xref: /linux/drivers/net/wireless/ath/ath11k/mac.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: BSD-3-Clause-Clear
2 /*
3  * Copyright (c) 2018-2019 The Linux Foundation. All rights reserved.
4  * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved.
5  */
6 
7 #include <net/mac80211.h>
8 #include <net/cfg80211.h>
9 #include <linux/etherdevice.h>
10 #include <linux/bitfield.h>
11 #include <linux/inetdevice.h>
12 #include <net/if_inet6.h>
13 #include <net/ipv6.h>
14 
15 #include "mac.h"
16 #include "core.h"
17 #include "debug.h"
18 #include "wmi.h"
19 #include "hw.h"
20 #include "dp_tx.h"
21 #include "dp_rx.h"
22 #include "testmode.h"
23 #include "peer.h"
24 #include "debugfs_sta.h"
25 #include "hif.h"
26 #include "wow.h"
27 
28 #define CHAN2G(_channel, _freq, _flags) { \
29 	.band                   = NL80211_BAND_2GHZ, \
30 	.hw_value               = (_channel), \
31 	.center_freq            = (_freq), \
32 	.flags                  = (_flags), \
33 	.max_antenna_gain       = 0, \
34 	.max_power              = 30, \
35 }
36 
37 #define CHAN5G(_channel, _freq, _flags) { \
38 	.band                   = NL80211_BAND_5GHZ, \
39 	.hw_value               = (_channel), \
40 	.center_freq            = (_freq), \
41 	.flags                  = (_flags), \
42 	.max_antenna_gain       = 0, \
43 	.max_power              = 30, \
44 }
45 
46 #define CHAN6G(_channel, _freq, _flags) { \
47 	.band                   = NL80211_BAND_6GHZ, \
48 	.hw_value               = (_channel), \
49 	.center_freq            = (_freq), \
50 	.flags                  = (_flags), \
51 	.max_antenna_gain       = 0, \
52 	.max_power              = 30, \
53 }
54 
55 static const struct ieee80211_channel ath11k_2ghz_channels[] = {
56 	CHAN2G(1, 2412, 0),
57 	CHAN2G(2, 2417, 0),
58 	CHAN2G(3, 2422, 0),
59 	CHAN2G(4, 2427, 0),
60 	CHAN2G(5, 2432, 0),
61 	CHAN2G(6, 2437, 0),
62 	CHAN2G(7, 2442, 0),
63 	CHAN2G(8, 2447, 0),
64 	CHAN2G(9, 2452, 0),
65 	CHAN2G(10, 2457, 0),
66 	CHAN2G(11, 2462, 0),
67 	CHAN2G(12, 2467, 0),
68 	CHAN2G(13, 2472, 0),
69 	CHAN2G(14, 2484, 0),
70 };
71 
72 static const struct ieee80211_channel ath11k_5ghz_channels[] = {
73 	CHAN5G(36, 5180, 0),
74 	CHAN5G(40, 5200, 0),
75 	CHAN5G(44, 5220, 0),
76 	CHAN5G(48, 5240, 0),
77 	CHAN5G(52, 5260, 0),
78 	CHAN5G(56, 5280, 0),
79 	CHAN5G(60, 5300, 0),
80 	CHAN5G(64, 5320, 0),
81 	CHAN5G(100, 5500, 0),
82 	CHAN5G(104, 5520, 0),
83 	CHAN5G(108, 5540, 0),
84 	CHAN5G(112, 5560, 0),
85 	CHAN5G(116, 5580, 0),
86 	CHAN5G(120, 5600, 0),
87 	CHAN5G(124, 5620, 0),
88 	CHAN5G(128, 5640, 0),
89 	CHAN5G(132, 5660, 0),
90 	CHAN5G(136, 5680, 0),
91 	CHAN5G(140, 5700, 0),
92 	CHAN5G(144, 5720, 0),
93 	CHAN5G(149, 5745, 0),
94 	CHAN5G(153, 5765, 0),
95 	CHAN5G(157, 5785, 0),
96 	CHAN5G(161, 5805, 0),
97 	CHAN5G(165, 5825, 0),
98 	CHAN5G(169, 5845, 0),
99 	CHAN5G(173, 5865, 0),
100 	CHAN5G(177, 5885, 0),
101 };
102 
103 static const struct ieee80211_channel ath11k_6ghz_channels[] = {
104 	CHAN6G(1, 5955, 0),
105 	CHAN6G(5, 5975, 0),
106 	CHAN6G(9, 5995, 0),
107 	CHAN6G(13, 6015, 0),
108 	CHAN6G(17, 6035, 0),
109 	CHAN6G(21, 6055, 0),
110 	CHAN6G(25, 6075, 0),
111 	CHAN6G(29, 6095, 0),
112 	CHAN6G(33, 6115, 0),
113 	CHAN6G(37, 6135, 0),
114 	CHAN6G(41, 6155, 0),
115 	CHAN6G(45, 6175, 0),
116 	CHAN6G(49, 6195, 0),
117 	CHAN6G(53, 6215, 0),
118 	CHAN6G(57, 6235, 0),
119 	CHAN6G(61, 6255, 0),
120 	CHAN6G(65, 6275, 0),
121 	CHAN6G(69, 6295, 0),
122 	CHAN6G(73, 6315, 0),
123 	CHAN6G(77, 6335, 0),
124 	CHAN6G(81, 6355, 0),
125 	CHAN6G(85, 6375, 0),
126 	CHAN6G(89, 6395, 0),
127 	CHAN6G(93, 6415, 0),
128 	CHAN6G(97, 6435, 0),
129 	CHAN6G(101, 6455, 0),
130 	CHAN6G(105, 6475, 0),
131 	CHAN6G(109, 6495, 0),
132 	CHAN6G(113, 6515, 0),
133 	CHAN6G(117, 6535, 0),
134 	CHAN6G(121, 6555, 0),
135 	CHAN6G(125, 6575, 0),
136 	CHAN6G(129, 6595, 0),
137 	CHAN6G(133, 6615, 0),
138 	CHAN6G(137, 6635, 0),
139 	CHAN6G(141, 6655, 0),
140 	CHAN6G(145, 6675, 0),
141 	CHAN6G(149, 6695, 0),
142 	CHAN6G(153, 6715, 0),
143 	CHAN6G(157, 6735, 0),
144 	CHAN6G(161, 6755, 0),
145 	CHAN6G(165, 6775, 0),
146 	CHAN6G(169, 6795, 0),
147 	CHAN6G(173, 6815, 0),
148 	CHAN6G(177, 6835, 0),
149 	CHAN6G(181, 6855, 0),
150 	CHAN6G(185, 6875, 0),
151 	CHAN6G(189, 6895, 0),
152 	CHAN6G(193, 6915, 0),
153 	CHAN6G(197, 6935, 0),
154 	CHAN6G(201, 6955, 0),
155 	CHAN6G(205, 6975, 0),
156 	CHAN6G(209, 6995, 0),
157 	CHAN6G(213, 7015, 0),
158 	CHAN6G(217, 7035, 0),
159 	CHAN6G(221, 7055, 0),
160 	CHAN6G(225, 7075, 0),
161 	CHAN6G(229, 7095, 0),
162 	CHAN6G(233, 7115, 0),
163 
164 	/* new addition in IEEE Std 802.11ax-2021 */
165 	CHAN6G(2, 5935, 0),
166 };
167 
168 static struct ieee80211_rate ath11k_legacy_rates[] = {
169 	{ .bitrate = 10,
170 	  .hw_value = ATH11K_HW_RATE_CCK_LP_1M },
171 	{ .bitrate = 20,
172 	  .hw_value = ATH11K_HW_RATE_CCK_LP_2M,
173 	  .hw_value_short = ATH11K_HW_RATE_CCK_SP_2M,
174 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
175 	{ .bitrate = 55,
176 	  .hw_value = ATH11K_HW_RATE_CCK_LP_5_5M,
177 	  .hw_value_short = ATH11K_HW_RATE_CCK_SP_5_5M,
178 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
179 	{ .bitrate = 110,
180 	  .hw_value = ATH11K_HW_RATE_CCK_LP_11M,
181 	  .hw_value_short = ATH11K_HW_RATE_CCK_SP_11M,
182 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
183 
184 	{ .bitrate = 60, .hw_value = ATH11K_HW_RATE_OFDM_6M },
185 	{ .bitrate = 90, .hw_value = ATH11K_HW_RATE_OFDM_9M },
186 	{ .bitrate = 120, .hw_value = ATH11K_HW_RATE_OFDM_12M },
187 	{ .bitrate = 180, .hw_value = ATH11K_HW_RATE_OFDM_18M },
188 	{ .bitrate = 240, .hw_value = ATH11K_HW_RATE_OFDM_24M },
189 	{ .bitrate = 360, .hw_value = ATH11K_HW_RATE_OFDM_36M },
190 	{ .bitrate = 480, .hw_value = ATH11K_HW_RATE_OFDM_48M },
191 	{ .bitrate = 540, .hw_value = ATH11K_HW_RATE_OFDM_54M },
192 };
193 
194 static const int
195 ath11k_phymodes[NUM_NL80211_BANDS][ATH11K_CHAN_WIDTH_NUM] = {
196 	[NL80211_BAND_2GHZ] = {
197 			[NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN,
198 			[NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN,
199 			[NL80211_CHAN_WIDTH_20_NOHT] = MODE_11AX_HE20_2G,
200 			[NL80211_CHAN_WIDTH_20] = MODE_11AX_HE20_2G,
201 			[NL80211_CHAN_WIDTH_40] = MODE_11AX_HE40_2G,
202 			[NL80211_CHAN_WIDTH_80] = MODE_11AX_HE80_2G,
203 			[NL80211_CHAN_WIDTH_80P80] = MODE_UNKNOWN,
204 			[NL80211_CHAN_WIDTH_160] = MODE_UNKNOWN,
205 	},
206 	[NL80211_BAND_5GHZ] = {
207 			[NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN,
208 			[NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN,
209 			[NL80211_CHAN_WIDTH_20_NOHT] = MODE_11AX_HE20,
210 			[NL80211_CHAN_WIDTH_20] = MODE_11AX_HE20,
211 			[NL80211_CHAN_WIDTH_40] = MODE_11AX_HE40,
212 			[NL80211_CHAN_WIDTH_80] = MODE_11AX_HE80,
213 			[NL80211_CHAN_WIDTH_160] = MODE_11AX_HE160,
214 			[NL80211_CHAN_WIDTH_80P80] = MODE_11AX_HE80_80,
215 	},
216 	[NL80211_BAND_6GHZ] = {
217 			[NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN,
218 			[NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN,
219 			[NL80211_CHAN_WIDTH_20_NOHT] = MODE_11AX_HE20,
220 			[NL80211_CHAN_WIDTH_20] = MODE_11AX_HE20,
221 			[NL80211_CHAN_WIDTH_40] = MODE_11AX_HE40,
222 			[NL80211_CHAN_WIDTH_80] = MODE_11AX_HE80,
223 			[NL80211_CHAN_WIDTH_160] = MODE_11AX_HE160,
224 			[NL80211_CHAN_WIDTH_80P80] = MODE_11AX_HE80_80,
225 	},
226 
227 };
228 
229 const struct htt_rx_ring_tlv_filter ath11k_mac_mon_status_filter_default = {
230 	.rx_filter = HTT_RX_FILTER_TLV_FLAGS_MPDU_START |
231 		     HTT_RX_FILTER_TLV_FLAGS_PPDU_END |
232 		     HTT_RX_FILTER_TLV_FLAGS_PPDU_END_STATUS_DONE,
233 	.pkt_filter_flags0 = HTT_RX_FP_MGMT_FILTER_FLAGS0,
234 	.pkt_filter_flags1 = HTT_RX_FP_MGMT_FILTER_FLAGS1,
235 	.pkt_filter_flags2 = HTT_RX_FP_CTRL_FILTER_FLASG2,
236 	.pkt_filter_flags3 = HTT_RX_FP_DATA_FILTER_FLASG3 |
237 			     HTT_RX_FP_CTRL_FILTER_FLASG3
238 };
239 
240 #define ATH11K_MAC_FIRST_OFDM_RATE_IDX 4
241 #define ath11k_g_rates ath11k_legacy_rates
242 #define ath11k_g_rates_size (ARRAY_SIZE(ath11k_legacy_rates))
243 #define ath11k_a_rates (ath11k_legacy_rates + 4)
244 #define ath11k_a_rates_size (ARRAY_SIZE(ath11k_legacy_rates) - 4)
245 
246 #define ATH11K_MAC_SCAN_CMD_EVT_OVERHEAD		200 /* in msecs */
247 
248 /* Overhead due to the processing of channel switch events from FW */
249 #define ATH11K_SCAN_CHANNEL_SWITCH_WMI_EVT_OVERHEAD	10 /* in msecs */
250 
251 static const u32 ath11k_smps_map[] = {
252 	[WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC,
253 	[WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC,
254 	[WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE,
255 	[WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE,
256 };
257 
258 enum nl80211_he_ru_alloc ath11k_mac_phy_he_ru_to_nl80211_he_ru_alloc(u16 ru_phy)
259 {
260 	enum nl80211_he_ru_alloc ret;
261 
262 	switch (ru_phy) {
263 	case RU_26:
264 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_26;
265 		break;
266 	case RU_52:
267 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_52;
268 		break;
269 	case RU_106:
270 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_106;
271 		break;
272 	case RU_242:
273 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_242;
274 		break;
275 	case RU_484:
276 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_484;
277 		break;
278 	case RU_996:
279 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_996;
280 		break;
281 	default:
282 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_26;
283 		break;
284 	}
285 
286 	return ret;
287 }
288 
289 enum nl80211_he_ru_alloc ath11k_mac_he_ru_tones_to_nl80211_he_ru_alloc(u16 ru_tones)
290 {
291 	enum nl80211_he_ru_alloc ret;
292 
293 	switch (ru_tones) {
294 	case 26:
295 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_26;
296 		break;
297 	case 52:
298 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_52;
299 		break;
300 	case 106:
301 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_106;
302 		break;
303 	case 242:
304 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_242;
305 		break;
306 	case 484:
307 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_484;
308 		break;
309 	case 996:
310 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_996;
311 		break;
312 	case (996 * 2):
313 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
314 		break;
315 	default:
316 		ret = NL80211_RATE_INFO_HE_RU_ALLOC_26;
317 		break;
318 	}
319 
320 	return ret;
321 }
322 
323 enum nl80211_he_gi ath11k_mac_he_gi_to_nl80211_he_gi(u8 sgi)
324 {
325 	enum nl80211_he_gi ret;
326 
327 	switch (sgi) {
328 	case RX_MSDU_START_SGI_0_8_US:
329 		ret = NL80211_RATE_INFO_HE_GI_0_8;
330 		break;
331 	case RX_MSDU_START_SGI_1_6_US:
332 		ret = NL80211_RATE_INFO_HE_GI_1_6;
333 		break;
334 	case RX_MSDU_START_SGI_3_2_US:
335 		ret = NL80211_RATE_INFO_HE_GI_3_2;
336 		break;
337 	default:
338 		ret = NL80211_RATE_INFO_HE_GI_0_8;
339 		break;
340 	}
341 
342 	return ret;
343 }
344 
345 u8 ath11k_mac_bw_to_mac80211_bw(u8 bw)
346 {
347 	u8 ret = 0;
348 
349 	switch (bw) {
350 	case ATH11K_BW_20:
351 		ret = RATE_INFO_BW_20;
352 		break;
353 	case ATH11K_BW_40:
354 		ret = RATE_INFO_BW_40;
355 		break;
356 	case ATH11K_BW_80:
357 		ret = RATE_INFO_BW_80;
358 		break;
359 	case ATH11K_BW_160:
360 		ret = RATE_INFO_BW_160;
361 		break;
362 	}
363 
364 	return ret;
365 }
366 
367 enum ath11k_supported_bw ath11k_mac_mac80211_bw_to_ath11k_bw(enum rate_info_bw bw)
368 {
369 	switch (bw) {
370 	case RATE_INFO_BW_20:
371 		return ATH11K_BW_20;
372 	case RATE_INFO_BW_40:
373 		return ATH11K_BW_40;
374 	case RATE_INFO_BW_80:
375 		return ATH11K_BW_80;
376 	case RATE_INFO_BW_160:
377 		return ATH11K_BW_160;
378 	default:
379 		return ATH11K_BW_20;
380 	}
381 }
382 
383 int ath11k_mac_hw_ratecode_to_legacy_rate(u8 hw_rc, u8 preamble, u8 *rateidx,
384 					  u16 *rate)
385 {
386 	/* As default, it is OFDM rates */
387 	int i = ATH11K_MAC_FIRST_OFDM_RATE_IDX;
388 	int max_rates_idx = ath11k_g_rates_size;
389 
390 	if (preamble == WMI_RATE_PREAMBLE_CCK) {
391 		hw_rc &= ~ATH11k_HW_RATECODE_CCK_SHORT_PREAM_MASK;
392 		i = 0;
393 		max_rates_idx = ATH11K_MAC_FIRST_OFDM_RATE_IDX;
394 	}
395 
396 	while (i < max_rates_idx) {
397 		if (hw_rc == ath11k_legacy_rates[i].hw_value) {
398 			*rateidx = i;
399 			*rate = ath11k_legacy_rates[i].bitrate;
400 			return 0;
401 		}
402 		i++;
403 	}
404 
405 	return -EINVAL;
406 }
407 
408 static int get_num_chains(u32 mask)
409 {
410 	int num_chains = 0;
411 
412 	while (mask) {
413 		if (mask & BIT(0))
414 			num_chains++;
415 		mask >>= 1;
416 	}
417 
418 	return num_chains;
419 }
420 
421 u8 ath11k_mac_bitrate_to_idx(const struct ieee80211_supported_band *sband,
422 			     u32 bitrate)
423 {
424 	int i;
425 
426 	for (i = 0; i < sband->n_bitrates; i++)
427 		if (sband->bitrates[i].bitrate == bitrate)
428 			return i;
429 
430 	return 0;
431 }
432 
433 static u32
434 ath11k_mac_max_ht_nss(const u8 *ht_mcs_mask)
435 {
436 	int nss;
437 
438 	for (nss = IEEE80211_HT_MCS_MASK_LEN - 1; nss >= 0; nss--)
439 		if (ht_mcs_mask[nss])
440 			return nss + 1;
441 
442 	return 1;
443 }
444 
445 static u32
446 ath11k_mac_max_vht_nss(const u16 *vht_mcs_mask)
447 {
448 	int nss;
449 
450 	for (nss = NL80211_VHT_NSS_MAX - 1; nss >= 0; nss--)
451 		if (vht_mcs_mask[nss])
452 			return nss + 1;
453 
454 	return 1;
455 }
456 
457 static u32
458 ath11k_mac_max_he_nss(const u16 *he_mcs_mask)
459 {
460 	int nss;
461 
462 	for (nss = NL80211_HE_NSS_MAX - 1; nss >= 0; nss--)
463 		if (he_mcs_mask[nss])
464 			return nss + 1;
465 
466 	return 1;
467 }
468 
469 static u8 ath11k_parse_mpdudensity(u8 mpdudensity)
470 {
471 /* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
472  *   0 for no restriction
473  *   1 for 1/4 us
474  *   2 for 1/2 us
475  *   3 for 1 us
476  *   4 for 2 us
477  *   5 for 4 us
478  *   6 for 8 us
479  *   7 for 16 us
480  */
481 	switch (mpdudensity) {
482 	case 0:
483 		return 0;
484 	case 1:
485 	case 2:
486 	case 3:
487 	/* Our lower layer calculations limit our precision to
488 	 * 1 microsecond
489 	 */
490 		return 1;
491 	case 4:
492 		return 2;
493 	case 5:
494 		return 4;
495 	case 6:
496 		return 8;
497 	case 7:
498 		return 16;
499 	default:
500 		return 0;
501 	}
502 }
503 
504 static int ath11k_mac_vif_chan(struct ieee80211_vif *vif,
505 			       struct cfg80211_chan_def *def)
506 {
507 	struct ieee80211_chanctx_conf *conf;
508 
509 	rcu_read_lock();
510 	conf = rcu_dereference(vif->bss_conf.chanctx_conf);
511 	if (!conf) {
512 		rcu_read_unlock();
513 		return -ENOENT;
514 	}
515 
516 	*def = conf->def;
517 	rcu_read_unlock();
518 
519 	return 0;
520 }
521 
522 static bool ath11k_mac_bitrate_is_cck(int bitrate)
523 {
524 	switch (bitrate) {
525 	case 10:
526 	case 20:
527 	case 55:
528 	case 110:
529 		return true;
530 	}
531 
532 	return false;
533 }
534 
535 u8 ath11k_mac_hw_rate_to_idx(const struct ieee80211_supported_band *sband,
536 			     u8 hw_rate, bool cck)
537 {
538 	const struct ieee80211_rate *rate;
539 	int i;
540 
541 	for (i = 0; i < sband->n_bitrates; i++) {
542 		rate = &sband->bitrates[i];
543 
544 		if (ath11k_mac_bitrate_is_cck(rate->bitrate) != cck)
545 			continue;
546 
547 		if (rate->hw_value == hw_rate)
548 			return i;
549 		else if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE &&
550 			 rate->hw_value_short == hw_rate)
551 			return i;
552 	}
553 
554 	return 0;
555 }
556 
557 static u8 ath11k_mac_bitrate_to_rate(int bitrate)
558 {
559 	return DIV_ROUND_UP(bitrate, 5) |
560 	       (ath11k_mac_bitrate_is_cck(bitrate) ? BIT(7) : 0);
561 }
562 
563 static void ath11k_get_arvif_iter(void *data, u8 *mac,
564 				  struct ieee80211_vif *vif)
565 {
566 	struct ath11k_vif_iter *arvif_iter = data;
567 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
568 
569 	if (arvif->vdev_id == arvif_iter->vdev_id)
570 		arvif_iter->arvif = arvif;
571 }
572 
573 struct ath11k_vif *ath11k_mac_get_arvif(struct ath11k *ar, u32 vdev_id)
574 {
575 	struct ath11k_vif_iter arvif_iter;
576 	u32 flags;
577 
578 	memset(&arvif_iter, 0, sizeof(struct ath11k_vif_iter));
579 	arvif_iter.vdev_id = vdev_id;
580 
581 	flags = IEEE80211_IFACE_ITER_RESUME_ALL;
582 	ieee80211_iterate_active_interfaces_atomic(ar->hw,
583 						   flags,
584 						   ath11k_get_arvif_iter,
585 						   &arvif_iter);
586 	if (!arvif_iter.arvif) {
587 		ath11k_warn(ar->ab, "No VIF found for vdev %d\n", vdev_id);
588 		return NULL;
589 	}
590 
591 	return arvif_iter.arvif;
592 }
593 
594 struct ath11k_vif *ath11k_mac_get_arvif_by_vdev_id(struct ath11k_base *ab,
595 						   u32 vdev_id)
596 {
597 	int i;
598 	struct ath11k_pdev *pdev;
599 	struct ath11k_vif *arvif;
600 
601 	for (i = 0; i < ab->num_radios; i++) {
602 		pdev = rcu_dereference(ab->pdevs_active[i]);
603 		if (pdev && pdev->ar &&
604 		    (pdev->ar->allocated_vdev_map & (1LL << vdev_id))) {
605 			arvif = ath11k_mac_get_arvif(pdev->ar, vdev_id);
606 			if (arvif)
607 				return arvif;
608 		}
609 	}
610 
611 	return NULL;
612 }
613 
614 struct ath11k *ath11k_mac_get_ar_by_vdev_id(struct ath11k_base *ab, u32 vdev_id)
615 {
616 	int i;
617 	struct ath11k_pdev *pdev;
618 
619 	for (i = 0; i < ab->num_radios; i++) {
620 		pdev = rcu_dereference(ab->pdevs_active[i]);
621 		if (pdev && pdev->ar) {
622 			if (pdev->ar->allocated_vdev_map & (1LL << vdev_id))
623 				return pdev->ar;
624 		}
625 	}
626 
627 	return NULL;
628 }
629 
630 struct ath11k *ath11k_mac_get_ar_by_pdev_id(struct ath11k_base *ab, u32 pdev_id)
631 {
632 	int i;
633 	struct ath11k_pdev *pdev;
634 
635 	if (ab->hw_params.single_pdev_only) {
636 		pdev = rcu_dereference(ab->pdevs_active[0]);
637 		return pdev ? pdev->ar : NULL;
638 	}
639 
640 	if (WARN_ON(pdev_id > ab->num_radios))
641 		return NULL;
642 
643 	for (i = 0; i < ab->num_radios; i++) {
644 		if (ab->fw_mode == ATH11K_FIRMWARE_MODE_FTM)
645 			pdev = &ab->pdevs[i];
646 		else
647 			pdev = rcu_dereference(ab->pdevs_active[i]);
648 
649 		if (pdev && pdev->pdev_id == pdev_id)
650 			return (pdev->ar ? pdev->ar : NULL);
651 	}
652 
653 	return NULL;
654 }
655 
656 struct ath11k_vif *ath11k_mac_get_vif_up(struct ath11k_base *ab)
657 {
658 	struct ath11k *ar;
659 	struct ath11k_pdev *pdev;
660 	struct ath11k_vif *arvif;
661 	int i;
662 
663 	for (i = 0; i < ab->num_radios; i++) {
664 		pdev = &ab->pdevs[i];
665 		ar = pdev->ar;
666 		list_for_each_entry(arvif, &ar->arvifs, list) {
667 			if (arvif->is_up)
668 				return arvif;
669 		}
670 	}
671 
672 	return NULL;
673 }
674 
675 static bool ath11k_mac_band_match(enum nl80211_band band1, enum WMI_HOST_WLAN_BAND band2)
676 {
677 	return (((band1 == NL80211_BAND_2GHZ) && (band2 & WMI_HOST_WLAN_2G_CAP)) ||
678 		(((band1 == NL80211_BAND_5GHZ) || (band1 == NL80211_BAND_6GHZ)) &&
679 		   (band2 & WMI_HOST_WLAN_5G_CAP)));
680 }
681 
682 u8 ath11k_mac_get_target_pdev_id_from_vif(struct ath11k_vif *arvif)
683 {
684 	struct ath11k *ar = arvif->ar;
685 	struct ath11k_base *ab = ar->ab;
686 	struct ieee80211_vif *vif = arvif->vif;
687 	struct cfg80211_chan_def def;
688 	enum nl80211_band band;
689 	u8 pdev_id = ab->target_pdev_ids[0].pdev_id;
690 	int i;
691 
692 	if (WARN_ON(ath11k_mac_vif_chan(vif, &def)))
693 		return pdev_id;
694 
695 	band = def.chan->band;
696 
697 	for (i = 0; i < ab->target_pdev_count; i++) {
698 		if (ath11k_mac_band_match(band, ab->target_pdev_ids[i].supported_bands))
699 			return ab->target_pdev_ids[i].pdev_id;
700 	}
701 
702 	return pdev_id;
703 }
704 
705 u8 ath11k_mac_get_target_pdev_id(struct ath11k *ar)
706 {
707 	struct ath11k_vif *arvif;
708 
709 	arvif = ath11k_mac_get_vif_up(ar->ab);
710 
711 	if (arvif)
712 		return ath11k_mac_get_target_pdev_id_from_vif(arvif);
713 	else
714 		return ar->ab->target_pdev_ids[0].pdev_id;
715 }
716 
717 static void ath11k_pdev_caps_update(struct ath11k *ar)
718 {
719 	struct ath11k_base *ab = ar->ab;
720 
721 	ar->max_tx_power = ab->target_caps.hw_max_tx_power;
722 
723 	/* FIXME Set min_tx_power to ab->target_caps.hw_min_tx_power.
724 	 * But since the received value in svcrdy is same as hw_max_tx_power,
725 	 * we can set ar->min_tx_power to 0 currently until
726 	 * this is fixed in firmware
727 	 */
728 	ar->min_tx_power = 0;
729 
730 	ar->txpower_limit_2g = ar->max_tx_power;
731 	ar->txpower_limit_5g = ar->max_tx_power;
732 	ar->txpower_scale = WMI_HOST_TP_SCALE_MAX;
733 }
734 
735 static int ath11k_mac_txpower_recalc(struct ath11k *ar)
736 {
737 	struct ath11k_pdev *pdev = ar->pdev;
738 	struct ath11k_vif *arvif;
739 	int ret, txpower = -1;
740 	u32 param;
741 
742 	lockdep_assert_held(&ar->conf_mutex);
743 
744 	list_for_each_entry(arvif, &ar->arvifs, list) {
745 		if (arvif->txpower <= 0)
746 			continue;
747 
748 		if (txpower == -1)
749 			txpower = arvif->txpower;
750 		else
751 			txpower = min(txpower, arvif->txpower);
752 	}
753 
754 	if (txpower == -1)
755 		return 0;
756 
757 	/* txpwr is set as 2 units per dBm in FW*/
758 	txpower = min_t(u32, max_t(u32, ar->min_tx_power, txpower),
759 			ar->max_tx_power) * 2;
760 
761 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "txpower to set in hw %d\n",
762 		   txpower / 2);
763 
764 	if ((pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) &&
765 	    ar->txpower_limit_2g != txpower) {
766 		param = WMI_PDEV_PARAM_TXPOWER_LIMIT2G;
767 		ret = ath11k_wmi_pdev_set_param(ar, param,
768 						txpower, ar->pdev->pdev_id);
769 		if (ret)
770 			goto fail;
771 		ar->txpower_limit_2g = txpower;
772 	}
773 
774 	if ((pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) &&
775 	    ar->txpower_limit_5g != txpower) {
776 		param = WMI_PDEV_PARAM_TXPOWER_LIMIT5G;
777 		ret = ath11k_wmi_pdev_set_param(ar, param,
778 						txpower, ar->pdev->pdev_id);
779 		if (ret)
780 			goto fail;
781 		ar->txpower_limit_5g = txpower;
782 	}
783 
784 	return 0;
785 
786 fail:
787 	ath11k_warn(ar->ab, "failed to recalc txpower limit %d using pdev param %d: %d\n",
788 		    txpower / 2, param, ret);
789 	return ret;
790 }
791 
792 static int ath11k_recalc_rtscts_prot(struct ath11k_vif *arvif)
793 {
794 	struct ath11k *ar = arvif->ar;
795 	u32 vdev_param, rts_cts = 0;
796 	int ret;
797 
798 	lockdep_assert_held(&ar->conf_mutex);
799 
800 	vdev_param = WMI_VDEV_PARAM_ENABLE_RTSCTS;
801 
802 	/* Enable RTS/CTS protection for sw retries (when legacy stations
803 	 * are in BSS) or by default only for second rate series.
804 	 * TODO: Check if we need to enable CTS 2 Self in any case
805 	 */
806 	rts_cts = WMI_USE_RTS_CTS;
807 
808 	if (arvif->num_legacy_stations > 0)
809 		rts_cts |= WMI_RTSCTS_ACROSS_SW_RETRIES << 4;
810 	else
811 		rts_cts |= WMI_RTSCTS_FOR_SECOND_RATESERIES << 4;
812 
813 	/* Need not send duplicate param value to firmware */
814 	if (arvif->rtscts_prot_mode == rts_cts)
815 		return 0;
816 
817 	arvif->rtscts_prot_mode = rts_cts;
818 
819 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %d recalc rts/cts prot %d\n",
820 		   arvif->vdev_id, rts_cts);
821 
822 	ret =  ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
823 					     vdev_param, rts_cts);
824 	if (ret)
825 		ath11k_warn(ar->ab, "failed to recalculate rts/cts prot for vdev %d: %d\n",
826 			    arvif->vdev_id, ret);
827 
828 	return ret;
829 }
830 
831 static int ath11k_mac_set_kickout(struct ath11k_vif *arvif)
832 {
833 	struct ath11k *ar = arvif->ar;
834 	u32 param;
835 	int ret;
836 
837 	ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_STA_KICKOUT_TH,
838 					ATH11K_KICKOUT_THRESHOLD,
839 					ar->pdev->pdev_id);
840 	if (ret) {
841 		ath11k_warn(ar->ab, "failed to set kickout threshold on vdev %i: %d\n",
842 			    arvif->vdev_id, ret);
843 		return ret;
844 	}
845 
846 	param = WMI_VDEV_PARAM_AP_KEEPALIVE_MIN_IDLE_INACTIVE_TIME_SECS;
847 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param,
848 					    ATH11K_KEEPALIVE_MIN_IDLE);
849 	if (ret) {
850 		ath11k_warn(ar->ab, "failed to set keepalive minimum idle time on vdev %i: %d\n",
851 			    arvif->vdev_id, ret);
852 		return ret;
853 	}
854 
855 	param = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_IDLE_INACTIVE_TIME_SECS;
856 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param,
857 					    ATH11K_KEEPALIVE_MAX_IDLE);
858 	if (ret) {
859 		ath11k_warn(ar->ab, "failed to set keepalive maximum idle time on vdev %i: %d\n",
860 			    arvif->vdev_id, ret);
861 		return ret;
862 	}
863 
864 	param = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_UNRESPONSIVE_TIME_SECS;
865 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param,
866 					    ATH11K_KEEPALIVE_MAX_UNRESPONSIVE);
867 	if (ret) {
868 		ath11k_warn(ar->ab, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n",
869 			    arvif->vdev_id, ret);
870 		return ret;
871 	}
872 
873 	return 0;
874 }
875 
876 void ath11k_mac_peer_cleanup_all(struct ath11k *ar)
877 {
878 	struct ath11k_peer *peer, *tmp;
879 	struct ath11k_base *ab = ar->ab;
880 
881 	lockdep_assert_held(&ar->conf_mutex);
882 
883 	mutex_lock(&ab->tbl_mtx_lock);
884 	spin_lock_bh(&ab->base_lock);
885 	list_for_each_entry_safe(peer, tmp, &ab->peers, list) {
886 		ath11k_peer_rx_tid_cleanup(ar, peer);
887 		ath11k_peer_rhash_delete(ab, peer);
888 		list_del(&peer->list);
889 		kfree(peer);
890 	}
891 	spin_unlock_bh(&ab->base_lock);
892 	mutex_unlock(&ab->tbl_mtx_lock);
893 
894 	ar->num_peers = 0;
895 	ar->num_stations = 0;
896 }
897 
898 static inline int ath11k_mac_vdev_setup_sync(struct ath11k *ar)
899 {
900 	lockdep_assert_held(&ar->conf_mutex);
901 
902 	if (test_bit(ATH11K_FLAG_CRASH_FLUSH, &ar->ab->dev_flags))
903 		return -ESHUTDOWN;
904 
905 	if (!wait_for_completion_timeout(&ar->vdev_setup_done,
906 					 ATH11K_VDEV_SETUP_TIMEOUT_HZ))
907 		return -ETIMEDOUT;
908 
909 	return ar->last_wmi_vdev_start_status ? -EINVAL : 0;
910 }
911 
912 static void
913 ath11k_mac_get_any_chandef_iter(struct ieee80211_hw *hw,
914 				struct ieee80211_chanctx_conf *conf,
915 				void *data)
916 {
917 	struct cfg80211_chan_def **def = data;
918 
919 	*def = &conf->def;
920 }
921 
922 static int ath11k_mac_monitor_vdev_start(struct ath11k *ar, int vdev_id,
923 					 struct cfg80211_chan_def *chandef)
924 {
925 	struct ieee80211_channel *channel;
926 	struct wmi_vdev_start_req_arg arg = {};
927 	int ret;
928 
929 	lockdep_assert_held(&ar->conf_mutex);
930 
931 	channel = chandef->chan;
932 
933 	arg.vdev_id = vdev_id;
934 	arg.channel.freq = channel->center_freq;
935 	arg.channel.band_center_freq1 = chandef->center_freq1;
936 	arg.channel.band_center_freq2 = chandef->center_freq2;
937 
938 	arg.channel.mode = ath11k_phymodes[chandef->chan->band][chandef->width];
939 	arg.channel.chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR);
940 
941 	arg.channel.min_power = 0;
942 	arg.channel.max_power = channel->max_power;
943 	arg.channel.max_reg_power = channel->max_reg_power;
944 	arg.channel.max_antenna_gain = channel->max_antenna_gain;
945 
946 	arg.pref_tx_streams = ar->num_tx_chains;
947 	arg.pref_rx_streams = ar->num_rx_chains;
948 
949 	arg.channel.passive = !!(chandef->chan->flags & IEEE80211_CHAN_NO_IR);
950 
951 	reinit_completion(&ar->vdev_setup_done);
952 	reinit_completion(&ar->vdev_delete_done);
953 
954 	ret = ath11k_wmi_vdev_start(ar, &arg, false);
955 	if (ret) {
956 		ath11k_warn(ar->ab, "failed to request monitor vdev %i start: %d\n",
957 			    vdev_id, ret);
958 		return ret;
959 	}
960 
961 	ret = ath11k_mac_vdev_setup_sync(ar);
962 	if (ret) {
963 		ath11k_warn(ar->ab, "failed to synchronize setup for monitor vdev %i start: %d\n",
964 			    vdev_id, ret);
965 		return ret;
966 	}
967 
968 	ret = ath11k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr, NULL, 0, 0);
969 	if (ret) {
970 		ath11k_warn(ar->ab, "failed to put up monitor vdev %i: %d\n",
971 			    vdev_id, ret);
972 		goto vdev_stop;
973 	}
974 
975 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %i started\n",
976 		   vdev_id);
977 
978 	return 0;
979 
980 vdev_stop:
981 	reinit_completion(&ar->vdev_setup_done);
982 
983 	ret = ath11k_wmi_vdev_stop(ar, vdev_id);
984 	if (ret) {
985 		ath11k_warn(ar->ab, "failed to stop monitor vdev %i after start failure: %d\n",
986 			    vdev_id, ret);
987 		return ret;
988 	}
989 
990 	ret = ath11k_mac_vdev_setup_sync(ar);
991 	if (ret) {
992 		ath11k_warn(ar->ab, "failed to synchronize setup for vdev %i stop: %d\n",
993 			    vdev_id, ret);
994 		return ret;
995 	}
996 
997 	return -EIO;
998 }
999 
1000 static int ath11k_mac_monitor_vdev_stop(struct ath11k *ar)
1001 {
1002 	int ret;
1003 
1004 	lockdep_assert_held(&ar->conf_mutex);
1005 
1006 	reinit_completion(&ar->vdev_setup_done);
1007 
1008 	ret = ath11k_wmi_vdev_stop(ar, ar->monitor_vdev_id);
1009 	if (ret) {
1010 		ath11k_warn(ar->ab, "failed to request monitor vdev %i stop: %d\n",
1011 			    ar->monitor_vdev_id, ret);
1012 		return ret;
1013 	}
1014 
1015 	ret = ath11k_mac_vdev_setup_sync(ar);
1016 	if (ret) {
1017 		ath11k_warn(ar->ab, "failed to synchronize monitor vdev %i stop: %d\n",
1018 			    ar->monitor_vdev_id, ret);
1019 		return ret;
1020 	}
1021 
1022 	ret = ath11k_wmi_vdev_down(ar, ar->monitor_vdev_id);
1023 	if (ret) {
1024 		ath11k_warn(ar->ab, "failed to put down monitor vdev %i: %d\n",
1025 			    ar->monitor_vdev_id, ret);
1026 		return ret;
1027 	}
1028 
1029 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %i stopped\n",
1030 		   ar->monitor_vdev_id);
1031 
1032 	return 0;
1033 }
1034 
1035 static int ath11k_mac_monitor_vdev_create(struct ath11k *ar)
1036 {
1037 	struct ath11k_pdev *pdev = ar->pdev;
1038 	struct vdev_create_params param = {};
1039 	int bit, ret;
1040 	u8 tmp_addr[6] = {0};
1041 	u16 nss;
1042 
1043 	lockdep_assert_held(&ar->conf_mutex);
1044 
1045 	if (test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags))
1046 		return 0;
1047 
1048 	if (ar->ab->free_vdev_map == 0) {
1049 		ath11k_warn(ar->ab, "failed to find free vdev id for monitor vdev\n");
1050 		return -ENOMEM;
1051 	}
1052 
1053 	bit = __ffs64(ar->ab->free_vdev_map);
1054 
1055 	ar->monitor_vdev_id = bit;
1056 
1057 	param.if_id = ar->monitor_vdev_id;
1058 	param.type = WMI_VDEV_TYPE_MONITOR;
1059 	param.subtype = WMI_VDEV_SUBTYPE_NONE;
1060 	param.pdev_id = pdev->pdev_id;
1061 
1062 	if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) {
1063 		param.chains[NL80211_BAND_2GHZ].tx = ar->num_tx_chains;
1064 		param.chains[NL80211_BAND_2GHZ].rx = ar->num_rx_chains;
1065 	}
1066 	if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) {
1067 		param.chains[NL80211_BAND_5GHZ].tx = ar->num_tx_chains;
1068 		param.chains[NL80211_BAND_5GHZ].rx = ar->num_rx_chains;
1069 	}
1070 
1071 	ret = ath11k_wmi_vdev_create(ar, tmp_addr, &param);
1072 	if (ret) {
1073 		ath11k_warn(ar->ab, "failed to request monitor vdev %i creation: %d\n",
1074 			    ar->monitor_vdev_id, ret);
1075 		ar->monitor_vdev_id = -1;
1076 		return ret;
1077 	}
1078 
1079 	nss = get_num_chains(ar->cfg_tx_chainmask) ? : 1;
1080 	ret = ath11k_wmi_vdev_set_param_cmd(ar, ar->monitor_vdev_id,
1081 					    WMI_VDEV_PARAM_NSS, nss);
1082 	if (ret) {
1083 		ath11k_warn(ar->ab, "failed to set vdev %d chainmask 0x%x, nss %d :%d\n",
1084 			    ar->monitor_vdev_id, ar->cfg_tx_chainmask, nss, ret);
1085 		goto err_vdev_del;
1086 	}
1087 
1088 	ret = ath11k_mac_txpower_recalc(ar);
1089 	if (ret) {
1090 		ath11k_warn(ar->ab, "failed to recalc txpower for monitor vdev %d: %d\n",
1091 			    ar->monitor_vdev_id, ret);
1092 		goto err_vdev_del;
1093 	}
1094 
1095 	ar->allocated_vdev_map |= 1LL << ar->monitor_vdev_id;
1096 	ar->ab->free_vdev_map &= ~(1LL << ar->monitor_vdev_id);
1097 	ar->num_created_vdevs++;
1098 	set_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags);
1099 
1100 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %d created\n",
1101 		   ar->monitor_vdev_id);
1102 
1103 	return 0;
1104 
1105 err_vdev_del:
1106 	ath11k_wmi_vdev_delete(ar, ar->monitor_vdev_id);
1107 	ar->monitor_vdev_id = -1;
1108 	return ret;
1109 }
1110 
1111 static int ath11k_mac_monitor_vdev_delete(struct ath11k *ar)
1112 {
1113 	int ret;
1114 	unsigned long time_left;
1115 
1116 	lockdep_assert_held(&ar->conf_mutex);
1117 
1118 	if (!test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags))
1119 		return 0;
1120 
1121 	reinit_completion(&ar->vdev_delete_done);
1122 
1123 	ret = ath11k_wmi_vdev_delete(ar, ar->monitor_vdev_id);
1124 	if (ret) {
1125 		ath11k_warn(ar->ab, "failed to request wmi monitor vdev %i removal: %d\n",
1126 			    ar->monitor_vdev_id, ret);
1127 		return ret;
1128 	}
1129 
1130 	time_left = wait_for_completion_timeout(&ar->vdev_delete_done,
1131 						ATH11K_VDEV_DELETE_TIMEOUT_HZ);
1132 	if (time_left == 0) {
1133 		ath11k_warn(ar->ab, "Timeout in receiving vdev delete response\n");
1134 	} else {
1135 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %d deleted\n",
1136 			   ar->monitor_vdev_id);
1137 
1138 		ar->allocated_vdev_map &= ~(1LL << ar->monitor_vdev_id);
1139 		ar->ab->free_vdev_map |= 1LL << (ar->monitor_vdev_id);
1140 		ar->num_created_vdevs--;
1141 		ar->monitor_vdev_id = -1;
1142 		clear_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags);
1143 	}
1144 
1145 	return ret;
1146 }
1147 
1148 static int ath11k_mac_monitor_start(struct ath11k *ar)
1149 {
1150 	struct cfg80211_chan_def *chandef = NULL;
1151 	int ret;
1152 
1153 	lockdep_assert_held(&ar->conf_mutex);
1154 
1155 	if (test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags))
1156 		return 0;
1157 
1158 	ieee80211_iter_chan_contexts_atomic(ar->hw,
1159 					    ath11k_mac_get_any_chandef_iter,
1160 					    &chandef);
1161 	if (!chandef)
1162 		return 0;
1163 
1164 	ret = ath11k_mac_monitor_vdev_start(ar, ar->monitor_vdev_id, chandef);
1165 	if (ret) {
1166 		ath11k_warn(ar->ab, "failed to start monitor vdev: %d\n", ret);
1167 		ath11k_mac_monitor_vdev_delete(ar);
1168 		return ret;
1169 	}
1170 
1171 	set_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags);
1172 
1173 	ar->num_started_vdevs++;
1174 	ret = ath11k_dp_tx_htt_monitor_mode_ring_config(ar, false);
1175 	if (ret) {
1176 		ath11k_warn(ar->ab, "failed to configure htt monitor mode ring during start: %d",
1177 			    ret);
1178 		return ret;
1179 	}
1180 
1181 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor started\n");
1182 
1183 	return 0;
1184 }
1185 
1186 static int ath11k_mac_monitor_stop(struct ath11k *ar)
1187 {
1188 	int ret;
1189 
1190 	lockdep_assert_held(&ar->conf_mutex);
1191 
1192 	if (!test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags))
1193 		return 0;
1194 
1195 	ret = ath11k_mac_monitor_vdev_stop(ar);
1196 	if (ret) {
1197 		ath11k_warn(ar->ab, "failed to stop monitor vdev: %d\n", ret);
1198 		return ret;
1199 	}
1200 
1201 	clear_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags);
1202 	ar->num_started_vdevs--;
1203 
1204 	ret = ath11k_dp_tx_htt_monitor_mode_ring_config(ar, true);
1205 	if (ret) {
1206 		ath11k_warn(ar->ab, "failed to configure htt monitor mode ring during stop: %d",
1207 			    ret);
1208 		return ret;
1209 	}
1210 
1211 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor stopped ret %d\n", ret);
1212 
1213 	return 0;
1214 }
1215 
1216 static int ath11k_mac_vif_setup_ps(struct ath11k_vif *arvif)
1217 {
1218 	struct ath11k *ar = arvif->ar;
1219 	struct ieee80211_vif *vif = arvif->vif;
1220 	struct ieee80211_conf *conf = &ar->hw->conf;
1221 	enum wmi_sta_powersave_param param;
1222 	enum wmi_sta_ps_mode psmode;
1223 	int ret;
1224 	int timeout;
1225 	bool enable_ps;
1226 
1227 	lockdep_assert_held(&arvif->ar->conf_mutex);
1228 
1229 	if (arvif->vif->type != NL80211_IFTYPE_STATION)
1230 		return 0;
1231 
1232 	enable_ps = arvif->ps;
1233 
1234 	if (enable_ps) {
1235 		psmode = WMI_STA_PS_MODE_ENABLED;
1236 		param = WMI_STA_PS_PARAM_INACTIVITY_TIME;
1237 
1238 		timeout = conf->dynamic_ps_timeout;
1239 		if (timeout == 0) {
1240 			/* firmware doesn't like 0 */
1241 			timeout = ieee80211_tu_to_usec(vif->bss_conf.beacon_int) / 1000;
1242 		}
1243 
1244 		ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param,
1245 						  timeout);
1246 		if (ret) {
1247 			ath11k_warn(ar->ab, "failed to set inactivity time for vdev %d: %i\n",
1248 				    arvif->vdev_id, ret);
1249 			return ret;
1250 		}
1251 	} else {
1252 		psmode = WMI_STA_PS_MODE_DISABLED;
1253 	}
1254 
1255 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %d psmode %s\n",
1256 		   arvif->vdev_id, psmode ? "enable" : "disable");
1257 
1258 	ret = ath11k_wmi_pdev_set_ps_mode(ar, arvif->vdev_id, psmode);
1259 	if (ret) {
1260 		ath11k_warn(ar->ab, "failed to set sta power save mode %d for vdev %d: %d\n",
1261 			    psmode, arvif->vdev_id, ret);
1262 		return ret;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 static int ath11k_mac_config_ps(struct ath11k *ar)
1269 {
1270 	struct ath11k_vif *arvif;
1271 	int ret = 0;
1272 
1273 	lockdep_assert_held(&ar->conf_mutex);
1274 
1275 	list_for_each_entry(arvif, &ar->arvifs, list) {
1276 		ret = ath11k_mac_vif_setup_ps(arvif);
1277 		if (ret) {
1278 			ath11k_warn(ar->ab, "failed to setup powersave: %d\n", ret);
1279 			break;
1280 		}
1281 	}
1282 
1283 	return ret;
1284 }
1285 
1286 static int ath11k_mac_op_config(struct ieee80211_hw *hw, u32 changed)
1287 {
1288 	struct ath11k *ar = hw->priv;
1289 	struct ieee80211_conf *conf = &hw->conf;
1290 	int ret = 0;
1291 
1292 	mutex_lock(&ar->conf_mutex);
1293 
1294 	if (changed & IEEE80211_CONF_CHANGE_MONITOR) {
1295 		if (conf->flags & IEEE80211_CONF_MONITOR) {
1296 			set_bit(ATH11K_FLAG_MONITOR_CONF_ENABLED, &ar->monitor_flags);
1297 
1298 			if (test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED,
1299 				     &ar->monitor_flags))
1300 				goto out;
1301 
1302 			ret = ath11k_mac_monitor_vdev_create(ar);
1303 			if (ret) {
1304 				ath11k_warn(ar->ab, "failed to create monitor vdev: %d",
1305 					    ret);
1306 				goto out;
1307 			}
1308 
1309 			ret = ath11k_mac_monitor_start(ar);
1310 			if (ret) {
1311 				ath11k_warn(ar->ab, "failed to start monitor: %d",
1312 					    ret);
1313 				goto err_mon_del;
1314 			}
1315 		} else {
1316 			clear_bit(ATH11K_FLAG_MONITOR_CONF_ENABLED, &ar->monitor_flags);
1317 
1318 			if (!test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED,
1319 				      &ar->monitor_flags))
1320 				goto out;
1321 
1322 			ret = ath11k_mac_monitor_stop(ar);
1323 			if (ret) {
1324 				ath11k_warn(ar->ab, "failed to stop monitor: %d",
1325 					    ret);
1326 				goto out;
1327 			}
1328 
1329 			ret = ath11k_mac_monitor_vdev_delete(ar);
1330 			if (ret) {
1331 				ath11k_warn(ar->ab, "failed to delete monitor vdev: %d",
1332 					    ret);
1333 				goto out;
1334 			}
1335 		}
1336 	}
1337 
1338 out:
1339 	mutex_unlock(&ar->conf_mutex);
1340 	return ret;
1341 
1342 err_mon_del:
1343 	ath11k_mac_monitor_vdev_delete(ar);
1344 	mutex_unlock(&ar->conf_mutex);
1345 	return ret;
1346 }
1347 
1348 static void ath11k_mac_setup_nontx_vif_rsnie(struct ath11k_vif *arvif,
1349 					     bool tx_arvif_rsnie_present,
1350 					     const u8 *profile, u8 profile_len)
1351 {
1352 	if (cfg80211_find_ie(WLAN_EID_RSN, profile, profile_len)) {
1353 		arvif->rsnie_present = true;
1354 	} else if (tx_arvif_rsnie_present) {
1355 		int i;
1356 		u8 nie_len;
1357 		const u8 *nie = cfg80211_find_ext_ie(WLAN_EID_EXT_NON_INHERITANCE,
1358 						     profile, profile_len);
1359 		if (!nie)
1360 			return;
1361 
1362 		nie_len = nie[1];
1363 		nie += 2;
1364 		for (i = 0; i < nie_len; i++) {
1365 			if (nie[i] == WLAN_EID_RSN) {
1366 				arvif->rsnie_present = false;
1367 				break;
1368 			}
1369 		}
1370 	}
1371 }
1372 
1373 static bool ath11k_mac_set_nontx_vif_params(struct ath11k_vif *tx_arvif,
1374 					    struct ath11k_vif *arvif,
1375 					    struct sk_buff *bcn)
1376 {
1377 	struct ieee80211_mgmt *mgmt;
1378 	const u8 *ies, *profile, *next_profile;
1379 	int ies_len;
1380 
1381 	ies = bcn->data + ieee80211_get_hdrlen_from_skb(bcn);
1382 	mgmt = (struct ieee80211_mgmt *)bcn->data;
1383 	ies += sizeof(mgmt->u.beacon);
1384 	ies_len = skb_tail_pointer(bcn) - ies;
1385 
1386 	ies = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ies, ies_len);
1387 	arvif->rsnie_present = tx_arvif->rsnie_present;
1388 
1389 	while (ies) {
1390 		u8 mbssid_len;
1391 
1392 		ies_len -= (2 + ies[1]);
1393 		mbssid_len = ies[1] - 1;
1394 		profile = &ies[3];
1395 
1396 		while (mbssid_len) {
1397 			u8 profile_len;
1398 
1399 			profile_len = profile[1];
1400 			next_profile = profile + (2 + profile_len);
1401 			mbssid_len -= (2 + profile_len);
1402 
1403 			profile += 2;
1404 			profile_len -= (2 + profile[1]);
1405 			profile += (2 + profile[1]); /* nontx capabilities */
1406 			profile_len -= (2 + profile[1]);
1407 			profile += (2 + profile[1]); /* SSID */
1408 			if (profile[2] == arvif->vif->bss_conf.bssid_index) {
1409 				profile_len -= 5;
1410 				profile = profile + 5;
1411 				ath11k_mac_setup_nontx_vif_rsnie(arvif,
1412 								 tx_arvif->rsnie_present,
1413 								 profile,
1414 								 profile_len);
1415 				return true;
1416 			}
1417 			profile = next_profile;
1418 		}
1419 		ies = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, profile,
1420 				       ies_len);
1421 	}
1422 
1423 	return false;
1424 }
1425 
1426 static int ath11k_mac_setup_bcn_p2p_ie(struct ath11k_vif *arvif,
1427 				       struct sk_buff *bcn)
1428 {
1429 	struct ath11k *ar = arvif->ar;
1430 	struct ieee80211_mgmt *mgmt;
1431 	const u8 *p2p_ie;
1432 	int ret;
1433 
1434 	mgmt = (void *)bcn->data;
1435 	p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P,
1436 					 mgmt->u.beacon.variable,
1437 					 bcn->len - (mgmt->u.beacon.variable -
1438 						     bcn->data));
1439 	if (!p2p_ie)
1440 		return -ENOENT;
1441 
1442 	ret = ath11k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie);
1443 	if (ret) {
1444 		ath11k_warn(ar->ab, "failed to submit P2P GO bcn ie for vdev %i: %d\n",
1445 			    arvif->vdev_id, ret);
1446 		return ret;
1447 	}
1448 
1449 	return ret;
1450 }
1451 
1452 static int ath11k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui,
1453 				       u8 oui_type, size_t ie_offset)
1454 {
1455 	size_t len;
1456 	const u8 *next, *end;
1457 	u8 *ie;
1458 
1459 	if (WARN_ON(skb->len < ie_offset))
1460 		return -EINVAL;
1461 
1462 	ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type,
1463 					   skb->data + ie_offset,
1464 					   skb->len - ie_offset);
1465 	if (!ie)
1466 		return -ENOENT;
1467 
1468 	len = ie[1] + 2;
1469 	end = skb->data + skb->len;
1470 	next = ie + len;
1471 
1472 	if (WARN_ON(next > end))
1473 		return -EINVAL;
1474 
1475 	memmove(ie, next, end - next);
1476 	skb_trim(skb, skb->len - len);
1477 
1478 	return 0;
1479 }
1480 
1481 static int ath11k_mac_set_vif_params(struct ath11k_vif *arvif,
1482 				     struct sk_buff *bcn)
1483 {
1484 	struct ath11k_base *ab = arvif->ar->ab;
1485 	struct ieee80211_mgmt *mgmt;
1486 	int ret = 0;
1487 	u8 *ies;
1488 
1489 	ies = bcn->data + ieee80211_get_hdrlen_from_skb(bcn);
1490 	mgmt = (struct ieee80211_mgmt *)bcn->data;
1491 	ies += sizeof(mgmt->u.beacon);
1492 
1493 	if (cfg80211_find_ie(WLAN_EID_RSN, ies, (skb_tail_pointer(bcn) - ies)))
1494 		arvif->rsnie_present = true;
1495 	else
1496 		arvif->rsnie_present = false;
1497 
1498 	if (cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
1499 				    WLAN_OUI_TYPE_MICROSOFT_WPA,
1500 				    ies, (skb_tail_pointer(bcn) - ies)))
1501 		arvif->wpaie_present = true;
1502 	else
1503 		arvif->wpaie_present = false;
1504 
1505 	if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO)
1506 		return ret;
1507 
1508 	ret = ath11k_mac_setup_bcn_p2p_ie(arvif, bcn);
1509 	if (ret) {
1510 		ath11k_warn(ab, "failed to setup P2P GO bcn ie: %d\n",
1511 			    ret);
1512 		return ret;
1513 	}
1514 
1515 	/* P2P IE is inserted by firmware automatically (as
1516 	 * configured above) so remove it from the base beacon
1517 	 * template to avoid duplicate P2P IEs in beacon frames.
