1 /* 2 * Copyright (C) 2010 Bruno Randolf <br1@einfach.org> 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include "ath5k.h" 20 #include "reg.h" 21 #include "debug.h" 22 #include "ani.h" 23 24 /** 25 * DOC: Basic ANI Operation 26 * 27 * Adaptive Noise Immunity (ANI) controls five noise immunity parameters 28 * depending on the amount of interference in the environment, increasing 29 * or reducing sensitivity as necessary. 30 * 31 * The parameters are: 32 * 33 * - "noise immunity" 34 * 35 * - "spur immunity" 36 * 37 * - "firstep level" 38 * 39 * - "OFDM weak signal detection" 40 * 41 * - "CCK weak signal detection" 42 * 43 * Basically we look at the amount of ODFM and CCK timing errors we get and then 44 * raise or lower immunity accordingly by setting one or more of these 45 * parameters. 46 * 47 * Newer chipsets have PHY error counters in hardware which will generate a MIB 48 * interrupt when they overflow. Older hardware has too enable PHY error frames 49 * by setting a RX flag and then count every single PHY error. When a specified 50 * threshold of errors has been reached we will raise immunity. 51 * Also we regularly check the amount of errors and lower or raise immunity as 52 * necessary. 53 */ 54 55 56 /***********************\ 57 * ANI parameter control * 58 \***********************/ 59 60 /** 61 * ath5k_ani_set_noise_immunity_level() - Set noise immunity level 62 * @ah: The &struct ath5k_hw 63 * @level: level between 0 and @ATH5K_ANI_MAX_NOISE_IMM_LVL 64 */ 65 void 66 ath5k_ani_set_noise_immunity_level(struct ath5k_hw *ah, int level) 67 { 68 /* TODO: 69 * ANI documents suggest the following five levels to use, but the HAL 70 * and ath9k use only the last two levels, making this 71 * essentially an on/off option. There *may* be a reason for this (???), 72 * so i stick with the HAL version for now... 73 */ 74 #if 0 75 static const s8 lo[] = { -52, -56, -60, -64, -70 }; 76 static const s8 hi[] = { -18, -18, -16, -14, -12 }; 77 static const s8 sz[] = { -34, -41, -48, -55, -62 }; 78 static const s8 fr[] = { -70, -72, -75, -78, -80 }; 79 #else 80 static const s8 lo[] = { -64, -70 }; 81 static const s8 hi[] = { -14, -12 }; 82 static const s8 sz[] = { -55, -62 }; 83 static const s8 fr[] = { -78, -80 }; 84 #endif 85 if (level < 0 || level >= ARRAY_SIZE(sz)) { 86 ATH5K_ERR(ah, "noise immunity level %d out of range", 87 level); 88 return; 89 } 90 91 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE, 92 AR5K_PHY_DESIRED_SIZE_TOT, sz[level]); 93 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_AGCCOARSE, 94 AR5K_PHY_AGCCOARSE_LO, lo[level]); 95 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_AGCCOARSE, 96 AR5K_PHY_AGCCOARSE_HI, hi[level]); 97 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SIG, 98 AR5K_PHY_SIG_FIRPWR, fr[level]); 99 100 ah->ani_state.noise_imm_level = level; 101 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "new level %d", level); 102 } 103 104 /** 105 * ath5k_ani_set_spur_immunity_level() - Set spur immunity level 106 * @ah: The &struct ath5k_hw 107 * @level: level between 0 and @max_spur_level (the maximum level is dependent 108 * on the chip revision). 