1 // SPDX-License-Identifier: BSD-3-Clause-Clear 2 /* 3 * Copyright (c) 2018-2021 The Linux Foundation. All rights reserved. 4 * Copyright (c) 2021-2022 Qualcomm Innovation Center, Inc. All rights reserved. 5 */ 6 7 #include <linux/ieee80211.h> 8 #include <linux/kernel.h> 9 #include <linux/skbuff.h> 10 #include <crypto/hash.h> 11 #include "core.h" 12 #include "debug.h" 13 #include "hal_desc.h" 14 #include "hw.h" 15 #include "dp_rx.h" 16 #include "hal_rx.h" 17 #include "dp_tx.h" 18 #include "peer.h" 19 #include "dp_mon.h" 20 21 #define ATH12K_DP_RX_FRAGMENT_TIMEOUT_MS (2 * HZ) 22 23 static enum hal_encrypt_type ath12k_dp_rx_h_enctype(struct ath12k_base *ab, 24 struct hal_rx_desc *desc) 25 { 26 if (!ab->hw_params->hal_ops->rx_desc_encrypt_valid(desc)) 27 return HAL_ENCRYPT_TYPE_OPEN; 28 29 return ab->hw_params->hal_ops->rx_desc_get_encrypt_type(desc); 30 } 31 32 u8 ath12k_dp_rx_h_decap_type(struct ath12k_base *ab, 33 struct hal_rx_desc *desc) 34 { 35 return ab->hw_params->hal_ops->rx_desc_get_decap_type(desc); 36 } 37 38 static u8 ath12k_dp_rx_h_mesh_ctl_present(struct ath12k_base *ab, 39 struct hal_rx_desc *desc) 40 { 41 return ab->hw_params->hal_ops->rx_desc_get_mesh_ctl(desc); 42 } 43 44 static bool ath12k_dp_rx_h_seq_ctrl_valid(struct ath12k_base *ab, 45 struct hal_rx_desc *desc) 46 { 47 return ab->hw_params->hal_ops->rx_desc_get_mpdu_seq_ctl_vld(desc); 48 } 49 50 static bool ath12k_dp_rx_h_fc_valid(struct ath12k_base *ab, 51 struct hal_rx_desc *desc) 52 { 53 return ab->hw_params->hal_ops->rx_desc_get_mpdu_fc_valid(desc); 54 } 55 56 static bool ath12k_dp_rx_h_more_frags(struct ath12k_base *ab, 57 struct sk_buff *skb) 58 { 59 struct ieee80211_hdr *hdr; 60 61 hdr = (struct ieee80211_hdr *)(skb->data + ab->hw_params->hal_desc_sz); 62 return ieee80211_has_morefrags(hdr->frame_control); 63 } 64 65 static u16 ath12k_dp_rx_h_frag_no(struct ath12k_base *ab, 66 struct sk_buff *skb) 67 { 68 struct ieee80211_hdr *hdr; 69 70 hdr = (struct ieee80211_hdr *)(skb->data + ab->hw_params->hal_desc_sz); 71 return le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 72 } 73 74 static u16 ath12k_dp_rx_h_seq_no(struct ath12k_base *ab, 75 struct hal_rx_desc *desc) 76 { 77 return ab->hw_params->hal_ops->rx_desc_get_mpdu_start_seq_no(desc); 78 } 79 80 static bool ath12k_dp_rx_h_msdu_done(struct ath12k_base *ab, 81 struct hal_rx_desc *desc) 82 { 83 return ab->hw_params->hal_ops->dp_rx_h_msdu_done(desc); 84 } 85 86 static bool ath12k_dp_rx_h_l4_cksum_fail(struct ath12k_base *ab, 87 struct hal_rx_desc *desc) 88 { 89 return ab->hw_params->hal_ops->dp_rx_h_l4_cksum_fail(desc); 90 } 91 92 static bool ath12k_dp_rx_h_ip_cksum_fail(struct ath12k_base *ab, 93 struct hal_rx_desc *desc) 94 { 95 return ab->hw_params->hal_ops->dp_rx_h_ip_cksum_fail(desc); 96 } 97 98 static bool ath12k_dp_rx_h_is_decrypted(struct ath12k_base *ab, 99 struct hal_rx_desc *desc) 100 { 101 return ab->hw_params->hal_ops->dp_rx_h_is_decrypted(desc); 102 } 103 104 u32 ath12k_dp_rx_h_mpdu_err(struct ath12k_base *ab, 105 struct hal_rx_desc *desc) 106 { 107 return ab->hw_params->hal_ops->dp_rx_h_mpdu_err(desc); 108 } 109 110 static u16 ath12k_dp_rx_h_msdu_len(struct ath12k_base *ab, 111 struct hal_rx_desc *desc) 112 { 113 return ab->hw_params->hal_ops->rx_desc_get_msdu_len(desc); 114 } 115 116 static u8 ath12k_dp_rx_h_sgi(struct ath12k_base *ab, 117 struct hal_rx_desc *desc) 118 { 119 return ab->hw_params->hal_ops->rx_desc_get_msdu_sgi(desc); 120 } 121 122 static u8 ath12k_dp_rx_h_rate_mcs(struct ath12k_base *ab, 123 struct hal_rx_desc *desc) 124 { 125 return ab->hw_params->hal_ops->rx_desc_get_msdu_rate_mcs(desc); 126 } 127 128 static u8 ath12k_dp_rx_h_rx_bw(struct ath12k_base *ab, 129 struct hal_rx_desc *desc) 130 { 131 return ab->hw_params->hal_ops->rx_desc_get_msdu_rx_bw(desc); 132 } 133 134 static u32 ath12k_dp_rx_h_freq(struct ath12k_base *ab, 135 struct hal_rx_desc *desc) 136 { 137 return ab->hw_params->hal_ops->rx_desc_get_msdu_freq(desc); 138 } 139 140 static u8 ath12k_dp_rx_h_pkt_type(struct ath12k_base *ab, 141 struct hal_rx_desc *desc) 142 { 143 return ab->hw_params->hal_ops->rx_desc_get_msdu_pkt_type(desc); 144 } 145 146 static u8 ath12k_dp_rx_h_nss(struct ath12k_base *ab, 147 struct hal_rx_desc *desc) 148 { 149 return hweight8(ab->hw_params->hal_ops->rx_desc_get_msdu_nss(desc)); 150 } 151 152 static u8 ath12k_dp_rx_h_tid(struct ath12k_base *ab, 153 struct hal_rx_desc *desc) 154 { 155 return ab->hw_params->hal_ops->rx_desc_get_mpdu_tid(desc); 156 } 157 158 static u16 ath12k_dp_rx_h_peer_id(struct ath12k_base *ab, 159 struct hal_rx_desc *desc) 160 { 161 return ab->hw_params->hal_ops->rx_desc_get_mpdu_peer_id(desc); 162 } 163 164 u8 ath12k_dp_rx_h_l3pad(struct ath12k_base *ab, 165 struct hal_rx_desc *desc) 166 { 167 return ab->hw_params->hal_ops->rx_desc_get_l3_pad_bytes(desc); 168 } 169 170 static bool ath12k_dp_rx_h_first_msdu(struct ath12k_base *ab, 171 struct hal_rx_desc *desc) 172 { 173 return ab->hw_params->hal_ops->rx_desc_get_first_msdu(desc); 174 } 175 176 static bool ath12k_dp_rx_h_last_msdu(struct ath12k_base *ab, 177 struct hal_rx_desc *desc) 178 { 179 return ab->hw_params->hal_ops->rx_desc_get_last_msdu(desc); 180 } 181 182 static void ath12k_dp_rx_desc_end_tlv_copy(struct ath12k_base *ab, 183 struct hal_rx_desc *fdesc, 184 struct hal_rx_desc *ldesc) 185 { 186 ab->hw_params->hal_ops->rx_desc_copy_end_tlv(fdesc, ldesc); 187 } 188 189 static void ath12k_dp_rxdesc_set_msdu_len(struct ath12k_base *ab, 190 struct hal_rx_desc *desc, 191 u16 len) 192 { 193 ab->hw_params->hal_ops->rx_desc_set_msdu_len(desc, len); 194 } 195 196 static bool ath12k_dp_rx_h_is_da_mcbc(struct ath12k_base *ab, 197 struct hal_rx_desc *desc) 198 { 199 return (ath12k_dp_rx_h_first_msdu(ab, desc) && 200 ab->hw_params->hal_ops->rx_desc_is_da_mcbc(desc)); 201 } 202 203 static bool ath12k_dp_rxdesc_mac_addr2_valid(struct ath12k_base *ab, 204 struct hal_rx_desc *desc) 205 { 206 return ab->hw_params->hal_ops->rx_desc_mac_addr2_valid(desc); 207 } 208 209 static u8 *ath12k_dp_rxdesc_get_mpdu_start_addr2(struct ath12k_base *ab, 210 struct hal_rx_desc *desc) 211 { 212 return ab->hw_params->hal_ops->rx_desc_mpdu_start_addr2(desc); 213 } 214 215 static void ath12k_dp_rx_desc_get_dot11_hdr(struct ath12k_base *ab, 216 struct hal_rx_desc *desc, 217 struct ieee80211_hdr *hdr) 218 { 219 ab->hw_params->hal_ops->rx_desc_get_dot11_hdr(desc, hdr); 220 } 221 222 static void ath12k_dp_rx_desc_get_crypto_header(struct ath12k_base *ab, 223 struct hal_rx_desc *desc, 224 u8 *crypto_hdr, 225 enum hal_encrypt_type enctype) 226 { 227 ab->hw_params->hal_ops->rx_desc_get_crypto_header(desc, crypto_hdr, enctype); 228 } 229 230 static u16 ath12k_dp_rxdesc_get_mpdu_frame_ctrl(struct ath12k_base *ab, 231 struct hal_rx_desc *desc) 232 { 233 return ab->hw_params->hal_ops->rx_desc_get_mpdu_frame_ctl(desc); 234 } 235 236 static int ath12k_dp_purge_mon_ring(struct ath12k_base *ab) 237 { 238 int i, reaped = 0; 239 unsigned long timeout = jiffies + msecs_to_jiffies(DP_MON_PURGE_TIMEOUT_MS); 240 241 do { 242 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) 243 reaped += ath12k_dp_mon_process_ring(ab, i, NULL, 244 DP_MON_SERVICE_BUDGET, 245 ATH12K_DP_RX_MONITOR_MODE); 246 247 /* nothing more to reap */ 248 if (reaped < DP_MON_SERVICE_BUDGET) 249 return 0; 250 251 } while (time_before(jiffies, timeout)); 252 253 ath12k_warn(ab, "dp mon ring purge timeout"); 254 255 return -ETIMEDOUT; 256 } 257 258 /* Returns number of Rx buffers replenished */ 259 int ath12k_dp_rx_bufs_replenish(struct ath12k_base *ab, int mac_id, 260 struct dp_rxdma_ring *rx_ring, 261 int req_entries, 262 enum hal_rx_buf_return_buf_manager mgr, 263 bool hw_cc) 264 { 265 struct ath12k_buffer_addr *desc; 266 struct hal_srng *srng; 267 struct sk_buff *skb; 268 int num_free; 269 int num_remain; 270 int buf_id; 271 u32 cookie; 272 dma_addr_t paddr; 273 struct ath12k_dp *dp = &ab->dp; 274 struct ath12k_rx_desc_info *rx_desc; 275 276 req_entries = min(req_entries, rx_ring->bufs_max); 277 278 srng = &ab->hal.srng_list[rx_ring->refill_buf_ring.ring_id]; 279 280 spin_lock_bh(&srng->lock); 281 282 ath12k_hal_srng_access_begin(ab, srng); 283 284 num_free = ath12k_hal_srng_src_num_free(ab, srng, true); 285 if (!req_entries && (num_free > (rx_ring->bufs_max * 3) / 4)) 286 req_entries = num_free; 287 288 req_entries = min(num_free, req_entries); 289 num_remain = req_entries; 290 291 while (num_remain > 0) { 292 skb = dev_alloc_skb(DP_RX_BUFFER_SIZE + 293 DP_RX_BUFFER_ALIGN_SIZE); 294 if (!skb) 295 break; 296 297 if (!IS_ALIGNED((unsigned long)skb->data, 298 DP_RX_BUFFER_ALIGN_SIZE)) { 299 skb_pull(skb, 300 PTR_ALIGN(skb->data, DP_RX_BUFFER_ALIGN_SIZE) - 301 skb->data); 302 } 303 304 paddr = dma_map_single(ab->dev, skb->data, 305 skb->len + skb_tailroom(skb), 306 DMA_FROM_DEVICE); 307 if (dma_mapping_error(ab->dev, paddr)) 308 goto fail_free_skb; 309 310 if (hw_cc) { 311 spin_lock_bh(&dp->rx_desc_lock); 312 313 /* Get desc from free list and store in used list 314 * for cleanup purposes 315 * 316 * TODO: pass the removed descs rather than 317 * add/read to optimize 318 */ 319 rx_desc = list_first_entry_or_null(&dp->rx_desc_free_list, 320 struct ath12k_rx_desc_info, 321 list); 322 if (!rx_desc) { 323 spin_unlock_bh(&dp->rx_desc_lock); 324 goto fail_dma_unmap; 325 } 326 327 rx_desc->skb = skb; 328 cookie = rx_desc->cookie; 329 list_del(&rx_desc->list); 330 list_add_tail(&rx_desc->list, &dp->rx_desc_used_list); 331 332 spin_unlock_bh(&dp->rx_desc_lock); 333 } else { 334 spin_lock_bh(&rx_ring->idr_lock); 335 buf_id = idr_alloc(&rx_ring->bufs_idr, skb, 0, 336 rx_ring->bufs_max * 3, GFP_ATOMIC); 337 spin_unlock_bh(&rx_ring->idr_lock); 338 if (buf_id < 0) 339 goto fail_dma_unmap; 340 cookie = u32_encode_bits(mac_id, 341 DP_RXDMA_BUF_COOKIE_PDEV_ID) | 342 u32_encode_bits(buf_id, 343 DP_RXDMA_BUF_COOKIE_BUF_ID); 344 } 345 346 desc = ath12k_hal_srng_src_get_next_entry(ab, srng); 347 if (!desc) 348 goto fail_buf_unassign; 349 350 ATH12K_SKB_RXCB(skb)->paddr = paddr; 351 352 num_remain--; 353 354 ath12k_hal_rx_buf_addr_info_set(desc, paddr, cookie, mgr); 355 } 356 357 ath12k_hal_srng_access_end(ab, srng); 358 359 spin_unlock_bh(&srng->lock); 360 361 return req_entries - num_remain; 362 363 fail_buf_unassign: 364 if (hw_cc) { 365 spin_lock_bh(&dp->rx_desc_lock); 366 list_del(&rx_desc->list); 367 list_add_tail(&rx_desc->list, &dp->rx_desc_free_list); 368 rx_desc->skb = NULL; 369 spin_unlock_bh(&dp->rx_desc_lock); 370 } else { 371 spin_lock_bh(&rx_ring->idr_lock); 372 idr_remove(&rx_ring->bufs_idr, buf_id); 373 spin_unlock_bh(&rx_ring->idr_lock); 374 } 375 fail_dma_unmap: 376 dma_unmap_single(ab->dev, paddr, skb->len + skb_tailroom(skb), 377 DMA_FROM_DEVICE); 378 fail_free_skb: 379 dev_kfree_skb_any(skb); 380 381 ath12k_hal_srng_access_end(ab, srng); 382 383 spin_unlock_bh(&srng->lock); 384 385 return req_entries - num_remain; 386 } 387 388 static int ath12k_dp_rxdma_buf_ring_free(struct ath12k_base *ab, 389 struct dp_rxdma_ring *rx_ring) 390 { 391 struct sk_buff *skb; 392 int buf_id; 393 394 spin_lock_bh(&rx_ring->idr_lock); 395 idr_for_each_entry(&rx_ring->bufs_idr, skb, buf_id) { 396 idr_remove(&rx_ring->bufs_idr, buf_id); 397 /* TODO: Understand where internal driver does this dma_unmap 398 * of rxdma_buffer. 399 */ 400 dma_unmap_single(ab->dev, ATH12K_SKB_RXCB(skb)->paddr, 401 skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); 402 dev_kfree_skb_any(skb); 403 } 404 405 idr_destroy(&rx_ring->bufs_idr); 406 spin_unlock_bh(&rx_ring->idr_lock); 407 408 return 0; 409 } 410 411 static int ath12k_dp_rxdma_buf_free(struct ath12k_base *ab) 412 { 413 struct ath12k_dp *dp = &ab->dp; 414 struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring; 415 416 ath12k_dp_rxdma_buf_ring_free(ab, rx_ring); 417 418 rx_ring = &dp->rxdma_mon_buf_ring; 419 ath12k_dp_rxdma_buf_ring_free(ab, rx_ring); 420 421 rx_ring = &dp->tx_mon_buf_ring; 422 ath12k_dp_rxdma_buf_ring_free(ab, rx_ring); 423 424 return 0; 425 } 426 427 static int ath12k_dp_rxdma_ring_buf_setup(struct ath12k_base *ab, 428 struct dp_rxdma_ring *rx_ring, 429 u32 ringtype) 430 { 431 int num_entries; 432 433 num_entries = rx_ring->refill_buf_ring.size / 434 ath12k_hal_srng_get_entrysize(ab, ringtype); 435 436 rx_ring->bufs_max = num_entries; 437 if ((ringtype == HAL_RXDMA_MONITOR_BUF) || (ringtype == HAL_TX_MONITOR_BUF)) 438 ath12k_dp_mon_buf_replenish(ab, rx_ring, num_entries); 439 else 440 ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_entries, 441 ab->hw_params->hal_params->rx_buf_rbm, 442 ringtype == HAL_RXDMA_BUF); 443 return 0; 444 } 445 446 static int ath12k_dp_rxdma_buf_setup(struct ath12k_base *ab) 447 { 448 struct ath12k_dp *dp = &ab->dp; 449 struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring; 450 int ret; 451 452 ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring, 453 HAL_RXDMA_BUF); 454 if (ret) { 455 ath12k_warn(ab, 456 "failed to setup HAL_RXDMA_BUF\n"); 457 return ret; 458 } 459 460 if (ab->hw_params->rxdma1_enable) { 461 rx_ring = &dp->rxdma_mon_buf_ring; 462 ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring, 463 HAL_RXDMA_MONITOR_BUF); 464 if (ret) { 465 ath12k_warn(ab, 466 "failed to setup HAL_RXDMA_MONITOR_BUF\n"); 467 return ret; 468 } 469 470 rx_ring = &dp->tx_mon_buf_ring; 471 ret = ath12k_dp_rxdma_ring_buf_setup(ab, rx_ring, 472 HAL_TX_MONITOR_BUF); 473 if (ret) { 474 ath12k_warn(ab, 475 "failed to setup HAL_TX_MONITOR_BUF\n"); 476 return ret; 477 } 478 } 479 480 return 0; 481 } 482 483 static void ath12k_dp_rx_pdev_srng_free(struct ath12k *ar) 484 { 485 struct ath12k_pdev_dp *dp = &ar->dp; 486 struct ath12k_base *ab = ar->ab; 487 int i; 488 489 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 490 ath12k_dp_srng_cleanup(ab, &dp->rxdma_mon_dst_ring[i]); 491 ath12k_dp_srng_cleanup(ab, &dp->tx_mon_dst_ring[i]); 492 } 493 } 494 495 void ath12k_dp_rx_pdev_reo_cleanup(struct ath12k_base *ab) 496 { 497 struct ath12k_dp *dp = &ab->dp; 498 int i; 499 500 for (i = 0; i < DP_REO_DST_RING_MAX; i++) 501 ath12k_dp_srng_cleanup(ab, &dp->reo_dst_ring[i]); 502 } 503 504 int ath12k_dp_rx_pdev_reo_setup(struct ath12k_base *ab) 505 { 506 struct ath12k_dp *dp = &ab->dp; 507 int ret; 508 int i; 509 510 for (i = 0; i < DP_REO_DST_RING_MAX; i++) { 511 ret = ath12k_dp_srng_setup(ab, &dp->reo_dst_ring[i], 512 HAL_REO_DST, i, 0, 513 DP_REO_DST_RING_SIZE); 514 if (ret) { 515 ath12k_warn(ab, "failed to setup reo_dst_ring\n"); 516 goto err_reo_cleanup; 517 } 518 } 519 520 return 0; 521 522 err_reo_cleanup: 523 ath12k_dp_rx_pdev_reo_cleanup(ab); 524 525 return ret; 526 } 527 528 static int ath12k_dp_rx_pdev_srng_alloc(struct ath12k *ar) 529 { 530 struct ath12k_pdev_dp *dp = &ar->dp; 531 struct ath12k_base *ab = ar->ab; 532 int i; 533 int ret; 534 u32 mac_id = dp->mac_id; 535 536 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 537 ret = ath12k_dp_srng_setup(ar->ab, 538 &dp->rxdma_mon_dst_ring[i], 539 HAL_RXDMA_MONITOR_DST, 540 0, mac_id + i, 541 DP_RXDMA_MONITOR_DST_RING_SIZE); 542 if (ret) { 543 ath12k_warn(ar->ab, 544 "failed to setup HAL_RXDMA_MONITOR_DST\n"); 545 return ret; 546 } 547 548 ret = ath12k_dp_srng_setup(ar->ab, 549 &dp->tx_mon_dst_ring[i], 550 HAL_TX_MONITOR_DST, 551 0, mac_id + i, 552 DP_TX_MONITOR_DEST_RING_SIZE); 553 if (ret) { 554 ath12k_warn(ar->ab, 555 "failed to setup HAL_TX_MONITOR_DST\n"); 556 return ret; 557 } 558 } 559 560 return 0; 561 } 562 563 void ath12k_dp_rx_reo_cmd_list_cleanup(struct ath12k_base *ab) 564 { 565 struct ath12k_dp *dp = &ab->dp; 566 struct ath12k_dp_rx_reo_cmd *cmd, *tmp; 567 struct ath12k_dp_rx_reo_cache_flush_elem *cmd_cache, *tmp_cache; 568 569 spin_lock_bh(&dp->reo_cmd_lock); 570 list_for_each_entry_safe(cmd, tmp, &dp->reo_cmd_list, list) { 571 list_del(&cmd->list); 572 dma_unmap_single(ab->dev, cmd->data.paddr, 573 cmd->data.size, DMA_BIDIRECTIONAL); 574 kfree(cmd->data.vaddr); 575 kfree(cmd); 576 } 577 578 list_for_each_entry_safe(cmd_cache, tmp_cache, 579 &dp->reo_cmd_cache_flush_list, list) { 580 list_del(&cmd_cache->list); 581 dp->reo_cmd_cache_flush_count--; 582 dma_unmap_single(ab->dev, cmd_cache->data.paddr, 583 cmd_cache->data.size, DMA_BIDIRECTIONAL); 584 kfree(cmd_cache->data.vaddr); 585 kfree(cmd_cache); 586 } 587 spin_unlock_bh(&dp->reo_cmd_lock); 588 } 589 590 static void ath12k_dp_reo_cmd_free(struct ath12k_dp *dp, void *ctx, 591 enum hal_reo_cmd_status status) 592 { 593 struct ath12k_dp_rx_tid *rx_tid = ctx; 594 595 if (status != HAL_REO_CMD_SUCCESS) 596 ath12k_warn(dp->ab, "failed to flush rx tid hw desc, tid %d status %d\n", 597 rx_tid->tid, status); 598 599 dma_unmap_single(dp->ab->dev, rx_tid->paddr, rx_tid->size, 600 DMA_BIDIRECTIONAL); 601 kfree(rx_tid->vaddr); 602 rx_tid->vaddr = NULL; 603 } 604 605 static int ath12k_dp_reo_cmd_send(struct ath12k_base *ab, struct ath12k_dp_rx_tid *rx_tid, 606 enum hal_reo_cmd_type type, 607 struct ath12k_hal_reo_cmd *cmd, 608 void (*cb)(struct ath12k_dp *dp, void *ctx, 609 enum hal_reo_cmd_status status)) 610 { 611 struct ath12k_dp *dp = &ab->dp; 612 struct ath12k_dp_rx_reo_cmd *dp_cmd; 613 struct hal_srng *cmd_ring; 614 int cmd_num; 615 616 cmd_ring = &ab->hal.srng_list[dp->reo_cmd_ring.ring_id]; 617 cmd_num = ath12k_hal_reo_cmd_send(ab, cmd_ring, type, cmd); 618 619 /* cmd_num should start from 1, during failure return the error code */ 620 if (cmd_num < 0) 621 return cmd_num; 622 623 /* reo cmd ring descriptors has cmd_num starting from 1 */ 624 if (cmd_num == 0) 625 return -EINVAL; 626 627 if (!cb) 628 return 0; 629 630 /* Can this be optimized so that we keep the pending command list only 631 * for tid delete command to free up the resource on the command status 632 * indication? 