1518 	 */
1519 	ret = ath11k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA,
1520 					  WLAN_OUI_TYPE_WFA_P2P,
1521 					  offsetof(struct ieee80211_mgmt,
1522 						   u.beacon.variable));
1523 	if (ret) {
1524 		ath11k_warn(ab, "failed to remove P2P vendor ie: %d\n",
1525 			    ret);
1526 		return ret;
1527 	}
1528 
1529 	return ret;
1530 }
1531 
1532 static int ath11k_mac_setup_bcn_tmpl_ema(struct ath11k_vif *arvif)
1533 {
1534 	struct ath11k_vif *tx_arvif;
1535 	struct ieee80211_ema_beacons *beacons;
1536 	int ret = 0;
1537 	bool nontx_vif_params_set = false;
1538 	u32 params = 0;
1539 	u8 i = 0;
1540 
1541 	tx_arvif = ath11k_vif_to_arvif(arvif->vif->mbssid_tx_vif);
1542 
1543 	beacons = ieee80211_beacon_get_template_ema_list(tx_arvif->ar->hw,
1544 							 tx_arvif->vif, 0);
1545 	if (!beacons || !beacons->cnt) {
1546 		ath11k_warn(arvif->ar->ab,
1547 			    "failed to get ema beacon templates from mac80211\n");
1548 		return -EPERM;
1549 	}
1550 
1551 	if (tx_arvif == arvif) {
1552 		if (ath11k_mac_set_vif_params(tx_arvif, beacons->bcn[0].skb))
1553 			return -EINVAL;
1554 	} else {
1555 		arvif->wpaie_present = tx_arvif->wpaie_present;
1556 	}
1557 
1558 	for (i = 0; i < beacons->cnt; i++) {
1559 		if (tx_arvif != arvif && !nontx_vif_params_set)
1560 			nontx_vif_params_set =
1561 				ath11k_mac_set_nontx_vif_params(tx_arvif, arvif,
1562 								beacons->bcn[i].skb);
1563 
1564 		params = beacons->cnt;
1565 		params |= (i << WMI_EMA_TMPL_IDX_SHIFT);
1566 		params |= ((!i ? 1 : 0) << WMI_EMA_FIRST_TMPL_SHIFT);
1567 		params |= ((i + 1 == beacons->cnt ? 1 : 0) << WMI_EMA_LAST_TMPL_SHIFT);
1568 
1569 		ret = ath11k_wmi_bcn_tmpl(tx_arvif->ar, tx_arvif->vdev_id,
1570 					  &beacons->bcn[i].offs,
1571 					  beacons->bcn[i].skb, params);
1572 		if (ret) {
1573 			ath11k_warn(tx_arvif->ar->ab,
1574 				    "failed to set ema beacon template id %i error %d\n",
1575 				    i, ret);
1576 			break;
1577 		}
1578 	}
1579 
1580 	ieee80211_beacon_free_ema_list(beacons);
1581 
1582 	if (tx_arvif != arvif && !nontx_vif_params_set)
1583 		return -EINVAL; /* Profile not found in the beacons */
1584 
1585 	return ret;
1586 }
1587 
1588 static int ath11k_mac_setup_bcn_tmpl_mbssid(struct ath11k_vif *arvif)
1589 {
1590 	struct ath11k *ar = arvif->ar;
1591 	struct ath11k_base *ab = ar->ab;
1592 	struct ath11k_vif *tx_arvif = arvif;
1593 	struct ieee80211_hw *hw = ar->hw;
1594 	struct ieee80211_vif *vif = arvif->vif;
1595 	struct ieee80211_mutable_offsets offs = {};
1596 	struct sk_buff *bcn;
1597 	int ret;
1598 
1599 	if (vif->mbssid_tx_vif) {
1600 		tx_arvif = ath11k_vif_to_arvif(vif->mbssid_tx_vif);
1601 		if (tx_arvif != arvif) {
1602 			ar = tx_arvif->ar;
1603 			ab = ar->ab;
1604 			hw = ar->hw;
1605 			vif = tx_arvif->vif;
1606 		}
1607 	}
1608 
1609 	bcn = ieee80211_beacon_get_template(hw, vif, &offs, 0);
1610 	if (!bcn) {
1611 		ath11k_warn(ab, "failed to get beacon template from mac80211\n");
1612 		return -EPERM;
1613 	}
1614 
1615 	if (tx_arvif == arvif) {
1616 		if (ath11k_mac_set_vif_params(tx_arvif, bcn))
1617 			return -EINVAL;
1618 	} else if (!ath11k_mac_set_nontx_vif_params(tx_arvif, arvif, bcn)) {
1619 		return -EINVAL;
1620 	}
1621 
1622 	ret = ath11k_wmi_bcn_tmpl(ar, arvif->vdev_id, &offs, bcn, 0);
1623 	kfree_skb(bcn);
1624 
1625 	if (ret)
1626 		ath11k_warn(ab, "failed to submit beacon template command: %d\n",
1627 			    ret);
1628 
1629 	return ret;
1630 }
1631 
1632 static int ath11k_mac_setup_bcn_tmpl(struct ath11k_vif *arvif)
1633 {
1634 	struct ieee80211_vif *vif = arvif->vif;
1635 
1636 	if (arvif->vdev_type != WMI_VDEV_TYPE_AP)
1637 		return 0;
1638 
1639 	/* Target does not expect beacon templates for the already up
1640 	 * non-transmitting interfaces, and results in a crash if sent.
1641 	 */
1642 	if (vif->mbssid_tx_vif &&
1643 	    arvif != ath11k_vif_to_arvif(vif->mbssid_tx_vif) && arvif->is_up)
1644 		return 0;
1645 
1646 	if (vif->bss_conf.ema_ap && vif->mbssid_tx_vif)
1647 		return ath11k_mac_setup_bcn_tmpl_ema(arvif);
1648 
1649 	return ath11k_mac_setup_bcn_tmpl_mbssid(arvif);
1650 }
1651 
1652 void ath11k_mac_bcn_tx_event(struct ath11k_vif *arvif)
1653 {
1654 	struct ieee80211_vif *vif = arvif->vif;
1655 
1656 	if (!vif->bss_conf.color_change_active && !arvif->bcca_zero_sent)
1657 		return;
1658 
1659 	if (vif->bss_conf.color_change_active &&
1660 	    ieee80211_beacon_cntdwn_is_complete(vif, 0)) {
1661 		arvif->bcca_zero_sent = true;
1662 		ieee80211_color_change_finish(vif, 0);
1663 		return;
1664 	}
1665 
1666 	arvif->bcca_zero_sent = false;
1667 
1668 	if (vif->bss_conf.color_change_active)
1669 		ieee80211_beacon_update_cntdwn(vif, 0);
1670 	ath11k_mac_setup_bcn_tmpl(arvif);
1671 }
1672 
1673 static void ath11k_control_beaconing(struct ath11k_vif *arvif,
1674 				     struct ieee80211_bss_conf *info)
1675 {
1676 	struct ath11k *ar = arvif->ar;
1677 	struct ath11k_vif *tx_arvif = NULL;
1678 	int ret = 0;
1679 
1680 	lockdep_assert_held(&arvif->ar->conf_mutex);
1681 
1682 	if (!info->enable_beacon) {
1683 		ret = ath11k_wmi_vdev_down(ar, arvif->vdev_id);
1684 		if (ret)
1685 			ath11k_warn(ar->ab, "failed to down vdev_id %i: %d\n",
1686 				    arvif->vdev_id, ret);
1687 
1688 		arvif->is_up = false;
1689 		return;
1690 	}
1691 
1692 	/* Install the beacon template to the FW */
1693 	ret = ath11k_mac_setup_bcn_tmpl(arvif);
1694 	if (ret) {
1695 		ath11k_warn(ar->ab, "failed to update bcn tmpl during vdev up: %d\n",
1696 			    ret);
1697 		return;
1698 	}
1699 
1700 	arvif->tx_seq_no = 0x1000;
1701 
1702 	arvif->aid = 0;
1703 
1704 	ether_addr_copy(arvif->bssid, info->bssid);
1705 
1706 	if (arvif->vif->mbssid_tx_vif)
1707 		tx_arvif = ath11k_vif_to_arvif(arvif->vif->mbssid_tx_vif);
1708 
1709 	ret = ath11k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
1710 				 arvif->bssid,
1711 				 tx_arvif ? tx_arvif->bssid : NULL,
1712 				 info->bssid_index,
1713 				 1 << info->bssid_indicator);
1714 	if (ret) {
1715 		ath11k_warn(ar->ab, "failed to bring up vdev %d: %i\n",
1716 			    arvif->vdev_id, ret);
1717 		return;
1718 	}
1719 
1720 	arvif->is_up = true;
1721 
1722 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %d up\n", arvif->vdev_id);
1723 }
1724 
1725 static void ath11k_mac_handle_beacon_iter(void *data, u8 *mac,
1726 					  struct ieee80211_vif *vif)
1727 {
1728 	struct sk_buff *skb = data;
1729 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
1730 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
1731 
1732 	if (vif->type != NL80211_IFTYPE_STATION)
1733 		return;
1734 
1735 	if (!ether_addr_equal(mgmt->bssid, vif->bss_conf.bssid))
1736 		return;
1737 
1738 	cancel_delayed_work(&arvif->connection_loss_work);
1739 }
1740 
1741 void ath11k_mac_handle_beacon(struct ath11k *ar, struct sk_buff *skb)
1742 {
1743 	ieee80211_iterate_active_interfaces_atomic(ar->hw,
1744 						   IEEE80211_IFACE_ITER_NORMAL,
1745 						   ath11k_mac_handle_beacon_iter,
1746 						   skb);
1747 }
1748 
1749 static void ath11k_mac_handle_beacon_miss_iter(void *data, u8 *mac,
1750 					       struct ieee80211_vif *vif)
1751 {
1752 	u32 *vdev_id = data;
1753 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
1754 	struct ath11k *ar = arvif->ar;
1755 	struct ieee80211_hw *hw = ar->hw;
1756 
1757 	if (arvif->vdev_id != *vdev_id)
1758 		return;
1759 
1760 	if (!arvif->is_up)
1761 		return;
1762 
1763 	ieee80211_beacon_loss(vif);
1764 
1765 	/* Firmware doesn't report beacon loss events repeatedly. If AP probe
1766 	 * (done by mac80211) succeeds but beacons do not resume then it
1767 	 * doesn't make sense to continue operation. Queue connection loss work
1768 	 * which can be cancelled when beacon is received.
1769 	 */
1770 	ieee80211_queue_delayed_work(hw, &arvif->connection_loss_work,
1771 				     ATH11K_CONNECTION_LOSS_HZ);
1772 }
1773 
1774 void ath11k_mac_handle_beacon_miss(struct ath11k *ar, u32 vdev_id)
1775 {
1776 	ieee80211_iterate_active_interfaces_atomic(ar->hw,
1777 						   IEEE80211_IFACE_ITER_NORMAL,
1778 						   ath11k_mac_handle_beacon_miss_iter,
1779 						   &vdev_id);
1780 }
1781 
1782 static void ath11k_mac_vif_sta_connection_loss_work(struct work_struct *work)
1783 {
1784 	struct ath11k_vif *arvif = container_of(work, struct ath11k_vif,
1785 						connection_loss_work.work);
1786 	struct ieee80211_vif *vif = arvif->vif;
1787 
1788 	if (!arvif->is_up)
1789 		return;
1790 
1791 	ieee80211_connection_loss(vif);
1792 }
1793 
1794 static void ath11k_peer_assoc_h_basic(struct ath11k *ar,
1795 				      struct ieee80211_vif *vif,
1796 				      struct ieee80211_sta *sta,
1797 				      struct peer_assoc_params *arg)
1798 {
1799 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
1800 	u32 aid;
1801 
1802 	lockdep_assert_held(&ar->conf_mutex);
1803 
1804 	if (vif->type == NL80211_IFTYPE_STATION)
1805 		aid = vif->cfg.aid;
1806 	else
1807 		aid = sta->aid;
1808 
1809 	ether_addr_copy(arg->peer_mac, sta->addr);
1810 	arg->vdev_id = arvif->vdev_id;
1811 	arg->peer_associd = aid;
1812 	arg->auth_flag = true;
1813 	/* TODO: STA WAR in ath10k for listen interval required? */
1814 	arg->peer_listen_intval = ar->hw->conf.listen_interval;
1815 	arg->peer_nss = 1;
1816 	arg->peer_caps = vif->bss_conf.assoc_capability;
1817 }
1818 
1819 static void ath11k_peer_assoc_h_crypto(struct ath11k *ar,
1820 				       struct ieee80211_vif *vif,
1821 				       struct ieee80211_sta *sta,
1822 				       struct peer_assoc_params *arg)
1823 {
1824 	struct ieee80211_bss_conf *info = &vif->bss_conf;
1825 	struct cfg80211_chan_def def;
1826 	struct cfg80211_bss *bss;
1827 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
1828 	const u8 *rsnie = NULL;
1829 	const u8 *wpaie = NULL;
1830 
1831 	lockdep_assert_held(&ar->conf_mutex);
1832 
1833 	if (WARN_ON(ath11k_mac_vif_chan(vif, &def)))
1834 		return;
1835 
1836 	bss = cfg80211_get_bss(ar->hw->wiphy, def.chan, info->bssid, NULL, 0,
1837 			       IEEE80211_BSS_TYPE_ANY, IEEE80211_PRIVACY_ANY);
1838 
1839 	if (arvif->rsnie_present || arvif->wpaie_present) {
1840 		arg->need_ptk_4_way = true;
1841 		if (arvif->wpaie_present)
1842 			arg->need_gtk_2_way = true;
1843 	} else if (bss) {
1844 		const struct cfg80211_bss_ies *ies;
1845 
1846 		rcu_read_lock();
1847 		rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN);
1848 
1849 		ies = rcu_dereference(bss->ies);
1850 
1851 		wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT,
1852 						WLAN_OUI_TYPE_MICROSOFT_WPA,
1853 						ies->data,
1854 						ies->len);
1855 		rcu_read_unlock();
1856 		cfg80211_put_bss(ar->hw->wiphy, bss);
1857 	}
1858 
1859 	/* FIXME: base on RSN IE/WPA IE is a correct idea? */
1860 	if (rsnie || wpaie) {
1861 		ath11k_dbg(ar->ab, ATH11K_DBG_WMI,
1862 			   "%s: rsn ie found\n", __func__);
1863 		arg->need_ptk_4_way = true;
1864 	}
1865 
1866 	if (wpaie) {
1867 		ath11k_dbg(ar->ab, ATH11K_DBG_WMI,
1868 			   "%s: wpa ie found\n", __func__);
1869 		arg->need_gtk_2_way = true;
1870 	}
1871 
1872 	if (sta->mfp) {
1873 		/* TODO: Need to check if FW supports PMF? */
1874 		arg->is_pmf_enabled = true;
1875 	}
1876 
1877 	/* TODO: safe_mode_enabled (bypass 4-way handshake) flag req? */
1878 }
1879 
1880 static void ath11k_peer_assoc_h_rates(struct ath11k *ar,
1881 				      struct ieee80211_vif *vif,
1882 				      struct ieee80211_sta *sta,
1883 				      struct peer_assoc_params *arg)
1884 {
1885 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
1886 	struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates;
1887 	struct cfg80211_chan_def def;
1888 	const struct ieee80211_supported_band *sband;
1889 	const struct ieee80211_rate *rates;
1890 	enum nl80211_band band;
1891 	u32 ratemask;
1892 	u8 rate;
1893 	int i;
1894 
1895 	lockdep_assert_held(&ar->conf_mutex);
1896 
1897 	if (WARN_ON(ath11k_mac_vif_chan(vif, &def)))
1898 		return;
1899 
1900 	band = def.chan->band;
1901 	sband = ar->hw->wiphy->bands[band];
1902 	ratemask = sta->deflink.supp_rates[band];
1903 	ratemask &= arvif->bitrate_mask.control[band].legacy;
1904 	rates = sband->bitrates;
1905 
1906 	rateset->num_rates = 0;
1907 
1908 	for (i = 0; i < 32; i++, ratemask >>= 1, rates++) {
1909 		if (!(ratemask & 1))
1910 			continue;
1911 
1912 		rate = ath11k_mac_bitrate_to_rate(rates->bitrate);
1913 		rateset->rates[rateset->num_rates] = rate;
1914 		rateset->num_rates++;
1915 	}
1916 }
1917 
1918 static bool
1919 ath11k_peer_assoc_h_ht_masked(const u8 *ht_mcs_mask)
1920 {
1921 	int nss;
1922 
1923 	for (nss = 0; nss < IEEE80211_HT_MCS_MASK_LEN; nss++)
1924 		if (ht_mcs_mask[nss])
1925 			return false;
1926 
1927 	return true;
1928 }
1929 
1930 static bool
1931 ath11k_peer_assoc_h_vht_masked(const u16 *vht_mcs_mask)
1932 {
1933 	int nss;
1934 
1935 	for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++)
1936 		if (vht_mcs_mask[nss])
1937 			return false;
1938 
1939 	return true;
1940 }
1941 
1942 static void ath11k_peer_assoc_h_ht(struct ath11k *ar,
1943 				   struct ieee80211_vif *vif,
1944 				   struct ieee80211_sta *sta,
1945 				   struct peer_assoc_params *arg)
1946 {
1947 	const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap;
1948 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
1949 	struct cfg80211_chan_def def;
1950 	enum nl80211_band band;
1951 	const u8 *ht_mcs_mask;
1952 	int i, n;
1953 	u8 max_nss;
1954 	u32 stbc;
1955 
1956 	lockdep_assert_held(&ar->conf_mutex);
1957 
1958 	if (WARN_ON(ath11k_mac_vif_chan(vif, &def)))
1959 		return;
1960 
1961 	if (!ht_cap->ht_supported)
1962 		return;
1963 
1964 	band = def.chan->band;
1965 	ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
1966 
1967 	if (ath11k_peer_assoc_h_ht_masked(ht_mcs_mask))
1968 		return;
1969 
1970 	arg->ht_flag = true;
1971 
1972 	arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1973 				    ht_cap->ampdu_factor)) - 1;
1974 
1975 	arg->peer_mpdu_density =
1976 		ath11k_parse_mpdudensity(ht_cap->ampdu_density);
1977 
1978 	arg->peer_ht_caps = ht_cap->cap;
1979 	arg->peer_rate_caps |= WMI_HOST_RC_HT_FLAG;
1980 
1981 	if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING)
1982 		arg->ldpc_flag = true;
1983 
1984 	if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) {
1985 		arg->bw_40 = true;
1986 		arg->peer_rate_caps |= WMI_HOST_RC_CW40_FLAG;
1987 	}
1988 
1989 	/* As firmware handles this two flags (IEEE80211_HT_CAP_SGI_20
1990 	 * and IEEE80211_HT_CAP_SGI_40) for enabling SGI, we reset
1991 	 * both flags if guard interval is Default GI
1992 	 */
1993 	if (arvif->bitrate_mask.control[band].gi == NL80211_TXRATE_DEFAULT_GI)
1994 		arg->peer_ht_caps &= ~(IEEE80211_HT_CAP_SGI_20 |
1995 				IEEE80211_HT_CAP_SGI_40);
1996 
1997 	if (arvif->bitrate_mask.control[band].gi != NL80211_TXRATE_FORCE_LGI) {
1998 		if (ht_cap->cap & (IEEE80211_HT_CAP_SGI_20 |
1999 		    IEEE80211_HT_CAP_SGI_40))
2000 			arg->peer_rate_caps |= WMI_HOST_RC_SGI_FLAG;
2001 	}
2002 
2003 	if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) {
2004 		arg->peer_rate_caps |= WMI_HOST_RC_TX_STBC_FLAG;
2005 		arg->stbc_flag = true;
2006 	}
2007 
2008 	if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) {
2009 		stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC;
2010 		stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT;
2011 		stbc = stbc << WMI_HOST_RC_RX_STBC_FLAG_S;
2012 		arg->peer_rate_caps |= stbc;
2013 		arg->stbc_flag = true;
2014 	}
2015 
2016 	if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2])
2017 		arg->peer_rate_caps |= WMI_HOST_RC_TS_FLAG;
2018 	else if (ht_cap->mcs.rx_mask[1])
2019 		arg->peer_rate_caps |= WMI_HOST_RC_DS_FLAG;
2020 
2021 	for (i = 0, n = 0, max_nss = 0; i < IEEE80211_HT_MCS_MASK_LEN * 8; i++)
2022 		if ((ht_cap->mcs.rx_mask[i / 8] & BIT(i % 8)) &&
2023 		    (ht_mcs_mask[i / 8] & BIT(i % 8))) {
2024 			max_nss = (i / 8) + 1;
2025 			arg->peer_ht_rates.rates[n++] = i;
2026 		}
2027 
2028 	/* This is a workaround for HT-enabled STAs which break the spec
2029 	 * and have no HT capabilities RX mask (no HT RX MCS map).
2030 	 *
2031 	 * As per spec, in section 20.3.5 Modulation and coding scheme (MCS),
2032 	 * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs.
2033 	 *
2034 	 * Firmware asserts if such situation occurs.
2035 	 */
2036 	if (n == 0) {
2037 		arg->peer_ht_rates.num_rates = 8;
2038 		for (i = 0; i < arg->peer_ht_rates.num_rates; i++)
2039 			arg->peer_ht_rates.rates[i] = i;
2040 	} else {
2041 		arg->peer_ht_rates.num_rates = n;
2042 		arg->peer_nss = min(sta->deflink.rx_nss, max_nss);
2043 	}
2044 
2045 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "ht peer %pM mcs cnt %d nss %d\n",
2046 		   arg->peer_mac,
2047 		   arg->peer_ht_rates.num_rates,
2048 		   arg->peer_nss);
2049 }
2050 
2051 static int ath11k_mac_get_max_vht_mcs_map(u16 mcs_map, int nss)
2052 {
2053 	switch ((mcs_map >> (2 * nss)) & 0x3) {
2054 	case IEEE80211_VHT_MCS_SUPPORT_0_7: return BIT(8) - 1;
2055 	case IEEE80211_VHT_MCS_SUPPORT_0_8: return BIT(9) - 1;
2056 	case IEEE80211_VHT_MCS_SUPPORT_0_9: return BIT(10) - 1;
2057 	}
2058 	return 0;
2059 }
2060 
2061 static u16
2062 ath11k_peer_assoc_h_vht_limit(u16 tx_mcs_set,
2063 			      const u16 vht_mcs_limit[NL80211_VHT_NSS_MAX])
2064 {
2065 	int idx_limit;
2066 	int nss;
2067 	u16 mcs_map;
2068 	u16 mcs;
2069 
2070 	for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) {
2071 		mcs_map = ath11k_mac_get_max_vht_mcs_map(tx_mcs_set, nss) &
2072 			  vht_mcs_limit[nss];
2073 
2074 		if (mcs_map)
2075 			idx_limit = fls(mcs_map) - 1;
2076 		else
2077 			idx_limit = -1;
2078 
2079 		switch (idx_limit) {
2080 		case 0:
2081 		case 1:
2082 		case 2:
2083 		case 3:
2084 		case 4:
2085 		case 5:
2086 		case 6:
2087 		case 7:
2088 			mcs = IEEE80211_VHT_MCS_SUPPORT_0_7;
2089 			break;
2090 		case 8:
2091 			mcs = IEEE80211_VHT_MCS_SUPPORT_0_8;
2092 			break;
2093 		case 9:
2094 			mcs = IEEE80211_VHT_MCS_SUPPORT_0_9;
2095 			break;
2096 		default:
2097 			WARN_ON(1);
2098 			fallthrough;
2099 		case -1:
2100 			mcs = IEEE80211_VHT_MCS_NOT_SUPPORTED;
2101 			break;
2102 		}
2103 
2104 		tx_mcs_set &= ~(0x3 << (nss * 2));
2105 		tx_mcs_set |= mcs << (nss * 2);
2106 	}
2107 
2108 	return tx_mcs_set;
2109 }
2110 
2111 static u8 ath11k_get_nss_160mhz(struct ath11k *ar,
2112 				u8 max_nss)
2113 {
2114 	u8 nss_ratio_info = ar->pdev->cap.nss_ratio_info;
2115 	u8 max_sup_nss = 0;
2116 
2117 	switch (nss_ratio_info) {
2118 	case WMI_NSS_RATIO_1BY2_NSS:
2119 		max_sup_nss = max_nss >> 1;
2120 		break;
2121 	case WMI_NSS_RATIO_3BY4_NSS:
2122 		ath11k_warn(ar->ab, "WMI_NSS_RATIO_3BY4_NSS not supported\n");
2123 		break;
2124 	case WMI_NSS_RATIO_1_NSS:
2125 		max_sup_nss = max_nss;
2126 		break;
2127 	case WMI_NSS_RATIO_2_NSS:
2128 		ath11k_warn(ar->ab, "WMI_NSS_RATIO_2_NSS not supported\n");
2129 		break;
2130 	default:
2131 		ath11k_warn(ar->ab, "invalid nss ratio received from firmware: %d\n",
2132 			    nss_ratio_info);
2133 		break;
2134 	}
2135 
2136 	return max_sup_nss;
2137 }
2138 
2139 static void ath11k_peer_assoc_h_vht(struct ath11k *ar,
2140 				    struct ieee80211_vif *vif,
2141 				    struct ieee80211_sta *sta,
2142 				    struct peer_assoc_params *arg)
2143 {
2144 	const struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap;
2145 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
2146 	struct cfg80211_chan_def def;
2147 	enum nl80211_band band;
2148 	u16 *vht_mcs_mask;
2149 	u8 ampdu_factor;
2150 	u8 max_nss, vht_mcs;
2151 	int i, vht_nss, nss_idx;
2152 	bool user_rate_valid = true;
2153 	u32 rx_nss, tx_nss, nss_160;
2154 
2155 	if (WARN_ON(ath11k_mac_vif_chan(vif, &def)))
2156 		return;
2157 
2158 	if (!vht_cap->vht_supported)
2159 		return;
2160 
2161 	band = def.chan->band;
2162 	vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
2163 
2164 	if (ath11k_peer_assoc_h_vht_masked(vht_mcs_mask))
2165 		return;
2166 
2167 	arg->vht_flag = true;
2168 
2169 	/* TODO: similar flags required? */
2170 	arg->vht_capable = true;
2171 
2172 	if (def.chan->band == NL80211_BAND_2GHZ)
2173 		arg->vht_ng_flag = true;
2174 
2175 	arg->peer_vht_caps = vht_cap->cap;
2176 
2177 	ampdu_factor = (vht_cap->cap &
2178 			IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >>
2179 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
2180 
2181 	/* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to
2182 	 * zero in VHT IE. Using it would result in degraded throughput.
2183 	 * arg->peer_max_mpdu at this point contains HT max_mpdu so keep
2184 	 * it if VHT max_mpdu is smaller.
2185 	 */
2186 	arg->peer_max_mpdu = max(arg->peer_max_mpdu,
2187 				 (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR +
2188 					ampdu_factor)) - 1);
2189 
2190 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
2191 		arg->bw_80 = true;
2192 
2193 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160)
2194 		arg->bw_160 = true;
2195 
2196 	vht_nss =  ath11k_mac_max_vht_nss(vht_mcs_mask);
2197 
2198 	if (vht_nss > sta->deflink.rx_nss) {
2199 		user_rate_valid = false;
2200 		for (nss_idx = sta->deflink.rx_nss - 1; nss_idx >= 0; nss_idx--) {
2201 			if (vht_mcs_mask[nss_idx]) {
2202 				user_rate_valid = true;
2203 				break;
2204 			}
2205 		}
2206 	}
2207 
2208 	if (!user_rate_valid) {
2209 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "setting vht range mcs value to peer supported nss %d for peer %pM\n",
2210 			   sta->deflink.rx_nss, sta->addr);
2211 		vht_mcs_mask[sta->deflink.rx_nss - 1] = vht_mcs_mask[vht_nss - 1];
2212 	}
2213 
2214 	/* Calculate peer NSS capability from VHT capabilities if STA
2215 	 * supports VHT.
2216 	 */
2217 	for (i = 0, max_nss = 0; i < NL80211_VHT_NSS_MAX; i++) {
2218 		vht_mcs = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) >>
2219 			  (2 * i) & 3;
2220 
2221 		if (vht_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED &&
2222 		    vht_mcs_mask[i])
2223 			max_nss = i + 1;
2224 	}
2225 	arg->peer_nss = min(sta->deflink.rx_nss, max_nss);
2226 	arg->rx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.rx_highest);
2227 	arg->rx_mcs_set = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map);
2228 	arg->tx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.tx_highest);
2229 	arg->tx_mcs_set = ath11k_peer_assoc_h_vht_limit(
2230 		__le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map), vht_mcs_mask);
2231 
2232 	/* In IPQ8074 platform, VHT mcs rate 10 and 11 is enabled by default.
2233 	 * VHT mcs rate 10 and 11 is not suppoerted in 11ac standard.
2234 	 * so explicitly disable the VHT MCS rate 10 and 11 in 11ac mode.
2235 	 */
2236 	arg->tx_mcs_set &= ~IEEE80211_VHT_MCS_SUPPORT_0_11_MASK;
2237 	arg->tx_mcs_set |= IEEE80211_DISABLE_VHT_MCS_SUPPORT_0_11;
2238 
2239 	if ((arg->tx_mcs_set & IEEE80211_VHT_MCS_NOT_SUPPORTED) ==
2240 			IEEE80211_VHT_MCS_NOT_SUPPORTED)
2241 		arg->peer_vht_caps &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
2242 
2243 	/* TODO:  Check */
2244 	arg->tx_max_mcs_nss = 0xFF;
2245 
2246 	if (arg->peer_phymode == MODE_11AC_VHT160 ||
2247 	    arg->peer_phymode == MODE_11AC_VHT80_80) {
2248 		tx_nss = ath11k_get_nss_160mhz(ar, max_nss);
2249 		rx_nss = min(arg->peer_nss, tx_nss);
2250 		arg->peer_bw_rxnss_override = ATH11K_BW_NSS_MAP_ENABLE;
2251 
2252 		if (!rx_nss) {
2253 			ath11k_warn(ar->ab, "invalid max_nss\n");
2254 			return;
2255 		}
2256 
2257 		if (arg->peer_phymode == MODE_11AC_VHT160)
2258 			nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_160MHZ, rx_nss - 1);
2259 		else
2260 			nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_80_80MHZ, rx_nss - 1);
2261 
2262 		arg->peer_bw_rxnss_override |= nss_160;
2263 	}
2264 
2265 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
2266 		   "vht peer %pM max_mpdu %d flags 0x%x nss_override 0x%x\n",
2267 		   sta->addr, arg->peer_max_mpdu, arg->peer_flags,
2268 		   arg->peer_bw_rxnss_override);
2269 }
2270 
2271 static int ath11k_mac_get_max_he_mcs_map(u16 mcs_map, int nss)
2272 {
2273 	switch ((mcs_map >> (2 * nss)) & 0x3) {
2274 	case IEEE80211_HE_MCS_SUPPORT_0_7: return BIT(8) - 1;
2275 	case IEEE80211_HE_MCS_SUPPORT_0_9: return BIT(10) - 1;
2276 	case IEEE80211_HE_MCS_SUPPORT_0_11: return BIT(12) - 1;
2277 	}
2278 	return 0;
2279 }
2280 
2281 static u16 ath11k_peer_assoc_h_he_limit(u16 tx_mcs_set,
2282 					const u16 he_mcs_limit[NL80211_HE_NSS_MAX])
2283 {
2284 	int idx_limit;
2285 	int nss;
2286 	u16 mcs_map;
2287 	u16 mcs;
2288 
2289 	for (nss = 0; nss < NL80211_HE_NSS_MAX; nss++) {
2290 		mcs_map = ath11k_mac_get_max_he_mcs_map(tx_mcs_set, nss) &
2291 			he_mcs_limit[nss];
2292 
2293 		if (mcs_map)
2294 			idx_limit = fls(mcs_map) - 1;
2295 		else
2296 			idx_limit = -1;
2297 
2298 		switch (idx_limit) {
2299 		case 0 ... 7:
2300 			mcs = IEEE80211_HE_MCS_SUPPORT_0_7;
2301 			break;
2302 		case 8:
2303 		case 9:
2304 			mcs = IEEE80211_HE_MCS_SUPPORT_0_9;
2305 			break;
2306 		case 10:
2307 		case 11:
2308 			mcs = IEEE80211_HE_MCS_SUPPORT_0_11;
2309 			break;
2310 		default:
2311 			WARN_ON(1);
2312 			fallthrough;
2313 		case -1:
2314 			mcs = IEEE80211_HE_MCS_NOT_SUPPORTED;
2315 			break;
2316 		}
2317 
2318 		tx_mcs_set &= ~(0x3 << (nss * 2));
2319 		tx_mcs_set |= mcs << (nss * 2);
2320 	}
2321 
2322 	return tx_mcs_set;
2323 }
2324 
2325 static bool
2326 ath11k_peer_assoc_h_he_masked(const u16 *he_mcs_mask)
2327 {
2328 	int nss;
2329 
2330 	for (nss = 0; nss < NL80211_HE_NSS_MAX; nss++)
2331 		if (he_mcs_mask[nss])
2332 			return false;
2333 
2334 	return true;
2335 }
2336 
2337 static void ath11k_peer_assoc_h_he(struct ath11k *ar,
2338 				   struct ieee80211_vif *vif,
2339 				   struct ieee80211_sta *sta,
2340 				   struct peer_assoc_params *arg)
2341 {
2342 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
2343 	struct cfg80211_chan_def def;
2344 	const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap;
2345 	enum nl80211_band band;
2346 	u16 he_mcs_mask[NL80211_HE_NSS_MAX];
2347 	u8 max_nss, he_mcs;
2348 	u16 he_tx_mcs = 0, v = 0;
2349 	int i, he_nss, nss_idx;
2350 	bool user_rate_valid = true;
2351 	u32 rx_nss, tx_nss, nss_160;
2352 	u8 ampdu_factor, rx_mcs_80, rx_mcs_160;
2353 	u16 mcs_160_map, mcs_80_map;
2354 	bool support_160;
2355 
2356 	if (WARN_ON(ath11k_mac_vif_chan(vif, &def)))
2357 		return;
2358 
2359 	if (!he_cap->has_he)
2360 		return;
2361 
2362 	band = def.chan->band;
2363 	memcpy(he_mcs_mask, arvif->bitrate_mask.control[band].he_mcs,
2364 	       sizeof(he_mcs_mask));
2365 
2366 	if (ath11k_peer_assoc_h_he_masked(he_mcs_mask))
2367 		return;
2368 
2369 	arg->he_flag = true;
2370 	support_160 = !!(he_cap->he_cap_elem.phy_cap_info[0] &
2371 		  IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G);
2372 
2373 	/* Supported HE-MCS and NSS Set of peer he_cap is intersection with self he_cp */
2374 	mcs_160_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_160);
2375 	mcs_80_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80);
2376 
2377 	/* Initialize rx_mcs_160 to 9 which is an invalid value */
2378 	rx_mcs_160 = 9;
2379 	if (support_160) {
2380 		for (i = 7; i >= 0; i--) {
2381 			u8 mcs_160 = (mcs_160_map >> (2 * i)) & 3;
2382 
2383 			if (mcs_160 != IEEE80211_VHT_MCS_NOT_SUPPORTED) {
2384 				rx_mcs_160 = i + 1;
2385 				break;
2386 			}
2387 		}
2388 	}
2389 
2390 	/* Initialize rx_mcs_80 to 9 which is an invalid value */
2391 	rx_mcs_80 = 9;
2392 	for (i = 7; i >= 0; i--) {
2393 		u8 mcs_80 = (mcs_80_map >> (2 * i)) & 3;
2394 
2395 		if (mcs_80 != IEEE80211_VHT_MCS_NOT_SUPPORTED) {
2396 			rx_mcs_80 = i + 1;
2397 			break;
2398 		}
2399 	}
2400 
2401 	if (support_160)
2402 		max_nss = min(rx_mcs_80, rx_mcs_160);
2403 	else
2404 		max_nss = rx_mcs_80;
2405 
2406 	arg->peer_nss = min(sta->deflink.rx_nss, max_nss);
2407 
2408 	memcpy_and_pad(&arg->peer_he_cap_macinfo,
2409 		       sizeof(arg->peer_he_cap_macinfo),
2410 		       he_cap->he_cap_elem.mac_cap_info,
2411 		       sizeof(he_cap->he_cap_elem.mac_cap_info),
2412 		       0);
2413 	memcpy_and_pad(&arg->peer_he_cap_phyinfo,
2414 		       sizeof(arg->peer_he_cap_phyinfo),
2415 		       he_cap->he_cap_elem.phy_cap_info,
2416 		       sizeof(he_cap->he_cap_elem.phy_cap_info),
2417 		       0);
2418 	arg->peer_he_ops = vif->bss_conf.he_oper.params;
2419 
2420 	/* the top most byte is used to indicate BSS color info */
2421 	arg->peer_he_ops &= 0xffffff;
2422 
2423 	/* As per section 26.6.1 11ax Draft5.0, if the Max AMPDU Exponent Extension
2424 	 * in HE cap is zero, use the arg->peer_max_mpdu as calculated while parsing
2425 	 * VHT caps(if VHT caps is present) or HT caps (if VHT caps is not present).
2426 	 *
2427 	 * For non-zero value of Max AMPDU Extponent Extension in HE MAC caps,
2428 	 * if a HE STA sends VHT cap and HE cap IE in assoc request then, use
2429 	 * MAX_AMPDU_LEN_FACTOR as 20 to calculate max_ampdu length.
2430 	 * If a HE STA that does not send VHT cap, but HE and HT cap in assoc
2431 	 * request, then use MAX_AMPDU_LEN_FACTOR as 16 to calculate max_ampdu
2432 	 * length.
2433 	 */
2434 	ampdu_factor = u8_get_bits(he_cap->he_cap_elem.mac_cap_info[3],
2435 				   IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK);
2436 
2437 	if (ampdu_factor) {
2438 		if (sta->deflink.vht_cap.vht_supported)
2439 			arg->peer_max_mpdu = (1 << (IEEE80211_HE_VHT_MAX_AMPDU_FACTOR +
2440 						    ampdu_factor)) - 1;
2441 		else if (sta->deflink.ht_cap.ht_supported)
2442 			arg->peer_max_mpdu = (1 << (IEEE80211_HE_HT_MAX_AMPDU_FACTOR +
2443 						    ampdu_factor)) - 1;
2444 	}
2445 
2446 	if (he_cap->he_cap_elem.phy_cap_info[6] &
2447 	    IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2448 		int bit = 7;
2449 		int nss, ru;
2450 
2451 		arg->peer_ppet.numss_m1 = he_cap->ppe_thres[0] &
2452 					  IEEE80211_PPE_THRES_NSS_MASK;
2453 		arg->peer_ppet.ru_bit_mask =
2454 			(he_cap->ppe_thres[0] &
2455 			 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK) >>
2456 			IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS;
2457 
2458 		for (nss = 0; nss <= arg->peer_ppet.numss_m1; nss++) {
2459 			for (ru = 0; ru < 4; ru++) {
2460 				u32 val = 0;
2461 				int i;
2462 
2463 				if ((arg->peer_ppet.ru_bit_mask & BIT(ru)) == 0)
2464 					continue;
2465 				for (i = 0; i < 6; i++) {
2466 					val >>= 1;
2467 					val |= ((he_cap->ppe_thres[bit / 8] >>
2468 						 (bit % 8)) & 0x1) << 5;
2469 					bit++;
2470 				}
2471 				arg->peer_ppet.ppet16_ppet8_ru3_ru0[nss] |=
2472 								val << (ru * 6);
2473 			}
2474 		}
2475 	}
2476 
2477 	if (he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_RES)
2478 		arg->twt_responder = true;
2479 	if (he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_REQ)
2480 		arg->twt_requester = true;
2481 
2482 	he_nss =  ath11k_mac_max_he_nss(he_mcs_mask);
2483 
2484 	if (he_nss > sta->deflink.rx_nss) {
2485 		user_rate_valid = false;
2486 		for (nss_idx = sta->deflink.rx_nss - 1; nss_idx >= 0; nss_idx--) {
2487 			if (he_mcs_mask[nss_idx]) {
2488 				user_rate_valid = true;
2489 				break;
2490 			}
2491 		}
2492 	}
2493 
2494 	if (!user_rate_valid) {
2495 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "setting he range mcs value to peer supported nss %d for peer %pM\n",
2496 			   sta->deflink.rx_nss, sta->addr);
2497 		he_mcs_mask[sta->deflink.rx_nss - 1] = he_mcs_mask[he_nss - 1];
2498 	}
2499 
2500 	switch (sta->deflink.bandwidth) {
2501 	case IEEE80211_STA_RX_BW_160:
2502 		if (he_cap->he_cap_elem.phy_cap_info[0] &
2503 		    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) {
2504 			v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80p80);
2505 			v = ath11k_peer_assoc_h_he_limit(v, he_mcs_mask);
2506 			arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80_80] = v;
2507 
2508 			v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_80p80);
2509 			arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80_80] = v;
2510 
2511 			arg->peer_he_mcs_count++;
2512 			he_tx_mcs = v;
2513 		}
2514 		v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_160);
2515 		arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_160] = v;
2516 
2517 		v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_160);
2518 		v = ath11k_peer_assoc_h_he_limit(v, he_mcs_mask);
2519 		arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_160] = v;
2520 
2521 		arg->peer_he_mcs_count++;
2522 		if (!he_tx_mcs)
2523 			he_tx_mcs = v;
2524 		fallthrough;
2525 
2526 	default:
2527 		v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80);
2528 		arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80] = v;
2529 
2530 		v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_80);
2531 		v = ath11k_peer_assoc_h_he_limit(v, he_mcs_mask);
2532 		arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80] = v;
2533 
2534 		arg->peer_he_mcs_count++;
2535 		if (!he_tx_mcs)
2536 			he_tx_mcs = v;
2537 		break;
2538 	}
2539 
2540 	/* Calculate peer NSS capability from HE capabilities if STA
2541 	 * supports HE.
2542 	 */
2543 	for (i = 0, max_nss = 0; i < NL80211_HE_NSS_MAX; i++) {
2544 		he_mcs = he_tx_mcs >> (2 * i) & 3;
2545 
2546 		/* In case of fixed rates, MCS Range in he_tx_mcs might have
2547 		 * unsupported range, with he_mcs_mask set, so check either of them
2548 		 * to find nss.
2549 		 */
2550 		if (he_mcs != IEEE80211_HE_MCS_NOT_SUPPORTED ||
2551 		    he_mcs_mask[i])
2552 			max_nss = i + 1;
2553 	}
2554 	arg->peer_nss = min(sta->deflink.rx_nss, max_nss);
2555 
2556 	if (arg->peer_phymode == MODE_11AX_HE160 ||
2557 	    arg->peer_phymode == MODE_11AX_HE80_80) {
2558 		tx_nss = ath11k_get_nss_160mhz(ar, max_nss);
2559 		rx_nss = min(arg->peer_nss, tx_nss);
2560 		arg->peer_bw_rxnss_override = ATH11K_BW_NSS_MAP_ENABLE;
2561 
2562 		if (!rx_nss) {
2563 			ath11k_warn(ar->ab, "invalid max_nss\n");
2564 			return;
2565 		}
2566 
2567 		if (arg->peer_phymode == MODE_11AX_HE160)
2568 			nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_160MHZ, rx_nss - 1);
2569 		else
2570 			nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_80_80MHZ, rx_nss - 1);
2571 
2572 		arg->peer_bw_rxnss_override |= nss_160;
2573 	}
2574 
2575 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
2576 		   "he peer %pM nss %d mcs cnt %d nss_override 0x%x\n",
2577 		   sta->addr, arg->peer_nss,
2578 		   arg->peer_he_mcs_count,
2579 		   arg->peer_bw_rxnss_override);
2580 }
2581 
2582 static void ath11k_peer_assoc_h_he_6ghz(struct ath11k *ar,
2583 					struct ieee80211_vif *vif,
2584 					struct ieee80211_sta *sta,
2585 					struct peer_assoc_params *arg)
2586 {
2587 	const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap;
2588 	struct cfg80211_chan_def def;
2589 	enum nl80211_band band;
2590 	u8  ampdu_factor;
2591 
2592 	if (WARN_ON(ath11k_mac_vif_chan(vif, &def)))
2593 		return;
2594 
2595 	band = def.chan->band;
2596 
2597 	if (!arg->he_flag || band != NL80211_BAND_6GHZ || !sta->deflink.he_6ghz_capa.capa)
2598 		return;
2599 
2600 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
2601 		arg->bw_40 = true;
2602 
2603 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
2604 		arg->bw_80 = true;
2605 
2606 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160)
2607 		arg->bw_160 = true;
2608 
2609 	arg->peer_he_caps_6ghz = le16_to_cpu(sta->deflink.he_6ghz_capa.capa);
2610 	arg->peer_mpdu_density =
2611 		ath11k_parse_mpdudensity(FIELD_GET(IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START,
2612 						   arg->peer_he_caps_6ghz));
2613 
2614 	/* From IEEE Std 802.11ax-2021 - Section 10.12.2: An HE STA shall be capable of
2615 	 * receiving A-MPDU where the A-MPDU pre-EOF padding length is up to the value
2616 	 * indicated by the Maximum A-MPDU Length Exponent Extension field in the HE
2617 	 * Capabilities element and the Maximum A-MPDU Length Exponent field in HE 6 GHz
2618 	 * Band Capabilities element in the 6 GHz band.
2619 	 *
2620 	 * Here, we are extracting the Max A-MPDU Exponent Extension from HE caps and
2621 	 * factor is the Maximum A-MPDU Length Exponent from HE 6 GHZ Band capability.