109 */ 110 void 111 ath5k_ani_set_spur_immunity_level(struct ath5k_hw *ah, int level) 112 { 113 static const int val[] = { 2, 4, 6, 8, 10, 12, 14, 16 }; 114 115 if (level < 0 || level >= ARRAY_SIZE(val) || 116 level > ah->ani_state.max_spur_level) { 117 ATH5K_ERR(ah, "spur immunity level %d out of range", 118 level); 119 return; 120 } 121 122 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR, 123 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1, val[level]); 124 125 ah->ani_state.spur_level = level; 126 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "new level %d", level); 127 } 128 129 /** 130 * ath5k_ani_set_firstep_level() - Set "firstep" level 131 * @ah: The &struct ath5k_hw 132 * @level: level between 0 and @ATH5K_ANI_MAX_FIRSTEP_LVL 133 */ 134 void 135 ath5k_ani_set_firstep_level(struct ath5k_hw *ah, int level) 136 { 137 static const int val[] = { 0, 4, 8 }; 138 139 if (level < 0 || level >= ARRAY_SIZE(val)) { 140 ATH5K_ERR(ah, "firstep level %d out of range", level); 141 return; 142 } 143 144 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SIG, 145 AR5K_PHY_SIG_FIRSTEP, val[level]); 146 147 ah->ani_state.firstep_level = level; 148 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "new level %d", level); 149 } 150 151 /** 152 * ath5k_ani_set_ofdm_weak_signal_detection() - Set OFDM weak signal detection 153 * @ah: The &struct ath5k_hw 154 * @on: turn on or off 155 */ 156 void 157 ath5k_ani_set_ofdm_weak_signal_detection(struct ath5k_hw *ah, bool on) 158 { 159 static const int m1l[] = { 127, 50 }; 160 static const int m2l[] = { 127, 40 }; 161 static const int m1[] = { 127, 0x4d }; 162 static const int m2[] = { 127, 0x40 }; 163 static const int m2cnt[] = { 31, 16 }; 164 static const int m2lcnt[] = { 63, 48 }; 165 166 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR, 167 AR5K_PHY_WEAK_OFDM_LOW_THR_M1, m1l[on]); 168 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR, 169 AR5K_PHY_WEAK_OFDM_LOW_THR_M2, m2l[on]); 170 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_HIGH_THR, 171 AR5K_PHY_WEAK_OFDM_HIGH_THR_M1, m1[on]); 172 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_HIGH_THR, 173 AR5K_PHY_WEAK_OFDM_HIGH_THR_M2, m2[on]); 174 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_HIGH_THR, 175 AR5K_PHY_WEAK_OFDM_HIGH_THR_M2_COUNT, m2cnt[on]); 176 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR, 177 AR5K_PHY_WEAK_OFDM_LOW_THR_M2_COUNT, m2lcnt[on]); 178 179 if (on) 180 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR, 181 AR5K_PHY_WEAK_OFDM_LOW_THR_SELFCOR_EN); 182 else 183 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_WEAK_OFDM_LOW_THR, 184 AR5K_PHY_WEAK_OFDM_LOW_THR_SELFCOR_EN); 185 186 ah->ani_state.ofdm_weak_sig = on; 187 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "turned %s", 188 on ? "on" : "off"); 189 } 190 191 /** 192 * ath5k_ani_set_cck_weak_signal_detection() - Set CCK weak signal detection 193 * @ah: The &struct ath5k_hw 194 * @on: turn on or off 195 */ 196 void 197 ath5k_ani_set_cck_weak_signal_detection(struct ath5k_hw *ah, bool on) 198 { 199 static const int val[] = { 8, 6 }; 200 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_CCK_CROSSCORR, 