1 // SPDX-License-Identifier: BSD-3-Clause-Clear 2 /* 3 * Copyright (c) 2018-2019 The Linux Foundation. All rights reserved. 4 * Copyright (c) 2021-2024 Qualcomm Innovation Center, Inc. All rights reserved. 5 */ 6 7 #include <net/mac80211.h> 8 #include <net/cfg80211.h> 9 #include <linux/etherdevice.h> 10 #include <linux/bitfield.h> 11 #include <linux/inetdevice.h> 12 #include <net/if_inet6.h> 13 #include <net/ipv6.h> 14 15 #include "mac.h" 16 #include "core.h" 17 #include "debug.h" 18 #include "wmi.h" 19 #include "hw.h" 20 #include "dp_tx.h" 21 #include "dp_rx.h" 22 #include "testmode.h" 23 #include "peer.h" 24 #include "debugfs_sta.h" 25 #include "hif.h" 26 #include "wow.h" 27 28 #define CHAN2G(_channel, _freq, _flags) { \ 29 .band = NL80211_BAND_2GHZ, \ 30 .hw_value = (_channel), \ 31 .center_freq = (_freq), \ 32 .flags = (_flags), \ 33 .max_antenna_gain = 0, \ 34 .max_power = 30, \ 35 } 36 37 #define CHAN5G(_channel, _freq, _flags) { \ 38 .band = NL80211_BAND_5GHZ, \ 39 .hw_value = (_channel), \ 40 .center_freq = (_freq), \ 41 .flags = (_flags), \ 42 .max_antenna_gain = 0, \ 43 .max_power = 30, \ 44 } 45 46 #define CHAN6G(_channel, _freq, _flags) { \ 47 .band = NL80211_BAND_6GHZ, \ 48 .hw_value = (_channel), \ 49 .center_freq = (_freq), \ 50 .flags = (_flags), \ 51 .max_antenna_gain = 0, \ 52 .max_power = 30, \ 53 } 54 55 static const struct ieee80211_channel ath11k_2ghz_channels[] = { 56 CHAN2G(1, 2412, 0), 57 CHAN2G(2, 2417, 0), 58 CHAN2G(3, 2422, 0), 59 CHAN2G(4, 2427, 0), 60 CHAN2G(5, 2432, 0), 61 CHAN2G(6, 2437, 0), 62 CHAN2G(7, 2442, 0), 63 CHAN2G(8, 2447, 0), 64 CHAN2G(9, 2452, 0), 65 CHAN2G(10, 2457, 0), 66 CHAN2G(11, 2462, 0), 67 CHAN2G(12, 2467, 0), 68 CHAN2G(13, 2472, 0), 69 CHAN2G(14, 2484, 0), 70 }; 71 72 static const struct ieee80211_channel ath11k_5ghz_channels[] = { 73 CHAN5G(36, 5180, 0), 74 CHAN5G(40, 5200, 0), 75 CHAN5G(44, 5220, 0), 76 CHAN5G(48, 5240, 0), 77 CHAN5G(52, 5260, 0), 78 CHAN5G(56, 5280, 0), 79 CHAN5G(60, 5300, 0), 80 CHAN5G(64, 5320, 0), 81 CHAN5G(100, 5500, 0), 82 CHAN5G(104, 5520, 0), 83 CHAN5G(108, 5540, 0), 84 CHAN5G(112, 5560, 0), 85 CHAN5G(116, 5580, 0), 86 CHAN5G(120, 5600, 0), 87 CHAN5G(124, 5620, 0), 88 CHAN5G(128, 5640, 0), 89 CHAN5G(132, 5660, 0), 90 CHAN5G(136, 5680, 0), 91 CHAN5G(140, 5700, 0), 92 CHAN5G(144, 5720, 0), 93 CHAN5G(149, 5745, 0), 94 CHAN5G(153, 5765, 0), 95 CHAN5G(157, 5785, 0), 96 CHAN5G(161, 5805, 0), 97 CHAN5G(165, 5825, 0), 98 CHAN5G(169, 5845, 0), 99 CHAN5G(173, 5865, 0), 100 CHAN5G(177, 5885, 0), 101 }; 102 103 static const struct ieee80211_channel ath11k_6ghz_channels[] = { 104 CHAN6G(1, 5955, 0), 105 CHAN6G(5, 5975, 0), 106 CHAN6G(9, 5995, 0), 107 CHAN6G(13, 6015, 0), 108 CHAN6G(17, 6035, 0), 109 CHAN6G(21, 6055, 0), 110 CHAN6G(25, 6075, 0), 111 CHAN6G(29, 6095, 0), 112 CHAN6G(33, 6115, 0), 113 CHAN6G(37, 6135, 0), 114 CHAN6G(41, 6155, 0), 115 CHAN6G(45, 6175, 0), 116 CHAN6G(49, 6195, 0), 117 CHAN6G(53, 6215, 0), 118 CHAN6G(57, 6235, 0), 119 CHAN6G(61, 6255, 0), 120 CHAN6G(65, 6275, 0), 121 CHAN6G(69, 6295, 0), 122 CHAN6G(73, 6315, 0), 123 CHAN6G(77, 6335, 0), 124 CHAN6G(81, 6355, 0), 125 CHAN6G(85, 6375, 0), 126 CHAN6G(89, 6395, 0), 127 CHAN6G(93, 6415, 0), 128 CHAN6G(97, 6435, 0), 129 CHAN6G(101, 6455, 0), 130 CHAN6G(105, 6475, 0), 131 CHAN6G(109, 6495, 0), 132 CHAN6G(113, 6515, 0), 133 CHAN6G(117, 6535, 0), 134 CHAN6G(121, 6555, 0), 135 CHAN6G(125, 6575, 0), 136 CHAN6G(129, 6595, 0), 137 CHAN6G(133, 6615, 0), 138 CHAN6G(137, 6635, 0), 139 CHAN6G(141, 6655, 0), 140 CHAN6G(145, 6675, 0), 141 CHAN6G(149, 6695, 0), 142 CHAN6G(153, 6715, 0), 143 CHAN6G(157, 6735, 0), 144 CHAN6G(161, 6755, 0), 145 CHAN6G(165, 6775, 0), 146 CHAN6G(169, 6795, 0), 147 CHAN6G(173, 6815, 0), 148 CHAN6G(177, 6835, 0), 149 CHAN6G(181, 6855, 0), 150 CHAN6G(185, 6875, 0), 151 CHAN6G(189, 6895, 0), 152 CHAN6G(193, 6915, 0), 153 CHAN6G(197, 6935, 0), 154 CHAN6G(201, 6955, 0), 155 CHAN6G(205, 6975, 0), 156 CHAN6G(209, 6995, 0), 157 CHAN6G(213, 7015, 0), 158 CHAN6G(217, 7035, 0), 159 CHAN6G(221, 7055, 0), 160 CHAN6G(225, 7075, 0), 161 CHAN6G(229, 7095, 0), 162 CHAN6G(233, 7115, 0), 163 164 /* new addition in IEEE Std 802.11ax-2021 */ 165 CHAN6G(2, 5935, 0), 166 }; 167 168 static struct ieee80211_rate ath11k_legacy_rates[] = { 169 { .bitrate = 10, 170 .hw_value = ATH11K_HW_RATE_CCK_LP_1M }, 171 { .bitrate = 20, 172 .hw_value = ATH11K_HW_RATE_CCK_LP_2M, 173 .hw_value_short = ATH11K_HW_RATE_CCK_SP_2M, 174 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 175 { .bitrate = 55, 176 .hw_value = ATH11K_HW_RATE_CCK_LP_5_5M, 177 .hw_value_short = ATH11K_HW_RATE_CCK_SP_5_5M, 178 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 179 { .bitrate = 110, 180 .hw_value = ATH11K_HW_RATE_CCK_LP_11M, 181 .hw_value_short = ATH11K_HW_RATE_CCK_SP_11M, 182 .flags = IEEE80211_RATE_SHORT_PREAMBLE }, 183 184 { .bitrate = 60, .hw_value = ATH11K_HW_RATE_OFDM_6M }, 185 { .bitrate = 90, .hw_value = ATH11K_HW_RATE_OFDM_9M }, 186 { .bitrate = 120, .hw_value = ATH11K_HW_RATE_OFDM_12M }, 187 { .bitrate = 180, .hw_value = ATH11K_HW_RATE_OFDM_18M }, 188 { .bitrate = 240, .hw_value = ATH11K_HW_RATE_OFDM_24M }, 189 { .bitrate = 360, .hw_value = ATH11K_HW_RATE_OFDM_36M }, 190 { .bitrate = 480, .hw_value = ATH11K_HW_RATE_OFDM_48M }, 191 { .bitrate = 540, .hw_value = ATH11K_HW_RATE_OFDM_54M }, 192 }; 193 194 static const int 195 ath11k_phymodes[NUM_NL80211_BANDS][ATH11K_CHAN_WIDTH_NUM] = { 196 [NL80211_BAND_2GHZ] = { 197 [NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN, 198 [NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN, 199 [NL80211_CHAN_WIDTH_20_NOHT] = MODE_11AX_HE20_2G, 200 [NL80211_CHAN_WIDTH_20] = MODE_11AX_HE20_2G, 201 [NL80211_CHAN_WIDTH_40] = MODE_11AX_HE40_2G, 202 [NL80211_CHAN_WIDTH_80] = MODE_11AX_HE80_2G, 203 [NL80211_CHAN_WIDTH_80P80] = MODE_UNKNOWN, 204 [NL80211_CHAN_WIDTH_160] = MODE_UNKNOWN, 205 }, 206 [NL80211_BAND_5GHZ] = { 207 [NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN, 208 [NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN, 209 [NL80211_CHAN_WIDTH_20_NOHT] = MODE_11AX_HE20, 210 [NL80211_CHAN_WIDTH_20] = MODE_11AX_HE20, 211 [NL80211_CHAN_WIDTH_40] = MODE_11AX_HE40, 212 [NL80211_CHAN_WIDTH_80] = MODE_11AX_HE80, 213 [NL80211_CHAN_WIDTH_160] = MODE_11AX_HE160, 214 [NL80211_CHAN_WIDTH_80P80] = MODE_11AX_HE80_80, 215 }, 216 [NL80211_BAND_6GHZ] = { 217 [NL80211_CHAN_WIDTH_5] = MODE_UNKNOWN, 218 [NL80211_CHAN_WIDTH_10] = MODE_UNKNOWN, 219 [NL80211_CHAN_WIDTH_20_NOHT] = MODE_11AX_HE20, 220 [NL80211_CHAN_WIDTH_20] = MODE_11AX_HE20, 221 [NL80211_CHAN_WIDTH_40] = MODE_11AX_HE40, 222 [NL80211_CHAN_WIDTH_80] = MODE_11AX_HE80, 223 [NL80211_CHAN_WIDTH_160] = MODE_11AX_HE160, 224 [NL80211_CHAN_WIDTH_80P80] = MODE_11AX_HE80_80, 225 }, 226 227 }; 228 229 const struct htt_rx_ring_tlv_filter ath11k_mac_mon_status_filter_default = { 230 .rx_filter = HTT_RX_FILTER_TLV_FLAGS_MPDU_START | 231 HTT_RX_FILTER_TLV_FLAGS_PPDU_END | 232 HTT_RX_FILTER_TLV_FLAGS_PPDU_END_STATUS_DONE, 233 .pkt_filter_flags0 = HTT_RX_FP_MGMT_FILTER_FLAGS0, 234 .pkt_filter_flags1 = HTT_RX_FP_MGMT_FILTER_FLAGS1, 235 .pkt_filter_flags2 = HTT_RX_FP_CTRL_FILTER_FLASG2, 236 .pkt_filter_flags3 = HTT_RX_FP_DATA_FILTER_FLASG3 | 237 HTT_RX_FP_CTRL_FILTER_FLASG3 238 }; 239 240 #define ATH11K_MAC_FIRST_OFDM_RATE_IDX 4 241 #define ath11k_g_rates ath11k_legacy_rates 242 #define ath11k_g_rates_size (ARRAY_SIZE(ath11k_legacy_rates)) 243 #define ath11k_a_rates (ath11k_legacy_rates + 4) 244 #define ath11k_a_rates_size (ARRAY_SIZE(ath11k_legacy_rates) - 4) 245 246 #define ATH11K_MAC_SCAN_CMD_EVT_OVERHEAD 200 /* in msecs */ 247 248 /* Overhead due to the processing of channel switch events from FW */ 249 #define ATH11K_SCAN_CHANNEL_SWITCH_WMI_EVT_OVERHEAD 10 /* in msecs */ 250 251 static const u32 ath11k_smps_map[] = { 252 [WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC, 253 [WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC, 254 [WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE, 255 [WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE, 256 }; 257 258 enum nl80211_he_ru_alloc ath11k_mac_phy_he_ru_to_nl80211_he_ru_alloc(u16 ru_phy) 259 { 260 enum nl80211_he_ru_alloc ret; 261 262 switch (ru_phy) { 263 case RU_26: 264 ret = NL80211_RATE_INFO_HE_RU_ALLOC_26; 265 break; 266 case RU_52: 267 ret = NL80211_RATE_INFO_HE_RU_ALLOC_52; 268 break; 269 case RU_106: 270 ret = NL80211_RATE_INFO_HE_RU_ALLOC_106; 271 break; 272 case RU_242: 273 ret = NL80211_RATE_INFO_HE_RU_ALLOC_242; 274 break; 275 case RU_484: 276 ret = NL80211_RATE_INFO_HE_RU_ALLOC_484; 277 break; 278 case RU_996: 279 ret = NL80211_RATE_INFO_HE_RU_ALLOC_996; 280 break; 281 default: 282 ret = NL80211_RATE_INFO_HE_RU_ALLOC_26; 283 break; 284 } 285 286 return ret; 287 } 288 289 enum nl80211_he_ru_alloc ath11k_mac_he_ru_tones_to_nl80211_he_ru_alloc(u16 ru_tones) 290 { 291 enum nl80211_he_ru_alloc ret; 292 293 switch (ru_tones) { 294 case 26: 295 ret = NL80211_RATE_INFO_HE_RU_ALLOC_26; 296 break; 297 case 52: 298 ret = NL80211_RATE_INFO_HE_RU_ALLOC_52; 299 break; 300 case 106: 301 ret = NL80211_RATE_INFO_HE_RU_ALLOC_106; 302 break; 303 case 242: 304 ret = NL80211_RATE_INFO_HE_RU_ALLOC_242; 305 break; 306 case 484: 307 ret = NL80211_RATE_INFO_HE_RU_ALLOC_484; 308 break; 309 case 996: 310 ret = NL80211_RATE_INFO_HE_RU_ALLOC_996; 311 break; 312 case (996 * 2): 313 ret = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 314 break; 315 default: 316 ret = NL80211_RATE_INFO_HE_RU_ALLOC_26; 317 break; 318 } 319 320 return ret; 321 } 322 323 enum nl80211_he_gi ath11k_mac_he_gi_to_nl80211_he_gi(u8 sgi) 324 { 325 enum nl80211_he_gi ret; 326 327 switch (sgi) { 328 case RX_MSDU_START_SGI_0_8_US: 329 ret = NL80211_RATE_INFO_HE_GI_0_8; 330 break; 331 case RX_MSDU_START_SGI_1_6_US: 332 ret = NL80211_RATE_INFO_HE_GI_1_6; 333 break; 334 case RX_MSDU_START_SGI_3_2_US: 335 ret = NL80211_RATE_INFO_HE_GI_3_2; 336 break; 337 default: 338 ret = NL80211_RATE_INFO_HE_GI_0_8; 339 break; 340 } 341 342 return ret; 343 } 344 345 u8 ath11k_mac_bw_to_mac80211_bw(u8 bw) 346 { 347 u8 ret = 0; 348 349 switch (bw) { 350 case ATH11K_BW_20: 351 ret = RATE_INFO_BW_20; 352 break; 353 case ATH11K_BW_40: 354 ret = RATE_INFO_BW_40; 355 break; 356 case ATH11K_BW_80: 357 ret = RATE_INFO_BW_80; 358 break; 359 case ATH11K_BW_160: 360 ret = RATE_INFO_BW_160; 361 break; 362 } 363 364 return ret; 365 } 366 367 enum ath11k_supported_bw ath11k_mac_mac80211_bw_to_ath11k_bw(enum rate_info_bw bw) 368 { 369 switch (bw) { 370 case RATE_INFO_BW_20: 371 return ATH11K_BW_20; 372 case RATE_INFO_BW_40: 373 return ATH11K_BW_40; 374 case RATE_INFO_BW_80: 375 return ATH11K_BW_80; 376 case RATE_INFO_BW_160: 377 return ATH11K_BW_160; 378 default: 379 return ATH11K_BW_20; 380 } 381 } 382 383 int ath11k_mac_hw_ratecode_to_legacy_rate(u8 hw_rc, u8 preamble, u8 *rateidx, 384 u16 *rate) 385 { 386 /* As default, it is OFDM rates */ 387 int i = ATH11K_MAC_FIRST_OFDM_RATE_IDX; 388 int max_rates_idx = ath11k_g_rates_size; 389 390 if (preamble == WMI_RATE_PREAMBLE_CCK) { 391 hw_rc &= ~ATH11k_HW_RATECODE_CCK_SHORT_PREAM_MASK; 392 i = 0; 393 max_rates_idx = ATH11K_MAC_FIRST_OFDM_RATE_IDX; 394 } 395 396 while (i < max_rates_idx) { 397 if (hw_rc == ath11k_legacy_rates[i].hw_value) { 398 *rateidx = i; 399 *rate = ath11k_legacy_rates[i].bitrate; 400 return 0; 401 } 402 i++; 403 } 404 405 return -EINVAL; 406 } 407 408 static int get_num_chains(u32 mask) 409 { 410 int num_chains = 0; 411 412 while (mask) { 413 if (mask & BIT(0)) 414 num_chains++; 415 mask >>= 1; 416 } 417 418 return num_chains; 419 } 420 421 u8 ath11k_mac_bitrate_to_idx(const struct ieee80211_supported_band *sband, 422 u32 bitrate) 423 { 424 int i; 425 426 for (i = 0; i < sband->n_bitrates; i++) 427 if (sband->bitrates[i].bitrate == bitrate) 428 return i; 429 430 return 0; 431 } 432 433 static u32 434 ath11k_mac_max_ht_nss(const u8 *ht_mcs_mask) 435 { 436 int nss; 437 438 for (nss = IEEE80211_HT_MCS_MASK_LEN - 1; nss >= 0; nss--) 439 if (ht_mcs_mask[nss]) 440 return nss + 1; 441 442 return 1; 443 } 444 445 static u32 446 ath11k_mac_max_vht_nss(const u16 *vht_mcs_mask) 447 { 448 int nss; 449 450 for (nss = NL80211_VHT_NSS_MAX - 1; nss >= 0; nss--) 451 if (vht_mcs_mask[nss]) 452 return nss + 1; 453 454 return 1; 455 } 456 457 static u32 458 ath11k_mac_max_he_nss(const u16 *he_mcs_mask) 459 { 460 int nss; 461 462 for (nss = NL80211_HE_NSS_MAX - 1; nss >= 0; nss--) 463 if (he_mcs_mask[nss]) 464 return nss + 1; 465 466 return 1; 467 } 468 469 static u8 ath11k_parse_mpdudensity(u8 mpdudensity) 470 { 471 /* 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": 472 * 0 for no restriction 473 * 1 for 1/4 us 474 * 2 for 1/2 us 475 * 3 for 1 us 476 * 4 for 2 us 477 * 5 for 4 us 478 * 6 for 8 us 479 * 7 for 16 us 480 */ 481 switch (mpdudensity) { 482 case 0: 483 return 0; 484 case 1: 485 case 2: 486 case 3: 487 /* Our lower layer calculations limit our precision to 488 * 1 microsecond 489 */ 490 return 1; 491 case 4: 492 return 2; 493 case 5: 494 return 4; 495 case 6: 496 return 8; 497 case 7: 498 return 16; 499 default: 500 return 0; 501 } 502 } 503 504 static int ath11k_mac_vif_chan(struct ieee80211_vif *vif, 505 struct cfg80211_chan_def *def) 506 { 507 struct ieee80211_chanctx_conf *conf; 508 509 rcu_read_lock(); 510 conf = rcu_dereference(vif->bss_conf.chanctx_conf); 511 if (!conf) { 512 rcu_read_unlock(); 513 return -ENOENT; 