2622 	 */
2623 	ampdu_factor = FIELD_GET(IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK,
2624 				 he_cap->he_cap_elem.mac_cap_info[3]) +
2625 			FIELD_GET(IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP,
2626 				  arg->peer_he_caps_6ghz);
2627 
2628 	arg->peer_max_mpdu = (1u << (IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR +
2629 				     ampdu_factor)) - 1;
2630 }
2631 
2632 static void ath11k_peer_assoc_h_smps(struct ieee80211_sta *sta,
2633 				     struct peer_assoc_params *arg)
2634 {
2635 	const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap;
2636 	int smps;
2637 
2638 	if (!ht_cap->ht_supported && !sta->deflink.he_6ghz_capa.capa)
2639 		return;
2640 
2641 	if (ht_cap->ht_supported) {
2642 		smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS;
2643 		smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT;
2644 	} else {
2645 		smps = le16_get_bits(sta->deflink.he_6ghz_capa.capa,
2646 				     IEEE80211_HE_6GHZ_CAP_SM_PS);
2647 	}
2648 
2649 	switch (smps) {
2650 	case WLAN_HT_CAP_SM_PS_STATIC:
2651 		arg->static_mimops_flag = true;
2652 		break;
2653 	case WLAN_HT_CAP_SM_PS_DYNAMIC:
2654 		arg->dynamic_mimops_flag = true;
2655 		break;
2656 	case WLAN_HT_CAP_SM_PS_DISABLED:
2657 		arg->spatial_mux_flag = true;
2658 		break;
2659 	default:
2660 		break;
2661 	}
2662 }
2663 
2664 static void ath11k_peer_assoc_h_qos(struct ath11k *ar,
2665 				    struct ieee80211_vif *vif,
2666 				    struct ieee80211_sta *sta,
2667 				    struct peer_assoc_params *arg)
2668 {
2669 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
2670 
2671 	switch (arvif->vdev_type) {
2672 	case WMI_VDEV_TYPE_AP:
2673 		if (sta->wme) {
2674 			/* TODO: Check WME vs QoS */
2675 			arg->is_wme_set = true;
2676 			arg->qos_flag = true;
2677 		}
2678 
2679 		if (sta->wme && sta->uapsd_queues) {
2680 			/* TODO: Check WME vs QoS */
2681 			arg->is_wme_set = true;
2682 			arg->apsd_flag = true;
2683 			arg->peer_rate_caps |= WMI_HOST_RC_UAPSD_FLAG;
2684 		}
2685 		break;
2686 	case WMI_VDEV_TYPE_STA:
2687 		if (sta->wme) {
2688 			arg->is_wme_set = true;
2689 			arg->qos_flag = true;
2690 		}
2691 		break;
2692 	default:
2693 		break;
2694 	}
2695 
2696 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "peer %pM qos %d\n",
2697 		   sta->addr, arg->qos_flag);
2698 }
2699 
2700 static int ath11k_peer_assoc_qos_ap(struct ath11k *ar,
2701 				    struct ath11k_vif *arvif,
2702 				    struct ieee80211_sta *sta)
2703 {
2704 	struct ap_ps_params params;
2705 	u32 max_sp;
2706 	u32 uapsd;
2707 	int ret;
2708 
2709 	lockdep_assert_held(&ar->conf_mutex);
2710 
2711 	params.vdev_id = arvif->vdev_id;
2712 
2713 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "uapsd_queues 0x%x max_sp %d\n",
2714 		   sta->uapsd_queues, sta->max_sp);
2715 
2716 	uapsd = 0;
2717 	if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO)
2718 		uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN |
2719 			 WMI_AP_PS_UAPSD_AC3_TRIGGER_EN;
2720 	if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI)
2721 		uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN |
2722 			 WMI_AP_PS_UAPSD_AC2_TRIGGER_EN;
2723 	if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK)
2724 		uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN |
2725 			 WMI_AP_PS_UAPSD_AC1_TRIGGER_EN;
2726 	if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE)
2727 		uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN |
2728 			 WMI_AP_PS_UAPSD_AC0_TRIGGER_EN;
2729 
2730 	max_sp = 0;
2731 	if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP)
2732 		max_sp = sta->max_sp;
2733 
2734 	params.param = WMI_AP_PS_PEER_PARAM_UAPSD;
2735 	params.value = uapsd;
2736 	ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &params);
2737 	if (ret)
2738 		goto err;
2739 
2740 	params.param = WMI_AP_PS_PEER_PARAM_MAX_SP;
2741 	params.value = max_sp;
2742 	ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &params);
2743 	if (ret)
2744 		goto err;
2745 
2746 	/* TODO revisit during testing */
2747 	params.param = WMI_AP_PS_PEER_PARAM_SIFS_RESP_FRMTYPE;
2748 	params.value = DISABLE_SIFS_RESPONSE_TRIGGER;
2749 	ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &params);
2750 	if (ret)
2751 		goto err;
2752 
2753 	params.param = WMI_AP_PS_PEER_PARAM_SIFS_RESP_UAPSD;
2754 	params.value = DISABLE_SIFS_RESPONSE_TRIGGER;
2755 	ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, &params);
2756 	if (ret)
2757 		goto err;
2758 
2759 	return 0;
2760 
2761 err:
2762 	ath11k_warn(ar->ab, "failed to set ap ps peer param %d for vdev %i: %d\n",
2763 		    params.param, arvif->vdev_id, ret);
2764 	return ret;
2765 }
2766 
2767 static bool ath11k_mac_sta_has_ofdm_only(struct ieee80211_sta *sta)
2768 {
2769 	return sta->deflink.supp_rates[NL80211_BAND_2GHZ] >>
2770 	       ATH11K_MAC_FIRST_OFDM_RATE_IDX;
2771 }
2772 
2773 static enum wmi_phy_mode ath11k_mac_get_phymode_vht(struct ath11k *ar,
2774 						    struct ieee80211_sta *sta)
2775 {
2776 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) {
2777 		switch (sta->deflink.vht_cap.cap &
2778 			IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) {
2779 		case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ:
2780 			return MODE_11AC_VHT160;
2781 		case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ:
2782 			return MODE_11AC_VHT80_80;
2783 		default:
2784 			/* not sure if this is a valid case? */
2785 			return MODE_11AC_VHT160;
2786 		}
2787 	}
2788 
2789 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
2790 		return MODE_11AC_VHT80;
2791 
2792 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
2793 		return MODE_11AC_VHT40;
2794 
2795 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20)
2796 		return MODE_11AC_VHT20;
2797 
2798 	return MODE_UNKNOWN;
2799 }
2800 
2801 static enum wmi_phy_mode ath11k_mac_get_phymode_he(struct ath11k *ar,
2802 						   struct ieee80211_sta *sta)
2803 {
2804 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) {
2805 		if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] &
2806 		     IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2807 			return MODE_11AX_HE160;
2808 		else if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] &
2809 			 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2810 			return MODE_11AX_HE80_80;
2811 		/* not sure if this is a valid case? */
2812 		return MODE_11AX_HE160;
2813 	}
2814 
2815 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
2816 		return MODE_11AX_HE80;
2817 
2818 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
2819 		return MODE_11AX_HE40;
2820 
2821 	if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20)
2822 		return MODE_11AX_HE20;
2823 
2824 	return MODE_UNKNOWN;
2825 }
2826 
2827 static void ath11k_peer_assoc_h_phymode(struct ath11k *ar,
2828 					struct ieee80211_vif *vif,
2829 					struct ieee80211_sta *sta,
2830 					struct peer_assoc_params *arg)
2831 {
2832 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
2833 	struct cfg80211_chan_def def;
2834 	enum nl80211_band band;
2835 	const u8 *ht_mcs_mask;
2836 	const u16 *vht_mcs_mask;
2837 	const u16 *he_mcs_mask;
2838 	enum wmi_phy_mode phymode = MODE_UNKNOWN;
2839 
2840 	if (WARN_ON(ath11k_mac_vif_chan(vif, &def)))
2841 		return;
2842 
2843 	band = def.chan->band;
2844 	ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
2845 	vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
2846 	he_mcs_mask = arvif->bitrate_mask.control[band].he_mcs;
2847 
2848 	switch (band) {
2849 	case NL80211_BAND_2GHZ:
2850 		if (sta->deflink.he_cap.has_he &&
2851 		    !ath11k_peer_assoc_h_he_masked(he_mcs_mask)) {
2852 			if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80)
2853 				phymode = MODE_11AX_HE80_2G;
2854 			else if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
2855 				phymode = MODE_11AX_HE40_2G;
2856 			else
2857 				phymode = MODE_11AX_HE20_2G;
2858 		} else if (sta->deflink.vht_cap.vht_supported &&
2859 			   !ath11k_peer_assoc_h_vht_masked(vht_mcs_mask)) {
2860 			if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
2861 				phymode = MODE_11AC_VHT40;
2862 			else
2863 				phymode = MODE_11AC_VHT20;
2864 		} else if (sta->deflink.ht_cap.ht_supported &&
2865 			   !ath11k_peer_assoc_h_ht_masked(ht_mcs_mask)) {
2866 			if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40)
2867 				phymode = MODE_11NG_HT40;
2868 			else
2869 				phymode = MODE_11NG_HT20;
2870 		} else if (ath11k_mac_sta_has_ofdm_only(sta)) {
2871 			phymode = MODE_11G;
2872 		} else {
2873 			phymode = MODE_11B;
2874 		}
2875 		break;
2876 	case NL80211_BAND_5GHZ:
2877 	case NL80211_BAND_6GHZ:
2878 		/* Check HE first */
2879 		if (sta->deflink.he_cap.has_he &&
2880 		    !ath11k_peer_assoc_h_he_masked(he_mcs_mask)) {
2881 			phymode = ath11k_mac_get_phymode_he(ar, sta);
2882 		} else if (sta->deflink.vht_cap.vht_supported &&
2883 			   !ath11k_peer_assoc_h_vht_masked(vht_mcs_mask)) {
2884 			phymode = ath11k_mac_get_phymode_vht(ar, sta);
2885 		} else if (sta->deflink.ht_cap.ht_supported &&
2886 			   !ath11k_peer_assoc_h_ht_masked(ht_mcs_mask)) {
2887 			if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40)
2888 				phymode = MODE_11NA_HT40;
2889 			else
2890 				phymode = MODE_11NA_HT20;
2891 		} else {
2892 			phymode = MODE_11A;
2893 		}
2894 		break;
2895 	default:
2896 		break;
2897 	}
2898 
2899 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "peer %pM phymode %s\n",
2900 		   sta->addr, ath11k_wmi_phymode_str(phymode));
2901 
2902 	arg->peer_phymode = phymode;
2903 	WARN_ON(phymode == MODE_UNKNOWN);
2904 }
2905 
2906 static void ath11k_peer_assoc_prepare(struct ath11k *ar,
2907 				      struct ieee80211_vif *vif,
2908 				      struct ieee80211_sta *sta,
2909 				      struct peer_assoc_params *arg,
2910 				      bool reassoc)
2911 {
2912 	struct ath11k_sta *arsta;
2913 
2914 	lockdep_assert_held(&ar->conf_mutex);
2915 
2916 	arsta = ath11k_sta_to_arsta(sta);
2917 
2918 	memset(arg, 0, sizeof(*arg));
2919 
2920 	reinit_completion(&ar->peer_assoc_done);
2921 
2922 	arg->peer_new_assoc = !reassoc;
2923 	ath11k_peer_assoc_h_basic(ar, vif, sta, arg);
2924 	ath11k_peer_assoc_h_crypto(ar, vif, sta, arg);
2925 	ath11k_peer_assoc_h_rates(ar, vif, sta, arg);
2926 	ath11k_peer_assoc_h_phymode(ar, vif, sta, arg);
2927 	ath11k_peer_assoc_h_ht(ar, vif, sta, arg);
2928 	ath11k_peer_assoc_h_vht(ar, vif, sta, arg);
2929 	ath11k_peer_assoc_h_he(ar, vif, sta, arg);
2930 	ath11k_peer_assoc_h_he_6ghz(ar, vif, sta, arg);
2931 	ath11k_peer_assoc_h_qos(ar, vif, sta, arg);
2932 	ath11k_peer_assoc_h_smps(sta, arg);
2933 
2934 	arsta->peer_nss = arg->peer_nss;
2935 
2936 	/* TODO: amsdu_disable req? */
2937 }
2938 
2939 static int ath11k_setup_peer_smps(struct ath11k *ar, struct ath11k_vif *arvif,
2940 				  const u8 *addr,
2941 				  const struct ieee80211_sta_ht_cap *ht_cap,
2942 				  u16 he_6ghz_capa)
2943 {
2944 	int smps;
2945 
2946 	if (!ht_cap->ht_supported && !he_6ghz_capa)
2947 		return 0;
2948 
2949 	if (ht_cap->ht_supported) {
2950 		smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS;
2951 		smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT;
2952 	} else {
2953 		smps = FIELD_GET(IEEE80211_HE_6GHZ_CAP_SM_PS, he_6ghz_capa);
2954 	}
2955 
2956 	if (smps >= ARRAY_SIZE(ath11k_smps_map))
2957 		return -EINVAL;
2958 
2959 	return ath11k_wmi_set_peer_param(ar, addr, arvif->vdev_id,
2960 					 WMI_PEER_MIMO_PS_STATE,
2961 					 ath11k_smps_map[smps]);
2962 }
2963 
2964 static bool ath11k_mac_set_he_txbf_conf(struct ath11k_vif *arvif)
2965 {
2966 	struct ath11k *ar = arvif->ar;
2967 	u32 param, value;
2968 	int ret;
2969 
2970 	if (!arvif->vif->bss_conf.he_support)
2971 		return true;
2972 
2973 	param = WMI_VDEV_PARAM_SET_HEMU_MODE;
2974 	value = 0;
2975 	if (arvif->vif->bss_conf.he_su_beamformer) {
2976 		value |= FIELD_PREP(HE_MODE_SU_TX_BFER, HE_SU_BFER_ENABLE);
2977 		if (arvif->vif->bss_conf.he_mu_beamformer &&
2978 		    arvif->vdev_type == WMI_VDEV_TYPE_AP)
2979 			value |= FIELD_PREP(HE_MODE_MU_TX_BFER, HE_MU_BFER_ENABLE);
2980 	}
2981 
2982 	if (arvif->vif->type != NL80211_IFTYPE_MESH_POINT) {
2983 		value |= FIELD_PREP(HE_MODE_DL_OFDMA, HE_DL_MUOFDMA_ENABLE) |
2984 			 FIELD_PREP(HE_MODE_UL_OFDMA, HE_UL_MUOFDMA_ENABLE);
2985 
2986 		if (arvif->vif->bss_conf.he_full_ul_mumimo)
2987 			value |= FIELD_PREP(HE_MODE_UL_MUMIMO, HE_UL_MUMIMO_ENABLE);
2988 
2989 		if (arvif->vif->bss_conf.he_su_beamformee)
2990 			value |= FIELD_PREP(HE_MODE_SU_TX_BFEE, HE_SU_BFEE_ENABLE);
2991 	}
2992 
2993 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, value);
2994 	if (ret) {
2995 		ath11k_warn(ar->ab, "failed to set vdev %d HE MU mode: %d\n",
2996 			    arvif->vdev_id, ret);
2997 		return false;
2998 	}
2999 
3000 	param = WMI_VDEV_PARAM_SET_HE_SOUNDING_MODE;
3001 	value =	FIELD_PREP(HE_VHT_SOUNDING_MODE, HE_VHT_SOUNDING_MODE_ENABLE) |
3002 		FIELD_PREP(HE_TRIG_NONTRIG_SOUNDING_MODE,
3003 			   HE_TRIG_NONTRIG_SOUNDING_MODE_ENABLE);
3004 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3005 					    param, value);
3006 	if (ret) {
3007 		ath11k_warn(ar->ab, "failed to set vdev %d sounding mode: %d\n",
3008 			    arvif->vdev_id, ret);
3009 		return false;
3010 	}
3011 	return true;
3012 }
3013 
3014 static bool ath11k_mac_vif_recalc_sta_he_txbf(struct ath11k *ar,
3015 					      struct ieee80211_vif *vif,
3016 					      struct ieee80211_sta_he_cap *he_cap)
3017 {
3018 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
3019 	struct ieee80211_he_cap_elem he_cap_elem = {0};
3020 	struct ieee80211_sta_he_cap *cap_band = NULL;
3021 	struct cfg80211_chan_def def;
3022 	u32 param = WMI_VDEV_PARAM_SET_HEMU_MODE;
3023 	u32 hemode = 0;
3024 	int ret;
3025 
3026 	if (!vif->bss_conf.he_support)
3027 		return true;
3028 
3029 	if (vif->type != NL80211_IFTYPE_STATION)
3030 		return false;
3031 
3032 	if (WARN_ON(ath11k_mac_vif_chan(vif, &def)))
3033 		return false;
3034 
3035 	if (def.chan->band == NL80211_BAND_2GHZ)
3036 		cap_band = &ar->mac.iftype[NL80211_BAND_2GHZ][vif->type].he_cap;
3037 	else
3038 		cap_band = &ar->mac.iftype[NL80211_BAND_5GHZ][vif->type].he_cap;
3039 
3040 	memcpy(&he_cap_elem, &cap_band->he_cap_elem, sizeof(he_cap_elem));
3041 
3042 	if (HECAP_PHY_SUBFME_GET(he_cap_elem.phy_cap_info)) {
3043 		if (HECAP_PHY_SUBFMR_GET(he_cap->he_cap_elem.phy_cap_info))
3044 			hemode |= FIELD_PREP(HE_MODE_SU_TX_BFEE, HE_SU_BFEE_ENABLE);
3045 		if (HECAP_PHY_MUBFMR_GET(he_cap->he_cap_elem.phy_cap_info))
3046 			hemode |= FIELD_PREP(HE_MODE_MU_TX_BFEE, HE_MU_BFEE_ENABLE);
3047 	}
3048 
3049 	if (vif->type != NL80211_IFTYPE_MESH_POINT) {
3050 		hemode |= FIELD_PREP(HE_MODE_DL_OFDMA, HE_DL_MUOFDMA_ENABLE) |
3051 			  FIELD_PREP(HE_MODE_UL_OFDMA, HE_UL_MUOFDMA_ENABLE);
3052 
3053 		if (HECAP_PHY_ULMUMIMO_GET(he_cap_elem.phy_cap_info))
3054 			if (HECAP_PHY_ULMUMIMO_GET(he_cap->he_cap_elem.phy_cap_info))
3055 				hemode |= FIELD_PREP(HE_MODE_UL_MUMIMO,
3056 						     HE_UL_MUMIMO_ENABLE);
3057 
3058 		if (FIELD_GET(HE_MODE_MU_TX_BFEE, hemode))
3059 			hemode |= FIELD_PREP(HE_MODE_SU_TX_BFEE, HE_SU_BFEE_ENABLE);
3060 
3061 		if (FIELD_GET(HE_MODE_MU_TX_BFER, hemode))
3062 			hemode |= FIELD_PREP(HE_MODE_SU_TX_BFER, HE_SU_BFER_ENABLE);
3063 	}
3064 
3065 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, hemode);
3066 	if (ret) {
3067 		ath11k_warn(ar->ab, "failed to submit vdev param txbf 0x%x: %d\n",
3068 			    hemode, ret);
3069 		return false;
3070 	}
3071 
3072 	return true;
3073 }
3074 
3075 static void ath11k_bss_assoc(struct ieee80211_hw *hw,
3076 			     struct ieee80211_vif *vif,
3077 			     struct ieee80211_bss_conf *bss_conf)
3078 {
3079 	struct ath11k *ar = hw->priv;
3080 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
3081 	struct peer_assoc_params peer_arg;
3082 	struct ieee80211_sta *ap_sta;
3083 	struct ath11k_peer *peer;
3084 	bool is_auth = false;
3085 	struct ieee80211_sta_he_cap  he_cap;
3086 	int ret;
3087 
3088 	lockdep_assert_held(&ar->conf_mutex);
3089 
3090 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %i assoc bssid %pM aid %d\n",
3091 		   arvif->vdev_id, arvif->bssid, arvif->aid);
3092 
3093 	rcu_read_lock();
3094 
3095 	ap_sta = ieee80211_find_sta(vif, bss_conf->bssid);
3096 	if (!ap_sta) {
3097 		ath11k_warn(ar->ab, "failed to find station entry for bss %pM vdev %i\n",
3098 			    bss_conf->bssid, arvif->vdev_id);
3099 		rcu_read_unlock();
3100 		return;
3101 	}
3102 
3103 	/* he_cap here is updated at assoc success for sta mode only */
3104 	he_cap  = ap_sta->deflink.he_cap;
3105 
3106 	ath11k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg, false);
3107 
3108 	rcu_read_unlock();
3109 
3110 	if (!ath11k_mac_vif_recalc_sta_he_txbf(ar, vif, &he_cap)) {
3111 		ath11k_warn(ar->ab, "failed to recalc he txbf for vdev %i on bss %pM\n",
3112 			    arvif->vdev_id, bss_conf->bssid);
3113 		return;
3114 	}
3115 
3116 	peer_arg.is_assoc = true;
3117 
3118 	ret = ath11k_wmi_send_peer_assoc_cmd(ar, &peer_arg);
3119 	if (ret) {
3120 		ath11k_warn(ar->ab, "failed to run peer assoc for %pM vdev %i: %d\n",
3121 			    bss_conf->bssid, arvif->vdev_id, ret);
3122 		return;
3123 	}
3124 
3125 	if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) {
3126 		ath11k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n",
3127 			    bss_conf->bssid, arvif->vdev_id);
3128 		return;
3129 	}
3130 
3131 	ret = ath11k_setup_peer_smps(ar, arvif, bss_conf->bssid,
3132 				     &ap_sta->deflink.ht_cap,
3133 				     le16_to_cpu(ap_sta->deflink.he_6ghz_capa.capa));
3134 	if (ret) {
3135 		ath11k_warn(ar->ab, "failed to setup peer SMPS for vdev %d: %d\n",
3136 			    arvif->vdev_id, ret);
3137 		return;
3138 	}
3139 
3140 	WARN_ON(arvif->is_up);
3141 
3142 	arvif->aid = vif->cfg.aid;
3143 	ether_addr_copy(arvif->bssid, bss_conf->bssid);
3144 
3145 	ret = ath11k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid,
3146 				 NULL, 0, 0);
3147 	if (ret) {
3148 		ath11k_warn(ar->ab, "failed to set vdev %d up: %d\n",
3149 			    arvif->vdev_id, ret);
3150 		return;
3151 	}
3152 
3153 	arvif->is_up = true;
3154 	arvif->rekey_data.enable_offload = false;
3155 
3156 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
3157 		   "vdev %d up (associated) bssid %pM aid %d\n",
3158 		   arvif->vdev_id, bss_conf->bssid, vif->cfg.aid);
3159 
3160 	spin_lock_bh(&ar->ab->base_lock);
3161 
3162 	peer = ath11k_peer_find(ar->ab, arvif->vdev_id, arvif->bssid);
3163 	if (peer && peer->is_authorized)
3164 		is_auth = true;
3165 
3166 	spin_unlock_bh(&ar->ab->base_lock);
3167 
3168 	if (is_auth) {
3169 		ret = ath11k_wmi_set_peer_param(ar, arvif->bssid,
3170 						arvif->vdev_id,
3171 						WMI_PEER_AUTHORIZE,
3172 						1);
3173 		if (ret)
3174 			ath11k_warn(ar->ab, "Unable to authorize BSS peer: %d\n", ret);
3175 	}
3176 
3177 	ret = ath11k_wmi_send_obss_spr_cmd(ar, arvif->vdev_id,
3178 					   &bss_conf->he_obss_pd);
3179 	if (ret)
3180 		ath11k_warn(ar->ab, "failed to set vdev %i OBSS PD parameters: %d\n",
3181 			    arvif->vdev_id, ret);
3182 
3183 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3184 					    WMI_VDEV_PARAM_DTIM_POLICY,
3185 					    WMI_DTIM_POLICY_STICK);
3186 	if (ret)
3187 		ath11k_warn(ar->ab, "failed to set vdev %d dtim policy: %d\n",
3188 			    arvif->vdev_id, ret);
3189 
3190 	ath11k_mac_11d_scan_stop_all(ar->ab);
3191 }
3192 
3193 static void ath11k_bss_disassoc(struct ieee80211_hw *hw,
3194 				struct ieee80211_vif *vif)
3195 {
3196 	struct ath11k *ar = hw->priv;
3197 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
3198 	int ret;
3199 
3200 	lockdep_assert_held(&ar->conf_mutex);
3201 
3202 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %i disassoc bssid %pM\n",
3203 		   arvif->vdev_id, arvif->bssid);
3204 
3205 	ret = ath11k_wmi_vdev_down(ar, arvif->vdev_id);
3206 	if (ret)
3207 		ath11k_warn(ar->ab, "failed to down vdev %i: %d\n",
3208 			    arvif->vdev_id, ret);
3209 
3210 	arvif->is_up = false;
3211 
3212 	memset(&arvif->rekey_data, 0, sizeof(arvif->rekey_data));
3213 
3214 	cancel_delayed_work_sync(&arvif->connection_loss_work);
3215 }
3216 
3217 static u32 ath11k_mac_get_rate_hw_value(int bitrate)
3218 {
3219 	u32 preamble;
3220 	u16 hw_value;
3221 	int rate;
3222 	size_t i;
3223 
3224 	if (ath11k_mac_bitrate_is_cck(bitrate))
3225 		preamble = WMI_RATE_PREAMBLE_CCK;
3226 	else
3227 		preamble = WMI_RATE_PREAMBLE_OFDM;
3228 
3229 	for (i = 0; i < ARRAY_SIZE(ath11k_legacy_rates); i++) {
3230 		if (ath11k_legacy_rates[i].bitrate != bitrate)
3231 			continue;
3232 
3233 		hw_value = ath11k_legacy_rates[i].hw_value;
3234 		rate = ATH11K_HW_RATE_CODE(hw_value, 0, preamble);
3235 
3236 		return rate;
3237 	}
3238 
3239 	return -EINVAL;
3240 }
3241 
3242 static void ath11k_recalculate_mgmt_rate(struct ath11k *ar,
3243 					 struct ieee80211_vif *vif,
3244 					 struct cfg80211_chan_def *def)
3245 {
3246 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
3247 	const struct ieee80211_supported_band *sband;
3248 	u8 basic_rate_idx;
3249 	int hw_rate_code;
3250 	u32 vdev_param;
3251 	u16 bitrate;
3252 	int ret;
3253 
3254 	lockdep_assert_held(&ar->conf_mutex);
3255 
3256 	sband = ar->hw->wiphy->bands[def->chan->band];
3257 	basic_rate_idx = ffs(vif->bss_conf.basic_rates) - 1;
3258 	bitrate = sband->bitrates[basic_rate_idx].bitrate;
3259 
3260 	hw_rate_code = ath11k_mac_get_rate_hw_value(bitrate);
3261 	if (hw_rate_code < 0) {
3262 		ath11k_warn(ar->ab, "bitrate not supported %d\n", bitrate);
3263 		return;
3264 	}
3265 
3266 	vdev_param = WMI_VDEV_PARAM_MGMT_RATE;
3267 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param,
3268 					    hw_rate_code);
3269 	if (ret)
3270 		ath11k_warn(ar->ab, "failed to set mgmt tx rate %d\n", ret);
3271 
3272 	/* For WCN6855, firmware will clear this param when vdev starts, hence
3273 	 * cache it here so that we can reconfigure it once vdev starts.
3274 	 */
3275 	ar->hw_rate_code = hw_rate_code;
3276 
3277 	vdev_param = WMI_VDEV_PARAM_BEACON_RATE;
3278 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param,
3279 					    hw_rate_code);
3280 	if (ret)
3281 		ath11k_warn(ar->ab, "failed to set beacon tx rate %d\n", ret);
3282 }
3283 
3284 static int ath11k_mac_fils_discovery(struct ath11k_vif *arvif,
3285 				     struct ieee80211_bss_conf *info)
3286 {
3287 	struct ath11k *ar = arvif->ar;
3288 	struct sk_buff *tmpl;
3289 	int ret;
3290 	u32 interval;
3291 	bool unsol_bcast_probe_resp_enabled = false;
3292 
3293 	if (info->fils_discovery.max_interval) {
3294 		interval = info->fils_discovery.max_interval;
3295 
3296 		tmpl = ieee80211_get_fils_discovery_tmpl(ar->hw, arvif->vif);
3297 		if (tmpl)
3298 			ret = ath11k_wmi_fils_discovery_tmpl(ar, arvif->vdev_id,
3299 							     tmpl);
3300 	} else if (info->unsol_bcast_probe_resp_interval) {
3301 		unsol_bcast_probe_resp_enabled = 1;
3302 		interval = info->unsol_bcast_probe_resp_interval;
3303 
3304 		tmpl = ieee80211_get_unsol_bcast_probe_resp_tmpl(ar->hw,
3305 								 arvif->vif);
3306 		if (tmpl)
3307 			ret = ath11k_wmi_probe_resp_tmpl(ar, arvif->vdev_id,
3308 							 tmpl);
3309 	} else { /* Disable */
3310 		return ath11k_wmi_fils_discovery(ar, arvif->vdev_id, 0, false);
3311 	}
3312 
3313 	if (!tmpl) {
3314 		ath11k_warn(ar->ab,
3315 			    "mac vdev %i failed to retrieve %s template\n",
3316 			    arvif->vdev_id, (unsol_bcast_probe_resp_enabled ?
3317 			    "unsolicited broadcast probe response" :
3318 			    "FILS discovery"));
3319 		return -EPERM;
3320 	}
3321 	kfree_skb(tmpl);
3322 
3323 	if (!ret)
3324 		ret = ath11k_wmi_fils_discovery(ar, arvif->vdev_id, interval,
3325 						unsol_bcast_probe_resp_enabled);
3326 
3327 	return ret;
3328 }
3329 
3330 static int ath11k_mac_config_obss_pd(struct ath11k *ar,
3331 				     struct ieee80211_he_obss_pd *he_obss_pd)
3332 {
3333 	u32 bitmap[2], param_id, param_val, pdev_id;
3334 	int ret;
3335 	s8 non_srg_th = 0, srg_th = 0;
3336 
3337 	pdev_id = ar->pdev->pdev_id;
3338 
3339 	/* Set and enable SRG/non-SRG OBSS PD Threshold */
3340 	param_id = WMI_PDEV_PARAM_SET_CMD_OBSS_PD_THRESHOLD;
3341 	if (test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags)) {
3342 		ret = ath11k_wmi_pdev_set_param(ar, param_id, 0, pdev_id);
3343 		if (ret)
3344 			ath11k_warn(ar->ab,
3345 				    "failed to set obss_pd_threshold for pdev: %u\n",
3346 				    pdev_id);
3347 		return ret;
3348 	}
3349 
3350 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
3351 		   "obss pd sr_ctrl %x non_srg_thres %u srg_max %u\n",
3352 		   he_obss_pd->sr_ctrl, he_obss_pd->non_srg_max_offset,
3353 		   he_obss_pd->max_offset);
3354 
3355 	param_val = 0;
3356 
3357 	if (he_obss_pd->sr_ctrl &
3358 	    IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED) {
3359 		non_srg_th = ATH11K_OBSS_PD_MAX_THRESHOLD;
3360 	} else {
3361 		if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
3362 			non_srg_th = (ATH11K_OBSS_PD_MAX_THRESHOLD +
3363 				      he_obss_pd->non_srg_max_offset);
3364 		else
3365 			non_srg_th = ATH11K_OBSS_PD_NON_SRG_MAX_THRESHOLD;
3366 
3367 		param_val |= ATH11K_OBSS_PD_NON_SRG_EN;
3368 	}
3369 
3370 	if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) {
3371 		srg_th = ATH11K_OBSS_PD_MAX_THRESHOLD + he_obss_pd->max_offset;
3372 		param_val |= ATH11K_OBSS_PD_SRG_EN;
3373 	}
3374 
3375 	if (test_bit(WMI_TLV_SERVICE_SRG_SRP_SPATIAL_REUSE_SUPPORT,
3376 		     ar->ab->wmi_ab.svc_map)) {
3377 		param_val |= ATH11K_OBSS_PD_THRESHOLD_IN_DBM;
3378 		param_val |= FIELD_PREP(GENMASK(15, 8), srg_th);
3379 	} else {
3380 		non_srg_th -= ATH11K_DEFAULT_NOISE_FLOOR;
3381 		/* SRG not supported and threshold in dB */
3382 		param_val &= ~(ATH11K_OBSS_PD_SRG_EN |
3383 			       ATH11K_OBSS_PD_THRESHOLD_IN_DBM);
3384 	}
3385 
3386 	param_val |= (non_srg_th & GENMASK(7, 0));
3387 	ret = ath11k_wmi_pdev_set_param(ar, param_id, param_val, pdev_id);
3388 	if (ret) {
3389 		ath11k_warn(ar->ab,
3390 			    "failed to set obss_pd_threshold for pdev: %u\n",
3391 			    pdev_id);
3392 		return ret;
3393 	}
3394 
3395 	/* Enable OBSS PD for all access category */
3396 	param_id  = WMI_PDEV_PARAM_SET_CMD_OBSS_PD_PER_AC;
3397 	param_val = 0xf;
3398 	ret = ath11k_wmi_pdev_set_param(ar, param_id, param_val, pdev_id);
3399 	if (ret) {
3400 		ath11k_warn(ar->ab,
3401 			    "failed to set obss_pd_per_ac for pdev: %u\n",
3402 			    pdev_id);
3403 		return ret;
3404 	}
3405 
3406 	/* Set SR Prohibit */
3407 	param_id  = WMI_PDEV_PARAM_ENABLE_SR_PROHIBIT;
3408 	param_val = !!(he_obss_pd->sr_ctrl &
3409 		       IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED);
3410 	ret = ath11k_wmi_pdev_set_param(ar, param_id, param_val, pdev_id);
3411 	if (ret) {
3412 		ath11k_warn(ar->ab, "failed to set sr_prohibit for pdev: %u\n",
3413 			    pdev_id);
3414 		return ret;
3415 	}
3416 
3417 	if (!test_bit(WMI_TLV_SERVICE_SRG_SRP_SPATIAL_REUSE_SUPPORT,
3418 		      ar->ab->wmi_ab.svc_map))
3419 		return 0;
3420 
3421 	/* Set SRG BSS Color Bitmap */
3422 	memcpy(bitmap, he_obss_pd->bss_color_bitmap, sizeof(bitmap));
3423 	ret = ath11k_wmi_pdev_set_srg_bss_color_bitmap(ar, bitmap);
3424 	if (ret) {
3425 		ath11k_warn(ar->ab,
3426 			    "failed to set bss_color_bitmap for pdev: %u\n",
3427 			    pdev_id);
3428 		return ret;
3429 	}
3430 
3431 	/* Set SRG Partial BSSID Bitmap */
3432 	memcpy(bitmap, he_obss_pd->partial_bssid_bitmap, sizeof(bitmap));
3433 	ret = ath11k_wmi_pdev_set_srg_patial_bssid_bitmap(ar, bitmap);
3434 	if (ret) {
3435 		ath11k_warn(ar->ab,
3436 			    "failed to set partial_bssid_bitmap for pdev: %u\n",
3437 			    pdev_id);
3438 		return ret;
3439 	}
3440 
3441 	memset(bitmap, 0xff, sizeof(bitmap));
3442 
3443 	/* Enable all BSS Colors for SRG */
3444 	ret = ath11k_wmi_pdev_srg_obss_color_enable_bitmap(ar, bitmap);
3445 	if (ret) {
3446 		ath11k_warn(ar->ab,
3447 			    "failed to set srg_color_en_bitmap pdev: %u\n",
3448 			    pdev_id);
3449 		return ret;
3450 	}
3451 
3452 	/* Enable all partial BSSID mask for SRG */
3453 	ret = ath11k_wmi_pdev_srg_obss_bssid_enable_bitmap(ar, bitmap);
3454 	if (ret) {
3455 		ath11k_warn(ar->ab,
3456 			    "failed to set srg_bssid_en_bitmap pdev: %u\n",
3457 			    pdev_id);
3458 		return ret;
3459 	}
3460 
3461 	/* Enable all BSS Colors for non-SRG */
3462 	ret = ath11k_wmi_pdev_non_srg_obss_color_enable_bitmap(ar, bitmap);
3463 	if (ret) {
3464 		ath11k_warn(ar->ab,
3465 			    "failed to set non_srg_color_en_bitmap pdev: %u\n",
3466 			    pdev_id);
3467 		return ret;
3468 	}
3469 
3470 	/* Enable all partial BSSID mask for non-SRG */
3471 	ret = ath11k_wmi_pdev_non_srg_obss_bssid_enable_bitmap(ar, bitmap);
3472 	if (ret) {
3473 		ath11k_warn(ar->ab,
3474 			    "failed to set non_srg_bssid_en_bitmap pdev: %u\n",
3475 			    pdev_id);
3476 		return ret;
3477 	}
3478 
3479 	return 0;
3480 }
3481 
3482 static bool ath11k_mac_supports_station_tpc(struct ath11k *ar,
3483 					    struct ath11k_vif *arvif,
3484 					    const struct cfg80211_chan_def *chandef)
3485 {
3486 	return ath11k_wmi_supports_6ghz_cc_ext(ar) &&
3487 		test_bit(WMI_TLV_SERVICE_EXT_TPC_REG_SUPPORT, ar->ab->wmi_ab.svc_map) &&
3488 		arvif->vdev_type == WMI_VDEV_TYPE_STA &&
3489 		arvif->vdev_subtype == WMI_VDEV_SUBTYPE_NONE &&
3490 		chandef->chan &&
3491 		chandef->chan->band == NL80211_BAND_6GHZ;
3492 }
3493 
3494 static void ath11k_mac_op_bss_info_changed(struct ieee80211_hw *hw,
3495 					   struct ieee80211_vif *vif,
3496 					   struct ieee80211_bss_conf *info,
3497 					   u64 changed)
3498 {
3499 	struct ath11k *ar = hw->priv;
3500 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
3501 	struct cfg80211_chan_def def;
3502 	u32 param_id, param_value;
3503 	enum nl80211_band band;
3504 	u32 vdev_param;
3505 	int mcast_rate;
3506 	u32 preamble;
3507 	u16 hw_value;
3508 	u16 bitrate;
3509 	int ret = 0;
3510 	u8 rateidx;
3511 	u32 rate, param;
3512 	u32 ipv4_cnt;
3513 
3514 	mutex_lock(&ar->conf_mutex);
3515 
3516 	if (changed & BSS_CHANGED_BEACON_INT) {
3517 		arvif->beacon_interval = info->beacon_int;
3518 
3519 		param_id = WMI_VDEV_PARAM_BEACON_INTERVAL;
3520 		ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3521 						    param_id,
3522 						    arvif->beacon_interval);
3523 		if (ret)
3524 			ath11k_warn(ar->ab, "Failed to set beacon interval for VDEV: %d\n",
3525 				    arvif->vdev_id);
3526 		else
3527 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
3528 				   "Beacon interval: %d set for VDEV: %d\n",
3529 				   arvif->beacon_interval, arvif->vdev_id);
3530 	}
3531 
3532 	if (changed & BSS_CHANGED_BEACON) {
3533 		param_id = WMI_PDEV_PARAM_BEACON_TX_MODE;
3534 		param_value = WMI_BEACON_STAGGERED_MODE;
3535 		ret = ath11k_wmi_pdev_set_param(ar, param_id,
3536 						param_value, ar->pdev->pdev_id);
3537 		if (ret)
3538 			ath11k_warn(ar->ab, "Failed to set beacon mode for VDEV: %d\n",
3539 				    arvif->vdev_id);
3540 		else
3541 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
3542 				   "Set staggered beacon mode for VDEV: %d\n",
3543 				   arvif->vdev_id);
3544 
3545 		if (!arvif->do_not_send_tmpl || !arvif->bcca_zero_sent) {
3546 			ret = ath11k_mac_setup_bcn_tmpl(arvif);
3547 			if (ret)
3548 				ath11k_warn(ar->ab, "failed to update bcn template: %d\n",
3549 					    ret);
3550 		}
3551 
3552 		if (arvif->bcca_zero_sent)
3553 			arvif->do_not_send_tmpl = true;
3554 		else
3555 			arvif->do_not_send_tmpl = false;
3556 
3557 		if (vif->bss_conf.he_support) {
3558 			ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3559 							    WMI_VDEV_PARAM_BA_MODE,
3560 							    WMI_BA_MODE_BUFFER_SIZE_256);
3561 			if (ret)
3562 				ath11k_warn(ar->ab,
3563 					    "failed to set BA BUFFER SIZE 256 for vdev: %d\n",
3564 					    arvif->vdev_id);
3565 			else
3566 				ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
3567 					   "Set BA BUFFER SIZE 256 for VDEV: %d\n",
3568 					   arvif->vdev_id);
3569 		}
3570 	}
3571 
3572 	if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) {
3573 		arvif->dtim_period = info->dtim_period;
3574 
3575 		param_id = WMI_VDEV_PARAM_DTIM_PERIOD;
3576 		ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3577 						    param_id,
3578 						    arvif->dtim_period);
3579 
3580 		if (ret)
3581 			ath11k_warn(ar->ab, "Failed to set dtim period for VDEV %d: %i\n",
3582 				    arvif->vdev_id, ret);
3583 		else
3584 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
3585 				   "DTIM period: %d set for VDEV: %d\n",
3586 				   arvif->dtim_period, arvif->vdev_id);
3587 	}
3588 
3589 	if (changed & BSS_CHANGED_SSID &&
3590 	    vif->type == NL80211_IFTYPE_AP) {
3591 		arvif->u.ap.ssid_len = vif->cfg.ssid_len;
3592 		if (vif->cfg.ssid_len)
3593 			memcpy(arvif->u.ap.ssid, vif->cfg.ssid,
3594 			       vif->cfg.ssid_len);
3595 		arvif->u.ap.hidden_ssid = info->hidden_ssid;
3596 	}
3597 
3598 	if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid))
3599 		ether_addr_copy(arvif->bssid, info->bssid);
3600 
3601 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
3602 		if (info->enable_beacon)
3603 			ath11k_mac_set_he_txbf_conf(arvif);
3604 		ath11k_control_beaconing(arvif, info);
3605 
3606 		if (arvif->is_up && vif->bss_conf.he_support &&
3607 		    vif->bss_conf.he_oper.params) {
3608 			param_id = WMI_VDEV_PARAM_HEOPS_0_31;
3609 			param_value = vif->bss_conf.he_oper.params;
3610 			ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3611 							    param_id, param_value);
3612 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
3613 				   "he oper param: %x set for VDEV: %d\n",
3614 				   param_value, arvif->vdev_id);
3615 
3616 			if (ret)
3617 				ath11k_warn(ar->ab, "Failed to set he oper params %x for VDEV %d: %i\n",
3618 					    param_value, arvif->vdev_id, ret);
3619 		}
3620 	}
3621 
3622 	if (changed & BSS_CHANGED_ERP_CTS_PROT) {
3623 		u32 cts_prot;
3624 
3625 		cts_prot = !!(info->use_cts_prot);
3626 		param_id = WMI_VDEV_PARAM_PROTECTION_MODE;
3627 
3628 		if (arvif->is_started) {
3629 			ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3630 							    param_id, cts_prot);
3631 			if (ret)
3632 				ath11k_warn(ar->ab, "Failed to set CTS prot for VDEV: %d\n",
3633 					    arvif->vdev_id);
3634 			else
3635 				ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "Set CTS prot: %d for VDEV: %d\n",
3636 					   cts_prot, arvif->vdev_id);
3637 		} else {
3638 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "defer protection mode setup, vdev is not ready yet\n");
3639 		}
3640 	}
3641 
3642 	if (changed & BSS_CHANGED_ERP_SLOT) {
3643 		u32 slottime;
3644 
3645 		if (info->use_short_slot)
3646 			slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */
3647 
3648 		else
3649 			slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */
3650 
3651 		param_id = WMI_VDEV_PARAM_SLOT_TIME;
3652 		ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3653 						    param_id, slottime);
3654 		if (ret)
3655 			ath11k_warn(ar->ab, "Failed to set erp slot for VDEV: %d\n",
3656 				    arvif->vdev_id);
3657 		else
3658 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
3659 				   "Set slottime: %d for VDEV: %d\n",
3660 				   slottime, arvif->vdev_id);
3661 	}
3662 
3663 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
3664 		u32 preamble;
3665 
3666 		if (info->use_short_preamble)
3667 			preamble = WMI_VDEV_PREAMBLE_SHORT;
3668 		else
3669 			preamble = WMI_VDEV_PREAMBLE_LONG;
3670 
3671 		param_id = WMI_VDEV_PARAM_PREAMBLE;
3672 		ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3673 						    param_id, preamble);
3674 		if (ret)
3675 			ath11k_warn(ar->ab, "Failed to set preamble for VDEV: %d\n",
3676 				    arvif->vdev_id);
3677 		else
3678 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
3679 				   "Set preamble: %d for VDEV: %d\n",
3680 				   preamble, arvif->vdev_id);
3681 	}
3682 
3683 	if (changed & BSS_CHANGED_ASSOC) {
3684 		if (vif->cfg.assoc)
3685 			ath11k_bss_assoc(hw, vif, info);
3686 		else
3687 			ath11k_bss_disassoc(hw, vif);
3688 	}
3689 
3690 	if (changed & BSS_CHANGED_TXPOWER) {
3691 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev_id %i txpower %d\n",
3692 			   arvif->vdev_id, info->txpower);
3693 		arvif->txpower = info->txpower;
3694 		ath11k_mac_txpower_recalc(ar);
3695 	}
3696 
3697 	if (changed & BSS_CHANGED_PS &&
3698 	    ar->ab->hw_params.supports_sta_ps) {
3699 		arvif->ps = vif->cfg.ps;
3700 
3701 		ret = ath11k_mac_config_ps(ar);
3702 		if (ret)
3703 			ath11k_warn(ar->ab, "failed to setup ps on vdev %i: %d\n",
3704 				    arvif->vdev_id, ret);
3705 	}
3706 
3707 	if (changed & BSS_CHANGED_MCAST_RATE &&
3708 	    !ath11k_mac_vif_chan(arvif->vif, &def)) {
3709 		band = def.chan->band;
3710 		mcast_rate = vif->bss_conf.mcast_rate[band];
3711 
3712 		if (mcast_rate > 0)
3713 			rateidx = mcast_rate - 1;
3714 		else
3715 			rateidx = ffs(vif->bss_conf.basic_rates) - 1;
3716 
3717 		if (ar->pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP)
3718 			rateidx += ATH11K_MAC_FIRST_OFDM_RATE_IDX;
3719 
3720 		bitrate = ath11k_legacy_rates[rateidx].bitrate;
3721 		hw_value = ath11k_legacy_rates[rateidx].hw_value;
3722 
3723 		if (ath11k_mac_bitrate_is_cck(bitrate))
3724 			preamble = WMI_RATE_PREAMBLE_CCK;
3725 		else
3726 			preamble = WMI_RATE_PREAMBLE_OFDM;
3727 
3728 		rate = ATH11K_HW_RATE_CODE(hw_value, 0, preamble);
3729 
3730 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
3731 			   "vdev %d mcast_rate %x\n",
3732 			   arvif->vdev_id, rate);
3733 
3734 		vdev_param = WMI_VDEV_PARAM_MCAST_DATA_RATE;
3735 		ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3736 						    vdev_param, rate);
3737 		if (ret)
3738 			ath11k_warn(ar->ab,
3739 				    "failed to set mcast rate on vdev %i: %d\n",
3740 				    arvif->vdev_id,  ret);
3741 
3742 		vdev_param = WMI_VDEV_PARAM_BCAST_DATA_RATE;
3743 		ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3744 						    vdev_param, rate);
3745 		if (ret)
3746 			ath11k_warn(ar->ab,
3747 				    "failed to set bcast rate on vdev %i: %d\n",
3748 				    arvif->vdev_id,  ret);
3749 	}
3750 
3751 	if (changed & BSS_CHANGED_BASIC_RATES &&
3752 	    !ath11k_mac_vif_chan(arvif->vif, &def))
3753 		ath11k_recalculate_mgmt_rate(ar, vif, &def);
3754 
3755 	if (changed & BSS_CHANGED_TWT) {
3756 		struct wmi_twt_enable_params twt_params = {0};
3757 
3758 		if (info->twt_requester || info->twt_responder) {
3759 			ath11k_wmi_fill_default_twt_params(&twt_params);
3760 			ath11k_wmi_send_twt_enable_cmd(ar, ar->pdev->pdev_id,
3761 						       &twt_params);
3762 		} else {
3763 			ath11k_wmi_send_twt_disable_cmd(ar, ar->pdev->pdev_id);
3764 		}
3765 	}
3766 
3767 	if (changed & BSS_CHANGED_HE_OBSS_PD)
3768 		ath11k_mac_config_obss_pd(ar, &info->he_obss_pd);
3769 
3770 	if (changed & BSS_CHANGED_HE_BSS_COLOR) {
3771 		if (vif->type == NL80211_IFTYPE_AP) {
3772 			ret = ath11k_wmi_send_obss_color_collision_cfg_cmd(
3773 				ar, arvif->vdev_id, info->he_bss_color.color,
3774 				ATH11K_BSS_COLOR_COLLISION_DETECTION_AP_PERIOD_MS,
3775 				info->he_bss_color.enabled);
3776 			if (ret)
3777 				ath11k_warn(ar->ab, "failed to set bss color collision on vdev %i: %d\n",
3778 					    arvif->vdev_id,  ret);
3779 
3780 			param_id = WMI_VDEV_PARAM_BSS_COLOR;
3781 			if (info->he_bss_color.enabled)
3782 				param_value = info->he_bss_color.color <<
3783 						IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET;
3784 			else
3785 				param_value = IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED;
3786 
3787 			ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
3788 							    param_id,
3789 							    param_value);
3790 			if (ret)
3791 				ath11k_warn(ar->ab,
3792 					    "failed to set bss color param on vdev %i: %d\n",
3793 					    arvif->vdev_id,  ret);
3794 
3795 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
3796 				   "bss color param 0x%x set on vdev %i\n",
3797 				   param_value, arvif->vdev_id);
3798 		} else if (vif->type == NL80211_IFTYPE_STATION) {
3799 			ret = ath11k_wmi_send_bss_color_change_enable_cmd(ar,
3800 									  arvif->vdev_id,
3801 									  1);
3802 			if (ret)
3803 				ath11k_warn(ar->ab, "failed to enable bss color change on vdev %i: %d\n",
3804 					    arvif->vdev_id,  ret);
3805 			ret = ath11k_wmi_send_obss_color_collision_cfg_cmd(
3806 				ar, arvif->vdev_id, 0,
3807 				ATH11K_BSS_COLOR_COLLISION_DETECTION_STA_PERIOD_MS, 1);
3808 			if (ret)
3809 				ath11k_warn(ar->ab, "failed to set bss color collision on vdev %i: %d\n",
3810 					    arvif->vdev_id,  ret);
3811 		}
3812 	}
3813 
3814 	if (changed & BSS_CHANGED_FTM_RESPONDER &&
3815 	    arvif->ftm_responder != info->ftm_responder &&
3816 	    test_bit(WMI_TLV_SERVICE_RTT, ar->ab->wmi_ab.svc_map) &&
3817 	    (vif->type == NL80211_IFTYPE_AP ||
3818 	     vif->type == NL80211_IFTYPE_MESH_POINT)) {
3819 		arvif->ftm_responder = info->ftm_responder;
3820 		param = WMI_VDEV_PARAM_ENABLE_DISABLE_RTT_RESPONDER_ROLE;
3821 		ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param,
3822 						    arvif->ftm_responder);
3823 		if (ret)
3824 			ath11k_warn(ar->ab, "Failed to set ftm responder %i: %d\n",
3825 				    arvif->vdev_id, ret);
3826 	}
3827 
3828 	if (changed & BSS_CHANGED_FILS_DISCOVERY ||
3829 	    changed & BSS_CHANGED_UNSOL_BCAST_PROBE_RESP)
3830 		ath11k_mac_fils_discovery(arvif, info);
3831 
3832 	if (changed & BSS_CHANGED_ARP_FILTER) {
3833 		ipv4_cnt = min(vif->cfg.arp_addr_cnt, ATH11K_IPV4_MAX_COUNT);
3834 		memcpy(arvif->arp_ns_offload.ipv4_addr,
3835 		       vif->cfg.arp_addr_list,
3836 		       ipv4_cnt * sizeof(u32));
3837 		memcpy(arvif->arp_ns_offload.mac_addr, vif->addr, ETH_ALEN);
3838 		arvif->arp_ns_offload.ipv4_count = ipv4_cnt;
3839 
3840 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "arp_addr_cnt %d vif->addr %pM, offload_addr %pI4\n",
3841 			   vif->cfg.arp_addr_cnt,
3842 			   vif->addr, arvif->arp_ns_offload.ipv4_addr);
3843 	}
3844 
3845 	mutex_unlock(&ar->conf_mutex);
3846 }
3847 
3848 void __ath11k_mac_scan_finish(struct ath11k *ar)
3849 {
3850 	lockdep_assert_held(&ar->data_lock);
3851 
3852 	switch (ar->scan.state) {
3853 	case ATH11K_SCAN_IDLE:
3854 		break;
3855 	case ATH11K_SCAN_RUNNING:
3856 	case ATH11K_SCAN_ABORTING:
3857 		if (ar->scan.is_roc && ar->scan.roc_notify)
3858 			ieee80211_remain_on_channel_expired(ar->hw);
3859 		fallthrough;
3860 	case ATH11K_SCAN_STARTING:
3861 		if (!ar->scan.is_roc) {
3862 			struct cfg80211_scan_info info = {
3863 				.aborted = ((ar->scan.state ==
3864 					    ATH11K_SCAN_ABORTING) ||
3865 					    (ar->scan.state ==
3866 					    ATH11K_SCAN_STARTING)),
3867 			};
3868 
3869 			ieee80211_scan_completed(ar->hw, &info);
3870 		}
3871 
3872 		ar->scan.state = ATH11K_SCAN_IDLE;
3873 		ar->scan_channel = NULL;
3874 		ar->scan.roc_freq = 0;
3875 		cancel_delayed_work(&ar->scan.timeout);
3876 		complete_all(&ar->scan.completed);
3877 		break;
3878 	}
3879 }
3880 
3881 void ath11k_mac_scan_finish(struct ath11k *ar)
3882 {
3883 	spin_lock_bh(&ar->data_lock);
3884 	__ath11k_mac_scan_finish(ar);
3885 	spin_unlock_bh(&ar->data_lock);
3886 }
3887 
3888 static int ath11k_scan_stop(struct ath11k *ar)
3889 {
3890 	struct scan_cancel_param arg = {
3891 		.req_type = WLAN_SCAN_CANCEL_SINGLE,
3892 		.scan_id = ATH11K_SCAN_ID,
3893 	};
3894 	int ret;
3895 
3896 	lockdep_assert_held(&ar->conf_mutex);
3897 
3898 	/* TODO: Fill other STOP Params */
3899 	arg.pdev_id = ar->pdev->pdev_id;
3900 
3901 	ret = ath11k_wmi_send_scan_stop_cmd(ar, &arg);
3902 	if (ret) {
3903 		ath11k_warn(ar->ab, "failed to stop wmi scan: %d\n", ret);
3904 		goto out;
3905 	}
3906 
3907 	ret = wait_for_completion_timeout(&ar->scan.completed, 3 * HZ);
3908 	if (ret == 0) {
3909 		ath11k_warn(ar->ab,
3910 			    "failed to receive scan abort comple: timed out\n");
3911 		ret = -ETIMEDOUT;
3912 	} else if (ret > 0) {
3913 		ret = 0;
3914 	}
3915 
3916 out:
3917 	/* Scan state should be updated upon scan completion but in case
3918 	 * firmware fails to deliver the event (for whatever reason) it is
3919 	 * desired to clean up scan state anyway. Firmware may have just
3920 	 * dropped the scan completion event delivery due to transport pipe
3921 	 * being overflown with data and/or it can recover on its own before
3922 	 * next scan request is submitted.
3923 	 */
3924 	spin_lock_bh(&ar->data_lock);
3925 	if (ar->scan.state != ATH11K_SCAN_IDLE)
3926 		__ath11k_mac_scan_finish(ar);
3927 	spin_unlock_bh(&ar->data_lock);
3928 
3929 	return ret;
3930 }
3931 
3932 static void ath11k_scan_abort(struct ath11k *ar)
3933 {
3934 	int ret;
3935 
3936 	lockdep_assert_held(&ar->conf_mutex);
3937 
3938 	spin_lock_bh(&ar->data_lock);
3939 
3940 	switch (ar->scan.state) {
3941 	case ATH11K_SCAN_IDLE:
3942 		/* This can happen if timeout worker kicked in and called
3943 		 * abortion while scan completion was being processed.
3944 		 */
3945 		break;
3946 	case ATH11K_SCAN_STARTING:
3947 	case ATH11K_SCAN_ABORTING:
3948 		ath11k_warn(ar->ab, "refusing scan abortion due to invalid scan state: %d\n",
3949 			    ar->scan.state);
3950 		break;
3951 	case ATH11K_SCAN_RUNNING:
3952 		ar->scan.state = ATH11K_SCAN_ABORTING;
3953 		spin_unlock_bh(&ar->data_lock);
3954 
3955 		ret = ath11k_scan_stop(ar);
3956 		if (ret)
3957 			ath11k_warn(ar->ab, "failed to abort scan: %d\n", ret);
3958 
3959 		spin_lock_bh(&ar->data_lock);
3960 		break;
3961 	}
3962 
3963 	spin_unlock_bh(&ar->data_lock);
3964 }
3965 
3966 static void ath11k_scan_timeout_work(struct work_struct *work)
3967 {
3968 	struct ath11k *ar = container_of(work, struct ath11k,
3969 					 scan.timeout.work);
3970 
3971 	mutex_lock(&ar->conf_mutex);
3972 	ath11k_scan_abort(ar);
3973 	mutex_unlock(&ar->conf_mutex);
3974 }
3975 
3976 static int ath11k_start_scan(struct ath11k *ar,
3977 			     struct scan_req_params *arg)
3978 {
3979 	int ret;
3980 	unsigned long timeout = 1 * HZ;
3981 
3982 	lockdep_assert_held(&ar->conf_mutex);
3983 
3984 	if (ath11k_spectral_get_mode(ar) == ATH11K_SPECTRAL_BACKGROUND)
3985 		ath11k_spectral_reset_buffer(ar);
3986 
3987 	ret = ath11k_wmi_send_scan_start_cmd(ar, arg);
3988 	if (ret)
3989 		return ret;
3990 
3991 	if (test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ar->ab->wmi_ab.svc_map)) {
3992 		timeout = 5 * HZ;
3993 
3994 		if (ar->supports_6ghz)
3995 			timeout += 5 * HZ;
3996 	}
3997 
3998 	ret = wait_for_completion_timeout(&ar->scan.started, timeout);
3999 	if (ret == 0) {
4000 		ret = ath11k_scan_stop(ar);
4001 		if (ret)
4002 			ath11k_warn(ar->ab, "failed to stop scan: %d\n", ret);
4003 
4004 		return -ETIMEDOUT;
4005 	}
4006 
4007 	/* If we failed to start the scan, return error code at
4008 	 * this point.  This is probably due to some issue in the
4009 	 * firmware, but no need to wedge the driver due to that...
4010 	 */
4011 	spin_lock_bh(&ar->data_lock);
4012 	if (ar->scan.state == ATH11K_SCAN_IDLE) {
4013 		spin_unlock_bh(&ar->data_lock);
4014 		return -EINVAL;
4015 	}
4016 	spin_unlock_bh(&ar->data_lock);
4017 
4018 	return 0;
4019 }
4020 
4021 static int ath11k_mac_op_hw_scan(struct ieee80211_hw *hw,
4022 				 struct ieee80211_vif *vif,
4023 				 struct ieee80211_scan_request *hw_req)
4024 {
4025 	struct ath11k *ar = hw->priv;
4026 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
4027 	struct cfg80211_scan_request *req = &hw_req->req;
4028 	struct scan_req_params *arg = NULL;
4029 	int ret = 0;
4030 	int i;
4031 	u32 scan_timeout;
4032 
4033 	/* Firmwares advertising the support of triggering 11D algorithm
4034 	 * on the scan results of a regular scan expects driver to send
4035 	 * WMI_11D_SCAN_START_CMDID before sending WMI_START_SCAN_CMDID.
4036 	 * With this feature, separate 11D scan can be avoided since
4037 	 * regdomain can be determined with the scan results of the
4038 	 * regular scan.
