead,
2912 		* but not sure, needs testing, if we do use this we'd
2913 		* neet to inform below to not reset the mcast */
2914 		/* ath5k_hw_set_mcast_filterindex(ah,
2915 		 *      mclist->dmi_addr[5]); */
2916 		mclist = mclist->next;
2917 	}
2918 
2919 	return ((u64)(mfilt[1]) << 32) | mfilt[0];
2920 }
2921 
2922 #define SUPPORTED_FIF_FLAGS \
2923 	FIF_PROMISC_IN_BSS |  FIF_ALLMULTI | FIF_FCSFAIL | \
2924 	FIF_PLCPFAIL | FIF_CONTROL | FIF_OTHER_BSS | \
2925 	FIF_BCN_PRBRESP_PROMISC
2926 /*
2927  * o always accept unicast, broadcast, and multicast traffic
2928  * o multicast traffic for all BSSIDs will be enabled if mac80211
2929  *   says it should be
2930  * o maintain current state of phy ofdm or phy cck error reception.
2931  *   If the hardware detects any of these type of errors then
2932  *   ath5k_hw_get_rx_filter() will pass to us the respective
2933  *   hardware filters to be able to receive these type of frames.
2934  * o probe request frames are accepted only when operating in
2935  *   hostap, adhoc, or monitor modes
2936  * o enable promiscuous mode according to the interface state
2937  * o accept beacons:
2938  *   - when operating in adhoc mode so the 802.11 layer creates
2939  *     node table entries for peers,
2940  *   - when operating in station mode for collecting rssi data when
2941  *     the station is otherwise quiet, or
2942  *   - when scanning
2943  */
2944 static void ath5k_configure_filter(struct ieee80211_hw *hw,
2945 		unsigned int changed_flags,
2946 		unsigned int *new_flags,
2947 		u64 multicast)
2948 {
2949 	struct ath5k_softc *sc = hw->priv;
2950 	struct ath5k_hw *ah = sc->ah;
2951 	u32 mfilt[2], rfilt;
2952 
2953 	mutex_lock(&sc->lock);
2954 
2955 	mfilt[0] = multicast;
2956 	mfilt[1] = multicast >> 32;
2957 
2958 	/* Only deal with supported flags */
2959 	changed_flags &= SUPPORTED_FIF_FLAGS;
2960 	*new_flags &= SUPPORTED_FIF_FLAGS;
2961 
2962 	/* If HW detects any phy or radar errors, leave those filters on.
2963 	 * Also, always enable Unicast, Broadcasts and Multicast
2964 	 * XXX: move unicast, bssid broadcasts and multicast to mac80211 */
2965 	rfilt = (ath5k_hw_get_rx_filter(ah) & (AR5K_RX_FILTER_PHYERR)) |
2966 		(AR5K_RX_FILTER_UCAST | AR5K_RX_FILTER_BCAST |
2967 		AR5K_RX_FILTER_MCAST);
2968 
2969 	if (changed_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS)) {
2970 		if (*new_flags & FIF_PROMISC_IN_BSS) {
2971 			rfilt |= AR5K_RX_FILTER_PROM;
2972 			__set_bit(ATH_STAT_PROMISC, sc->status);
2973 		} else {
2974 			__clear_bit(ATH_STAT_PROMISC, sc->status);
2975 		}
2976 	}