514 } 515 516 *def = conf->def; 517 rcu_read_unlock(); 518 519 return 0; 520 } 521 522 static bool ath11k_mac_bitrate_is_cck(int bitrate) 523 { 524 switch (bitrate) { 525 case 10: 526 case 20: 527 case 55: 528 case 110: 529 return true; 530 } 531 532 return false; 533 } 534 535 u8 ath11k_mac_hw_rate_to_idx(const struct ieee80211_supported_band *sband, 536 u8 hw_rate, bool cck) 537 { 538 const struct ieee80211_rate *rate; 539 int i; 540 541 for (i = 0; i < sband->n_bitrates; i++) { 542 rate = &sband->bitrates[i]; 543 544 if (ath11k_mac_bitrate_is_cck(rate->bitrate) != cck) 545 continue; 546 547 if (rate->hw_value == hw_rate) 548 return i; 549 else if (rate->flags & IEEE80211_RATE_SHORT_PREAMBLE && 550 rate->hw_value_short == hw_rate) 551 return i; 552 } 553 554 return 0; 555 } 556 557 static u8 ath11k_mac_bitrate_to_rate(int bitrate) 558 { 559 return DIV_ROUND_UP(bitrate, 5) | 560 (ath11k_mac_bitrate_is_cck(bitrate) ? BIT(7) : 0); 561 } 562 563 static void ath11k_get_arvif_iter(void *data, u8 *mac, 564 struct ieee80211_vif *vif) 565 { 566 struct ath11k_vif_iter *arvif_iter = data; 567 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 568 569 if (arvif->vdev_id == arvif_iter->vdev_id) 570 arvif_iter->arvif = arvif; 571 } 572 573 struct ath11k_vif *ath11k_mac_get_arvif(struct ath11k *ar, u32 vdev_id) 574 { 575 struct ath11k_vif_iter arvif_iter; 576 u32 flags; 577 578 memset(&arvif_iter, 0, sizeof(struct ath11k_vif_iter)); 579 arvif_iter.vdev_id = vdev_id; 580 581 flags = IEEE80211_IFACE_ITER_RESUME_ALL; 582 ieee80211_iterate_active_interfaces_atomic(ar->hw, 583 flags, 584 ath11k_get_arvif_iter, 585 &arvif_iter); 586 if (!arvif_iter.arvif) { 587 ath11k_warn(ar->ab, "No VIF found for vdev %d\n", vdev_id); 588 return NULL; 589 } 590 591 return arvif_iter.arvif; 592 } 593 594 struct ath11k_vif *ath11k_mac_get_arvif_by_vdev_id(struct ath11k_base *ab, 595 u32 vdev_id) 596 { 597 int i; 598 struct ath11k_pdev *pdev; 599 struct ath11k_vif *arvif; 600 601 for (i = 0; i < ab->num_radios; i++) { 602 pdev = rcu_dereference(ab->pdevs_active[i]); 603 if (pdev && pdev->ar && 604 (pdev->ar->allocated_vdev_map & (1LL << vdev_id))) { 605 arvif = ath11k_mac_get_arvif(pdev->ar, vdev_id); 606 if (arvif) 607 return arvif; 608 } 609 } 610 611 return NULL; 612 } 613 614 struct ath11k *ath11k_mac_get_ar_by_vdev_id(struct ath11k_base *ab, u32 vdev_id) 615 { 616 int i; 617 struct ath11k_pdev *pdev; 618 619 for (i = 0; i < ab->num_radios; i++) { 620 pdev = rcu_dereference(ab->pdevs_active[i]); 621 if (pdev && pdev->ar) { 622 if (pdev->ar->allocated_vdev_map & (1LL << vdev_id)) 623 return pdev->ar; 624 } 625 } 626 627 return NULL; 628 } 629 630 struct ath11k *ath11k_mac_get_ar_by_pdev_id(struct ath11k_base *ab, u32 pdev_id) 631 { 632 int i; 633 struct ath11k_pdev *pdev; 634 635 if (ab->hw_params.single_pdev_only) { 636 pdev = rcu_dereference(ab->pdevs_active[0]); 637 return pdev ? pdev->ar : NULL; 638 } 639 640 if (WARN_ON(pdev_id > ab->num_radios)) 641 return NULL; 642 643 for (i = 0; i < ab->num_radios; i++) { 644 if (ab->fw_mode == ATH11K_FIRMWARE_MODE_FTM) 645 pdev = &ab->pdevs[i]; 646 else 647 pdev = rcu_dereference(ab->pdevs_active[i]); 648 649 if (pdev && pdev->pdev_id == pdev_id) 650 return (pdev->ar ? pdev->ar : NULL); 651 } 652 653 return NULL; 654 } 655 656 struct ath11k_vif *ath11k_mac_get_vif_up(struct ath11k_base *ab) 657 { 658 struct ath11k *ar; 659 struct ath11k_pdev *pdev; 660 struct ath11k_vif *arvif; 661 int i; 662 663 for (i = 0; i < ab->num_radios; i++) { 664 pdev = &ab->pdevs[i]; 665 ar = pdev->ar; 666 list_for_each_entry(arvif, &ar->arvifs, list) { 667 if (arvif->is_up) 668 return arvif; 669 } 670 } 671 672 return NULL; 673 } 674 675 static bool ath11k_mac_band_match(enum nl80211_band band1, enum WMI_HOST_WLAN_BAND band2) 676 { 677 return (((band1 == NL80211_BAND_2GHZ) && (band2 & WMI_HOST_WLAN_2G_CAP)) || 678 (((band1 == NL80211_BAND_5GHZ) || (band1 == NL80211_BAND_6GHZ)) && 679 (band2 & WMI_HOST_WLAN_5G_CAP))); 680 } 681 682 u8 ath11k_mac_get_target_pdev_id_from_vif(struct ath11k_vif *arvif) 683 { 684 struct ath11k *ar = arvif->ar; 685 struct ath11k_base *ab = ar->ab; 686 struct ieee80211_vif *vif = arvif->vif; 687 struct cfg80211_chan_def def; 688 enum nl80211_band band; 689 u8 pdev_id = ab->target_pdev_ids[0].pdev_id; 690 int i; 691 692 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 693 return pdev_id; 694 695 band = def.chan->band; 696 697 for (i = 0; i < ab->target_pdev_count; i++) { 698 if (ath11k_mac_band_match(band, ab->target_pdev_ids[i].supported_bands)) 699 return ab->target_pdev_ids[i].pdev_id; 700 } 701 702 return pdev_id; 703 } 704 705 u8 ath11k_mac_get_target_pdev_id(struct ath11k *ar) 706 { 707 struct ath11k_vif *arvif; 708 709 arvif = ath11k_mac_get_vif_up(ar->ab); 710 711 if (arvif) 712 return ath11k_mac_get_target_pdev_id_from_vif(arvif); 713 else 714 return ar->ab->target_pdev_ids[0].pdev_id; 715 } 716 717 static void ath11k_pdev_caps_update(struct ath11k *ar) 718 { 719 struct ath11k_base *ab = ar->ab; 720 721 ar->max_tx_power = ab->target_caps.hw_max_tx_power; 722 723 /* FIXME Set min_tx_power to ab->target_caps.hw_min_tx_power. 724 * But since the received value in svcrdy is same as hw_max_tx_power, 725 * we can set ar->min_tx_power to 0 currently until 726 * this is fixed in firmware 727 */ 728 ar->min_tx_power = 0; 729 730 ar->txpower_limit_2g = ar->max_tx_power; 731 ar->txpower_limit_5g = ar->max_tx_power; 732 ar->txpower_scale = WMI_HOST_TP_SCALE_MAX; 733 } 734 735 static int ath11k_mac_txpower_recalc(struct ath11k *ar) 736 { 737 struct ath11k_pdev *pdev = ar->pdev; 738 struct ath11k_vif *arvif; 739 int ret, txpower = -1; 740 u32 param; 741 742 lockdep_assert_held(&ar->conf_mutex); 743 744 list_for_each_entry(arvif, &ar->arvifs, list) { 745 if (arvif->txpower <= 0) 746 continue; 747 748 if (txpower == -1) 749 txpower = arvif->txpower; 750 else 751 txpower = min(txpower, arvif->txpower); 752 } 753 754 if (txpower == -1) 755 return 0; 756 757 /* txpwr is set as 2 units per dBm in FW*/ 758 txpower = min_t(u32, max_t(u32, ar->min_tx_power, txpower), 759 ar->max_tx_power) * 2; 760 761 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "txpower to set in hw %d\n", 762 txpower / 2); 763 764 if ((pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) && 765 ar->txpower_limit_2g != txpower) { 766 param = WMI_PDEV_PARAM_TXPOWER_LIMIT2G; 767 ret = ath11k_wmi_pdev_set_param(ar, param, 768 txpower, ar->pdev->pdev_id); 769 if (ret) 770 goto fail; 771 ar->txpower_limit_2g = txpower; 772 } 773 774 if ((pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) && 775 ar->txpower_limit_5g != txpower) { 776 param = WMI_PDEV_PARAM_TXPOWER_LIMIT5G; 777 ret = ath11k_wmi_pdev_set_param(ar, param, 778 txpower, ar->pdev->pdev_id); 779 if (ret) 780 goto fail; 781 ar->txpower_limit_5g = txpower; 782 } 783 784 return 0; 785 786 fail: 787 ath11k_warn(ar->ab, "failed to recalc txpower limit %d using pdev param %d: %d\n", 788 txpower / 2, param, ret); 789 return ret; 790 } 791 792 static int ath11k_recalc_rtscts_prot(struct ath11k_vif *arvif) 793 { 794 struct ath11k *ar = arvif->ar; 795 u32 vdev_param, rts_cts = 0; 796 int ret; 797 798 lockdep_assert_held(&ar->conf_mutex); 799 800 vdev_param = WMI_VDEV_PARAM_ENABLE_RTSCTS; 801 802 /* Enable RTS/CTS protection for sw retries (when legacy stations 803 * are in BSS) or by default only for second rate series. 