4039 	 */
4040 	if (ar->state_11d == ATH11K_11D_PREPARING &&
4041 	    test_bit(WMI_TLV_SERVICE_SUPPORT_11D_FOR_HOST_SCAN,
4042 		     ar->ab->wmi_ab.svc_map))
4043 		ath11k_mac_11d_scan_start(ar, arvif->vdev_id);
4044 
4045 	mutex_lock(&ar->conf_mutex);
4046 
4047 	spin_lock_bh(&ar->data_lock);
4048 	switch (ar->scan.state) {
4049 	case ATH11K_SCAN_IDLE:
4050 		reinit_completion(&ar->scan.started);
4051 		reinit_completion(&ar->scan.completed);
4052 		ar->scan.state = ATH11K_SCAN_STARTING;
4053 		ar->scan.is_roc = false;
4054 		ar->scan.vdev_id = arvif->vdev_id;
4055 		ret = 0;
4056 		break;
4057 	case ATH11K_SCAN_STARTING:
4058 	case ATH11K_SCAN_RUNNING:
4059 	case ATH11K_SCAN_ABORTING:
4060 		ret = -EBUSY;
4061 		break;
4062 	}
4063 	spin_unlock_bh(&ar->data_lock);
4064 
4065 	if (ret)
4066 		goto exit;
4067 
4068 	arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4069 
4070 	if (!arg) {
4071 		ret = -ENOMEM;
4072 		goto exit;
4073 	}
4074 
4075 	ath11k_wmi_start_scan_init(ar, arg);
4076 	arg->vdev_id = arvif->vdev_id;
4077 	arg->scan_id = ATH11K_SCAN_ID;
4078 
4079 	if (ar->ab->hw_params.single_pdev_only)
4080 		arg->scan_f_filter_prb_req = 1;
4081 
4082 	if (req->ie_len) {
4083 		arg->extraie.ptr = kmemdup(req->ie, req->ie_len, GFP_KERNEL);
4084 		if (!arg->extraie.ptr) {
4085 			ret = -ENOMEM;
4086 			goto exit;
4087 		}
4088 		arg->extraie.len = req->ie_len;
4089 	}
4090 
4091 	if (req->n_ssids) {
4092 		arg->num_ssids = req->n_ssids;
4093 		for (i = 0; i < arg->num_ssids; i++) {
4094 			arg->ssid[i].length  = req->ssids[i].ssid_len;
4095 			memcpy(&arg->ssid[i].ssid, req->ssids[i].ssid,
4096 			       req->ssids[i].ssid_len);
4097 		}
4098 	} else {
4099 		arg->scan_f_passive = 1;
4100 	}
4101 
4102 	if (req->n_channels) {
4103 		arg->num_chan = req->n_channels;
4104 		arg->chan_list = kcalloc(arg->num_chan, sizeof(*arg->chan_list),
4105 					 GFP_KERNEL);
4106 
4107 		if (!arg->chan_list) {
4108 			ret = -ENOMEM;
4109 			goto exit;
4110 		}
4111 
4112 		for (i = 0; i < arg->num_chan; i++) {
4113 			if (test_bit(WMI_TLV_SERVICE_SCAN_CONFIG_PER_CHANNEL,
4114 				     ar->ab->wmi_ab.svc_map)) {
4115 				arg->chan_list[i] =
4116 					u32_encode_bits(req->channels[i]->center_freq,
4117 							WMI_SCAN_CONFIG_PER_CHANNEL_MASK);
4118 
4119 				/* If NL80211_SCAN_FLAG_COLOCATED_6GHZ is set in scan
4120 				 * flags, then scan all PSC channels in 6 GHz band and
4121 				 * those non-PSC channels where RNR IE is found during
4122 				 * the legacy 2.4/5 GHz scan.
4123 				 * If NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set,
4124 				 * then all channels in 6 GHz will be scanned.
4125 				 */
4126 				if (req->channels[i]->band == NL80211_BAND_6GHZ &&
4127 				    req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ &&
4128 				    !cfg80211_channel_is_psc(req->channels[i]))
4129 					arg->chan_list[i] |=
4130 						WMI_SCAN_CH_FLAG_SCAN_ONLY_IF_RNR_FOUND;
4131 			} else {
4132 				arg->chan_list[i] = req->channels[i]->center_freq;
4133 			}
4134 		}
4135 	}
4136 
4137 	if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR) {
4138 		arg->scan_f_add_spoofed_mac_in_probe = 1;
4139 		ether_addr_copy(arg->mac_addr.addr, req->mac_addr);
4140 		ether_addr_copy(arg->mac_mask.addr, req->mac_addr_mask);
4141 	}
4142 
4143 	/* if duration is set, default dwell times will be overwritten */
4144 	if (req->duration) {
4145 		arg->dwell_time_active = req->duration;
4146 		arg->dwell_time_active_2g = req->duration;
4147 		arg->dwell_time_active_6g = req->duration;
4148 		arg->dwell_time_passive = req->duration;
4149 		arg->dwell_time_passive_6g = req->duration;
4150 		arg->burst_duration = req->duration;
4151 
4152 		scan_timeout = min_t(u32, arg->max_rest_time *
4153 				(arg->num_chan - 1) + (req->duration +
4154 				ATH11K_SCAN_CHANNEL_SWITCH_WMI_EVT_OVERHEAD) *
4155 				arg->num_chan, arg->max_scan_time);
4156 	} else {
4157 		scan_timeout = arg->max_scan_time;
4158 	}
4159 
4160 	/* Add a margin to account for event/command processing */
4161 	scan_timeout += ATH11K_MAC_SCAN_CMD_EVT_OVERHEAD;
4162 
4163 	ret = ath11k_start_scan(ar, arg);
4164 	if (ret) {
4165 		ath11k_warn(ar->ab, "failed to start hw scan: %d\n", ret);
4166 		spin_lock_bh(&ar->data_lock);
4167 		ar->scan.state = ATH11K_SCAN_IDLE;
4168 		spin_unlock_bh(&ar->data_lock);
4169 	}
4170 
4171 	ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
4172 				     msecs_to_jiffies(scan_timeout));
4173 
4174 exit:
4175 	if (arg) {
4176 		kfree(arg->chan_list);
4177 		kfree(arg->extraie.ptr);
4178 		kfree(arg);
4179 	}
4180 
4181 	mutex_unlock(&ar->conf_mutex);
4182 
4183 	if (ar->state_11d == ATH11K_11D_PREPARING)
4184 		ath11k_mac_11d_scan_start(ar, arvif->vdev_id);
4185 
4186 	return ret;
4187 }
4188 
4189 static void ath11k_mac_op_cancel_hw_scan(struct ieee80211_hw *hw,
4190 					 struct ieee80211_vif *vif)
4191 {
4192 	struct ath11k *ar = hw->priv;
4193 
4194 	mutex_lock(&ar->conf_mutex);
4195 	ath11k_scan_abort(ar);
4196 	mutex_unlock(&ar->conf_mutex);
4197 
4198 	cancel_delayed_work_sync(&ar->scan.timeout);
4199 }
4200 
4201 static int ath11k_install_key(struct ath11k_vif *arvif,
4202 			      struct ieee80211_key_conf *key,
4203 			      enum set_key_cmd cmd,
4204 			      const u8 *macaddr, u32 flags)
4205 {
4206 	int ret;
4207 	struct ath11k *ar = arvif->ar;
4208 	struct wmi_vdev_install_key_arg arg = {
4209 		.vdev_id = arvif->vdev_id,
4210 		.key_idx = key->keyidx,
4211 		.key_len = key->keylen,
4212 		.key_data = key->key,
4213 		.key_flags = flags,
4214 		.macaddr = macaddr,
4215 	};
4216 
4217 	lockdep_assert_held(&arvif->ar->conf_mutex);
4218 
4219 	reinit_completion(&ar->install_key_done);
4220 
4221 	if (test_bit(ATH11K_FLAG_HW_CRYPTO_DISABLED, &ar->ab->dev_flags))
4222 		return 0;
4223 
4224 	if (cmd == DISABLE_KEY) {
4225 		arg.key_cipher = WMI_CIPHER_NONE;
4226 		arg.key_data = NULL;
4227 		goto install;
4228 	}
4229 
4230 	switch (key->cipher) {
4231 	case WLAN_CIPHER_SUITE_CCMP:
4232 	case WLAN_CIPHER_SUITE_CCMP_256:
4233 		arg.key_cipher = WMI_CIPHER_AES_CCM;
4234 		/* TODO: Re-check if flag is valid */
4235 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT;
4236 		break;
4237 	case WLAN_CIPHER_SUITE_TKIP:
4238 		arg.key_cipher = WMI_CIPHER_TKIP;
4239 		arg.key_txmic_len = 8;
4240 		arg.key_rxmic_len = 8;
4241 		break;
4242 	case WLAN_CIPHER_SUITE_GCMP:
4243 	case WLAN_CIPHER_SUITE_GCMP_256:
4244 		arg.key_cipher = WMI_CIPHER_AES_GCM;
4245 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT;
4246 		break;
4247 	default:
4248 		ath11k_warn(ar->ab, "cipher %d is not supported\n", key->cipher);
4249 		return -EOPNOTSUPP;
4250 	}
4251 
4252 	if (test_bit(ATH11K_FLAG_RAW_MODE, &ar->ab->dev_flags))
4253 		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV |
4254 			      IEEE80211_KEY_FLAG_RESERVE_TAILROOM;
4255 
4256 install:
4257 	ret = ath11k_wmi_vdev_install_key(arvif->ar, &arg);
4258 
4259 	if (ret)
4260 		return ret;
4261 
4262 	if (!wait_for_completion_timeout(&ar->install_key_done, 1 * HZ))
4263 		return -ETIMEDOUT;
4264 
4265 	return ar->install_key_status ? -EINVAL : 0;
4266 }
4267 
4268 static int ath11k_clear_peer_keys(struct ath11k_vif *arvif,
4269 				  const u8 *addr)
4270 {
4271 	struct ath11k *ar = arvif->ar;
4272 	struct ath11k_base *ab = ar->ab;
4273 	struct ath11k_peer *peer;
4274 	int first_errno = 0;
4275 	int ret;
4276 	int i;
4277 	u32 flags = 0;
4278 
4279 	lockdep_assert_held(&ar->conf_mutex);
4280 
4281 	spin_lock_bh(&ab->base_lock);
4282 	peer = ath11k_peer_find(ab, arvif->vdev_id, addr);
4283 	spin_unlock_bh(&ab->base_lock);
4284 
4285 	if (!peer)
4286 		return -ENOENT;
4287 
4288 	for (i = 0; i < ARRAY_SIZE(peer->keys); i++) {
4289 		if (!peer->keys[i])
4290 			continue;
4291 
4292 		/* key flags are not required to delete the key */
4293 		ret = ath11k_install_key(arvif, peer->keys[i],
4294 					 DISABLE_KEY, addr, flags);
4295 		if (ret < 0 && first_errno == 0)
4296 			first_errno = ret;
4297 
4298 		if (ret < 0)
4299 			ath11k_warn(ab, "failed to remove peer key %d: %d\n",
4300 				    i, ret);
4301 
4302 		spin_lock_bh(&ab->base_lock);
4303 		peer->keys[i] = NULL;
4304 		spin_unlock_bh(&ab->base_lock);
4305 	}
4306 
4307 	return first_errno;
4308 }
4309 
4310 static int ath11k_mac_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
4311 				 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
4312 				 struct ieee80211_key_conf *key)
4313 {
4314 	struct ath11k *ar = hw->priv;
4315 	struct ath11k_base *ab = ar->ab;
4316 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
4317 	struct ath11k_peer *peer;
4318 	struct ath11k_sta *arsta;
4319 	const u8 *peer_addr;
4320 	int ret = 0;
4321 	u32 flags = 0;
4322 
4323 	/* BIP needs to be done in software */
4324 	if (key->cipher == WLAN_CIPHER_SUITE_AES_CMAC ||
4325 	    key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_128 ||
4326 	    key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_256 ||
4327 	    key->cipher == WLAN_CIPHER_SUITE_BIP_CMAC_256)
4328 		return 1;
4329 
4330 	if (test_bit(ATH11K_FLAG_HW_CRYPTO_DISABLED, &ar->ab->dev_flags))
4331 		return 1;
4332 
4333 	if (key->keyidx > WMI_MAX_KEY_INDEX)
4334 		return -ENOSPC;
4335 
4336 	mutex_lock(&ar->conf_mutex);
4337 
4338 	if (sta)
4339 		peer_addr = sta->addr;
4340 	else if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
4341 		peer_addr = vif->bss_conf.bssid;
4342 	else
4343 		peer_addr = vif->addr;
4344 
4345 	key->hw_key_idx = key->keyidx;
4346 
4347 	/* the peer should not disappear in mid-way (unless FW goes awry) since
4348 	 * we already hold conf_mutex. we just make sure its there now.
4349 	 */
4350 	spin_lock_bh(&ab->base_lock);
4351 	peer = ath11k_peer_find(ab, arvif->vdev_id, peer_addr);
4352 
4353 	/* flush the fragments cache during key (re)install to
4354 	 * ensure all frags in the new frag list belong to the same key.
4355 	 */
4356 	if (peer && sta && cmd == SET_KEY)
4357 		ath11k_peer_frags_flush(ar, peer);
4358 	spin_unlock_bh(&ab->base_lock);
4359 
4360 	if (!peer) {
4361 		if (cmd == SET_KEY) {
4362 			ath11k_warn(ab, "cannot install key for non-existent peer %pM\n",
4363 				    peer_addr);
4364 			ret = -EOPNOTSUPP;
4365 			goto exit;
4366 		} else {
4367 			/* if the peer doesn't exist there is no key to disable
4368 			 * anymore
4369 			 */
4370 			goto exit;
4371 		}
4372 	}
4373 
4374 	if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
4375 		flags |= WMI_KEY_PAIRWISE;
4376 	else
4377 		flags |= WMI_KEY_GROUP;
4378 
4379 	ret = ath11k_install_key(arvif, key, cmd, peer_addr, flags);
4380 	if (ret) {
4381 		ath11k_warn(ab, "ath11k_install_key failed (%d)\n", ret);
4382 		goto exit;
4383 	}
4384 
4385 	ret = ath11k_dp_peer_rx_pn_replay_config(arvif, peer_addr, cmd, key);
4386 	if (ret) {
4387 		ath11k_warn(ab, "failed to offload PN replay detection %d\n", ret);
4388 		goto exit;
4389 	}
4390 
4391 	spin_lock_bh(&ab->base_lock);
4392 	peer = ath11k_peer_find(ab, arvif->vdev_id, peer_addr);
4393 	if (peer && cmd == SET_KEY) {
4394 		peer->keys[key->keyidx] = key;
4395 		if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) {
4396 			peer->ucast_keyidx = key->keyidx;
4397 			peer->sec_type = ath11k_dp_tx_get_encrypt_type(key->cipher);
4398 		} else {
4399 			peer->mcast_keyidx = key->keyidx;
4400 			peer->sec_type_grp = ath11k_dp_tx_get_encrypt_type(key->cipher);
4401 		}
4402 	} else if (peer && cmd == DISABLE_KEY) {
4403 		peer->keys[key->keyidx] = NULL;
4404 		if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE)
4405 			peer->ucast_keyidx = 0;
4406 		else
4407 			peer->mcast_keyidx = 0;
4408 	} else if (!peer)
4409 		/* impossible unless FW goes crazy */
4410 		ath11k_warn(ab, "peer %pM disappeared!\n", peer_addr);
4411 
4412 	if (sta) {
4413 		arsta = ath11k_sta_to_arsta(sta);
4414 
4415 		switch (key->cipher) {
4416 		case WLAN_CIPHER_SUITE_TKIP:
4417 		case WLAN_CIPHER_SUITE_CCMP:
4418 		case WLAN_CIPHER_SUITE_CCMP_256:
4419 		case WLAN_CIPHER_SUITE_GCMP:
4420 		case WLAN_CIPHER_SUITE_GCMP_256:
4421 			if (cmd == SET_KEY)
4422 				arsta->pn_type = HAL_PN_TYPE_WPA;
4423 			else
4424 				arsta->pn_type = HAL_PN_TYPE_NONE;
4425 			break;
4426 		default:
4427 			arsta->pn_type = HAL_PN_TYPE_NONE;
4428 			break;
4429 		}
4430 	}
4431 
4432 	spin_unlock_bh(&ab->base_lock);
4433 
4434 exit:
4435 	mutex_unlock(&ar->conf_mutex);
4436 	return ret;
4437 }
4438 
4439 static int
4440 ath11k_mac_bitrate_mask_num_ht_rates(struct ath11k *ar,
4441 				     enum nl80211_band band,
4442 				     const struct cfg80211_bitrate_mask *mask)
4443 {
4444 	int num_rates = 0;
4445 	int i;
4446 
4447 	for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++)
4448 		num_rates += hweight8(mask->control[band].ht_mcs[i]);
4449 
4450 	return num_rates;
4451 }
4452 
4453 static int
4454 ath11k_mac_bitrate_mask_num_vht_rates(struct ath11k *ar,
4455 				      enum nl80211_band band,
4456 				      const struct cfg80211_bitrate_mask *mask)
4457 {
4458 	int num_rates = 0;
4459 	int i;
4460 
4461 	for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++)
4462 		num_rates += hweight16(mask->control[band].vht_mcs[i]);
4463 
4464 	return num_rates;
4465 }
4466 
4467 static int
4468 ath11k_mac_bitrate_mask_num_he_rates(struct ath11k *ar,
4469 				     enum nl80211_band band,
4470 				     const struct cfg80211_bitrate_mask *mask)
4471 {
4472 	int num_rates = 0;
4473 	int i;
4474 
4475 	for (i = 0; i < ARRAY_SIZE(mask->control[band].he_mcs); i++)
4476 		num_rates += hweight16(mask->control[band].he_mcs[i]);
4477 
4478 	return num_rates;
4479 }
4480 
4481 static int
4482 ath11k_mac_set_peer_vht_fixed_rate(struct ath11k_vif *arvif,
4483 				   struct ieee80211_sta *sta,
4484 				   const struct cfg80211_bitrate_mask *mask,
4485 				   enum nl80211_band band)
4486 {
4487 	struct ath11k *ar = arvif->ar;
4488 	u8 vht_rate, nss;
4489 	u32 rate_code;
4490 	int ret, i;
4491 
4492 	lockdep_assert_held(&ar->conf_mutex);
4493 
4494 	nss = 0;
4495 
4496 	for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
4497 		if (hweight16(mask->control[band].vht_mcs[i]) == 1) {
4498 			nss = i + 1;
4499 			vht_rate = ffs(mask->control[band].vht_mcs[i]) - 1;
4500 		}
4501 	}
4502 
4503 	if (!nss) {
4504 		ath11k_warn(ar->ab, "No single VHT Fixed rate found to set for %pM",
4505 			    sta->addr);
4506 		return -EINVAL;
4507 	}
4508 
4509 	/* Avoid updating invalid nss as fixed rate*/
4510 	if (nss > sta->deflink.rx_nss)
4511 		return -EINVAL;
4512 
4513 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
4514 		   "Setting Fixed VHT Rate for peer %pM. Device will not switch to any other selected rates",
4515 		   sta->addr);
4516 
4517 	rate_code = ATH11K_HW_RATE_CODE(vht_rate, nss - 1,
4518 					WMI_RATE_PREAMBLE_VHT);
4519 	ret = ath11k_wmi_set_peer_param(ar, sta->addr,
4520 					arvif->vdev_id,
4521 					WMI_PEER_PARAM_FIXED_RATE,
4522 					rate_code);
4523 	if (ret)
4524 		ath11k_warn(ar->ab,
4525 			    "failed to update STA %pM Fixed Rate %d: %d\n",
4526 			     sta->addr, rate_code, ret);
4527 
4528 	return ret;
4529 }
4530 
4531 static int
4532 ath11k_mac_set_peer_he_fixed_rate(struct ath11k_vif *arvif,
4533 				  struct ieee80211_sta *sta,
4534 				  const struct cfg80211_bitrate_mask *mask,
4535 				  enum nl80211_band band)
4536 {
4537 	struct ath11k *ar = arvif->ar;
4538 	u8 he_rate, nss;
4539 	u32 rate_code;
4540 	int ret, i;
4541 
4542 	lockdep_assert_held(&ar->conf_mutex);
4543 
4544 	nss = 0;
4545 
4546 	for (i = 0; i < ARRAY_SIZE(mask->control[band].he_mcs); i++) {
4547 		if (hweight16(mask->control[band].he_mcs[i]) == 1) {
4548 			nss = i + 1;
4549 			he_rate = ffs(mask->control[band].he_mcs[i]) - 1;
4550 		}
4551 	}
4552 
4553 	if (!nss) {
4554 		ath11k_warn(ar->ab, "No single he fixed rate found to set for %pM",
4555 			    sta->addr);
4556 		return -EINVAL;
4557 	}
4558 
4559 	/* Avoid updating invalid nss as fixed rate */
4560 	if (nss > sta->deflink.rx_nss)
4561 		return -EINVAL;
4562 
4563 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
4564 		   "setting fixed he rate for peer %pM, device will not switch to any other selected rates",
4565 		   sta->addr);
4566 
4567 	rate_code = ATH11K_HW_RATE_CODE(he_rate, nss - 1,
4568 					WMI_RATE_PREAMBLE_HE);
4569 
4570 	ret = ath11k_wmi_set_peer_param(ar, sta->addr,
4571 					arvif->vdev_id,
4572 					WMI_PEER_PARAM_FIXED_RATE,
4573 					rate_code);
4574 	if (ret)
4575 		ath11k_warn(ar->ab,
4576 			    "failed to update sta %pM fixed rate %d: %d\n",
4577 			    sta->addr, rate_code, ret);
4578 
4579 	return ret;
4580 }
4581 
4582 static int
4583 ath11k_mac_set_peer_ht_fixed_rate(struct ath11k_vif *arvif,
4584 				  struct ieee80211_sta *sta,
4585 				  const struct cfg80211_bitrate_mask *mask,
4586 				  enum nl80211_band band)
4587 {
4588 	struct ath11k *ar = arvif->ar;
4589 	u8 ht_rate, nss = 0;
4590 	u32 rate_code;
4591 	int ret, i;
4592 
4593 	lockdep_assert_held(&ar->conf_mutex);
4594 
4595 	for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) {
4596 		if (hweight8(mask->control[band].ht_mcs[i]) == 1) {
4597 			nss = i + 1;
4598 			ht_rate = ffs(mask->control[band].ht_mcs[i]) - 1;
4599 		}
4600 	}
4601 
4602 	if (!nss) {
4603 		ath11k_warn(ar->ab, "No single HT Fixed rate found to set for %pM",
4604 			    sta->addr);
4605 		return -EINVAL;
4606 	}
4607 
4608 	/* Avoid updating invalid nss as fixed rate*/
4609 	if (nss > sta->deflink.rx_nss)
4610 		return -EINVAL;
4611 
4612 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
4613 		   "Setting Fixed HT Rate for peer %pM. Device will not switch to any other selected rates",
4614 		   sta->addr);
4615 
4616 	rate_code = ATH11K_HW_RATE_CODE(ht_rate, nss - 1,
4617 					WMI_RATE_PREAMBLE_HT);
4618 	ret = ath11k_wmi_set_peer_param(ar, sta->addr,
4619 					arvif->vdev_id,
4620 					WMI_PEER_PARAM_FIXED_RATE,
4621 					rate_code);
4622 	if (ret)
4623 		ath11k_warn(ar->ab,
4624 			    "failed to update STA %pM HT Fixed Rate %d: %d\n",
4625 			    sta->addr, rate_code, ret);
4626 
4627 	return ret;
4628 }
4629 
4630 static int ath11k_station_assoc(struct ath11k *ar,
4631 				struct ieee80211_vif *vif,
4632 				struct ieee80211_sta *sta,
4633 				bool reassoc)
4634 {
4635 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
4636 	struct peer_assoc_params peer_arg;
4637 	int ret = 0;
4638 	struct cfg80211_chan_def def;
4639 	enum nl80211_band band;
4640 	struct cfg80211_bitrate_mask *mask;
4641 	u8 num_ht_rates, num_vht_rates, num_he_rates;
4642 
4643 	lockdep_assert_held(&ar->conf_mutex);
4644 
4645 	if (WARN_ON(ath11k_mac_vif_chan(vif, &def)))
4646 		return -EPERM;
4647 
4648 	band = def.chan->band;
4649 	mask = &arvif->bitrate_mask;
4650 
4651 	ath11k_peer_assoc_prepare(ar, vif, sta, &peer_arg, reassoc);
4652 
4653 	peer_arg.is_assoc = true;
4654 	ret = ath11k_wmi_send_peer_assoc_cmd(ar, &peer_arg);
4655 	if (ret) {
4656 		ath11k_warn(ar->ab, "failed to run peer assoc for STA %pM vdev %i: %d\n",
4657 			    sta->addr, arvif->vdev_id, ret);
4658 		return ret;
4659 	}
4660 
4661 	if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) {
4662 		ath11k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n",
4663 			    sta->addr, arvif->vdev_id);
4664 		return -ETIMEDOUT;
4665 	}
4666 
4667 	num_vht_rates = ath11k_mac_bitrate_mask_num_vht_rates(ar, band, mask);
4668 	num_he_rates = ath11k_mac_bitrate_mask_num_he_rates(ar, band, mask);
4669 	num_ht_rates = ath11k_mac_bitrate_mask_num_ht_rates(ar, band, mask);
4670 
4671 	/* If single VHT/HE rate is configured (by set_bitrate_mask()),
4672 	 * peer_assoc will disable VHT/HE. This is now enabled by a peer specific
4673 	 * fixed param.
4674 	 * Note that all other rates and NSS will be disabled for this peer.
4675 	 */
4676 	if (sta->deflink.vht_cap.vht_supported && num_vht_rates == 1) {
4677 		ret = ath11k_mac_set_peer_vht_fixed_rate(arvif, sta, mask,
4678 							 band);
4679 		if (ret)
4680 			return ret;
4681 	} else if (sta->deflink.he_cap.has_he && num_he_rates == 1) {
4682 		ret = ath11k_mac_set_peer_he_fixed_rate(arvif, sta, mask,
4683 							band);
4684 		if (ret)
4685 			return ret;
4686 	} else if (sta->deflink.ht_cap.ht_supported && num_ht_rates == 1) {
4687 		ret = ath11k_mac_set_peer_ht_fixed_rate(arvif, sta, mask,
4688 							band);
4689 		if (ret)
4690 			return ret;
4691 	}
4692 
4693 	/* Re-assoc is run only to update supported rates for given station. It
4694 	 * doesn't make much sense to reconfigure the peer completely.
4695 	 */
4696 	if (reassoc)
4697 		return 0;
4698 
4699 	ret = ath11k_setup_peer_smps(ar, arvif, sta->addr,
4700 				     &sta->deflink.ht_cap,
4701 				     le16_to_cpu(sta->deflink.he_6ghz_capa.capa));
4702 	if (ret) {
4703 		ath11k_warn(ar->ab, "failed to setup peer SMPS for vdev %d: %d\n",
4704 			    arvif->vdev_id, ret);
4705 		return ret;
4706 	}
4707 
4708 	if (!sta->wme) {
4709 		arvif->num_legacy_stations++;
4710 		ret = ath11k_recalc_rtscts_prot(arvif);
4711 		if (ret)
4712 			return ret;
4713 	}
4714 
4715 	if (sta->wme && sta->uapsd_queues) {
4716 		ret = ath11k_peer_assoc_qos_ap(ar, arvif, sta);
4717 		if (ret) {
4718 			ath11k_warn(ar->ab, "failed to set qos params for STA %pM for vdev %i: %d\n",
4719 				    sta->addr, arvif->vdev_id, ret);
4720 			return ret;
4721 		}
4722 	}
4723 
4724 	return 0;
4725 }
4726 
4727 static int ath11k_station_disassoc(struct ath11k *ar,
4728 				   struct ieee80211_vif *vif,
4729 				   struct ieee80211_sta *sta)
4730 {
4731 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
4732 	int ret = 0;
4733 
4734 	lockdep_assert_held(&ar->conf_mutex);
4735 
4736 	if (!sta->wme) {
4737 		arvif->num_legacy_stations--;
4738 		ret = ath11k_recalc_rtscts_prot(arvif);
4739 		if (ret)
4740 			return ret;
4741 	}
4742 
4743 	ret = ath11k_clear_peer_keys(arvif, sta->addr);
4744 	if (ret) {
4745 		ath11k_warn(ar->ab, "failed to clear all peer keys for vdev %i: %d\n",
4746 			    arvif->vdev_id, ret);
4747 		return ret;
4748 	}
4749 	return 0;
4750 }
4751 
4752 static u32 ath11k_mac_max_nss(const u8 *ht_mcs_mask, const u16 *vht_mcs_mask,
4753 			      const u16 *he_mcs_mask)
4754 {
4755 	return max3(ath11k_mac_max_ht_nss(ht_mcs_mask),
4756 		    ath11k_mac_max_vht_nss(vht_mcs_mask),
4757 		    ath11k_mac_max_he_nss(he_mcs_mask));
4758 }
4759 
4760 static void ath11k_sta_rc_update_wk(struct work_struct *wk)
4761 {
4762 	struct ath11k *ar;
4763 	struct ath11k_vif *arvif;
4764 	struct ath11k_sta *arsta;
4765 	struct ieee80211_sta *sta;
4766 	struct cfg80211_chan_def def;
4767 	enum nl80211_band band;
4768 	const u8 *ht_mcs_mask;
4769 	const u16 *vht_mcs_mask;
4770 	const u16 *he_mcs_mask;
4771 	u32 changed, bw, nss, smps, bw_prev;
4772 	int err, num_ht_rates, num_vht_rates, num_he_rates;
4773 	const struct cfg80211_bitrate_mask *mask;
4774 	struct peer_assoc_params peer_arg;
4775 	enum wmi_phy_mode peer_phymode;
4776 
4777 	arsta = container_of(wk, struct ath11k_sta, update_wk);
4778 	sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv);
4779 	arvif = arsta->arvif;
4780 	ar = arvif->ar;
4781 
4782 	if (WARN_ON(ath11k_mac_vif_chan(arvif->vif, &def)))
4783 		return;
4784 
4785 	band = def.chan->band;
4786 	ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs;
4787 	vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs;
4788 	he_mcs_mask = arvif->bitrate_mask.control[band].he_mcs;
4789 
4790 	spin_lock_bh(&ar->data_lock);
4791 
4792 	changed = arsta->changed;
4793 	arsta->changed = 0;
4794 
4795 	bw = arsta->bw;
4796 	bw_prev = arsta->bw_prev;
4797 	nss = arsta->nss;
4798 	smps = arsta->smps;
4799 
4800 	spin_unlock_bh(&ar->data_lock);
4801 
4802 	mutex_lock(&ar->conf_mutex);
4803 
4804 	nss = max_t(u32, 1, nss);
4805 	nss = min(nss, ath11k_mac_max_nss(ht_mcs_mask, vht_mcs_mask, he_mcs_mask));
4806 
4807 	if (changed & IEEE80211_RC_BW_CHANGED) {
4808 		/* Get the peer phymode */
4809 		ath11k_peer_assoc_h_phymode(ar, arvif->vif, sta, &peer_arg);
4810 		peer_phymode = peer_arg.peer_phymode;
4811 
4812 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "update sta %pM peer bw %d phymode %d\n",
4813 			   sta->addr, bw, peer_phymode);
4814 
4815 		if (bw > bw_prev) {
4816 			/* BW is upgraded. In this case we send WMI_PEER_PHYMODE
4817 			 * followed by WMI_PEER_CHWIDTH
4818 			 */
4819 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "BW upgrade for sta %pM new BW %d, old BW %d\n",
4820 				   sta->addr, bw, bw_prev);
4821 
4822 			err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id,
4823 							WMI_PEER_PHYMODE, peer_phymode);
4824 
4825 			if (err) {
4826 				ath11k_warn(ar->ab, "failed to update STA %pM peer phymode %d: %d\n",
4827 					    sta->addr, peer_phymode, err);
4828 				goto err_rc_bw_changed;
4829 			}
4830 
4831 			err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id,
4832 							WMI_PEER_CHWIDTH, bw);
4833 
4834 			if (err)
4835 				ath11k_warn(ar->ab, "failed to update STA %pM peer bw %d: %d\n",
4836 					    sta->addr, bw, err);
4837 		} else {
4838 			/* BW is downgraded. In this case we send WMI_PEER_CHWIDTH
4839 			 * followed by WMI_PEER_PHYMODE
4840 			 */
4841 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "BW downgrade for sta %pM new BW %d,old BW %d\n",
4842 				   sta->addr, bw, bw_prev);
4843 
4844 			err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id,
4845 							WMI_PEER_CHWIDTH, bw);
4846 
4847 			if (err) {
4848 				ath11k_warn(ar->ab, "failed to update STA %pM peer bw %d: %d\n",
4849 					    sta->addr, bw, err);
4850 				goto err_rc_bw_changed;
4851 			}
4852 
4853 			err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id,
4854 							WMI_PEER_PHYMODE, peer_phymode);
4855 
4856 			if (err)
4857 				ath11k_warn(ar->ab, "failed to update STA %pM peer phymode %d: %d\n",
4858 					    sta->addr, peer_phymode, err);
4859 		}
4860 	}
4861 
4862 	if (changed & IEEE80211_RC_NSS_CHANGED) {
4863 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "update sta %pM nss %d\n",
4864 			   sta->addr, nss);
4865 
4866 		err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id,
4867 						WMI_PEER_NSS, nss);
4868 		if (err)
4869 			ath11k_warn(ar->ab, "failed to update STA %pM nss %d: %d\n",
4870 				    sta->addr, nss, err);
4871 	}
4872 
4873 	if (changed & IEEE80211_RC_SMPS_CHANGED) {
4874 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "update sta %pM smps %d\n",
4875 			   sta->addr, smps);
4876 
4877 		err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id,
4878 						WMI_PEER_MIMO_PS_STATE, smps);
4879 		if (err)
4880 			ath11k_warn(ar->ab, "failed to update STA %pM smps %d: %d\n",
4881 				    sta->addr, smps, err);
4882 	}
4883 
4884 	if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) {
4885 		mask = &arvif->bitrate_mask;
4886 		num_ht_rates = ath11k_mac_bitrate_mask_num_ht_rates(ar, band,
4887 								    mask);
4888 		num_vht_rates = ath11k_mac_bitrate_mask_num_vht_rates(ar, band,
4889 								      mask);
4890 		num_he_rates = ath11k_mac_bitrate_mask_num_he_rates(ar, band,
4891 								    mask);
4892 
4893 		/* Peer_assoc_prepare will reject vht rates in
4894 		 * bitrate_mask if its not available in range format and
4895 		 * sets vht tx_rateset as unsupported. So multiple VHT MCS
4896 		 * setting(eg. MCS 4,5,6) per peer is not supported here.
4897 		 * But, Single rate in VHT mask can be set as per-peer
4898 		 * fixed rate. But even if any HT rates are configured in
4899 		 * the bitrate mask, device will not switch to those rates
4900 		 * when per-peer Fixed rate is set.
4901 		 * TODO: Check RATEMASK_CMDID to support auto rates selection
4902 		 * across HT/VHT and for multiple VHT MCS support.
4903 		 */
4904 		if (sta->deflink.vht_cap.vht_supported && num_vht_rates == 1) {
4905 			ath11k_mac_set_peer_vht_fixed_rate(arvif, sta, mask,
4906 							   band);
4907 		} else if (sta->deflink.he_cap.has_he && num_he_rates == 1) {
4908 			ath11k_mac_set_peer_he_fixed_rate(arvif, sta, mask,
4909 							  band);
4910 		} else if (sta->deflink.ht_cap.ht_supported && num_ht_rates == 1) {
4911 			ath11k_mac_set_peer_ht_fixed_rate(arvif, sta, mask,
4912 							  band);
4913 		} else {
4914 			/* If the peer is non-VHT/HE or no fixed VHT/HE rate
4915 			 * is provided in the new bitrate mask we set the
4916 			 * other rates using peer_assoc command. Also clear
4917 			 * the peer fixed rate settings as it has higher proprity
4918 			 * than peer assoc
4919 			 */
4920 			err = ath11k_wmi_set_peer_param(ar, sta->addr,
4921 							arvif->vdev_id,
4922 							WMI_PEER_PARAM_FIXED_RATE,
4923 							WMI_FIXED_RATE_NONE);
4924 			if (err)
4925 				ath11k_warn(ar->ab,
4926 					    "failed to disable peer fixed rate for sta %pM: %d\n",
4927 					    sta->addr, err);
4928 
4929 			ath11k_peer_assoc_prepare(ar, arvif->vif, sta,
4930 						  &peer_arg, true);
4931 
4932 			peer_arg.is_assoc = false;
4933 			err = ath11k_wmi_send_peer_assoc_cmd(ar, &peer_arg);
4934 			if (err)
4935 				ath11k_warn(ar->ab, "failed to run peer assoc for STA %pM vdev %i: %d\n",
4936 					    sta->addr, arvif->vdev_id, err);
4937 
4938 			if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ))
4939 				ath11k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n",
4940 					    sta->addr, arvif->vdev_id);
4941 		}
4942 	}
4943 
4944 err_rc_bw_changed:
4945 	mutex_unlock(&ar->conf_mutex);
4946 }
4947 
4948 static void ath11k_sta_set_4addr_wk(struct work_struct *wk)
4949 {
4950 	struct ath11k *ar;
4951 	struct ath11k_vif *arvif;
4952 	struct ath11k_sta *arsta;
4953 	struct ieee80211_sta *sta;
4954 	int ret = 0;
4955 
4956 	arsta = container_of(wk, struct ath11k_sta, set_4addr_wk);
4957 	sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv);
4958 	arvif = arsta->arvif;
4959 	ar = arvif->ar;
4960 
4961 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
4962 		   "setting USE_4ADDR for peer %pM\n", sta->addr);
4963 
4964 	ret = ath11k_wmi_set_peer_param(ar, sta->addr,
4965 					arvif->vdev_id,
4966 					WMI_PEER_USE_4ADDR, 1);
4967 
4968 	if (ret)
4969 		ath11k_warn(ar->ab, "failed to set peer %pM 4addr capability: %d\n",
4970 			    sta->addr, ret);
4971 }
4972 
4973 static int ath11k_mac_inc_num_stations(struct ath11k_vif *arvif,
4974 				       struct ieee80211_sta *sta)
4975 {
4976 	struct ath11k *ar = arvif->ar;
4977 
4978 	lockdep_assert_held(&ar->conf_mutex);
4979 
4980 	if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls)
4981 		return 0;
4982 
4983 	if (ar->num_stations >= ar->max_num_stations)
4984 		return -ENOBUFS;
4985 
4986 	ar->num_stations++;
4987 
4988 	return 0;
4989 }
4990 
4991 static void ath11k_mac_dec_num_stations(struct ath11k_vif *arvif,
4992 					struct ieee80211_sta *sta)
4993 {
4994 	struct ath11k *ar = arvif->ar;
4995 
4996 	lockdep_assert_held(&ar->conf_mutex);
4997 
4998 	if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls)
4999 		return;
5000 
5001 	ar->num_stations--;
5002 }
5003 
5004 static u32 ath11k_mac_ieee80211_sta_bw_to_wmi(struct ath11k *ar,
5005 					      struct ieee80211_sta *sta)
5006 {
5007 	u32 bw = WMI_PEER_CHWIDTH_20MHZ;
5008 
5009 	switch (sta->deflink.bandwidth) {
5010 	case IEEE80211_STA_RX_BW_20:
5011 		bw = WMI_PEER_CHWIDTH_20MHZ;
5012 		break;
5013 	case IEEE80211_STA_RX_BW_40:
5014 		bw = WMI_PEER_CHWIDTH_40MHZ;
5015 		break;
5016 	case IEEE80211_STA_RX_BW_80:
5017 		bw = WMI_PEER_CHWIDTH_80MHZ;
5018 		break;
5019 	case IEEE80211_STA_RX_BW_160:
5020 		bw = WMI_PEER_CHWIDTH_160MHZ;
5021 		break;
5022 	default:
5023 		ath11k_warn(ar->ab, "Invalid bandwidth %d for %pM\n",
5024 			    sta->deflink.bandwidth, sta->addr);
5025 		bw = WMI_PEER_CHWIDTH_20MHZ;
5026 		break;
5027 	}
5028 
5029 	return bw;
5030 }
5031 
5032 static int ath11k_mac_op_sta_set_txpwr(struct ieee80211_hw *hw,
5033 				       struct ieee80211_vif *vif,
5034 				       struct ieee80211_sta *sta)
5035 {
5036 	struct ath11k *ar = hw->priv;
5037 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
5038 	int ret = 0;
5039 	s16 txpwr;
5040 
5041 	if (sta->deflink.txpwr.type == NL80211_TX_POWER_AUTOMATIC) {
5042 		txpwr = 0;
5043 	} else {
5044 		txpwr = sta->deflink.txpwr.power;
5045 		if (!txpwr)
5046 			return -EINVAL;
5047 	}
5048 
5049 	if (txpwr > ATH11K_TX_POWER_MAX_VAL || txpwr < ATH11K_TX_POWER_MIN_VAL)
5050 		return -EINVAL;
5051 
5052 	mutex_lock(&ar->conf_mutex);
5053 
5054 	ret = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id,
5055 					WMI_PEER_USE_FIXED_PWR, txpwr);
5056 	if (ret) {
5057 		ath11k_warn(ar->ab, "failed to set tx power for station ret: %d\n",
5058 			    ret);
5059 		goto out;
5060 	}
5061 
5062 out:
5063 	mutex_unlock(&ar->conf_mutex);
5064 	return ret;
5065 }
5066 
5067 static void ath11k_mac_op_sta_set_4addr(struct ieee80211_hw *hw,
5068 					struct ieee80211_vif *vif,
5069 					struct ieee80211_sta *sta, bool enabled)
5070 {
5071 	struct ath11k *ar = hw->priv;
5072 	struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta);
5073 
5074 	if (enabled && !arsta->use_4addr_set) {
5075 		ieee80211_queue_work(ar->hw, &arsta->set_4addr_wk);
5076 		arsta->use_4addr_set = true;
5077 	}
5078 }
5079 
5080 static void ath11k_mac_op_sta_rc_update(struct ieee80211_hw *hw,
5081 					struct ieee80211_vif *vif,
5082 					struct ieee80211_link_sta *link_sta,
5083 					u32 changed)
5084 {
5085 	struct ieee80211_sta *sta = link_sta->sta;
5086 	struct ath11k *ar = hw->priv;
5087 	struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta);
5088 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
5089 	struct ath11k_peer *peer;
5090 	u32 bw, smps;
5091 
5092 	spin_lock_bh(&ar->ab->base_lock);
5093 
5094 	peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr);
5095 	if (!peer) {
5096 		spin_unlock_bh(&ar->ab->base_lock);
5097 		ath11k_warn(ar->ab, "mac sta rc update failed to find peer %pM on vdev %i\n",
5098 			    sta->addr, arvif->vdev_id);
5099 		return;
5100 	}
5101 
5102 	spin_unlock_bh(&ar->ab->base_lock);
5103 
5104 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
5105 		   "sta rc update for %pM changed %08x bw %d nss %d smps %d\n",
5106 		   sta->addr, changed, sta->deflink.bandwidth,
5107 		   sta->deflink.rx_nss,
5108 		   sta->deflink.smps_mode);
5109 
5110 	spin_lock_bh(&ar->data_lock);
5111 
5112 	if (changed & IEEE80211_RC_BW_CHANGED) {
5113 		bw = ath11k_mac_ieee80211_sta_bw_to_wmi(ar, sta);
5114 		arsta->bw_prev = arsta->bw;
5115 		arsta->bw = bw;
5116 	}
5117 
5118 	if (changed & IEEE80211_RC_NSS_CHANGED)
5119 		arsta->nss = sta->deflink.rx_nss;
5120 
5121 	if (changed & IEEE80211_RC_SMPS_CHANGED) {
5122 		smps = WMI_PEER_SMPS_PS_NONE;
5123 
5124 		switch (sta->deflink.smps_mode) {
5125 		case IEEE80211_SMPS_AUTOMATIC:
5126 		case IEEE80211_SMPS_OFF:
5127 			smps = WMI_PEER_SMPS_PS_NONE;
5128 			break;
5129 		case IEEE80211_SMPS_STATIC:
5130 			smps = WMI_PEER_SMPS_STATIC;
5131 			break;
5132 		case IEEE80211_SMPS_DYNAMIC:
5133 			smps = WMI_PEER_SMPS_DYNAMIC;
5134 			break;
5135 		default:
5136 			ath11k_warn(ar->ab, "Invalid smps %d in sta rc update for %pM\n",
5137 				    sta->deflink.smps_mode, sta->addr);
5138 			smps = WMI_PEER_SMPS_PS_NONE;
5139 			break;
5140 		}
5141 
5142 		arsta->smps = smps;
5143 	}
5144 
5145 	arsta->changed |= changed;
5146 
5147 	spin_unlock_bh(&ar->data_lock);
5148 
5149 	ieee80211_queue_work(hw, &arsta->update_wk);
5150 }
5151 
5152 static int ath11k_conf_tx_uapsd(struct ath11k *ar, struct ieee80211_vif *vif,
5153 				u16 ac, bool enable)
5154 {
5155 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
5156 	u32 value = 0;
5157 	int ret = 0;
5158 
5159 	if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
5160 		return 0;
5161 
5162 	switch (ac) {
5163 	case IEEE80211_AC_VO:
5164 		value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN |
5165 			WMI_STA_PS_UAPSD_AC3_TRIGGER_EN;
5166 		break;
5167 	case IEEE80211_AC_VI:
5168 		value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN |
5169 			WMI_STA_PS_UAPSD_AC2_TRIGGER_EN;
5170 		break;
5171 	case IEEE80211_AC_BE:
5172 		value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN |
5173 			WMI_STA_PS_UAPSD_AC1_TRIGGER_EN;
5174 		break;
5175 	case IEEE80211_AC_BK:
5176 		value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN |
5177 			WMI_STA_PS_UAPSD_AC0_TRIGGER_EN;
5178 		break;
5179 	}
5180 
5181 	if (enable)
5182 		arvif->u.sta.uapsd |= value;
5183 	else
5184 		arvif->u.sta.uapsd &= ~value;
5185 
5186 	ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
5187 					  WMI_STA_PS_PARAM_UAPSD,
5188 					  arvif->u.sta.uapsd);
5189 	if (ret) {
5190 		ath11k_warn(ar->ab, "could not set uapsd params %d\n", ret);
5191 		goto exit;
5192 	}
5193 
5194 	if (arvif->u.sta.uapsd)
5195 		value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD;
5196 	else
5197 		value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
5198 
5199 	ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
5200 					  WMI_STA_PS_PARAM_RX_WAKE_POLICY,
5201 					  value);
5202 	if (ret)
5203 		ath11k_warn(ar->ab, "could not set rx wake param %d\n", ret);
5204 
5205 exit:
5206 	return ret;
5207 }
5208 
5209 static int ath11k_mac_op_conf_tx(struct ieee80211_hw *hw,
5210 				 struct ieee80211_vif *vif,
5211 				 unsigned int link_id, u16 ac,
5212 				 const struct ieee80211_tx_queue_params *params)
5213 {
5214 	struct ath11k *ar = hw->priv;
5215 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
5216 	struct wmi_wmm_params_arg *p = NULL;
5217 	int ret;
5218 
5219 	mutex_lock(&ar->conf_mutex);
5220 
5221 	switch (ac) {
5222 	case IEEE80211_AC_VO:
5223 		p = &arvif->wmm_params.ac_vo;
5224 		break;
5225 	case IEEE80211_AC_VI:
5226 		p = &arvif->wmm_params.ac_vi;
5227 		break;
5228 	case IEEE80211_AC_BE:
5229 		p = &arvif->wmm_params.ac_be;
5230 		break;
5231 	case IEEE80211_AC_BK:
5232 		p = &arvif->wmm_params.ac_bk;
5233 		break;
5234 	}
5235 
5236 	if (WARN_ON(!p)) {
5237 		ret = -EINVAL;
5238 		goto exit;
5239 	}
5240 
5241 	p->cwmin = params->cw_min;
5242 	p->cwmax = params->cw_max;
5243 	p->aifs = params->aifs;
5244 	p->txop = params->txop;
5245 
5246 	ret = ath11k_wmi_send_wmm_update_cmd_tlv(ar, arvif->vdev_id,
5247 						 &arvif->wmm_params);
5248 	if (ret) {
5249 		ath11k_warn(ar->ab, "failed to set wmm params: %d\n", ret);
5250 		goto exit;
5251 	}
5252 
5253 	ret = ath11k_conf_tx_uapsd(ar, vif, ac, params->uapsd);
5254 
5255 	if (ret)
5256 		ath11k_warn(ar->ab, "failed to set sta uapsd: %d\n", ret);
5257 
5258 exit:
5259 	mutex_unlock(&ar->conf_mutex);
5260 	return ret;
5261 }
5262 
5263 static struct ieee80211_sta_ht_cap
5264 ath11k_create_ht_cap(struct ath11k *ar, u32 ar_ht_cap, u32 rate_cap_rx_chainmask)
5265 {
5266 	int i;
5267 	struct ieee80211_sta_ht_cap ht_cap = {0};
5268 	u32 ar_vht_cap = ar->pdev->cap.vht_cap;
5269 
5270 	if (!(ar_ht_cap & WMI_HT_CAP_ENABLED))
5271 		return ht_cap;
5272 
5273 	ht_cap.ht_supported = 1;
5274 	ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
5275 	ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_NONE;
5276 	ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
5277 	ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40;
5278 	ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT;
5279 
5280 	if (ar_ht_cap & WMI_HT_CAP_HT20_SGI)
5281 		ht_cap.cap |= IEEE80211_HT_CAP_SGI_20;
5282 
5283 	if (ar_ht_cap & WMI_HT_CAP_HT40_SGI)
5284 		ht_cap.cap |= IEEE80211_HT_CAP_SGI_40;
5285 
5286 	if (ar_ht_cap & WMI_HT_CAP_DYNAMIC_SMPS) {
5287 		u32 smps;
5288 
5289 		smps   = WLAN_HT_CAP_SM_PS_DYNAMIC;
5290 		smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT;
5291 
5292 		ht_cap.cap |= smps;
5293 	}
5294 
5295 	if (ar_ht_cap & WMI_HT_CAP_TX_STBC)
5296 		ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC;
5297 
5298 	if (ar_ht_cap & WMI_HT_CAP_RX_STBC) {
5299 		u32 stbc;
5300 
5301 		stbc   = ar_ht_cap;
5302 		stbc  &= WMI_HT_CAP_RX_STBC;
5303 		stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT;
5304 		stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT;
5305 		stbc  &= IEEE80211_HT_CAP_RX_STBC;
5306 
5307 		ht_cap.cap |= stbc;
5308 	}
5309 
5310 	if (ar_ht_cap & WMI_HT_CAP_RX_LDPC)
5311 		ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
5312 
5313 	if (ar_ht_cap & WMI_HT_CAP_L_SIG_TXOP_PROT)
5314 		ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT;
5315 
5316 	if (ar_vht_cap & WMI_VHT_CAP_MAX_MPDU_LEN_MASK)
5317 		ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU;
5318 
5319 	for (i = 0; i < ar->num_rx_chains; i++) {
5320 		if (rate_cap_rx_chainmask & BIT(i))
5321 			ht_cap.mcs.rx_mask[i] = 0xFF;
5322 	}
5323 
5324 	ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
5325 
5326 	return ht_cap;
5327 }
5328 
5329 static int ath11k_mac_set_txbf_conf(struct ath11k_vif *arvif)
5330 {
5331 	u32 value = 0;
5332 	struct ath11k *ar = arvif->ar;
5333 	int nsts;
5334 	int sound_dim;
5335 	u32 vht_cap = ar->pdev->cap.vht_cap;
5336 	u32 vdev_param = WMI_VDEV_PARAM_TXBF;
5337 
5338 	if (vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)) {
5339 		nsts = vht_cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK;
5340 		nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT;
5341 		if (nsts > (ar->num_rx_chains - 1))
5342 			nsts = ar->num_rx_chains - 1;
5343 		value |= SM(nsts, WMI_TXBF_STS_CAP_OFFSET);
5344 	}
5345 
5346 	if (vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)) {
5347 		sound_dim = vht_cap &
5348 			    IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK;
5349 		sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT;
5350 		if (sound_dim > (ar->num_tx_chains - 1))
5351 			sound_dim = ar->num_tx_chains - 1;
5352 		value |= SM(sound_dim, WMI_BF_SOUND_DIM_OFFSET);
5353 	}
5354 
5355 	if (!value)
5356 		return 0;
5357 
5358 	if (vht_cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) {
5359 		value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER;
5360 
5361 		if ((vht_cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) &&
5362 		    arvif->vdev_type == WMI_VDEV_TYPE_AP)
5363 			value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER;
5364 	}
5365 
5366 	/* TODO: SUBFEE not validated in HK, disable here until validated? */
5367 
5368 	if (vht_cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) {
5369 		value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE;
5370 
5371 		if ((vht_cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) &&
5372 		    arvif->vdev_type == WMI_VDEV_TYPE_STA)
5373 			value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE;
5374 	}
5375 
5376 	return ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
5377 					     vdev_param, value);
5378 }
5379 
5380 static void ath11k_set_vht_txbf_cap(struct ath11k *ar, u32 *vht_cap)
5381 {
5382 	bool subfer, subfee;
5383 	int sound_dim = 0, nsts = 0;
5384 
5385 	subfer = !!(*vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE));
5386 	subfee = !!(*vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE));
5387 
5388 	if (ar->num_tx_chains < 2) {
5389 		*vht_cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE);
5390 		subfer = false;
5391 	}
5392 
5393 	if (ar->num_rx_chains < 2) {
5394 		*vht_cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE);
5395 		subfee = false;
5396 	}
5397 
5398 	/* If SU Beaformer is not set, then disable MU Beamformer Capability */
5399 	if (!subfer)
5400 		*vht_cap &= ~(IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE);
5401 
5402 	/* If SU Beaformee is not set, then disable MU Beamformee Capability */
5403 	if (!subfee)
5404 		*vht_cap &= ~(IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE);
5405 
5406 	sound_dim = (*vht_cap & IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK);
5407 	sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT;
5408 	*vht_cap &= ~IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK;
5409 
5410 	nsts = (*vht_cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK);
5411 	nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT;
5412 	*vht_cap &= ~IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK;
5413 
5414 	/* Enable Sounding Dimension Field only if SU BF is enabled */
5415 	if (subfer) {
5416 		if (sound_dim > (ar->num_tx_chains - 1))
5417 			sound_dim = ar->num_tx_chains - 1;
5418 
5419 		sound_dim <<= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT;
5420 		sound_dim &=  IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK;
5421 		*vht_cap |= sound_dim;
5422 	}
5423 
5424 	/* Enable Beamformee STS Field only if SU BF is enabled */
5425 	if (subfee) {
5426 		if (nsts > (ar->num_rx_chains - 1))
5427 			nsts = ar->num_rx_chains - 1;
5428 
5429 		nsts <<= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT;
5430 		nsts &=  IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK;
5431 		*vht_cap |= nsts;
5432 	}
5433 }
5434 
5435 static struct ieee80211_sta_vht_cap
5436 ath11k_create_vht_cap(struct ath11k *ar, u32 rate_cap_tx_chainmask,
5437 		      u32 rate_cap_rx_chainmask)
5438 {
5439 	struct ieee80211_sta_vht_cap vht_cap = {0};
5440 	u16 txmcs_map, rxmcs_map;
5441 	int i;
5442 
5443 	vht_cap.vht_supported = 1;
5444 	vht_cap.cap = ar->pdev->cap.vht_cap;
5445 
5446 	if (ar->pdev->cap.nss_ratio_enabled)
5447 		vht_cap.vht_mcs.tx_highest |=
5448 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
5449 
5450 	ath11k_set_vht_txbf_cap(ar, &vht_cap.cap);
5451 
5452 	rxmcs_map = 0;
5453 	txmcs_map = 0;
5454 	for (i = 0; i < 8; i++) {
5455 		if (i < ar->num_tx_chains && rate_cap_tx_chainmask & BIT(i))
5456 			txmcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2);
5457 		else
5458 			txmcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2);
5459 
5460 		if (i < ar->num_rx_chains && rate_cap_rx_chainmask & BIT(i))
5461 			rxmcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2);
5462 		else
5463 			rxmcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2);
5464 	}
5465 
5466 	if (rate_cap_tx_chainmask <= 1)
5467 		vht_cap.cap &= ~IEEE80211_VHT_CAP_TXSTBC;
5468 
5469 	vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(rxmcs_map);
5470 	vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(txmcs_map);
5471 
5472 	return vht_cap;
5473 }
5474 
5475 static void ath11k_mac_setup_ht_vht_cap(struct ath11k *ar,
5476 					struct ath11k_pdev_cap *cap,
5477 					u32 *ht_cap_info)
5478 {
5479 	struct ieee80211_supported_band *band;
5480 	u32 rate_cap_tx_chainmask;
5481 	u32 rate_cap_rx_chainmask;
5482 	u32 ht_cap;
5483 
5484 	rate_cap_tx_chainmask = ar->cfg_tx_chainmask >> cap->tx_chain_mask_shift;
5485 	rate_cap_rx_chainmask = ar->cfg_rx_chainmask >> cap->rx_chain_mask_shift;
5486 
5487 	if (cap->supported_bands & WMI_HOST_WLAN_2G_CAP) {
5488 		band = &ar->mac.sbands[NL80211_BAND_2GHZ];
5489 		ht_cap = cap->band[NL80211_BAND_2GHZ].ht_cap_info;
5490 		if (ht_cap_info)
5491 			*ht_cap_info = ht_cap;
5492 		band->ht_cap = ath11k_create_ht_cap(ar, ht_cap,
5493 						    rate_cap_rx_chainmask);
5494 	}
5495 
5496 	if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP &&
5497 	    (ar->ab->hw_params.single_pdev_only ||
5498 	     !ar->supports_6ghz)) {
5499 		band = &ar->mac.sbands[NL80211_BAND_5GHZ];
5500 		ht_cap = cap->band[NL80211_BAND_5GHZ].ht_cap_info;
5501 		if (ht_cap_info)
5502 			*ht_cap_info = ht_cap;
5503 		band->ht_cap = ath11k_create_ht_cap(ar, ht_cap,
5504 						    rate_cap_rx_chainmask);
5505 		band->vht_cap = ath11k_create_vht_cap(ar, rate_cap_tx_chainmask,
5506 						      rate_cap_rx_chainmask);
5507 	}
5508 }
5509 
5510 static int ath11k_check_chain_mask(struct ath11k *ar, u32 ant, bool is_tx_ant)
5511 {
5512 	/* TODO: Check the request chainmask against the supported
5513 	 * chainmask table which is advertised in extented_service_ready event
5514 	 */
5515 
5516 	return 0;
5517 }
5518 
5519 static void ath11k_gen_ppe_thresh(struct ath11k_ppe_threshold *fw_ppet,
5520 				  u8 *he_ppet)
5521 {
5522 	int nss, ru;
5523 	u8 bit = 7;
5524 
5525 	he_ppet[0] = fw_ppet->numss_m1 & IEEE80211_PPE_THRES_NSS_MASK;
5526 	he_ppet[0] |= (fw_ppet->ru_bit_mask <<
5527 		       IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS) &
5528 		      IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK;
5529 	for (nss = 0; nss <= fw_ppet->numss_m1; nss++) {
5530 		for (ru = 0; ru < 4; ru++) {
5531 			u8 val;
5532 			int i;
5533 
5534 			if ((fw_ppet->ru_bit_mask & BIT(ru)) == 0)
5535 				continue;
5536 			val = (fw_ppet->ppet16_ppet8_ru3_ru0[nss] >> (ru * 6)) &
5537 			       0x3f;
5538 			val = ((val >> 3) & 0x7) | ((val & 0x7) << 3);
5539 			for (i = 5; i >= 0; i--) {
5540 				he_ppet[bit / 8] |=
5541 					((val >> i) & 0x1) << ((bit % 8));
5542 				bit++;
5543 			}
5544 		}
5545 	}
5546 }
5547 
5548 static void
5549 ath11k_mac_filter_he_cap_mesh(struct ieee80211_he_cap_elem *he_cap_elem)
5550 {
5551 	u8 m;
5552 
5553 	m = IEEE80211_HE_MAC_CAP0_TWT_RES |
5554 	    IEEE80211_HE_MAC_CAP0_TWT_REQ;
5555 	he_cap_elem->mac_cap_info[0] &= ~m;
5556 
5557 	m = IEEE80211_HE_MAC_CAP2_TRS |
5558 	    IEEE80211_HE_MAC_CAP2_BCAST_TWT |
5559 	    IEEE80211_HE_MAC_CAP2_MU_CASCADING;
5560 	he_cap_elem->mac_cap_info[2] &= ~m;
5561 