201 AR5K_PHY_CCK_CROSSCORR_WEAK_SIG_THR, val[on]); 202 ah->ani_state.cck_weak_sig = on; 203 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "turned %s", 204 on ? "on" : "off"); 205 } 206 207 208 /***************\ 209 * ANI algorithm * 210 \***************/ 211 212 /** 213 * ath5k_ani_raise_immunity() - Increase noise immunity 214 * @ah: The &struct ath5k_hw 215 * @as: The &struct ath5k_ani_state 216 * @ofdm_trigger: If this is true we are called because of too many OFDM errors, 217 * the algorithm will tune more parameters then. 218 * 219 * Try to raise noise immunity (=decrease sensitivity) in several steps 220 * depending on the average RSSI of the beacons we received. 221 */ 222 static void 223 ath5k_ani_raise_immunity(struct ath5k_hw *ah, struct ath5k_ani_state *as, 224 bool ofdm_trigger) 225 { 226 int rssi = ewma_beacon_rssi_read(&ah->ah_beacon_rssi_avg); 227 228 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "raise immunity (%s)", 229 ofdm_trigger ? "ODFM" : "CCK"); 230 231 /* first: raise noise immunity */ 232 if (as->noise_imm_level < ATH5K_ANI_MAX_NOISE_IMM_LVL) { 233 ath5k_ani_set_noise_immunity_level(ah, as->noise_imm_level + 1); 234 return; 235 } 236 237 /* only OFDM: raise spur immunity level */ 238 if (ofdm_trigger && 239 as->spur_level < ah->ani_state.max_spur_level) { 240 ath5k_ani_set_spur_immunity_level(ah, as->spur_level + 1); 241 return; 242 } 243 244 /* AP mode */ 245 if (ah->opmode == NL80211_IFTYPE_AP) { 246 if (as->firstep_level < ATH5K_ANI_MAX_FIRSTEP_LVL) 247 ath5k_ani_set_firstep_level(ah, as->firstep_level + 1); 248 return; 249 } 250 251 /* STA and IBSS mode */ 252 253 /* TODO: for IBSS mode it would be better to keep a beacon RSSI average 254 * per each neighbour node and use the minimum of these, to make sure we 255 * don't shut out a remote node by raising immunity too high. */ 256 257 if (rssi > ATH5K_ANI_RSSI_THR_HIGH) { 258 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, 259 "beacon RSSI high"); 260 /* only OFDM: beacon RSSI is high, we can disable ODFM weak 261 * signal detection */ 262 if (ofdm_trigger && as->ofdm_weak_sig) { 263 ath5k_ani_set_ofdm_weak_signal_detection(ah, false); 264 ath5k_ani_set_spur_immunity_level(ah, 0); 265 return; 266 } 267 /* as a last resort or CCK: raise firstep level */ 268 if (as->firstep_level < ATH5K_ANI_MAX_FIRSTEP_LVL) { 269 ath5k_ani_set_firstep_level(ah, as->firstep_level + 1); 270 return; 271 } 272 } else if (rssi > ATH5K_ANI_RSSI_THR_LOW) { 273 /* beacon RSSI in mid range, we need OFDM weak signal detect, 274 * but can raise firstep level */ 275 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, 276 "beacon RSSI mid"); 277 if (ofdm_trigger && !as->ofdm_weak_sig) 278 ath5k_ani_set_ofdm_weak_signal_detection(ah, true); 279 if (as->firstep_level < ATH5K_ANI_MAX_FIRSTEP_LVL) 280 ath5k_ani_set_firstep_level(ah, as->firstep_level + 1); 281 return; 282 } else if (ah->ah_current_channel->band == IEEE80211_BAND_2GHZ) { 283 /* beacon RSSI is low. in B/G mode turn of OFDM weak signal 284 * detect and zero firstep level to maximize CCK sensitivity */ 285 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, 