633 */ 634 dp_cmd = kzalloc(sizeof(*dp_cmd), GFP_ATOMIC); 635 636 if (!dp_cmd) 637 return -ENOMEM; 638 639 memcpy(&dp_cmd->data, rx_tid, sizeof(*rx_tid)); 640 dp_cmd->cmd_num = cmd_num; 641 dp_cmd->handler = cb; 642 643 spin_lock_bh(&dp->reo_cmd_lock); 644 list_add_tail(&dp_cmd->list, &dp->reo_cmd_list); 645 spin_unlock_bh(&dp->reo_cmd_lock); 646 647 return 0; 648 } 649 650 static void ath12k_dp_reo_cache_flush(struct ath12k_base *ab, 651 struct ath12k_dp_rx_tid *rx_tid) 652 { 653 struct ath12k_hal_reo_cmd cmd = {0}; 654 unsigned long tot_desc_sz, desc_sz; 655 int ret; 656 657 tot_desc_sz = rx_tid->size; 658 desc_sz = ath12k_hal_reo_qdesc_size(0, HAL_DESC_REO_NON_QOS_TID); 659 660 while (tot_desc_sz > desc_sz) { 661 tot_desc_sz -= desc_sz; 662 cmd.addr_lo = lower_32_bits(rx_tid->paddr + tot_desc_sz); 663 cmd.addr_hi = upper_32_bits(rx_tid->paddr); 664 ret = ath12k_dp_reo_cmd_send(ab, rx_tid, 665 HAL_REO_CMD_FLUSH_CACHE, &cmd, 666 NULL); 667 if (ret) 668 ath12k_warn(ab, 669 "failed to send HAL_REO_CMD_FLUSH_CACHE, tid %d (%d)\n", 670 rx_tid->tid, ret); 671 } 672 673 memset(&cmd, 0, sizeof(cmd)); 674 cmd.addr_lo = lower_32_bits(rx_tid->paddr); 675 cmd.addr_hi = upper_32_bits(rx_tid->paddr); 676 cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; 677 ret = ath12k_dp_reo_cmd_send(ab, rx_tid, 678 HAL_REO_CMD_FLUSH_CACHE, 679 &cmd, ath12k_dp_reo_cmd_free); 680 if (ret) { 681 ath12k_err(ab, "failed to send HAL_REO_CMD_FLUSH_CACHE cmd, tid %d (%d)\n", 682 rx_tid->tid, ret); 683 dma_unmap_single(ab->dev, rx_tid->paddr, rx_tid->size, 684 DMA_BIDIRECTIONAL); 685 kfree(rx_tid->vaddr); 686 rx_tid->vaddr = NULL; 687 } 688 } 689 690 static void ath12k_dp_rx_tid_del_func(struct ath12k_dp *dp, void *ctx, 691 enum hal_reo_cmd_status status) 692 { 693 struct ath12k_base *ab = dp->ab; 694 struct ath12k_dp_rx_tid *rx_tid = ctx; 695 struct ath12k_dp_rx_reo_cache_flush_elem *elem, *tmp; 696 697 if (status == HAL_REO_CMD_DRAIN) { 698 goto free_desc; 699 } else if (status != HAL_REO_CMD_SUCCESS) { 700 /* Shouldn't happen! Cleanup in case of other failure? */ 701 ath12k_warn(ab, "failed to delete rx tid %d hw descriptor %d\n", 702 rx_tid->tid, status); 703 return; 704 } 705 706 elem = kzalloc(sizeof(*elem), GFP_ATOMIC); 707 if (!elem) 708 goto free_desc; 709 710 elem->ts = jiffies; 711 memcpy(&elem->data, rx_tid, sizeof(*rx_tid)); 712 713 spin_lock_bh(&dp->reo_cmd_lock); 714 list_add_tail(&elem->list, &dp->reo_cmd_cache_flush_list); 715 dp->reo_cmd_cache_flush_count++; 716 717 /* Flush and invalidate aged REO desc from HW cache */ 718 list_for_each_entry_safe(elem, tmp, &dp->reo_cmd_cache_flush_list, 719 list) { 720 if (dp->reo_cmd_cache_flush_count > ATH12K_DP_RX_REO_DESC_FREE_THRES || 721 time_after(jiffies, elem->ts + 722 msecs_to_jiffies(ATH12K_DP_RX_REO_DESC_FREE_TIMEOUT_MS))) { 723 list_del(&elem->list); 724 dp->reo_cmd_cache_flush_count--; 725 726 /* Unlock the reo_cmd_lock before using ath12k_dp_reo_cmd_send() 727 * within ath12k_dp_reo_cache_flush. The reo_cmd_cache_flush_list 728 * is used in only two contexts, one is in this function called 729 * from napi and the other in ath12k_dp_free during core destroy. 730 * Before dp_free, the irqs would be disabled and would wait to 731 * synchronize. Hence there wouldn’t be any race against add or 732 * delete to this list. Hence unlock-lock is safe here. 733 */ 734 spin_unlock_bh(&dp->reo_cmd_lock); 735 736 ath12k_dp_reo_cache_flush(ab, &elem->data); 737 kfree(elem); 738 spin_lock_bh(&dp->reo_cmd_lock); 739 } 740 } 741 spin_unlock_bh(&dp->reo_cmd_lock); 742 743 return; 744 free_desc: 745 dma_unmap_single(ab->dev, rx_tid->paddr, rx_tid->size, 746 DMA_BIDIRECTIONAL); 747 kfree(rx_tid->vaddr); 748 rx_tid->vaddr = NULL; 749 } 750 751 static void ath12k_peer_rx_tid_qref_setup(struct ath12k_base *ab, u16 peer_id, u16 tid, 752 dma_addr_t paddr) 753 { 754 struct ath12k_reo_queue_ref *qref; 755 struct ath12k_dp *dp = &ab->dp; 756 757 if (!ab->hw_params->reoq_lut_support) 758 return; 759 760 /* TODO: based on ML peer or not, select the LUT. below assumes non 761 * ML peer 762 */ 763 qref = (struct ath12k_reo_queue_ref *)dp->reoq_lut.vaddr + 764 (peer_id * (IEEE80211_NUM_TIDS + 1) + tid); 765 766 qref->info0 = u32_encode_bits(lower_32_bits(paddr), 767 BUFFER_ADDR_INFO0_ADDR); 768 qref->info1 = u32_encode_bits(upper_32_bits(paddr), 769 BUFFER_ADDR_INFO1_ADDR) | 770 u32_encode_bits(tid, DP_REO_QREF_NUM); 771 } 772 773 static void ath12k_peer_rx_tid_qref_reset(struct ath12k_base *ab, u16 peer_id, u16 tid) 774 { 775 struct ath12k_reo_queue_ref *qref; 776 struct ath12k_dp *dp = &ab->dp; 777 778 if (!ab->hw_params->reoq_lut_support) 779 return; 780 781 /* TODO: based on ML peer or not, select the LUT. below assumes non 782 * ML peer 783 */ 784 qref = (struct ath12k_reo_queue_ref *)dp->reoq_lut.vaddr + 785 (peer_id * (IEEE80211_NUM_TIDS + 1) + tid); 786 787 qref->info0 = u32_encode_bits(0, BUFFER_ADDR_INFO0_ADDR); 788 qref->info1 = u32_encode_bits(0, BUFFER_ADDR_INFO1_ADDR) | 789 u32_encode_bits(tid, DP_REO_QREF_NUM); 790 } 791 792 void ath12k_dp_rx_peer_tid_delete(struct ath12k *ar, 793 struct ath12k_peer *peer, u8 tid) 794 { 795 struct ath12k_hal_reo_cmd cmd = {0}; 796 struct ath12k_dp_rx_tid *rx_tid = &peer->rx_tid[tid]; 797 int ret; 798 799 if (!rx_tid->active) 800 return; 801 802 cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; 803 cmd.addr_lo = lower_32_bits(rx_tid->paddr); 804 cmd.addr_hi = upper_32_bits(rx_tid->paddr); 805 cmd.upd0 = HAL_REO_CMD_UPD0_VLD; 806 ret = ath12k_dp_reo_cmd_send(ar->ab, rx_tid, 807 HAL_REO_CMD_UPDATE_RX_QUEUE, &cmd, 808 ath12k_dp_rx_tid_del_func); 809 if (ret) { 810 ath12k_err(ar->ab, "failed to send HAL_REO_CMD_UPDATE_RX_QUEUE cmd, tid %d (%d)\n", 811 tid, ret); 812 dma_unmap_single(ar->ab->dev, rx_tid->paddr, rx_tid->size, 813 DMA_BIDIRECTIONAL); 814 kfree(rx_tid->vaddr); 815 rx_tid->vaddr = NULL; 816 } 817 818 ath12k_peer_rx_tid_qref_reset(ar->ab, peer->peer_id, tid); 819 820 rx_tid->active = false; 821 } 822 823 /* TODO: it's strange (and ugly) that struct hal_reo_dest_ring is converted 824 * to struct hal_wbm_release_ring, I couldn't figure out the logic behind 825 * that. 826 */ 827 static int ath12k_dp_rx_link_desc_return(struct ath12k_base *ab, 828 struct hal_reo_dest_ring *ring, 829 enum hal_wbm_rel_bm_act action) 830 { 831 struct hal_wbm_release_ring *link_desc = (struct hal_wbm_release_ring *)ring; 832 struct hal_wbm_release_ring *desc; 833 struct ath12k_dp *dp = &ab->dp; 834 struct hal_srng *srng; 835 int ret = 0; 836 837 srng = &ab->hal.srng_list[dp->wbm_desc_rel_ring.ring_id]; 838 839 spin_lock_bh(&srng->lock); 840 841 ath12k_hal_srng_access_begin(ab, srng); 842 843 desc = ath12k_hal_srng_src_get_next_entry(ab, srng); 844 if (!desc) { 845 ret = -ENOBUFS; 846 goto exit; 847 } 848 849 ath12k_hal_rx_msdu_link_desc_set(ab, desc, link_desc, action); 850 851 exit: 852 ath12k_hal_srng_access_end(ab, srng); 853 854 spin_unlock_bh(&srng->lock); 855 856 return ret; 857 } 858 859 static void ath12k_dp_rx_frags_cleanup(struct ath12k_dp_rx_tid *rx_tid, 860 bool rel_link_desc) 861 { 862 struct ath12k_base *ab = rx_tid->ab; 863 864 lockdep_assert_held(&ab->base_lock); 865 866 if (rx_tid->dst_ring_desc) { 867 if (rel_link_desc) 868 ath12k_dp_rx_link_desc_return(ab, rx_tid->dst_ring_desc, 869 HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); 870 kfree(rx_tid->dst_ring_desc); 871 rx_tid->dst_ring_desc = NULL; 872 } 873 874 rx_tid->cur_sn = 0; 875 rx_tid->last_frag_no = 0; 876 rx_tid->rx_frag_bitmap = 0; 877 __skb_queue_purge(&rx_tid->rx_frags); 878 } 879 880 void ath12k_dp_rx_peer_tid_cleanup(struct ath12k *ar, struct ath12k_peer *peer) 881 { 882 struct ath12k_dp_rx_tid *rx_tid; 883 int i; 884 885 lockdep_assert_held(&ar->ab->base_lock); 886 887 for (i = 0; i <= IEEE80211_NUM_TIDS; i++) { 888 rx_tid = &peer->rx_tid[i]; 889 890 ath12k_dp_rx_peer_tid_delete(ar, peer, i); 891 ath12k_dp_rx_frags_cleanup(rx_tid, true); 892 893 spin_unlock_bh(&ar->ab->base_lock); 894 del_timer_sync(&rx_tid->frag_timer); 895 spin_lock_bh(&ar->ab->base_lock); 896 } 897 } 898 899 static int ath12k_peer_rx_tid_reo_update(struct ath12k *ar, 900 struct ath12k_peer *peer, 901 struct ath12k_dp_rx_tid *rx_tid, 902 u32 ba_win_sz, u16 ssn, 903 bool update_ssn) 904 { 905 struct ath12k_hal_reo_cmd cmd = {0}; 906 int ret; 907 908 cmd.addr_lo = lower_32_bits(rx_tid->paddr); 909 cmd.addr_hi = upper_32_bits(rx_tid->paddr); 910 cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; 911 cmd.upd0 = HAL_REO_CMD_UPD0_BA_WINDOW_SIZE; 912 cmd.ba_window_size = ba_win_sz; 913 914 if (update_ssn) { 915 cmd.upd0 |= HAL_REO_CMD_UPD0_SSN; 916 cmd.upd2 = u32_encode_bits(ssn, HAL_REO_CMD_UPD2_SSN); 917 } 918 919 ret = ath12k_dp_reo_cmd_send(ar->ab, rx_tid, 920 HAL_REO_CMD_UPDATE_RX_QUEUE, &cmd, 921 NULL); 922 if (ret) { 923 ath12k_warn(ar->ab, "failed to update rx tid queue, tid %d (%d)\n", 924 rx_tid->tid, ret); 925 return ret; 926 } 927 928 rx_tid->ba_win_sz = ba_win_sz; 929 930 return 0; 931 } 932 933 int ath12k_dp_rx_peer_tid_setup(struct ath12k *ar, const u8 *peer_mac, int vdev_id, 934 u8 tid, u32 ba_win_sz, u16 ssn, 935 enum hal_pn_type pn_type) 936 { 937 struct ath12k_base *ab = ar->ab; 938 struct ath12k_dp *dp = &ab->dp; 939 struct hal_rx_reo_queue *addr_aligned; 940 struct ath12k_peer *peer; 941 struct ath12k_dp_rx_tid *rx_tid; 942 u32 hw_desc_sz; 943 void *vaddr; 944 dma_addr_t paddr; 945 int ret; 946 947 spin_lock_bh(&ab->base_lock); 948 949 peer = ath12k_peer_find(ab, vdev_id, peer_mac); 950 if (!peer) { 951 spin_unlock_bh(&ab->base_lock); 952 ath12k_warn(ab, "failed to find the peer to set up rx tid\n"); 953 return -ENOENT; 954 } 955 956 if (ab->hw_params->reoq_lut_support && !dp->reoq_lut.vaddr) { 957 spin_unlock_bh(&ab->base_lock); 958 ath12k_warn(ab, "reo qref table is not setup\n"); 959 return -EINVAL; 960 } 961 962 if (peer->peer_id > DP_MAX_PEER_ID || tid > IEEE80211_NUM_TIDS) { 963 ath12k_warn(ab, "peer id of peer %d or tid %d doesn't allow reoq setup\n", 964 peer->peer_id, tid); 965 spin_unlock_bh(&ab->base_lock); 966 return -EINVAL; 967 } 968 969 rx_tid = &peer->rx_tid[tid]; 970 /* Update the tid queue if it is already setup */ 971 if (rx_tid->active) { 972 paddr = rx_tid->paddr; 973 ret = ath12k_peer_rx_tid_reo_update(ar, peer, rx_tid, 974 ba_win_sz, ssn, true); 975 spin_unlock_bh(&ab->base_lock); 976 if (ret) { 977 ath12k_warn(ab, "failed to update reo for rx tid %d\n", tid); 978 return ret; 979 } 980 981 if (!ab->hw_params->reoq_lut_support) { 982 ret = ath12k_wmi_peer_rx_reorder_queue_setup(ar, vdev_id, 983 peer_mac, 984 paddr, tid, 1, 985 ba_win_sz); 986 if (ret) { 987 ath12k_warn(ab, "failed to setup peer rx reorder queuefor tid %d: %d\n", 988 tid, ret); 989 return ret; 990 } 991 } 992 993 return 0; 994 } 995 996 rx_tid->tid = tid; 997 998 rx_tid->ba_win_sz = ba_win_sz; 999 1000 /* TODO: Optimize the memory allocation for qos tid based on 1001 * the actual BA window size in REO tid update path. 1002 */ 1003 if (tid == HAL_DESC_REO_NON_QOS_TID) 1004 hw_desc_sz = ath12k_hal_reo_qdesc_size(ba_win_sz, tid); 1005 else 1006 hw_desc_sz = ath12k_hal_reo_qdesc_size(DP_BA_WIN_SZ_MAX, tid); 1007 1008 vaddr = kzalloc(hw_desc_sz + HAL_LINK_DESC_ALIGN - 1, GFP_ATOMIC); 1009 if (!vaddr) { 1010 spin_unlock_bh(&ab->base_lock); 1011 return -ENOMEM; 1012 } 1013 1014 addr_aligned = PTR_ALIGN(vaddr, HAL_LINK_DESC_ALIGN); 1015 1016 ath12k_hal_reo_qdesc_setup(addr_aligned, tid, ba_win_sz, 1017 ssn, pn_type); 1018 1019 paddr = dma_map_single(ab->dev, addr_aligned, hw_desc_sz, 1020 DMA_BIDIRECTIONAL); 1021 1022 ret = dma_mapping_error(ab->dev, paddr); 1023 if (ret) { 1024 spin_unlock_bh(&ab->base_lock); 1025 goto err_mem_free; 1026 } 1027 1028 rx_tid->vaddr = vaddr; 1029 rx_tid->paddr = paddr; 1030 rx_tid->size = hw_desc_sz; 1031 rx_tid->active = true; 1032 1033 if (ab->hw_params->reoq_lut_support) { 1034 /* Update the REO queue LUT at the corresponding peer id 1035 * and tid with qaddr. 1036 */ 1037 ath12k_peer_rx_tid_qref_setup(ab, peer->peer_id, tid, paddr); 1038 spin_unlock_bh(&ab->base_lock); 1039 } else { 1040 spin_unlock_bh(&ab->base_lock); 1041 ret = ath12k_wmi_peer_rx_reorder_queue_setup(ar, vdev_id, peer_mac, 1042 paddr, tid, 1, ba_win_sz); 1043 } 1044 1045 return ret; 1046 1047 err_mem_free: 1048 kfree(vaddr); 1049 1050 return ret; 1051 } 1052 1053 int ath12k_dp_rx_ampdu_start(struct ath12k *ar, 1054 struct ieee80211_ampdu_params *params) 1055 { 1056 struct ath12k_base *ab = ar->ab; 1057 struct ath12k_sta *arsta = ath12k_sta_to_arsta(params->sta); 1058 int vdev_id = arsta->arvif->vdev_id; 1059 int ret; 1060 1061 ret = ath12k_dp_rx_peer_tid_setup(ar, params->sta->addr, vdev_id, 1062 params->tid, params->buf_size, 1063 params->ssn, arsta->pn_type); 1064 if (ret) 1065 ath12k_warn(ab, "failed to setup rx tid %d\n", ret); 1066 1067 return ret; 1068 } 1069 1070 int ath12k_dp_rx_ampdu_stop(struct ath12k *ar, 1071 struct ieee80211_ampdu_params *params) 1072 { 1073 struct ath12k_base *ab = ar->ab; 1074 struct ath12k_peer *peer; 1075 struct ath12k_sta *arsta = ath12k_sta_to_arsta(params->sta); 1076 int vdev_id = arsta->arvif->vdev_id; 1077 bool active; 1078 int ret; 1079 1080 spin_lock_bh(&ab->base_lock); 1081 1082 peer = ath12k_peer_find(ab, vdev_id, params->sta->addr); 1083 if (!peer) { 1084 spin_unlock_bh(&ab->base_lock); 1085 ath12k_warn(ab, "failed to find the peer to stop rx aggregation\n"); 1086 return -ENOENT; 1087 } 1088 1089 active = peer->rx_tid[params->tid].active; 1090 1091 if (!active) { 1092 spin_unlock_bh(&ab->base_lock); 1093 return 0; 1094 } 1095 1096 ret = ath12k_peer_rx_tid_reo_update(ar, peer, peer->rx_tid, 1, 0, false); 1097 spin_unlock_bh(&ab->base_lock); 1098 if (ret) { 1099 ath12k_warn(ab, "failed to update reo for rx tid %d: %d\n", 1100 params->tid, ret); 1101 return ret; 1102 } 1103 1104 return ret; 1105 } 1106 1107 int ath12k_dp_rx_peer_pn_replay_config(struct ath12k_vif *arvif, 1108 const u8 *peer_addr, 1109 enum set_key_cmd key_cmd, 1110 struct ieee80211_key_conf *key) 1111 { 1112 struct ath12k *ar = arvif->ar; 1113 struct ath12k_base *ab = ar->ab; 1114 struct ath12k_hal_reo_cmd cmd = {0}; 1115 struct ath12k_peer *peer; 1116 struct ath12k_dp_rx_tid *rx_tid; 1117 u8 tid; 1118 int ret = 0; 1119 1120 /* NOTE: Enable PN/TSC replay check offload only for unicast frames. 