5562 	m = IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED |
5563 	    IEEE80211_HE_MAC_CAP2_BCAST_TWT |
5564 	    IEEE80211_HE_MAC_CAP2_MU_CASCADING;
5565 	he_cap_elem->mac_cap_info[3] &= ~m;
5566 
5567 	m = IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG |
5568 	    IEEE80211_HE_MAC_CAP4_BQR;
5569 	he_cap_elem->mac_cap_info[4] &= ~m;
5570 
5571 	m = IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION |
5572 	    IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
5573 	    IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING |
5574 	    IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX;
5575 	he_cap_elem->mac_cap_info[5] &= ~m;
5576 
5577 	m = IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO |
5578 	    IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO;
5579 	he_cap_elem->phy_cap_info[2] &= ~m;
5580 
5581 	m = IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU |
5582 	    IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK |
5583 	    IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK;
5584 	he_cap_elem->phy_cap_info[3] &= ~m;
5585 
5586 	m = IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER;
5587 	he_cap_elem->phy_cap_info[4] &= ~m;
5588 
5589 	m = IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK;
5590 	he_cap_elem->phy_cap_info[5] &= ~m;
5591 
5592 	m = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU |
5593 	    IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
5594 	    IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB |
5595 	    IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO;
5596 	he_cap_elem->phy_cap_info[6] &= ~m;
5597 
5598 	m = IEEE80211_HE_PHY_CAP7_PSR_BASED_SR |
5599 	    IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
5600 	    IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ |
5601 	    IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
5602 	he_cap_elem->phy_cap_info[7] &= ~m;
5603 
5604 	m = IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
5605 	    IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
5606 	    IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
5607 	    IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU;
5608 	he_cap_elem->phy_cap_info[8] &= ~m;
5609 
5610 	m = IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM |
5611 	    IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK |
5612 	    IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU |
5613 	    IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU |
5614 	    IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
5615 	    IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB;
5616 	he_cap_elem->phy_cap_info[9] &= ~m;
5617 }
5618 
5619 static __le16 ath11k_mac_setup_he_6ghz_cap(struct ath11k_pdev_cap *pcap,
5620 					   struct ath11k_band_cap *bcap)
5621 {
5622 	u8 val;
5623 
5624 	bcap->he_6ghz_capa = IEEE80211_HT_MPDU_DENSITY_NONE;
5625 	if (bcap->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS)
5626 		bcap->he_6ghz_capa |=
5627 			FIELD_PREP(IEEE80211_HE_6GHZ_CAP_SM_PS,
5628 				   WLAN_HT_CAP_SM_PS_DYNAMIC);
5629 	else
5630 		bcap->he_6ghz_capa |=
5631 			FIELD_PREP(IEEE80211_HE_6GHZ_CAP_SM_PS,
5632 				   WLAN_HT_CAP_SM_PS_DISABLED);
5633 	val = FIELD_GET(IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK,
5634 			pcap->vht_cap);
5635 	bcap->he_6ghz_capa |=
5636 		FIELD_PREP(IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP, val);
5637 	val = FIELD_GET(IEEE80211_VHT_CAP_MAX_MPDU_MASK, pcap->vht_cap);
5638 	bcap->he_6ghz_capa |=
5639 		FIELD_PREP(IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN, val);
5640 	if (pcap->vht_cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
5641 		bcap->he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
5642 	if (pcap->vht_cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
5643 		bcap->he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
5644 
5645 	return cpu_to_le16(bcap->he_6ghz_capa);
5646 }
5647 
5648 static void ath11k_mac_set_hemcsmap(struct ath11k *ar,
5649 				    struct ath11k_pdev_cap *cap,
5650 				    struct ieee80211_sta_he_cap *he_cap,
5651 				    int band)
5652 {
5653 	u16 txmcs_map, rxmcs_map;
5654 	u32 i;
5655 
5656 	rxmcs_map = 0;
5657 	txmcs_map = 0;
5658 	for (i = 0; i < 8; i++) {
5659 		if (i < ar->num_tx_chains &&
5660 		    (ar->cfg_tx_chainmask >> cap->tx_chain_mask_shift) & BIT(i))
5661 			txmcs_map |= IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2);
5662 		else
5663 			txmcs_map |= IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2);
5664 
5665 		if (i < ar->num_rx_chains &&
5666 		    (ar->cfg_rx_chainmask >> cap->tx_chain_mask_shift) & BIT(i))
5667 			rxmcs_map |= IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2);
5668 		else
5669 			rxmcs_map |= IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2);
5670 	}
5671 	he_cap->he_mcs_nss_supp.rx_mcs_80 =
5672 		cpu_to_le16(rxmcs_map & 0xffff);
5673 	he_cap->he_mcs_nss_supp.tx_mcs_80 =
5674 		cpu_to_le16(txmcs_map & 0xffff);
5675 	he_cap->he_mcs_nss_supp.rx_mcs_160 =
5676 		cpu_to_le16(rxmcs_map & 0xffff);
5677 	he_cap->he_mcs_nss_supp.tx_mcs_160 =
5678 		cpu_to_le16(txmcs_map & 0xffff);
5679 	he_cap->he_mcs_nss_supp.rx_mcs_80p80 =
5680 		cpu_to_le16(rxmcs_map & 0xffff);
5681 	he_cap->he_mcs_nss_supp.tx_mcs_80p80 =
5682 		cpu_to_le16(txmcs_map & 0xffff);
5683 }
5684 
5685 static int ath11k_mac_copy_he_cap(struct ath11k *ar,
5686 				  struct ath11k_pdev_cap *cap,
5687 				  struct ieee80211_sband_iftype_data *data,
5688 				  int band)
5689 {
5690 	int i, idx = 0;
5691 
5692 	for (i = 0; i < NUM_NL80211_IFTYPES; i++) {
5693 		struct ieee80211_sta_he_cap *he_cap = &data[idx].he_cap;
5694 		struct ath11k_band_cap *band_cap = &cap->band[band];
5695 		struct ieee80211_he_cap_elem *he_cap_elem =
5696 				&he_cap->he_cap_elem;
5697 
5698 		switch (i) {
5699 		case NL80211_IFTYPE_STATION:
5700 		case NL80211_IFTYPE_AP:
5701 		case NL80211_IFTYPE_MESH_POINT:
5702 			break;
5703 
5704 		default:
5705 			continue;
5706 		}
5707 
5708 		data[idx].types_mask = BIT(i);
5709 		he_cap->has_he = true;
5710 		memcpy(he_cap_elem->mac_cap_info, band_cap->he_cap_info,
5711 		       sizeof(he_cap_elem->mac_cap_info));
5712 		memcpy(he_cap_elem->phy_cap_info, band_cap->he_cap_phy_info,
5713 		       sizeof(he_cap_elem->phy_cap_info));
5714 
5715 		he_cap_elem->mac_cap_info[1] &=
5716 			IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK;
5717 
5718 		he_cap_elem->phy_cap_info[5] &=
5719 			~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK;
5720 		he_cap_elem->phy_cap_info[5] |= ar->num_tx_chains - 1;
5721 
5722 		switch (i) {
5723 		case NL80211_IFTYPE_AP:
5724 			he_cap_elem->phy_cap_info[3] &=
5725 				~IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK;
5726 			he_cap_elem->phy_cap_info[9] |=
5727 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
5728 			break;
5729 		case NL80211_IFTYPE_STATION:
5730 			he_cap_elem->mac_cap_info[0] &=
5731 				~IEEE80211_HE_MAC_CAP0_TWT_RES;
5732 			he_cap_elem->mac_cap_info[0] |=
5733 				IEEE80211_HE_MAC_CAP0_TWT_REQ;
5734 			he_cap_elem->phy_cap_info[9] |=
5735 				IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
5736 			break;
5737 		case NL80211_IFTYPE_MESH_POINT:
5738 			ath11k_mac_filter_he_cap_mesh(he_cap_elem);
5739 			break;
5740 		}
5741 
5742 		ath11k_mac_set_hemcsmap(ar, cap, he_cap, band);
5743 
5744 		memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres));
5745 		if (he_cap_elem->phy_cap_info[6] &
5746 		    IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT)
5747 			ath11k_gen_ppe_thresh(&band_cap->he_ppet,
5748 					      he_cap->ppe_thres);
5749 
5750 		if (band == NL80211_BAND_6GHZ) {
5751 			data[idx].he_6ghz_capa.capa =
5752 				ath11k_mac_setup_he_6ghz_cap(cap, band_cap);
5753 		}
5754 		idx++;
5755 	}
5756 
5757 	return idx;
5758 }
5759 
5760 static void ath11k_mac_setup_he_cap(struct ath11k *ar,
5761 				    struct ath11k_pdev_cap *cap)
5762 {
5763 	struct ieee80211_supported_band *band;
5764 	int count;
5765 
5766 	if (cap->supported_bands & WMI_HOST_WLAN_2G_CAP) {
5767 		count = ath11k_mac_copy_he_cap(ar, cap,
5768 					       ar->mac.iftype[NL80211_BAND_2GHZ],
5769 					       NL80211_BAND_2GHZ);
5770 		band = &ar->mac.sbands[NL80211_BAND_2GHZ];
5771 		_ieee80211_set_sband_iftype_data(band,
5772 						 ar->mac.iftype[NL80211_BAND_2GHZ],
5773 						 count);
5774 	}
5775 
5776 	if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP) {
5777 		count = ath11k_mac_copy_he_cap(ar, cap,
5778 					       ar->mac.iftype[NL80211_BAND_5GHZ],
5779 					       NL80211_BAND_5GHZ);
5780 		band = &ar->mac.sbands[NL80211_BAND_5GHZ];
5781 		_ieee80211_set_sband_iftype_data(band,
5782 						 ar->mac.iftype[NL80211_BAND_5GHZ],
5783 						 count);
5784 	}
5785 
5786 	if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP &&
5787 	    ar->supports_6ghz) {
5788 		count = ath11k_mac_copy_he_cap(ar, cap,
5789 					       ar->mac.iftype[NL80211_BAND_6GHZ],
5790 					       NL80211_BAND_6GHZ);
5791 		band = &ar->mac.sbands[NL80211_BAND_6GHZ];
5792 		_ieee80211_set_sband_iftype_data(band,
5793 						 ar->mac.iftype[NL80211_BAND_6GHZ],
5794 						 count);
5795 	}
5796 }
5797 
5798 static int __ath11k_set_antenna(struct ath11k *ar, u32 tx_ant, u32 rx_ant)
5799 {
5800 	int ret;
5801 
5802 	lockdep_assert_held(&ar->conf_mutex);
5803 
5804 	if (ath11k_check_chain_mask(ar, tx_ant, true))
5805 		return -EINVAL;
5806 
5807 	if (ath11k_check_chain_mask(ar, rx_ant, false))
5808 		return -EINVAL;
5809 
5810 	ar->cfg_tx_chainmask = tx_ant;
5811 	ar->cfg_rx_chainmask = rx_ant;
5812 
5813 	if (ar->state != ATH11K_STATE_ON &&
5814 	    ar->state != ATH11K_STATE_RESTARTED)
5815 		return 0;
5816 
5817 	ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_TX_CHAIN_MASK,
5818 					tx_ant, ar->pdev->pdev_id);
5819 	if (ret) {
5820 		ath11k_warn(ar->ab, "failed to set tx-chainmask: %d, req 0x%x\n",
5821 			    ret, tx_ant);
5822 		return ret;
5823 	}
5824 
5825 	ar->num_tx_chains = get_num_chains(tx_ant);
5826 
5827 	ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_RX_CHAIN_MASK,
5828 					rx_ant, ar->pdev->pdev_id);
5829 	if (ret) {
5830 		ath11k_warn(ar->ab, "failed to set rx-chainmask: %d, req 0x%x\n",
5831 			    ret, rx_ant);
5832 		return ret;
5833 	}
5834 
5835 	ar->num_rx_chains = get_num_chains(rx_ant);
5836 
5837 	/* Reload HT/VHT/HE capability */
5838 	ath11k_mac_setup_ht_vht_cap(ar, &ar->pdev->cap, NULL);
5839 	ath11k_mac_setup_he_cap(ar, &ar->pdev->cap);
5840 
5841 	return 0;
5842 }
5843 
5844 static void ath11k_mgmt_over_wmi_tx_drop(struct ath11k *ar, struct sk_buff *skb)
5845 {
5846 	int num_mgmt;
5847 
5848 	ieee80211_free_txskb(ar->hw, skb);
5849 
5850 	num_mgmt = atomic_dec_if_positive(&ar->num_pending_mgmt_tx);
5851 
5852 	if (num_mgmt < 0)
5853 		WARN_ON_ONCE(1);
5854 
5855 	if (!num_mgmt)
5856 		wake_up(&ar->txmgmt_empty_waitq);
5857 }
5858 
5859 static void ath11k_mac_tx_mgmt_free(struct ath11k *ar, int buf_id)
5860 {
5861 	struct sk_buff *msdu;
5862 	struct ieee80211_tx_info *info;
5863 
5864 	spin_lock_bh(&ar->txmgmt_idr_lock);
5865 	msdu = idr_remove(&ar->txmgmt_idr, buf_id);
5866 	spin_unlock_bh(&ar->txmgmt_idr_lock);
5867 
5868 	if (!msdu)
5869 		return;
5870 
5871 	dma_unmap_single(ar->ab->dev, ATH11K_SKB_CB(msdu)->paddr, msdu->len,
5872 			 DMA_TO_DEVICE);
5873 
5874 	info = IEEE80211_SKB_CB(msdu);
5875 	memset(&info->status, 0, sizeof(info->status));
5876 
5877 	ath11k_mgmt_over_wmi_tx_drop(ar, msdu);
5878 }
5879 
5880 int ath11k_mac_tx_mgmt_pending_free(int buf_id, void *skb, void *ctx)
5881 {
5882 	struct ath11k *ar = ctx;
5883 
5884 	ath11k_mac_tx_mgmt_free(ar, buf_id);
5885 
5886 	return 0;
5887 }
5888 
5889 static int ath11k_mac_vif_txmgmt_idr_remove(int buf_id, void *skb, void *ctx)
5890 {
5891 	struct ieee80211_vif *vif = ctx;
5892 	struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB((struct sk_buff *)skb);
5893 	struct ath11k *ar = skb_cb->ar;
5894 
5895 	if (skb_cb->vif == vif)
5896 		ath11k_mac_tx_mgmt_free(ar, buf_id);
5897 
5898 	return 0;
5899 }
5900 
5901 static int ath11k_mac_mgmt_tx_wmi(struct ath11k *ar, struct ath11k_vif *arvif,
5902 				  struct sk_buff *skb)
5903 {
5904 	struct ath11k_base *ab = ar->ab;
5905 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
5906 	struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB(skb);
5907 	struct ieee80211_tx_info *info;
5908 	enum hal_encrypt_type enctype;
5909 	unsigned int mic_len;
5910 	dma_addr_t paddr;
5911 	int buf_id;
5912 	int ret;
5913 
5914 	ATH11K_SKB_CB(skb)->ar = ar;
5915 
5916 	spin_lock_bh(&ar->txmgmt_idr_lock);
5917 	buf_id = idr_alloc(&ar->txmgmt_idr, skb, 0,
5918 			   ATH11K_TX_MGMT_NUM_PENDING_MAX, GFP_ATOMIC);
5919 	spin_unlock_bh(&ar->txmgmt_idr_lock);
5920 
5921 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
5922 		   "tx mgmt frame, buf id %d\n", buf_id);
5923 
5924 	if (buf_id < 0)
5925 		return -ENOSPC;
5926 
5927 	info = IEEE80211_SKB_CB(skb);
5928 	if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) {
5929 		if ((ieee80211_is_action(hdr->frame_control) ||
5930 		     ieee80211_is_deauth(hdr->frame_control) ||
5931 		     ieee80211_is_disassoc(hdr->frame_control)) &&
5932 		     ieee80211_has_protected(hdr->frame_control)) {
5933 			if (!(skb_cb->flags & ATH11K_SKB_CIPHER_SET))
5934 				ath11k_warn(ab, "WMI management tx frame without ATH11K_SKB_CIPHER_SET");
5935 
5936 			enctype = ath11k_dp_tx_get_encrypt_type(skb_cb->cipher);
5937 			mic_len = ath11k_dp_rx_crypto_mic_len(ar, enctype);
5938 			skb_put(skb, mic_len);
5939 		}
5940 	}
5941 
5942 	paddr = dma_map_single(ab->dev, skb->data, skb->len, DMA_TO_DEVICE);
5943 	if (dma_mapping_error(ab->dev, paddr)) {
5944 		ath11k_warn(ab, "failed to DMA map mgmt Tx buffer\n");
5945 		ret = -EIO;
5946 		goto err_free_idr;
5947 	}
5948 
5949 	ATH11K_SKB_CB(skb)->paddr = paddr;
5950 
5951 	ret = ath11k_wmi_mgmt_send(ar, arvif->vdev_id, buf_id, skb);
5952 	if (ret) {
5953 		ath11k_warn(ar->ab, "failed to send mgmt frame: %d\n", ret);
5954 		goto err_unmap_buf;
5955 	}
5956 
5957 	return 0;
5958 
5959 err_unmap_buf:
5960 	dma_unmap_single(ab->dev, ATH11K_SKB_CB(skb)->paddr,
5961 			 skb->len, DMA_TO_DEVICE);
5962 err_free_idr:
5963 	spin_lock_bh(&ar->txmgmt_idr_lock);
5964 	idr_remove(&ar->txmgmt_idr, buf_id);
5965 	spin_unlock_bh(&ar->txmgmt_idr_lock);
5966 
5967 	return ret;
5968 }
5969 
5970 static void ath11k_mgmt_over_wmi_tx_purge(struct ath11k *ar)
5971 {
5972 	struct sk_buff *skb;
5973 
5974 	while ((skb = skb_dequeue(&ar->wmi_mgmt_tx_queue)) != NULL)
5975 		ath11k_mgmt_over_wmi_tx_drop(ar, skb);
5976 }
5977 
5978 static void ath11k_mgmt_over_wmi_tx_work(struct work_struct *work)
5979 {
5980 	struct ath11k *ar = container_of(work, struct ath11k, wmi_mgmt_tx_work);
5981 	struct ath11k_skb_cb *skb_cb;
5982 	struct ath11k_vif *arvif;
5983 	struct sk_buff *skb;
5984 	int ret;
5985 
5986 	while ((skb = skb_dequeue(&ar->wmi_mgmt_tx_queue)) != NULL) {
5987 		skb_cb = ATH11K_SKB_CB(skb);
5988 		if (!skb_cb->vif) {
5989 			ath11k_warn(ar->ab, "no vif found for mgmt frame\n");
5990 			ath11k_mgmt_over_wmi_tx_drop(ar, skb);
5991 			continue;
5992 		}
5993 
5994 		arvif = ath11k_vif_to_arvif(skb_cb->vif);
5995 		mutex_lock(&ar->conf_mutex);
5996 		if (ar->allocated_vdev_map & (1LL << arvif->vdev_id)) {
5997 			ret = ath11k_mac_mgmt_tx_wmi(ar, arvif, skb);
5998 			if (ret) {
5999 				ath11k_warn(ar->ab, "failed to tx mgmt frame, vdev_id %d :%d\n",
6000 					    arvif->vdev_id, ret);
6001 				ath11k_mgmt_over_wmi_tx_drop(ar, skb);
6002 			} else {
6003 				ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
6004 					   "tx mgmt frame, vdev_id %d\n",
6005 					   arvif->vdev_id);
6006 			}
6007 		} else {
6008 			ath11k_warn(ar->ab,
6009 				    "dropping mgmt frame for vdev %d, is_started %d\n",
6010 				    arvif->vdev_id,
6011 				    arvif->is_started);
6012 			ath11k_mgmt_over_wmi_tx_drop(ar, skb);
6013 		}
6014 		mutex_unlock(&ar->conf_mutex);
6015 	}
6016 }
6017 
6018 static int ath11k_mac_mgmt_tx(struct ath11k *ar, struct sk_buff *skb,
6019 			      bool is_prb_rsp)
6020 {
6021 	struct sk_buff_head *q = &ar->wmi_mgmt_tx_queue;
6022 
6023 	if (test_bit(ATH11K_FLAG_CRASH_FLUSH, &ar->ab->dev_flags))
6024 		return -ESHUTDOWN;
6025 
6026 	/* Drop probe response packets when the pending management tx
6027 	 * count has reached a certain threshold, so as to prioritize
6028 	 * other mgmt packets like auth and assoc to be sent on time
6029 	 * for establishing successful connections.
6030 	 */
6031 	if (is_prb_rsp &&
6032 	    atomic_read(&ar->num_pending_mgmt_tx) > ATH11K_PRB_RSP_DROP_THRESHOLD) {
6033 		ath11k_warn(ar->ab,
6034 			    "dropping probe response as pending queue is almost full\n");
6035 		return -ENOSPC;
6036 	}
6037 
6038 	if (skb_queue_len_lockless(q) >= ATH11K_TX_MGMT_NUM_PENDING_MAX) {
6039 		ath11k_warn(ar->ab, "mgmt tx queue is full\n");
6040 		return -ENOSPC;
6041 	}
6042 
6043 	skb_queue_tail(q, skb);
6044 	atomic_inc(&ar->num_pending_mgmt_tx);
6045 	queue_work(ar->ab->workqueue_aux, &ar->wmi_mgmt_tx_work);
6046 
6047 	return 0;
6048 }
6049 
6050 static void ath11k_mac_op_tx(struct ieee80211_hw *hw,
6051 			     struct ieee80211_tx_control *control,
6052 			     struct sk_buff *skb)
6053 {
6054 	struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB(skb);
6055 	struct ath11k *ar = hw->priv;
6056 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
6057 	struct ieee80211_vif *vif = info->control.vif;
6058 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
6059 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
6060 	struct ieee80211_key_conf *key = info->control.hw_key;
6061 	struct ath11k_sta *arsta = NULL;
6062 	u32 info_flags = info->flags;
6063 	bool is_prb_rsp;
6064 	int ret;
6065 
6066 	memset(skb_cb, 0, sizeof(*skb_cb));
6067 	skb_cb->vif = vif;
6068 
6069 	if (key) {
6070 		skb_cb->cipher = key->cipher;
6071 		skb_cb->flags |= ATH11K_SKB_CIPHER_SET;
6072 	}
6073 
6074 	if (info_flags & IEEE80211_TX_CTL_HW_80211_ENCAP) {
6075 		skb_cb->flags |= ATH11K_SKB_HW_80211_ENCAP;
6076 	} else if (ieee80211_is_mgmt(hdr->frame_control)) {
6077 		is_prb_rsp = ieee80211_is_probe_resp(hdr->frame_control);
6078 		ret = ath11k_mac_mgmt_tx(ar, skb, is_prb_rsp);
6079 		if (ret) {
6080 			ath11k_warn(ar->ab, "failed to queue management frame %d\n",
6081 				    ret);
6082 			ieee80211_free_txskb(ar->hw, skb);
6083 		}
6084 		return;
6085 	}
6086 
6087 	if (control->sta)
6088 		arsta = ath11k_sta_to_arsta(control->sta);
6089 
6090 	ret = ath11k_dp_tx(ar, arvif, arsta, skb);
6091 	if (unlikely(ret)) {
6092 		ath11k_warn(ar->ab, "failed to transmit frame %d\n", ret);
6093 		ieee80211_free_txskb(ar->hw, skb);
6094 	}
6095 }
6096 
6097 void ath11k_mac_drain_tx(struct ath11k *ar)
6098 {
6099 	/* make sure rcu-protected mac80211 tx path itself is drained */
6100 	synchronize_net();
6101 
6102 	cancel_work_sync(&ar->wmi_mgmt_tx_work);
6103 	ath11k_mgmt_over_wmi_tx_purge(ar);
6104 }
6105 
6106 static int ath11k_mac_config_mon_status_default(struct ath11k *ar, bool enable)
6107 {
6108 	struct htt_rx_ring_tlv_filter tlv_filter = {0};
6109 	struct ath11k_base *ab = ar->ab;
6110 	int i, ret = 0;
6111 	u32 ring_id;
6112 
6113 	if (enable) {
6114 		tlv_filter = ath11k_mac_mon_status_filter_default;
6115 		if (ath11k_debugfs_rx_filter(ar))
6116 			tlv_filter.rx_filter = ath11k_debugfs_rx_filter(ar);
6117 	}
6118 
6119 	for (i = 0; i < ab->hw_params.num_rxdma_per_pdev; i++) {
6120 		ring_id = ar->dp.rx_mon_status_refill_ring[i].refill_buf_ring.ring_id;
6121 		ret = ath11k_dp_tx_htt_rx_filter_setup(ar->ab, ring_id,
6122 						       ar->dp.mac_id + i,
6123 						       HAL_RXDMA_MONITOR_STATUS,
6124 						       DP_RX_BUFFER_SIZE,
6125 						       &tlv_filter);
6126 	}
6127 
6128 	if (enable && !ar->ab->hw_params.rxdma1_enable)
6129 		mod_timer(&ar->ab->mon_reap_timer, jiffies +
6130 			  msecs_to_jiffies(ATH11K_MON_TIMER_INTERVAL));
6131 
6132 	return ret;
6133 }
6134 
6135 static void ath11k_mac_wait_reconfigure(struct ath11k_base *ab)
6136 {
6137 	int recovery_start_count;
6138 
6139 	if (!ab->is_reset)
6140 		return;
6141 
6142 	recovery_start_count = atomic_inc_return(&ab->recovery_start_count);
6143 	ath11k_dbg(ab, ATH11K_DBG_MAC, "recovery start count %d\n", recovery_start_count);
6144 
6145 	if (recovery_start_count == ab->num_radios) {
6146 		complete(&ab->recovery_start);
6147 		ath11k_dbg(ab, ATH11K_DBG_MAC, "recovery started success\n");
6148 	}
6149 
6150 	ath11k_dbg(ab, ATH11K_DBG_MAC, "waiting reconfigure...\n");
6151 
6152 	wait_for_completion_timeout(&ab->reconfigure_complete,
6153 				    ATH11K_RECONFIGURE_TIMEOUT_HZ);
6154 }
6155 
6156 static int ath11k_mac_op_start(struct ieee80211_hw *hw)
6157 {
6158 	struct ath11k *ar = hw->priv;
6159 	struct ath11k_base *ab = ar->ab;
6160 	struct ath11k_pdev *pdev = ar->pdev;
6161 	int ret;
6162 
6163 	if (ath11k_ftm_mode) {
6164 		ath11k_warn(ab, "mac operations not supported in factory test mode\n");
6165 		return -EOPNOTSUPP;
6166 	}
6167 
6168 	ath11k_mac_drain_tx(ar);
6169 	mutex_lock(&ar->conf_mutex);
6170 
6171 	switch (ar->state) {
6172 	case ATH11K_STATE_OFF:
6173 		ar->state = ATH11K_STATE_ON;
6174 		break;
6175 	case ATH11K_STATE_RESTARTING:
6176 		ar->state = ATH11K_STATE_RESTARTED;
6177 		ath11k_mac_wait_reconfigure(ab);
6178 		break;
6179 	case ATH11K_STATE_RESTARTED:
6180 	case ATH11K_STATE_WEDGED:
6181 	case ATH11K_STATE_ON:
6182 	case ATH11K_STATE_FTM:
6183 		WARN_ON(1);
6184 		ret = -EINVAL;
6185 		goto err;
6186 	}
6187 
6188 	ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_PMF_QOS,
6189 					1, pdev->pdev_id);
6190 
6191 	if (ret) {
6192 		ath11k_err(ar->ab, "failed to enable PMF QOS: (%d\n", ret);
6193 		goto err;
6194 	}
6195 
6196 	ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_DYNAMIC_BW, 1,
6197 					pdev->pdev_id);
6198 	if (ret) {
6199 		ath11k_err(ar->ab, "failed to enable dynamic bw: %d\n", ret);
6200 		goto err;
6201 	}
6202 
6203 	if (test_bit(WMI_TLV_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi->wmi_ab->svc_map)) {
6204 		ret = ath11k_wmi_scan_prob_req_oui(ar, ar->mac_addr);
6205 		if (ret) {
6206 			ath11k_err(ab, "failed to set prob req oui: %i\n", ret);
6207 			goto err;
6208 		}
6209 	}
6210 
6211 	ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_ARP_AC_OVERRIDE,
6212 					0, pdev->pdev_id);
6213 	if (ret) {
6214 		ath11k_err(ab, "failed to set ac override for ARP: %d\n",
6215 			   ret);
6216 		goto err;
6217 	}
6218 
6219 	ret = ath11k_wmi_send_dfs_phyerr_offload_enable_cmd(ar, pdev->pdev_id);
6220 	if (ret) {
6221 		ath11k_err(ab, "failed to offload radar detection: %d\n",
6222 			   ret);
6223 		goto err;
6224 	}
6225 
6226 	ret = ath11k_dp_tx_htt_h2t_ppdu_stats_req(ar,
6227 						  HTT_PPDU_STATS_TAG_DEFAULT);
6228 	if (ret) {
6229 		ath11k_err(ab, "failed to req ppdu stats: %d\n", ret);
6230 		goto err;
6231 	}
6232 
6233 	ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_MESH_MCAST_ENABLE,
6234 					1, pdev->pdev_id);
6235 
6236 	if (ret) {
6237 		ath11k_err(ar->ab, "failed to enable MESH MCAST ENABLE: (%d\n", ret);
6238 		goto err;
6239 	}
6240 
6241 	__ath11k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask);
6242 
6243 	/* TODO: Do we need to enable ANI? */
6244 
6245 	ath11k_reg_update_chan_list(ar, false);
6246 
6247 	ar->num_started_vdevs = 0;
6248 	ar->num_created_vdevs = 0;
6249 	ar->num_peers = 0;
6250 	ar->allocated_vdev_map = 0;
6251 
6252 	/* Configure monitor status ring with default rx_filter to get rx status
6253 	 * such as rssi, rx_duration.
6254 	 */
6255 	ret = ath11k_mac_config_mon_status_default(ar, true);
6256 	if (ret) {
6257 		ath11k_err(ab, "failed to configure monitor status ring with default rx_filter: (%d)\n",
6258 			   ret);
6259 		goto err;
6260 	}
6261 
6262 	/* Configure the hash seed for hash based reo dest ring selection */
6263 	ath11k_wmi_pdev_lro_cfg(ar, ar->pdev->pdev_id);
6264 
6265 	/* allow device to enter IMPS */
6266 	if (ab->hw_params.idle_ps) {
6267 		ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_IDLE_PS_CONFIG,
6268 						1, pdev->pdev_id);
6269 		if (ret) {
6270 			ath11k_err(ab, "failed to enable idle ps: %d\n", ret);
6271 			goto err;
6272 		}
6273 	}
6274 
6275 	mutex_unlock(&ar->conf_mutex);
6276 
6277 	rcu_assign_pointer(ab->pdevs_active[ar->pdev_idx],
6278 			   &ab->pdevs[ar->pdev_idx]);
6279 
6280 	return 0;
6281 
6282 err:
6283 	ar->state = ATH11K_STATE_OFF;
6284 	mutex_unlock(&ar->conf_mutex);
6285 
6286 	return ret;
6287 }
6288 
6289 static void ath11k_mac_op_stop(struct ieee80211_hw *hw, bool suspend)
6290 {
6291 	struct ath11k *ar = hw->priv;
6292 	struct htt_ppdu_stats_info *ppdu_stats, *tmp;
6293 	int ret;
6294 
6295 	ath11k_mac_drain_tx(ar);
6296 
6297 	mutex_lock(&ar->conf_mutex);
6298 	ret = ath11k_mac_config_mon_status_default(ar, false);
6299 	if (ret)
6300 		ath11k_err(ar->ab, "failed to clear rx_filter for monitor status ring: (%d)\n",
6301 			   ret);
6302 
6303 	clear_bit(ATH11K_CAC_RUNNING, &ar->dev_flags);
6304 	ar->state = ATH11K_STATE_OFF;
6305 	mutex_unlock(&ar->conf_mutex);
6306 
6307 	cancel_delayed_work_sync(&ar->scan.timeout);
6308 	cancel_work_sync(&ar->regd_update_work);
6309 	cancel_work_sync(&ar->ab->update_11d_work);
6310 
6311 	if (ar->state_11d == ATH11K_11D_PREPARING) {
6312 		ar->state_11d = ATH11K_11D_IDLE;
6313 		complete(&ar->completed_11d_scan);
6314 	}
6315 
6316 	spin_lock_bh(&ar->data_lock);
6317 	list_for_each_entry_safe(ppdu_stats, tmp, &ar->ppdu_stats_info, list) {
6318 		list_del(&ppdu_stats->list);
6319 		kfree(ppdu_stats);
6320 	}
6321 	spin_unlock_bh(&ar->data_lock);
6322 
6323 	rcu_assign_pointer(ar->ab->pdevs_active[ar->pdev_idx], NULL);
6324 
6325 	synchronize_rcu();
6326 
6327 	atomic_set(&ar->num_pending_mgmt_tx, 0);
6328 }
6329 
6330 static int ath11k_mac_setup_vdev_params_mbssid(struct ath11k_vif *arvif,
6331 					       u32 *flags, u32 *tx_vdev_id)
6332 {
6333 	struct ath11k *ar = arvif->ar;
6334 	struct ath11k_vif *tx_arvif;
6335 	struct ieee80211_vif *tx_vif;
6336 
6337 	*tx_vdev_id = 0;
6338 	tx_vif = arvif->vif->mbssid_tx_vif;
6339 	if (!tx_vif) {
6340 		*flags = WMI_HOST_VDEV_FLAGS_NON_MBSSID_AP;
6341 		return 0;
6342 	}
6343 
6344 	tx_arvif = ath11k_vif_to_arvif(tx_vif);
6345 
6346 	if (arvif->vif->bss_conf.nontransmitted) {
6347 		if (ar->hw->wiphy != ieee80211_vif_to_wdev(tx_vif)->wiphy)
6348 			return -EINVAL;
6349 
6350 		*flags = WMI_HOST_VDEV_FLAGS_NON_TRANSMIT_AP;
6351 		*tx_vdev_id = ath11k_vif_to_arvif(tx_vif)->vdev_id;
6352 	} else if (tx_arvif == arvif) {
6353 		*flags = WMI_HOST_VDEV_FLAGS_TRANSMIT_AP;
6354 	} else {
6355 		return -EINVAL;
6356 	}
6357 
6358 	if (arvif->vif->bss_conf.ema_ap)
6359 		*flags |= WMI_HOST_VDEV_FLAGS_EMA_MODE;
6360 
6361 	return 0;
6362 }
6363 
6364 static int ath11k_mac_setup_vdev_create_params(struct ath11k_vif *arvif,
6365 					       struct vdev_create_params *params)
6366 {
6367 	struct ath11k *ar = arvif->ar;
6368 	struct ath11k_pdev *pdev = ar->pdev;
6369 	int ret;
6370 
6371 	params->if_id = arvif->vdev_id;
6372 	params->type = arvif->vdev_type;
6373 	params->subtype = arvif->vdev_subtype;
6374 	params->pdev_id = pdev->pdev_id;
6375 	params->mbssid_flags = 0;
6376 	params->mbssid_tx_vdev_id = 0;
6377 
6378 	if (!test_bit(WMI_TLV_SERVICE_MBSS_PARAM_IN_VDEV_START_SUPPORT,
6379 		      ar->ab->wmi_ab.svc_map)) {
6380 		ret = ath11k_mac_setup_vdev_params_mbssid(arvif,
6381 							  &params->mbssid_flags,
6382 							  &params->mbssid_tx_vdev_id);
6383 		if (ret)
6384 			return ret;
6385 	}
6386 
6387 	if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) {
6388 		params->chains[NL80211_BAND_2GHZ].tx = ar->num_tx_chains;
6389 		params->chains[NL80211_BAND_2GHZ].rx = ar->num_rx_chains;
6390 	}
6391 	if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) {
6392 		params->chains[NL80211_BAND_5GHZ].tx = ar->num_tx_chains;
6393 		params->chains[NL80211_BAND_5GHZ].rx = ar->num_rx_chains;
6394 	}
6395 	if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP &&
6396 	    ar->supports_6ghz) {
6397 		params->chains[NL80211_BAND_6GHZ].tx = ar->num_tx_chains;
6398 		params->chains[NL80211_BAND_6GHZ].rx = ar->num_rx_chains;
6399 	}
6400 	return 0;
6401 }
6402 
6403 static void ath11k_mac_op_update_vif_offload(struct ieee80211_hw *hw,
6404 					     struct ieee80211_vif *vif)
6405 {
6406 	struct ath11k *ar = hw->priv;
6407 	struct ath11k_base *ab = ar->ab;
6408 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
6409 	u32 param_id, param_value;
6410 	int ret;
6411 
6412 	param_id = WMI_VDEV_PARAM_TX_ENCAP_TYPE;
6413 	if (ath11k_frame_mode != ATH11K_HW_TXRX_ETHERNET ||
6414 	    (vif->type != NL80211_IFTYPE_STATION &&
6415 	     vif->type != NL80211_IFTYPE_AP))
6416 		vif->offload_flags &= ~(IEEE80211_OFFLOAD_ENCAP_ENABLED |
6417 					IEEE80211_OFFLOAD_DECAP_ENABLED);
6418 
6419 	if (vif->offload_flags & IEEE80211_OFFLOAD_ENCAP_ENABLED)
6420 		param_value = ATH11K_HW_TXRX_ETHERNET;
6421 	else if (test_bit(ATH11K_FLAG_RAW_MODE, &ab->dev_flags))
6422 		param_value = ATH11K_HW_TXRX_RAW;
6423 	else
6424 		param_value = ATH11K_HW_TXRX_NATIVE_WIFI;
6425 
6426 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
6427 					    param_id, param_value);
6428 	if (ret) {
6429 		ath11k_warn(ab, "failed to set vdev %d tx encap mode: %d\n",
6430 			    arvif->vdev_id, ret);
6431 		vif->offload_flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED;
6432 	}
6433 
6434 	param_id = WMI_VDEV_PARAM_RX_DECAP_TYPE;
6435 	if (vif->offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED)
6436 		param_value = ATH11K_HW_TXRX_ETHERNET;
6437 	else if (test_bit(ATH11K_FLAG_RAW_MODE, &ab->dev_flags))
6438 		param_value = ATH11K_HW_TXRX_RAW;
6439 	else
6440 		param_value = ATH11K_HW_TXRX_NATIVE_WIFI;
6441 
6442 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
6443 					    param_id, param_value);
6444 	if (ret) {
6445 		ath11k_warn(ab, "failed to set vdev %d rx decap mode: %d\n",
6446 			    arvif->vdev_id, ret);
6447 		vif->offload_flags &= ~IEEE80211_OFFLOAD_DECAP_ENABLED;
6448 	}
6449 }
6450 
6451 static bool ath11k_mac_vif_ap_active_any(struct ath11k_base *ab)
6452 {
6453 	struct ath11k *ar;
6454 	struct ath11k_pdev *pdev;
6455 	struct ath11k_vif *arvif;
6456 	int i;
6457 
6458 	for (i = 0; i < ab->num_radios; i++) {
6459 		pdev = &ab->pdevs[i];
6460 		ar = pdev->ar;
6461 		list_for_each_entry(arvif, &ar->arvifs, list) {
6462 			if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_AP)
6463 				return true;
6464 		}
6465 	}
6466 	return false;
6467 }
6468 
6469 void ath11k_mac_11d_scan_start(struct ath11k *ar, u32 vdev_id)
6470 {
6471 	struct wmi_11d_scan_start_params param;
6472 	int ret;
6473 
6474 	mutex_lock(&ar->ab->vdev_id_11d_lock);
6475 
6476 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev id for 11d scan %d\n",
6477 		   ar->vdev_id_11d_scan);
6478 
6479 	if (ar->regdom_set_by_user)
6480 		goto fin;
6481 
6482 	if (ar->vdev_id_11d_scan != ATH11K_11D_INVALID_VDEV_ID)
6483 		goto fin;
6484 
6485 	if (!test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ar->ab->wmi_ab.svc_map))
6486 		goto fin;
6487 
6488 	if (ath11k_mac_vif_ap_active_any(ar->ab))
6489 		goto fin;
6490 
6491 	param.vdev_id = vdev_id;
6492 	param.start_interval_msec = 0;
6493 	param.scan_period_msec = ATH11K_SCAN_11D_INTERVAL;
6494 
6495 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "start 11d scan\n");
6496 
6497 	ret = ath11k_wmi_send_11d_scan_start_cmd(ar, &param);
6498 	if (ret) {
6499 		ath11k_warn(ar->ab, "failed to start 11d scan vdev %d ret: %d\n",
6500 			    vdev_id, ret);
6501 	} else {
6502 		ar->vdev_id_11d_scan = vdev_id;
6503 		if (ar->state_11d == ATH11K_11D_PREPARING)
6504 			ar->state_11d = ATH11K_11D_RUNNING;
6505 	}
6506 
6507 fin:
6508 	if (ar->state_11d == ATH11K_11D_PREPARING) {
6509 		ar->state_11d = ATH11K_11D_IDLE;
6510 		complete(&ar->completed_11d_scan);
6511 	}
6512 
6513 	mutex_unlock(&ar->ab->vdev_id_11d_lock);
6514 }
6515 
6516 void ath11k_mac_11d_scan_stop(struct ath11k *ar)
6517 {
6518 	int ret;
6519 	u32 vdev_id;
6520 
6521 	if (!test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ar->ab->wmi_ab.svc_map))
6522 		return;
6523 
6524 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "stop 11d scan\n");
6525 
6526 	mutex_lock(&ar->ab->vdev_id_11d_lock);
6527 
6528 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "stop 11d vdev id %d\n",
6529 		   ar->vdev_id_11d_scan);
6530 
6531 	if (ar->state_11d == ATH11K_11D_PREPARING) {
6532 		ar->state_11d = ATH11K_11D_IDLE;
6533 		complete(&ar->completed_11d_scan);
6534 	}
6535 
6536 	if (ar->vdev_id_11d_scan != ATH11K_11D_INVALID_VDEV_ID) {
6537 		vdev_id = ar->vdev_id_11d_scan;
6538 
6539 		ret = ath11k_wmi_send_11d_scan_stop_cmd(ar, vdev_id);
6540 		if (ret) {
6541 			ath11k_warn(ar->ab,
6542 				    "failed to stopt 11d scan vdev %d ret: %d\n",
6543 				    vdev_id, ret);
6544 		} else {
6545 			ar->vdev_id_11d_scan = ATH11K_11D_INVALID_VDEV_ID;
6546 			ar->state_11d = ATH11K_11D_IDLE;
6547 			complete(&ar->completed_11d_scan);
6548 		}
6549 	}
6550 	mutex_unlock(&ar->ab->vdev_id_11d_lock);
6551 }
6552 
6553 void ath11k_mac_11d_scan_stop_all(struct ath11k_base *ab)
6554 {
6555 	struct ath11k *ar;
6556 	struct ath11k_pdev *pdev;
6557 	int i;
6558 
6559 	ath11k_dbg(ab, ATH11K_DBG_MAC, "stop soc 11d scan\n");
6560 
6561 	for (i = 0; i < ab->num_radios; i++) {
6562 		pdev = &ab->pdevs[i];
6563 		ar = pdev->ar;
6564 
6565 		ath11k_mac_11d_scan_stop(ar);
6566 	}
6567 }
6568 
6569 static int ath11k_mac_vdev_delete(struct ath11k *ar, struct ath11k_vif *arvif)
6570 {
6571 	unsigned long time_left;
6572 	struct ieee80211_vif *vif = arvif->vif;
6573 	int ret = 0;
6574 
6575 	lockdep_assert_held(&ar->conf_mutex);
6576 
6577 	reinit_completion(&ar->vdev_delete_done);
6578 
6579 	ret = ath11k_wmi_vdev_delete(ar, arvif->vdev_id);
6580 	if (ret) {
6581 		ath11k_warn(ar->ab, "failed to delete WMI vdev %d: %d\n",
6582 			    arvif->vdev_id, ret);
6583 		return ret;
6584 	}
6585 
6586 	time_left = wait_for_completion_timeout(&ar->vdev_delete_done,
6587 						ATH11K_VDEV_DELETE_TIMEOUT_HZ);
6588 	if (time_left == 0) {
6589 		ath11k_warn(ar->ab, "Timeout in receiving vdev delete response\n");
6590 		return -ETIMEDOUT;
6591 	}
6592 
6593 	ar->ab->free_vdev_map |= 1LL << (arvif->vdev_id);
6594 	ar->allocated_vdev_map &= ~(1LL << arvif->vdev_id);
6595 	ar->num_created_vdevs--;
6596 
6597 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %pM deleted, vdev_id %d\n",
6598 		   vif->addr, arvif->vdev_id);
6599 
6600 	return ret;
6601 }
6602 
6603 static void ath11k_mac_bcn_tx_work(struct work_struct *work)
6604 {
6605 	struct ath11k_vif *arvif = container_of(work, struct ath11k_vif,
6606 						bcn_tx_work);
6607 
6608 	mutex_lock(&arvif->ar->conf_mutex);
6609 	ath11k_mac_bcn_tx_event(arvif);
6610 	mutex_unlock(&arvif->ar->conf_mutex);
6611 }
6612 
6613 static int ath11k_mac_op_add_interface(struct ieee80211_hw *hw,
6614 				       struct ieee80211_vif *vif)
6615 {
6616 	struct ath11k *ar = hw->priv;
6617 	struct ath11k_base *ab = ar->ab;
6618 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
6619 	struct vdev_create_params vdev_param = {0};
6620 	struct peer_create_params peer_param;
6621 	u32 param_id, param_value;
6622 	u16 nss;
6623 	int i;
6624 	int ret, fbret;
6625 	int bit;
6626 
6627 	vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD;
6628 
6629 	mutex_lock(&ar->conf_mutex);
6630 
6631 	if (vif->type == NL80211_IFTYPE_AP &&
6632 	    ar->num_peers > (ar->max_num_peers - 1)) {
6633 		ath11k_warn(ab, "failed to create vdev due to insufficient peer entry resource in firmware\n");
6634 		ret = -ENOBUFS;
6635 		goto err;
6636 	}
6637 
6638 	if (ar->num_created_vdevs > (TARGET_NUM_VDEVS(ab) - 1)) {
6639 		ath11k_warn(ab, "failed to create vdev %u, reached max vdev limit %d\n",
6640 			    ar->num_created_vdevs, TARGET_NUM_VDEVS(ab));
6641 		ret = -EBUSY;
6642 		goto err;
6643 	}
6644 
6645 	memset(arvif, 0, sizeof(*arvif));
6646 
6647 	arvif->ar = ar;
6648 	arvif->vif = vif;
6649 
6650 	INIT_LIST_HEAD(&arvif->list);
6651 	INIT_WORK(&arvif->bcn_tx_work, ath11k_mac_bcn_tx_work);
6652 	INIT_DELAYED_WORK(&arvif->connection_loss_work,
6653 			  ath11k_mac_vif_sta_connection_loss_work);
6654 
6655 	for (i = 0; i < ARRAY_SIZE(arvif->bitrate_mask.control); i++) {
6656 		arvif->bitrate_mask.control[i].legacy = 0xffffffff;
6657 		arvif->bitrate_mask.control[i].gi = NL80211_TXRATE_FORCE_SGI;
6658 		memset(arvif->bitrate_mask.control[i].ht_mcs, 0xff,
6659 		       sizeof(arvif->bitrate_mask.control[i].ht_mcs));
6660 		memset(arvif->bitrate_mask.control[i].vht_mcs, 0xff,
6661 		       sizeof(arvif->bitrate_mask.control[i].vht_mcs));
6662 		memset(arvif->bitrate_mask.control[i].he_mcs, 0xff,
6663 		       sizeof(arvif->bitrate_mask.control[i].he_mcs));
6664 	}
6665 
6666 	bit = __ffs64(ab->free_vdev_map);
6667 
6668 	arvif->vdev_id = bit;
6669 	arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE;
6670 
6671 	switch (vif->type) {
6672 	case NL80211_IFTYPE_UNSPECIFIED:
6673 	case NL80211_IFTYPE_STATION:
6674 		arvif->vdev_type = WMI_VDEV_TYPE_STA;
6675 		if (vif->p2p)
6676 			arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT;
6677 		break;
6678 	case NL80211_IFTYPE_MESH_POINT:
6679 		arvif->vdev_subtype = WMI_VDEV_SUBTYPE_MESH_11S;
6680 		fallthrough;
6681 	case NL80211_IFTYPE_AP:
6682 		arvif->vdev_type = WMI_VDEV_TYPE_AP;
6683 		if (vif->p2p)
6684 			arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO;
6685 		break;
6686 	case NL80211_IFTYPE_MONITOR:
6687 		arvif->vdev_type = WMI_VDEV_TYPE_MONITOR;
6688 		ar->monitor_vdev_id = bit;
6689 		break;
6690 	case NL80211_IFTYPE_P2P_DEVICE:
6691 		arvif->vdev_type = WMI_VDEV_TYPE_STA;
6692 		arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE;
6693 		break;
6694 
6695 	default:
6696 		WARN_ON(1);
6697 		break;
6698 	}
6699 
6700 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "add interface id %d type %d subtype %d map %llx\n",
6701 		   arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype,
6702 		   ab->free_vdev_map);
6703 
6704 	vif->cab_queue = arvif->vdev_id % (ATH11K_HW_MAX_QUEUES - 1);
6705 	for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++)
6706 		vif->hw_queue[i] = i % (ATH11K_HW_MAX_QUEUES - 1);
6707 
6708 	ret = ath11k_mac_setup_vdev_create_params(arvif, &vdev_param);
6709 	if (ret) {
6710 		ath11k_warn(ab, "failed to create vdev parameters %d: %d\n",
6711 			    arvif->vdev_id, ret);
6712 		goto err;
6713 	}
6714 
6715 	ret = ath11k_wmi_vdev_create(ar, vif->addr, &vdev_param);
6716 	if (ret) {
6717 		ath11k_warn(ab, "failed to create WMI vdev %d: %d\n",
6718 			    arvif->vdev_id, ret);
6719 		goto err;
6720 	}
6721 
6722 	ar->num_created_vdevs++;
6723 	ath11k_dbg(ab, ATH11K_DBG_MAC, "vdev %pM created, vdev_id %d\n",
6724 		   vif->addr, arvif->vdev_id);
6725 	ar->allocated_vdev_map |= 1LL << arvif->vdev_id;
6726 	ab->free_vdev_map &= ~(1LL << arvif->vdev_id);
6727 
6728 	spin_lock_bh(&ar->data_lock);
6729 	list_add(&arvif->list, &ar->arvifs);
6730 	spin_unlock_bh(&ar->data_lock);
6731 
6732 	ath11k_mac_op_update_vif_offload(hw, vif);
6733 
6734 	nss = get_num_chains(ar->cfg_tx_chainmask) ? : 1;
6735 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
6736 					    WMI_VDEV_PARAM_NSS, nss);
6737 	if (ret) {
6738 		ath11k_warn(ab, "failed to set vdev %d chainmask 0x%x, nss %d :%d\n",
6739 			    arvif->vdev_id, ar->cfg_tx_chainmask, nss, ret);
6740 		goto err_vdev_del;
6741 	}
6742 
6743 	switch (arvif->vdev_type) {
6744 	case WMI_VDEV_TYPE_AP:
6745 		peer_param.vdev_id = arvif->vdev_id;
6746 		peer_param.peer_addr = vif->addr;
6747 		peer_param.peer_type = WMI_PEER_TYPE_DEFAULT;
6748 		ret = ath11k_peer_create(ar, arvif, NULL, &peer_param);
6749 		if (ret) {
6750 			ath11k_warn(ab, "failed to vdev %d create peer for AP: %d\n",
6751 				    arvif->vdev_id, ret);
6752 			goto err_vdev_del;
6753 		}
6754 
6755 		ret = ath11k_mac_set_kickout(arvif);
6756 		if (ret) {
6757 			ath11k_warn(ar->ab, "failed to set vdev %i kickout parameters: %d\n",
6758 				    arvif->vdev_id, ret);
6759 			goto err_peer_del;
6760 		}
6761 
6762 		ath11k_mac_11d_scan_stop_all(ar->ab);
6763 		break;
6764 	case WMI_VDEV_TYPE_STA:
6765 		param_id = WMI_STA_PS_PARAM_RX_WAKE_POLICY;
6766 		param_value = WMI_STA_PS_RX_WAKE_POLICY_WAKE;
6767 		ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
6768 						  param_id, param_value);
6769 		if (ret) {
6770 			ath11k_warn(ar->ab, "failed to set vdev %d RX wake policy: %d\n",
6771 				    arvif->vdev_id, ret);
6772 			goto err_peer_del;
6773 		}
6774 
6775 		param_id = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD;
6776 		param_value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS;
6777 		ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
6778 						  param_id, param_value);
6779 		if (ret) {
6780 			ath11k_warn(ar->ab, "failed to set vdev %d TX wake threshold: %d\n",
6781 				    arvif->vdev_id, ret);
6782 			goto err_peer_del;
6783 		}
6784 
6785 		param_id = WMI_STA_PS_PARAM_PSPOLL_COUNT;
6786 		param_value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX;
6787 		ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id,
6788 						  param_id, param_value);
6789 		if (ret) {
6790 			ath11k_warn(ar->ab, "failed to set vdev %d pspoll count: %d\n",
6791 				    arvif->vdev_id, ret);
6792 			goto err_peer_del;
6793 		}
6794 
6795 		ret = ath11k_wmi_pdev_set_ps_mode(ar, arvif->vdev_id,
6796 						  WMI_STA_PS_MODE_DISABLED);
6797 		if (ret) {
6798 			ath11k_warn(ar->ab, "failed to disable vdev %d ps mode: %d\n",
6799 				    arvif->vdev_id, ret);
6800 			goto err_peer_del;
6801 		}
6802 
6803 		if (test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ab->wmi_ab.svc_map)) {
6804 			reinit_completion(&ar->completed_11d_scan);
6805 			ar->state_11d = ATH11K_11D_PREPARING;
6806 		}
6807 		break;
6808 	case WMI_VDEV_TYPE_MONITOR:
6809 		set_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags);
6810 		break;
6811 	default:
6812 		break;
6813 	}
6814 
6815 	arvif->txpower = vif->bss_conf.txpower;
6816 	ret = ath11k_mac_txpower_recalc(ar);
6817 	if (ret)
6818 		goto err_peer_del;
6819 
6820 	param_id = WMI_VDEV_PARAM_RTS_THRESHOLD;
6821 	param_value = ar->hw->wiphy->rts_threshold;
6822 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
6823 					    param_id, param_value);
6824 	if (ret) {
6825 		ath11k_warn(ar->ab, "failed to set rts threshold for vdev %d: %d\n",
6826 			    arvif->vdev_id, ret);
6827 	}
6828 
6829 	ath11k_dp_vdev_tx_attach(ar, arvif);
6830 
6831 	if (vif->type != NL80211_IFTYPE_MONITOR &&
6832 	    test_bit(ATH11K_FLAG_MONITOR_CONF_ENABLED, &ar->monitor_flags)) {
6833 		ret = ath11k_mac_monitor_vdev_create(ar);
6834 		if (ret)
6835 			ath11k_warn(ar->ab, "failed to create monitor vdev during add interface: %d",
6836 				    ret);
6837 	}
6838 
6839 	if (ath11k_wmi_supports_6ghz_cc_ext(ar)) {
6840 		struct cur_regulatory_info *reg_info;
6841 
6842 		reg_info = &ab->reg_info_store[ar->pdev_idx];
6843 		ath11k_dbg(ab, ATH11K_DBG_MAC, "interface added to change reg rules\n");
6844 		ath11k_reg_handle_chan_list(ab, reg_info, IEEE80211_REG_LPI_AP);
6845 	}
6846 
6847 	mutex_unlock(&ar->conf_mutex);
6848 
6849 	return 0;
6850 
6851 err_peer_del:
6852 	if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
6853 		fbret = ath11k_peer_delete(ar, arvif->vdev_id, vif->addr);
6854 		if (fbret) {
6855 			ath11k_warn(ar->ab, "fallback fail to delete peer addr %pM vdev_id %d ret %d\n",
6856 				    vif->addr, arvif->vdev_id, fbret);
6857 			goto err;
6858 		}
6859 	}
6860 
6861 err_vdev_del:
6862 	ath11k_mac_vdev_delete(ar, arvif);
6863 	spin_lock_bh(&ar->data_lock);
6864 	list_del(&arvif->list);
6865 	spin_unlock_bh(&ar->data_lock);
6866 
6867 err:
6868 	mutex_unlock(&ar->conf_mutex);
6869 
6870 	return ret;
6871 }
6872 
6873 static int ath11k_mac_vif_unref(int buf_id, void *skb, void *ctx)
6874 {
6875 	struct ieee80211_vif *vif = ctx;
6876 	struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB(skb);
6877 
6878 	if (skb_cb->vif == vif)
6879 		skb_cb->vif = NULL;
6880 
6881 	return 0;
6882 }
6883 
6884 static void ath11k_mac_op_remove_interface(struct ieee80211_hw *hw,
6885 					   struct ieee80211_vif *vif)
6886 {
6887 	struct ath11k *ar = hw->priv;
6888 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
6889 	struct ath11k_base *ab = ar->ab;
6890 	int ret;
6891 	int i;
6892 
6893 	cancel_delayed_work_sync(&arvif->connection_loss_work);
6894 	cancel_work_sync(&arvif->bcn_tx_work);
6895 
6896 	mutex_lock(&ar->conf_mutex);
6897 
6898 	ath11k_dbg(ab, ATH11K_DBG_MAC, "remove interface (vdev %d)\n",
6899 		   arvif->vdev_id);
6900 
6901 	ret = ath11k_spectral_vif_stop(arvif);
6902 	if (ret)
6903 		ath11k_warn(ab, "failed to stop spectral for vdev %i: %d\n",
6904 			    arvif->vdev_id, ret);
6905 
6906 	if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
6907 		ath11k_mac_11d_scan_stop(ar);
6908 
6909 	if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
6910 		ret = ath11k_peer_delete(ar, arvif->vdev_id, vif->addr);
6911 		if (ret)
6912 			ath11k_warn(ab, "failed to submit AP self-peer removal on vdev %d: %d\n",
6913 				    arvif->vdev_id, ret);
6914 	}
6915 
6916 	ret = ath11k_mac_vdev_delete(ar, arvif);
6917 	if (ret) {
6918 		ath11k_warn(ab, "failed to delete vdev %d: %d\n",
6919 			    arvif->vdev_id, ret);
6920 		goto err_vdev_del;
6921 	}
6922 
6923 	if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) {
6924 		clear_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags);
6925 		ar->monitor_vdev_id = -1;
6926 	} else if (test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags) &&
6927 		   !test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags)) {
6928 		ret = ath11k_mac_monitor_vdev_delete(ar);
6929 		if (ret)
6930 			/* continue even if there's an error */
6931 			ath11k_warn(ar->ab, "failed to delete vdev monitor during remove interface: %d",
6932 				    ret);
6933 	}
6934 
6935 err_vdev_del:
6936 	spin_lock_bh(&ar->data_lock);
6937 	list_del(&arvif->list);
6938 	spin_unlock_bh(&ar->data_lock);
6939 
6940 	ath11k_peer_cleanup(ar, arvif->vdev_id);
6941 
6942 	idr_for_each(&ar->txmgmt_idr,
6943 		     ath11k_mac_vif_txmgmt_idr_remove, vif);
6944 
6945 	for (i = 0; i < ab->hw_params.max_tx_ring; i++) {
6946 		spin_lock_bh(&ab->dp.tx_ring[i].tx_idr_lock);
6947 		idr_for_each(&ab->dp.tx_ring[i].txbuf_idr,
6948 			     ath11k_mac_vif_unref, vif);
6949 		spin_unlock_bh(&ab->dp.tx_ring[i].tx_idr_lock);
6950 	}
6951 
6952 	/* Recalc txpower for remaining vdev */
6953 	ath11k_mac_txpower_recalc(ar);
6954 
6955 	/* TODO: recal traffic pause state based on the available vdevs */
6956 
6957 	mutex_unlock(&ar->conf_mutex);
6958 }
6959 
6960 /* FIXME: Has to be verified. */
6961 #define SUPPORTED_FILTERS			\
6962 	(FIF_ALLMULTI |				\
6963 	FIF_CONTROL |				\
6964 	FIF_PSPOLL |				\
6965 	FIF_OTHER_BSS |				\
6966 	FIF_BCN_PRBRESP_PROMISC |		\
6967 	FIF_PROBE_REQ |				\
6968 	FIF_FCSFAIL)
6969 
6970 static void ath11k_mac_op_configure_filter(struct ieee80211_hw *hw,
6971 					   unsigned int changed_flags,
6972 					   unsigned int *total_flags,
6973 					   u64 multicast)
6974 {
6975 	struct ath11k *ar = hw->priv;
6976 
6977 	mutex_lock(&ar->conf_mutex);
6978 
6979 	*total_flags &= SUPPORTED_FILTERS;
6980 	ar->filter_flags = *total_flags;
6981 
6982 	mutex_unlock(&ar->conf_mutex);
6983 }
6984 
6985 static int ath11k_mac_op_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant)
6986 {
6987 	struct ath11k *ar = hw->priv;
6988 
6989 	mutex_lock(&ar->conf_mutex);
6990 
6991 	*tx_ant = ar->cfg_tx_chainmask;
6992 	*rx_ant = ar->cfg_rx_chainmask;
6993 
6994 	mutex_unlock(&ar->conf_mutex);
6995 
6996 	return 0;
6997 }
6998 
6999 static int ath11k_mac_op_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant)
7000 {
7001 	struct ath11k *ar = hw->priv;
7002 	int ret;
7003 
7004 	mutex_lock(&ar->conf_mutex);
7005 	ret = __ath11k_set_antenna(ar, tx_ant, rx_ant);
7006 	mutex_unlock(&ar->conf_mutex);
7007 
7008 	return ret;
7009 }
7010 
7011 static int ath11k_mac_op_ampdu_action(struct ieee80211_hw *hw,
7012 				      struct ieee80211_vif *vif,
7013 				      struct ieee80211_ampdu_params *params)
7014 {
7015 	struct ath11k *ar = hw->priv;
7016 	int ret = -EINVAL;
7017 
7018 	mutex_lock(&ar->conf_mutex);
7019 
7020 	switch (params->action) {
7021 	case IEEE80211_AMPDU_RX_START:
7022 		ret = ath11k_dp_rx_ampdu_start(ar, params);
7023 		break;
7024 	case IEEE80211_AMPDU_RX_STOP:
7025 		ret = ath11k_dp_rx_ampdu_stop(ar, params);
7026 		break;
7027 	case IEEE80211_AMPDU_TX_START:
7028 	case IEEE80211_AMPDU_TX_STOP_CONT:
7029 	case IEEE80211_AMPDU_TX_STOP_FLUSH:
7030 	case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
7031 	case IEEE80211_AMPDU_TX_OPERATIONAL:
7032 		/* Tx A-MPDU aggregation offloaded to hw/fw so deny mac80211
7033 		 * Tx aggregation requests.