286 "beacon RSSI low, 2GHz"); 287 if (ofdm_trigger && as->ofdm_weak_sig) 288 ath5k_ani_set_ofdm_weak_signal_detection(ah, false); 289 if (as->firstep_level > 0) 290 ath5k_ani_set_firstep_level(ah, 0); 291 return; 292 } 293 294 /* TODO: why not?: 295 if (as->cck_weak_sig == true) { 296 ath5k_ani_set_cck_weak_signal_detection(ah, false); 297 } 298 */ 299 } 300 301 /** 302 * ath5k_ani_lower_immunity() - Decrease noise immunity 303 * @ah: The &struct ath5k_hw 304 * @as: The &struct ath5k_ani_state 305 * 306 * Try to lower noise immunity (=increase sensitivity) in several steps 307 * depending on the average RSSI of the beacons we received. 308 */ 309 static void 310 ath5k_ani_lower_immunity(struct ath5k_hw *ah, struct ath5k_ani_state *as) 311 { 312 int rssi = ewma_beacon_rssi_read(&ah->ah_beacon_rssi_avg); 313 314 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "lower immunity"); 315 316 if (ah->opmode == NL80211_IFTYPE_AP) { 317 /* AP mode */ 318 if (as->firstep_level > 0) { 319 ath5k_ani_set_firstep_level(ah, as->firstep_level - 1); 320 return; 321 } 322 } else { 323 /* STA and IBSS mode (see TODO above) */ 324 if (rssi > ATH5K_ANI_RSSI_THR_HIGH) { 325 /* beacon signal is high, leave OFDM weak signal 326 * detection off or it may oscillate 327 * TODO: who said it's off??? */ 328 } else if (rssi > ATH5K_ANI_RSSI_THR_LOW) { 329 /* beacon RSSI is mid-range: turn on ODFM weak signal 330 * detection and next, lower firstep level */ 331 if (!as->ofdm_weak_sig) { 332 ath5k_ani_set_ofdm_weak_signal_detection(ah, 333 true); 334 return; 335 } 336 if (as->firstep_level > 0) { 337 ath5k_ani_set_firstep_level(ah, 338 as->firstep_level - 1); 339 return; 340 } 341 } else { 342 /* beacon signal is low: only reduce firstep level */ 343 if (as->firstep_level > 0) { 344 ath5k_ani_set_firstep_level(ah, 345 as->firstep_level - 1); 346 return; 347 } 348 } 349 } 350 351 /* all modes */ 352 if (as->spur_level > 0) { 353 ath5k_ani_set_spur_immunity_level(ah, as->spur_level - 1); 354 return; 355 } 356 357 /* finally, reduce noise immunity */ 358 if (as->noise_imm_level > 0) { 359 ath5k_ani_set_noise_immunity_level(ah, as->noise_imm_level - 1); 360 return; 361 } 362 } 363 364 /** 365 * ath5k_hw_ani_get_listen_time() - Update counters and return listening time 366 * @ah: The &struct ath5k_hw 367 * @as: The &struct ath5k_ani_state 368 * 369 * Return an approximation of the time spent "listening" in milliseconds (ms) 370 * since the last call of this function. 371 * Save a snapshot of the counter values for debugging/statistics. 372 */ 373 static int 374 ath5k_hw_ani_get_listen_time(struct ath5k_hw *ah, struct ath5k_ani_state *as) 375 { 376 struct ath_common *common = ath5k_hw_common(ah); 377 int listen; 378 379 spin_lock_bh(&common->cc_lock); 380 381 ath_hw_cycle_counters_update(common); 382 memcpy(&as->last_cc, &common->cc_ani, sizeof(as->last_cc)); 383 384 /* clears common->cc_ani */ 385 listen = ath_hw_get_listen_time(common); 386 387 spin_unlock_bh(&common->cc_lock); 388 389 return listen; 390 } 391 392 /** 393 * ath5k_ani_save_and_clear_phy_errors() - Clear and save PHY error counters 394 * @ah: The &struct ath5k_hw 395 * @as: The &struct ath5k_ani_state 396 * 397 * Clear the PHY error counters as soon as possible, since this might be called 398 * from a MIB interrupt and we want to make sure we don't get interrupted again. 