804 * TODO: Check if we need to enable CTS 2 Self in any case 805 */ 806 rts_cts = WMI_USE_RTS_CTS; 807 808 if (arvif->num_legacy_stations > 0) 809 rts_cts |= WMI_RTSCTS_ACROSS_SW_RETRIES << 4; 810 else 811 rts_cts |= WMI_RTSCTS_FOR_SECOND_RATESERIES << 4; 812 813 /* Need not send duplicate param value to firmware */ 814 if (arvif->rtscts_prot_mode == rts_cts) 815 return 0; 816 817 arvif->rtscts_prot_mode = rts_cts; 818 819 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %d recalc rts/cts prot %d\n", 820 arvif->vdev_id, rts_cts); 821 822 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 823 vdev_param, rts_cts); 824 if (ret) 825 ath11k_warn(ar->ab, "failed to recalculate rts/cts prot for vdev %d: %d\n", 826 arvif->vdev_id, ret); 827 828 return ret; 829 } 830 831 static int ath11k_mac_set_kickout(struct ath11k_vif *arvif) 832 { 833 struct ath11k *ar = arvif->ar; 834 u32 param; 835 int ret; 836 837 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_STA_KICKOUT_TH, 838 ATH11K_KICKOUT_THRESHOLD, 839 ar->pdev->pdev_id); 840 if (ret) { 841 ath11k_warn(ar->ab, "failed to set kickout threshold on vdev %i: %d\n", 842 arvif->vdev_id, ret); 843 return ret; 844 } 845 846 param = WMI_VDEV_PARAM_AP_KEEPALIVE_MIN_IDLE_INACTIVE_TIME_SECS; 847 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, 848 ATH11K_KEEPALIVE_MIN_IDLE); 849 if (ret) { 850 ath11k_warn(ar->ab, "failed to set keepalive minimum idle time on vdev %i: %d\n", 851 arvif->vdev_id, ret); 852 return ret; 853 } 854 855 param = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_IDLE_INACTIVE_TIME_SECS; 856 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, 857 ATH11K_KEEPALIVE_MAX_IDLE); 858 if (ret) { 859 ath11k_warn(ar->ab, "failed to set keepalive maximum idle time on vdev %i: %d\n", 860 arvif->vdev_id, ret); 861 return ret; 862 } 863 864 param = WMI_VDEV_PARAM_AP_KEEPALIVE_MAX_UNRESPONSIVE_TIME_SECS; 865 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, 866 ATH11K_KEEPALIVE_MAX_UNRESPONSIVE); 867 if (ret) { 868 ath11k_warn(ar->ab, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n", 869 arvif->vdev_id, ret); 870 return ret; 871 } 872 873 return 0; 874 } 875 876 void ath11k_mac_peer_cleanup_all(struct ath11k *ar) 877 { 878 struct ath11k_peer *peer, *tmp; 879 struct ath11k_base *ab = ar->ab; 880 881 lockdep_assert_held(&ar->conf_mutex); 882 883 mutex_lock(&ab->tbl_mtx_lock); 884 spin_lock_bh(&ab->base_lock); 885 list_for_each_entry_safe(peer, tmp, &ab->peers, list) { 886 ath11k_peer_rx_tid_cleanup(ar, peer); 887 ath11k_peer_rhash_delete(ab, peer); 888 list_del(&peer->list); 889 kfree(peer); 890 } 891 spin_unlock_bh(&ab->base_lock); 892 mutex_unlock(&ab->tbl_mtx_lock); 893 894 ar->num_peers = 0; 895 ar->num_stations = 0; 896 } 897 898 static inline int ath11k_mac_vdev_setup_sync(struct ath11k *ar) 899 { 900 lockdep_assert_held(&ar->conf_mutex); 901 902 if (test_bit(ATH11K_FLAG_CRASH_FLUSH, &ar->ab->dev_flags)) 903 return -ESHUTDOWN; 904 905 if (!wait_for_completion_timeout(&ar->vdev_setup_done, 906 ATH11K_VDEV_SETUP_TIMEOUT_HZ)) 907 return -ETIMEDOUT; 908 909 return ar->last_wmi_vdev_start_status ? -EINVAL : 0; 910 } 911 912 static void 913 ath11k_mac_get_any_chandef_iter(struct ieee80211_hw *hw, 914 struct ieee80211_chanctx_conf *conf, 915 void *data) 916 { 917 struct cfg80211_chan_def **def = data; 918 919 *def = &conf->def; 920 } 921 922 static int ath11k_mac_monitor_vdev_start(struct ath11k *ar, int vdev_id, 923 struct cfg80211_chan_def *chandef) 924 { 925 struct ieee80211_channel *channel; 926 struct wmi_vdev_start_req_arg arg = {}; 927 int ret; 928 929 lockdep_assert_held(&ar->conf_mutex); 930 931 channel = chandef->chan; 932 933 arg.vdev_id = vdev_id; 934 arg.channel.freq = channel->center_freq; 935 arg.channel.band_center_freq1 = chandef->center_freq1; 936 arg.channel.band_center_freq2 = chandef->center_freq2; 937 938 arg.channel.mode = ath11k_phymodes[chandef->chan->band][chandef->width]; 939 arg.channel.chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR); 940 941 arg.channel.min_power = 0; 942 arg.channel.max_power = channel->max_power; 943 arg.channel.max_reg_power = channel->max_reg_power; 944 arg.channel.max_antenna_gain = channel->max_antenna_gain; 945 946 arg.pref_tx_streams = ar->num_tx_chains; 947 arg.pref_rx_streams = ar->num_rx_chains; 948 949 arg.channel.passive = !!(chandef->chan->flags & IEEE80211_CHAN_NO_IR); 950 951 reinit_completion(&ar->vdev_setup_done); 952 reinit_completion(&ar->vdev_delete_done); 953 954 ret = ath11k_wmi_vdev_start(ar, &arg, false); 955 if (ret) { 956 ath11k_warn(ar->ab, "failed to request monitor vdev %i start: %d\n", 957 vdev_id, ret); 958 return ret; 959 } 960 961 ret = ath11k_mac_vdev_setup_sync(ar); 962 if (ret) { 963 ath11k_warn(ar->ab, "failed to synchronize setup for monitor vdev %i start: %d\n", 964 vdev_id, ret); 965 return ret; 966 } 967 968 ret = ath11k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr, NULL, 0, 0); 969 if (ret) { 970 ath11k_warn(ar->ab, "failed to put up monitor vdev %i: %d\n", 971 vdev_id, ret); 972 goto vdev_stop; 973 } 974 975 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %i started\n", 976 vdev_id); 977 978 return 0; 979 980 vdev_stop: 981 reinit_completion(&ar->vdev_setup_done); 982 983 ret = ath11k_wmi_vdev_stop(ar, vdev_id); 984 if (ret) { 985 ath11k_warn(ar->ab, "failed to stop monitor vdev %i after start failure: %d\n", 986 vdev_id, ret); 987 return ret; 988 } 989 990 ret = ath11k_mac_vdev_setup_sync(ar); 991 if (ret) { 992 ath11k_warn(ar->ab, "failed to synchronize setup for vdev %i stop: %d\n", 993 vdev_id, ret); 994 return ret; 995 } 996 997 return -EIO; 998 } 999 1000 static int ath11k_mac_monitor_vdev_stop(struct ath11k *ar) 1001 { 1002 int ret; 1003 1004 lockdep_assert_held(&ar->conf_mutex); 1005 1006 reinit_completion(&ar->vdev_setup_done); 1007 1008 ret = ath11k_wmi_vdev_stop(ar, ar->monitor_vdev_id); 1009 if (ret) { 1010 ath11k_warn(ar->ab, "failed