7034 		 */
7035 		ret = -EOPNOTSUPP;
7036 		break;
7037 	}
7038 
7039 	mutex_unlock(&ar->conf_mutex);
7040 
7041 	return ret;
7042 }
7043 
7044 static int ath11k_mac_op_add_chanctx(struct ieee80211_hw *hw,
7045 				     struct ieee80211_chanctx_conf *ctx)
7046 {
7047 	struct ath11k *ar = hw->priv;
7048 	struct ath11k_base *ab = ar->ab;
7049 
7050 	ath11k_dbg(ab, ATH11K_DBG_MAC,
7051 		   "chanctx add freq %u width %d ptr %p\n",
7052 		   ctx->def.chan->center_freq, ctx->def.width, ctx);
7053 
7054 	mutex_lock(&ar->conf_mutex);
7055 
7056 	spin_lock_bh(&ar->data_lock);
7057 	/* TODO: In case of multiple channel context, populate rx_channel from
7058 	 * Rx PPDU desc information.
7059 	 */
7060 	ar->rx_channel = ctx->def.chan;
7061 	spin_unlock_bh(&ar->data_lock);
7062 
7063 	mutex_unlock(&ar->conf_mutex);
7064 
7065 	return 0;
7066 }
7067 
7068 static void ath11k_mac_op_remove_chanctx(struct ieee80211_hw *hw,
7069 					 struct ieee80211_chanctx_conf *ctx)
7070 {
7071 	struct ath11k *ar = hw->priv;
7072 	struct ath11k_base *ab = ar->ab;
7073 
7074 	ath11k_dbg(ab, ATH11K_DBG_MAC,
7075 		   "chanctx remove freq %u width %d ptr %p\n",
7076 		   ctx->def.chan->center_freq, ctx->def.width, ctx);
7077 
7078 	mutex_lock(&ar->conf_mutex);
7079 
7080 	spin_lock_bh(&ar->data_lock);
7081 	/* TODO: In case of there is one more channel context left, populate
7082 	 * rx_channel with the channel of that remaining channel context.
7083 	 */
7084 	ar->rx_channel = NULL;
7085 	spin_unlock_bh(&ar->data_lock);
7086 
7087 	mutex_unlock(&ar->conf_mutex);
7088 }
7089 
7090 static int
7091 ath11k_mac_vdev_start_restart(struct ath11k_vif *arvif,
7092 			      struct ieee80211_chanctx_conf *ctx,
7093 			      bool restart)
7094 {
7095 	struct ath11k *ar = arvif->ar;
7096 	struct ath11k_base *ab = ar->ab;
7097 	struct wmi_vdev_start_req_arg arg = {};
7098 	const struct cfg80211_chan_def *chandef = &ctx->def;
7099 	int ret = 0;
7100 	unsigned int dfs_cac_time;
7101 
7102 	lockdep_assert_held(&ar->conf_mutex);
7103 
7104 	reinit_completion(&ar->vdev_setup_done);
7105 
7106 	arg.vdev_id = arvif->vdev_id;
7107 	arg.dtim_period = arvif->dtim_period;
7108 	arg.bcn_intval = arvif->beacon_interval;
7109 
7110 	arg.channel.freq = chandef->chan->center_freq;
7111 	arg.channel.band_center_freq1 = chandef->center_freq1;
7112 	arg.channel.band_center_freq2 = chandef->center_freq2;
7113 	arg.channel.mode =
7114 		ath11k_phymodes[chandef->chan->band][chandef->width];
7115 
7116 	arg.channel.min_power = 0;
7117 	arg.channel.max_power = chandef->chan->max_power;
7118 	arg.channel.max_reg_power = chandef->chan->max_reg_power;
7119 	arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain;
7120 
7121 	arg.pref_tx_streams = ar->num_tx_chains;
7122 	arg.pref_rx_streams = ar->num_rx_chains;
7123 
7124 	arg.mbssid_flags = 0;
7125 	arg.mbssid_tx_vdev_id = 0;
7126 	if (test_bit(WMI_TLV_SERVICE_MBSS_PARAM_IN_VDEV_START_SUPPORT,
7127 		     ar->ab->wmi_ab.svc_map)) {
7128 		ret = ath11k_mac_setup_vdev_params_mbssid(arvif,
7129 							  &arg.mbssid_flags,
7130 							  &arg.mbssid_tx_vdev_id);
7131 		if (ret)
7132 			return ret;
7133 	}
7134 
7135 	if (arvif->vdev_type == WMI_VDEV_TYPE_AP) {
7136 		arg.ssid = arvif->u.ap.ssid;
7137 		arg.ssid_len = arvif->u.ap.ssid_len;
7138 		arg.hidden_ssid = arvif->u.ap.hidden_ssid;
7139 
7140 		/* For now allow DFS for AP mode */
7141 		arg.channel.chan_radar =
7142 			!!(chandef->chan->flags & IEEE80211_CHAN_RADAR);
7143 
7144 		arg.channel.freq2_radar = ctx->radar_enabled;
7145 
7146 		arg.channel.passive = arg.channel.chan_radar;
7147 
7148 		spin_lock_bh(&ab->base_lock);
7149 		arg.regdomain = ar->ab->dfs_region;
7150 		spin_unlock_bh(&ab->base_lock);
7151 	}
7152 
7153 	arg.channel.passive |= !!(chandef->chan->flags & IEEE80211_CHAN_NO_IR);
7154 
7155 	ath11k_dbg(ab, ATH11K_DBG_MAC,
7156 		   "vdev %d start center_freq %d phymode %s\n",
7157 		   arg.vdev_id, arg.channel.freq,
7158 		   ath11k_wmi_phymode_str(arg.channel.mode));
7159 
7160 	ret = ath11k_wmi_vdev_start(ar, &arg, restart);
7161 	if (ret) {
7162 		ath11k_warn(ar->ab, "failed to %s WMI vdev %i\n",
7163 			    restart ? "restart" : "start", arg.vdev_id);
7164 		return ret;
7165 	}
7166 
7167 	ret = ath11k_mac_vdev_setup_sync(ar);
7168 	if (ret) {
7169 		ath11k_warn(ab, "failed to synchronize setup for vdev %i %s: %d\n",
7170 			    arg.vdev_id, restart ? "restart" : "start", ret);
7171 		return ret;
7172 	}
7173 
7174 	/* TODO: For now we only set TPC power here. However when
7175 	 * channel changes, say CSA, it should be updated again.
7176 	 */
7177 	if (ath11k_mac_supports_station_tpc(ar, arvif, chandef)) {
7178 		ath11k_mac_fill_reg_tpc_info(ar, arvif->vif, &arvif->chanctx);
7179 		ath11k_wmi_send_vdev_set_tpc_power(ar, arvif->vdev_id,
7180 						   &arvif->reg_tpc_info);
7181 	}
7182 
7183 	if (!restart)
7184 		ar->num_started_vdevs++;
7185 
7186 	ath11k_dbg(ab, ATH11K_DBG_MAC,  "vdev %pM started, vdev_id %d\n",
7187 		   arvif->vif->addr, arvif->vdev_id);
7188 
7189 	/* Enable CAC Flag in the driver by checking the all sub-channel's DFS
7190 	 * state as NL80211_DFS_USABLE which indicates CAC needs to be
7191 	 * done before channel usage. This flags is used to drop rx packets.
7192 	 * during CAC.
7193 	 */
7194 	/* TODO Set the flag for other interface types as required */
7195 	if (arvif->vdev_type == WMI_VDEV_TYPE_AP && ctx->radar_enabled &&
7196 	    cfg80211_chandef_dfs_usable(ar->hw->wiphy, chandef)) {
7197 		set_bit(ATH11K_CAC_RUNNING, &ar->dev_flags);
7198 		dfs_cac_time = cfg80211_chandef_dfs_cac_time(ar->hw->wiphy,
7199 							     chandef);
7200 		ath11k_dbg(ab, ATH11K_DBG_MAC,
7201 			   "cac started dfs_cac_time %u center_freq %d center_freq1 %d for vdev %d\n",
7202 			   dfs_cac_time, arg.channel.freq, chandef->center_freq1,
7203 			   arg.vdev_id);
7204 	}
7205 
7206 	ret = ath11k_mac_set_txbf_conf(arvif);
7207 	if (ret)
7208 		ath11k_warn(ab, "failed to set txbf conf for vdev %d: %d\n",
7209 			    arvif->vdev_id, ret);
7210 
7211 	return 0;
7212 }
7213 
7214 static int ath11k_mac_vdev_stop(struct ath11k_vif *arvif)
7215 {
7216 	struct ath11k *ar = arvif->ar;
7217 	int ret;
7218 
7219 	lockdep_assert_held(&ar->conf_mutex);
7220 
7221 	reinit_completion(&ar->vdev_setup_done);
7222 
7223 	ret = ath11k_wmi_vdev_stop(ar, arvif->vdev_id);
7224 	if (ret) {
7225 		ath11k_warn(ar->ab, "failed to stop WMI vdev %i: %d\n",
7226 			    arvif->vdev_id, ret);
7227 		goto err;
7228 	}
7229 
7230 	ret = ath11k_mac_vdev_setup_sync(ar);
7231 	if (ret) {
7232 		ath11k_warn(ar->ab, "failed to synchronize setup for vdev %i: %d\n",
7233 			    arvif->vdev_id, ret);
7234 		goto err;
7235 	}
7236 
7237 	WARN_ON(ar->num_started_vdevs == 0);
7238 
7239 	ar->num_started_vdevs--;
7240 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %pM stopped, vdev_id %d\n",
7241 		   arvif->vif->addr, arvif->vdev_id);
7242 
7243 	if (test_bit(ATH11K_CAC_RUNNING, &ar->dev_flags)) {
7244 		clear_bit(ATH11K_CAC_RUNNING, &ar->dev_flags);
7245 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "CAC Stopped for vdev %d\n",
7246 			   arvif->vdev_id);
7247 	}
7248 
7249 	return 0;
7250 err:
7251 	return ret;
7252 }
7253 
7254 static int ath11k_mac_vdev_start(struct ath11k_vif *arvif,
7255 				 struct ieee80211_chanctx_conf *ctx)
7256 {
7257 	return ath11k_mac_vdev_start_restart(arvif, ctx, false);
7258 }
7259 
7260 static int ath11k_mac_vdev_restart(struct ath11k_vif *arvif,
7261 				   struct ieee80211_chanctx_conf *ctx)
7262 {
7263 	return ath11k_mac_vdev_start_restart(arvif, ctx, true);
7264 }
7265 
7266 struct ath11k_mac_change_chanctx_arg {
7267 	struct ieee80211_chanctx_conf *ctx;
7268 	struct ieee80211_vif_chanctx_switch *vifs;
7269 	int n_vifs;
7270 	int next_vif;
7271 };
7272 
7273 static void
7274 ath11k_mac_change_chanctx_cnt_iter(void *data, u8 *mac,
7275 				   struct ieee80211_vif *vif)
7276 {
7277 	struct ath11k_mac_change_chanctx_arg *arg = data;
7278 
7279 	if (rcu_access_pointer(vif->bss_conf.chanctx_conf) != arg->ctx)
7280 		return;
7281 
7282 	arg->n_vifs++;
7283 }
7284 
7285 static void
7286 ath11k_mac_change_chanctx_fill_iter(void *data, u8 *mac,
7287 				    struct ieee80211_vif *vif)
7288 {
7289 	struct ath11k_mac_change_chanctx_arg *arg = data;
7290 	struct ieee80211_chanctx_conf *ctx;
7291 
7292 	ctx = rcu_access_pointer(vif->bss_conf.chanctx_conf);
7293 	if (ctx != arg->ctx)
7294 		return;
7295 
7296 	if (WARN_ON(arg->next_vif == arg->n_vifs))
7297 		return;
7298 
7299 	arg->vifs[arg->next_vif].vif = vif;
7300 	arg->vifs[arg->next_vif].old_ctx = ctx;
7301 	arg->vifs[arg->next_vif].new_ctx = ctx;
7302 	arg->next_vif++;
7303 }
7304 
7305 static void
7306 ath11k_mac_update_vif_chan(struct ath11k *ar,
7307 			   struct ieee80211_vif_chanctx_switch *vifs,
7308 			   int n_vifs)
7309 {
7310 	struct ath11k_base *ab = ar->ab;
7311 	struct ath11k_vif *arvif, *tx_arvif = NULL;
7312 	struct ieee80211_vif *mbssid_tx_vif;
7313 	int ret;
7314 	int i;
7315 	bool monitor_vif = false;
7316 
7317 	lockdep_assert_held(&ar->conf_mutex);
7318 
7319 	/* Associated channel resources of all relevant vdevs
7320 	 * should be available for the channel switch now.
7321 	 */
7322 
7323 	/* TODO: Update ar->rx_channel */
7324 
7325 	for (i = 0; i < n_vifs; i++) {
7326 		arvif = ath11k_vif_to_arvif(vifs[i].vif);
7327 
7328 		if (WARN_ON(!arvif->is_started))
7329 			continue;
7330 
7331 		/* change_chanctx can be called even before vdev_up from
7332 		 * ieee80211_start_ap->ieee80211_vif_use_channel->
7333 		 * ieee80211_recalc_radar_chanctx.
7334 		 *
7335 		 * Firmware expect vdev_restart only if vdev is up.
7336 		 * If vdev is down then it expect vdev_stop->vdev_start.
7337 		 */
7338 		if (arvif->is_up) {
7339 			ret = ath11k_mac_vdev_restart(arvif, vifs[i].new_ctx);
7340 			if (ret) {
7341 				ath11k_warn(ab, "failed to restart vdev %d: %d\n",
7342 					    arvif->vdev_id, ret);
7343 				continue;
7344 			}
7345 		} else {
7346 			ret = ath11k_mac_vdev_stop(arvif);
7347 			if (ret) {
7348 				ath11k_warn(ab, "failed to stop vdev %d: %d\n",
7349 					    arvif->vdev_id, ret);
7350 				continue;
7351 			}
7352 
7353 			ret = ath11k_mac_vdev_start(arvif, vifs[i].new_ctx);
7354 			if (ret)
7355 				ath11k_warn(ab, "failed to start vdev %d: %d\n",
7356 					    arvif->vdev_id, ret);
7357 
7358 			continue;
7359 		}
7360 
7361 		ret = ath11k_mac_setup_bcn_tmpl(arvif);
7362 		if (ret)
7363 			ath11k_warn(ab, "failed to update bcn tmpl during csa: %d\n",
7364 				    ret);
7365 
7366 		mbssid_tx_vif = arvif->vif->mbssid_tx_vif;
7367 		if (mbssid_tx_vif)
7368 			tx_arvif = ath11k_vif_to_arvif(mbssid_tx_vif);
7369 
7370 		ret = ath11k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid,
7371 					 arvif->bssid,
7372 					 tx_arvif ? tx_arvif->bssid : NULL,
7373 					 arvif->vif->bss_conf.bssid_index,
7374 					 1 << arvif->vif->bss_conf.bssid_indicator);
7375 		if (ret) {
7376 			ath11k_warn(ab, "failed to bring vdev up %d: %d\n",
7377 				    arvif->vdev_id, ret);
7378 			continue;
7379 		}
7380 	}
7381 
7382 	/* Restart the internal monitor vdev on new channel */
7383 	if (!monitor_vif &&
7384 	    test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) {
7385 		ret = ath11k_mac_monitor_stop(ar);
7386 		if (ret) {
7387 			ath11k_warn(ar->ab, "failed to stop monitor during vif channel update: %d",
7388 				    ret);
7389 			return;
7390 		}
7391 
7392 		ret = ath11k_mac_monitor_start(ar);
7393 		if (ret) {
7394 			ath11k_warn(ar->ab, "failed to start monitor during vif channel update: %d",
7395 				    ret);
7396 			return;
7397 		}
7398 	}
7399 }
7400 
7401 static void
7402 ath11k_mac_update_active_vif_chan(struct ath11k *ar,
7403 				  struct ieee80211_chanctx_conf *ctx)
7404 {
7405 	struct ath11k_mac_change_chanctx_arg arg = { .ctx = ctx };
7406 
7407 	lockdep_assert_held(&ar->conf_mutex);
7408 
7409 	ieee80211_iterate_active_interfaces_atomic(ar->hw,
7410 						   IEEE80211_IFACE_ITER_NORMAL,
7411 						   ath11k_mac_change_chanctx_cnt_iter,
7412 						   &arg);
7413 	if (arg.n_vifs == 0)
7414 		return;
7415 
7416 	arg.vifs = kcalloc(arg.n_vifs, sizeof(arg.vifs[0]), GFP_KERNEL);
7417 	if (!arg.vifs)
7418 		return;
7419 
7420 	ieee80211_iterate_active_interfaces_atomic(ar->hw,
7421 						   IEEE80211_IFACE_ITER_NORMAL,
7422 						   ath11k_mac_change_chanctx_fill_iter,
7423 						   &arg);
7424 
7425 	ath11k_mac_update_vif_chan(ar, arg.vifs, arg.n_vifs);
7426 
7427 	kfree(arg.vifs);
7428 }
7429 
7430 static void ath11k_mac_op_change_chanctx(struct ieee80211_hw *hw,
7431 					 struct ieee80211_chanctx_conf *ctx,
7432 					 u32 changed)
7433 {
7434 	struct ath11k *ar = hw->priv;
7435 	struct ath11k_base *ab = ar->ab;
7436 
7437 	mutex_lock(&ar->conf_mutex);
7438 
7439 	ath11k_dbg(ab, ATH11K_DBG_MAC,
7440 		   "chanctx change freq %u width %d ptr %p changed %x\n",
7441 		   ctx->def.chan->center_freq, ctx->def.width, ctx, changed);
7442 
7443 	/* This shouldn't really happen because channel switching should use
7444 	 * switch_vif_chanctx().
7445 	 */
7446 	if (WARN_ON(changed & IEEE80211_CHANCTX_CHANGE_CHANNEL))
7447 		goto unlock;
7448 
7449 	if (changed & IEEE80211_CHANCTX_CHANGE_WIDTH ||
7450 	    changed & IEEE80211_CHANCTX_CHANGE_RADAR)
7451 		ath11k_mac_update_active_vif_chan(ar, ctx);
7452 
7453 	/* TODO: Recalc radar detection */
7454 
7455 unlock:
7456 	mutex_unlock(&ar->conf_mutex);
7457 }
7458 
7459 static int ath11k_mac_start_vdev_delay(struct ieee80211_hw *hw,
7460 				       struct ieee80211_vif *vif)
7461 {
7462 	struct ath11k *ar = hw->priv;
7463 	struct ath11k_base *ab = ar->ab;
7464 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
7465 	int ret;
7466 
7467 	if (WARN_ON(arvif->is_started))
7468 		return -EBUSY;
7469 
7470 	ret = ath11k_mac_vdev_start(arvif, &arvif->chanctx);
7471 	if (ret) {
7472 		ath11k_warn(ab, "failed to start vdev %i addr %pM on freq %d: %d\n",
7473 			    arvif->vdev_id, vif->addr,
7474 			    arvif->chanctx.def.chan->center_freq, ret);
7475 		return ret;
7476 	}
7477 
7478 	/* Reconfigure hardware rate code since it is cleared by firmware.
7479 	 */
7480 	if (ar->hw_rate_code > 0) {
7481 		u32 vdev_param = WMI_VDEV_PARAM_MGMT_RATE;
7482 
7483 		ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param,
7484 						    ar->hw_rate_code);
7485 		if (ret) {
7486 			ath11k_warn(ar->ab, "failed to set mgmt tx rate %d\n", ret);
7487 			return ret;
7488 		}
7489 	}
7490 
7491 	if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) {
7492 		ret = ath11k_wmi_vdev_up(ar, arvif->vdev_id, 0, ar->mac_addr,
7493 					 NULL, 0, 0);
7494 		if (ret) {
7495 			ath11k_warn(ab, "failed put monitor up: %d\n", ret);
7496 			return ret;
7497 		}
7498 	}
7499 
7500 	arvif->is_started = true;
7501 
7502 	/* TODO: Setup ps and cts/rts protection */
7503 	return 0;
7504 }
7505 
7506 static int ath11k_mac_stop_vdev_early(struct ieee80211_hw *hw,
7507 				      struct ieee80211_vif *vif)
7508 {
7509 	struct ath11k *ar = hw->priv;
7510 	struct ath11k_base *ab = ar->ab;
7511 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
7512 	int ret;
7513 
7514 	if (WARN_ON(!arvif->is_started))
7515 		return -EBUSY;
7516 
7517 	ret = ath11k_mac_vdev_stop(arvif);
7518 	if (ret) {
7519 		ath11k_warn(ab, "failed to stop vdev %i: %d\n",
7520 			    arvif->vdev_id, ret);
7521 		return ret;
7522 	}
7523 
7524 	arvif->is_started = false;
7525 
7526 	/* TODO: Setup ps and cts/rts protection */
7527 	return 0;
7528 }
7529 
7530 static u8 ath11k_mac_get_num_pwr_levels(struct cfg80211_chan_def *chan_def)
7531 {
7532 	if (chan_def->chan->flags & IEEE80211_CHAN_PSD) {
7533 		switch (chan_def->width) {
7534 		case NL80211_CHAN_WIDTH_20:
7535 			return 1;
7536 		case NL80211_CHAN_WIDTH_40:
7537 			return 2;
7538 		case NL80211_CHAN_WIDTH_80:
7539 			return 4;
7540 		case NL80211_CHAN_WIDTH_80P80:
7541 		case NL80211_CHAN_WIDTH_160:
7542 			return 8;
7543 		default:
7544 			return 1;
7545 		}
7546 	} else {
7547 		switch (chan_def->width) {
7548 		case NL80211_CHAN_WIDTH_20:
7549 			return 1;
7550 		case NL80211_CHAN_WIDTH_40:
7551 			return 2;
7552 		case NL80211_CHAN_WIDTH_80:
7553 			return 3;
7554 		case NL80211_CHAN_WIDTH_80P80:
7555 		case NL80211_CHAN_WIDTH_160:
7556 			return 4;
7557 		default:
7558 			return 1;
7559 		}
7560 	}
7561 }
7562 
7563 static u16 ath11k_mac_get_6ghz_start_frequency(struct cfg80211_chan_def *chan_def)
7564 {
7565 	u16 diff_seq;
7566 
7567 	/* It is to get the lowest channel number's center frequency of the chan.
7568 	 * For example,
7569 	 * bandwidth=40 MHz, center frequency is 5965, lowest channel is 1
7570 	 * with center frequency 5955, its diff is 5965 - 5955 = 10.
7571 	 * bandwidth=80 MHz, center frequency is 5985, lowest channel is 1
7572 	 * with center frequency 5955, its diff is 5985 - 5955 = 30.
7573 	 * bandwidth=160 MHz, center frequency is 6025, lowest channel is 1
7574 	 * with center frequency 5955, its diff is 6025 - 5955 = 70.
7575 	 */
7576 	switch (chan_def->width) {
7577 	case NL80211_CHAN_WIDTH_160:
7578 		diff_seq = 70;
7579 		break;
7580 	case NL80211_CHAN_WIDTH_80:
7581 	case NL80211_CHAN_WIDTH_80P80:
7582 		diff_seq = 30;
7583 		break;
7584 	case NL80211_CHAN_WIDTH_40:
7585 		diff_seq = 10;
7586 		break;
7587 	default:
7588 		diff_seq = 0;
7589 	}
7590 
7591 	return chan_def->center_freq1 - diff_seq;
7592 }
7593 
7594 static u16 ath11k_mac_get_seg_freq(struct cfg80211_chan_def *chan_def,
7595 				   u16 start_seq, u8 seq)
7596 {
7597 	u16 seg_seq;
7598 
7599 	/* It is to get the center frequency of the specific bandwidth.
7600 	 * start_seq means the lowest channel number's center frequency.
7601 	 * seq 0/1/2/3 means 20 MHz/40 MHz/80 MHz/160 MHz&80P80.
7602 	 * For example,
7603 	 * lowest channel is 1, its center frequency 5955,
7604 	 * center frequency is 5955 when bandwidth=20 MHz, its diff is 5955 - 5955 = 0.
7605 	 * lowest channel is 1, its center frequency 5955,
7606 	 * center frequency is 5965 when bandwidth=40 MHz, its diff is 5965 - 5955 = 10.
7607 	 * lowest channel is 1, its center frequency 5955,
7608 	 * center frequency is 5985 when bandwidth=80 MHz, its diff is 5985 - 5955 = 30.
7609 	 * lowest channel is 1, its center frequency 5955,
7610 	 * center frequency is 6025 when bandwidth=160 MHz, its diff is 6025 - 5955 = 70.
7611 	 */
7612 	if (chan_def->width == NL80211_CHAN_WIDTH_80P80 && seq == 3)
7613 		return chan_def->center_freq2;
7614 
7615 	seg_seq = 10 * (BIT(seq) - 1);
7616 	return seg_seq + start_seq;
7617 }
7618 
7619 static void ath11k_mac_get_psd_channel(struct ath11k *ar,
7620 				       u16 step_freq,
7621 				       u16 *start_freq,
7622 				       u16 *center_freq,
7623 				       u8 i,
7624 				       struct ieee80211_channel **temp_chan,
7625 				       s8 *tx_power)
7626 {
7627 	/* It is to get the center frequency for each 20 MHz.
7628 	 * For example, if the chan is 160 MHz and center frequency is 6025,
7629 	 * then it include 8 channels, they are 1/5/9/13/17/21/25/29,
7630 	 * channel number 1's center frequency is 5955, it is parameter start_freq.
7631 	 * parameter i is the step of the 8 channels. i is 0~7 for the 8 channels.
7632 	 * the channel 1/5/9/13/17/21/25/29 maps i=0/1/2/3/4/5/6/7,
7633 	 * and maps its center frequency is 5955/5975/5995/6015/6035/6055/6075/6095,
7634 	 * the gap is 20 for each channel, parameter step_freq means the gap.
7635 	 * after get the center frequency of each channel, it is easy to find the
7636 	 * struct ieee80211_channel of it and get the max_reg_power.
7637 	 */
7638 	*center_freq = *start_freq + i * step_freq;
7639 	*temp_chan = ieee80211_get_channel(ar->hw->wiphy, *center_freq);
7640 	*tx_power = (*temp_chan)->max_reg_power;
7641 }
7642 
7643 static void ath11k_mac_get_eirp_power(struct ath11k *ar,
7644 				      u16 *start_freq,
7645 				      u16 *center_freq,
7646 				      u8 i,
7647 				      struct ieee80211_channel **temp_chan,
7648 				      struct cfg80211_chan_def *def,
7649 				      s8 *tx_power)
7650 {
7651 	/* It is to get the center frequency for 20 MHz/40 MHz/80 MHz/
7652 	 * 160 MHz&80P80 bandwidth, and then plus 10 to the center frequency,
7653 	 * it is the center frequency of a channel number.
7654 	 * For example, when configured channel number is 1.
7655 	 * center frequency is 5965 when bandwidth=40 MHz, after plus 10, it is 5975,
7656 	 * then it is channel number 5.
7657 	 * center frequency is 5985 when bandwidth=80 MHz, after plus 10, it is 5995,
7658 	 * then it is channel number 9.
7659 	 * center frequency is 6025 when bandwidth=160 MHz, after plus 10, it is 6035,
7660 	 * then it is channel number 17.
7661 	 * after get the center frequency of each channel, it is easy to find the
7662 	 * struct ieee80211_channel of it and get the max_reg_power.
7663 	 */
7664 	*center_freq = ath11k_mac_get_seg_freq(def, *start_freq, i);
7665 
7666 	/* For the 20 MHz, its center frequency is same with same channel */
7667 	if (i != 0)
7668 		*center_freq += 10;
7669 
7670 	*temp_chan = ieee80211_get_channel(ar->hw->wiphy, *center_freq);
7671 	*tx_power = (*temp_chan)->max_reg_power;
7672 }
7673 
7674 void ath11k_mac_fill_reg_tpc_info(struct ath11k *ar,
7675 				  struct ieee80211_vif *vif,
7676 				  struct ieee80211_chanctx_conf *ctx)
7677 {
7678 	struct ath11k_base *ab = ar->ab;
7679 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
7680 	struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
7681 	struct ath11k_reg_tpc_power_info *reg_tpc_info = &arvif->reg_tpc_info;
7682 	struct ieee80211_channel *chan, *temp_chan;
7683 	u8 pwr_lvl_idx, num_pwr_levels, pwr_reduction;
7684 	bool is_psd_power = false, is_tpe_present = false;
7685 	s8 max_tx_power[ATH11K_NUM_PWR_LEVELS],
7686 		psd_power, tx_power;
7687 	s8 eirp_power = 0;
7688 	u16 start_freq, center_freq;
7689 
7690 	chan = ctx->def.chan;
7691 	start_freq = ath11k_mac_get_6ghz_start_frequency(&ctx->def);
7692 	pwr_reduction = bss_conf->pwr_reduction;
7693 
7694 	if (arvif->reg_tpc_info.num_pwr_levels) {
7695 		is_tpe_present = true;
7696 		num_pwr_levels = arvif->reg_tpc_info.num_pwr_levels;
7697 	} else {
7698 		num_pwr_levels =
7699 			ath11k_mac_get_num_pwr_levels(&bss_conf->chanreq.oper);
7700 	}
7701 
7702 	for (pwr_lvl_idx = 0; pwr_lvl_idx < num_pwr_levels; pwr_lvl_idx++) {
7703 		/* STA received TPE IE*/
7704 		if (is_tpe_present) {
7705 			/* local power is PSD power*/
7706 			if (chan->flags & IEEE80211_CHAN_PSD) {
7707 				/* Connecting AP is psd power */
7708 				if (reg_tpc_info->is_psd_power) {
7709 					is_psd_power = true;
7710 					ath11k_mac_get_psd_channel(ar, 20,
7711 								   &start_freq,
7712 								   &center_freq,
7713 								   pwr_lvl_idx,
7714 								   &temp_chan,
7715 								   &tx_power);
7716 					psd_power = temp_chan->psd;
7717 					eirp_power = tx_power;
7718 					max_tx_power[pwr_lvl_idx] =
7719 						min_t(s8,
7720 						      psd_power,
7721 						      reg_tpc_info->tpe[pwr_lvl_idx]);
7722 				/* Connecting AP is not psd power */
7723 				} else {
7724 					ath11k_mac_get_eirp_power(ar,
7725 								  &start_freq,
7726 								  &center_freq,
7727 								  pwr_lvl_idx,
7728 								  &temp_chan,
7729 								  &ctx->def,
7730 								  &tx_power);
7731 					psd_power = temp_chan->psd;
7732 					/* convert psd power to EIRP power based
7733 					 * on channel width
7734 					 */
7735 					tx_power =
7736 						min_t(s8, tx_power,
7737 						      psd_power + 13 + pwr_lvl_idx * 3);
7738 					max_tx_power[pwr_lvl_idx] =
7739 						min_t(s8,
7740 						      tx_power,
7741 						      reg_tpc_info->tpe[pwr_lvl_idx]);
7742 				}
7743 			/* local power is not PSD power */
7744 			} else {
7745 				/* Connecting AP is psd power */
7746 				if (reg_tpc_info->is_psd_power) {
7747 					is_psd_power = true;
7748 					ath11k_mac_get_psd_channel(ar, 20,
7749 								   &start_freq,
7750 								   &center_freq,
7751 								   pwr_lvl_idx,
7752 								   &temp_chan,
7753 								   &tx_power);
7754 					eirp_power = tx_power;
7755 					max_tx_power[pwr_lvl_idx] =
7756 						reg_tpc_info->tpe[pwr_lvl_idx];
7757 				/* Connecting AP is not psd power */
7758 				} else {
7759 					ath11k_mac_get_eirp_power(ar,
7760 								  &start_freq,
7761 								  &center_freq,
7762 								  pwr_lvl_idx,
7763 								  &temp_chan,
7764 								  &ctx->def,
7765 								  &tx_power);
7766 					max_tx_power[pwr_lvl_idx] =
7767 						min_t(s8,
7768 						      tx_power,
7769 						      reg_tpc_info->tpe[pwr_lvl_idx]);
7770 				}
7771 			}
7772 		/* STA not received TPE IE */
7773 		} else {
7774 			/* local power is PSD power*/
7775 			if (chan->flags & IEEE80211_CHAN_PSD) {
7776 				is_psd_power = true;
7777 				ath11k_mac_get_psd_channel(ar, 20,
7778 							   &start_freq,
7779 							   &center_freq,
7780 							   pwr_lvl_idx,
7781 							   &temp_chan,
7782 							   &tx_power);
7783 				psd_power = temp_chan->psd;
7784 				eirp_power = tx_power;
7785 				max_tx_power[pwr_lvl_idx] = psd_power;
7786 			} else {
7787 				ath11k_mac_get_eirp_power(ar,
7788 							  &start_freq,
7789 							  &center_freq,
7790 							  pwr_lvl_idx,
7791 							  &temp_chan,
7792 							  &ctx->def,
7793 							  &tx_power);
7794 				max_tx_power[pwr_lvl_idx] = tx_power;
7795 			}
7796 		}
7797 
7798 		if (is_psd_power) {
7799 			/* If AP local power constraint is present */
7800 			if (pwr_reduction)
7801 				eirp_power = eirp_power - pwr_reduction;
7802 
7803 			/* If firmware updated max tx power is non zero, then take
7804 			 * the min of firmware updated ap tx power
7805 			 * and max power derived from above mentioned parameters.
7806 			 */
7807 			ath11k_dbg(ab, ATH11K_DBG_MAC,
7808 				   "eirp power : %d firmware report power : %d\n",
7809 				   eirp_power, ar->max_allowed_tx_power);
7810 			/* Firmware reports lower max_allowed_tx_power during vdev
7811 			 * start response. In case of 6 GHz, firmware is not aware
7812 			 * of EIRP power unless driver sets EIRP power through WMI
7813 			 * TPC command. So radio which does not support idle power
7814 			 * save can set maximum calculated EIRP power directly to
7815 			 * firmware through TPC command without min comparison with
7816 			 * vdev start response's max_allowed_tx_power.
7817 			 */
7818 			if (ar->max_allowed_tx_power && ab->hw_params.idle_ps)
7819 				eirp_power = min_t(s8,
7820 						   eirp_power,
7821 						   ar->max_allowed_tx_power);
7822 		} else {
7823 			/* If AP local power constraint is present */
7824 			if (pwr_reduction)
7825 				max_tx_power[pwr_lvl_idx] =
7826 					max_tx_power[pwr_lvl_idx] - pwr_reduction;
7827 			/* If firmware updated max tx power is non zero, then take
7828 			 * the min of firmware updated ap tx power
7829 			 * and max power derived from above mentioned parameters.
7830 			 */
7831 			if (ar->max_allowed_tx_power && ab->hw_params.idle_ps)
7832 				max_tx_power[pwr_lvl_idx] =
7833 					min_t(s8,
7834 					      max_tx_power[pwr_lvl_idx],
7835 					      ar->max_allowed_tx_power);
7836 		}
7837 		reg_tpc_info->chan_power_info[pwr_lvl_idx].chan_cfreq = center_freq;
7838 		reg_tpc_info->chan_power_info[pwr_lvl_idx].tx_power =
7839 			max_tx_power[pwr_lvl_idx];
7840 	}
7841 
7842 	reg_tpc_info->num_pwr_levels = num_pwr_levels;
7843 	reg_tpc_info->is_psd_power = is_psd_power;
7844 	reg_tpc_info->eirp_power = eirp_power;
7845 	reg_tpc_info->ap_power_type =
7846 		ath11k_reg_ap_pwr_convert(vif->bss_conf.power_type);
7847 }
7848 
7849 static void ath11k_mac_parse_tx_pwr_env(struct ath11k *ar,
7850 					struct ieee80211_vif *vif,
7851 					struct ieee80211_chanctx_conf *ctx)
7852 {
7853 	struct ath11k_base *ab = ar->ab;
7854 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
7855 	struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
7856 	struct ieee80211_parsed_tpe_eirp *non_psd = NULL;
7857 	struct ieee80211_parsed_tpe_psd *psd = NULL;
7858 	enum wmi_reg_6ghz_client_type client_type;
7859 	struct cur_regulatory_info *reg_info;
7860 	u8 local_tpe_count, reg_tpe_count;
7861 	bool use_local_tpe;
7862 	int i;
7863 
7864 	reg_info = &ab->reg_info_store[ar->pdev_idx];
7865 	client_type = reg_info->client_type;
7866 
7867 	local_tpe_count =
7868 		bss_conf->tpe.max_local[client_type].valid +
7869 		bss_conf->tpe.psd_local[client_type].valid;
7870 	reg_tpe_count =
7871 		bss_conf->tpe.max_reg_client[client_type].valid +
7872 		bss_conf->tpe.psd_reg_client[client_type].valid;
7873 
7874 	if (!reg_tpe_count && !local_tpe_count) {
7875 		ath11k_warn(ab,
7876 			    "no transmit power envelope match client power type %d\n",
7877 			    client_type);
7878 		return;
7879 	} else if (!reg_tpe_count) {
7880 		use_local_tpe = true;
7881 	} else {
7882 		use_local_tpe = false;
7883 	}
7884 
7885 	if (use_local_tpe) {
7886 		psd = &bss_conf->tpe.psd_local[client_type];
7887 		if (!psd->valid)
7888 			psd = NULL;
7889 		non_psd = &bss_conf->tpe.max_local[client_type];
7890 		if (!non_psd->valid)
7891 			non_psd = NULL;
7892 	} else {
7893 		psd = &bss_conf->tpe.psd_reg_client[client_type];
7894 		if (!psd->valid)
7895 			psd = NULL;
7896 		non_psd = &bss_conf->tpe.max_reg_client[client_type];
7897 		if (!non_psd->valid)
7898 			non_psd = NULL;
7899 	}
7900 
7901 	if (non_psd && !psd) {
7902 		arvif->reg_tpc_info.is_psd_power = false;
7903 		arvif->reg_tpc_info.eirp_power = 0;
7904 
7905 		arvif->reg_tpc_info.num_pwr_levels = non_psd->count;
7906 
7907 		for (i = 0; i < arvif->reg_tpc_info.num_pwr_levels; i++) {
7908 			ath11k_dbg(ab, ATH11K_DBG_MAC,
7909 				   "non PSD power[%d] : %d\n",
7910 				   i, non_psd->power[i]);
7911 			arvif->reg_tpc_info.tpe[i] = non_psd->power[i] / 2;
7912 		}
7913 	}
7914 
7915 	if (psd) {
7916 		arvif->reg_tpc_info.is_psd_power = true;
7917 		arvif->reg_tpc_info.num_pwr_levels = psd->count;
7918 
7919 		for (i = 0; i < arvif->reg_tpc_info.num_pwr_levels; i++) {
7920 			ath11k_dbg(ab, ATH11K_DBG_MAC,
7921 				   "TPE PSD power[%d] : %d\n",
7922 				   i, psd->power[i]);
7923 			arvif->reg_tpc_info.tpe[i] = psd->power[i] / 2;
7924 		}
7925 	}
7926 }
7927 
7928 static int
7929 ath11k_mac_op_assign_vif_chanctx(struct ieee80211_hw *hw,
7930 				 struct ieee80211_vif *vif,
7931 				 struct ieee80211_bss_conf *link_conf,
7932 				 struct ieee80211_chanctx_conf *ctx)
7933 {
7934 	struct ath11k *ar = hw->priv;
7935 	struct ath11k_base *ab = ar->ab;
7936 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
7937 	int ret;
7938 
7939 	mutex_lock(&ar->conf_mutex);
7940 
7941 	ath11k_dbg(ab, ATH11K_DBG_MAC,
7942 		   "chanctx assign ptr %p vdev_id %i\n",
7943 		   ctx, arvif->vdev_id);
7944 
7945 	if (ath11k_wmi_supports_6ghz_cc_ext(ar) &&
7946 	    ctx->def.chan->band == NL80211_BAND_6GHZ &&
7947 	    arvif->vdev_type == WMI_VDEV_TYPE_STA) {
7948 		arvif->chanctx = *ctx;
7949 		ath11k_mac_parse_tx_pwr_env(ar, vif, ctx);
7950 	}
7951 
7952 	/* for QCA6390 bss peer must be created before vdev_start */
7953 	if (ab->hw_params.vdev_start_delay &&
7954 	    arvif->vdev_type != WMI_VDEV_TYPE_AP &&
7955 	    arvif->vdev_type != WMI_VDEV_TYPE_MONITOR &&
7956 	    !ath11k_peer_find_by_vdev_id(ab, arvif->vdev_id)) {
7957 		memcpy(&arvif->chanctx, ctx, sizeof(*ctx));
7958 		ret = 0;
7959 		goto out;
7960 	}
7961 
7962 	if (WARN_ON(arvif->is_started)) {
7963 		ret = -EBUSY;
7964 		goto out;
7965 	}
7966 
7967 	if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) {
7968 		ret = ath11k_mac_monitor_start(ar);
7969 		if (ret) {
7970 			ath11k_warn(ar->ab, "failed to start monitor during vif channel context assignment: %d",
7971 				    ret);
7972 			goto out;
7973 		}
7974 
7975 		arvif->is_started = true;
7976 		goto out;
7977 	}
7978 
7979 	if (!arvif->is_started) {
7980 		ret = ath11k_mac_vdev_start(arvif, ctx);
7981 		if (ret) {
7982 			ath11k_warn(ab, "failed to start vdev %i addr %pM on freq %d: %d\n",
7983 				    arvif->vdev_id, vif->addr,
7984 				    ctx->def.chan->center_freq, ret);
7985 			goto out;
7986 		}
7987 
7988 		arvif->is_started = true;
7989 	}
7990 
7991 	if (arvif->vdev_type != WMI_VDEV_TYPE_MONITOR &&
7992 	    test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) {
7993 		ret = ath11k_mac_monitor_start(ar);
7994 		if (ret) {
7995 			ath11k_warn(ar->ab, "failed to start monitor during vif channel context assignment: %d",
7996 				    ret);
7997 			goto out;
7998 		}
7999 	}
8000 
8001 	/* TODO: Setup ps and cts/rts protection */
8002 
8003 	ret = 0;
8004 
8005 out:
8006 	mutex_unlock(&ar->conf_mutex);
8007 
8008 	return ret;
8009 }
8010 
8011 static void
8012 ath11k_mac_op_unassign_vif_chanctx(struct ieee80211_hw *hw,
8013 				   struct ieee80211_vif *vif,
8014 				   struct ieee80211_bss_conf *link_conf,
8015 				   struct ieee80211_chanctx_conf *ctx)
8016 {
8017 	struct ath11k *ar = hw->priv;
8018 	struct ath11k_base *ab = ar->ab;
8019 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
8020 	struct ath11k_peer *peer;
8021 	int ret;
8022 
8023 	mutex_lock(&ar->conf_mutex);
8024 
8025 	ath11k_dbg(ab, ATH11K_DBG_MAC,
8026 		   "chanctx unassign ptr %p vdev_id %i\n",
8027 		   ctx, arvif->vdev_id);
8028 
8029 	if (ab->hw_params.vdev_start_delay &&
8030 	    arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) {
8031 		spin_lock_bh(&ab->base_lock);
8032 		peer = ath11k_peer_find_by_addr(ab, ar->mac_addr);
8033 		spin_unlock_bh(&ab->base_lock);
8034 		if (peer)
8035 			ath11k_peer_delete(ar, arvif->vdev_id, ar->mac_addr);
8036 	}
8037 
8038 	if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) {
8039 		ret = ath11k_mac_monitor_stop(ar);
8040 		if (ret) {
8041 			ath11k_warn(ar->ab, "failed to stop monitor during vif channel context unassignment: %d",
8042 				    ret);
8043 			mutex_unlock(&ar->conf_mutex);
8044 			return;
8045 		}
8046 
8047 		arvif->is_started = false;
8048 		mutex_unlock(&ar->conf_mutex);
8049 		return;
8050 	}
8051 
8052 	if (arvif->is_started) {
8053 		ret = ath11k_mac_vdev_stop(arvif);
8054 		if (ret)
8055 			ath11k_warn(ab, "failed to stop vdev %i: %d\n",
8056 				    arvif->vdev_id, ret);
8057 
8058 		arvif->is_started = false;
8059 	}
8060 
8061 	if (ab->hw_params.vdev_start_delay &&
8062 	    arvif->vdev_type == WMI_VDEV_TYPE_MONITOR)
8063 		ath11k_wmi_vdev_down(ar, arvif->vdev_id);
8064 
8065 	if (arvif->vdev_type != WMI_VDEV_TYPE_MONITOR &&
8066 	    ar->num_started_vdevs == 1 &&
8067 	    test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) {
8068 		ret = ath11k_mac_monitor_stop(ar);
8069 		if (ret)
8070 			/* continue even if there's an error */
8071 			ath11k_warn(ar->ab, "failed to stop monitor during vif channel context unassignment: %d",
8072 				    ret);
8073 	}
8074 
8075 	if (arvif->vdev_type == WMI_VDEV_TYPE_STA)
8076 		ath11k_mac_11d_scan_start(ar, arvif->vdev_id);
8077 
8078 	mutex_unlock(&ar->conf_mutex);
8079 }
8080 
8081 static int
8082 ath11k_mac_op_switch_vif_chanctx(struct ieee80211_hw *hw,
8083 				 struct ieee80211_vif_chanctx_switch *vifs,
8084 				 int n_vifs,
8085 				 enum ieee80211_chanctx_switch_mode mode)
8086 {
8087 	struct ath11k *ar = hw->priv;
8088 
8089 	mutex_lock(&ar->conf_mutex);
8090 
8091 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
8092 		   "chanctx switch n_vifs %d mode %d\n",
8093 		   n_vifs, mode);
8094 	ath11k_mac_update_vif_chan(ar, vifs, n_vifs);
8095 
8096 	mutex_unlock(&ar->conf_mutex);
8097 
8098 	return 0;
8099 }
8100 
8101 static int
8102 ath11k_set_vdev_param_to_all_vifs(struct ath11k *ar, int param, u32 value)
8103 {
8104 	struct ath11k_vif *arvif;
8105 	int ret = 0;
8106 
8107 	mutex_lock(&ar->conf_mutex);
8108 	list_for_each_entry(arvif, &ar->arvifs, list) {
8109 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "setting mac vdev %d param %d value %d\n",
8110 			   param, arvif->vdev_id, value);
8111 
8112 		ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
8113 						    param, value);
8114 		if (ret) {
8115 			ath11k_warn(ar->ab, "failed to set param %d for vdev %d: %d\n",
8116 				    param, arvif->vdev_id, ret);
8117 			break;
8118 		}
8119 	}
8120 	mutex_unlock(&ar->conf_mutex);
8121 	return ret;
8122 }
8123 
8124 /* mac80211 stores device specific RTS/Fragmentation threshold value,
8125  * this is set interface specific to firmware from ath11k driver
8126  */
8127 static int ath11k_mac_op_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
8128 {
8129 	struct ath11k *ar = hw->priv;
8130 	int param_id = WMI_VDEV_PARAM_RTS_THRESHOLD;
8131 
8132 	return ath11k_set_vdev_param_to_all_vifs(ar, param_id, value);
8133 }
8134 
8135 static int ath11k_mac_op_set_frag_threshold(struct ieee80211_hw *hw, u32 value)
8136 {
8137 	/* Even though there's a WMI vdev param for fragmentation threshold no
8138 	 * known firmware actually implements it. Moreover it is not possible to
8139 	 * rely frame fragmentation to mac80211 because firmware clears the
8140 	 * "more fragments" bit in frame control making it impossible for remote
8141 	 * devices to reassemble frames.