1121 * We use mac80211 PN/TSC replay check functionality for bcast/mcast 1122 * for now. 1123 */ 1124 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) 1125 return 0; 1126 1127 cmd.flag = HAL_REO_CMD_FLG_NEED_STATUS; 1128 cmd.upd0 = HAL_REO_CMD_UPD0_PN | 1129 HAL_REO_CMD_UPD0_PN_SIZE | 1130 HAL_REO_CMD_UPD0_PN_VALID | 1131 HAL_REO_CMD_UPD0_PN_CHECK | 1132 HAL_REO_CMD_UPD0_SVLD; 1133 1134 switch (key->cipher) { 1135 case WLAN_CIPHER_SUITE_TKIP: 1136 case WLAN_CIPHER_SUITE_CCMP: 1137 case WLAN_CIPHER_SUITE_CCMP_256: 1138 case WLAN_CIPHER_SUITE_GCMP: 1139 case WLAN_CIPHER_SUITE_GCMP_256: 1140 if (key_cmd == SET_KEY) { 1141 cmd.upd1 |= HAL_REO_CMD_UPD1_PN_CHECK; 1142 cmd.pn_size = 48; 1143 } 1144 break; 1145 default: 1146 break; 1147 } 1148 1149 spin_lock_bh(&ab->base_lock); 1150 1151 peer = ath12k_peer_find(ab, arvif->vdev_id, peer_addr); 1152 if (!peer) { 1153 spin_unlock_bh(&ab->base_lock); 1154 ath12k_warn(ab, "failed to find the peer %pM to configure pn replay detection\n", 1155 peer_addr); 1156 return -ENOENT; 1157 } 1158 1159 for (tid = 0; tid <= IEEE80211_NUM_TIDS; tid++) { 1160 rx_tid = &peer->rx_tid[tid]; 1161 if (!rx_tid->active) 1162 continue; 1163 cmd.addr_lo = lower_32_bits(rx_tid->paddr); 1164 cmd.addr_hi = upper_32_bits(rx_tid->paddr); 1165 ret = ath12k_dp_reo_cmd_send(ab, rx_tid, 1166 HAL_REO_CMD_UPDATE_RX_QUEUE, 1167 &cmd, NULL); 1168 if (ret) { 1169 ath12k_warn(ab, "failed to configure rx tid %d queue of peer %pM for pn replay detection %d\n", 1170 tid, peer_addr, ret); 1171 break; 1172 } 1173 } 1174 1175 spin_unlock_bh(&ab->base_lock); 1176 1177 return ret; 1178 } 1179 1180 static int ath12k_get_ppdu_user_index(struct htt_ppdu_stats *ppdu_stats, 1181 u16 peer_id) 1182 { 1183 int i; 1184 1185 for (i = 0; i < HTT_PPDU_STATS_MAX_USERS - 1; i++) { 1186 if (ppdu_stats->user_stats[i].is_valid_peer_id) { 1187 if (peer_id == ppdu_stats->user_stats[i].peer_id) 1188 return i; 1189 } else { 1190 return i; 1191 } 1192 } 1193 1194 return -EINVAL; 1195 } 1196 1197 static int ath12k_htt_tlv_ppdu_stats_parse(struct ath12k_base *ab, 1198 u16 tag, u16 len, const void *ptr, 1199 void *data) 1200 { 1201 const struct htt_ppdu_stats_usr_cmpltn_ack_ba_status *ba_status; 1202 const struct htt_ppdu_stats_usr_cmpltn_cmn *cmplt_cmn; 1203 const struct htt_ppdu_stats_user_rate *user_rate; 1204 struct htt_ppdu_stats_info *ppdu_info; 1205 struct htt_ppdu_user_stats *user_stats; 1206 int cur_user; 1207 u16 peer_id; 1208 1209 ppdu_info = data; 1210 1211 switch (tag) { 1212 case HTT_PPDU_STATS_TAG_COMMON: 1213 if (len < sizeof(struct htt_ppdu_stats_common)) { 1214 ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", 1215 len, tag); 1216 return -EINVAL; 1217 } 1218 memcpy(&ppdu_info->ppdu_stats.common, ptr, 1219 sizeof(struct htt_ppdu_stats_common)); 1220 break; 1221 case HTT_PPDU_STATS_TAG_USR_RATE: 1222 if (len < sizeof(struct htt_ppdu_stats_user_rate)) { 1223 ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", 1224 len, tag); 1225 return -EINVAL; 1226 } 1227 user_rate = ptr; 1228 peer_id = le16_to_cpu(user_rate->sw_peer_id); 1229 cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats, 1230 peer_id); 1231 if (cur_user < 0) 1232 return -EINVAL; 1233 user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user]; 1234 user_stats->peer_id = peer_id; 1235 user_stats->is_valid_peer_id = true; 1236 memcpy(&user_stats->rate, ptr, 1237 sizeof(struct htt_ppdu_stats_user_rate)); 1238 user_stats->tlv_flags |= BIT(tag); 1239 break; 1240 case HTT_PPDU_STATS_TAG_USR_COMPLTN_COMMON: 1241 if (len < sizeof(struct htt_ppdu_stats_usr_cmpltn_cmn)) { 1242 ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", 1243 len, tag); 1244 return -EINVAL; 1245 } 1246 1247 cmplt_cmn = ptr; 1248 peer_id = le16_to_cpu(cmplt_cmn->sw_peer_id); 1249 cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats, 1250 peer_id); 1251 if (cur_user < 0) 1252 return -EINVAL; 1253 user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user]; 1254 user_stats->peer_id = peer_id; 1255 user_stats->is_valid_peer_id = true; 1256 memcpy(&user_stats->cmpltn_cmn, ptr, 1257 sizeof(struct htt_ppdu_stats_usr_cmpltn_cmn)); 1258 user_stats->tlv_flags |= BIT(tag); 1259 break; 1260 case HTT_PPDU_STATS_TAG_USR_COMPLTN_ACK_BA_STATUS: 1261 if (len < 1262 sizeof(struct htt_ppdu_stats_usr_cmpltn_ack_ba_status)) { 1263 ath12k_warn(ab, "Invalid len %d for the tag 0x%x\n", 1264 len, tag); 1265 return -EINVAL; 1266 } 1267 1268 ba_status = ptr; 1269 peer_id = le16_to_cpu(ba_status->sw_peer_id); 1270 cur_user = ath12k_get_ppdu_user_index(&ppdu_info->ppdu_stats, 1271 peer_id); 1272 if (cur_user < 0) 1273 return -EINVAL; 1274 user_stats = &ppdu_info->ppdu_stats.user_stats[cur_user]; 1275 user_stats->peer_id = peer_id; 1276 user_stats->is_valid_peer_id = true; 1277 memcpy(&user_stats->ack_ba, ptr, 1278 sizeof(struct htt_ppdu_stats_usr_cmpltn_ack_ba_status)); 1279 user_stats->tlv_flags |= BIT(tag); 1280 break; 1281 } 1282 return 0; 1283 } 1284 1285 static int ath12k_dp_htt_tlv_iter(struct ath12k_base *ab, const void *ptr, size_t len, 1286 int (*iter)(struct ath12k_base *ar, u16 tag, u16 len, 1287 const void *ptr, void *data), 1288 void *data) 1289 { 1290 const struct htt_tlv *tlv; 1291 const void *begin = ptr; 1292 u16 tlv_tag, tlv_len; 1293 int ret = -EINVAL; 1294 1295 while (len > 0) { 1296 if (len < sizeof(*tlv)) { 1297 ath12k_err(ab, "htt tlv parse failure at byte %zd (%zu bytes left, %zu expected)\n", 1298 ptr - begin, len, sizeof(*tlv)); 1299 return -EINVAL; 1300 } 1301 tlv = (struct htt_tlv *)ptr; 1302 tlv_tag = le32_get_bits(tlv->header, HTT_TLV_TAG); 1303 tlv_len = le32_get_bits(tlv->header, HTT_TLV_LEN); 1304 ptr += sizeof(*tlv); 1305 len -= sizeof(*tlv); 1306 1307 if (tlv_len > len) { 1308 ath12k_err(ab, "htt tlv parse failure of tag %u at byte %zd (%zu bytes left, %u expected)\n", 1309 tlv_tag, ptr - begin, len, tlv_len); 1310 return -EINVAL; 1311 } 1312 ret = iter(ab, tlv_tag, tlv_len, ptr, data); 1313 if (ret == -ENOMEM) 1314 return ret; 1315 1316 ptr += tlv_len; 1317 len -= tlv_len; 1318 } 1319 return 0; 1320 } 1321 1322 static void 1323 ath12k_update_per_peer_tx_stats(struct ath12k *ar, 1324 struct htt_ppdu_stats *ppdu_stats, u8 user) 1325 { 1326 struct ath12k_base *ab = ar->ab; 1327 struct ath12k_peer *peer; 1328 struct ieee80211_sta *sta; 1329 struct ath12k_sta *arsta; 1330 struct htt_ppdu_stats_user_rate *user_rate; 1331 struct ath12k_per_peer_tx_stats *peer_stats = &ar->peer_tx_stats; 1332 struct htt_ppdu_user_stats *usr_stats = &ppdu_stats->user_stats[user]; 1333 struct htt_ppdu_stats_common *common = &ppdu_stats->common; 1334 int ret; 1335 u8 flags, mcs, nss, bw, sgi, dcm, rate_idx = 0; 1336 u32 v, succ_bytes = 0; 1337 u16 tones, rate = 0, succ_pkts = 0; 1338 u32 tx_duration = 0; 1339 u8 tid = HTT_PPDU_STATS_NON_QOS_TID; 1340 bool is_ampdu = false; 1341 1342 if (!usr_stats) 1343 return; 1344 1345 if (!(usr_stats->tlv_flags & BIT(HTT_PPDU_STATS_TAG_USR_RATE))) 1346 return; 1347 1348 if (usr_stats->tlv_flags & BIT(HTT_PPDU_STATS_TAG_USR_COMPLTN_COMMON)) 1349 is_ampdu = 1350 HTT_USR_CMPLTN_IS_AMPDU(usr_stats->cmpltn_cmn.flags); 1351 1352 if (usr_stats->tlv_flags & 1353 BIT(HTT_PPDU_STATS_TAG_USR_COMPLTN_ACK_BA_STATUS)) { 1354 succ_bytes = le32_to_cpu(usr_stats->ack_ba.success_bytes); 1355 succ_pkts = le32_get_bits(usr_stats->ack_ba.info, 1356 HTT_PPDU_STATS_ACK_BA_INFO_NUM_MSDU_M); 1357 tid = le32_get_bits(usr_stats->ack_ba.info, 1358 HTT_PPDU_STATS_ACK_BA_INFO_TID_NUM); 1359 } 1360 1361 if (common->fes_duration_us) 1362 tx_duration = le32_to_cpu(common->fes_duration_us); 1363 1364 user_rate = &usr_stats->rate; 1365 flags = HTT_USR_RATE_PREAMBLE(user_rate->rate_flags); 1366 bw = HTT_USR_RATE_BW(user_rate->rate_flags) - 2; 1367 nss = HTT_USR_RATE_NSS(user_rate->rate_flags) + 1; 1368 mcs = HTT_USR_RATE_MCS(user_rate->rate_flags); 1369 sgi = HTT_USR_RATE_GI(user_rate->rate_flags); 1370 dcm = HTT_USR_RATE_DCM(user_rate->rate_flags); 1371 1372 /* Note: If host configured fixed rates and in some other special 1373 * cases, the broadcast/management frames are sent in different rates. 1374 * Firmware rate's control to be skipped for this? 1375 */ 1376 1377 if (flags == WMI_RATE_PREAMBLE_HE && mcs > ATH12K_HE_MCS_MAX) { 1378 ath12k_warn(ab, "Invalid HE mcs %d peer stats", mcs); 1379 return; 1380 } 1381 1382 if (flags == WMI_RATE_PREAMBLE_VHT && mcs > ATH12K_VHT_MCS_MAX) { 1383 ath12k_warn(ab, "Invalid VHT mcs %d peer stats", mcs); 1384 return; 1385 } 1386 1387 if (flags == WMI_RATE_PREAMBLE_HT && (mcs > ATH12K_HT_MCS_MAX || nss < 1)) { 1388 ath12k_warn(ab, "Invalid HT mcs %d nss %d peer stats", 1389 mcs, nss); 1390 return; 1391 } 1392 1393 if (flags == WMI_RATE_PREAMBLE_CCK || flags == WMI_RATE_PREAMBLE_OFDM) { 1394 ret = ath12k_mac_hw_ratecode_to_legacy_rate(mcs, 1395 flags, 1396 &rate_idx, 1397 &rate); 1398 if (ret < 0) 1399 return; 1400 } 1401 1402 rcu_read_lock(); 1403 spin_lock_bh(&ab->base_lock); 1404 peer = ath12k_peer_find_by_id(ab, usr_stats->peer_id); 1405 1406 if (!peer || !peer->sta) { 1407 spin_unlock_bh(&ab->base_lock); 1408 rcu_read_unlock(); 1409 return; 1410 } 1411 1412 sta = peer->sta; 1413 arsta = ath12k_sta_to_arsta(sta); 1414 1415 memset(&arsta->txrate, 0, sizeof(arsta->txrate)); 1416 1417 switch (flags) { 1418 case WMI_RATE_PREAMBLE_OFDM: 1419 arsta->txrate.legacy = rate; 1420 break; 1421 case WMI_RATE_PREAMBLE_CCK: 1422 arsta->txrate.legacy = rate; 1423 break; 1424 case WMI_RATE_PREAMBLE_HT: 1425 arsta->txrate.mcs = mcs + 8 * (nss - 1); 1426 arsta->txrate.flags = RATE_INFO_FLAGS_MCS; 1427 if (sgi) 1428 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 1429 break; 1430 case WMI_RATE_PREAMBLE_VHT: 1431 arsta->txrate.mcs = mcs; 1432 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; 1433 if (sgi) 1434 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 1435 break; 1436 case WMI_RATE_PREAMBLE_HE: 1437 arsta->txrate.mcs = mcs; 1438 arsta->txrate.flags = RATE_INFO_FLAGS_HE_MCS; 1439 arsta->txrate.he_dcm = dcm; 1440 arsta->txrate.he_gi = ath12k_he_gi_to_nl80211_he_gi(sgi); 1441 tones = le16_to_cpu(user_rate->ru_end) - 1442 le16_to_cpu(user_rate->ru_start) + 1; 1443 v = ath12k_he_ru_tones_to_nl80211_he_ru_alloc(tones); 1444 arsta->txrate.he_ru_alloc = v; 1445 break; 1446 } 1447 1448 arsta->txrate.nss = nss; 1449 arsta->txrate.bw = ath12k_mac_bw_to_mac80211_bw(bw); 1450 arsta->tx_duration += tx_duration; 1451 memcpy(&arsta->last_txrate, &arsta->txrate, sizeof(struct rate_info)); 1452 1453 /* PPDU stats reported for mgmt packet doesn't have valid tx bytes. 1454 * So skip peer stats update for mgmt packets. 1455 */ 1456 if (tid < HTT_PPDU_STATS_NON_QOS_TID) { 1457 memset(peer_stats, 0, sizeof(*peer_stats)); 1458 peer_stats->succ_pkts = succ_pkts; 1459 peer_stats->succ_bytes = succ_bytes; 1460 peer_stats->is_ampdu = is_ampdu; 1461 peer_stats->duration = tx_duration; 1462 peer_stats->ba_fails = 1463 HTT_USR_CMPLTN_LONG_RETRY(usr_stats->cmpltn_cmn.flags) + 1464 HTT_USR_CMPLTN_SHORT_RETRY(usr_stats->cmpltn_cmn.flags); 1465 } 1466 1467 spin_unlock_bh(&ab->base_lock); 1468 rcu_read_unlock(); 1469 } 1470 1471 static void ath12k_htt_update_ppdu_stats(struct ath12k *ar, 1472 struct htt_ppdu_stats *ppdu_stats) 1473 { 1474 u8 user; 1475 1476 for (user = 0; user < HTT_PPDU_STATS_MAX_USERS - 1; user++) 1477 ath12k_update_per_peer_tx_stats(ar, ppdu_stats, user); 1478 } 1479 1480 static 1481 struct htt_ppdu_stats_info *ath12k_dp_htt_get_ppdu_desc(struct ath12k *ar, 1482 u32 ppdu_id) 1483 { 1484 struct htt_ppdu_stats_info *ppdu_info; 1485 1486 lockdep_assert_held(&ar->data_lock); 1487 if (!list_empty(&ar->ppdu_stats_info)) { 1488 list_for_each_entry(ppdu_info, &ar->ppdu_stats_info, list) { 1489 if (ppdu_info->ppdu_id == ppdu_id) 1490 return ppdu_info; 1491 } 1492 1493 if (ar->ppdu_stat_list_depth > HTT_PPDU_DESC_MAX_DEPTH) { 1494 ppdu_info = list_first_entry(&ar->ppdu_stats_info, 1495 typeof(*ppdu_info), list); 1496 list_del(&ppdu_info->list); 1497 ar->ppdu_stat_list_depth--; 1498 ath12k_htt_update_ppdu_stats(ar, &ppdu_info->ppdu_stats); 1499 kfree(ppdu_info); 1500 } 1501 } 1502 1503 ppdu_info = kzalloc(sizeof(*ppdu_info), GFP_ATOMIC); 1504 if (!ppdu_info) 1505 return NULL; 1506 1507 list_add_tail(&ppdu_info->list, &ar->ppdu_stats_info); 1508 ar->ppdu_stat_list_depth++; 1509 1510 return ppdu_info; 1511 } 1512 1513 static void ath12k_copy_to_delay_stats(struct ath12k_peer *peer, 1514 struct htt_ppdu_user_stats *usr_stats) 1515 { 1516 peer->ppdu_stats_delayba.sw_peer_id = le16_to_cpu(usr_stats->rate.sw_peer_id); 1517 peer->ppdu_stats_delayba.info0 = le32_to_cpu(usr_stats->rate.info0); 1518 peer->ppdu_stats_delayba.ru_end = le16_to_cpu(usr_stats->rate.ru_end); 1519 peer->ppdu_stats_delayba.ru_start = le16_to_cpu(usr_stats->rate.ru_start); 1520 peer->ppdu_stats_delayba.info1 = le32_to_cpu(usr_stats->rate.info1); 1521 peer->ppdu_stats_delayba.rate_flags = le32_to_cpu(usr_stats->rate.rate_flags); 1522 peer->ppdu_stats_delayba.resp_rate_flags = 1523 le32_to_cpu(usr_stats->rate.resp_rate_flags); 1524 1525 peer->delayba_flag = true; 1526 } 1527 1528 static void ath12k_copy_to_bar(struct ath12k_peer *peer, 1529 struct htt_ppdu_user_stats *usr_stats) 1530 { 1531 usr_stats->rate.sw_peer_id = cpu_to_le16(peer->ppdu_stats_delayba.sw_peer_id); 1532 usr_stats->rate.info0 = cpu_to_le32(peer->ppdu_stats_delayba.info0); 1533 usr_stats->rate.ru_end = cpu_to_le16(peer->ppdu_stats_delayba.ru_end); 1534 usr_stats->rate.ru_start = cpu_to_le16(peer->ppdu_stats_delayba.ru_start); 1535 usr_stats->rate.info1 = cpu_to_le32(peer->ppdu_stats_delayba.info1); 1536 usr_stats->rate.rate_flags = cpu_to_le32(peer->ppdu_stats_delayba.rate_flags); 1537 usr_stats->rate.resp_rate_flags = 1538 cpu_to_le32(peer->ppdu_stats_delayba.resp_rate_flags); 1539 1540 peer->delayba_flag = false; 1541 } 1542 1543 static int ath12k_htt_pull_ppdu_stats(struct ath12k_base *ab, 1544 struct sk_buff *skb) 1545 { 1546 struct ath12k_htt_ppdu_stats_msg *msg; 1547 struct htt_ppdu_stats_info *ppdu_info; 1548 struct ath12k_peer *peer = NULL; 1549 struct htt_ppdu_user_stats *usr_stats = NULL; 1550 u32 peer_id = 0; 1551 struct ath12k *ar; 1552 int ret, i; 1553 u8 pdev_id; 1554 u32 ppdu_id, len; 1555 1556 msg = (struct ath12k_htt_ppdu_stats_msg *)skb->data; 1557 len = le32_get_bits(msg->info, HTT_T2H_PPDU_STATS_INFO_PAYLOAD_SIZE); 1558 if (len > (skb->len - struct_size(msg, data, 0))) { 1559 ath12k_warn(ab, 1560 "HTT PPDU STATS event has unexpected payload size %u, should be smaller than %u\n", 1561 len, skb->len); 1562 return -EINVAL; 1563 } 1564 1565 pdev_id = le32_get_bits(msg->info, HTT_T2H_PPDU_STATS_INFO_PDEV_ID); 1566 ppdu_id = le32_to_cpu(msg->ppdu_id); 1567 1568 rcu_read_lock(); 1569 ar = ath12k_mac_get_ar_by_pdev_id(ab, pdev_id); 1570 if (!ar) { 1571 ret = -EINVAL; 1572 goto exit; 1573 } 1574 1575 spin_lock_bh(&ar->data_lock); 1576 ppdu_info = ath12k_dp_htt_get_ppdu_desc(ar, ppdu_id); 1577 if (!ppdu_info) { 1578 spin_unlock_bh(&ar->data_lock); 1579 ret = -EINVAL; 1580 goto exit; 1581 } 1582 1583 ppdu_info->ppdu_id = ppdu_id; 1584 ret = ath12k_dp_htt_tlv_iter(ab, msg->data, len, 1585 ath12k_htt_tlv_ppdu_stats_parse, 1586 (void *)ppdu_info); 1587 if (ret) { 1588 spin_unlock_bh(&ar->data_lock); 1589 ath12k_warn(ab, "Failed to parse tlv %d\n", ret); 1590 goto exit; 1591 } 1592 1593 if (ppdu_info->ppdu_stats.common.num_users >= HTT_PPDU_STATS_MAX_USERS) { 1594 spin_unlock_bh(&ar->data_lock); 1595 ath12k_warn(ab, 1596 "HTT PPDU STATS event has unexpected num_users %u, should be smaller than %u\n", 1597 ppdu_info->ppdu_stats.common.num_users, 1598 HTT_PPDU_STATS_MAX_USERS); 1599 ret = -EINVAL; 1600 goto exit; 1601 } 1602 1603 /* back up data rate tlv for all peers */ 1604 if (ppdu_info->frame_type == HTT_STATS_PPDU_FTYPE_DATA && 1605 (ppdu_info->tlv_bitmap & (1 << HTT_PPDU_STATS_TAG_USR_COMMON)) && 1606 ppdu_info->delay_ba) { 1607 for (i = 0; i < ppdu_info->ppdu_stats.common.num_users; i++) { 1608 peer_id = ppdu_info->ppdu_stats.user_stats[i].peer_id; 1609 spin_lock_bh(&ab->base_lock); 1610 peer = ath12k_peer_find_by_id(ab, peer_id); 1611 if (!peer) { 1612 spin_unlock_bh(&ab->base_lock); 1613 continue; 1614 } 1615 1616 usr_stats = &ppdu_info->ppdu_stats.user_stats[i]; 1617 if (usr_stats->delay_ba) 1618 ath12k_copy_to_delay_stats(peer, usr_stats); 1619 spin_unlock_bh(&ab->base_lock); 1620 } 1621 } 1622 1623 /* restore all peers' data rate tlv to mu-bar tlv */ 1624 if (ppdu_info->frame_type == HTT_STATS_PPDU_FTYPE_BAR && 1625 (ppdu_info->tlv_bitmap & (1 << HTT_PPDU_STATS_TAG_USR_COMMON))) { 1626 for (i = 0; i < ppdu_info->bar_num_users; i++) { 1627 peer_id = ppdu_info->ppdu_stats.user_stats[i].peer_id; 1628 spin_lock_bh(&ab->base_lock); 1629 peer = ath12k_peer_find_by_id(ab, peer_id); 1630 if (!peer) { 1631 spin_unlock_bh(&ab->base_lock); 1632 continue; 1633 } 1634 1635 usr_stats = &ppdu_info->ppdu_stats.user_stats[i]; 1636 if (peer->delayba_flag) 1637 ath12k_copy_to_bar(peer, usr_stats); 1638 spin_unlock_bh(&ab->base_lock); 1639 } 1640 } 1641 1642 spin_unlock_bh(&ar->data_lock); 1643 1644 exit: 1645 rcu_read_unlock(); 1646 1647 return ret; 1648 } 1649 1650 static void ath12k_htt_mlo_offset_event_handler(struct ath12k_base *ab, 1651 struct sk_buff *skb) 1652 { 1653 struct ath12k_htt_mlo_offset_msg *msg; 1654 struct ath12k_pdev *pdev; 1655 struct ath12k *ar; 1656 u8 pdev_id; 1657 1658 msg = (struct ath12k_htt_mlo_offset_msg *)skb->data; 1659 pdev_id = u32_get_bits(__le32_to_cpu(msg->info), 1660 HTT_T2H_MLO_OFFSET_INFO_PDEV_ID); 1661 1662 rcu_read_lock(); 1663 ar = ath12k_mac_get_ar_by_pdev_id(ab, pdev_id); 1664 if (!ar) { 1665 ath12k_warn(ab, "invalid pdev id %d on htt mlo offset\n", pdev_id); 1666 goto exit; 1667 } 1668 1669 spin_lock_bh(&ar->data_lock); 1670 pdev = ar->pdev; 1671 1672 pdev->timestamp.info = __le32_to_cpu(msg->info); 1673 pdev->timestamp.sync_timestamp_lo_us = __le32_to_cpu(msg->sync_timestamp_lo_us); 1674 pdev->timestamp.sync_timestamp_hi_us = __le32_to_cpu(msg->sync_timestamp_hi_us); 1675 pdev->timestamp.mlo_offset_lo = __le32_to_cpu(msg->mlo_offset_lo); 1676 pdev->timestamp.mlo_offset_hi = __le32_to_cpu(msg->mlo_offset_hi); 1677 pdev->timestamp.mlo_offset_clks = __le32_to_cpu(msg->mlo_offset_clks); 1678 pdev->timestamp.mlo_comp_clks = __le32_to_cpu(msg->mlo_comp_clks); 1679 pdev->timestamp.mlo_comp_timer = __le32_to_cpu(msg->mlo_comp_timer); 1680 1681 spin_unlock_bh(&ar->data_lock); 1682 exit: 1683 rcu_read_unlock(); 1684 } 1685 1686 void ath12k_dp_htt_htc_t2h_msg_handler(struct ath12k_base *ab, 1687 struct sk_buff *skb) 1688 { 1689 struct ath12k_dp *dp = &ab->dp; 1690 struct htt_resp_msg *resp = (struct htt_resp_msg *)skb->data; 1691 enum htt_t2h_msg_type type; 1692 u16 peer_id; 1693 u8 vdev_id; 1694 u8 mac_addr[ETH_ALEN]; 1695 u16 peer_mac_h16; 1696 u16 ast_hash = 0; 1697 u16 hw_peer_id; 1698 1699 type = le32_get_bits(resp->version_msg.version, HTT_T2H_MSG_TYPE); 1700 1701 ath12k_dbg(ab, ATH12K_DBG_DP_HTT, "dp_htt rx msg type :0x%0x\n", type); 1702 1703 switch (type) { 1704 case HTT_T2H_MSG_TYPE_VERSION_CONF: 1705 dp->htt_tgt_ver_major = le32_get_bits(resp->version_msg.version, 1706 HTT_T2H_VERSION_CONF_MAJOR); 1707 dp->htt_tgt_ver_minor = le32_get_bits(resp->version_msg.version, 1708 HTT_T2H_VERSION_CONF_MINOR); 1709 complete(&dp->htt_tgt_version_received); 1710 break; 1711 /* TODO: remove unused peer map versions after testing */ 1712 case HTT_T2H_MSG_TYPE_PEER_MAP: 1713 vdev_id = le32_get_bits(resp->peer_map_ev.info, 1714 HTT_T2H_PEER_MAP_INFO_VDEV_ID); 1715 peer_id = le32_get_bits(resp->peer_map_ev.info, 1716 HTT_T2H_PEER_MAP_INFO_PEER_ID); 1717 peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1, 1718 HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16); 1719 ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32), 1720 peer_mac_h16, mac_addr); 1721 ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, 0, 0); 1722 break; 1723 case HTT_T2H_MSG_TYPE_PEER_MAP2: 1724 vdev_id = le32_get_bits(resp->peer_map_ev.info, 1725 HTT_T2H_PEER_MAP_INFO_VDEV_ID); 1726 peer_id = le32_get_bits(resp->peer_map_ev.info, 1727 HTT_T2H_PEER_MAP_INFO_PEER_ID); 1728 peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1, 1729 HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16); 1730 ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32), 1731 peer_mac_h16, mac_addr); 1732 ast_hash = le32_get_bits(resp->peer_map_ev.info2, 1733 HTT_T2H_PEER_MAP_INFO2_AST_HASH_VAL); 1734 hw_peer_id = le32_get_bits(resp->peer_map_ev.info1, 1735 HTT_T2H_PEER_MAP_INFO1_HW_PEER_ID); 1736 ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, ast_hash, 1737 hw_peer_id); 1738 break; 1739 case HTT_T2H_MSG_TYPE_PEER_MAP3: 1740 vdev_id = le32_get_bits(resp->peer_map_ev.info, 1741 HTT_T2H_PEER_MAP_INFO_VDEV_ID); 1742 peer_id = le32_get_bits(resp->peer_map_ev.info, 1743 HTT_T2H_PEER_MAP_INFO_PEER_ID); 1744 peer_mac_h16 = le32_get_bits(resp->peer_map_ev.info1, 1745 HTT_T2H_PEER_MAP_INFO1_MAC_ADDR_H16); 1746 ath12k_dp_get_mac_addr(le32_to_cpu(resp->peer_map_ev.mac_addr_l32), 1747 peer_mac_h16, mac_addr); 1748 ath12k_peer_map_event(ab, vdev_id, peer_id, mac_addr, ast_hash, 1749 peer_id); 1750 break; 1751 case HTT_T2H_MSG_TYPE_PEER_UNMAP: 1752 case HTT_T2H_MSG_TYPE_PEER_UNMAP2: 1753 peer_id = le32_get_bits(resp->peer_unmap_ev.info, 1754 HTT_T2H_PEER_UNMAP_INFO_PEER_ID); 1755 ath12k_peer_unmap_event(ab, peer_id); 1756 break; 1757 case HTT_T2H_MSG_TYPE_PPDU_STATS_IND: 1758 ath12k_htt_pull_ppdu_stats(ab, skb); 1759 break; 1760 case HTT_T2H_MSG_TYPE_EXT_STATS_CONF: 1761 break; 1762 case HTT_T2H_MSG_TYPE_MLO_TIMESTAMP_OFFSET_IND: 1763 ath12k_htt_mlo_offset_event_handler(ab, skb); 1764 break; 1765 default: 1766 ath12k_dbg(ab, ATH12K_DBG_DP_HTT, "dp_htt event %d not handled\n", 1767 type); 1768 break; 1769 } 1770 1771 dev_kfree_skb_any(skb); 1772 } 1773 1774 static int ath12k_dp_rx_msdu_coalesce(struct ath12k *ar, 1775 struct sk_buff_head *msdu_list, 1776 struct sk_buff *first, struct sk_buff *last, 1777 u8 l3pad_bytes, int msdu_len) 1778 { 1779 struct ath12k_base *ab = ar->ab; 1780 struct sk_buff *skb; 1781 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(first); 1782 int buf_first_hdr_len, buf_first_len; 1783 struct hal_rx_desc *ldesc; 1784 int space_extra, rem_len, buf_len; 1785 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 1786 1787 /* As the msdu is spread across multiple rx buffers, 1788 * find the offset to the start of msdu for computing 1789 * the length of the msdu in the first buffer. 1790 */ 1791 buf_first_hdr_len = hal_rx_desc_sz + l3pad_bytes; 1792 buf_first_len = DP_RX_BUFFER_SIZE - buf_first_hdr_len; 1793 1794 if (WARN_ON_ONCE(msdu_len <= buf_first_len)) { 1795 skb_put(first, buf_first_hdr_len + msdu_len); 1796 skb_pull(first, buf_first_hdr_len); 1797 return 0; 1798 } 1799 1800 ldesc = (struct hal_rx_desc *)last->data; 1801 rxcb->is_first_msdu = ath12k_dp_rx_h_first_msdu(ab, ldesc); 1802 rxcb->is_last_msdu = ath12k_dp_rx_h_last_msdu(ab, ldesc); 1803 1804 /* MSDU spans over multiple buffers because the length of the MSDU 1805 * exceeds DP_RX_BUFFER_SIZE - HAL_RX_DESC_SIZE. So assume the data 1806 * in the first buf is of length DP_RX_BUFFER_SIZE - HAL_RX_DESC_SIZE. 1807 */ 1808 skb_put(first, DP_RX_BUFFER_SIZE); 1809 skb_pull(first, buf_first_hdr_len); 1810 1811 /* When an MSDU spread over multiple buffers MSDU_END 1812 * tlvs are valid only in the last buffer. Copy those tlvs. 1813 */ 1814 ath12k_dp_rx_desc_end_tlv_copy(ab, rxcb->rx_desc, ldesc); 1815 1816 space_extra = msdu_len - (buf_first_len + skb_tailroom(first)); 1817 if (space_extra > 0 && 1818 (pskb_expand_head(first, 0, space_extra, GFP_ATOMIC) < 0)) { 1819 /* Free up all buffers of the MSDU */ 1820 while ((skb = __skb_dequeue(msdu_list)) != NULL) { 1821 rxcb = ATH12K_SKB_RXCB(skb); 1822 if (!rxcb->is_continuation) { 1823 dev_kfree_skb_any(skb); 1824 break; 1825 } 1826 dev_kfree_skb_any(skb); 1827 } 1828 return -ENOMEM; 1829 } 1830 1831 rem_len = msdu_len - buf_first_len; 1832 while ((skb = __skb_dequeue(msdu_list)) != NULL && rem_len > 0) { 1833 rxcb = ATH12K_SKB_RXCB(skb); 1834 if (rxcb->is_continuation) 1835 buf_len = DP_RX_BUFFER_SIZE - hal_rx_desc_sz; 1836 else 1837 buf_len = rem_len; 1838 1839 if (buf_len > (DP_RX_BUFFER_SIZE - hal_rx_desc_sz)) { 1840 WARN_ON_ONCE(1); 1841 dev_kfree_skb_any(skb); 1842 return -EINVAL; 1843 } 1844 1845 skb_put(skb, buf_len + hal_rx_desc_sz); 1846 skb_pull(skb, hal_rx_desc_sz); 1847 skb_copy_from_linear_data(skb, skb_put(first, buf_len), 1848 buf_len); 1849 dev_kfree_skb_any(skb); 1850 1851 rem_len -= buf_len; 1852 if (!rxcb->is_continuation) 1853 break; 1854 } 1855 1856 return 0; 1857 } 1858 1859 static struct sk_buff *ath12k_dp_rx_get_msdu_last_buf(struct sk_buff_head *msdu_list, 1860 struct sk_buff *first) 1861 { 1862 struct sk_buff *skb; 1863 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(first); 1864 1865 if (!rxcb->is_continuation) 1866 return first; 1867 1868 skb_queue_walk(msdu_list, skb) { 1869 rxcb = ATH12K_SKB_RXCB(skb); 1870 if (!rxcb->is_continuation) 1871 return skb; 1872 } 1873 1874 return NULL; 1875 } 1876 1877 static void ath12k_dp_rx_h_csum_offload(struct ath12k *ar, struct sk_buff *msdu) 1878 { 1879 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 1880 struct ath12k_base *ab = ar->ab; 1881 bool ip_csum_fail, l4_csum_fail; 1882 1883 ip_csum_fail = ath12k_dp_rx_h_ip_cksum_fail(ab, rxcb->rx_desc); 1884 l4_csum_fail = ath12k_dp_rx_h_l4_cksum_fail(ab, rxcb->rx_desc); 1885 1886 msdu->ip_summed = (ip_csum_fail || l4_csum_fail) ? 1887 CHECKSUM_NONE : CHECKSUM_UNNECESSARY; 1888 } 1889 1890 static int ath12k_dp_rx_crypto_mic_len(struct ath12k *ar, 1891 enum hal_encrypt_type enctype) 1892 { 1893 switch (enctype) { 1894 case HAL_ENCRYPT_TYPE_OPEN: 1895 case HAL_ENCRYPT_TYPE_TKIP_NO_MIC: 1896 case HAL_ENCRYPT_TYPE_TKIP_MIC: 1897 return 0; 1898 case HAL_ENCRYPT_TYPE_CCMP_128: 1899 return IEEE80211_CCMP_MIC_LEN; 1900 case HAL_ENCRYPT_TYPE_CCMP_256: 1901 return IEEE80211_CCMP_256_MIC_LEN; 1902 case HAL_ENCRYPT_TYPE_GCMP_128: 1903 case HAL_ENCRYPT_TYPE_AES_GCMP_256: 1904 return IEEE80211_GCMP_MIC_LEN; 1905 case HAL_ENCRYPT_TYPE_WEP_40: 1906 case HAL_ENCRYPT_TYPE_WEP_104: 1907 case HAL_ENCRYPT_TYPE_WEP_128: 1908 case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4: 1909 case HAL_ENCRYPT_TYPE_WAPI: 1910 break; 1911 } 1912 1913 ath12k_warn(ar->ab, "unsupported encryption type %d for mic len\n", enctype); 1914 return 0; 1915 } 1916 1917 static int ath12k_dp_rx_crypto_param_len(struct ath12k *ar, 1918 enum hal_encrypt_type enctype) 1919 { 1920 switch (enctype) { 1921 case HAL_ENCRYPT_TYPE_OPEN: 1922 return 0; 1923 case HAL_ENCRYPT_TYPE_TKIP_NO_MIC: 1924 case HAL_ENCRYPT_TYPE_TKIP_MIC: 1925 return IEEE80211_TKIP_IV_LEN; 1926 case HAL_ENCRYPT_TYPE_CCMP_128: 1927 return IEEE80211_CCMP_HDR_LEN; 1928 case HAL_ENCRYPT_TYPE_CCMP_256: 1929 return IEEE80211_CCMP_256_HDR_LEN; 1930 case HAL_ENCRYPT_TYPE_GCMP_128: 1931 case HAL_ENCRYPT_TYPE_AES_GCMP_256: 1932 return IEEE80211_GCMP_HDR_LEN; 1933 case HAL_ENCRYPT_TYPE_WEP_40: 1934 case HAL_ENCRYPT_TYPE_WEP_104: 1935 case HAL_ENCRYPT_TYPE_WEP_128: 1936 case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4: 1937 case HAL_ENCRYPT_TYPE_WAPI: 1938 break; 1939 } 1940 1941 ath12k_warn(ar->ab, "unsupported encryption type %d\n", enctype); 1942 return 0; 1943 } 1944 1945 static int ath12k_dp_rx_crypto_icv_len(struct ath12k *ar, 1946 enum hal_encrypt_type enctype) 1947 { 1948 switch (enctype) { 1949 case HAL_ENCRYPT_TYPE_OPEN: 1950 case HAL_ENCRYPT_TYPE_CCMP_128: 1951 case HAL_ENCRYPT_TYPE_CCMP_256: 1952 case HAL_ENCRYPT_TYPE_GCMP_128: 1953 case HAL_ENCRYPT_TYPE_AES_GCMP_256: 1954 return 0; 1955 case HAL_ENCRYPT_TYPE_TKIP_NO_MIC: 1956 case HAL_ENCRYPT_TYPE_TKIP_MIC: 1957 return IEEE80211_TKIP_ICV_LEN; 1958 case HAL_ENCRYPT_TYPE_WEP_40: 1959 case HAL_ENCRYPT_TYPE_WEP_104: 1960 case HAL_ENCRYPT_TYPE_WEP_128: 1961 case HAL_ENCRYPT_TYPE_WAPI_GCM_SM4: 1962 case HAL_ENCRYPT_TYPE_WAPI: 1963 break; 1964 } 1965 1966 ath12k_warn(ar->ab, "unsupported encryption type %d\n", enctype); 1967 return 0; 1968 } 1969 1970 static void ath12k_dp_rx_h_undecap_nwifi(struct ath12k *ar, 1971 struct sk_buff *msdu, 1972 enum hal_encrypt_type enctype, 1973 struct ieee80211_rx_status *status) 1974 { 1975 struct ath12k_base *ab = ar->ab; 1976 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 1977 u8 decap_hdr[DP_MAX_NWIFI_HDR_LEN]; 1978 struct ieee80211_hdr *hdr; 1979 size_t hdr_len; 1980 u8 *crypto_hdr; 1981 u16 qos_ctl; 1982 1983 /* pull decapped header */ 1984 hdr = (struct ieee80211_hdr *)msdu->data; 1985 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1986 skb_pull(msdu, hdr_len); 1987 1988 /* Rebuild qos header */ 1989 hdr->frame_control |= __cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 1990 1991 /* Reset the order bit as the HT_Control header is stripped */ 1992 hdr->frame_control &= ~(__cpu_to_le16(IEEE80211_FCTL_ORDER)); 1993 1994 qos_ctl = rxcb->tid; 1995 1996 if (ath12k_dp_rx_h_mesh_ctl_present(ab, rxcb->rx_desc)) 1997 qos_ctl |= IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT; 1998 1999 /* TODO: Add other QoS ctl fields when required */ 2000 2001 /* copy decap header before overwriting for reuse below */ 2002 memcpy(decap_hdr, hdr, hdr_len); 2003 2004 /* Rebuild crypto header for mac80211 use */ 2005 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 2006 crypto_hdr = skb_push(msdu, ath12k_dp_rx_crypto_param_len(ar, enctype)); 2007 ath12k_dp_rx_desc_get_crypto_header(ar->ab, 2008 rxcb->rx_desc, crypto_hdr, 2009 enctype); 2010 } 2011 2012 memcpy(skb_push(msdu, 2013 IEEE80211_QOS_CTL_LEN), &qos_ctl, 2014 IEEE80211_QOS_CTL_LEN); 2015 memcpy(skb_push(msdu, hdr_len), decap_hdr, hdr_len); 2016 } 2017 2018 static void ath12k_dp_rx_h_undecap_raw(struct ath12k *ar, struct sk_buff *msdu, 2019 enum hal_encrypt_type enctype, 2020 struct ieee80211_rx_status *status, 2021 bool decrypted) 2022 { 2023 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 2024 struct ieee80211_hdr *hdr; 2025 size_t hdr_len; 2026 size_t crypto_len; 2027 2028 if (!rxcb->is_first_msdu || 2029 !(rxcb->is_first_msdu && rxcb->is_last_msdu)) { 2030 WARN_ON_ONCE(1); 2031 return; 2032 } 2033 2034 skb_trim(msdu, msdu->len - FCS_LEN); 2035 2036 if (!decrypted) 2037 return; 2038 2039 hdr = (void *)msdu->data; 2040 2041 /* Tail */ 2042 if (status->flag & RX_FLAG_IV_STRIPPED) { 2043 skb_trim(msdu, msdu->len - 2044 ath12k_dp_rx_crypto_mic_len(ar, enctype)); 2045 2046 skb_trim(msdu, msdu->len - 2047 ath12k_dp_rx_crypto_icv_len(ar, enctype)); 2048 } else { 2049 /* MIC */ 2050 if (status->flag & RX_FLAG_MIC_STRIPPED) 2051 skb_trim(msdu, msdu->len - 2052 ath12k_dp_rx_crypto_mic_len(ar, enctype)); 2053 2054 /* ICV */ 2055 if (status->flag & RX_FLAG_ICV_STRIPPED) 2056 skb_trim(msdu, msdu->len - 2057 ath12k_dp_rx_crypto_icv_len(ar, enctype)); 2058 } 2059 2060 /* MMIC */ 2061 if ((status->flag & RX_FLAG_MMIC_STRIPPED) && 2062 !ieee80211_has_morefrags(hdr->frame_control) && 2063 enctype == HAL_ENCRYPT_TYPE_TKIP_MIC) 2064 skb_trim(msdu, msdu->len - IEEE80211_CCMP_MIC_LEN); 2065 2066 /* Head */ 2067 if (status->flag & RX_FLAG_IV_STRIPPED) { 2068 hdr_len = ieee80211_hdrlen(hdr->frame_control); 2069 crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype); 2070 2071 memmove(msdu->data + crypto_len, msdu->data, hdr_len); 2072 skb_pull(msdu, crypto_len); 2073 } 2074 } 2075 2076 static void ath12k_get_dot11_hdr_from_rx_desc(struct ath12k *ar, 2077 struct sk_buff *msdu, 2078 struct ath12k_skb_rxcb *rxcb, 2079 struct ieee80211_rx_status *status, 2080 enum hal_encrypt_type enctype) 2081 { 2082 struct hal_rx_desc *rx_desc = rxcb->rx_desc; 2083 struct ath12k_base *ab = ar->ab; 2084 size_t hdr_len, crypto_len; 2085 struct ieee80211_hdr *hdr; 2086 u16 qos_ctl; 2087 __le16 fc; 2088 u8 *crypto_hdr; 2089 2090 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 2091 crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype); 2092 crypto_hdr = skb_push(msdu, crypto_len); 2093 ath12k_dp_rx_desc_get_crypto_header(ab, rx_desc, crypto_hdr, enctype); 2094 } 2095 2096 fc = cpu_to_le16(ath12k_dp_rxdesc_get_mpdu_frame_ctrl(ab, rx_desc)); 2097 hdr_len = ieee80211_hdrlen(fc); 2098 skb_push(msdu, hdr_len); 2099 hdr = (struct ieee80211_hdr *)msdu->data; 2100 hdr->frame_control = fc; 2101 2102 /* Get wifi header from rx_desc */ 2103 ath12k_dp_rx_desc_get_dot11_hdr(ab, rx_desc, hdr); 2104 2105 if (rxcb->is_mcbc) 2106 status->flag &= ~RX_FLAG_PN_VALIDATED; 2107 2108 /* Add QOS header */ 2109 if (ieee80211_is_data_qos(hdr->frame_control)) { 2110 qos_ctl = rxcb->tid; 2111 if (ath12k_dp_rx_h_mesh_ctl_present(ab, rx_desc)) 2112 qos_ctl |= IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT; 2113 2114 /* TODO: Add other QoS ctl fields when required */ 2115 memcpy(msdu->data + (hdr_len - IEEE80211_QOS_CTL_LEN), 2116 &qos_ctl, IEEE80211_QOS_CTL_LEN); 2117 } 2118 } 2119 2120 static void ath12k_dp_rx_h_undecap_eth(struct ath12k *ar, 2121 struct sk_buff *msdu, 2122 enum hal_encrypt_type enctype, 2123 struct ieee80211_rx_status *status) 2124 { 2125 struct ieee80211_hdr *hdr; 2126 struct ethhdr *eth; 2127 u8 da[ETH_ALEN]; 2128 u8 sa[ETH_ALEN]; 2129 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 2130 struct ath12k_dp_rx_rfc1042_hdr rfc = {0xaa, 0xaa, 0x03, {0x00, 0x00, 0x00}}; 2131 2132 eth = (struct ethhdr *)msdu->data; 2133 ether_addr_copy(da, eth->h_dest); 2134 ether_addr_copy(sa, eth->h_source); 2135 rfc.snap_type = eth->h_proto; 2136 skb_pull(msdu, sizeof(*eth)); 2137 memcpy(skb_push(msdu, sizeof(rfc)), &rfc, 2138 sizeof(rfc)); 2139 ath12k_get_dot11_hdr_from_rx_desc(ar, msdu, rxcb, status, enctype); 2140 2141 /* original 802.11 header has a different DA and in 2142 * case of 4addr it may also have different SA 2143 */ 2144 hdr = (struct ieee80211_hdr *)msdu->data; 2145 ether_addr_copy(ieee80211_get_DA(hdr), da); 2146 ether_addr_copy(ieee80211_get_SA(hdr), sa); 2147 } 2148 2149 static void ath12k_dp_rx_h_undecap(struct ath12k *ar, struct sk_buff *msdu, 2150 struct hal_rx_desc *rx_desc, 2151 enum hal_encrypt_type enctype, 2152 struct ieee80211_rx_status *status, 2153 bool decrypted) 2154 { 2155 struct ath12k_base *ab = ar->ab; 2156 u8 decap; 2157 struct ethhdr *ehdr; 2158 2159 decap = ath12k_dp_rx_h_decap_type(ab, rx_desc); 2160 2161 switch (decap) { 2162 case DP_RX_DECAP_TYPE_NATIVE_WIFI: 2163 ath12k_dp_rx_h_undecap_nwifi(ar, msdu, enctype, status); 2164 break; 2165 case DP_RX_DECAP_TYPE_RAW: 2166 ath12k_dp_rx_h_undecap_raw(ar, msdu, enctype, status, 2167 decrypted); 2168 break; 2169 case DP_RX_DECAP_TYPE_ETHERNET2_DIX: 2170 ehdr = (struct ethhdr *)msdu->data; 2171 2172 /* mac80211 allows fast path only for authorized STA */ 2173 if (ehdr->h_proto == cpu_to_be16(ETH_P_PAE)) { 2174 ATH12K_SKB_RXCB(msdu)->is_eapol = true; 2175 ath12k_dp_rx_h_undecap_eth(ar, msdu, enctype, status); 2176 break; 2177 } 2178 2179 /* PN for mcast packets will be validated in mac80211; 2180 * remove eth header and add 802.11 header. 