to request monitor vdev %i stop: %d\n", 1011 ar->monitor_vdev_id, ret); 1012 return ret; 1013 } 1014 1015 ret = ath11k_mac_vdev_setup_sync(ar); 1016 if (ret) { 1017 ath11k_warn(ar->ab, "failed to synchronize monitor vdev %i stop: %d\n", 1018 ar->monitor_vdev_id, ret); 1019 return ret; 1020 } 1021 1022 ret = ath11k_wmi_vdev_down(ar, ar->monitor_vdev_id); 1023 if (ret) { 1024 ath11k_warn(ar->ab, "failed to put down monitor vdev %i: %d\n", 1025 ar->monitor_vdev_id, ret); 1026 return ret; 1027 } 1028 1029 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %i stopped\n", 1030 ar->monitor_vdev_id); 1031 1032 return 0; 1033 } 1034 1035 static int ath11k_mac_monitor_vdev_create(struct ath11k *ar) 1036 { 1037 struct ath11k_pdev *pdev = ar->pdev; 1038 struct vdev_create_params param = {}; 1039 int bit, ret; 1040 u8 tmp_addr[6] = {0}; 1041 u16 nss; 1042 1043 lockdep_assert_held(&ar->conf_mutex); 1044 1045 if (test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) 1046 return 0; 1047 1048 if (ar->ab->free_vdev_map == 0) { 1049 ath11k_warn(ar->ab, "failed to find free vdev id for monitor vdev\n"); 1050 return -ENOMEM; 1051 } 1052 1053 bit = __ffs64(ar->ab->free_vdev_map); 1054 1055 ar->monitor_vdev_id = bit; 1056 1057 param.if_id = ar->monitor_vdev_id; 1058 param.type = WMI_VDEV_TYPE_MONITOR; 1059 param.subtype = WMI_VDEV_SUBTYPE_NONE; 1060 param.pdev_id = pdev->pdev_id; 1061 1062 if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) { 1063 param.chains[NL80211_BAND_2GHZ].tx = ar->num_tx_chains; 1064 param.chains[NL80211_BAND_2GHZ].rx = ar->num_rx_chains; 1065 } 1066 if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) { 1067 param.chains[NL80211_BAND_5GHZ].tx = ar->num_tx_chains; 1068 param.chains[NL80211_BAND_5GHZ].rx = ar->num_rx_chains; 1069 } 1070 1071 ret = ath11k_wmi_vdev_create(ar, tmp_addr, ¶m); 1072 if (ret) { 1073 ath11k_warn(ar->ab, "failed to request monitor vdev %i creation: %d\n", 1074 ar->monitor_vdev_id, ret); 1075 ar->monitor_vdev_id = -1; 1076 return ret; 1077 } 1078 1079 nss = get_num_chains(ar->cfg_tx_chainmask) ? : 1; 1080 ret = ath11k_wmi_vdev_set_param_cmd(ar, ar->monitor_vdev_id, 1081 WMI_VDEV_PARAM_NSS, nss); 1082 if (ret) { 1083 ath11k_warn(ar->ab, "failed to set vdev %d chainmask 0x%x, nss %d :%d\n", 1084 ar->monitor_vdev_id, ar->cfg_tx_chainmask, nss, ret); 1085 goto err_vdev_del; 1086 } 1087 1088 ret = ath11k_mac_txpower_recalc(ar); 1089 if (ret) { 1090 ath11k_warn(ar->ab, "failed to recalc txpower for monitor vdev %d: %d\n", 1091 ar->monitor_vdev_id, ret); 1092 goto err_vdev_del; 1093 } 1094 1095 ar->allocated_vdev_map |= 1LL << ar->monitor_vdev_id; 1096 ar->ab->free_vdev_map &= ~(1LL << ar->monitor_vdev_id); 1097 ar->num_created_vdevs++; 1098 set_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags); 1099 1100 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %d created\n", 1101 ar->monitor_vdev_id); 1102 1103 return 0; 1104 1105 err_vdev_del: 1106 ath11k_wmi_vdev_delete(ar, ar->monitor_vdev_id); 1107 ar->monitor_vdev_id = -1; 1108 return ret; 1109 } 1110 1111 static int ath11k_mac_monitor_vdev_delete(struct ath11k *ar) 1112 { 1113 int ret; 1114 unsigned long time_left; 1115 1116 lockdep_assert_held(&ar->conf_mutex); 1117 1118 if (!test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) 1119 return 0; 1120 1121 reinit_completion(&ar->vdev_delete_done); 1122 1123 ret = ath11k_wmi_vdev_delete(ar, ar->monitor_vdev_id); 1124 if (ret) { 1125 ath11k_warn(ar->ab, "failed to request wmi monitor vdev %i removal: %d\n", 1126 ar->monitor_vdev_id, ret); 1127 return ret; 1128 } 1129 1130 time_left = wait_for_completion_timeout(&ar->vdev_delete_done, 1131 ATH11K_VDEV_DELETE_TIMEOUT_HZ); 1132 if (time_left == 0) { 1133 ath11k_warn(ar->ab, "Timeout in receiving vdev delete response\n"); 1134 } else { 1135 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor vdev %d deleted\n", 1136 ar->monitor_vdev_id); 1137 1138 ar->allocated_vdev_map &= ~(1LL << ar->monitor_vdev_id); 1139 ar->ab->free_vdev_map |= 1LL << (ar->monitor_vdev_id); 1140 ar->num_created_vdevs--; 1141 ar->monitor_vdev_id = -1; 1142 clear_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags); 1143 } 1144 1145 return ret; 1146 } 1147 1148 static int ath11k_mac_monitor_start(struct ath11k *ar) 1149 { 1150 struct cfg80211_chan_def *chandef = NULL; 1151 int ret; 1152 1153 lockdep_assert_held(&ar->conf_mutex); 1154 1155 if (test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags)) 1156 return 0; 1157 1158 ieee80211_iter_chan_contexts_atomic(ar->hw, 1159 ath11k_mac_get_any_chandef_iter, 1160 &chandef); 1161 if (!chandef) 1162 return 0; 1163 1164 ret = ath11k_mac_monitor_vdev_start(ar, ar->monitor_vdev_id, chandef); 1165 if (ret) { 1166 ath11k_warn(ar->ab, "failed to start monitor vdev: %d\n", ret); 1167 ath11k_mac_monitor_vdev_delete(ar); 1168 return ret; 1169 } 1170 1171 set_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags); 1172 1173 ar->num_started_vdevs++; 1174 ret = ath11k_dp_tx_htt_monitor_mode_ring_config(ar, false); 1175 if (ret) { 1176 ath11k_warn(ar->ab, "failed to configure htt monitor mode ring during start: %d", 1177 ret); 1178 return ret; 1179 } 1180 1181 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor started\n"); 1182 1183 return 0; 1184 } 1185 1186 static int ath11k_mac_monitor_stop(struct ath11k *ar) 1187 { 1188 int ret; 1189 1190 lockdep_assert_held(&ar->conf_mutex); 1191 1192 if (!test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags)) 1193 return 0; 1194 1195 ret = ath11k_mac_monitor_vdev_stop(ar); 1196 if (ret) { 1197 ath11k_warn(ar->ab, "failed to stop monitor vdev: %d\n", ret); 1198 return ret; 1199 } 1200 1201 clear_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags); 1202 ar->num_started_vdevs--; 1203 1204 ret = ath11k_dp_tx_htt_monitor_mode_ring_config(ar, true); 1205 if (ret) { 1206 ath11k_warn(ar->ab, "failed to configure htt monitor mode ring during stop: %d", 1207 ret); 1208 return ret; 1209 } 1210 1211 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "monitor stopped ret %d\n", ret); 1212 1213 return 0; 1214 } 1215 1216 static int ath11k_mac_vif_setup_ps(struct ath11k_vif *arvif) 1217 { 1218 struct ath11k *ar = arvif->ar; 1219 struct ieee80211_vif *vif = arvif->vif; 1220 struct ieee80211_conf *conf = &ar->hw->conf; 1221 enum wmi_sta_powersave_param param; 1222 enum wmi_sta_ps_mode psmode; 1223 int ret; 1224 int timeout; 1225 bool enable_ps; 1226 1227 lockdep_assert_held(&arvif->ar->conf_mutex); 1228 1229 if (arvif->vif->type != NL80211_IFTYPE_STATION) 1230 return 0; 1231 1232 enable_ps = arvif->ps; 1233 1234 if (enable_ps) { 1235 psmode = WMI_STA_PS_MODE_ENABLED; 1236 