399 * Add the count of CCK and OFDM errors to our internal state, so it can be used 400 * by the algorithm later. 401 * 402 * Will be called from interrupt and tasklet context. 403 * Returns 0 if both counters are zero. 404 */ 405 static int 406 ath5k_ani_save_and_clear_phy_errors(struct ath5k_hw *ah, 407 struct ath5k_ani_state *as) 408 { 409 unsigned int ofdm_err, cck_err; 410 411 if (!ah->ah_capabilities.cap_has_phyerr_counters) 412 return 0; 413 414 ofdm_err = ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT1); 415 cck_err = ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT2); 416 417 /* reset counters first, we might be in a hurry (interrupt) */ 418 ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_OFDM_TRIG_HIGH, 419 AR5K_PHYERR_CNT1); 420 ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_CCK_TRIG_HIGH, 421 AR5K_PHYERR_CNT2); 422 423 ofdm_err = ATH5K_ANI_OFDM_TRIG_HIGH - (ATH5K_PHYERR_CNT_MAX - ofdm_err); 424 cck_err = ATH5K_ANI_CCK_TRIG_HIGH - (ATH5K_PHYERR_CNT_MAX - cck_err); 425 426 /* sometimes both can be zero, especially when there is a superfluous 427 * second interrupt. detect that here and return an error. */ 428 if (ofdm_err <= 0 && cck_err <= 0) 429 return 0; 430 431 /* avoid negative values should one of the registers overflow */ 432 if (ofdm_err > 0) { 433 as->ofdm_errors += ofdm_err; 434 as->sum_ofdm_errors += ofdm_err; 435 } 436 if (cck_err > 0) { 437 as->cck_errors += cck_err; 438 as->sum_cck_errors += cck_err; 439 } 440 return 1; 441 } 442 443 /** 444 * ath5k_ani_period_restart() - Restart ANI period 445 * @as: The &struct ath5k_ani_state 446 * 447 * Just reset counters, so they are clear for the next "ani period". 448 */ 449 static void 450 ath5k_ani_period_restart(struct ath5k_ani_state *as) 451 { 452 /* keep last values for debugging */ 453 as->last_ofdm_errors = as->ofdm_errors; 454 as->last_cck_errors = as->cck_errors; 455 as->last_listen = as->listen_time; 456 457 as->ofdm_errors = 0; 458 as->cck_errors = 0; 459 as->listen_time = 0; 460 } 461 462 /** 463 * ath5k_ani_calibration() - The main ANI calibration function 464 * @ah: The &struct ath5k_hw 465 * 466 * We count OFDM and CCK errors relative to the time where we did not send or 467 * receive ("listen" time) and raise or lower immunity accordingly. 468 * This is called regularly (every second) from the calibration timer, but also 469 * when an error threshold has been reached. 470 * 471 * In order to synchronize access from different contexts, this should be 472 * called only indirectly by scheduling the ANI tasklet! 