2181 */ 2182 if (ATH12K_SKB_RXCB(msdu)->is_mcbc && decrypted) 2183 ath12k_dp_rx_h_undecap_eth(ar, msdu, enctype, status); 2184 break; 2185 case DP_RX_DECAP_TYPE_8023: 2186 /* TODO: Handle undecap for these formats */ 2187 break; 2188 } 2189 } 2190 2191 struct ath12k_peer * 2192 ath12k_dp_rx_h_find_peer(struct ath12k_base *ab, struct sk_buff *msdu) 2193 { 2194 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 2195 struct hal_rx_desc *rx_desc = rxcb->rx_desc; 2196 struct ath12k_peer *peer = NULL; 2197 2198 lockdep_assert_held(&ab->base_lock); 2199 2200 if (rxcb->peer_id) 2201 peer = ath12k_peer_find_by_id(ab, rxcb->peer_id); 2202 2203 if (peer) 2204 return peer; 2205 2206 if (!rx_desc || !(ath12k_dp_rxdesc_mac_addr2_valid(ab, rx_desc))) 2207 return NULL; 2208 2209 peer = ath12k_peer_find_by_addr(ab, 2210 ath12k_dp_rxdesc_get_mpdu_start_addr2(ab, 2211 rx_desc)); 2212 return peer; 2213 } 2214 2215 static void ath12k_dp_rx_h_mpdu(struct ath12k *ar, 2216 struct sk_buff *msdu, 2217 struct hal_rx_desc *rx_desc, 2218 struct ieee80211_rx_status *rx_status) 2219 { 2220 bool fill_crypto_hdr; 2221 struct ath12k_base *ab = ar->ab; 2222 struct ath12k_skb_rxcb *rxcb; 2223 enum hal_encrypt_type enctype; 2224 bool is_decrypted = false; 2225 struct ieee80211_hdr *hdr; 2226 struct ath12k_peer *peer; 2227 u32 err_bitmap; 2228 2229 /* PN for multicast packets will be checked in mac80211 */ 2230 rxcb = ATH12K_SKB_RXCB(msdu); 2231 fill_crypto_hdr = ath12k_dp_rx_h_is_da_mcbc(ar->ab, rx_desc); 2232 rxcb->is_mcbc = fill_crypto_hdr; 2233 2234 if (rxcb->is_mcbc) 2235 rxcb->peer_id = ath12k_dp_rx_h_peer_id(ar->ab, rx_desc); 2236 2237 spin_lock_bh(&ar->ab->base_lock); 2238 peer = ath12k_dp_rx_h_find_peer(ar->ab, msdu); 2239 if (peer) { 2240 if (rxcb->is_mcbc) 2241 enctype = peer->sec_type_grp; 2242 else 2243 enctype = peer->sec_type; 2244 } else { 2245 enctype = HAL_ENCRYPT_TYPE_OPEN; 2246 } 2247 spin_unlock_bh(&ar->ab->base_lock); 2248 2249 err_bitmap = ath12k_dp_rx_h_mpdu_err(ab, rx_desc); 2250 if (enctype != HAL_ENCRYPT_TYPE_OPEN && !err_bitmap) 2251 is_decrypted = ath12k_dp_rx_h_is_decrypted(ab, rx_desc); 2252 2253 /* Clear per-MPDU flags while leaving per-PPDU flags intact */ 2254 rx_status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 2255 RX_FLAG_MMIC_ERROR | 2256 RX_FLAG_DECRYPTED | 2257 RX_FLAG_IV_STRIPPED | 2258 RX_FLAG_MMIC_STRIPPED); 2259 2260 if (err_bitmap & HAL_RX_MPDU_ERR_FCS) 2261 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2262 if (err_bitmap & HAL_RX_MPDU_ERR_TKIP_MIC) 2263 rx_status->flag |= RX_FLAG_MMIC_ERROR; 2264 2265 if (is_decrypted) { 2266 rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MMIC_STRIPPED; 2267 2268 if (fill_crypto_hdr) 2269 rx_status->flag |= RX_FLAG_MIC_STRIPPED | 2270 RX_FLAG_ICV_STRIPPED; 2271 else 2272 rx_status->flag |= RX_FLAG_IV_STRIPPED | 2273 RX_FLAG_PN_VALIDATED; 2274 } 2275 2276 ath12k_dp_rx_h_csum_offload(ar, msdu); 2277 ath12k_dp_rx_h_undecap(ar, msdu, rx_desc, 2278 enctype, rx_status, is_decrypted); 2279 2280 if (!is_decrypted || fill_crypto_hdr) 2281 return; 2282 2283 if (ath12k_dp_rx_h_decap_type(ar->ab, rx_desc) != 2284 DP_RX_DECAP_TYPE_ETHERNET2_DIX) { 2285 hdr = (void *)msdu->data; 2286 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2287 } 2288 } 2289 2290 static void ath12k_dp_rx_h_rate(struct ath12k *ar, struct hal_rx_desc *rx_desc, 2291 struct ieee80211_rx_status *rx_status) 2292 { 2293 struct ath12k_base *ab = ar->ab; 2294 struct ieee80211_supported_band *sband; 2295 enum rx_msdu_start_pkt_type pkt_type; 2296 u8 bw; 2297 u8 rate_mcs, nss; 2298 u8 sgi; 2299 bool is_cck; 2300 2301 pkt_type = ath12k_dp_rx_h_pkt_type(ab, rx_desc); 2302 bw = ath12k_dp_rx_h_rx_bw(ab, rx_desc); 2303 rate_mcs = ath12k_dp_rx_h_rate_mcs(ab, rx_desc); 2304 nss = ath12k_dp_rx_h_nss(ab, rx_desc); 2305 sgi = ath12k_dp_rx_h_sgi(ab, rx_desc); 2306 2307 switch (pkt_type) { 2308 case RX_MSDU_START_PKT_TYPE_11A: 2309 case RX_MSDU_START_PKT_TYPE_11B: 2310 is_cck = (pkt_type == RX_MSDU_START_PKT_TYPE_11B); 2311 sband = &ar->mac.sbands[rx_status->band]; 2312 rx_status->rate_idx = ath12k_mac_hw_rate_to_idx(sband, rate_mcs, 2313 is_cck); 2314 break; 2315 case RX_MSDU_START_PKT_TYPE_11N: 2316 rx_status->encoding = RX_ENC_HT; 2317 if (rate_mcs > ATH12K_HT_MCS_MAX) { 2318 ath12k_warn(ar->ab, 2319 "Received with invalid mcs in HT mode %d\n", 2320 rate_mcs); 2321 break; 2322 } 2323 rx_status->rate_idx = rate_mcs + (8 * (nss - 1)); 2324 if (sgi) 2325 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2326 rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw); 2327 break; 2328 case RX_MSDU_START_PKT_TYPE_11AC: 2329 rx_status->encoding = RX_ENC_VHT; 2330 rx_status->rate_idx = rate_mcs; 2331 if (rate_mcs > ATH12K_VHT_MCS_MAX) { 2332 ath12k_warn(ar->ab, 2333 "Received with invalid mcs in VHT mode %d\n", 2334 rate_mcs); 2335 break; 2336 } 2337 rx_status->nss = nss; 2338 if (sgi) 2339 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2340 rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw); 2341 break; 2342 case RX_MSDU_START_PKT_TYPE_11AX: 2343 rx_status->rate_idx = rate_mcs; 2344 if (rate_mcs > ATH12K_HE_MCS_MAX) { 2345 ath12k_warn(ar->ab, 2346 "Received with invalid mcs in HE mode %d\n", 2347 rate_mcs); 2348 break; 2349 } 2350 rx_status->encoding = RX_ENC_HE; 2351 rx_status->nss = nss; 2352 rx_status->he_gi = ath12k_he_gi_to_nl80211_he_gi(sgi); 2353 rx_status->bw = ath12k_mac_bw_to_mac80211_bw(bw); 2354 break; 2355 } 2356 } 2357 2358 void ath12k_dp_rx_h_ppdu(struct ath12k *ar, struct hal_rx_desc *rx_desc, 2359 struct ieee80211_rx_status *rx_status) 2360 { 2361 struct ath12k_base *ab = ar->ab; 2362 u8 channel_num; 2363 u32 center_freq, meta_data; 2364 struct ieee80211_channel *channel; 2365 2366 rx_status->freq = 0; 2367 rx_status->rate_idx = 0; 2368 rx_status->nss = 0; 2369 rx_status->encoding = RX_ENC_LEGACY; 2370 rx_status->bw = RATE_INFO_BW_20; 2371 rx_status->enc_flags = 0; 2372 2373 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; 2374 2375 meta_data = ath12k_dp_rx_h_freq(ab, rx_desc); 2376 channel_num = meta_data; 2377 center_freq = meta_data >> 16; 2378 2379 if (center_freq >= 5935 && center_freq <= 7105) { 2380 rx_status->band = NL80211_BAND_6GHZ; 2381 } else if (channel_num >= 1 && channel_num <= 14) { 2382 rx_status->band = NL80211_BAND_2GHZ; 2383 } else if (channel_num >= 36 && channel_num <= 173) { 2384 rx_status->band = NL80211_BAND_5GHZ; 2385 } else { 2386 spin_lock_bh(&ar->data_lock); 2387 channel = ar->rx_channel; 2388 if (channel) { 2389 rx_status->band = channel->band; 2390 channel_num = 2391 ieee80211_frequency_to_channel(channel->center_freq); 2392 } 2393 spin_unlock_bh(&ar->data_lock); 2394 ath12k_dbg_dump(ar->ab, ATH12K_DBG_DATA, NULL, "rx_desc: ", 2395 rx_desc, sizeof(*rx_desc)); 2396 } 2397 2398 rx_status->freq = ieee80211_channel_to_frequency(channel_num, 2399 rx_status->band); 2400 2401 ath12k_dp_rx_h_rate(ar, rx_desc, rx_status); 2402 } 2403 2404 static void ath12k_dp_rx_deliver_msdu(struct ath12k *ar, struct napi_struct *napi, 2405 struct sk_buff *msdu, 2406 struct ieee80211_rx_status *status) 2407 { 2408 struct ath12k_base *ab = ar->ab; 2409 static const struct ieee80211_radiotap_he known = { 2410 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 2411 IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN), 2412 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN), 2413 }; 2414 struct ieee80211_radiotap_he *he; 2415 struct ieee80211_rx_status *rx_status; 2416 struct ieee80211_sta *pubsta; 2417 struct ath12k_peer *peer; 2418 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 2419 u8 decap = DP_RX_DECAP_TYPE_RAW; 2420 bool is_mcbc = rxcb->is_mcbc; 2421 bool is_eapol = rxcb->is_eapol; 2422 2423 if (status->encoding == RX_ENC_HE && !(status->flag & RX_FLAG_RADIOTAP_HE) && 2424 !(status->flag & RX_FLAG_SKIP_MONITOR)) { 2425 he = skb_push(msdu, sizeof(known)); 2426 memcpy(he, &known, sizeof(known)); 2427 status->flag |= RX_FLAG_RADIOTAP_HE; 2428 } 2429 2430 if (!(status->flag & RX_FLAG_ONLY_MONITOR)) 2431 decap = ath12k_dp_rx_h_decap_type(ab, rxcb->rx_desc); 2432 2433 spin_lock_bh(&ab->base_lock); 2434 peer = ath12k_dp_rx_h_find_peer(ab, msdu); 2435 2436 pubsta = peer ? peer->sta : NULL; 2437 2438 spin_unlock_bh(&ab->base_lock); 2439 2440 ath12k_dbg(ab, ATH12K_DBG_DATA, 2441 "rx skb %pK len %u peer %pM %d %s sn %u %s%s%s%s%s%s%s%s rate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 2442 msdu, 2443 msdu->len, 2444 peer ? peer->addr : NULL, 2445 rxcb->tid, 2446 is_mcbc ? "mcast" : "ucast", 2447 ath12k_dp_rx_h_seq_no(ab, rxcb->rx_desc), 2448 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "", 2449 (status->encoding == RX_ENC_HT) ? "ht" : "", 2450 (status->encoding == RX_ENC_VHT) ? "vht" : "", 2451 (status->encoding == RX_ENC_HE) ? "he" : "", 2452 (status->bw == RATE_INFO_BW_40) ? "40" : "", 2453 (status->bw == RATE_INFO_BW_80) ? "80" : "", 2454 (status->bw == RATE_INFO_BW_160) ? "160" : "", 2455 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "", 2456 status->rate_idx, 2457 status->nss, 2458 status->freq, 2459 status->band, status->flag, 2460 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 2461 !!(status->flag & RX_FLAG_MMIC_ERROR), 2462 !!(status->flag & RX_FLAG_AMSDU_MORE)); 2463 2464 ath12k_dbg_dump(ab, ATH12K_DBG_DP_RX, NULL, "dp rx msdu: ", 2465 msdu->data, msdu->len); 2466 2467 rx_status = IEEE80211_SKB_RXCB(msdu); 2468 *rx_status = *status; 2469 2470 /* TODO: trace rx packet */ 2471 2472 /* PN for multicast packets are not validate in HW, 2473 * so skip 802.3 rx path 2474 * Also, fast_rx expects the STA to be authorized, hence 2475 * eapol packets are sent in slow path. 2476 */ 2477 if (decap == DP_RX_DECAP_TYPE_ETHERNET2_DIX && !is_eapol && 2478 !(is_mcbc && rx_status->flag & RX_FLAG_DECRYPTED)) 2479 rx_status->flag |= RX_FLAG_8023; 2480 2481 ieee80211_rx_napi(ar->hw, pubsta, msdu, napi); 2482 } 2483 2484 static int ath12k_dp_rx_process_msdu(struct ath12k *ar, 2485 struct sk_buff *msdu, 2486 struct sk_buff_head *msdu_list, 2487 struct ieee80211_rx_status *rx_status) 2488 { 2489 struct ath12k_base *ab = ar->ab; 2490 struct hal_rx_desc *rx_desc, *lrx_desc; 2491 struct ath12k_skb_rxcb *rxcb; 2492 struct sk_buff *last_buf; 2493 u8 l3_pad_bytes; 2494 u16 msdu_len; 2495 int ret; 2496 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 2497 2498 last_buf = ath12k_dp_rx_get_msdu_last_buf(msdu_list, msdu); 2499 if (!last_buf) { 2500 ath12k_warn(ab, 2501 "No valid Rx buffer to access MSDU_END tlv\n"); 2502 ret = -EIO; 2503 goto free_out; 2504 } 2505 2506 rx_desc = (struct hal_rx_desc *)msdu->data; 2507 lrx_desc = (struct hal_rx_desc *)last_buf->data; 2508 if (!ath12k_dp_rx_h_msdu_done(ab, lrx_desc)) { 2509 ath12k_warn(ab, "msdu_done bit in msdu_end is not set\n"); 2510 ret = -EIO; 2511 goto free_out; 2512 } 2513 2514 rxcb = ATH12K_SKB_RXCB(msdu); 2515 rxcb->rx_desc = rx_desc; 2516 msdu_len = ath12k_dp_rx_h_msdu_len(ab, lrx_desc); 2517 l3_pad_bytes = ath12k_dp_rx_h_l3pad(ab, lrx_desc); 2518 2519 if (rxcb->is_frag) { 2520 skb_pull(msdu, hal_rx_desc_sz); 2521 } else if (!rxcb->is_continuation) { 2522 if ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE) { 2523 ret = -EINVAL; 2524 ath12k_warn(ab, "invalid msdu len %u\n", msdu_len); 2525 ath12k_dbg_dump(ab, ATH12K_DBG_DATA, NULL, "", rx_desc, 2526 sizeof(*rx_desc)); 2527 goto free_out; 2528 } 2529 skb_put(msdu, hal_rx_desc_sz + l3_pad_bytes + msdu_len); 2530 skb_pull(msdu, hal_rx_desc_sz + l3_pad_bytes); 2531 } else { 2532 ret = ath12k_dp_rx_msdu_coalesce(ar, msdu_list, 2533 msdu, last_buf, 2534 l3_pad_bytes, msdu_len); 2535 if (ret) { 2536 ath12k_warn(ab, 2537 "failed to coalesce msdu rx buffer%d\n", ret); 2538 goto free_out; 2539 } 2540 } 2541 2542 ath12k_dp_rx_h_ppdu(ar, rx_desc, rx_status); 2543 ath12k_dp_rx_h_mpdu(ar, msdu, rx_desc, rx_status); 2544 2545 rx_status->flag |= RX_FLAG_SKIP_MONITOR | RX_FLAG_DUP_VALIDATED; 2546 2547 return 0; 2548 2549 free_out: 2550 return ret; 2551 } 2552 2553 static void ath12k_dp_rx_process_received_packets(struct ath12k_base *ab, 2554 struct napi_struct *napi, 2555 struct sk_buff_head *msdu_list, 2556 int ring_id) 2557 { 2558 struct ieee80211_rx_status rx_status = {0}; 2559 struct ath12k_skb_rxcb *rxcb; 2560 struct sk_buff *msdu; 2561 struct ath12k *ar; 2562 u8 mac_id, pdev_id; 2563 int ret; 2564 2565 if (skb_queue_empty(msdu_list)) 2566 return; 2567 2568 rcu_read_lock(); 2569 2570 while ((msdu = __skb_dequeue(msdu_list))) { 2571 rxcb = ATH12K_SKB_RXCB(msdu); 2572 mac_id = rxcb->mac_id; 2573 pdev_id = ath12k_hw_mac_id_to_pdev_id(ab->hw_params, mac_id); 2574 ar = ab->pdevs[pdev_id].ar; 2575 if (!rcu_dereference(ab->pdevs_active[pdev_id])) { 2576 dev_kfree_skb_any(msdu); 2577 continue; 2578 } 2579 2580 if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) { 2581 dev_kfree_skb_any(msdu); 2582 continue; 2583 } 2584 2585 ret = ath12k_dp_rx_process_msdu(ar, msdu, msdu_list, &rx_status); 2586 if (ret) { 2587 ath12k_dbg(ab, ATH12K_DBG_DATA, 2588 "Unable to process msdu %d", ret); 2589 dev_kfree_skb_any(msdu); 2590 continue; 2591 } 2592 2593 ath12k_dp_rx_deliver_msdu(ar, napi, msdu, &rx_status); 2594 } 2595 2596 rcu_read_unlock(); 2597 } 2598 2599 int ath12k_dp_rx_process(struct ath12k_base *ab, int ring_id, 2600 struct napi_struct *napi, int budget) 2601 { 2602 struct ath12k_rx_desc_info *desc_info; 2603 struct ath12k_dp *dp = &ab->dp; 2604 struct dp_rxdma_ring *rx_ring = &dp->rx_refill_buf_ring; 2605 struct hal_reo_dest_ring *desc; 2606 int num_buffs_reaped = 0; 2607 struct sk_buff_head msdu_list; 2608 struct ath12k_skb_rxcb *rxcb; 2609 int total_msdu_reaped = 0; 2610 struct hal_srng *srng; 2611 struct sk_buff *msdu; 2612 bool done = false; 2613 int mac_id; 2614 u64 desc_va; 2615 2616 __skb_queue_head_init(&msdu_list); 2617 2618 srng = &ab->hal.srng_list[dp->reo_dst_ring[ring_id].ring_id]; 2619 2620 spin_lock_bh(&srng->lock); 2621 2622 try_again: 2623 ath12k_hal_srng_access_begin(ab, srng); 2624 2625 while ((desc = ath12k_hal_srng_dst_get_next_entry(ab, srng))) { 2626 enum hal_reo_dest_ring_push_reason push_reason; 2627 u32 cookie; 2628 2629 cookie = le32_get_bits(desc->buf_addr_info.info1, 2630 BUFFER_ADDR_INFO1_SW_COOKIE); 2631 2632 mac_id = le32_get_bits(desc->info0, 2633 HAL_REO_DEST_RING_INFO0_SRC_LINK_ID); 2634 2635 desc_va = ((u64)le32_to_cpu(desc->buf_va_hi) << 32 | 2636 le32_to_cpu(desc->buf_va_lo)); 2637 desc_info = (struct ath12k_rx_desc_info *)((unsigned long)desc_va); 2638 2639 /* retry manual desc retrieval */ 2640 if (!desc_info) { 2641 desc_info = ath12k_dp_get_rx_desc(ab, cookie); 2642 if (!desc_info) { 2643 ath12k_warn(ab, "Invalid cookie in manual desc retrieval"); 2644 continue; 2645 } 2646 } 2647 2648 if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC) 2649 ath12k_warn(ab, "Check HW CC implementation"); 2650 2651 msdu = desc_info->skb; 2652 desc_info->skb = NULL; 2653 2654 spin_lock_bh(&dp->rx_desc_lock); 2655 list_move_tail(&desc_info->list, &dp->rx_desc_free_list); 2656 spin_unlock_bh(&dp->rx_desc_lock); 2657 2658 rxcb = ATH12K_SKB_RXCB(msdu); 2659 dma_unmap_single(ab->dev, rxcb->paddr, 2660 msdu->len + skb_tailroom(msdu), 2661 DMA_FROM_DEVICE); 2662 2663 num_buffs_reaped++; 2664 2665 push_reason = le32_get_bits(desc->info0, 2666 HAL_REO_DEST_RING_INFO0_PUSH_REASON); 2667 if (push_reason != 2668 HAL_REO_DEST_RING_PUSH_REASON_ROUTING_INSTRUCTION) { 2669 dev_kfree_skb_any(msdu); 2670 ab->soc_stats.hal_reo_error[dp->reo_dst_ring[ring_id].ring_id]++; 2671 continue; 2672 } 2673 2674 rxcb->is_first_msdu = !!