param = WMI_STA_PS_PARAM_INACTIVITY_TIME; 1237 1238 timeout = conf->dynamic_ps_timeout; 1239 if (timeout == 0) { 1240 /* firmware doesn't like 0 */ 1241 timeout = ieee80211_tu_to_usec(vif->bss_conf.beacon_int) / 1000; 1242 } 1243 1244 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, 1245 timeout); 1246 if (ret) { 1247 ath11k_warn(ar->ab, "failed to set inactivity time for vdev %d: %i\n", 1248 arvif->vdev_id, ret); 1249 return ret; 1250 } 1251 } else { 1252 psmode = WMI_STA_PS_MODE_DISABLED; 1253 } 1254 1255 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %d psmode %s\n", 1256 arvif->vdev_id, psmode ? "enable" : "disable"); 1257 1258 ret = ath11k_wmi_pdev_set_ps_mode(ar, arvif->vdev_id, psmode); 1259 if (ret) { 1260 ath11k_warn(ar->ab, "failed to set sta power save mode %d for vdev %d: %d\n", 1261 psmode, arvif->vdev_id, ret); 1262 return ret; 1263 } 1264 1265 return 0; 1266 } 1267 1268 static int ath11k_mac_config_ps(struct ath11k *ar) 1269 { 1270 struct ath11k_vif *arvif; 1271 int ret = 0; 1272 1273 lockdep_assert_held(&ar->conf_mutex); 1274 1275 list_for_each_entry(arvif, &ar->arvifs, list) { 1276 ret = ath11k_mac_vif_setup_ps(arvif); 1277 if (ret) { 1278 ath11k_warn(ar->ab, "failed to setup powersave: %d\n", ret); 1279 break; 1280 } 1281 } 1282 1283 return ret; 1284 } 1285 1286 static int ath11k_mac_op_config(struct ieee80211_hw *hw, u32 changed) 1287 { 1288 struct ath11k *ar = hw->priv; 1289 struct ieee80211_conf *conf = &hw->conf; 1290 int ret = 0; 1291 1292 mutex_lock(&ar->conf_mutex); 1293 1294 if (changed & IEEE80211_CONF_CHANGE_MONITOR) { 1295 if (conf->flags & IEEE80211_CONF_MONITOR) { 1296 set_bit(ATH11K_FLAG_MONITOR_CONF_ENABLED, &ar->monitor_flags); 1297 1298 if (test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, 1299 &ar->monitor_flags)) 1300 goto out; 1301 1302 ret = ath11k_mac_monitor_vdev_create(ar); 1303 if (ret) { 1304 ath11k_warn(ar->ab, "failed to create monitor vdev: %d", 1305 ret); 1306 goto out; 1307 } 1308 1309 ret = ath11k_mac_monitor_start(ar); 1310 if (ret) { 1311 ath11k_warn(ar->ab, "failed to start monitor: %d", 1312 ret); 1313 goto err_mon_del; 1314 } 1315 } else { 1316 clear_bit(ATH11K_FLAG_MONITOR_CONF_ENABLED, &ar->monitor_flags); 1317 1318 if (!test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, 1319 &ar->monitor_flags)) 1320 goto out; 1321 1322 ret = ath11k_mac_monitor_stop(ar); 1323 if (ret) { 1324 ath11k_warn(ar->ab, "failed to stop monitor: %d", 1325 ret); 1326 goto out; 1327 } 1328 1329 ret = ath11k_mac_monitor_vdev_delete(ar); 1330 if (ret) { 1331 ath11k_warn(ar->ab, "failed to delete monitor vdev: %d", 1332 ret); 1333 goto out; 1334 } 1335 } 1336 } 1337 1338 out: 1339 mutex_unlock(&ar->conf_mutex); 1340 return ret; 1341 1342 err_mon_del: 1343 ath11k_mac_monitor_vdev_delete(ar); 1344 mutex_unlock(&ar->conf_mutex); 1345 return ret; 1346 } 1347 1348 static void ath11k_mac_setup_nontx_vif_rsnie(struct ath11k_vif *arvif, 1349 bool tx_arvif_rsnie_present, 1350 const u8 *profile, u8 profile_len) 1351 { 1352 if (cfg80211_find_ie(WLAN_EID_RSN, profile, profile_len)) { 1353 arvif->rsnie_present = true; 1354 } else if (tx_arvif_rsnie_present) { 1355 int i; 1356 u8 nie_len; 1357 const u8 *nie = cfg80211_find_ext_ie(WLAN_EID_EXT_NON_INHERITANCE, 1358 profile, profile_len); 1359 if (!nie) 1360 return; 1361 1362 nie_len = nie[1]; 1363 nie += 2; 1364 for (i = 0; i < nie_len; i++) { 1365 if (nie[i] == WLAN_EID_RSN) { 1366 arvif->rsnie_present = false; 1367 break; 1368 } 1369 } 1370 } 1371 } 1372 1373 static bool ath11k_mac_set_nontx_vif_params(struct ath11k_vif *tx_arvif, 1374 struct ath11k_vif *arvif, 1375 struct sk_buff *bcn) 1376 { 1377 struct ieee80211_mgmt *mgmt; 1378 const u8 *ies, *profile, *next_profile; 1379 int ies_len; 1380 1381 ies = bcn->data + ieee80211_get_hdrlen_from_skb(bcn); 1382 mgmt = (struct ieee80211_mgmt *)bcn->data; 1383 ies += sizeof(mgmt->u.beacon); 1384 ies_len = skb_tail_pointer(bcn) - ies; 1385 1386 ies = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ies, ies_len); 1387 arvif->rsnie_present = tx_arvif->rsnie_present; 1388 1389 while (ies) { 1390 u8 mbssid_len; 1391 1392 ies_len -= (2 + ies[1]); 1393 mbssid_len = ies[1] - 1; 1394 profile = &ies[3]; 1395 1396 while (mbssid_len) { 1397 u8 profile_len; 1398 1399 profile_len = profile[1]; 1400 next_profile = profile + (2 + profile_len); 1401 mbssid_len -= (2 + profile_len); 1402 1403 profile += 2; 1404 profile_len -= (2 + profile[1]); 1405 profile += (2 + profile[1]); /* nontx capabilities */ 1406 profile_len -= (2 + profile[1]); 1407 profile += (2 + profile[1]); /* SSID */ 1408 if (profile[2] == arvif->vif->bss_conf.bssid_index) { 1409 profile_len -= 5; 1410 profile = profile + 5; 1411 ath11k_mac_setup_nontx_vif_rsnie(arvif, 1412 tx_arvif->rsnie_present, 1413 profile, 1414 profile_len); 1415 return true; 1416 } 1417 profile = next_profile; 1418 } 1419 ies = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, profile, 1420 ies_len); 1421 } 1422 1423 return false; 1424 } 1425 1426 static int ath11k_mac_setup_bcn_p2p_ie(struct ath11k_vif *arvif, 1427 struct sk_buff *bcn) 1428 { 1429 struct ath11k *ar = arvif->ar; 1430 struct ieee80211_mgmt *mgmt; 1431 const u8 *p2p_ie; 1432 int ret; 1433 1434 mgmt = (void *)bcn->data; 1435 p2p_ie = cfg80211_find_vendor_ie(WLAN_OUI_WFA, WLAN_OUI_TYPE_WFA_P2P, 1436 mgmt->u.beacon.variable, 1437 bcn->len - (mgmt->u.beacon.variable - 1438 bcn->data)); 1439 if (!p2p_ie) 1440 return -ENOENT; 1441 1442 ret = ath11k_wmi_p2p_go_bcn_ie(ar, arvif->vdev_id, p2p_ie); 1443 if (ret) { 1444 ath11k_warn(ar->ab, "failed to submit P2P GO bcn ie for vdev %i: %d\n", 1445 arvif->vdev_id, ret); 1446 return ret; 1447 } 1448 1449 return ret; 1450 } 1451 1452 static int ath11k_mac_remove_vendor_ie(struct sk_buff *skb, unsigned int oui, 1453 u8 oui_type, size_t ie_offset) 1454 { 1455 size_t len; 1456 const u8 *next, *end; 1457 u8 *ie; 1458 1459 if (WARN_ON(skb->len < ie_offset)) 1460 return -EINVAL; 1461 1462 ie = (u8 *)cfg80211_find_vendor_ie(oui, oui_type, 1463 skb->data + ie_offset, 1464 skb->len - ie_offset); 1465 if (!ie) 1466 return -ENOENT; 1467 1468 len = ie[1] + 2; 1469 end = skb->data + skb->len; 1470 next = ie + len; 1471 1472 if (WARN_ON(next > end)) 1473 return -EINVAL; 1474 1475 memmove(ie, next, end - next); 1476 skb_trim(skb, skb->len - len); 1477 1478 return 0; 1479 } 1480 1481 static int ath11k_mac_set_vif_params(struct ath11k_vif *arvif, 1482 struct sk_buff *bcn) 1483 { 1484 struct ath11k_base *ab = arvif->ar->ab; 1485 struct ieee80211_mgmt *mgmt; 1486 int ret = 0; 1487 u8 *ies; 1488 1489 ies = bcn->data + ieee80211_get_hdrlen_from_skb(bcn); 1490 mgmt = (struct ieee80211_mgmt *)bcn->data; 1491 ies += sizeof(mgmt->u.beacon); 1492 1493 if (cfg80211_find_ie(WLAN_EID_RSN, ies, (skb_tail_pointer(bcn) - ies))) 1494 arvif->rsnie_present = true; 1495 else 1496 arvif->rsnie_present = false; 1497 1498 if (cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, 1499 WLAN_OUI_TYPE_MICROSOFT_WPA, 1500 ies, (skb_tail_pointer(bcn) - ies))) 1501 arvif->wpaie_present = true; 1502 else 1503 arvif->wpaie_present = false; 1504 1505 if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO) 1506 return ret; 1507 1508 ret = ath11k_mac_setup_bcn_p2p_ie(arvif, bcn); 1509 if (ret) { 1510 ath11k_warn(ab, "failed to setup P2P GO bcn ie: %d\n", 1511 ret); 1512 return ret; 1513 } 1514 1515 /* P2P IE is inserted by firmware automatically (as 1516 * configured above) so remove it from the base beacon 1517 * template to avoid duplicate P2P IEs in beacon frames. 