473 */ 474 void 475 ath5k_ani_calibration(struct ath5k_hw *ah) 476 { 477 struct ath5k_ani_state *as = &ah->ani_state; 478 int listen, ofdm_high, ofdm_low, cck_high, cck_low; 479 480 /* get listen time since last call and add it to the counter because we 481 * might not have restarted the "ani period" last time. 482 * always do this to calculate the busy time also in manual mode */ 483 listen = ath5k_hw_ani_get_listen_time(ah, as); 484 as->listen_time += listen; 485 486 if (as->ani_mode != ATH5K_ANI_MODE_AUTO) 487 return; 488 489 ath5k_ani_save_and_clear_phy_errors(ah, as); 490 491 ofdm_high = as->listen_time * ATH5K_ANI_OFDM_TRIG_HIGH / 1000; 492 cck_high = as->listen_time * ATH5K_ANI_CCK_TRIG_HIGH / 1000; 493 ofdm_low = as->listen_time * ATH5K_ANI_OFDM_TRIG_LOW / 1000; 494 cck_low = as->listen_time * ATH5K_ANI_CCK_TRIG_LOW / 1000; 495 496 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, 497 "listen %d (now %d)", as->listen_time, listen); 498 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, 499 "check high ofdm %d/%d cck %d/%d", 500 as->ofdm_errors, ofdm_high, as->cck_errors, cck_high); 501 502 if (as->ofdm_errors > ofdm_high || as->cck_errors > cck_high) { 503 /* too many PHY errors - we have to raise immunity */ 504 bool ofdm_flag = as->ofdm_errors > ofdm_high ? true : false; 505 ath5k_ani_raise_immunity(ah, as, ofdm_flag); 506 ath5k_ani_period_restart(as); 507 508 } else if (as->listen_time > 5 * ATH5K_ANI_LISTEN_PERIOD) { 509 /* If more than 5 (TODO: why 5?) periods have passed and we got 510 * relatively little errors we can try to lower immunity */ 511 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, 512 "check low ofdm %d/%d cck %d/%d", 513 as->ofdm_errors, ofdm_low, as->cck_errors, cck_low); 514 515 if (as->ofdm_errors <= ofdm_low && as->cck_errors <= cck_low) 516 ath5k_ani_lower_immunity(ah, as); 517 518 ath5k_ani_period_restart(as); 519 } 520 } 521 522 523 /*******************\ 524 * Interrupt handler * 525 \*******************/ 526 527 /** 528 * ath5k_ani_mib_intr() - Interrupt handler for ANI MIB counters 529 * @ah: The &struct ath5k_hw 530 * 531 * Just read & reset the registers quickly, so they don't generate more 532 * interrupts, save the counters and schedule the tasklet to decide whether 533 * to raise immunity or not. 534 * 535 * We just need to handle PHY error counters, ath5k_hw_update_mib_counters() 536 * should take care of all "normal" MIB interrupts. 537 */ 538 void 539 ath5k_ani_mib_intr(struct ath5k_hw *ah) 540 { 541 struct ath5k_ani_state *as = &ah->ani_state; 542 543 /* nothing to do here if HW does not have PHY error counters - they 544 * can't be the reason for the MIB interrupt then */ 545 if (!ah->ah_capabilities.cap_has_phyerr_counters) 546 return; 547 548 /* not in use but clear anyways */ 549 ath5k_hw_reg_write(ah, 0, AR5K_OFDM_FIL_CNT); 550 ath5k_hw_reg_write(ah, 0, AR5K_CCK_FIL_CNT); 551 552 if (ah->ani_state.ani_mode != ATH5K_ANI_MODE_AUTO) 553 return; 554 555 /* If one of the errors triggered, we can get a superfluous second 556 * interrupt, even though we have already reset the register. The 557 * function detects that so we can return early. */ 558 if (ath5k_ani_save_and_clear_phy_errors(ah, as) == 0) 559 return; 560 561 if (as->ofdm_errors > ATH5K_ANI_OFDM_TRIG_HIGH || 562 as->cck_errors > ATH5K_ANI_CCK_TRIG_HIGH) 563 tasklet_schedule(&ah->ani_tasklet); 564 } 565 566 /** 567 * ath5k_ani_phy_error_report - Used by older HW to report PHY errors 568 * 569 * @ah: The &struct ath5k_hw 570 * @phyerr: One of enum ath5k_phy_error_code 571 * 572 * This is used by hardware without PHY error counters to report PHY errors 573 * on a frame-by-frame basis, instead of the interrupt. 