(le32_to_cpu(desc->rx_msdu_info.info0) & 2675 RX_MSDU_DESC_INFO0_FIRST_MSDU_IN_MPDU); 2676 rxcb->is_last_msdu = !!(le32_to_cpu(desc->rx_msdu_info.info0) & 2677 RX_MSDU_DESC_INFO0_LAST_MSDU_IN_MPDU); 2678 rxcb->is_continuation = !!(le32_to_cpu(desc->rx_msdu_info.info0) & 2679 RX_MSDU_DESC_INFO0_MSDU_CONTINUATION); 2680 rxcb->mac_id = mac_id; 2681 rxcb->peer_id = le32_get_bits(desc->rx_mpdu_info.peer_meta_data, 2682 RX_MPDU_DESC_META_DATA_PEER_ID); 2683 rxcb->tid = le32_get_bits(desc->rx_mpdu_info.info0, 2684 RX_MPDU_DESC_INFO0_TID); 2685 2686 __skb_queue_tail(&msdu_list, msdu); 2687 2688 if (!rxcb->is_continuation) { 2689 total_msdu_reaped++; 2690 done = true; 2691 } else { 2692 done = false; 2693 } 2694 2695 if (total_msdu_reaped >= budget) 2696 break; 2697 } 2698 2699 /* Hw might have updated the head pointer after we cached it. 2700 * In this case, even though there are entries in the ring we'll 2701 * get rx_desc NULL. Give the read another try with updated cached 2702 * head pointer so that we can reap complete MPDU in the current 2703 * rx processing. 2704 */ 2705 if (!done && ath12k_hal_srng_dst_num_free(ab, srng, true)) { 2706 ath12k_hal_srng_access_end(ab, srng); 2707 goto try_again; 2708 } 2709 2710 ath12k_hal_srng_access_end(ab, srng); 2711 2712 spin_unlock_bh(&srng->lock); 2713 2714 if (!total_msdu_reaped) 2715 goto exit; 2716 2717 /* TODO: Move to implicit BM? */ 2718 ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_buffs_reaped, 2719 ab->hw_params->hal_params->rx_buf_rbm, true); 2720 2721 ath12k_dp_rx_process_received_packets(ab, napi, &msdu_list, 2722 ring_id); 2723 2724 exit: 2725 return total_msdu_reaped; 2726 } 2727 2728 static void ath12k_dp_rx_frag_timer(struct timer_list *timer) 2729 { 2730 struct ath12k_dp_rx_tid *rx_tid = from_timer(rx_tid, timer, frag_timer); 2731 2732 spin_lock_bh(&rx_tid->ab->base_lock); 2733 if (rx_tid->last_frag_no && 2734 rx_tid->rx_frag_bitmap == GENMASK(rx_tid->last_frag_no, 0)) { 2735 spin_unlock_bh(&rx_tid->ab->base_lock); 2736 return; 2737 } 2738 ath12k_dp_rx_frags_cleanup(rx_tid, true); 2739 spin_unlock_bh(&rx_tid->ab->base_lock); 2740 } 2741 2742 int ath12k_dp_rx_peer_frag_setup(struct ath12k *ar, const u8 *peer_mac, int vdev_id) 2743 { 2744 struct ath12k_base *ab = ar->ab; 2745 struct crypto_shash *tfm; 2746 struct ath12k_peer *peer; 2747 struct ath12k_dp_rx_tid *rx_tid; 2748 int i; 2749 2750 tfm = crypto_alloc_shash("michael_mic", 0, 0); 2751 if (IS_ERR(tfm)) 2752 return PTR_ERR(tfm); 2753 2754 spin_lock_bh(&ab->base_lock); 2755 2756 peer = ath12k_peer_find(ab, vdev_id, peer_mac); 2757 if (!peer) { 2758 spin_unlock_bh(&ab->base_lock); 2759 ath12k_warn(ab, "failed to find the peer to set up fragment info\n"); 2760 return -ENOENT; 2761 } 2762 2763 for (i = 0; i <= IEEE80211_NUM_TIDS; i++) { 2764 rx_tid = &peer->rx_tid[i]; 2765 rx_tid->ab = ab; 2766 timer_setup(&rx_tid->frag_timer, ath12k_dp_rx_frag_timer, 0); 2767 skb_queue_head_init(&rx_tid->rx_frags); 2768 } 2769 2770 peer->tfm_mmic = tfm; 2771 peer->dp_setup_done = true; 2772 spin_unlock_bh(&ab->base_lock); 2773 2774 return 0; 2775 } 2776 2777 static int ath12k_dp_rx_h_michael_mic(struct crypto_shash *tfm, u8 *key, 2778 struct ieee80211_hdr *hdr, u8 *data, 2779 size_t data_len, u8 *mic) 2780 { 2781 SHASH_DESC_ON_STACK(desc, tfm); 2782 u8 mic_hdr[16] = {0}; 2783 u8 tid = 0; 2784 int ret; 2785 2786 if (!tfm) 2787 return -EINVAL; 2788 2789 desc->tfm = tfm; 2790 2791 ret = crypto_shash_setkey(tfm, key, 8); 2792 if (ret) 2793 goto out; 2794 2795 ret = crypto_shash_init(desc); 2796 if (ret) 2797 goto out; 2798 2799 /* TKIP MIC header */ 2800 memcpy(mic_hdr, ieee80211_get_DA(hdr), ETH_ALEN); 2801 memcpy(mic_hdr + ETH_ALEN, ieee80211_get_SA(hdr), ETH_ALEN); 2802 if (ieee80211_is_data_qos(hdr->frame_control)) 2803 tid = ieee80211_get_tid(hdr); 2804 mic_hdr[12] = tid; 2805 2806 ret = crypto_shash_update(desc, mic_hdr, 16); 2807 if (ret) 2808 goto out; 2809 ret = crypto_shash_update(desc, data, data_len); 2810 if (ret) 2811 goto out; 2812 ret = crypto_shash_final(desc, mic); 2813 out: 2814 shash_desc_zero(desc); 2815 return ret; 2816 } 2817 2818 static int ath12k_dp_rx_h_verify_tkip_mic(struct ath12k *ar, struct ath12k_peer *peer, 2819 struct sk_buff *msdu) 2820 { 2821 struct ath12k_base *ab = ar->ab; 2822 struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)msdu->data; 2823 struct ieee80211_rx_status *rxs = IEEE80211_SKB_RXCB(msdu); 2824 struct ieee80211_key_conf *key_conf; 2825 struct ieee80211_hdr *hdr; 2826 u8 mic[IEEE80211_CCMP_MIC_LEN]; 2827 int head_len, tail_len, ret; 2828 size_t data_len; 2829 u32 hdr_len, hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 2830 u8 *key, *data; 2831 u8 key_idx; 2832 2833 if (ath12k_dp_rx_h_enctype(ab, rx_desc) != HAL_ENCRYPT_TYPE_TKIP_MIC) 2834 return 0; 2835 2836 hdr = (struct ieee80211_hdr *)(msdu->data + hal_rx_desc_sz); 2837 hdr_len = ieee80211_hdrlen(hdr->frame_control); 2838 head_len = hdr_len + hal_rx_desc_sz + IEEE80211_TKIP_IV_LEN; 2839 tail_len = IEEE80211_CCMP_MIC_LEN + IEEE80211_TKIP_ICV_LEN + FCS_LEN; 2840 2841 if (!is_multicast_ether_addr(hdr->addr1)) 2842 key_idx = peer->ucast_keyidx; 2843 else 2844 key_idx = peer->mcast_keyidx; 2845 2846 key_conf = peer->keys[key_idx]; 2847 2848 data = msdu->data + head_len; 2849 data_len = msdu->len - head_len - tail_len; 2850 key = &key_conf->key[NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY]; 2851 2852 ret = ath12k_dp_rx_h_michael_mic(peer->tfm_mmic, key, hdr, data, data_len, mic); 2853 if (ret || memcmp(mic, data + data_len, IEEE80211_CCMP_MIC_LEN)) 2854 goto mic_fail; 2855 2856 return 0; 2857 2858 mic_fail: 2859 (ATH12K_SKB_RXCB(msdu))->is_first_msdu = true; 2860 (ATH12K_SKB_RXCB(msdu))->is_last_msdu = true; 2861 2862 rxs->flag |= RX_FLAG_MMIC_ERROR | RX_FLAG_MMIC_STRIPPED | 2863 RX_FLAG_IV_STRIPPED | RX_FLAG_DECRYPTED; 2864 skb_pull(msdu, hal_rx_desc_sz); 2865 2866 ath12k_dp_rx_h_ppdu(ar, rx_desc, rxs); 2867 ath12k_dp_rx_h_undecap(ar, msdu, rx_desc, 2868 HAL_ENCRYPT_TYPE_TKIP_MIC, rxs, true); 2869 ieee80211_rx(ar->hw, msdu); 2870 return -EINVAL; 2871 } 2872 2873 static void ath12k_dp_rx_h_undecap_frag(struct ath12k *ar, struct sk_buff *msdu, 2874 enum hal_encrypt_type enctype, u32 flags) 2875 { 2876 struct ieee80211_hdr *hdr; 2877 size_t hdr_len; 2878 size_t crypto_len; 2879 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 2880 2881 if (!flags) 2882 return; 2883 2884 hdr = (struct ieee80211_hdr *)(msdu->data + hal_rx_desc_sz); 2885 2886 if (flags & RX_FLAG_MIC_STRIPPED) 2887 skb_trim(msdu, msdu->len - 2888 ath12k_dp_rx_crypto_mic_len(ar, enctype)); 2889 2890 if (flags & RX_FLAG_ICV_STRIPPED) 2891 skb_trim(msdu, msdu->len - 2892 ath12k_dp_rx_crypto_icv_len(ar, enctype)); 2893 2894 if (flags & RX_FLAG_IV_STRIPPED) { 2895 hdr_len = ieee80211_hdrlen(hdr->frame_control); 2896 crypto_len = ath12k_dp_rx_crypto_param_len(ar, enctype); 2897 2898 memmove(msdu->data + hal_rx_desc_sz + crypto_len, 2899 msdu->data + hal_rx_desc_sz, hdr_len); 2900 skb_pull(msdu, crypto_len); 2901 } 2902 } 2903 2904 static int ath12k_dp_rx_h_defrag(struct ath12k *ar, 2905 struct ath12k_peer *peer, 2906 struct ath12k_dp_rx_tid *rx_tid, 2907 struct sk_buff **defrag_skb) 2908 { 2909 struct ath12k_base *ab = ar->ab; 2910 struct hal_rx_desc *rx_desc; 2911 struct sk_buff *skb, *first_frag, *last_frag; 2912 struct ieee80211_hdr *hdr; 2913 enum hal_encrypt_type enctype; 2914 bool is_decrypted = false; 2915 int msdu_len = 0; 2916 int extra_space; 2917 u32 flags, hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 2918 2919 first_frag = skb_peek(&rx_tid->rx_frags); 2920 last_frag = skb_peek_tail(&rx_tid->rx_frags); 2921 2922 skb_queue_walk(&rx_tid->rx_frags, skb) { 2923 flags = 0; 2924 rx_desc = (struct hal_rx_desc *)skb->data; 2925 hdr = (struct ieee80211_hdr *)(skb->data + hal_rx_desc_sz); 2926 2927 enctype = ath12k_dp_rx_h_enctype(ab, rx_desc); 2928 if (enctype != HAL_ENCRYPT_TYPE_OPEN) 2929 is_decrypted = ath12k_dp_rx_h_is_decrypted(ab, 2930 rx_desc); 2931 2932 if (is_decrypted) { 2933 if (skb != first_frag) 2934 flags |= RX_FLAG_IV_STRIPPED; 2935 if (skb != last_frag) 2936 flags |= RX_FLAG_ICV_STRIPPED | 2937 RX_FLAG_MIC_STRIPPED; 2938 } 2939 2940 /* RX fragments are always raw packets */ 2941 if (skb != last_frag) 2942 skb_trim(skb, skb->len - FCS_LEN); 2943 ath12k_dp_rx_h_undecap_frag(ar, skb, enctype, flags); 2944 2945 if (skb != first_frag) 2946 skb_pull(skb, hal_rx_desc_sz + 2947 ieee80211_hdrlen(hdr->frame_control)); 2948 msdu_len += skb->len; 2949 } 2950 2951 extra_space = msdu_len - (DP_RX_BUFFER_SIZE + skb_tailroom(first_frag)); 2952 if (extra_space > 0 && 2953 (pskb_expand_head(first_frag, 0, extra_space, GFP_ATOMIC) < 0)) 2954 return -ENOMEM; 2955 2956 __skb_unlink(first_frag, &rx_tid->rx_frags); 2957 while ((skb = __skb_dequeue(&rx_tid->rx_frags))) { 2958 skb_put_data(first_frag, skb->data, skb->len); 2959 dev_kfree_skb_any(skb); 2960 } 2961 2962 hdr = (struct ieee80211_hdr *)(first_frag->data + hal_rx_desc_sz); 2963 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); 2964 ATH12K_SKB_RXCB(first_frag)->is_frag = 1; 2965 2966 if (ath12k_dp_rx_h_verify_tkip_mic(ar, peer, first_frag)) 2967 first_frag = NULL; 2968 2969 *defrag_skb = first_frag; 2970 return 0; 2971 } 2972 2973 static int ath12k_dp_rx_h_defrag_reo_reinject(struct ath12k *ar, 2974 struct ath12k_dp_rx_tid *rx_tid, 2975 struct sk_buff *defrag_skb) 2976 { 2977 struct ath12k_base *ab = ar->ab; 2978 struct ath12k_dp *dp = &ab->dp; 2979 struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)defrag_skb->data; 2980 struct hal_reo_entrance_ring *reo_ent_ring; 2981 struct hal_reo_dest_ring *reo_dest_ring; 2982 struct dp_link_desc_bank *link_desc_banks; 2983 struct hal_rx_msdu_link *msdu_link; 2984 struct hal_rx_msdu_details *msdu0; 2985 struct hal_srng *srng; 2986 dma_addr_t link_paddr, buf_paddr; 2987 u32 desc_bank, msdu_info, msdu_ext_info, mpdu_info; 2988 u32 cookie, hal_rx_desc_sz, dest_ring_info0; 2989 int ret; 2990 struct ath12k_rx_desc_info *desc_info; 2991 u8 dst_ind; 2992 2993 hal_rx_desc_sz = ab->hw_params->hal_desc_sz; 2994 link_desc_banks = dp->link_desc_banks; 2995 reo_dest_ring = rx_tid->dst_ring_desc; 2996 2997 ath12k_hal_rx_reo_ent_paddr_get(ab, &reo_dest_ring->buf_addr_info, 2998 &link_paddr, &cookie); 2999 desc_bank = u32_get_bits(cookie, DP_LINK_DESC_BANK_MASK); 3000 3001 msdu_link = (struct hal_rx_msdu_link *)(link_desc_banks[desc_bank].vaddr + 3002 (link_paddr - link_desc_banks[desc_bank].paddr)); 3003 msdu0 = &msdu_link->msdu_link[0]; 3004 msdu_ext_info = le32_to_cpu(msdu0->rx_msdu_ext_info.info0); 3005 dst_ind = u32_get_bits(msdu_ext_info, RX_MSDU_EXT_DESC_INFO0_REO_DEST_IND); 3006 3007 memset(msdu0, 0, sizeof(*msdu0)); 3008 3009 msdu_info = u32_encode_bits(1, RX_MSDU_DESC_INFO0_FIRST_MSDU_IN_MPDU) | 3010 u32_encode_bits(1, RX_MSDU_DESC_INFO0_LAST_MSDU_IN_MPDU) | 3011 u32_encode_bits(0, RX_MSDU_DESC_INFO0_MSDU_CONTINUATION) | 3012 u32_encode_bits(defrag_skb->len - hal_rx_desc_sz, 3013 RX_MSDU_DESC_INFO0_MSDU_LENGTH) | 3014 u32_encode_bits(1, RX_MSDU_DESC_INFO0_VALID_SA) | 3015 u32_encode_bits(1, RX_MSDU_DESC_INFO0_VALID_DA); 3016 msdu0->rx_msdu_info.info0 = cpu_to_le32(msdu_info); 3017 msdu0->rx_msdu_ext_info.info0 = cpu_to_le32(msdu_ext_info); 3018 3019 /* change msdu len in hal rx desc */ 3020 ath12k_dp_rxdesc_set_msdu_len(ab, rx_desc, defrag_skb->len - hal_rx_desc_sz); 3021 3022 buf_paddr = dma_map_single(ab->dev, defrag_skb->data, 3023 defrag_skb->len + skb_tailroom(defrag_skb), 3024 DMA_FROM_DEVICE); 3025 if (dma_mapping_error(ab->dev, buf_paddr)) 3026 return -ENOMEM; 3027 3028 spin_lock_bh(&dp->rx_desc_lock); 3029 desc_info = list_first_entry_or_null(&dp->rx_desc_free_list, 3030 struct ath12k_rx_desc_info, 3031 list); 3032 if (!desc_info) { 3033 spin_unlock_bh(&dp->rx_desc_lock); 3034 ath12k_warn(ab, "failed to find rx desc for reinject\n"); 3035 ret = -ENOMEM; 3036 goto err_unmap_dma; 3037 } 3038 3039 desc_info->skb = defrag_skb; 3040 3041 list_del(&desc_info->list); 3042 list_add_tail(&desc_info->list, &dp->rx_desc_used_list); 3043 spin_unlock_bh(&dp->rx_desc_lock); 3044 3045 ATH12K_SKB_RXCB(defrag_skb)->paddr = buf_paddr; 3046 3047 ath12k_hal_rx_buf_addr_info_set(&msdu0->buf_addr_info, buf_paddr, 3048 desc_info->cookie, 3049 HAL_RX_BUF_RBM_SW3_BM); 3050 3051 /* Fill mpdu details into reo entrance ring */ 3052 srng = &ab->hal.srng_list[dp->reo_reinject_ring.ring_id]; 3053 3054 spin_lock_bh(&srng->lock); 3055 ath12k_hal_srng_access_begin(ab, srng); 3056 3057 reo_ent_ring = ath12k_hal_srng_src_get_next_entry(ab, srng); 3058 if (!reo_ent_ring) { 3059 ath12k_hal_srng_access_end(ab, srng); 3060 spin_unlock_bh(&srng->lock); 3061 ret = -ENOSPC; 3062 goto err_free_desc; 3063 } 3064 memset(reo_ent_ring, 0, sizeof(*reo_ent_ring)); 3065 3066 ath12k_hal_rx_buf_addr_info_set(&reo_ent_ring->buf_addr_info, link_paddr, 3067 cookie, 3068 HAL_RX_BUF_RBM_WBM_CHIP0_IDLE_DESC_LIST); 3069 3070 mpdu_info = u32_encode_bits(1, RX_MPDU_DESC_INFO0_MSDU_COUNT) | 3071 u32_encode_bits(0, RX_MPDU_DESC_INFO0_FRAG_FLAG) | 3072 u32_encode_bits(1, RX_MPDU_DESC_INFO0_RAW_MPDU) | 3073 u32_encode_bits(1, RX_MPDU_DESC_INFO0_VALID_PN) | 3074 u32_encode_bits(rx_tid->tid, RX_MPDU_DESC_INFO0_TID); 3075 3076 reo_ent_ring->rx_mpdu_info.info0 = cpu_to_le32(mpdu_info); 3077 reo_ent_ring->rx_mpdu_info.peer_meta_data = 3078 reo_dest_ring->rx_mpdu_info.peer_meta_data; 3079 3080 /* Firmware expects physical address to be filled in queue_addr_lo in 3081 * the MLO scenario and in case of non MLO peer meta data needs to be 3082 * filled. 3083 * TODO: Need to handle for MLO scenario. 3084 */ 3085 reo_ent_ring->queue_addr_lo = reo_dest_ring->rx_mpdu_info.peer_meta_data; 3086 reo_ent_ring->info0 = le32_encode_bits(dst_ind, 3087 HAL_REO_ENTR_RING_INFO0_DEST_IND); 3088 3089 reo_ent_ring->info1 = le32_encode_bits(rx_tid->cur_sn, 3090 HAL_REO_ENTR_RING_INFO1_MPDU_SEQ_NUM); 3091 dest_ring_info0 = le32_get_bits(reo_dest_ring->info0, 3092 HAL_REO_DEST_RING_INFO0_SRC_LINK_ID); 3093 reo_ent_ring->info2 = 3094 cpu_to_le32(u32_get_bits(dest_ring_info0, 3095 HAL_REO_ENTR_RING_INFO2_SRC_LINK_ID)); 3096 3097 ath12k_hal_srng_access_end(ab, srng); 3098 spin_unlock_bh(&srng->lock); 3099 3100 return 0; 3101 3102 err_free_desc: 3103 spin_lock_bh(&dp->rx_desc_lock); 3104 list_del(&desc_info->list); 3105 list_add_tail(&desc_info->list, &dp->rx_desc_free_list); 3106 desc_info->skb = NULL; 3107 spin_unlock_bh(&dp->rx_desc_lock); 3108 err_unmap_dma: 3109 dma_unmap_single(ab->dev, buf_paddr, defrag_skb->len + skb_tailroom(defrag_skb), 3110 DMA_FROM_DEVICE); 3111 return ret; 3112 } 3113 3114 static int ath12k_dp_rx_h_cmp_frags(struct ath12k_base *ab, 3115 struct sk_buff *a, struct sk_buff *b) 3116 { 3117 int frag1, frag2; 3118 3119 frag1 = ath12k_dp_rx_h_frag_no(ab, a); 3120 frag2 = ath12k_dp_rx_h_frag_no(ab, b); 3121 3122 return frag1 - frag2; 3123 } 3124 3125 static void ath12k_dp_rx_h_sort_frags(struct ath12k_base *ab, 3126 struct sk_buff_head *frag_list, 3127 struct sk_buff *cur_frag) 3128 { 3129 struct sk_buff *skb; 3130 int cmp; 3131 3132 skb_queue_walk(frag_list, skb) { 3133 cmp = ath12k_dp_rx_h_cmp_frags(ab, skb, cur_frag); 3134 if (cmp < 0) 3135 continue; 3136 __skb_queue_before(frag_list, skb, cur_frag); 3137 return; 3138 } 3139 __skb_queue_tail(frag_list, cur_frag); 3140 } 3141 3142 static u64 ath12k_dp_rx_h_get_pn(struct ath12k *ar, struct sk_buff *skb) 3143 { 3144 struct ieee80211_hdr *hdr; 3145 u64 pn = 0; 3146 u8 *ehdr; 3147 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 3148 3149 hdr = (struct ieee80211_hdr *)(skb->data + hal_rx_desc_sz); 3150 ehdr = skb->data + hal_rx_desc_sz + ieee80211_hdrlen(hdr->frame_control); 3151 3152 pn = ehdr[0]; 3153 pn |= (u64)ehdr[1] << 8; 3154 pn |= (u64)ehdr[4] << 16; 3155 pn |= (u64)ehdr[5] << 24; 3156 pn |= (u64)ehdr[6] << 32; 3157 pn |= (u64)ehdr[7] << 40; 3158 3159 return pn; 3160 } 3161 3162 static bool 3163 ath12k_dp_rx_h_defrag_validate_incr_pn(struct ath12k *ar, struct ath12k_dp_rx_tid *rx_tid) 3164 { 3165 struct ath12k_base *ab = ar->ab; 3166 enum hal_encrypt_type encrypt_type; 3167 struct sk_buff *first_frag, *skb; 3168 struct hal_rx_desc *desc; 3169 u64 last_pn; 3170 u64 cur_pn; 3171 3172 first_frag = skb_peek(&rx_tid->rx_frags); 3173 desc = (struct hal_rx_desc *)first_frag->data; 3174 3175 encrypt_type = ath12k_dp_rx_h_enctype(ab, desc); 3176 if (encrypt_type != HAL_ENCRYPT_TYPE_CCMP_128 && 3177 encrypt_type != HAL_ENCRYPT_TYPE_CCMP_256 && 3178 encrypt_type != HAL_ENCRYPT_TYPE_GCMP_128 && 3179 encrypt_type != HAL_ENCRYPT_TYPE_AES_GCMP_256) 3180 return true; 3181 3182 last_pn = ath12k_dp_rx_h_get_pn(ar, first_frag); 3183 skb_queue_walk(&rx_tid->rx_frags, skb) { 3184 if (skb == first_frag) 3185 continue; 3186 3187 cur_pn = ath12k_dp_rx_h_get_pn(ar, skb); 3188 if (cur_pn != last_pn + 1) 3189 return false; 3190 last_pn = cur_pn; 3191 } 3192 return true; 3193 } 3194 3195 static int ath12k_dp_rx_frag_h_mpdu(struct ath12k *ar, 3196 struct sk_buff *msdu, 3197 struct hal_reo_dest_ring *ring_desc) 3198 { 3199 struct ath12k_base *ab = ar->ab; 3200 struct hal_rx_desc *rx_desc; 3201 struct ath12k_peer *peer; 3202 struct ath12k_dp_rx_tid *rx_tid; 3203 struct sk_buff *defrag_skb = NULL; 3204 u32 peer_id; 3205 u16 seqno, frag_no; 3206 u8 tid; 3207 int ret = 0; 3208 bool more_frags; 3209 3210 rx_desc = (struct hal_rx_desc *)msdu->data; 3211 peer_id = ath12k_dp_rx_h_peer_id(ab, rx_desc); 3212 tid = ath12k_dp_rx_h_tid(ab, rx_desc); 3213 seqno = ath12k_dp_rx_h_seq_no(ab, rx_desc); 3214 frag_no = ath12k_dp_rx_h_frag_no(ab, msdu); 3215 more_frags = ath12k_dp_rx_h_more_frags(ab, msdu); 3216 3217 if (!ath12k_dp_rx_h_seq_ctrl_valid(ab, rx_desc) || 3218 !ath12k_dp_rx_h_fc_valid(ab, rx_desc) || 3219 tid > IEEE80211_NUM_TIDS) 3220 return -EINVAL; 3221 3222 /* received unfragmented packet in reo 3223 * exception ring, this shouldn't happen 3224 * as these packets typically come from 3225 * reo2sw srngs. 