8142 	 *
8143 	 * Hence implement a dummy callback just to say fragmentation isn't
8144 	 * supported. This effectively prevents mac80211 from doing frame
8145 	 * fragmentation in software.
8146 	 */
8147 	return -EOPNOTSUPP;
8148 }
8149 
8150 static int ath11k_mac_flush_tx_complete(struct ath11k *ar)
8151 {
8152 	long time_left;
8153 	int ret = 0;
8154 
8155 	time_left = wait_event_timeout(ar->dp.tx_empty_waitq,
8156 				       (atomic_read(&ar->dp.num_tx_pending) == 0),
8157 				       ATH11K_FLUSH_TIMEOUT);
8158 	if (time_left == 0) {
8159 		ath11k_warn(ar->ab, "failed to flush transmit queue, data pkts pending %d\n",
8160 			    atomic_read(&ar->dp.num_tx_pending));
8161 		ret = -ETIMEDOUT;
8162 	}
8163 
8164 	time_left = wait_event_timeout(ar->txmgmt_empty_waitq,
8165 				       (atomic_read(&ar->num_pending_mgmt_tx) == 0),
8166 				       ATH11K_FLUSH_TIMEOUT);
8167 	if (time_left == 0) {
8168 		ath11k_warn(ar->ab, "failed to flush mgmt transmit queue, mgmt pkts pending %d\n",
8169 			    atomic_read(&ar->num_pending_mgmt_tx));
8170 		ret = -ETIMEDOUT;
8171 	}
8172 
8173 	return ret;
8174 }
8175 
8176 int ath11k_mac_wait_tx_complete(struct ath11k *ar)
8177 {
8178 	ath11k_mac_drain_tx(ar);
8179 	return ath11k_mac_flush_tx_complete(ar);
8180 }
8181 
8182 static void ath11k_mac_op_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
8183 				u32 queues, bool drop)
8184 {
8185 	struct ath11k *ar = hw->priv;
8186 
8187 	if (drop)
8188 		return;
8189 
8190 	ath11k_mac_flush_tx_complete(ar);
8191 }
8192 
8193 static bool
8194 ath11k_mac_has_single_legacy_rate(struct ath11k *ar,
8195 				  enum nl80211_band band,
8196 				  const struct cfg80211_bitrate_mask *mask)
8197 {
8198 	int num_rates = 0;
8199 
8200 	num_rates = hweight32(mask->control[band].legacy);
8201 
8202 	if (ath11k_mac_bitrate_mask_num_ht_rates(ar, band, mask))
8203 		return false;
8204 
8205 	if (ath11k_mac_bitrate_mask_num_vht_rates(ar, band, mask))
8206 		return false;
8207 
8208 	if (ath11k_mac_bitrate_mask_num_he_rates(ar, band, mask))
8209 		return false;
8210 
8211 	return num_rates == 1;
8212 }
8213 
8214 static __le16
8215 ath11k_mac_get_tx_mcs_map(const struct ieee80211_sta_he_cap *he_cap)
8216 {
8217 	if (he_cap->he_cap_elem.phy_cap_info[0] &
8218 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
8219 		return he_cap->he_mcs_nss_supp.tx_mcs_80p80;
8220 
8221 	if (he_cap->he_cap_elem.phy_cap_info[0] &
8222 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
8223 		return he_cap->he_mcs_nss_supp.tx_mcs_160;
8224 
8225 	return he_cap->he_mcs_nss_supp.tx_mcs_80;
8226 }
8227 
8228 static bool
8229 ath11k_mac_bitrate_mask_get_single_nss(struct ath11k *ar,
8230 				       struct ath11k_vif *arvif,
8231 				       enum nl80211_band band,
8232 				       const struct cfg80211_bitrate_mask *mask,
8233 				       int *nss)
8234 {
8235 	struct ieee80211_supported_band *sband = &ar->mac.sbands[band];
8236 	u16 vht_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map);
8237 	const struct ieee80211_sta_he_cap *he_cap;
8238 	u16 he_mcs_map = 0;
8239 	u8 ht_nss_mask = 0;
8240 	u8 vht_nss_mask = 0;
8241 	u8 he_nss_mask = 0;
8242 	int i;
8243 
8244 	/* No need to consider legacy here. Basic rates are always present
8245 	 * in bitrate mask
8246 	 */
8247 
8248 	for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) {
8249 		if (mask->control[band].ht_mcs[i] == 0)
8250 			continue;
8251 		else if (mask->control[band].ht_mcs[i] ==
8252 			 sband->ht_cap.mcs.rx_mask[i])
8253 			ht_nss_mask |= BIT(i);
8254 		else
8255 			return false;
8256 	}
8257 
8258 	for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) {
8259 		if (mask->control[band].vht_mcs[i] == 0)
8260 			continue;
8261 		else if (mask->control[band].vht_mcs[i] ==
8262 			 ath11k_mac_get_max_vht_mcs_map(vht_mcs_map, i))
8263 			vht_nss_mask |= BIT(i);
8264 		else
8265 			return false;
8266 	}
8267 
8268 	he_cap = ieee80211_get_he_iftype_cap_vif(sband, arvif->vif);
8269 	if (!he_cap)
8270 		return false;
8271 
8272 	he_mcs_map = le16_to_cpu(ath11k_mac_get_tx_mcs_map(he_cap));
8273 
8274 	for (i = 0; i < ARRAY_SIZE(mask->control[band].he_mcs); i++) {
8275 		if (mask->control[band].he_mcs[i] == 0)
8276 			continue;
8277 
8278 		if (mask->control[band].he_mcs[i] ==
8279 		    ath11k_mac_get_max_he_mcs_map(he_mcs_map, i))
8280 			he_nss_mask |= BIT(i);
8281 		else
8282 			return false;
8283 	}
8284 
8285 	if (ht_nss_mask != vht_nss_mask || ht_nss_mask != he_nss_mask)
8286 		return false;
8287 
8288 	if (ht_nss_mask == 0)
8289 		return false;
8290 
8291 	if (BIT(fls(ht_nss_mask)) - 1 != ht_nss_mask)
8292 		return false;
8293 
8294 	*nss = fls(ht_nss_mask);
8295 
8296 	return true;
8297 }
8298 
8299 static int
8300 ath11k_mac_get_single_legacy_rate(struct ath11k *ar,
8301 				  enum nl80211_band band,
8302 				  const struct cfg80211_bitrate_mask *mask,
8303 				  u32 *rate, u8 *nss)
8304 {
8305 	int rate_idx;
8306 	u16 bitrate;
8307 	u8 preamble;
8308 	u8 hw_rate;
8309 
8310 	if (hweight32(mask->control[band].legacy) != 1)
8311 		return -EINVAL;
8312 
8313 	rate_idx = ffs(mask->control[band].legacy) - 1;
8314 
8315 	if (band == NL80211_BAND_5GHZ || band == NL80211_BAND_6GHZ)
8316 		rate_idx += ATH11K_MAC_FIRST_OFDM_RATE_IDX;
8317 
8318 	hw_rate = ath11k_legacy_rates[rate_idx].hw_value;
8319 	bitrate = ath11k_legacy_rates[rate_idx].bitrate;
8320 
8321 	if (ath11k_mac_bitrate_is_cck(bitrate))
8322 		preamble = WMI_RATE_PREAMBLE_CCK;
8323 	else
8324 		preamble = WMI_RATE_PREAMBLE_OFDM;
8325 
8326 	*nss = 1;
8327 	*rate = ATH11K_HW_RATE_CODE(hw_rate, 0, preamble);
8328 
8329 	return 0;
8330 }
8331 
8332 static int
8333 ath11k_mac_set_fixed_rate_gi_ltf(struct ath11k_vif *arvif, u8 he_gi, u8 he_ltf)
8334 {
8335 	struct ath11k *ar = arvif->ar;
8336 	int ret;
8337 
8338 	/* 0.8 = 0, 1.6 = 2 and 3.2 = 3. */
8339 	if (he_gi && he_gi != 0xFF)
8340 		he_gi += 1;
8341 
8342 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
8343 					    WMI_VDEV_PARAM_SGI, he_gi);
8344 	if (ret) {
8345 		ath11k_warn(ar->ab, "failed to set he gi %d: %d\n",
8346 			    he_gi, ret);
8347 		return ret;
8348 	}
8349 	/* start from 1 */
8350 	if (he_ltf != 0xFF)
8351 		he_ltf += 1;
8352 
8353 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
8354 					    WMI_VDEV_PARAM_HE_LTF, he_ltf);
8355 	if (ret) {
8356 		ath11k_warn(ar->ab, "failed to set he ltf %d: %d\n",
8357 			    he_ltf, ret);
8358 		return ret;
8359 	}
8360 
8361 	return 0;
8362 }
8363 
8364 static int
8365 ath11k_mac_set_auto_rate_gi_ltf(struct ath11k_vif *arvif, u16 he_gi, u8 he_ltf)
8366 {
8367 	struct ath11k *ar = arvif->ar;
8368 	int ret;
8369 	u32 he_ar_gi_ltf;
8370 
8371 	if (he_gi != 0xFF) {
8372 		switch (he_gi) {
8373 		case NL80211_RATE_INFO_HE_GI_0_8:
8374 			he_gi = WMI_AUTORATE_800NS_GI;
8375 			break;
8376 		case NL80211_RATE_INFO_HE_GI_1_6:
8377 			he_gi = WMI_AUTORATE_1600NS_GI;
8378 			break;
8379 		case NL80211_RATE_INFO_HE_GI_3_2:
8380 			he_gi = WMI_AUTORATE_3200NS_GI;
8381 			break;
8382 		default:
8383 			ath11k_warn(ar->ab, "invalid he gi: %d\n", he_gi);
8384 			return -EINVAL;
8385 		}
8386 	}
8387 
8388 	if (he_ltf != 0xFF) {
8389 		switch (he_ltf) {
8390 		case NL80211_RATE_INFO_HE_1XLTF:
8391 			he_ltf = WMI_HE_AUTORATE_LTF_1X;
8392 			break;
8393 		case NL80211_RATE_INFO_HE_2XLTF:
8394 			he_ltf = WMI_HE_AUTORATE_LTF_2X;
8395 			break;
8396 		case NL80211_RATE_INFO_HE_4XLTF:
8397 			he_ltf = WMI_HE_AUTORATE_LTF_4X;
8398 			break;
8399 		default:
8400 			ath11k_warn(ar->ab, "invalid he ltf: %d\n", he_ltf);
8401 			return -EINVAL;
8402 		}
8403 	}
8404 
8405 	he_ar_gi_ltf = he_gi | he_ltf;
8406 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
8407 					    WMI_VDEV_PARAM_AUTORATE_MISC_CFG,
8408 					    he_ar_gi_ltf);
8409 	if (ret) {
8410 		ath11k_warn(ar->ab,
8411 			    "failed to set he autorate gi %u ltf %u: %d\n",
8412 			    he_gi, he_ltf, ret);
8413 		return ret;
8414 	}
8415 
8416 	return 0;
8417 }
8418 
8419 static int ath11k_mac_set_rate_params(struct ath11k_vif *arvif,
8420 				      u32 rate, u8 nss, u8 sgi, u8 ldpc,
8421 				      u8 he_gi, u8 he_ltf, bool he_fixed_rate)
8422 {
8423 	struct ath11k *ar = arvif->ar;
8424 	u32 vdev_param;
8425 	int ret;
8426 
8427 	lockdep_assert_held(&ar->conf_mutex);
8428 
8429 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
8430 		   "set rate params vdev %i rate 0x%02x nss 0x%02x sgi 0x%02x ldpc 0x%02x he_gi 0x%02x he_ltf 0x%02x he_fixed_rate %d\n",
8431 		   arvif->vdev_id, rate, nss, sgi, ldpc, he_gi,
8432 		   he_ltf, he_fixed_rate);
8433 
8434 	if (!arvif->vif->bss_conf.he_support) {
8435 		vdev_param = WMI_VDEV_PARAM_FIXED_RATE;
8436 		ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
8437 						    vdev_param, rate);
8438 		if (ret) {
8439 			ath11k_warn(ar->ab, "failed to set fixed rate param 0x%02x: %d\n",
8440 				    rate, ret);
8441 			return ret;
8442 		}
8443 	}
8444 
8445 	vdev_param = WMI_VDEV_PARAM_NSS;
8446 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
8447 					    vdev_param, nss);
8448 	if (ret) {
8449 		ath11k_warn(ar->ab, "failed to set nss param %d: %d\n",
8450 			    nss, ret);
8451 		return ret;
8452 	}
8453 
8454 	vdev_param = WMI_VDEV_PARAM_LDPC;
8455 	ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
8456 					    vdev_param, ldpc);
8457 	if (ret) {
8458 		ath11k_warn(ar->ab, "failed to set ldpc param %d: %d\n",
8459 			    ldpc, ret);
8460 		return ret;
8461 	}
8462 
8463 	if (arvif->vif->bss_conf.he_support) {
8464 		if (he_fixed_rate) {
8465 			ret = ath11k_mac_set_fixed_rate_gi_ltf(arvif, he_gi,
8466 							       he_ltf);
8467 			if (ret) {
8468 				ath11k_warn(ar->ab, "failed to set fixed rate gi ltf: %d\n",
8469 					    ret);
8470 				return ret;
8471 			}
8472 		} else {
8473 			ret = ath11k_mac_set_auto_rate_gi_ltf(arvif, he_gi,
8474 							      he_ltf);
8475 			if (ret) {
8476 				ath11k_warn(ar->ab, "failed to set auto rate gi ltf: %d\n",
8477 					    ret);
8478 				return ret;
8479 			}
8480 		}
8481 	} else {
8482 		vdev_param = WMI_VDEV_PARAM_SGI;
8483 		ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id,
8484 						    vdev_param, sgi);
8485 		if (ret) {
8486 			ath11k_warn(ar->ab, "failed to set sgi param %d: %d\n",
8487 				    sgi, ret);
8488 			return ret;
8489 		}
8490 	}
8491 
8492 	return 0;
8493 }
8494 
8495 static bool
8496 ath11k_mac_vht_mcs_range_present(struct ath11k *ar,
8497 				 enum nl80211_band band,
8498 				 const struct cfg80211_bitrate_mask *mask)
8499 {
8500 	int i;
8501 	u16 vht_mcs;
8502 
8503 	for (i = 0; i < NL80211_VHT_NSS_MAX; i++) {
8504 		vht_mcs = mask->control[band].vht_mcs[i];
8505 
8506 		switch (vht_mcs) {
8507 		case 0:
8508 		case BIT(8) - 1:
8509 		case BIT(9) - 1:
8510 		case BIT(10) - 1:
8511 			break;
8512 		default:
8513 			return false;
8514 		}
8515 	}
8516 
8517 	return true;
8518 }
8519 
8520 static bool
8521 ath11k_mac_he_mcs_range_present(struct ath11k *ar,
8522 				enum nl80211_band band,
8523 				const struct cfg80211_bitrate_mask *mask)
8524 {
8525 	int i;
8526 	u16 he_mcs;
8527 
8528 	for (i = 0; i < NL80211_HE_NSS_MAX; i++) {
8529 		he_mcs = mask->control[band].he_mcs[i];
8530 
8531 		switch (he_mcs) {
8532 		case 0:
8533 		case BIT(8) - 1:
8534 		case BIT(10) - 1:
8535 		case BIT(12) - 1:
8536 			break;
8537 		default:
8538 			return false;
8539 		}
8540 	}
8541 
8542 	return true;
8543 }
8544 
8545 static void ath11k_mac_set_bitrate_mask_iter(void *data,
8546 					     struct ieee80211_sta *sta)
8547 {
8548 	struct ath11k_vif *arvif = data;
8549 	struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta);
8550 	struct ath11k *ar = arvif->ar;
8551 
8552 	spin_lock_bh(&ar->data_lock);
8553 	arsta->changed |= IEEE80211_RC_SUPP_RATES_CHANGED;
8554 	spin_unlock_bh(&ar->data_lock);
8555 
8556 	ieee80211_queue_work(ar->hw, &arsta->update_wk);
8557 }
8558 
8559 static void ath11k_mac_disable_peer_fixed_rate(void *data,
8560 					       struct ieee80211_sta *sta)
8561 {
8562 	struct ath11k_vif *arvif = data;
8563 	struct ath11k *ar = arvif->ar;
8564 	int ret;
8565 
8566 	ret = ath11k_wmi_set_peer_param(ar, sta->addr,
8567 					arvif->vdev_id,
8568 					WMI_PEER_PARAM_FIXED_RATE,
8569 					WMI_FIXED_RATE_NONE);
8570 	if (ret)
8571 		ath11k_warn(ar->ab,
8572 			    "failed to disable peer fixed rate for STA %pM ret %d\n",
8573 			    sta->addr, ret);
8574 }
8575 
8576 static bool
8577 ath11k_mac_validate_vht_he_fixed_rate_settings(struct ath11k *ar, enum nl80211_band band,
8578 					       const struct cfg80211_bitrate_mask *mask)
8579 {
8580 	bool he_fixed_rate = false, vht_fixed_rate = false;
8581 	struct ath11k_peer *peer;
8582 	const u16 *vht_mcs_mask, *he_mcs_mask;
8583 	struct ieee80211_link_sta *deflink;
8584 	u8 vht_nss, he_nss;
8585 	bool ret = true;
8586 
8587 	vht_mcs_mask = mask->control[band].vht_mcs;
8588 	he_mcs_mask = mask->control[band].he_mcs;
8589 
8590 	if (ath11k_mac_bitrate_mask_num_vht_rates(ar, band, mask) == 1)
8591 		vht_fixed_rate = true;
8592 
8593 	if (ath11k_mac_bitrate_mask_num_he_rates(ar, band, mask) == 1)
8594 		he_fixed_rate = true;
8595 
8596 	if (!vht_fixed_rate && !he_fixed_rate)
8597 		return true;
8598 
8599 	vht_nss = ath11k_mac_max_vht_nss(vht_mcs_mask);
8600 	he_nss =  ath11k_mac_max_he_nss(he_mcs_mask);
8601 
8602 	rcu_read_lock();
8603 	spin_lock_bh(&ar->ab->base_lock);
8604 	list_for_each_entry(peer, &ar->ab->peers, list) {
8605 		if (peer->sta) {
8606 			deflink = &peer->sta->deflink;
8607 
8608 			if (vht_fixed_rate && (!deflink->vht_cap.vht_supported ||
8609 					       deflink->rx_nss < vht_nss)) {
8610 				ret = false;
8611 				goto out;
8612 			}
8613 
8614 			if (he_fixed_rate && (!deflink->he_cap.has_he ||
8615 					      deflink->rx_nss < he_nss)) {
8616 				ret = false;
8617 				goto out;
8618 			}
8619 		}
8620 	}
8621 
8622 out:
8623 	spin_unlock_bh(&ar->ab->base_lock);
8624 	rcu_read_unlock();
8625 	return ret;
8626 }
8627 
8628 static int
8629 ath11k_mac_op_set_bitrate_mask(struct ieee80211_hw *hw,
8630 			       struct ieee80211_vif *vif,
8631 			       const struct cfg80211_bitrate_mask *mask)
8632 {
8633 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
8634 	struct cfg80211_chan_def def;
8635 	struct ath11k_pdev_cap *cap;
8636 	struct ath11k *ar = arvif->ar;
8637 	enum nl80211_band band;
8638 	const u8 *ht_mcs_mask;
8639 	const u16 *vht_mcs_mask;
8640 	const u16 *he_mcs_mask;
8641 	u8 he_ltf = 0;
8642 	u8 he_gi = 0;
8643 	u32 rate;
8644 	u8 nss;
8645 	u8 sgi;
8646 	u8 ldpc;
8647 	int single_nss;
8648 	int ret;
8649 	int num_rates;
8650 	bool he_fixed_rate = false;
8651 
8652 	if (ath11k_mac_vif_chan(vif, &def))
8653 		return -EPERM;
8654 
8655 	band = def.chan->band;
8656 	cap = &ar->pdev->cap;
8657 	ht_mcs_mask = mask->control[band].ht_mcs;
8658 	vht_mcs_mask = mask->control[band].vht_mcs;
8659 	he_mcs_mask = mask->control[band].he_mcs;
8660 	ldpc = !!(cap->band[band].ht_cap_info & WMI_HT_CAP_TX_LDPC);
8661 
8662 	sgi = mask->control[band].gi;
8663 	if (sgi == NL80211_TXRATE_FORCE_LGI)
8664 		return -EINVAL;
8665 
8666 	he_gi = mask->control[band].he_gi;
8667 	he_ltf = mask->control[band].he_ltf;
8668 
8669 	/* mac80211 doesn't support sending a fixed HT/VHT MCS alone, rather it
8670 	 * requires passing at least one of used basic rates along with them.
8671 	 * Fixed rate setting across different preambles(legacy, HT, VHT) is
8672 	 * not supported by the FW. Hence use of FIXED_RATE vdev param is not
8673 	 * suitable for setting single HT/VHT rates.
8674 	 * But, there could be a single basic rate passed from userspace which
8675 	 * can be done through the FIXED_RATE param.
8676 	 */
8677 	if (ath11k_mac_has_single_legacy_rate(ar, band, mask)) {
8678 		ret = ath11k_mac_get_single_legacy_rate(ar, band, mask, &rate,
8679 							&nss);
8680 		if (ret) {
8681 			ath11k_warn(ar->ab, "failed to get single legacy rate for vdev %i: %d\n",
8682 				    arvif->vdev_id, ret);
8683 			return ret;
8684 		}
8685 		ieee80211_iterate_stations_atomic(ar->hw,
8686 						  ath11k_mac_disable_peer_fixed_rate,
8687 						  arvif);
8688 	} else if (ath11k_mac_bitrate_mask_get_single_nss(ar, arvif, band, mask,
8689 							  &single_nss)) {
8690 		rate = WMI_FIXED_RATE_NONE;
8691 		nss = single_nss;
8692 		mutex_lock(&ar->conf_mutex);
8693 		arvif->bitrate_mask = *mask;
8694 		ieee80211_iterate_stations_atomic(ar->hw,
8695 						  ath11k_mac_set_bitrate_mask_iter,
8696 						  arvif);
8697 		mutex_unlock(&ar->conf_mutex);
8698 	} else {
8699 		rate = WMI_FIXED_RATE_NONE;
8700 
8701 		if (!ath11k_mac_validate_vht_he_fixed_rate_settings(ar, band, mask))
8702 			ath11k_warn(ar->ab,
8703 				    "could not update fixed rate settings to all peers due to mcs/nss incompatibility\n");
8704 		nss = min_t(u32, ar->num_tx_chains,
8705 			    ath11k_mac_max_nss(ht_mcs_mask, vht_mcs_mask, he_mcs_mask));
8706 
8707 		/* If multiple rates across different preambles are given
8708 		 * we can reconfigure this info with all peers using PEER_ASSOC
8709 		 * command with the below exception cases.
8710 		 * - Single VHT Rate : peer_assoc command accommodates only MCS
8711 		 * range values i.e 0-7, 0-8, 0-9 for VHT. Though mac80211
8712 		 * mandates passing basic rates along with HT/VHT rates, FW
8713 		 * doesn't allow switching from VHT to Legacy. Hence instead of
8714 		 * setting legacy and VHT rates using RATEMASK_CMD vdev cmd,
8715 		 * we could set this VHT rate as peer fixed rate param, which
8716 		 * will override FIXED rate and FW rate control algorithm.
8717 		 * If single VHT rate is passed along with HT rates, we select
8718 		 * the VHT rate as fixed rate for vht peers.
8719 		 * - Multiple VHT Rates : When Multiple VHT rates are given,this
8720 		 * can be set using RATEMASK CMD which uses FW rate-ctl alg.
8721 		 * TODO: Setting multiple VHT MCS and replacing peer_assoc with
8722 		 * RATEMASK_CMDID can cover all use cases of setting rates
8723 		 * across multiple preambles and rates within same type.
8724 		 * But requires more validation of the command at this point.
8725 		 */
8726 
8727 		num_rates = ath11k_mac_bitrate_mask_num_vht_rates(ar, band,
8728 								  mask);
8729 
8730 		if (!ath11k_mac_vht_mcs_range_present(ar, band, mask) &&
8731 		    num_rates > 1) {
8732 			/* TODO: Handle multiple VHT MCS values setting using
8733 			 * RATEMASK CMD
8734 			 */
8735 			ath11k_warn(ar->ab,
8736 				    "setting %d mcs values in bitrate mask not supported\n",
8737 				num_rates);
8738 			return -EINVAL;
8739 		}
8740 
8741 		num_rates = ath11k_mac_bitrate_mask_num_he_rates(ar, band,
8742 								 mask);
8743 		if (num_rates == 1)
8744 			he_fixed_rate = true;
8745 
8746 		if (!ath11k_mac_he_mcs_range_present(ar, band, mask) &&
8747 		    num_rates > 1) {
8748 			ath11k_warn(ar->ab,
8749 				    "Setting more than one HE MCS Value in bitrate mask not supported\n");
8750 			return -EINVAL;
8751 		}
8752 
8753 		mutex_lock(&ar->conf_mutex);
8754 		ieee80211_iterate_stations_atomic(ar->hw,
8755 						  ath11k_mac_disable_peer_fixed_rate,
8756 						  arvif);
8757 
8758 		arvif->bitrate_mask = *mask;
8759 		ieee80211_iterate_stations_atomic(ar->hw,
8760 						  ath11k_mac_set_bitrate_mask_iter,
8761 						  arvif);
8762 
8763 		mutex_unlock(&ar->conf_mutex);
8764 	}
8765 
8766 	mutex_lock(&ar->conf_mutex);
8767 
8768 	ret = ath11k_mac_set_rate_params(arvif, rate, nss, sgi, ldpc, he_gi,
8769 					 he_ltf, he_fixed_rate);
8770 	if (ret) {
8771 		ath11k_warn(ar->ab, "failed to set rate params on vdev %i: %d\n",
8772 			    arvif->vdev_id, ret);
8773 	}
8774 
8775 	mutex_unlock(&ar->conf_mutex);
8776 
8777 	return ret;
8778 }
8779 
8780 static void
8781 ath11k_mac_op_reconfig_complete(struct ieee80211_hw *hw,
8782 				enum ieee80211_reconfig_type reconfig_type)
8783 {
8784 	struct ath11k *ar = hw->priv;
8785 	struct ath11k_base *ab = ar->ab;
8786 	int recovery_count;
8787 	struct ath11k_vif *arvif;
8788 
8789 	if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART)
8790 		return;
8791 
8792 	mutex_lock(&ar->conf_mutex);
8793 
8794 	if (ar->state == ATH11K_STATE_RESTARTED) {
8795 		ath11k_warn(ar->ab, "pdev %d successfully recovered\n",
8796 			    ar->pdev->pdev_id);
8797 		ar->state = ATH11K_STATE_ON;
8798 		ieee80211_wake_queues(ar->hw);
8799 
8800 		if (ar->ab->hw_params.current_cc_support &&
8801 		    ar->alpha2[0] != 0 && ar->alpha2[1] != 0)
8802 			ath11k_reg_set_cc(ar);
8803 
8804 		if (ab->is_reset) {
8805 			recovery_count = atomic_inc_return(&ab->recovery_count);
8806 			ath11k_dbg(ab, ATH11K_DBG_BOOT,
8807 				   "recovery count %d\n", recovery_count);
8808 			/* When there are multiple radios in an SOC,
8809 			 * the recovery has to be done for each radio
8810 			 */
8811 			if (recovery_count == ab->num_radios) {
8812 				atomic_dec(&ab->reset_count);
8813 				complete(&ab->reset_complete);
8814 				ab->is_reset = false;
8815 				atomic_set(&ab->fail_cont_count, 0);
8816 				ath11k_dbg(ab, ATH11K_DBG_BOOT, "reset success\n");
8817 			}
8818 		}
8819 		if (ar->ab->hw_params.support_fw_mac_sequence) {
8820 			list_for_each_entry(arvif, &ar->arvifs, list) {
8821 				if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_STA)
8822 					ieee80211_hw_restart_disconnect(arvif->vif);
8823 			}
8824 		}
8825 	}
8826 
8827 	mutex_unlock(&ar->conf_mutex);
8828 }
8829 
8830 static void
8831 ath11k_mac_update_bss_chan_survey(struct ath11k *ar,
8832 				  struct ieee80211_channel *channel)
8833 {
8834 	int ret;
8835 	enum wmi_bss_chan_info_req_type type = WMI_BSS_SURVEY_REQ_TYPE_READ;
8836 
8837 	lockdep_assert_held(&ar->conf_mutex);
8838 
8839 	if (!test_bit(WMI_TLV_SERVICE_BSS_CHANNEL_INFO_64, ar->ab->wmi_ab.svc_map) ||
8840 	    ar->rx_channel != channel)
8841 		return;
8842 
8843 	if (ar->scan.state != ATH11K_SCAN_IDLE) {
8844 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
8845 			   "ignoring bss chan info req while scanning..\n");
8846 		return;
8847 	}
8848 
8849 	reinit_completion(&ar->bss_survey_done);
8850 
8851 	ret = ath11k_wmi_pdev_bss_chan_info_request(ar, type);
8852 	if (ret) {
8853 		ath11k_warn(ar->ab, "failed to send pdev bss chan info request\n");
8854 		return;
8855 	}
8856 
8857 	ret = wait_for_completion_timeout(&ar->bss_survey_done, 3 * HZ);
8858 	if (ret == 0)
8859 		ath11k_warn(ar->ab, "bss channel survey timed out\n");
8860 }
8861 
8862 static int ath11k_mac_op_get_survey(struct ieee80211_hw *hw, int idx,
8863 				    struct survey_info *survey)
8864 {
8865 	struct ath11k *ar = hw->priv;
8866 	struct ieee80211_supported_band *sband;
8867 	struct survey_info *ar_survey;
8868 	int ret = 0;
8869 
8870 	if (idx >= ATH11K_NUM_CHANS)
8871 		return -ENOENT;
8872 
8873 	ar_survey = &ar->survey[idx];
8874 
8875 	mutex_lock(&ar->conf_mutex);
8876 
8877 	sband = hw->wiphy->bands[NL80211_BAND_2GHZ];
8878 	if (sband && idx >= sband->n_channels) {
8879 		idx -= sband->n_channels;
8880 		sband = NULL;
8881 	}
8882 
8883 	if (!sband)
8884 		sband = hw->wiphy->bands[NL80211_BAND_5GHZ];
8885 	if (sband && idx >= sband->n_channels) {
8886 		idx -= sband->n_channels;
8887 		sband = NULL;
8888 	}
8889 
8890 	if (!sband)
8891 		sband = hw->wiphy->bands[NL80211_BAND_6GHZ];
8892 	if (!sband || idx >= sband->n_channels) {
8893 		ret = -ENOENT;
8894 		goto exit;
8895 	}
8896 
8897 	ath11k_mac_update_bss_chan_survey(ar, &sband->channels[idx]);
8898 
8899 	spin_lock_bh(&ar->data_lock);
8900 	memcpy(survey, ar_survey, sizeof(*survey));
8901 	spin_unlock_bh(&ar->data_lock);
8902 
8903 	survey->channel = &sband->channels[idx];
8904 
8905 	if (ar->rx_channel == survey->channel)
8906 		survey->filled |= SURVEY_INFO_IN_USE;
8907 
8908 exit:
8909 	mutex_unlock(&ar->conf_mutex);
8910 	return ret;
8911 }
8912 
8913 static void ath11k_mac_put_chain_rssi(struct station_info *sinfo,
8914 				      struct ath11k_sta *arsta,
8915 				      char *pre,
8916 				      bool clear)
8917 {
8918 	struct ath11k *ar = arsta->arvif->ar;
8919 	int i;
8920 	s8 rssi;
8921 
8922 	for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) {
8923 		sinfo->chains &= ~BIT(i);
8924 		rssi = arsta->chain_signal[i];
8925 		if (clear)
8926 			arsta->chain_signal[i] = ATH11K_INVALID_RSSI_FULL;
8927 
8928 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
8929 			   "sta statistics %s rssi[%d] %d\n", pre, i, rssi);
8930 
8931 		if (rssi != ATH11K_DEFAULT_NOISE_FLOOR &&
8932 		    rssi != ATH11K_INVALID_RSSI_FULL &&
8933 		    rssi != ATH11K_INVALID_RSSI_EMPTY &&
8934 		    rssi != 0) {
8935 			sinfo->chain_signal[i] = rssi;
8936 			sinfo->chains |= BIT(i);
8937 			sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL);
8938 		}
8939 	}
8940 }
8941 
8942 static void ath11k_mac_op_sta_statistics(struct ieee80211_hw *hw,
8943 					 struct ieee80211_vif *vif,
8944 					 struct ieee80211_sta *sta,
8945 					 struct station_info *sinfo)
8946 {
8947 	struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta);
8948 	struct ath11k *ar = arsta->arvif->ar;
8949 	s8 signal;
8950 	bool db2dbm = test_bit(WMI_TLV_SERVICE_HW_DB2DBM_CONVERSION_SUPPORT,
8951 			       ar->ab->wmi_ab.svc_map);
8952 
8953 	sinfo->rx_duration = arsta->rx_duration;
8954 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION);
8955 
8956 	sinfo->tx_duration = arsta->tx_duration;
8957 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION);
8958 
8959 	if (arsta->txrate.legacy || arsta->txrate.nss) {
8960 		if (arsta->txrate.legacy) {
8961 			sinfo->txrate.legacy = arsta->txrate.legacy;
8962 		} else {
8963 			sinfo->txrate.mcs = arsta->txrate.mcs;
8964 			sinfo->txrate.nss = arsta->txrate.nss;
8965 			sinfo->txrate.bw = arsta->txrate.bw;
8966 			sinfo->txrate.he_gi = arsta->txrate.he_gi;
8967 			sinfo->txrate.he_dcm = arsta->txrate.he_dcm;
8968 			sinfo->txrate.he_ru_alloc = arsta->txrate.he_ru_alloc;
8969 		}
8970 		sinfo->txrate.flags = arsta->txrate.flags;
8971 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE);
8972 	}
8973 
8974 	ath11k_mac_put_chain_rssi(sinfo, arsta, "ppdu", false);
8975 
8976 	if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL)) &&
8977 	    arsta->arvif->vdev_type == WMI_VDEV_TYPE_STA &&
8978 	    ar->ab->hw_params.supports_rssi_stats &&
8979 	    !ath11k_debugfs_get_fw_stats(ar, ar->pdev->pdev_id, 0,
8980 					 WMI_REQUEST_RSSI_PER_CHAIN_STAT)) {
8981 		ath11k_mac_put_chain_rssi(sinfo, arsta, "fw stats", true);
8982 	}
8983 
8984 	signal = arsta->rssi_comb;
8985 	if (!signal &&
8986 	    arsta->arvif->vdev_type == WMI_VDEV_TYPE_STA &&
8987 	    ar->ab->hw_params.supports_rssi_stats &&
8988 	    !(ath11k_debugfs_get_fw_stats(ar, ar->pdev->pdev_id, 0,
8989 					WMI_REQUEST_VDEV_STAT)))
8990 		signal = arsta->rssi_beacon;
8991 
8992 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC,
8993 		   "sta statistics db2dbm %u rssi comb %d rssi beacon %d\n",
8994 		   db2dbm, arsta->rssi_comb, arsta->rssi_beacon);
8995 
8996 	if (signal) {
8997 		sinfo->signal = db2dbm ? signal : signal + ATH11K_DEFAULT_NOISE_FLOOR;
8998 		sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL);
8999 	}
9000 
9001 	sinfo->signal_avg = ewma_avg_rssi_read(&arsta->avg_rssi);
9002 
9003 	if (!db2dbm)
9004 		sinfo->signal_avg += ATH11K_DEFAULT_NOISE_FLOOR;
9005 
9006 	sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG);
9007 }
9008 
9009 #if IS_ENABLED(CONFIG_IPV6)
9010 static void ath11k_generate_ns_mc_addr(struct ath11k *ar,
9011 				       struct ath11k_arp_ns_offload *offload)
9012 {
9013 	int i;
9014 
9015 	for (i = 0; i < offload->ipv6_count; i++) {
9016 		offload->self_ipv6_addr[i][0] = 0xff;
9017 		offload->self_ipv6_addr[i][1] = 0x02;
9018 		offload->self_ipv6_addr[i][11] = 0x01;
9019 		offload->self_ipv6_addr[i][12] = 0xff;
9020 		offload->self_ipv6_addr[i][13] =
9021 					offload->ipv6_addr[i][13];
9022 		offload->self_ipv6_addr[i][14] =
9023 					offload->ipv6_addr[i][14];
9024 		offload->self_ipv6_addr[i][15] =
9025 					offload->ipv6_addr[i][15];
9026 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "NS solicited addr %pI6\n",
9027 			   offload->self_ipv6_addr[i]);
9028 	}
9029 }
9030 
9031 static void ath11k_mac_op_ipv6_changed(struct ieee80211_hw *hw,
9032 				       struct ieee80211_vif *vif,
9033 				       struct inet6_dev *idev)
9034 {
9035 	struct ath11k *ar = hw->priv;
9036 	struct ath11k_arp_ns_offload *offload;
9037 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
9038 	struct inet6_ifaddr *ifa6;
9039 	struct ifacaddr6 *ifaca6;
9040 	u32 count, scope;
9041 
9042 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "op ipv6 changed\n");
9043 
9044 	offload = &arvif->arp_ns_offload;
9045 	count = 0;
9046 
9047 	/* The _ipv6_changed() is called with RCU lock already held in
9048 	 * atomic_notifier_call_chain(), so we don't need to call
9049 	 * rcu_read_lock() again here. But note that with CONFIG_PREEMPT_RT
9050 	 * enabled, read_lock_bh() also calls rcu_read_lock(). This is OK
9051 	 * because RCU read critical section is allowed to get nested.
9052 	 */
9053 	read_lock_bh(&idev->lock);
9054 
9055 	memset(offload->ipv6_addr, 0, sizeof(offload->ipv6_addr));
9056 	memset(offload->self_ipv6_addr, 0, sizeof(offload->self_ipv6_addr));
9057 	memcpy(offload->mac_addr, vif->addr, ETH_ALEN);
9058 
9059 	/* get unicast address */
9060 	list_for_each_entry(ifa6, &idev->addr_list, if_list) {
9061 		if (count >= ATH11K_IPV6_MAX_COUNT)
9062 			goto generate;
9063 
9064 		if (ifa6->flags & IFA_F_DADFAILED)
9065 			continue;
9066 		scope = ipv6_addr_src_scope(&ifa6->addr);
9067 		if (scope == IPV6_ADDR_SCOPE_LINKLOCAL ||
9068 		    scope == IPV6_ADDR_SCOPE_GLOBAL) {
9069 			memcpy(offload->ipv6_addr[count], &ifa6->addr.s6_addr,
9070 			       sizeof(ifa6->addr.s6_addr));
9071 			offload->ipv6_type[count] = ATH11K_IPV6_UC_TYPE;
9072 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "count %d ipv6 uc %pI6 scope %d\n",
9073 				   count, offload->ipv6_addr[count],
9074 				   scope);
9075 			count++;
9076 		} else {
9077 			ath11k_warn(ar->ab, "Unsupported ipv6 scope: %d\n", scope);
9078 		}
9079 	}
9080 
9081 	/* get anycast address */
9082 	for (ifaca6 = rcu_dereference(idev->ac_list); ifaca6;
9083 	     ifaca6 = rcu_dereference(ifaca6->aca_next)) {
9084 		if (count >= ATH11K_IPV6_MAX_COUNT)
9085 			goto generate;
9086 
9087 		scope = ipv6_addr_src_scope(&ifaca6->aca_addr);
9088 		if (scope == IPV6_ADDR_SCOPE_LINKLOCAL ||
9089 		    scope == IPV6_ADDR_SCOPE_GLOBAL) {
9090 			memcpy(offload->ipv6_addr[count], &ifaca6->aca_addr,
9091 			       sizeof(ifaca6->aca_addr));
9092 			offload->ipv6_type[count] = ATH11K_IPV6_AC_TYPE;
9093 			ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "count %d ipv6 ac %pI6 scope %d\n",
9094 				   count, offload->ipv6_addr[count],
9095 				   scope);
9096 			count++;
9097 		} else {
9098 			ath11k_warn(ar->ab, "Unsupported ipv scope: %d\n", scope);
9099 		}
9100 	}
9101 
9102 generate:
9103 	offload->ipv6_count = count;
9104 	read_unlock_bh(&idev->lock);
9105 
9106 	/* generate ns multicast address */
9107 	ath11k_generate_ns_mc_addr(ar, offload);
9108 }
9109 #endif
9110 
9111 static void ath11k_mac_op_set_rekey_data(struct ieee80211_hw *hw,
9112 					 struct ieee80211_vif *vif,
9113 					 struct cfg80211_gtk_rekey_data *data)
9114 {
9115 	struct ath11k *ar = hw->priv;
9116 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
9117 	struct ath11k_rekey_data *rekey_data = &arvif->rekey_data;
9118 
9119 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "set rekey data vdev %d\n",
9120 		   arvif->vdev_id);
9121 
9122 	mutex_lock(&ar->conf_mutex);
9123 
9124 	memcpy(rekey_data->kck, data->kck, NL80211_KCK_LEN);
9125 	memcpy(rekey_data->kek, data->kek, NL80211_KEK_LEN);
9126 
9127 	/* The supplicant works on big-endian, the firmware expects it on
9128 	 * little endian.
9129 	 */
9130 	rekey_data->replay_ctr = get_unaligned_be64(data->replay_ctr);
9131 
9132 	arvif->rekey_data.enable_offload = true;
9133 
9134 	ath11k_dbg_dump(ar->ab, ATH11K_DBG_MAC, "kck", NULL,
9135 			rekey_data->kck, NL80211_KCK_LEN);
9136 	ath11k_dbg_dump(ar->ab, ATH11K_DBG_MAC, "kek", NULL,
9137 			rekey_data->kck, NL80211_KEK_LEN);
9138 	ath11k_dbg_dump(ar->ab, ATH11K_DBG_MAC, "replay ctr", NULL,
9139 			&rekey_data->replay_ctr, sizeof(rekey_data->replay_ctr));
9140 
9141 	mutex_unlock(&ar->conf_mutex);
9142 }
9143 
9144 static int ath11k_mac_op_set_bios_sar_specs(struct ieee80211_hw *hw,
9145 					    const struct cfg80211_sar_specs *sar)
9146 {
9147 	struct ath11k *ar = hw->priv;
9148 	const struct cfg80211_sar_sub_specs *sspec;
9149 	int ret, index;
9150 	u8 *sar_tbl;
9151 	u32 i;
9152 
9153 	if (!sar || sar->type != NL80211_SAR_TYPE_POWER ||
9154 	    sar->num_sub_specs == 0)
9155 		return -EINVAL;
9156 
9157 	mutex_lock(&ar->conf_mutex);
9158 
9159 	if (!test_bit(WMI_TLV_SERVICE_BIOS_SAR_SUPPORT, ar->ab->wmi_ab.svc_map) ||
9160 	    !ar->ab->hw_params.bios_sar_capa) {
9161 		ret = -EOPNOTSUPP;
9162 		goto exit;
9163 	}
9164 
9165 	ret = ath11k_wmi_pdev_set_bios_geo_table_param(ar);
9166 	if (ret) {
9167 		ath11k_warn(ar->ab, "failed to set geo table: %d\n", ret);
9168 		goto exit;
9169 	}
9170 
9171 	sar_tbl = kzalloc(BIOS_SAR_TABLE_LEN, GFP_KERNEL);
9172 	if (!sar_tbl) {
9173 		ret = -ENOMEM;
9174 		goto exit;
9175 	}
9176 
9177 	sspec = sar->sub_specs;
9178 	for (i = 0; i < sar->num_sub_specs; i++) {
9179 		if (sspec->freq_range_index >= (BIOS_SAR_TABLE_LEN >> 1)) {
9180 			ath11k_warn(ar->ab, "Ignore bad frequency index %u, max allowed %u\n",
9181 				    sspec->freq_range_index, BIOS_SAR_TABLE_LEN >> 1);
9182 			continue;
9183 		}
9184 
9185 		/* chain0 and chain1 share same power setting */
9186 		sar_tbl[sspec->freq_range_index] = sspec->power;
9187 		index = sspec->freq_range_index + (BIOS_SAR_TABLE_LEN >> 1);
9188 		sar_tbl[index] = sspec->power;
9189 		ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "sar tbl[%d] = %d\n",
9190 			   sspec->freq_range_index, sar_tbl[sspec->freq_range_index]);
9191 		sspec++;
9192 	}
9193 
9194 	ret = ath11k_wmi_pdev_set_bios_sar_table_param(ar, sar_tbl);
9195 	if (ret)
9196 		ath11k_warn(ar->ab, "failed to set sar power: %d", ret);
9197 
9198 	kfree(sar_tbl);
9199 exit:
9200 	mutex_unlock(&ar->conf_mutex);
9201 
9202 	return ret;
9203 }
9204 
9205 static int ath11k_mac_op_cancel_remain_on_channel(struct ieee80211_hw *hw,
9206 						  struct ieee80211_vif *vif)
9207 {
9208 	struct ath11k *ar = hw->priv;
9209 
9210 	mutex_lock(&ar->conf_mutex);
9211 
9212 	spin_lock_bh(&ar->data_lock);
9213 	ar->scan.roc_notify = false;
9214 	spin_unlock_bh(&ar->data_lock);
9215 
9216 	ath11k_scan_abort(ar);
9217 
9218 	mutex_unlock(&ar->conf_mutex);
9219 
9220 	cancel_delayed_work_sync(&ar->scan.timeout);
9221 
9222 	return 0;
9223 }
9224 
9225 static int ath11k_mac_op_remain_on_channel(struct ieee80211_hw *hw,
9226 					   struct ieee80211_vif *vif,
9227 					   struct ieee80211_channel *chan,
9228 					   int duration,
9229 					   enum ieee80211_roc_type type)
9230 {
9231 	struct ath11k *ar = hw->priv;
9232 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
9233 	struct scan_req_params *arg;
9234 	int ret;
9235 	u32 scan_time_msec;
9236 
9237 	mutex_lock(&ar->conf_mutex);
9238 
9239 	spin_lock_bh(&ar->data_lock);
9240 	switch (ar->scan.state) {
9241 	case ATH11K_SCAN_IDLE:
9242 		reinit_completion(&ar->scan.started);
9243 		reinit_completion(&ar->scan.completed);
9244 		reinit_completion(&ar->scan.on_channel);
9245 		ar->scan.state = ATH11K_SCAN_STARTING;
9246 		ar->scan.is_roc = true;
9247 		ar->scan.vdev_id = arvif->vdev_id;
9248 		ar->scan.roc_freq = chan->center_freq;
9249 		ar->scan.roc_notify = true;
9250 		ret = 0;
9251 		break;
9252 	case ATH11K_SCAN_STARTING:
9253 	case ATH11K_SCAN_RUNNING:
9254 	case ATH11K_SCAN_ABORTING:
9255 		ret = -EBUSY;
9256 		break;
9257 	}
9258 	spin_unlock_bh(&ar->data_lock);
9259 
9260 	if (ret)
9261 		goto exit;
9262 
9263 	scan_time_msec = ar->hw->wiphy->max_remain_on_channel_duration * 2;
9264 
9265 	arg = kzalloc(sizeof(*arg), GFP_KERNEL);
9266 	if (!arg) {
9267 		ret = -ENOMEM;
9268 		goto exit;
9269 	}
9270 	ath11k_wmi_start_scan_init(ar, arg);
9271 	arg->num_chan = 1;
9272 	arg->chan_list = kcalloc(arg->num_chan, sizeof(*arg->chan_list),
9273 				 GFP_KERNEL);
9274 	if (!arg->chan_list) {
9275 		ret = -ENOMEM;
9276 		goto free_arg;
9277 	}
9278 
9279 	arg->vdev_id = arvif->vdev_id;
9280 	arg->scan_id = ATH11K_SCAN_ID;
9281 	arg->chan_list[0] = chan->center_freq;
9282 	arg->dwell_time_active = scan_time_msec;
9283 	arg->dwell_time_passive = scan_time_msec;
9284 	arg->max_scan_time = scan_time_msec;
9285 	arg->scan_f_passive = 1;
9286 	arg->burst_duration = duration;
9287 
9288 	if (!ar->ab->hw_params.single_pdev_only)
9289 		arg->scan_f_filter_prb_req = 1;
9290 
9291 	ret = ath11k_start_scan(ar, arg);
9292 	if (ret) {
9293 		ath11k_warn(ar->ab, "failed to start roc scan: %d\n", ret);
9294 
9295 		spin_lock_bh(&ar->data_lock);
9296 		ar->scan.state = ATH11K_SCAN_IDLE;
9297 		spin_unlock_bh(&ar->data_lock);
9298 		goto free_chan_list;
9299 	}
9300 
9301 	ret = wait_for_completion_timeout(&ar->scan.on_channel, 3 * HZ);
9302 	if (ret == 0) {
9303 		ath11k_warn(ar->ab, "failed to switch to channel for roc scan\n");
9304 		ret = ath11k_scan_stop(ar);
9305 		if (ret)
9306 			ath11k_warn(ar->ab, "failed to stop scan: %d\n", ret);
9307 		ret = -ETIMEDOUT;
9308 		goto free_chan_list;
9309 	}
9310 
9311 	ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout,
9312 				     msecs_to_jiffies(duration));
9313 
9314 	ret = 0;
9315 
9316 free_chan_list:
9317 	kfree(arg->chan_list);
9318 free_arg:
9319 	kfree(arg);
9320 exit:
9321 	mutex_unlock(&ar->conf_mutex);
9322 	return ret;
9323 }
9324 
9325 static int ath11k_fw_stats_request(struct ath11k *ar,
9326 				   struct stats_request_params *req_param)
9327 {
9328 	struct ath11k_base *ab = ar->ab;
9329 	unsigned long time_left;
9330 	int ret;
9331 
9332 	lockdep_assert_held(&ar->conf_mutex);
9333 
9334 	spin_lock_bh(&ar->data_lock);
9335 	ar->fw_stats_done = false;
9336 	ath11k_fw_stats_pdevs_free(&ar->fw_stats.pdevs);
9337 	spin_unlock_bh(&ar->data_lock);
9338 
9339 	reinit_completion(&ar->fw_stats_complete);
9340 
9341 	ret = ath11k_wmi_send_stats_request_cmd(ar, req_param);
9342 	if (ret) {
9343 		ath11k_warn(ab, "could not request fw stats (%d)\n",
9344 			    ret);
9345 		return ret;
9346 	}
9347 
9348 	time_left = wait_for_completion_timeout(&ar->fw_stats_complete,
9349 						1 * HZ);
9350 
9351 	if (!time_left)
9352 		return -ETIMEDOUT;
9353 
9354 	return 0;
9355 }
9356 
9357 static int ath11k_mac_op_get_txpower(struct ieee80211_hw *hw,
9358 				     struct ieee80211_vif *vif,
9359 				     int *dbm)
9360 {
9361 	struct ath11k *ar = hw->priv;
9362 	struct ath11k_base *ab = ar->ab;
9363 	struct stats_request_params req_param = {0};
9364 	struct ath11k_fw_stats_pdev *pdev;
9365 	int ret;
9366 
9367 	/* Final Tx power is minimum of Target Power, CTL power, Regulatory
9368 	 * Power, PSD EIRP Power. We just know the Regulatory power from the
9369 	 * regulatory rules obtained. FW knows all these power and sets the min
9370 	 * of these. Hence, we request the FW pdev stats in which FW reports
9371 	 * the minimum of all vdev's channel Tx power.