1518 */ 1519 ret = ath11k_mac_remove_vendor_ie(bcn, WLAN_OUI_WFA, 1520 WLAN_OUI_TYPE_WFA_P2P, 1521 offsetof(struct ieee80211_mgmt, 1522 u.beacon.variable)); 1523 if (ret) { 1524 ath11k_warn(ab, "failed to remove P2P vendor ie: %d\n", 1525 ret); 1526 return ret; 1527 } 1528 1529 return ret; 1530 } 1531 1532 static int ath11k_mac_setup_bcn_tmpl_ema(struct ath11k_vif *arvif) 1533 { 1534 struct ath11k_vif *tx_arvif; 1535 struct ieee80211_ema_beacons *beacons; 1536 int ret = 0; 1537 bool nontx_vif_params_set = false; 1538 u32 params = 0; 1539 u8 i = 0; 1540 1541 tx_arvif = ath11k_vif_to_arvif(arvif->vif->mbssid_tx_vif); 1542 1543 beacons = ieee80211_beacon_get_template_ema_list(tx_arvif->ar->hw, 1544 tx_arvif->vif, 0); 1545 if (!beacons || !beacons->cnt) { 1546 ath11k_warn(arvif->ar->ab, 1547 "failed to get ema beacon templates from mac80211\n"); 1548 return -EPERM; 1549 } 1550 1551 if (tx_arvif == arvif) { 1552 if (ath11k_mac_set_vif_params(tx_arvif, beacons->bcn[0].skb)) 1553 return -EINVAL; 1554 } else { 1555 arvif->wpaie_present = tx_arvif->wpaie_present; 1556 } 1557 1558 for (i = 0; i < beacons->cnt; i++) { 1559 if (tx_arvif != arvif && !nontx_vif_params_set) 1560 nontx_vif_params_set = 1561 ath11k_mac_set_nontx_vif_params(tx_arvif, arvif, 1562 beacons->bcn[i].skb); 1563 1564 params = beacons->cnt; 1565 params |= (i << WMI_EMA_TMPL_IDX_SHIFT); 1566 params |= ((!i ? 1 : 0) << WMI_EMA_FIRST_TMPL_SHIFT); 1567 params |= ((i + 1 == beacons->cnt ? 1 : 0) << WMI_EMA_LAST_TMPL_SHIFT); 1568 1569 ret = ath11k_wmi_bcn_tmpl(tx_arvif->ar, tx_arvif->vdev_id, 1570 &beacons->bcn[i].offs, 1571 beacons->bcn[i].skb, params); 1572 if (ret) { 1573 ath11k_warn(tx_arvif->ar->ab, 1574 "failed to set ema beacon template id %i error %d\n", 1575 i, ret); 1576 break; 1577 } 1578 } 1579 1580 ieee80211_beacon_free_ema_list(beacons); 1581 1582 if (tx_arvif != arvif && !nontx_vif_params_set) 1583 return -EINVAL; /* Profile not found in the beacons */ 1584 1585 return ret; 1586 } 1587 1588 static int ath11k_mac_setup_bcn_tmpl_mbssid(struct ath11k_vif *arvif) 1589 { 1590 struct ath11k *ar = arvif->ar; 1591 struct ath11k_base *ab = ar->ab; 1592 struct ath11k_vif *tx_arvif = arvif; 1593 struct ieee80211_hw *hw = ar->hw; 1594 struct ieee80211_vif *vif = arvif->vif; 1595 struct ieee80211_mutable_offsets offs = {}; 1596 struct sk_buff *bcn; 1597 int ret; 1598 1599 if (vif->mbssid_tx_vif) { 1600 tx_arvif = ath11k_vif_to_arvif(vif->mbssid_tx_vif); 1601 if (tx_arvif != arvif) { 1602 ar = tx_arvif->ar; 1603 ab = ar->ab; 1604 hw = ar->hw; 1605 vif = tx_arvif->vif; 1606 } 1607 } 1608 1609 bcn = ieee80211_beacon_get_template(hw, vif, &offs, 0); 1610 if (!bcn) { 1611 ath11k_warn(ab, "failed to get beacon template from mac80211\n"); 1612 return -EPERM; 1613 } 1614 1615 if (tx_arvif == arvif) { 1616 if (ath11k_mac_set_vif_params(tx_arvif, bcn)) 1617 return -EINVAL; 1618 } else if (!ath11k_mac_set_nontx_vif_params(tx_arvif, arvif, bcn)) { 1619 return -EINVAL; 1620 } 1621 1622 ret = ath11k_wmi_bcn_tmpl(ar, arvif->vdev_id, &offs, bcn, 0); 1623 kfree_skb(bcn); 1624 1625 if (ret) 1626 ath11k_warn(ab, "failed to submit beacon template command: %d\n", 1627 ret); 1628 1629 return ret; 1630 } 1631 1632 static int ath11k_mac_setup_bcn_tmpl(struct ath11k_vif *arvif) 1633 { 1634 struct ieee80211_vif *vif = arvif->vif; 1635 1636 if (arvif->vdev_type != WMI_VDEV_TYPE_AP) 1637 return 0; 1638 1639 /* Target does not expect beacon templates for the already up 1640 * non-transmitting interfaces, and results in a crash if sent. 1641 */ 1642 if (vif->mbssid_tx_vif && 1643 arvif != ath11k_vif_to_arvif(vif->mbssid_tx_vif) && arvif->is_up) 1644 return 0; 1645 1646 if (vif->bss_conf.ema_ap && vif->mbssid_tx_vif) 1647 return ath11k_mac_setup_bcn_tmpl_ema(arvif); 1648 1649 return ath11k_mac_setup_bcn_tmpl_mbssid(arvif); 1650 } 1651 1652 void ath11k_mac_bcn_tx_event(struct ath11k_vif *arvif) 1653 { 1654 struct ieee80211_vif *vif = arvif->vif; 1655 1656 if (!vif->bss_conf.color_change_active && !arvif->bcca_zero_sent) 1657 return; 1658 1659 if (vif->bss_conf.color_change_active && 1660 ieee80211_beacon_cntdwn_is_complete(vif, 0)) { 1661 arvif->bcca_zero_sent = true; 1662 ieee80211_color_change_finish(vif, 0); 1663 return; 1664 } 1665 1666 arvif->bcca_zero_sent = false; 1667 1668 if (vif->bss_conf.color_change_active) 1669 ieee80211_beacon_update_cntdwn(vif, 0); 1670 ath11k_mac_setup_bcn_tmpl(arvif); 1671 } 1672 1673 static void ath11k_control_beaconing(struct ath11k_vif *arvif, 1674 struct ieee80211_bss_conf *info) 1675 { 1676 struct ath11k *ar = arvif->ar; 1677 struct ath11k_vif *tx_arvif = NULL; 1678 int ret = 0; 1679 1680 lockdep_assert_held(&arvif->ar->conf_mutex); 1681 1682 if (!info->enable_beacon) { 1683 ret = ath11k_wmi_vdev_down(ar, arvif->vdev_id); 1684 if (ret) 1685 ath11k_warn(ar->ab, "failed to down vdev_id %i: %d\n", 1686 arvif->vdev_id, ret); 1687 1688 arvif->is_up = false; 1689 return; 1690 } 1691 1692 /* Install the beacon template to the FW */ 1693 ret = ath11k_mac_setup_bcn_tmpl(arvif); 1694 if (ret) { 1695 ath11k_warn(ar->ab, "failed to update bcn tmpl during vdev up: %d\n", 1696 ret); 1697 return; 1698 } 1699 1700 arvif->tx_seq_no = 0x1000; 1701 1702 arvif->aid = 0; 1703 1704 ether_addr_copy(arvif->bssid, info->bssid); 1705 1706 if (arvif->vif->mbssid_tx_vif) 1707 tx_arvif = ath11k_vif_to_arvif(arvif->vif->mbssid_tx_vif); 1708 1709 ret = ath11k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, 1710 arvif->bssid, 1711 tx_arvif ? tx_arvif->bssid : NULL, 1712 info->bssid_index, 1713 1 << info->bssid_indicator); 1714 if (ret) { 1715 ath11k_warn(ar->ab, "failed to bring up vdev %d: %i\n", 1716 arvif->vdev_id, ret); 1717 return; 1718 } 1719 1720 arvif->is_up = true; 1721 1722 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %d up\n", arvif->vdev_id); 