3226 */ 3227 if (WARN_ON_ONCE(!frag_no && !more_frags)) 3228 return -EINVAL; 3229 3230 spin_lock_bh(&ab->base_lock); 3231 peer = ath12k_peer_find_by_id(ab, peer_id); 3232 if (!peer) { 3233 ath12k_warn(ab, "failed to find the peer to de-fragment received fragment peer_id %d\n", 3234 peer_id); 3235 ret = -ENOENT; 3236 goto out_unlock; 3237 } 3238 3239 if (!peer->dp_setup_done) { 3240 ath12k_warn(ab, "The peer %pM [%d] has uninitialized datapath\n", 3241 peer->addr, peer_id); 3242 ret = -ENOENT; 3243 goto out_unlock; 3244 } 3245 3246 rx_tid = &peer->rx_tid[tid]; 3247 3248 if ((!skb_queue_empty(&rx_tid->rx_frags) && seqno != rx_tid->cur_sn) || 3249 skb_queue_empty(&rx_tid->rx_frags)) { 3250 /* Flush stored fragments and start a new sequence */ 3251 ath12k_dp_rx_frags_cleanup(rx_tid, true); 3252 rx_tid->cur_sn = seqno; 3253 } 3254 3255 if (rx_tid->rx_frag_bitmap & BIT(frag_no)) { 3256 /* Fragment already present */ 3257 ret = -EINVAL; 3258 goto out_unlock; 3259 } 3260 3261 if ((!rx_tid->rx_frag_bitmap || frag_no > __fls(rx_tid->rx_frag_bitmap))) 3262 __skb_queue_tail(&rx_tid->rx_frags, msdu); 3263 else 3264 ath12k_dp_rx_h_sort_frags(ab, &rx_tid->rx_frags, msdu); 3265 3266 rx_tid->rx_frag_bitmap |= BIT(frag_no); 3267 if (!more_frags) 3268 rx_tid->last_frag_no = frag_no; 3269 3270 if (frag_no == 0) { 3271 rx_tid->dst_ring_desc = kmemdup(ring_desc, 3272 sizeof(*rx_tid->dst_ring_desc), 3273 GFP_ATOMIC); 3274 if (!rx_tid->dst_ring_desc) { 3275 ret = -ENOMEM; 3276 goto out_unlock; 3277 } 3278 } else { 3279 ath12k_dp_rx_link_desc_return(ab, ring_desc, 3280 HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); 3281 } 3282 3283 if (!rx_tid->last_frag_no || 3284 rx_tid->rx_frag_bitmap != GENMASK(rx_tid->last_frag_no, 0)) { 3285 mod_timer(&rx_tid->frag_timer, jiffies + 3286 ATH12K_DP_RX_FRAGMENT_TIMEOUT_MS); 3287 goto out_unlock; 3288 } 3289 3290 spin_unlock_bh(&ab->base_lock); 3291 del_timer_sync(&rx_tid->frag_timer); 3292 spin_lock_bh(&ab->base_lock); 3293 3294 peer = ath12k_peer_find_by_id(ab, peer_id); 3295 if (!peer) 3296 goto err_frags_cleanup; 3297 3298 if (!ath12k_dp_rx_h_defrag_validate_incr_pn(ar, rx_tid)) 3299 goto err_frags_cleanup; 3300 3301 if (ath12k_dp_rx_h_defrag(ar, peer, rx_tid, &defrag_skb)) 3302 goto err_frags_cleanup; 3303 3304 if (!defrag_skb) 3305 goto err_frags_cleanup; 3306 3307 if (ath12k_dp_rx_h_defrag_reo_reinject(ar, rx_tid, defrag_skb)) 3308 goto err_frags_cleanup; 3309 3310 ath12k_dp_rx_frags_cleanup(rx_tid, false); 3311 goto out_unlock; 3312 3313 err_frags_cleanup: 3314 dev_kfree_skb_any(defrag_skb); 3315 ath12k_dp_rx_frags_cleanup(rx_tid, true); 3316 out_unlock: 3317 spin_unlock_bh(&ab->base_lock); 3318 return ret; 3319 } 3320 3321 static int 3322 ath12k_dp_process_rx_err_buf(struct ath12k *ar, struct hal_reo_dest_ring *desc, 3323 bool drop, u32 cookie) 3324 { 3325 struct ath12k_base *ab = ar->ab; 3326 struct sk_buff *msdu; 3327 struct ath12k_skb_rxcb *rxcb; 3328 struct hal_rx_desc *rx_desc; 3329 u16 msdu_len; 3330 u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz; 3331 struct ath12k_rx_desc_info *desc_info; 3332 u64 desc_va; 3333 3334 desc_va = ((u64)le32_to_cpu(desc->buf_va_hi) << 32 | 3335 le32_to_cpu(desc->buf_va_lo)); 3336 desc_info = (struct ath12k_rx_desc_info *)((unsigned long)desc_va); 3337 3338 /* retry manual desc retrieval */ 3339 if (!desc_info) { 3340 desc_info = ath12k_dp_get_rx_desc(ab, cookie); 3341 if (!desc_info) { 3342 ath12k_warn(ab, "Invalid cookie in manual desc retrieval"); 3343 return -EINVAL; 3344 } 3345 } 3346 3347 if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC) 3348 ath12k_warn(ab, " RX Exception, Check HW CC implementation"); 3349 3350 msdu = desc_info->skb; 3351 desc_info->skb = NULL; 3352 spin_lock_bh(&ab->dp.rx_desc_lock); 3353 list_move_tail(&desc_info->list, &ab->dp.rx_desc_free_list); 3354 spin_unlock_bh(&ab->dp.rx_desc_lock); 3355 3356 rxcb = ATH12K_SKB_RXCB(msdu); 3357 dma_unmap_single(ar->ab->dev, rxcb->paddr, 3358 msdu->len + skb_tailroom(msdu), 3359 DMA_FROM_DEVICE); 3360 3361 if (drop) { 3362 dev_kfree_skb_any(msdu); 3363 return 0; 3364 } 3365 3366 rcu_read_lock(); 3367 if (!rcu_dereference(ar->ab->pdevs_active[ar->pdev_idx])) { 3368 dev_kfree_skb_any(msdu); 3369 goto exit; 3370 } 3371 3372 if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) { 3373 dev_kfree_skb_any(msdu); 3374 goto exit; 3375 } 3376 3377 rx_desc = (struct hal_rx_desc *)msdu->data; 3378 msdu_len = ath12k_dp_rx_h_msdu_len(ar->ab, rx_desc); 3379 if ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE) { 3380 ath12k_warn(ar->ab, "invalid msdu leng %u", msdu_len); 3381 ath12k_dbg_dump(ar->ab, ATH12K_DBG_DATA, NULL, "", rx_desc, 3382 sizeof(*rx_desc)); 3383 dev_kfree_skb_any(msdu); 3384 goto exit; 3385 } 3386 3387 skb_put(msdu, hal_rx_desc_sz + msdu_len); 3388 3389 if (ath12k_dp_rx_frag_h_mpdu(ar, msdu, desc)) { 3390 dev_kfree_skb_any(msdu); 3391 ath12k_dp_rx_link_desc_return(ar->ab, desc, 3392 HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); 3393 } 3394 exit: 3395 rcu_read_unlock(); 3396 return 0; 3397 } 3398 3399 int ath12k_dp_rx_process_err(struct ath12k_base *ab, struct napi_struct *napi, 3400 int budget) 3401 { 3402 u32 msdu_cookies[HAL_NUM_RX_MSDUS_PER_LINK_DESC]; 3403 struct dp_link_desc_bank *link_desc_banks; 3404 enum hal_rx_buf_return_buf_manager rbm; 3405 struct hal_rx_msdu_link *link_desc_va; 3406 int tot_n_bufs_reaped, quota, ret, i; 3407 struct hal_reo_dest_ring *reo_desc; 3408 struct dp_rxdma_ring *rx_ring; 3409 struct dp_srng *reo_except; 3410 u32 desc_bank, num_msdus; 3411 struct hal_srng *srng; 3412 struct ath12k_dp *dp; 3413 int mac_id; 3414 struct ath12k *ar; 3415 dma_addr_t paddr; 3416 bool is_frag; 3417 bool drop = false; 3418 int pdev_id; 3419 3420 tot_n_bufs_reaped = 0; 3421 quota = budget; 3422 3423 dp = &ab->dp; 3424 reo_except = &dp->reo_except_ring; 3425 link_desc_banks = dp->link_desc_banks; 3426 3427 srng = &ab->hal.srng_list[reo_except->ring_id]; 3428 3429 spin_lock_bh(&srng->lock); 3430 3431 ath12k_hal_srng_access_begin(ab, srng); 3432 3433 while (budget && 3434 (reo_desc = ath12k_hal_srng_dst_get_next_entry(ab, srng))) { 3435 ab->soc_stats.err_ring_pkts++; 3436 ret = ath12k_hal_desc_reo_parse_err(ab, reo_desc, &paddr, 3437 &desc_bank); 3438 if (ret) { 3439 ath12k_warn(ab, "failed to parse error reo desc %d\n", 3440 ret); 3441 continue; 3442 } 3443 link_desc_va = link_desc_banks[desc_bank].vaddr + 3444 (paddr - link_desc_banks[desc_bank].paddr); 3445 ath12k_hal_rx_msdu_link_info_get(link_desc_va, &num_msdus, msdu_cookies, 3446 &rbm); 3447 if (rbm != HAL_RX_BUF_RBM_WBM_CHIP0_IDLE_DESC_LIST && 3448 rbm != HAL_RX_BUF_RBM_SW3_BM && 3449 rbm != ab->hw_params->hal_params->rx_buf_rbm) { 3450 ab->soc_stats.invalid_rbm++; 3451 ath12k_warn(ab, "invalid return buffer manager %d\n", rbm); 3452 ath12k_dp_rx_link_desc_return(ab, reo_desc, 3453 HAL_WBM_REL_BM_ACT_REL_MSDU); 3454 continue; 3455 } 3456 3457 is_frag = !!(le32_to_cpu(reo_desc->rx_mpdu_info.info0) & 3458 RX_MPDU_DESC_INFO0_FRAG_FLAG); 3459 3460 /* Process only rx fragments with one msdu per link desc below, and drop 3461 * msdu's indicated due to error reasons. 3462 */ 3463 if (!is_frag || num_msdus > 1) { 3464 drop = true; 3465 /* Return the link desc back to wbm idle list */ 3466 ath12k_dp_rx_link_desc_return(ab, reo_desc, 3467 HAL_WBM_REL_BM_ACT_PUT_IN_IDLE); 3468 } 3469 3470 for (i = 0; i < num_msdus; i++) { 3471 mac_id = le32_get_bits(reo_desc->info0, 3472 HAL_REO_DEST_RING_INFO0_SRC_LINK_ID); 3473 3474 pdev_id = ath12k_hw_mac_id_to_pdev_id(ab->hw_params, mac_id); 3475 ar = ab->pdevs[pdev_id].ar; 3476 3477 if (!ath12k_dp_process_rx_err_buf(ar, reo_desc, drop, 3478 msdu_cookies[i])) 3479 tot_n_bufs_reaped++; 3480 } 3481 3482 if (tot_n_bufs_reaped >= quota) { 3483 tot_n_bufs_reaped = quota; 3484 goto exit; 3485 } 3486 3487 budget = quota - tot_n_bufs_reaped; 3488 } 3489 3490 exit: 3491 ath12k_hal_srng_access_end(ab, srng); 3492 3493 spin_unlock_bh(&srng->lock); 3494 3495 rx_ring = &dp->rx_refill_buf_ring; 3496 3497 ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, tot_n_bufs_reaped, 3498 ab->hw_params->hal_params->rx_buf_rbm, true); 3499 3500 return tot_n_bufs_reaped; 3501 } 3502 3503 static void ath12k_dp_rx_null_q_desc_sg_drop(struct ath12k *ar, 3504 int msdu_len, 3505 struct sk_buff_head *msdu_list) 3506 { 3507 struct sk_buff *skb, *tmp; 3508 struct ath12k_skb_rxcb *rxcb; 3509 int n_buffs; 3510 3511 n_buffs = DIV_ROUND_UP(msdu_len, 3512 (DP_RX_BUFFER_SIZE - ar->ab->hw_params->hal_desc_sz)); 3513 3514 skb_queue_walk_safe(msdu_list, skb, tmp) { 3515 rxcb = ATH12K_SKB_RXCB(skb); 3516 if (rxcb->err_rel_src == HAL_WBM_REL_SRC_MODULE_REO && 3517 rxcb->err_code == HAL_REO_DEST_RING_ERROR_CODE_DESC_ADDR_ZERO) { 3518 if (!n_buffs) 3519 break; 3520 __skb_unlink(skb, msdu_list); 3521 dev_kfree_skb_any(skb); 3522 n_buffs--; 3523 } 3524 } 3525 } 3526 3527 static int ath12k_dp_rx_h_null_q_desc(struct ath12k *ar, struct sk_buff *msdu, 3528 struct ieee80211_rx_status *status, 3529 struct sk_buff_head *msdu_list) 3530 { 3531 struct ath12k_base *ab = ar->ab; 3532 u16 msdu_len; 3533 struct hal_rx_desc *desc = (struct hal_rx_desc *)msdu->data; 3534 u8 l3pad_bytes; 3535 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 3536 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 3537 3538 msdu_len = ath12k_dp_rx_h_msdu_len(ab, desc); 3539 3540 if (!rxcb->is_frag && ((msdu_len + hal_rx_desc_sz) > DP_RX_BUFFER_SIZE)) { 3541 /* First buffer will be freed by the caller, so deduct it's length */ 3542 msdu_len = msdu_len - (DP_RX_BUFFER_SIZE - hal_rx_desc_sz); 3543 ath12k_dp_rx_null_q_desc_sg_drop(ar, msdu_len, msdu_list); 3544 return -EINVAL; 3545 } 3546 3547 /* Even after cleaning up the sg buffers in the msdu list with above check 3548 * any msdu received with continuation flag needs to be dropped as invalid. 3549 * This protects against some random err frame with continuation flag. 3550 */ 3551 if (rxcb->is_continuation) 3552 return -EINVAL; 3553 3554 if (!ath12k_dp_rx_h_msdu_done(ab, desc)) { 3555 ath12k_warn(ar->ab, 3556 "msdu_done bit not set in null_q_des processing\n"); 3557 __skb_queue_purge(msdu_list); 3558 return -EIO; 3559 } 3560 3561 /* Handle NULL queue descriptor violations arising out a missing 3562 * REO queue for a given peer or a given TID. This typically 3563 * may happen if a packet is received on a QOS enabled TID before the 3564 * ADDBA negotiation for that TID, when the TID queue is setup. Or 3565 * it may also happen for MC/BC frames if they are not routed to the 3566 * non-QOS TID queue, in the absence of any other default TID queue. 3567 * This error can show up both in a REO destination or WBM release ring. 3568 */ 3569 3570 if (rxcb->is_frag) { 3571 skb_pull(msdu, hal_rx_desc_sz); 3572 } else { 3573 l3pad_bytes = ath12k_dp_rx_h_l3pad(ab, desc); 3574 3575 if ((hal_rx_desc_sz + l3pad_bytes + msdu_len) > DP_RX_BUFFER_SIZE) 3576 return -EINVAL; 3577 3578 skb_put(msdu, hal_rx_desc_sz + l3pad_bytes + msdu_len); 3579 skb_pull(msdu, hal_rx_desc_sz + l3pad_bytes); 3580 } 3581 ath12k_dp_rx_h_ppdu(ar, desc, status); 3582 3583 ath12k_dp_rx_h_mpdu(ar, msdu, desc, status); 3584 3585 rxcb->tid = ath12k_dp_rx_h_tid(ab, desc); 3586 3587 /* Please note that caller will having the access to msdu and completing 3588 * rx with mac80211. Need not worry about cleaning up amsdu_list. 3589 */ 3590 3591 return 0; 3592 } 3593 3594 static bool ath12k_dp_rx_h_reo_err(struct ath12k *ar, struct sk_buff *msdu, 3595 struct ieee80211_rx_status *status, 3596 struct sk_buff_head *msdu_list) 3597 { 3598 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 3599 bool drop = false; 3600 3601 ar->ab->soc_stats.reo_error[rxcb->err_code]++; 3602 3603 switch (rxcb->err_code) { 3604 case HAL_REO_DEST_RING_ERROR_CODE_DESC_ADDR_ZERO: 3605 if (ath12k_dp_rx_h_null_q_desc(ar, msdu, status, msdu_list)) 3606 drop = true; 3607 break; 3608 case HAL_REO_DEST_RING_ERROR_CODE_PN_CHECK_FAILED: 3609 /* TODO: Do not drop PN failed packets in the driver; 3610 * instead, it is good to drop such packets in mac80211 3611 * after incrementing the replay counters. 3612 */ 3613 fallthrough; 3614 default: 3615 /* TODO: Review other errors and process them to mac80211 3616 * as appropriate. 3617 */ 3618 drop = true; 3619 break; 3620 } 3621 3622 return drop; 3623 } 3624 3625 static void ath12k_dp_rx_h_tkip_mic_err(struct ath12k *ar, struct sk_buff *msdu, 3626 struct ieee80211_rx_status *status) 3627 { 3628 struct ath12k_base *ab = ar->ab; 3629 u16 msdu_len; 3630 struct hal_rx_desc *desc = (struct hal_rx_desc *)msdu->data; 3631 u8 l3pad_bytes; 3632 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 3633 u32 hal_rx_desc_sz = ar->ab->hw_params->hal_desc_sz; 3634 3635 rxcb->is_first_msdu = ath12k_dp_rx_h_first_msdu(ab, desc); 3636 rxcb->is_last_msdu = ath12k_dp_rx_h_last_msdu(ab, desc); 3637 3638 l3pad_bytes = ath12k_dp_rx_h_l3pad(ab, desc); 3639 msdu_len = ath12k_dp_rx_h_msdu_len(ab, desc); 3640 skb_put(msdu, hal_rx_desc_sz + l3pad_bytes + msdu_len); 3641 skb_pull(msdu, hal_rx_desc_sz + l3pad_bytes); 3642 3643 ath12k_dp_rx_h_ppdu(ar, desc, status); 3644 3645 status->flag |= (RX_FLAG_MMIC_STRIPPED | RX_FLAG_MMIC_ERROR | 3646 RX_FLAG_DECRYPTED); 3647 3648 ath12k_dp_rx_h_undecap(ar, msdu, desc, 3649 HAL_ENCRYPT_TYPE_TKIP_MIC, status, false); 3650 } 3651 3652 static bool ath12k_dp_rx_h_rxdma_err(struct ath12k *ar, struct sk_buff *msdu, 3653 struct ieee80211_rx_status *status) 3654 { 3655 struct ath12k_base *ab = ar->ab; 3656 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 3657 struct hal_rx_desc *rx_desc = (struct hal_rx_desc *)msdu->data; 3658 bool drop = false; 3659 u32 err_bitmap; 3660 3661 ar->ab->soc_stats.rxdma_error[rxcb->err_code]++; 3662 3663 switch (rxcb->err_code) { 3664 case HAL_REO_ENTR_RING_RXDMA_ECODE_DECRYPT_ERR: 3665 case HAL_REO_ENTR_RING_RXDMA_ECODE_TKIP_MIC_ERR: 3666 err_bitmap = ath12k_dp_rx_h_mpdu_err(ab, rx_desc); 3667 if (err_bitmap & HAL_RX_MPDU_ERR_TKIP_MIC) { 3668 ath12k_dp_rx_h_tkip_mic_err(ar, msdu, status); 3669 break; 3670 } 3671 fallthrough; 3672 default: 3673 /* TODO: Review other rxdma error code to check if anything is 3674 * worth reporting to mac80211 3675 */ 3676 drop = true; 3677 break; 3678 } 3679 3680 return drop; 3681 } 3682 3683 static void ath12k_dp_rx_wbm_err(struct ath12k *ar, 3684 struct napi_struct *napi, 3685 struct sk_buff *msdu, 3686 struct sk_buff_head *msdu_list) 3687 { 3688 struct ath12k_skb_rxcb *rxcb = ATH12K_SKB_RXCB(msdu); 3689 struct ieee80211_rx_status rxs = {0}; 3690 bool drop = true; 3691 3692 switch (rxcb->err_rel_src) { 3693 case HAL_WBM_REL_SRC_MODULE_REO: 3694 drop = ath12k_dp_rx_h_reo_err(ar, msdu, &rxs, msdu_list); 3695 break; 3696 case HAL_WBM_REL_SRC_MODULE_RXDMA: 3697 