574 */ 575 void 576 ath5k_ani_phy_error_report(struct ath5k_hw *ah, 577 enum ath5k_phy_error_code phyerr) 578 { 579 struct ath5k_ani_state *as = &ah->ani_state; 580 581 if (phyerr == AR5K_RX_PHY_ERROR_OFDM_TIMING) { 582 as->ofdm_errors++; 583 if (as->ofdm_errors > ATH5K_ANI_OFDM_TRIG_HIGH) 584 tasklet_schedule(&ah->ani_tasklet); 585 } else if (phyerr == AR5K_RX_PHY_ERROR_CCK_TIMING) { 586 as->cck_errors++; 587 if (as->cck_errors > ATH5K_ANI_CCK_TRIG_HIGH) 588 tasklet_schedule(&ah->ani_tasklet); 589 } 590 } 591 592 593 /****************\ 594 * Initialization * 595 \****************/ 596 597 /** 598 * ath5k_enable_phy_err_counters() - Enable PHY error counters 599 * @ah: The &struct ath5k_hw 600 * 601 * Enable PHY error counters for OFDM and CCK timing errors. 602 */ 603 static void 604 ath5k_enable_phy_err_counters(struct ath5k_hw *ah) 605 { 606 ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_OFDM_TRIG_HIGH, 607 AR5K_PHYERR_CNT1); 608 ath5k_hw_reg_write(ah, ATH5K_PHYERR_CNT_MAX - ATH5K_ANI_CCK_TRIG_HIGH, 609 AR5K_PHYERR_CNT2); 610 ath5k_hw_reg_write(ah, AR5K_PHY_ERR_FIL_OFDM, AR5K_PHYERR_CNT1_MASK); 611 ath5k_hw_reg_write(ah, AR5K_PHY_ERR_FIL_CCK, AR5K_PHYERR_CNT2_MASK); 612 613 /* not in use */ 614 ath5k_hw_reg_write(ah, 0, AR5K_OFDM_FIL_CNT); 615 ath5k_hw_reg_write(ah, 0, AR5K_CCK_FIL_CNT); 616 } 617 618 /** 619 * ath5k_disable_phy_err_counters() - Disable PHY error counters 620 * @ah: The &struct ath5k_hw 621 * 622 * Disable PHY error counters for OFDM and CCK timing errors. 623 */ 624 static void 625 ath5k_disable_phy_err_counters(struct ath5k_hw *ah) 626 { 627 ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT1); 628 ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT2); 629 ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT1_MASK); 630 ath5k_hw_reg_write(ah, 0, AR5K_PHYERR_CNT2_MASK); 631 632 /* not in use */ 633 ath5k_hw_reg_write(ah, 0, AR5K_OFDM_FIL_CNT); 634 ath5k_hw_reg_write(ah, 0, AR5K_CCK_FIL_CNT); 635 } 636 637 /** 638 * ath5k_ani_init() - Initialize ANI 639 * @ah: The &struct ath5k_hw 640 * @mode: One of enum ath5k_ani_mode 641 * 642 * Initialize ANI according to mode. 643 */ 644 void 645 ath5k_ani_init(struct ath5k_hw *ah, enum ath5k_ani_mode mode) 646 { 647 /* ANI is only possible on 5212 and newer */ 648 if (ah->ah_version < AR5K_AR5212) 649 return; 650 651 if (mode < ATH5K_ANI_MODE_OFF || mode > ATH5K_ANI_MODE_AUTO) { 652 ATH5K_ERR(ah, "ANI mode %d out of range", mode); 653 return; 654 } 655 656 /* clear old state information */ 657 memset(&ah->ani_state, 0, sizeof(ah->ani_state)); 658 659 /* older hardware has more spur levels than newer */ 660 if (ah->ah_mac_srev < AR5K_SREV_AR2414) 661 ah->ani_state.max_spur_level = 7; 662 else 663 ah->ani_state.max_spur_level = 2; 664 665 /* initial values for our ani parameters */ 666 if (mode == ATH5K_ANI_MODE_OFF) { 667 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "ANI off\n"); 668 } else if (mode == ATH5K_ANI_MODE_MANUAL_LOW) { 669 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, 670 "ANI manual