9372 	 */
9373 	mutex_lock(&ar->conf_mutex);
9374 
9375 	if (ar->state != ATH11K_STATE_ON)
9376 		goto err_fallback;
9377 
9378 	/* Firmware doesn't provide Tx power during CAC hence no need to fetch
9379 	 * the stats.
9380 	 */
9381 	if (test_bit(ATH11K_CAC_RUNNING, &ar->dev_flags)) {
9382 		mutex_unlock(&ar->conf_mutex);
9383 		return -EAGAIN;
9384 	}
9385 
9386 	req_param.pdev_id = ar->pdev->pdev_id;
9387 	req_param.stats_id = WMI_REQUEST_PDEV_STAT;
9388 
9389 	ret = ath11k_fw_stats_request(ar, &req_param);
9390 	if (ret) {
9391 		ath11k_warn(ab, "failed to request fw pdev stats: %d\n", ret);
9392 		goto err_fallback;
9393 	}
9394 
9395 	spin_lock_bh(&ar->data_lock);
9396 	pdev = list_first_entry_or_null(&ar->fw_stats.pdevs,
9397 					struct ath11k_fw_stats_pdev, list);
9398 	if (!pdev) {
9399 		spin_unlock_bh(&ar->data_lock);
9400 		goto err_fallback;
9401 	}
9402 
9403 	/* tx power is set as 2 units per dBm in FW. */
9404 	*dbm = pdev->chan_tx_power / 2;
9405 
9406 	spin_unlock_bh(&ar->data_lock);
9407 	mutex_unlock(&ar->conf_mutex);
9408 
9409 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "txpower from firmware %d, reported %d dBm\n",
9410 		   pdev->chan_tx_power, *dbm);
9411 	return 0;
9412 
9413 err_fallback:
9414 	mutex_unlock(&ar->conf_mutex);
9415 	/* We didn't get txpower from FW. Hence, relying on vif->bss_conf.txpower */
9416 	*dbm = vif->bss_conf.txpower;
9417 	ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "txpower from firmware NaN, reported %d dBm\n",
9418 		   *dbm);
9419 	return 0;
9420 }
9421 
9422 static int ath11k_mac_station_add(struct ath11k *ar,
9423 				  struct ieee80211_vif *vif,
9424 				  struct ieee80211_sta *sta)
9425 {
9426 	struct ath11k_base *ab = ar->ab;
9427 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
9428 	struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta);
9429 	struct peer_create_params peer_param;
9430 	int ret;
9431 
9432 	lockdep_assert_held(&ar->conf_mutex);
9433 
9434 	ret = ath11k_mac_inc_num_stations(arvif, sta);
9435 	if (ret) {
9436 		ath11k_warn(ab, "refusing to associate station: too many connected already (%d)\n",
9437 			    ar->max_num_stations);
9438 		goto exit;
9439 	}
9440 
9441 	arsta->rx_stats = kzalloc(sizeof(*arsta->rx_stats), GFP_KERNEL);
9442 	if (!arsta->rx_stats) {
9443 		ret = -ENOMEM;
9444 		goto dec_num_station;
9445 	}
9446 
9447 	peer_param.vdev_id = arvif->vdev_id;
9448 	peer_param.peer_addr = sta->addr;
9449 	peer_param.peer_type = WMI_PEER_TYPE_DEFAULT;
9450 
9451 	ret = ath11k_peer_create(ar, arvif, sta, &peer_param);
9452 	if (ret) {
9453 		ath11k_warn(ab, "Failed to add peer: %pM for VDEV: %d\n",
9454 			    sta->addr, arvif->vdev_id);
9455 		goto free_rx_stats;
9456 	}
9457 
9458 	ath11k_dbg(ab, ATH11K_DBG_MAC, "Added peer: %pM for VDEV: %d\n",
9459 		   sta->addr, arvif->vdev_id);
9460 
9461 	if (ath11k_debugfs_is_extd_tx_stats_enabled(ar)) {
9462 		arsta->tx_stats = kzalloc(sizeof(*arsta->tx_stats), GFP_KERNEL);
9463 		if (!arsta->tx_stats) {
9464 			ret = -ENOMEM;
9465 			goto free_peer;
9466 		}
9467 	}
9468 
9469 	if (ieee80211_vif_is_mesh(vif)) {
9470 		ath11k_dbg(ab, ATH11K_DBG_MAC,
9471 			   "setting USE_4ADDR for mesh STA %pM\n", sta->addr);
9472 		ret = ath11k_wmi_set_peer_param(ar, sta->addr,
9473 						arvif->vdev_id,
9474 						WMI_PEER_USE_4ADDR, 1);
9475 		if (ret) {
9476 			ath11k_warn(ab, "failed to set mesh STA %pM 4addr capability: %d\n",
9477 				    sta->addr, ret);
9478 			goto free_tx_stats;
9479 		}
9480 	}
9481 
9482 	ret = ath11k_dp_peer_setup(ar, arvif->vdev_id, sta->addr);
9483 	if (ret) {
9484 		ath11k_warn(ab, "failed to setup dp for peer %pM on vdev %i (%d)\n",
9485 			    sta->addr, arvif->vdev_id, ret);
9486 		goto free_tx_stats;
9487 	}
9488 
9489 	if (ab->hw_params.vdev_start_delay &&
9490 	    !arvif->is_started &&
9491 	    arvif->vdev_type != WMI_VDEV_TYPE_AP) {
9492 		ret = ath11k_mac_start_vdev_delay(ar->hw, vif);
9493 		if (ret) {
9494 			ath11k_warn(ab, "failed to delay vdev start: %d\n", ret);
9495 			goto free_tx_stats;
9496 		}
9497 	}
9498 
9499 	ewma_avg_rssi_init(&arsta->avg_rssi);
9500 	return 0;
9501 
9502 free_tx_stats:
9503 	kfree(arsta->tx_stats);
9504 	arsta->tx_stats = NULL;
9505 free_peer:
9506 	ath11k_peer_delete(ar, arvif->vdev_id, sta->addr);
9507 free_rx_stats:
9508 	kfree(arsta->rx_stats);
9509 	arsta->rx_stats = NULL;
9510 dec_num_station:
9511 	ath11k_mac_dec_num_stations(arvif, sta);
9512 exit:
9513 	return ret;
9514 }
9515 
9516 static int ath11k_mac_station_remove(struct ath11k *ar,
9517 				     struct ieee80211_vif *vif,
9518 				     struct ieee80211_sta *sta)
9519 {
9520 	struct ath11k_base *ab = ar->ab;
9521 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
9522 	struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta);
9523 	int ret;
9524 
9525 	if (ab->hw_params.vdev_start_delay &&
9526 	    arvif->is_started &&
9527 	    arvif->vdev_type != WMI_VDEV_TYPE_AP) {
9528 		ret = ath11k_mac_stop_vdev_early(ar->hw, vif);
9529 		if (ret) {
9530 			ath11k_warn(ab, "failed to do early vdev stop: %d\n", ret);
9531 			return ret;
9532 		}
9533 	}
9534 
9535 	ath11k_dp_peer_cleanup(ar, arvif->vdev_id, sta->addr);
9536 
9537 	ret = ath11k_peer_delete(ar, arvif->vdev_id, sta->addr);
9538 	if (ret)
9539 		ath11k_warn(ab, "Failed to delete peer: %pM for VDEV: %d\n",
9540 			    sta->addr, arvif->vdev_id);
9541 	else
9542 		ath11k_dbg(ab, ATH11K_DBG_MAC, "Removed peer: %pM for VDEV: %d\n",
9543 			   sta->addr, arvif->vdev_id);
9544 
9545 	ath11k_mac_dec_num_stations(arvif, sta);
9546 
9547 	kfree(arsta->tx_stats);
9548 	arsta->tx_stats = NULL;
9549 
9550 	kfree(arsta->rx_stats);
9551 	arsta->rx_stats = NULL;
9552 
9553 	return ret;
9554 }
9555 
9556 static int ath11k_mac_op_sta_state(struct ieee80211_hw *hw,
9557 				   struct ieee80211_vif *vif,
9558 				   struct ieee80211_sta *sta,
9559 				   enum ieee80211_sta_state old_state,
9560 				   enum ieee80211_sta_state new_state)
9561 {
9562 	struct ath11k *ar = hw->priv;
9563 	struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif);
9564 	struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta);
9565 	enum ieee80211_ap_reg_power power_type;
9566 	struct cur_regulatory_info *reg_info;
9567 	struct ath11k_peer *peer;
9568 	int ret = 0;
9569 
9570 	/* cancel must be done outside the mutex to avoid deadlock */
9571 	if ((old_state == IEEE80211_STA_NONE &&
9572 	     new_state == IEEE80211_STA_NOTEXIST)) {
9573 		cancel_work_sync(&arsta->update_wk);
9574 		cancel_work_sync(&arsta->set_4addr_wk);
9575 	}
9576 
9577 	mutex_lock(&ar->conf_mutex);
9578 
9579 	if (old_state == IEEE80211_STA_NOTEXIST &&
9580 	    new_state == IEEE80211_STA_NONE) {
9581 		memset(arsta, 0, sizeof(*arsta));
9582 		arsta->arvif = arvif;
9583 		arsta->peer_ps_state = WMI_PEER_PS_STATE_DISABLED;
9584 		INIT_WORK(&arsta->update_wk, ath11k_sta_rc_update_wk);
9585 		INIT_WORK(&arsta->set_4addr_wk, ath11k_sta_set_4addr_wk);
9586 
9587 		ret = ath11k_mac_station_add(ar, vif, sta);
9588 		if (ret)
9589 			ath11k_warn(ar->ab, "Failed to add station: %pM for VDEV: %d\n",
9590 				    sta->addr, arvif->vdev_id);
9591 	} else if ((old_state == IEEE80211_STA_NONE &&
9592 		    new_state == IEEE80211_STA_NOTEXIST)) {
9593 		ret = ath11k_mac_station_remove(ar, vif, sta);
9594 		if (ret)
9595 			ath11k_warn(ar->ab, "Failed to remove station: %pM for VDEV: %d\n",
9596 				    sta->addr, arvif->vdev_id);
9597 
9598 		mutex_lock(&ar->ab->tbl_mtx_lock);
9599 		spin_lock_bh(&ar->ab->base_lock);
9600 		peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr);
9601 		if (peer && peer->sta == sta) {
9602 			ath11k_warn(ar->ab, "Found peer entry %pM n vdev %i after it was supposedly removed\n",
9603 				    vif->addr, arvif->vdev_id);
9604 			ath11k_peer_rhash_delete(ar->ab, peer);
9605 			peer->sta = NULL;
9606 			list_del(&peer->list);
9607 			kfree(peer);
9608 			ar->num_peers--;
9609 		}
9610 		spin_unlock_bh(&ar->ab->base_lock);
9611 		mutex_unlock(&ar->ab->tbl_mtx_lock);
9612 	} else if (old_state == IEEE80211_STA_AUTH &&
9613 		   new_state == IEEE80211_STA_ASSOC &&
9614 		   (vif->type == NL80211_IFTYPE_AP ||
9615 		    vif->type == NL80211_IFTYPE_MESH_POINT ||
9616 		    vif->type == NL80211_IFTYPE_ADHOC)) {
9617 		ret = ath11k_station_assoc(ar, vif, sta, false);
9618 		if (ret)
9619 			ath11k_warn(ar->ab, "Failed to associate station: %pM\n",
9620 				    sta->addr);
9621 
9622 		spin_lock_bh(&ar->data_lock);
9623 		/* Set arsta bw and prev bw */
9624 		arsta->bw = ath11k_mac_ieee80211_sta_bw_to_wmi(ar, sta);
9625 		arsta->bw_prev = arsta->bw;
9626 		spin_unlock_bh(&ar->data_lock);
9627 	} else if (old_state == IEEE80211_STA_ASSOC &&
9628 		   new_state == IEEE80211_STA_AUTHORIZED) {
9629 		spin_lock_bh(&ar->ab->base_lock);
9630 
9631 		peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr);
9632 		if (peer)
9633 			peer->is_authorized = true;
9634 
9635 		spin_unlock_bh(&ar->ab->base_lock);
9636 
9637 		if (vif->type == NL80211_IFTYPE_STATION && arvif->is_up) {
9638 			ret = ath11k_wmi_set_peer_param(ar, sta->addr,
9639 							arvif->vdev_id,
9640 							WMI_PEER_AUTHORIZE,
9641 							1);
9642 			if (ret)
9643 				ath11k_warn(ar->ab, "Unable to authorize peer %pM vdev %d: %d\n",
9644 					    sta->addr, arvif->vdev_id, ret);
9645 		}
9646 
9647 		if (!ret &&
9648 		    ath11k_wmi_supports_6ghz_cc_ext(ar) &&
9649 		    arvif->vdev_type == WMI_VDEV_TYPE_STA &&
9650 		    arvif->chanctx.def.chan &&
9651 		    arvif->chanctx.def.chan->band == NL80211_BAND_6GHZ) {
9652 			reg_info = &ar->ab->reg_info_store[ar->pdev_idx];
9653 			power_type = vif->bss_conf.power_type;
9654 
9655 			if (power_type == IEEE80211_REG_UNSET_AP) {
9656 				ath11k_warn(ar->ab, "invalid power type %d\n",
9657 					    power_type);
9658 				ret = -EINVAL;
9659 			} else {
9660 				ret = ath11k_reg_handle_chan_list(ar->ab,
9661 								  reg_info,
9662 								  power_type);
9663 				if (ret)
9664 					ath11k_warn(ar->ab,
9665 						    "failed to handle chan list with power type %d\n",
9666 						    power_type);
9667 			}
9668 		}
9669 	} else if (old_state == IEEE80211_STA_AUTHORIZED &&
9670 		   new_state == IEEE80211_STA_ASSOC) {
9671 		spin_lock_bh(&ar->ab->base_lock);
9672 
9673 		peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr);
9674 		if (peer)
9675 			peer->is_authorized = false;
9676 
9677 		spin_unlock_bh(&ar->ab->base_lock);
9678 	} else if (old_state == IEEE80211_STA_ASSOC &&
9679 		   new_state == IEEE80211_STA_AUTH &&
9680 		   (vif->type == NL80211_IFTYPE_AP ||
9681 		    vif->type == NL80211_IFTYPE_MESH_POINT ||
9682 		    vif->type == NL80211_IFTYPE_ADHOC)) {
9683 		ret = ath11k_station_disassoc(ar, vif, sta);
9684 		if (ret)
9685 			ath11k_warn(ar->ab, "Failed to disassociate station: %pM\n",
9686 				    sta->addr);
9687 	}
9688 
9689 	mutex_unlock(&ar->conf_mutex);
9690 	return ret;
9691 }
9692 
9693 static const struct ieee80211_ops ath11k_ops = {
9694 	.tx				= ath11k_mac_op_tx,
9695 	.wake_tx_queue			= ieee80211_handle_wake_tx_queue,
9696 	.start                          = ath11k_mac_op_start,
9697 	.stop                           = ath11k_mac_op_stop,
9698 	.reconfig_complete              = ath11k_mac_op_reconfig_complete,
9699 	.add_interface                  = ath11k_mac_op_add_interface,
9700 	.remove_interface		= ath11k_mac_op_remove_interface,
9701 	.update_vif_offload		= ath11k_mac_op_update_vif_offload,
9702 	.config                         = ath11k_mac_op_config,
9703 	.bss_info_changed               = ath11k_mac_op_bss_info_changed,
9704 	.configure_filter		= ath11k_mac_op_configure_filter,
9705 	.hw_scan                        = ath11k_mac_op_hw_scan,
9706 	.cancel_hw_scan                 = ath11k_mac_op_cancel_hw_scan,
9707 	.set_key                        = ath11k_mac_op_set_key,
9708 	.set_rekey_data	                = ath11k_mac_op_set_rekey_data,
9709 	.sta_state                      = ath11k_mac_op_sta_state,
9710 	.sta_set_4addr                  = ath11k_mac_op_sta_set_4addr,
9711 	.sta_set_txpwr			= ath11k_mac_op_sta_set_txpwr,
9712 	.link_sta_rc_update		= ath11k_mac_op_sta_rc_update,
9713 	.conf_tx                        = ath11k_mac_op_conf_tx,
9714 	.set_antenna			= ath11k_mac_op_set_antenna,
9715 	.get_antenna			= ath11k_mac_op_get_antenna,
9716 	.ampdu_action			= ath11k_mac_op_ampdu_action,
9717 	.add_chanctx			= ath11k_mac_op_add_chanctx,
9718 	.remove_chanctx			= ath11k_mac_op_remove_chanctx,
9719 	.change_chanctx			= ath11k_mac_op_change_chanctx,
9720 	.assign_vif_chanctx		= ath11k_mac_op_assign_vif_chanctx,
9721 	.unassign_vif_chanctx		= ath11k_mac_op_unassign_vif_chanctx,
9722 	.switch_vif_chanctx		= ath11k_mac_op_switch_vif_chanctx,
9723 	.set_rts_threshold		= ath11k_mac_op_set_rts_threshold,
9724 	.set_frag_threshold		= ath11k_mac_op_set_frag_threshold,
9725 	.set_bitrate_mask		= ath11k_mac_op_set_bitrate_mask,
9726 	.get_survey			= ath11k_mac_op_get_survey,
9727 	.flush				= ath11k_mac_op_flush,
9728 	.sta_statistics			= ath11k_mac_op_sta_statistics,
9729 	CFG80211_TESTMODE_CMD(ath11k_tm_cmd)
9730 
9731 #ifdef CONFIG_PM
9732 	.suspend			= ath11k_wow_op_suspend,
9733 	.resume				= ath11k_wow_op_resume,
9734 	.set_wakeup			= ath11k_wow_op_set_wakeup,
9735 #endif
9736 
9737 #ifdef CONFIG_ATH11K_DEBUGFS
9738 	.vif_add_debugfs		= ath11k_debugfs_op_vif_add,
9739 	.sta_add_debugfs		= ath11k_debugfs_sta_op_add,
9740 #endif
9741 
9742 #if IS_ENABLED(CONFIG_IPV6)
9743 	.ipv6_addr_change = ath11k_mac_op_ipv6_changed,
9744 #endif
9745 	.get_txpower                    = ath11k_mac_op_get_txpower,
9746 
9747 	.set_sar_specs			= ath11k_mac_op_set_bios_sar_specs,
9748 	.remain_on_channel		= ath11k_mac_op_remain_on_channel,
9749 	.cancel_remain_on_channel	= ath11k_mac_op_cancel_remain_on_channel,
9750 };
9751 
9752 static void ath11k_mac_update_ch_list(struct ath11k *ar,
9753 				      struct ieee80211_supported_band *band,
9754 				      u32 freq_low, u32 freq_high)
9755 {
9756 	int i;
9757 
9758 	if (!(freq_low && freq_high))
9759 		return;
9760 
9761 	for (i = 0; i < band->n_channels; i++) {
9762 		if (band->channels[i].center_freq < freq_low ||
9763 		    band->channels[i].center_freq > freq_high)
9764 			band->channels[i].flags |= IEEE80211_CHAN_DISABLED;
9765 	}
9766 }
9767 
9768 static u32 ath11k_get_phy_id(struct ath11k *ar, u32 band)
9769 {
9770 	struct ath11k_pdev *pdev = ar->pdev;
9771 	struct ath11k_pdev_cap *pdev_cap = &pdev->cap;
9772 
9773 	if (band == WMI_HOST_WLAN_2G_CAP)
9774 		return pdev_cap->band[NL80211_BAND_2GHZ].phy_id;
9775 
9776 	if (band == WMI_HOST_WLAN_5G_CAP)
9777 		return pdev_cap->band[NL80211_BAND_5GHZ].phy_id;
9778 
9779 	ath11k_warn(ar->ab, "unsupported phy cap:%d\n", band);
9780 
9781 	return 0;
9782 }
9783 
9784 static int ath11k_mac_setup_channels_rates(struct ath11k *ar,
9785 					   u32 supported_bands)
9786 {
9787 	struct ieee80211_supported_band *band;
9788 	struct ath11k_hal_reg_capabilities_ext *reg_cap, *temp_reg_cap;
9789 	void *channels;
9790 	u32 phy_id;
9791 
9792 	BUILD_BUG_ON((ARRAY_SIZE(ath11k_2ghz_channels) +
9793 		      ARRAY_SIZE(ath11k_5ghz_channels) +
9794 		      ARRAY_SIZE(ath11k_6ghz_channels)) !=
9795 		     ATH11K_NUM_CHANS);
9796 
9797 	reg_cap = &ar->ab->hal_reg_cap[ar->pdev_idx];
9798 	temp_reg_cap = reg_cap;
9799 
9800 	if (supported_bands & WMI_HOST_WLAN_2G_CAP) {
9801 		channels = kmemdup(ath11k_2ghz_channels,
9802 				   sizeof(ath11k_2ghz_channels),
9803 				   GFP_KERNEL);
9804 		if (!channels)
9805 			return -ENOMEM;
9806 
9807 		band = &ar->mac.sbands[NL80211_BAND_2GHZ];
9808 		band->band = NL80211_BAND_2GHZ;
9809 		band->n_channels = ARRAY_SIZE(ath11k_2ghz_channels);
9810 		band->channels = channels;
9811 		band->n_bitrates = ath11k_g_rates_size;
9812 		band->bitrates = ath11k_g_rates;
9813 		ar->hw->wiphy->bands[NL80211_BAND_2GHZ] = band;
9814 
9815 		if (ar->ab->hw_params.single_pdev_only) {
9816 			phy_id = ath11k_get_phy_id(ar, WMI_HOST_WLAN_2G_CAP);
9817 			temp_reg_cap = &ar->ab->hal_reg_cap[phy_id];
9818 		}
9819 		ath11k_mac_update_ch_list(ar, band,
9820 					  temp_reg_cap->low_2ghz_chan,
9821 					  temp_reg_cap->high_2ghz_chan);
9822 	}
9823 
9824 	if (supported_bands & WMI_HOST_WLAN_5G_CAP) {
9825 		if (reg_cap->high_5ghz_chan >= ATH11K_MIN_6G_FREQ) {
9826 			channels = kmemdup(ath11k_6ghz_channels,
9827 					   sizeof(ath11k_6ghz_channels), GFP_KERNEL);
9828 			if (!channels) {
9829 				kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
9830 				return -ENOMEM;
9831 			}
9832 
9833 			ar->supports_6ghz = true;
9834 			band = &ar->mac.sbands[NL80211_BAND_6GHZ];
9835 			band->band = NL80211_BAND_6GHZ;
9836 			band->n_channels = ARRAY_SIZE(ath11k_6ghz_channels);
9837 			band->channels = channels;
9838 			band->n_bitrates = ath11k_a_rates_size;
9839 			band->bitrates = ath11k_a_rates;
9840 			ar->hw->wiphy->bands[NL80211_BAND_6GHZ] = band;
9841 
9842 			if (ar->ab->hw_params.single_pdev_only) {
9843 				phy_id = ath11k_get_phy_id(ar, WMI_HOST_WLAN_5G_CAP);
9844 				temp_reg_cap = &ar->ab->hal_reg_cap[phy_id];
9845 			}
9846 
9847 			ath11k_mac_update_ch_list(ar, band,
9848 						  temp_reg_cap->low_5ghz_chan,
9849 						  temp_reg_cap->high_5ghz_chan);
9850 		}
9851 
9852 		if (reg_cap->low_5ghz_chan < ATH11K_MIN_6G_FREQ) {
9853 			channels = kmemdup(ath11k_5ghz_channels,
9854 					   sizeof(ath11k_5ghz_channels),
9855 					   GFP_KERNEL);
9856 			if (!channels) {
9857 				kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
9858 				kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels);
9859 				return -ENOMEM;
9860 			}
9861 
9862 			band = &ar->mac.sbands[NL80211_BAND_5GHZ];
9863 			band->band = NL80211_BAND_5GHZ;
9864 			band->n_channels = ARRAY_SIZE(ath11k_5ghz_channels);
9865 			band->channels = channels;
9866 			band->n_bitrates = ath11k_a_rates_size;
9867 			band->bitrates = ath11k_a_rates;
9868 			ar->hw->wiphy->bands[NL80211_BAND_5GHZ] = band;
9869 
9870 			if (ar->ab->hw_params.single_pdev_only) {
9871 				phy_id = ath11k_get_phy_id(ar, WMI_HOST_WLAN_5G_CAP);
9872 				temp_reg_cap = &ar->ab->hal_reg_cap[phy_id];
9873 			}
9874 
9875 			ath11k_mac_update_ch_list(ar, band,
9876 						  temp_reg_cap->low_5ghz_chan,
9877 						  temp_reg_cap->high_5ghz_chan);
9878 		}
9879 	}
9880 
9881 	return 0;
9882 }
9883 
9884 static void ath11k_mac_setup_mac_address_list(struct ath11k *ar)
9885 {
9886 	struct mac_address *addresses;
9887 	u16 n_addresses;
9888 	int i;
9889 
9890 	if (!ar->ab->hw_params.support_dual_stations)
9891 		return;
9892 
9893 	n_addresses = ar->ab->hw_params.num_vdevs;
9894 	addresses = kcalloc(n_addresses, sizeof(*addresses), GFP_KERNEL);
9895 	if (!addresses)
9896 		return;
9897 
9898 	memcpy(addresses[0].addr, ar->mac_addr, ETH_ALEN);
9899 	for (i = 1; i < n_addresses; i++) {
9900 		memcpy(addresses[i].addr, ar->mac_addr, ETH_ALEN);
9901 		/* set Local Administered Address bit */
9902 		addresses[i].addr[0] |= 0x2;
9903 
9904 		addresses[i].addr[0] += (i - 1) << 4;
9905 	}
9906 
9907 	ar->hw->wiphy->addresses = addresses;
9908 	ar->hw->wiphy->n_addresses = n_addresses;
9909 }
9910 
9911 static int ath11k_mac_setup_iface_combinations(struct ath11k *ar)
9912 {
9913 	struct ath11k_base *ab = ar->ab;
9914 	struct ieee80211_iface_combination *combinations;
9915 	struct ieee80211_iface_limit *limits;
9916 	int n_limits;
9917 	bool p2p;
9918 
9919 	p2p = ab->hw_params.interface_modes & BIT(NL80211_IFTYPE_P2P_DEVICE);
9920 
9921 	combinations = kzalloc(sizeof(*combinations), GFP_KERNEL);
9922 	if (!combinations)
9923 		return -ENOMEM;
9924 
9925 	if (p2p)
9926 		n_limits = 3;
9927 	else
9928 		n_limits = 2;
9929 
9930 	limits = kcalloc(n_limits, sizeof(*limits), GFP_KERNEL);
9931 	if (!limits) {
9932 		kfree(combinations);
9933 		return -ENOMEM;
9934 	}
9935 
9936 	limits[0].types |= BIT(NL80211_IFTYPE_STATION);
9937 	limits[1].types |= BIT(NL80211_IFTYPE_AP);
9938 	if (IS_ENABLED(CONFIG_MAC80211_MESH) &&
9939 	    ab->hw_params.interface_modes & BIT(NL80211_IFTYPE_MESH_POINT))
9940 		limits[1].types |= BIT(NL80211_IFTYPE_MESH_POINT);
9941 
9942 	combinations[0].limits = limits;
9943 	combinations[0].n_limits = n_limits;
9944 	combinations[0].beacon_int_infra_match = true;
9945 	combinations[0].beacon_int_min_gcd = 100;
9946 
9947 	if (ab->hw_params.support_dual_stations) {
9948 		limits[0].max = 2;
9949 		limits[1].max = 1;
9950 
9951 		combinations[0].max_interfaces = ab->hw_params.num_vdevs;
9952 		combinations[0].num_different_channels = 2;
9953 	} else {
9954 		limits[0].max = 1;
9955 		limits[1].max = 16;
9956 
9957 		combinations[0].max_interfaces = 16;
9958 		combinations[0].num_different_channels = 1;
9959 		combinations[0].radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
9960 							BIT(NL80211_CHAN_WIDTH_20) |
9961 							BIT(NL80211_CHAN_WIDTH_40) |
9962 							BIT(NL80211_CHAN_WIDTH_80) |
9963 							BIT(NL80211_CHAN_WIDTH_80P80) |
9964 							BIT(NL80211_CHAN_WIDTH_160);
9965 	}
9966 
9967 	if (p2p) {
9968 		limits[1].types |= BIT(NL80211_IFTYPE_P2P_CLIENT) |
9969 			BIT(NL80211_IFTYPE_P2P_GO);
9970 		limits[2].max = 1;
9971 		limits[2].types |= BIT(NL80211_IFTYPE_P2P_DEVICE);
9972 	}
9973 
9974 	ar->hw->wiphy->iface_combinations = combinations;
9975 	ar->hw->wiphy->n_iface_combinations = 1;
9976 
9977 	return 0;
9978 }
9979 
9980 static const u8 ath11k_if_types_ext_capa[] = {
9981 	[0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING,
9982 	[2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT,
9983 	[7] = WLAN_EXT_CAPA8_OPMODE_NOTIF,
9984 };
9985 
9986 static const u8 ath11k_if_types_ext_capa_sta[] = {
9987 	[0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING,
9988 	[2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT,
9989 	[7] = WLAN_EXT_CAPA8_OPMODE_NOTIF,
9990 	[9] = WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT,
9991 };
9992 
9993 static const u8 ath11k_if_types_ext_capa_ap[] = {
9994 	[0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING,
9995 	[2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT,
9996 	[7] = WLAN_EXT_CAPA8_OPMODE_NOTIF,
9997 	[9] = WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT,
9998 	[10] = WLAN_EXT_CAPA11_EMA_SUPPORT,
9999 };
10000 
10001 static const struct wiphy_iftype_ext_capab ath11k_iftypes_ext_capa[] = {
10002 	{
10003 		.extended_capabilities = ath11k_if_types_ext_capa,
10004 		.extended_capabilities_mask = ath11k_if_types_ext_capa,
10005 		.extended_capabilities_len = sizeof(ath11k_if_types_ext_capa),
10006 	}, {
10007 		.iftype = NL80211_IFTYPE_STATION,
10008 		.extended_capabilities = ath11k_if_types_ext_capa_sta,
10009 		.extended_capabilities_mask = ath11k_if_types_ext_capa_sta,
10010 		.extended_capabilities_len =
10011 				sizeof(ath11k_if_types_ext_capa_sta),
10012 	}, {
10013 		.iftype = NL80211_IFTYPE_AP,
10014 		.extended_capabilities = ath11k_if_types_ext_capa_ap,
10015 		.extended_capabilities_mask = ath11k_if_types_ext_capa_ap,
10016 		.extended_capabilities_len =
10017 				sizeof(ath11k_if_types_ext_capa_ap),
10018 	},
10019 };
10020 
10021 static void __ath11k_mac_unregister(struct ath11k *ar)
10022 {
10023 	cancel_work_sync(&ar->regd_update_work);
10024 
10025 	ieee80211_unregister_hw(ar->hw);
10026 
10027 	idr_for_each(&ar->txmgmt_idr, ath11k_mac_tx_mgmt_pending_free, ar);
10028 	idr_destroy(&ar->txmgmt_idr);
10029 
10030 	kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
10031 	kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels);
10032 	kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels);
10033 
10034 	kfree(ar->hw->wiphy->iface_combinations[0].limits);
10035 	kfree(ar->hw->wiphy->iface_combinations);
10036 
10037 	kfree(ar->hw->wiphy->addresses);
10038 
10039 	SET_IEEE80211_DEV(ar->hw, NULL);
10040 }
10041 
10042 void ath11k_mac_unregister(struct ath11k_base *ab)
10043 {
10044 	struct ath11k *ar;
10045 	struct ath11k_pdev *pdev;
10046 	int i;
10047 
10048 	for (i = 0; i < ab->num_radios; i++) {
10049 		pdev = &ab->pdevs[i];
10050 		ar = pdev->ar;
10051 		if (!ar)
10052 			continue;
10053 
10054 		__ath11k_mac_unregister(ar);
10055 	}
10056 
10057 	ath11k_peer_rhash_tbl_destroy(ab);
10058 }
10059 
10060 static int __ath11k_mac_register(struct ath11k *ar)
10061 {
10062 	struct ath11k_base *ab = ar->ab;
10063 	struct ath11k_pdev_cap *cap = &ar->pdev->cap;
10064 	static const u32 cipher_suites[] = {
10065 		WLAN_CIPHER_SUITE_TKIP,
10066 		WLAN_CIPHER_SUITE_CCMP,
10067 		WLAN_CIPHER_SUITE_AES_CMAC,
10068 		WLAN_CIPHER_SUITE_BIP_CMAC_256,
10069 		WLAN_CIPHER_SUITE_BIP_GMAC_128,
10070 		WLAN_CIPHER_SUITE_BIP_GMAC_256,
10071 		WLAN_CIPHER_SUITE_GCMP,
10072 		WLAN_CIPHER_SUITE_GCMP_256,
10073 		WLAN_CIPHER_SUITE_CCMP_256,
10074 	};
10075 	int ret;
10076 	u32 ht_cap = 0;
10077 
10078 	ath11k_pdev_caps_update(ar);
10079 
10080 	SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr);
10081 	ath11k_mac_setup_mac_address_list(ar);
10082 
10083 	SET_IEEE80211_DEV(ar->hw, ab->dev);
10084 
10085 	ret = ath11k_mac_setup_channels_rates(ar,
10086 					      cap->supported_bands);
10087 	if (ret)
10088 		goto err;
10089 
10090 	wiphy_read_of_freq_limits(ar->hw->wiphy);
10091 	ath11k_mac_setup_ht_vht_cap(ar, cap, &ht_cap);
10092 	ath11k_mac_setup_he_cap(ar, cap);
10093 
10094 	ret = ath11k_mac_setup_iface_combinations(ar);
10095 	if (ret) {
10096 		ath11k_err(ar->ab, "failed to setup interface combinations: %d\n", ret);
10097 		goto err_free_channels;
10098 	}
10099 
10100 	ar->hw->wiphy->available_antennas_rx = cap->rx_chain_mask;
10101 	ar->hw->wiphy->available_antennas_tx = cap->tx_chain_mask;
10102 
10103 	ar->hw->wiphy->interface_modes = ab->hw_params.interface_modes;
10104 
10105 	if (ab->hw_params.single_pdev_only && ar->supports_6ghz)
10106 		ieee80211_hw_set(ar->hw, SINGLE_SCAN_ON_ALL_BANDS);
10107 
10108 	if (ab->hw_params.supports_multi_bssid) {
10109 		ieee80211_hw_set(ar->hw, SUPPORTS_MULTI_BSSID);
10110 		ieee80211_hw_set(ar->hw, SUPPORTS_ONLY_HE_MULTI_BSSID);
10111 	}
10112 
10113 	ieee80211_hw_set(ar->hw, SIGNAL_DBM);
10114 	ieee80211_hw_set(ar->hw, SUPPORTS_PS);
10115 	ieee80211_hw_set(ar->hw, SUPPORTS_DYNAMIC_PS);
10116 	ieee80211_hw_set(ar->hw, MFP_CAPABLE);
10117 	ieee80211_hw_set(ar->hw, REPORTS_TX_ACK_STATUS);
10118 	ieee80211_hw_set(ar->hw, HAS_RATE_CONTROL);
10119 	ieee80211_hw_set(ar->hw, AP_LINK_PS);
10120 	ieee80211_hw_set(ar->hw, SPECTRUM_MGMT);
10121 	ieee80211_hw_set(ar->hw, CONNECTION_MONITOR);
10122 	ieee80211_hw_set(ar->hw, SUPPORTS_PER_STA_GTK);
10123 	ieee80211_hw_set(ar->hw, WANT_MONITOR_VIF);
10124 	ieee80211_hw_set(ar->hw, CHANCTX_STA_CSA);
10125 	ieee80211_hw_set(ar->hw, QUEUE_CONTROL);
10126 	ieee80211_hw_set(ar->hw, SUPPORTS_TX_FRAG);
10127 	ieee80211_hw_set(ar->hw, REPORTS_LOW_ACK);
10128 
10129 	if (ath11k_frame_mode == ATH11K_HW_TXRX_ETHERNET) {
10130 		ieee80211_hw_set(ar->hw, SUPPORTS_TX_ENCAP_OFFLOAD);
10131 		ieee80211_hw_set(ar->hw, SUPPORTS_RX_DECAP_OFFLOAD);
10132 	}
10133 
10134 	if (cap->nss_ratio_enabled)
10135 		ieee80211_hw_set(ar->hw, SUPPORTS_VHT_EXT_NSS_BW);
10136 
10137 	if ((ht_cap & WMI_HT_CAP_ENABLED) || ar->supports_6ghz) {
10138 		ieee80211_hw_set(ar->hw, AMPDU_AGGREGATION);
10139 		ieee80211_hw_set(ar->hw, TX_AMPDU_SETUP_IN_HW);
10140 		ieee80211_hw_set(ar->hw, SUPPORTS_REORDERING_BUFFER);
10141 		ieee80211_hw_set(ar->hw, SUPPORTS_AMSDU_IN_AMPDU);
10142 		ieee80211_hw_set(ar->hw, USES_RSS);
10143 	}
10144 
10145 	ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS;
10146 	ar->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
10147 
10148 	/* TODO: Check if HT capability advertised from firmware is different
10149 	 * for each band for a dual band capable radio. It will be tricky to
10150 	 * handle it when the ht capability different for each band.
10151 	 */
10152 	if (ht_cap & WMI_HT_CAP_DYNAMIC_SMPS ||
10153 	    (ar->supports_6ghz && ab->hw_params.supports_dynamic_smps_6ghz))
10154 		ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS;
10155 
10156 	ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID;
10157 	ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN;
10158 
10159 	ar->hw->max_listen_interval = ATH11K_MAX_HW_LISTEN_INTERVAL;
10160 
10161 	ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
10162 	ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
10163 	ar->hw->wiphy->max_remain_on_channel_duration = 5000;
10164 
10165 	ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD;
10166 	ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE |
10167 				   NL80211_FEATURE_AP_SCAN;
10168 
10169 	ar->max_num_stations = TARGET_NUM_STATIONS(ab);
10170 	ar->max_num_peers = TARGET_NUM_PEERS_PDEV(ab);
10171 
10172 	ar->hw->wiphy->max_ap_assoc_sta = ar->max_num_stations;
10173 
10174 	if (test_bit(WMI_TLV_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi->wmi_ab->svc_map)) {
10175 		ar->hw->wiphy->features |=
10176 			NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
10177 	}
10178 
10179 	if (test_bit(WMI_TLV_SERVICE_NLO, ar->wmi->wmi_ab->svc_map)) {
10180 		ar->hw->wiphy->max_sched_scan_ssids = WMI_PNO_MAX_SUPP_NETWORKS;
10181 		ar->hw->wiphy->max_match_sets = WMI_PNO_MAX_SUPP_NETWORKS;
10182 		ar->hw->wiphy->max_sched_scan_ie_len = WMI_PNO_MAX_IE_LENGTH;
10183 		ar->hw->wiphy->max_sched_scan_plans = WMI_PNO_MAX_SCHED_SCAN_PLANS;
10184 		ar->hw->wiphy->max_sched_scan_plan_interval =
10185 			WMI_PNO_MAX_SCHED_SCAN_PLAN_INT;
10186 		ar->hw->wiphy->max_sched_scan_plan_iterations =
10187 			WMI_PNO_MAX_SCHED_SCAN_PLAN_ITRNS;
10188 		ar->hw->wiphy->features |= NL80211_FEATURE_ND_RANDOM_MAC_ADDR;
10189 	}
10190 
10191 	ret = ath11k_wow_init(ar);
10192 	if (ret) {
10193 		ath11k_warn(ar->ab, "failed to init wow: %d\n", ret);
10194 		goto err_free_if_combs;
10195 	}
10196 
10197 	if (test_bit(WMI_TLV_SERVICE_TX_DATA_MGMT_ACK_RSSI,
10198 		     ar->ab->wmi_ab.svc_map))
10199 		wiphy_ext_feature_set(ar->hw->wiphy,
10200 				      NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT);
10201 
10202 	ar->hw->queues = ATH11K_HW_MAX_QUEUES;
10203 	ar->hw->wiphy->tx_queue_len = ATH11K_QUEUE_LEN;
10204 	ar->hw->offchannel_tx_hw_queue = ATH11K_HW_MAX_QUEUES - 1;
10205 	ar->hw->max_rx_aggregation_subframes = IEEE80211_MAX_AMPDU_BUF_HE;
10206 
10207 	ar->hw->vif_data_size = sizeof(struct ath11k_vif);
10208 	ar->hw->sta_data_size = sizeof(struct ath11k_sta);
10209 
10210 	wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
10211 	wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_STA_TX_PWR);
10212 	if (test_bit(WMI_TLV_SERVICE_BSS_COLOR_OFFLOAD,
10213 		     ar->ab->wmi_ab.svc_map)) {
10214 		wiphy_ext_feature_set(ar->hw->wiphy,
10215 				      NL80211_EXT_FEATURE_BSS_COLOR);
10216 		ieee80211_hw_set(ar->hw, DETECTS_COLOR_COLLISION);
10217 	}
10218 
10219 	ar->hw->wiphy->cipher_suites = cipher_suites;
10220 	ar->hw->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites);
10221 
10222 	ar->hw->wiphy->iftype_ext_capab = ath11k_iftypes_ext_capa;
10223 	ar->hw->wiphy->num_iftype_ext_capab =
10224 		ARRAY_SIZE(ath11k_iftypes_ext_capa);
10225 
10226 	if (ar->supports_6ghz) {
10227 		wiphy_ext_feature_set(ar->hw->wiphy,
10228 				      NL80211_EXT_FEATURE_FILS_DISCOVERY);
10229 		wiphy_ext_feature_set(ar->hw->wiphy,
10230 				      NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP);
10231 	}
10232 
10233 	wiphy_ext_feature_set(ar->hw->wiphy,
10234 			      NL80211_EXT_FEATURE_SET_SCAN_DWELL);
10235 
10236 	if (test_bit(WMI_TLV_SERVICE_RTT, ar->ab->wmi_ab.svc_map))
10237 		wiphy_ext_feature_set(ar->hw->wiphy,
10238 				      NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER);
10239 
10240 	ar->hw->wiphy->mbssid_max_interfaces = TARGET_NUM_VDEVS(ab);
10241 	ar->hw->wiphy->ema_max_profile_periodicity = TARGET_EMA_MAX_PROFILE_PERIOD;
10242 
10243 	ath11k_reg_init(ar);
10244 
10245 	if (!test_bit(ATH11K_FLAG_RAW_MODE, &ab->dev_flags)) {
10246 		ar->hw->netdev_features = NETIF_F_HW_CSUM;
10247 		ieee80211_hw_set(ar->hw, SW_CRYPTO_CONTROL);
10248 		ieee80211_hw_set(ar->hw, SUPPORT_FAST_XMIT);
10249 	}
10250 
10251 	if (test_bit(WMI_TLV_SERVICE_BIOS_SAR_SUPPORT, ar->ab->wmi_ab.svc_map) &&
10252 	    ab->hw_params.bios_sar_capa)
10253 		ar->hw->wiphy->sar_capa = ab->hw_params.bios_sar_capa;
10254 
10255 	ret = ieee80211_register_hw(ar->hw);
10256 	if (ret) {
10257 		ath11k_err(ar->ab, "ieee80211 registration failed: %d\n", ret);
10258 		goto err_free_if_combs;
10259 	}
10260 
10261 	if (!ab->hw_params.supports_monitor)
10262 		/* There's a race between calling ieee80211_register_hw()
10263 		 * and here where the monitor mode is enabled for a little
10264 		 * while. But that time is so short and in practise it make
10265 		 * a difference in real life.
10266 		 */
10267 		ar->hw->wiphy->interface_modes &= ~BIT(NL80211_IFTYPE_MONITOR);
10268 
10269 	/* Apply the regd received during initialization */
10270 	ret = ath11k_regd_update(ar);
10271 	if (ret) {
10272 		ath11k_err(ar->ab, "ath11k regd update failed: %d\n", ret);
10273 		goto err_unregister_hw;
10274 	}
10275 
10276 	if (ab->hw_params.current_cc_support && ab->new_alpha2[0]) {
10277 		memcpy(&ar->alpha2, ab->new_alpha2, 2);
10278 		ret = ath11k_reg_set_cc(ar);
10279 		if (ret)
10280 			ath11k_warn(ar->ab,
10281 				    "failed set cc code for mac register: %d\n", ret);
10282 	}
10283 
10284 	ret = ath11k_debugfs_register(ar);
10285 	if (ret) {
10286 		ath11k_err(ar->ab, "debugfs registration failed: %d\n", ret);
10287 		goto err_unregister_hw;
10288 	}
10289 
10290 	return 0;
10291 
10292 err_unregister_hw:
10293 	ieee80211_unregister_hw(ar->hw);
10294 
10295 err_free_if_combs:
10296 	kfree(ar->hw->wiphy->iface_combinations[0].limits);
10297 	kfree(ar->hw->wiphy->iface_combinations);
10298 
10299 err_free_channels:
10300 	kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels);
10301 	kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels);
10302 	kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels);
10303 
10304 err:
10305 	SET_IEEE80211_DEV(ar->hw, NULL);
10306 	return ret;
10307 }
10308 
10309 int ath11k_mac_register(struct ath11k_base *ab)
10310 {
10311 	struct ath11k *ar;
10312 	struct ath11k_pdev *pdev;
10313 	int i;
10314 	int ret;
10315 	u8 mac_addr[ETH_ALEN] = {0};
10316 
10317 	if (test_bit(ATH11K_FLAG_REGISTERED, &ab->dev_flags))
10318 		return 0;
10319 
10320 	/* Initialize channel counters frequency value in hertz */
10321 	ab->cc_freq_hz = IPQ8074_CC_FREQ_HERTZ;
10322 	ab->free_vdev_map = (1LL << (ab->num_radios * TARGET_NUM_VDEVS(ab))) - 1;
10323 
10324 	ret = ath11k_peer_rhash_tbl_init(ab);
10325 	if (ret)
10326 		return ret;
10327 
10328 	device_get_mac_address(ab->dev, mac_addr);
10329 
10330 	for (i = 0; i < ab->num_radios; i++) {
10331 		pdev = &ab->pdevs[i];
10332 		ar = pdev->ar;
10333 		if (ab->pdevs_macaddr_valid) {
10334 			ether_addr_copy(ar->mac_addr, pdev->mac_addr);
10335 		} else {
10336 			if (is_zero_ether_addr(mac_addr))
10337 				ether_addr_copy(ar->mac_addr, ab->mac_addr);
10338 			else
10339 				ether_addr_copy(ar->mac_addr, mac_addr);
10340 			ar->mac_addr[4] += i;
10341 		}
10342 
10343 		idr_init(&ar->txmgmt_idr);
10344 		spin_lock_init(&ar->txmgmt_idr_lock);
10345 
10346 		ret = __ath11k_mac_register(ar);
10347 		if (ret)
10348 			goto err_cleanup;
10349 
10350 		init_waitqueue_head(&ar->txmgmt_empty_waitq);
10351 	}
10352 
10353 	return 0;
10354 
10355 err_cleanup:
10356 	for (i = i - 1; i >= 0; i--) {
10357 		pdev = &ab->pdevs[i];
10358 		ar = pdev->ar;
10359 		__ath11k_mac_unregister(ar);
10360 	}
10361 
10362 	ath11k_peer_rhash_tbl_destroy(ab);
10363 
10364 	return ret;
10365 }
10366 
10367 int ath11k_mac_allocate(struct ath11k_base *ab)
10368 {
10369 	struct ieee80211_hw *hw;
10370 	struct ath11k *ar;
10371 	struct ath11k_pdev *pdev;
10372 	int ret;
10373 	int i;
10374 
10375 	if (test_bit(ATH11K_FLAG_REGISTERED, &ab->dev_flags))
10376 		return 0;
10377 
10378 	for (i = 0; i < ab->num_radios; i++) {
10379 		pdev = &ab->pdevs[i];
10380 		hw = ieee80211_alloc_hw(sizeof(struct ath11k), &ath11k_ops);
10381 		if (!hw) {
10382 			ath11k_warn(ab, "failed to allocate mac80211 hw device\n");
10383 			ret = -ENOMEM;
10384 			goto err_free_mac;
10385 		}
10386 
10387 		ar = hw->priv;
10388 		ar->hw = hw;
10389 		ar->ab = ab;
10390 		ar->pdev = pdev;
10391 		ar->pdev_idx = i;
10392 		ar->lmac_id = ath11k_hw_get_mac_from_pdev_id(&ab->hw_params, i);
10393 
10394 		ar->wmi = &ab->wmi_ab.wmi[i];
10395 		/* FIXME wmi[0] is already initialized during attach,
10396 		 * Should we do this again?
10397 		 */
10398 		ath11k_wmi_pdev_attach(ab, i);
10399 
10400 		ar->cfg_tx_chainmask = pdev->cap.tx_chain_mask;
10401 		ar->cfg_rx_chainmask = pdev->cap.rx_chain_mask;
10402 		ar->num_tx_chains = get_num_chains(pdev->cap.tx_chain_mask);
10403 		ar->num_rx_chains = get_num_chains(pdev->cap.rx_chain_mask);
10404 
10405 		pdev->ar = ar;
10406 		spin_lock_init(&ar->data_lock);
10407 		INIT_LIST_HEAD(&ar->arvifs);
10408 		INIT_LIST_HEAD(&ar->ppdu_stats_info);
10409 		mutex_init(&ar->conf_mutex);
10410 		init_completion(&ar->vdev_setup_done);
10411 		init_completion(&ar->vdev_delete_done);
10412 		init_completion(&ar->peer_assoc_done);
10413 		init_completion(&ar->peer_delete_done);
10414 		init_completion(&ar->install_key_done);
10415 		init_completion(&ar->bss_survey_done);
10416 		init_completion(&ar->scan.started);
10417 		init_completion(&ar->scan.completed);
10418 		init_completion(&ar->scan.on_channel);
10419 		init_completion(&ar->thermal.wmi_sync);
10420 
10421 		INIT_DELAYED_WORK(&ar->scan.timeout, ath11k_scan_timeout_work);
10422 		INIT_WORK(&ar->regd_update_work, ath11k_regd_update_work);
10423 
10424 		INIT_WORK(&ar->wmi_mgmt_tx_work, ath11k_mgmt_over_wmi_tx_work);
10425 		skb_queue_head_init(&ar->wmi_mgmt_tx_queue);
10426 
10427 		clear_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags);
10428 
10429 		ar->monitor_vdev_id = -1;
10430 		clear_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags);
10431 		ar->vdev_id_11d_scan = ATH11K_11D_INVALID_VDEV_ID;
10432 		init_completion(&ar->completed_11d_scan);
10433 
10434 		ath11k_fw_stats_init(ar);
10435 	}
10436 
10437 	return 0;
10438 
10439 err_free_mac:
10440 	ath11k_mac_destroy(ab);
10441 
10442 	return ret;
10443 }
10444 
10445 void ath11k_mac_destroy(struct ath11k_base *ab)
10446 {
10447 	struct ath11k *ar;
10448 	struct ath11k_pdev *pdev;
10449 	int i;
10450 
10451 	for (i = 0; i < ab->num_radios; i++) {
10452 		pdev = &ab->pdevs[i];
10453 		ar = pdev->ar;
10454 		if (!ar)
10455 			continue;
10456 
10457 		ath11k_fw_stats_free(&ar->fw_stats);
10458 		ieee80211_free_hw(ar->hw);
10459 		pdev->ar = NULL;
10460 	}
10461 }
10462 
10463 int ath11k_mac_vif_set_keepalive(struct ath11k_vif *arvif,
10464 				 enum wmi_sta_keepalive_method method,
10465 				 u32 interval)
10466 {
10467 	struct ath11k *ar = arvif->ar;
10468 	struct wmi_sta_keepalive_arg arg = {};
10469 	int ret;
10470 
10471 	lockdep_assert_held(&ar->conf_mutex);
10472 
10473 	if (arvif->vdev_type != WMI_VDEV_TYPE_STA)
10474 		return 0;
10475 
10476 	if (!test_bit(WMI_TLV_SERVICE_STA_KEEP_ALIVE, ar->ab->wmi_ab.svc_map))
10477 		return 0;
10478 
10479 	arg.vdev_id = arvif->vdev_id;
10480 	arg.enabled = 1;
10481 	arg.method = method;
10482 	arg.interval = interval;
10483 
10484 	ret = ath11k_wmi_sta_keepalive(ar, &arg);
10485 	if (ret) {
10486 		ath11k_warn(ar->ab, "failed to set keepalive on vdev %i: %d\n",
10487 			    arvif->vdev_id, ret);
10488 		return ret;
10489 	}
10490 
10491 	return 0;
10492 }
10493