drop = ath12k_dp_rx_h_rxdma_err(ar, msdu, &rxs); 3698 break; 3699 default: 3700 /* msdu will get freed */ 3701 break; 3702 } 3703 3704 if (drop) { 3705 dev_kfree_skb_any(msdu); 3706 return; 3707 } 3708 3709 ath12k_dp_rx_deliver_msdu(ar, napi, msdu, &rxs); 3710 } 3711 3712 int ath12k_dp_rx_process_wbm_err(struct ath12k_base *ab, 3713 struct napi_struct *napi, int budget) 3714 { 3715 struct ath12k *ar; 3716 struct ath12k_dp *dp = &ab->dp; 3717 struct dp_rxdma_ring *rx_ring; 3718 struct hal_rx_wbm_rel_info err_info; 3719 struct hal_srng *srng; 3720 struct sk_buff *msdu; 3721 struct sk_buff_head msdu_list[MAX_RADIOS]; 3722 struct ath12k_skb_rxcb *rxcb; 3723 void *rx_desc; 3724 int mac_id; 3725 int num_buffs_reaped = 0; 3726 struct ath12k_rx_desc_info *desc_info; 3727 int ret, i; 3728 3729 for (i = 0; i < ab->num_radios; i++) 3730 __skb_queue_head_init(&msdu_list[i]); 3731 3732 srng = &ab->hal.srng_list[dp->rx_rel_ring.ring_id]; 3733 rx_ring = &dp->rx_refill_buf_ring; 3734 3735 spin_lock_bh(&srng->lock); 3736 3737 ath12k_hal_srng_access_begin(ab, srng); 3738 3739 while (budget) { 3740 rx_desc = ath12k_hal_srng_dst_get_next_entry(ab, srng); 3741 if (!rx_desc) 3742 break; 3743 3744 ret = ath12k_hal_wbm_desc_parse_err(ab, rx_desc, &err_info); 3745 if (ret) { 3746 ath12k_warn(ab, 3747 "failed to parse rx error in wbm_rel ring desc %d\n", 3748 ret); 3749 continue; 3750 } 3751 3752 desc_info = err_info.rx_desc; 3753 3754 /* retry manual desc retrieval if hw cc is not done */ 3755 if (!desc_info) { 3756 desc_info = ath12k_dp_get_rx_desc(ab, err_info.cookie); 3757 if (!desc_info) { 3758 ath12k_warn(ab, "Invalid cookie in manual desc retrieval"); 3759 continue; 3760 } 3761 } 3762 3763 /* FIXME: Extract mac id correctly. Since descs are not tied 3764 * to mac, we can extract from vdev id in ring desc. 3765 */ 3766 mac_id = 0; 3767 3768 if (desc_info->magic != ATH12K_DP_RX_DESC_MAGIC) 3769 ath12k_warn(ab, "WBM RX err, Check HW CC implementation"); 3770 3771 msdu = desc_info->skb; 3772 desc_info->skb = NULL; 3773 3774 spin_lock_bh(&dp->rx_desc_lock); 3775 list_move_tail(&desc_info->list, &dp->rx_desc_free_list); 3776 spin_unlock_bh(&dp->rx_desc_lock); 3777 3778 rxcb = ATH12K_SKB_RXCB(msdu); 3779 dma_unmap_single(ab->dev, rxcb->paddr, 3780 msdu->len + skb_tailroom(msdu), 3781 DMA_FROM_DEVICE); 3782 3783 num_buffs_reaped++; 3784 3785 if (!err_info.continuation) 3786 budget--; 3787 3788 if (err_info.push_reason != 3789 HAL_REO_DEST_RING_PUSH_REASON_ERR_DETECTED) { 3790 dev_kfree_skb_any(msdu); 3791 continue; 3792 } 3793 3794 rxcb->err_rel_src = err_info.err_rel_src; 3795 rxcb->err_code = err_info.err_code; 3796 rxcb->rx_desc = (struct hal_rx_desc *)msdu->data; 3797 __skb_queue_tail(&msdu_list[mac_id], msdu); 3798 3799 rxcb->is_first_msdu = err_info.first_msdu; 3800 rxcb->is_last_msdu = err_info.last_msdu; 3801 rxcb->is_continuation = err_info.continuation; 3802 } 3803 3804 ath12k_hal_srng_access_end(ab, srng); 3805 3806 spin_unlock_bh(&srng->lock); 3807 3808 if (!num_buffs_reaped) 3809 goto done; 3810 3811 ath12k_dp_rx_bufs_replenish(ab, 0, rx_ring, num_buffs_reaped, 3812 ab->hw_params->hal_params->rx_buf_rbm, true); 3813 3814 rcu_read_lock(); 3815 for (i = 0; i < ab->num_radios; i++) { 3816 if (!rcu_dereference(ab->pdevs_active[i])) { 3817 __skb_queue_purge(&msdu_list[i]); 3818 continue; 3819 } 3820 3821 ar = ab->pdevs[i].ar; 3822 3823 if (test_bit(ATH12K_CAC_RUNNING, &ar->dev_flags)) { 3824 __skb_queue_purge(&msdu_list[i]); 3825 continue; 3826 } 3827 3828 while ((msdu = __skb_dequeue(&msdu_list[i])) != NULL) 3829 ath12k_dp_rx_wbm_err(ar, napi, msdu, &msdu_list[i]); 3830 } 3831 rcu_read_unlock(); 3832 done: 3833 return num_buffs_reaped; 3834 } 3835 3836 void ath12k_dp_rx_process_reo_status(struct ath12k_base *ab) 3837 { 3838 struct ath12k_dp *dp = &ab->dp; 3839 struct hal_tlv_64_hdr *hdr; 3840 struct hal_srng *srng; 3841 struct ath12k_dp_rx_reo_cmd *cmd, *tmp; 3842 bool found = false; 3843 u16 tag; 3844 struct hal_reo_status reo_status; 3845 3846 srng = &ab->hal.srng_list[dp->reo_status_ring.ring_id]; 3847 3848 memset(&reo_status, 0, sizeof(reo_status)); 3849 3850 spin_lock_bh(&srng->lock); 3851 3852 ath12k_hal_srng_access_begin(ab, srng); 3853 3854 while ((hdr = ath12k_hal_srng_dst_get_next_entry(ab, srng))) { 3855 tag = u64_get_bits(hdr->tl, HAL_SRNG_TLV_HDR_TAG); 3856 3857 switch (tag) { 3858 case HAL_REO_GET_QUEUE_STATS_STATUS: 3859 ath12k_hal_reo_status_queue_stats(ab, hdr, 3860 &reo_status); 3861 break; 3862 case HAL_REO_FLUSH_QUEUE_STATUS: 3863 ath12k_hal_reo_flush_queue_status(ab, hdr, 3864 &reo_status); 3865 break; 3866 case HAL_REO_FLUSH_CACHE_STATUS: 3867 ath12k_hal_reo_flush_cache_status(ab, hdr, 3868 &reo_status); 3869 break; 3870 case HAL_REO_UNBLOCK_CACHE_STATUS: 3871 ath12k_hal_reo_unblk_cache_status(ab, hdr, 3872 &reo_status); 3873 break; 3874 case HAL_REO_FLUSH_TIMEOUT_LIST_STATUS: 3875 ath12k_hal_reo_flush_timeout_list_status(ab, hdr, 3876 &reo_status); 3877 break; 3878 case HAL_REO_DESCRIPTOR_THRESHOLD_REACHED_STATUS: 3879 ath12k_hal_reo_desc_thresh_reached_status(ab, hdr, 3880 &reo_status); 3881 break; 3882 case HAL_REO_UPDATE_RX_REO_QUEUE_STATUS: 3883 ath12k_hal_reo_update_rx_reo_queue_status(ab, hdr, 3884 &reo_status); 3885 break; 3886 default: 3887 ath12k_warn(ab, "Unknown reo status type %d\n", tag); 3888 continue; 3889 } 3890 3891 spin_lock_bh(&dp->reo_cmd_lock); 3892 list_for_each_entry_safe(cmd, tmp, &dp->reo_cmd_list, list) { 3893 if (reo_status.uniform_hdr.cmd_num == cmd->cmd_num) { 3894 found = true; 3895 list_del(&cmd->list); 3896 break; 3897 } 3898 } 3899 spin_unlock_bh(&dp->reo_cmd_lock); 3900 3901 if (found) { 3902 cmd->handler(dp, (void *)&cmd->data, 3903 reo_status.uniform_hdr.cmd_status); 3904 kfree(cmd); 3905 } 3906 3907 found = false; 3908 } 3909 3910 ath12k_hal_srng_access_end(ab, srng); 3911 3912 spin_unlock_bh(&srng->lock); 3913 } 3914 3915 void ath12k_dp_rx_free(struct ath12k_base *ab) 3916 { 3917 struct ath12k_dp *dp = &ab->dp; 3918 int i; 3919 3920 ath12k_dp_srng_cleanup(ab, &dp->rx_refill_buf_ring.refill_buf_ring); 3921 3922 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 3923 if (ab->hw_params->rx_mac_buf_ring) 3924 ath12k_dp_srng_cleanup(ab, &dp->rx_mac_buf_ring[i]); 3925 } 3926 3927 for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) 3928 ath12k_dp_srng_cleanup(ab, &dp->rxdma_err_dst_ring[i]); 3929 3930 ath12k_dp_srng_cleanup(ab, &dp->rxdma_mon_buf_ring.refill_buf_ring); 3931 ath12k_dp_srng_cleanup(ab, &dp->tx_mon_buf_ring.refill_buf_ring); 3932 3933 ath12k_dp_rxdma_buf_free(ab); 3934 } 3935 3936 void ath12k_dp_rx_pdev_free(struct ath12k_base *ab, int mac_id) 3937 { 3938 struct ath12k *ar = ab->pdevs[mac_id].ar; 3939 3940 ath12k_dp_rx_pdev_srng_free(ar); 3941 } 3942 3943 int ath12k_dp_rxdma_ring_sel_config_qcn9274(struct ath12k_base *ab) 3944 { 3945 struct ath12k_dp *dp = &ab->dp; 3946 struct htt_rx_ring_tlv_filter tlv_filter = {0}; 3947 u32 ring_id; 3948 int ret; 3949 u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz; 3950 3951 ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id; 3952 3953 tlv_filter.rx_filter = HTT_RX_TLV_FLAGS_RXDMA_RING; 3954 tlv_filter.pkt_filter_flags2 = HTT_RX_FP_CTRL_PKT_FILTER_TLV_FLAGS2_BAR; 3955 tlv_filter.pkt_filter_flags3 = HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_MCAST | 3956 HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_UCAST | 3957 HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_NULL_DATA; 3958 tlv_filter.offset_valid = true; 3959 tlv_filter.rx_packet_offset = hal_rx_desc_sz; 3960 3961 tlv_filter.rx_mpdu_start_offset = 3962 ab->hw_params->hal_ops->rx_desc_get_mpdu_start_offset(); 3963 tlv_filter.rx_msdu_end_offset = 3964 ab->hw_params->hal_ops->rx_desc_get_msdu_end_offset(); 3965 3966 /* TODO: Selectively subscribe to required qwords within msdu_end 3967 * and mpdu_start and setup the mask in below msg 3968 * and modify the rx_desc struct 3969 */ 3970 ret = ath12k_dp_tx_htt_rx_filter_setup(ab, ring_id, 0, 3971 HAL_RXDMA_BUF, 3972 DP_RXDMA_REFILL_RING_SIZE, 3973 &tlv_filter); 3974 3975 return ret; 3976 } 3977 3978 int ath12k_dp_rxdma_ring_sel_config_wcn7850(struct ath12k_base *ab) 3979 { 3980 struct ath12k_dp *dp = &ab->dp; 3981 struct htt_rx_ring_tlv_filter tlv_filter = {0}; 3982 u32 ring_id; 3983 int ret; 3984 u32 hal_rx_desc_sz = ab->hw_params->hal_desc_sz; 3985 int i; 3986 3987 ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id; 3988 3989 tlv_filter.rx_filter = HTT_RX_TLV_FLAGS_RXDMA_RING; 3990 tlv_filter.pkt_filter_flags2 = HTT_RX_FP_CTRL_PKT_FILTER_TLV_FLAGS2_BAR; 3991 tlv_filter.pkt_filter_flags3 = HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_MCAST | 3992 HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_UCAST | 3993 HTT_RX_FP_DATA_PKT_FILTER_TLV_FLASG3_NULL_DATA; 3994 tlv_filter.offset_valid = true; 3995 tlv_filter.rx_packet_offset = hal_rx_desc_sz; 3996 3997 tlv_filter.rx_header_offset = offsetof(struct hal_rx_desc_wcn7850, pkt_hdr_tlv); 3998 3999 tlv_filter.rx_mpdu_start_offset = 4000 ab->hw_params->hal_ops->rx_desc_get_mpdu_start_offset(); 4001 tlv_filter.rx_msdu_end_offset = 4002 ab->hw_params->hal_ops->rx_desc_get_msdu_end_offset(); 4003 4004 /* TODO: Selectively subscribe to required qwords within msdu_end 4005 * and mpdu_start and setup the mask in below msg 4006 * and modify the rx_desc struct 4007 */ 4008 4009 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 4010 ring_id = dp->rx_mac_buf_ring[i].ring_id; 4011 ret = ath12k_dp_tx_htt_rx_filter_setup(ab, ring_id, i, 4012 HAL_RXDMA_BUF, 4013 DP_RXDMA_REFILL_RING_SIZE, 4014 &tlv_filter); 4015 } 4016 4017 return ret; 4018 } 4019 4020 int ath12k_dp_rx_htt_setup(struct ath12k_base *ab) 4021 { 4022 struct ath12k_dp *dp = &ab->dp; 4023 u32 ring_id; 4024 int i, ret; 4025 4026 /* TODO: Need to verify the HTT setup for QCN9224 */ 4027 ring_id = dp->rx_refill_buf_ring.refill_buf_ring.ring_id; 4028 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 0, HAL_RXDMA_BUF); 4029 if (ret) { 4030 ath12k_warn(ab, "failed to configure rx_refill_buf_ring %d\n", 4031 ret); 4032 return ret; 4033 } 4034 4035 if (ab->hw_params->rx_mac_buf_ring) { 4036 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 4037 ring_id = dp->rx_mac_buf_ring[i].ring_id; 4038 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4039 i, HAL_RXDMA_BUF); 4040 if (ret) { 4041 ath12k_warn(ab, "failed to configure rx_mac_buf_ring%d %d\n", 4042 i, ret); 4043 return ret; 4044 } 4045 } 4046 } 4047 4048 for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) { 4049 ring_id = dp->rxdma_err_dst_ring[i].ring_id; 4050 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4051 i, HAL_RXDMA_DST); 4052 if (ret) { 4053 ath12k_warn(ab, "failed to configure rxdma_err_dest_ring%d %d\n", 4054 i, ret); 4055 return ret; 4056 } 4057 } 4058 4059 if (ab->hw_params->rxdma1_enable) { 4060 ring_id = dp->rxdma_mon_buf_ring.refill_buf_ring.ring_id; 4061 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4062 0, HAL_RXDMA_MONITOR_BUF); 4063 if (ret) { 4064 ath12k_warn(ab, "failed to configure rxdma_mon_buf_ring %d\n", 4065 ret); 4066 return ret; 4067 } 4068 4069 ring_id = dp->tx_mon_buf_ring.refill_buf_ring.ring_id; 4070 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4071 0, HAL_TX_MONITOR_BUF); 4072 if (ret) { 4073 ath12k_warn(ab, "failed to configure rxdma_mon_buf_ring %d\n", 4074 ret); 4075 return ret; 4076 } 4077 } 4078 4079 ret = ab->hw_params->hw_ops->rxdma_ring_sel_config(ab); 4080 if (ret) { 4081 ath12k_warn(ab, "failed to setup rxdma ring selection config\n"); 4082 return ret; 4083 } 4084 4085 return 0; 4086 } 4087 4088 int ath12k_dp_rx_alloc(struct ath12k_base *ab) 4089 { 4090 struct ath12k_dp *dp = &ab->dp; 4091 int i, ret; 4092 4093 idr_init(&dp->rx_refill_buf_ring.bufs_idr); 4094 spin_lock_init(&dp->rx_refill_buf_ring.idr_lock); 4095 4096 idr_init(&dp->rxdma_mon_buf_ring.bufs_idr); 4097 spin_lock_init(&dp->rxdma_mon_buf_ring.idr_lock); 4098 4099 idr_init(&dp->tx_mon_buf_ring.bufs_idr); 4100 spin_lock_init(&dp->tx_mon_buf_ring.idr_lock); 4101 4102 ret = ath12k_dp_srng_setup(ab, 4103 &dp->rx_refill_buf_ring.refill_buf_ring, 4104 HAL_RXDMA_BUF, 0, 0, 4105 DP_RXDMA_BUF_RING_SIZE); 4106 if (ret) { 4107 ath12k_warn(ab, "failed to setup rx_refill_buf_ring\n"); 4108 return ret; 4109 } 4110 4111 if (ab->hw_params->rx_mac_buf_ring) { 4112 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 4113 ret = ath12k_dp_srng_setup(ab, 4114 &dp->rx_mac_buf_ring[i], 4115 HAL_RXDMA_BUF, 1, 4116 i, 1024); 4117 if (ret) { 4118 ath12k_warn(ab, "failed to setup rx_mac_buf_ring %d\n", 4119 i); 4120 return ret; 4121 } 4122 } 4123 } 4124 4125 for (i = 0; i < ab->hw_params->num_rxdma_dst_ring; i++) { 4126 ret = ath12k_dp_srng_setup(ab, &dp->rxdma_err_dst_ring[i], 4127 HAL_RXDMA_DST, 0, i, 4128 DP_RXDMA_ERR_DST_RING_SIZE); 4129 if (ret) { 4130 ath12k_warn(ab, "failed to setup rxdma_err_dst_ring %d\n", i); 4131 return ret; 4132 } 4133 } 4134 4135 if (ab->hw_params->rxdma1_enable) { 4136 ret = ath12k_dp_srng_setup(ab, 4137 &dp->rxdma_mon_buf_ring.refill_buf_ring, 4138 HAL_RXDMA_MONITOR_BUF, 0, 0, 4139 DP_RXDMA_MONITOR_BUF_RING_SIZE); 4140 if (ret) { 4141 ath12k_warn(ab, "failed to setup HAL_RXDMA_MONITOR_BUF\n"); 4142 return ret; 4143 } 4144 4145 ret = ath12k_dp_srng_setup(ab, 4146 &dp->tx_mon_buf_ring.refill_buf_ring, 4147 HAL_TX_MONITOR_BUF, 0, 0, 4148 DP_TX_MONITOR_BUF_RING_SIZE); 4149 if (ret) { 4150 ath12k_warn(ab, "failed to setup DP_TX_MONITOR_BUF_RING_SIZE\n"); 4151 return ret; 4152 } 4153 } 4154 4155 ret = ath12k_dp_rxdma_buf_setup(ab); 4156 if (ret) { 4157 ath12k_warn(ab, "failed to setup rxdma ring\n"); 4158 return ret; 4159 } 4160 4161 return 0; 4162 } 4163 4164 int ath12k_dp_rx_pdev_alloc(struct ath12k_base *ab, int mac_id) 4165 { 4166 struct ath12k *ar = ab->pdevs[mac_id].ar; 4167 struct ath12k_pdev_dp *dp = &ar->dp; 4168 u32 ring_id; 4169 int i; 4170 int ret; 4171 4172 if (!ab->hw_params->rxdma1_enable) 4173 goto out; 4174 4175 ret = ath12k_dp_rx_pdev_srng_alloc(ar); 4176 if (ret) { 4177 ath12k_warn(ab, "failed to setup rx srngs\n"); 4178 return ret; 4179 } 4180 4181 for (i = 0; i < ab->hw_params->num_rxmda_per_pdev; i++) { 4182 ring_id = dp->rxdma_mon_dst_ring[i].ring_id; 4183 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4184 mac_id + i, 4185 HAL_RXDMA_MONITOR_DST); 4186 if (ret) { 4187 ath12k_warn(ab, 4188 "failed to configure rxdma_mon_dst_ring %d %d\n", 4189 i, ret); 4190 return ret; 4191 } 4192 4193 ring_id = dp->tx_mon_dst_ring[i].ring_id; 4194 ret = ath12k_dp_tx_htt_srng_setup(ab, ring_id, 4195 mac_id + i, 4196 HAL_TX_MONITOR_DST); 4197 if (ret) { 4198 ath12k_warn(ab, 4199 "failed to configure tx_mon_dst_ring %d %d\n", 4200 i, ret); 4201 return ret; 4202 } 4203 } 4204 out: 4205 return 0; 4206 } 4207 4208 static int ath12k_dp_rx_pdev_mon_status_attach(struct ath12k *ar) 4209 { 4210 struct ath12k_pdev_dp *dp = &ar->dp; 4211 struct ath12k_mon_data *pmon = (struct ath12k_mon_data *)&dp->mon_data; 4212 4213 skb_queue_head_init(&pmon->rx_status_q); 4214 4215 pmon->mon_ppdu_status = DP_PPDU_STATUS_START; 4216 4217 memset(&pmon->rx_mon_stats, 0, 4218 sizeof(pmon->rx_mon_stats)); 4219 return 0; 4220 } 4221 4222 int ath12k_dp_rx_pdev_mon_attach(struct ath12k *ar) 4223 { 4224 struct ath12k_pdev_dp *dp = &ar->dp; 4225 struct ath12k_mon_data *pmon = &dp->mon_data; 4226 int ret = 0; 4227 4228 ret = ath12k_dp_rx_pdev_mon_status_attach(ar); 4229 if (ret) { 4230 ath12k_warn(ar->ab, "pdev_mon_status_attach() failed"); 4231 return ret; 4232 } 4233 4234 /* if rxdma1_enable is false, no need to setup 4235 * rxdma_mon_desc_ring. 4236 */ 4237 if (!ar->ab->hw_params->rxdma1_enable) 4238 return 0; 4239 4240 pmon->mon_last_linkdesc_paddr = 0; 4241 pmon->mon_last_buf_cookie = DP_RX_DESC_COOKIE_MAX + 1; 4242 spin_lock_init(&pmon->mon_lock); 4243 4244 return 0; 4245 } 4246 4247 int ath12k_dp_rx_pktlog_start(struct ath12k_base *ab) 4248 { 4249 /* start reap timer */ 4250 mod_timer(&ab->mon_reap_timer, 4251 jiffies + msecs_to_jiffies(ATH12K_MON_TIMER_INTERVAL)); 4252 4253 return 0; 4254 } 4255 4256 int ath12k_dp_rx_pktlog_stop(struct ath12k_base *ab, bool stop_timer) 4257 { 4258 int ret; 4259 4260 if (stop_timer) 4261 del_timer_sync(&ab->mon_reap_timer); 4262 4263 /* reap all the monitor related rings */ 4264 ret = ath12k_dp_purge_mon_ring(ab); 4265 if (ret) { 4266 ath12k_warn(ab, "failed to purge dp mon ring: %d\n", ret); 4267 return ret; 4268 } 4269 4270 return 0; 4271 } 4272