low -> high sensitivity\n"); 671 ath5k_ani_set_noise_immunity_level(ah, 0); 672 ath5k_ani_set_spur_immunity_level(ah, 0); 673 ath5k_ani_set_firstep_level(ah, 0); 674 ath5k_ani_set_ofdm_weak_signal_detection(ah, true); 675 ath5k_ani_set_cck_weak_signal_detection(ah, true); 676 } else if (mode == ATH5K_ANI_MODE_MANUAL_HIGH) { 677 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, 678 "ANI manual high -> low sensitivity\n"); 679 ath5k_ani_set_noise_immunity_level(ah, 680 ATH5K_ANI_MAX_NOISE_IMM_LVL); 681 ath5k_ani_set_spur_immunity_level(ah, 682 ah->ani_state.max_spur_level); 683 ath5k_ani_set_firstep_level(ah, ATH5K_ANI_MAX_FIRSTEP_LVL); 684 ath5k_ani_set_ofdm_weak_signal_detection(ah, false); 685 ath5k_ani_set_cck_weak_signal_detection(ah, false); 686 } else if (mode == ATH5K_ANI_MODE_AUTO) { 687 ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_ANI, "ANI auto\n"); 688 ath5k_ani_set_noise_immunity_level(ah, 0); 689 ath5k_ani_set_spur_immunity_level(ah, 0); 690 ath5k_ani_set_firstep_level(ah, 0); 691 ath5k_ani_set_ofdm_weak_signal_detection(ah, true); 692 ath5k_ani_set_cck_weak_signal_detection(ah, false); 693 } 694 695 /* newer hardware has PHY error counter registers which we can use to 696 * get OFDM and CCK error counts. older hardware has to set rxfilter and 697 * report every single PHY error by calling ath5k_ani_phy_error_report() 698 */ 699 if (mode == ATH5K_ANI_MODE_AUTO) { 700 if (ah->ah_capabilities.cap_has_phyerr_counters) 701 ath5k_enable_phy_err_counters(ah); 702 else 703 ath5k_hw_set_rx_filter(ah, ath5k_hw_get_rx_filter(ah) | 704 AR5K_RX_FILTER_PHYERR); 705 } else { 706 if (ah->ah_capabilities.cap_has_phyerr_counters) 707 ath5k_disable_phy_err_counters(ah); 708 else 709 ath5k_hw_set_rx_filter(ah, ath5k_hw_get_rx_filter(ah) & 710 ~AR5K_RX_FILTER_PHYERR); 711 } 712 713 ah->ani_state.ani_mode = mode; 714 } 715 716 717 /**************\ 718 * Debug output * 719 \**************/ 720 721 #ifdef CONFIG_ATH5K_DEBUG 722 723 /** 724 * ath5k_ani_print_counters() - Print ANI counters 725 * @ah: The &struct ath5k_hw 726 * 727 * Used for debugging ANI 728 */ 729 void 730 ath5k_ani_print_counters(struct ath5k_hw *ah) 731 { 732 /* clears too */ 733 pr_notice("ACK fail\t%d\n", ath5k_hw_reg_read(ah, AR5K_ACK_FAIL)); 734 pr_notice("RTS fail\t%d\n", ath5k_hw_reg_read(ah, AR5K_RTS_FAIL)); 735 pr_notice("RTS success\t%d\n", ath5k_hw_reg_read(ah, AR5K_RTS_OK)); 736 pr_notice("FCS error\t%d\n", ath5k_hw_reg_read(ah, AR5K_FCS_FAIL)); 737 738 /* no clear */ 739 pr_notice("tx\t%d\n", ath5k_hw_reg_read(ah, AR5K_PROFCNT_TX)); 740 pr_notice("rx\t%d\n", ath5k_hw_reg_read(ah, AR5K_PROFCNT_RX)); 741 pr_notice("busy\t%d\n", ath5k_hw_reg_read(ah, AR5K_PROFCNT_RXCLR)); 742 pr_notice("cycles\t%d\n", ath5k_hw_reg_read(ah, AR5K_PROFCNT_CYCLE)); 743 744 pr_notice("AR5K_PHYERR_CNT1\t%d\n", 745 ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT1)); 746 pr_notice("AR5K_PHYERR_CNT2\t%d\n", 747 ath5k_hw_reg_read(ah, AR5K_PHYERR_CNT2)); 748 pr_notice("AR5K_OFDM_FIL_CNT\t%d\n", 749 ath5k_hw_reg_read(ah, AR5K_OFDM_FIL_CNT)); 750 pr_notice("AR5K_CCK_FIL_CNT\t%d\n", 751 ath5k_hw_reg_read(ah, AR5K_CCK_FIL_CNT)); 752 } 753 754 #endif 755