2977 
2978 	/* Note, AR5K_RX_FILTER_MCAST is already enabled */
2979 	if (*new_flags & FIF_ALLMULTI) {
2980 		mfilt[0] =  ~0;
2981 		mfilt[1] =  ~0;
2982 	}
2983 
2984 	/* This is the best we can do */
2985 	if (*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL))
2986 		rfilt |= AR5K_RX_FILTER_PHYERR;
2987 
2988 	/* FIF_BCN_PRBRESP_PROMISC really means to enable beacons
2989 	* and probes for any BSSID, this needs testing */
2990 	if (*new_flags & FIF_BCN_PRBRESP_PROMISC)
2991 		rfilt |= AR5K_RX_FILTER_BEACON | AR5K_RX_FILTER_PROBEREQ;
2992 
2993 	/* FIF_CONTROL doc says that if FIF_PROMISC_IN_BSS is not
2994 	 * set we should only pass on control frames for this
2995 	 * station. This needs testing. I believe right now this
2996 	 * enables *all* control frames, which is OK.. but
2997 	 * but we should see if we can improve on granularity */
2998 	if (*new_flags & FIF_CONTROL)
2999 		rfilt |= AR5K_RX_FILTER_CONTROL;
3000 
3001 	/* Additional settings per mode -- this is per ath5k */
3002 
3003 	/* XXX move these to mac80211, and add a beacon IFF flag to mac80211 */
3004 
3005 	switch (sc->opmode) {
3006 	case NL80211_IFTYPE_MESH_POINT:
3007 	case NL80211_IFTYPE_MONITOR:
3008 		rfilt |= AR5K_RX_FILTER_CONTROL |
3009 			 AR5K_RX_FILTER_BEACON |
3010 			 AR5K_RX_FILTER_PROBEREQ |
3011 			 AR5K_RX_FILTER_PROM;
3012 		break;
3013 	case NL80211_IFTYPE_AP:
3014 	case NL80211_IFTYPE_ADHOC:
3015 		rfilt |= AR5K_RX_FILTER_PROBEREQ |
3016 			 AR5K_RX_FILTER_BEACON;
3017 		break;
3018 	case NL80211_IFTYPE_STATION:
3019 		if (sc->assoc)
3020 			rfilt |= AR5K_RX_FILTER_BEACON;
3021 	default:
3022 		break;
3023 	}
3024 
3025 	/* Set filters */
3026 	ath5k_hw_set_rx_filter(ah, rfilt);
3027 
3028 	/* Set multicast bits */
3029 	ath5k_hw_set_mcast_filter(ah, mfilt[0], mfilt[1]);
3030 	/* Set the cached hw filter flags, this will alter actually
3031 	 * be set in HW */
3032 	sc->filter_flags = rfilt;
3033 
3034 	mutex_unlock(&sc->lock);
3035 }
3036 
3037 static int
3038 ath5k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
3039 	      struct ieee80211_vif *vif, struct ieee80211_sta *sta,
3040 	      struct ieee80211_key_conf *key)
3041 {
3042 	struct ath5k_softc *sc = hw->priv;
3043 	struct ath5k_hw *ah = sc->ah;
3044 	struct ath_common *common = ath5k_hw_common(ah);
3045 	int ret = 0;
3046 
3047 	if (modparam_nohwcrypt)
3048 		return -EOPNOTSUPP;
3049 
3050 	if (sc->opmode == NL80211_IFTYPE_AP)
3051 		return -EOPNOTSUPP;
3052 
3053 	switch (key->alg) {
3054 	case ALG_WEP:
3055 	case ALG_TKIP:
3056 		break;
3057 	case ALG_CCMP:
3058 		if (sc->ah->ah_aes_support)
3059 			break;
3060 
3061 		return -EOPNOTSUPP;
3062 	default:
3063 		WARN_ON(1);
3064 		return -EINVAL;
3065 	}
3066 
3067 	mutex_lock(&sc->lock);
3068 
3069 	switch (cmd) {
3070 	case SET_KEY:
3071 		ret = ath5k_hw_set_key(sc->ah, key->keyidx, key,
3072 				       sta ? sta->addr : NULL);
3073 		if (ret) {
3074 			ATH5K_ERR(sc, "can't set the key\n");
3075 			goto unlock;
3076 		}
3077 		__set_bit(key->keyidx, common->keymap);
3078 		key->hw_key_idx = key->keyidx;
3079 		key->flags |= (IEEE80211_KEY_FLAG_GENERATE_IV |
3080 			       IEEE80211_KEY_FLAG_GENERATE_MMIC);
3081 		break;
3082 	case DISABLE_KEY:
3083 		ath5k_hw_reset_key(sc->ah, key->keyidx);
3084 		__clear_bit(key->keyidx, common->keymap);
3085 		break;
3086 	default:
3087 		ret = -EINVAL;
3088 		goto unlock;
3089 	}
3090 
3091 unlock:
3092 	mmiowb();
3093 	mutex_unlock(&sc->lock);
3094 	return ret;
3095 }
3096 
3097 static int
3098 ath5k_get_stats(struct ieee80211_hw *hw,
3099 		struct ieee80211_low_level_stats *stats)
3100 {
3101 	struct ath5k_softc *sc = hw->priv;
3102 	struct ath5k_hw *ah = sc->ah;
3103 
3104 	/* Force update */
3105 	ath5k_hw_update_mib_counters(ah, &sc->ll_stats);
3106 
3107 	memcpy(stats, &sc->ll_stats, sizeof(sc->ll_stats));
3108 
3109 	return 0;
3110 }
3111 
3112 static int
3113 ath5k_get_tx_stats(struct ieee80211_hw *hw,
3114 		struct ieee80211_tx_queue_stats *stats)
3115 {
3116 	struct ath5k_softc *sc = hw->priv;
3117 
3118 	memcpy(stats, &sc->tx_stats, sizeof(sc->tx_stats));
3119 
3120 	return 0;
3121 }
3122 
3123 static u64
3124 ath5k_get_tsf(struct ieee80211_hw *hw)
3125 {
3126 	struct ath5k_softc *sc = hw->priv;
3127 
3128 	return ath5k_hw_get_tsf64(sc->ah);
3129 }
3130 
3131 static void
3132 ath5k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
3133 {
3134 	struct ath5k_softc *sc = hw->priv;
3135 
3136 	ath5k_hw_set_tsf64(sc->ah, tsf);
3137 }
3138 
3139 static void
3140 ath5k_reset_tsf(struct ieee80211_hw *hw)
3141 {
3142 	struct ath5k_softc *sc = hw->priv;
3143 
3144 	/*
3145 	 * in IBSS mode we need to update the beacon timers too.
3146 	 * this will also reset the TSF if we call it with 0
3147 	 */
3148 	if (sc->opmode == NL80211_IFTYPE_ADHOC)
3149 		ath5k_beacon_update_timers(sc, 0);
3150 	else
3151 		ath5k_hw_reset_tsf(sc->ah);
3152 }
3153 
3154 /*
3155  * Updates the beacon that is sent by ath5k_beacon_send.  For adhoc,
3156  * this is called only once at config_bss time, for AP we do it every
3157  * SWBA interrupt so that the TIM will reflect buffered frames.
3158  *
3159  * Called with the beacon lock.
3160  */
3161 static int
3162 ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
3163 {
3164 	int ret;
3165 	struct ath5k_softc *sc = hw->priv;
3166 	struct sk_buff *skb;
3167 
3168 	if (WARN_ON(!vif)) {
3169 		ret = -EINVAL;
3170 		goto out;
3171 	}
3172 
3173 	skb = ieee80211_beacon_get(hw, vif);
3174 
3175 	if (!skb) {
3176 		ret = -ENOMEM;
3177 		goto out;
3178 	}
3179 
3180 	ath5k_debug_dump_skb(sc, skb, "BC  ", 1);
3181 
3182 	ath5k_txbuf_free(sc, sc->bbuf);
3183 	sc->bbuf->skb = skb;
3184 	ret = ath5k_beacon_setup(sc, sc->bbuf);
3185 	if (ret)
3186 		sc->bbuf->skb = NULL;
3187 out:
3188 	return ret;
3189 }
3190 
3191 static void
3192 set_beacon_filter(struct ieee80211_hw *hw, bool enable)
3193 {
3194 	struct ath5k_softc *sc = hw->priv;
3195 	struct ath5k_hw *ah = sc->ah;
3196 	u32 rfilt;
3197 	rfilt = ath5k_hw_get_rx_filter(ah);
3198 	if (enable)
3199 		rfilt |= AR5K_RX_FILTER_BEACON;
3200 	else
3201 		rfilt &= ~AR5K_RX_FILTER_BEACON;
3202 	ath5k_hw_set_rx_filter(ah, rfilt);
3203 	sc->filter_flags = rfilt;
3204 }
3205 
3206 static void ath5k_bss_info_changed(struct ieee80211_hw *hw,
3207 				    struct ieee80211_vif *vif,
3208 				    struct ieee80211_bss_conf *bss_conf,
3209 				    u32 changes)
3210 {
3211 	struct ath5k_softc *sc = hw->priv;
3212 	struct ath5k_hw *ah = sc->ah;
3213 	struct ath_common *common = ath5k_hw_common(ah);
3214 	unsigned long flags;
3215 
3216 	mutex_lock(&sc->lock);
3217 	if (WARN_ON(sc->vif != vif))
3218 		goto unlock;
3219 
3220 	if (changes & BSS_CHANGED_BSSID) {
3221 		/* Cache for later use during resets */
3222 		memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
3223 		common->curaid = 0;
3224 		ath5k_hw_set_associd(ah);
3225 		mmiowb();
3226 	}
3227 
3228 	if (changes & BSS_CHANGED_BEACON_INT)
3229 		sc->bintval = bss_conf->beacon_int;
3230 
3231 	if (changes & BSS_CHANGED_ASSOC) {
3232 		sc->assoc = bss_conf->assoc;
3233 		if (sc->opmode == NL80211_IFTYPE_STATION)
3234 			set_beacon_filter(hw, sc->assoc);
3235 		ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
3236 			AR5K_LED_ASSOC : AR5K_LED_INIT);
3237 		if (bss_conf->assoc) {
3238 			ATH5K_DBG(sc, ATH5K_DEBUG_ANY,
3239 				  "Bss Info ASSOC %d, bssid: %pM\n",
3240 				  bss_conf->aid, common->curbssid);
3241 			common->curaid = bss_conf->aid;
3242 			ath5k_hw_set_associd(ah);
3243 			/* Once ANI is available you would start it here */
3244 		}
3245 	}
3246 
3247 	if (changes & BSS_CHANGED_BEACON) {
3248 		spin_lock_irqsave(&sc->block, flags);
3249 		ath5k_beacon_update(hw, vif);
3250 		spin_unlock_irqrestore(&sc->block, flags);
3251 	}
3252 
3253 	if (changes & BSS_CHANGED_BEACON_ENABLED)
3254 		sc->enable_beacon = bss_conf->enable_beacon;
3255 
3256 	if (changes & (BSS_CHANGED_BEACON | BSS_CHANGED_BEACON_ENABLED |
3257 		       BSS_CHANGED_BEACON_INT))
3258 		ath5k_beacon_config(sc);
3259 
3260  unlock:
3261 	mutex_unlock(&sc->lock);
3262 }
3263 
3264 static void ath5k_sw_scan_start(struct ieee80211_hw *hw)
3265 {
3266 	struct ath5k_softc *sc = hw->priv;
3267 	if (!sc->assoc)
3268 		ath5k_hw_set_ledstate(sc->ah, AR5K_LED_SCAN);
3269 }
3270 
3271 static void ath5k_sw_scan_complete(struct ieee80211_hw *hw)
3272 {
3273 	struct ath5k_softc *sc = hw->priv;
3274 	ath5k_hw_set_ledstate(sc->ah, sc->assoc ?
3275 		AR5K_LED_ASSOC : AR5K_LED_INIT);
3276 }
3277