1723 } 1724 1725 static void ath11k_mac_handle_beacon_iter(void *data, u8 *mac, 1726 struct ieee80211_vif *vif) 1727 { 1728 struct sk_buff *skb = data; 1729 struct ieee80211_mgmt *mgmt = (void *)skb->data; 1730 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1731 1732 if (vif->type != NL80211_IFTYPE_STATION) 1733 return; 1734 1735 if (!ether_addr_equal(mgmt->bssid, vif->bss_conf.bssid)) 1736 return; 1737 1738 cancel_delayed_work(&arvif->connection_loss_work); 1739 } 1740 1741 void ath11k_mac_handle_beacon(struct ath11k *ar, struct sk_buff *skb) 1742 { 1743 ieee80211_iterate_active_interfaces_atomic(ar->hw, 1744 IEEE80211_IFACE_ITER_NORMAL, 1745 ath11k_mac_handle_beacon_iter, 1746 skb); 1747 } 1748 1749 static void ath11k_mac_handle_beacon_miss_iter(void *data, u8 *mac, 1750 struct ieee80211_vif *vif) 1751 { 1752 u32 *vdev_id = data; 1753 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1754 struct ath11k *ar = arvif->ar; 1755 struct ieee80211_hw *hw = ar->hw; 1756 1757 if (arvif->vdev_id != *vdev_id) 1758 return; 1759 1760 if (!arvif->is_up) 1761 return; 1762 1763 ieee80211_beacon_loss(vif); 1764 1765 /* Firmware doesn't report beacon loss events repeatedly. If AP probe 1766 * (done by mac80211) succeeds but beacons do not resume then it 1767 * doesn't make sense to continue operation. Queue connection loss work 1768 * which can be cancelled when beacon is received. 1769 */ 1770 ieee80211_queue_delayed_work(hw, &arvif->connection_loss_work, 1771 ATH11K_CONNECTION_LOSS_HZ); 1772 } 1773 1774 void ath11k_mac_handle_beacon_miss(struct ath11k *ar, u32 vdev_id) 1775 { 1776 ieee80211_iterate_active_interfaces_atomic(ar->hw, 1777 IEEE80211_IFACE_ITER_NORMAL, 1778 ath11k_mac_handle_beacon_miss_iter, 1779 &vdev_id); 1780 } 1781 1782 static void ath11k_mac_vif_sta_connection_loss_work(struct work_struct *work) 1783 { 1784 struct ath11k_vif *arvif = container_of(work, struct ath11k_vif, 1785 connection_loss_work.work); 1786 struct ieee80211_vif *vif = arvif->vif; 1787 1788 if (!arvif->is_up) 1789 return; 1790 1791 ieee80211_connection_loss(vif); 1792 } 1793 1794 static void ath11k_peer_assoc_h_basic(struct ath11k *ar, 1795 struct ieee80211_vif *vif, 1796 struct ieee80211_sta *sta, 1797 struct peer_assoc_params *arg) 1798 { 1799 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1800 u32 aid; 1801 1802 lockdep_assert_held(&ar->conf_mutex); 1803 1804 if (vif->type == NL80211_IFTYPE_STATION) 1805 aid = vif->cfg.aid; 1806 else 1807 aid = sta->aid; 1808 1809 ether_addr_copy(arg->peer_mac, sta->addr); 1810 arg->vdev_id = arvif->vdev_id; 1811 arg->peer_associd = aid; 1812 arg->auth_flag = true; 1813 /* TODO: STA WAR in ath10k for listen interval required? */ 1814 arg->peer_listen_intval = ar->hw->conf.listen_interval; 1815 arg->peer_nss = 1; 1816 arg->peer_caps = vif->bss_conf.assoc_capability; 1817 } 1818 1819 static void ath11k_peer_assoc_h_crypto(struct ath11k *ar, 1820 struct ieee80211_vif *vif, 1821 struct ieee80211_sta *sta, 1822 struct peer_assoc_params *arg) 1823 { 1824 struct ieee80211_bss_conf *info = &vif->bss_conf; 1825 struct cfg80211_chan_def def; 1826 struct cfg80211_bss *bss; 1827 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1828 const u8 *rsnie = NULL; 1829 const u8 *wpaie = NULL; 1830 1831 lockdep_assert_held(&ar->conf_mutex); 1832 1833 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 1834 return; 1835 1836 bss = cfg80211_get_bss(ar->hw->wiphy, def.chan, info->bssid, NULL, 0, 1837 IEEE80211_BSS_TYPE_ANY, IEEE80211_PRIVACY_ANY); 1838 1839 if (arvif->rsnie_present || arvif->wpaie_present) { 1840 arg->need_ptk_4_way = true; 1841 if (arvif->wpaie_present) 1842 arg->need_gtk_2_way = true; 1843 } else if (bss) { 1844 const struct cfg80211_bss_ies *ies; 1845 1846 rcu_read_lock(); 1847 rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN); 1848 1849 ies = rcu_dereference(bss->ies); 1850 1851 wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, 1852 WLAN_OUI_TYPE_MICROSOFT_WPA, 1853 ies->data, 1854 ies->len); 1855 rcu_read_unlock(); 1856 cfg80211_put_bss(ar->hw->wiphy, bss); 1857 } 1858 1859 /* FIXME: base on RSN IE/WPA IE is a correct idea? */ 1860 if (rsnie || wpaie) { 1861 ath11k_dbg(ar->ab, ATH11K_DBG_WMI, 1862 "%s: rsn ie found\n", __func__); 1863 arg->need_ptk_4_way = true; 1864 } 1865 1866 if (wpaie) { 1867 ath11k_dbg(ar->ab, ATH11K_DBG_WMI, 1868 "%s: wpa ie found\n", __func__); 1869 arg->need_gtk_2_way = true; 1870 } 1871 1872 if (sta->mfp) { 1873 /* TODO: Need to check if FW supports PMF? */ 1874 arg->is_pmf_enabled = true; 1875 } 1876 1877 /* TODO: safe_mode_enabled (bypass 4-way handshake) flag req? */ 1878 } 1879 1880 static void ath11k_peer_assoc_h_rates(struct ath11k *ar, 1881 struct ieee80211_vif *vif, 1882 struct ieee80211_sta *sta, 1883 struct peer_assoc_params *arg) 1884 { 1885 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1886 struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates; 1887 struct cfg80211_chan_def def; 1888 const struct ieee80211_supported_band *sband; 1889 const struct ieee80211_rate *rates; 1890 enum nl80211_band band; 1891 u32 ratemask; 1892 u8 rate; 1893 int i; 1894 1895 lockdep_assert_held(&ar->conf_mutex); 1896 1897 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 1898 return; 1899 1900 band = def.chan->band; 1901 sband = ar->hw->wiphy->bands[band]; 1902 ratemask = sta->deflink.supp_rates[band]; 1903 ratemask &= arvif->bitrate_mask.control[band].legacy; 1904 rates = sband->bitrates; 1905 1906 rateset->num_rates = 0; 1907 1908 for (i = 0; i < 32; i++, ratemask >>= 1, rates++) { 1909 if (!(ratemask & 1)) 1910 continue; 1911 1912 rate = ath11k_mac_bitrate_to_rate(rates->bitrate); 1913 rateset->rates[rateset->num_rates] = rate; 1914 rateset->num_rates++; 1915 } 1916 } 1917 1918 static bool 1919 ath11k_peer_assoc_h_ht_masked(const u8 *ht_mcs_mask) 1920 { 1921 int nss; 1922 1923 for (nss = 0; nss < IEEE80211_HT_MCS_MASK_LEN; nss++) 1924 if (ht_mcs_mask[nss]) 1925 return false; 1926 1927 return true; 1928 } 1929 1930 static bool 1931 ath11k_peer_assoc_h_vht_masked(const u16 *vht_mcs_mask) 1932 { 1933 int nss; 1934 1935 for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) 1936 if (vht_mcs_mask[nss]) 1937 return false; 1938 1939 return true; 1940 } 1941 1942 static void ath11k_peer_assoc_h_ht(struct ath11k *ar, 1943 struct ieee80211_vif *vif, 1944 struct ieee80211_sta *sta, 1945 struct peer_assoc_params *arg) 1946 { 1947 const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap; 1948 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 1949 struct cfg80211_chan_def def; 1950 enum nl80211_band band; 1951 const u8 *ht_mcs_mask; 1952 int i, n; 1953 u8 max_nss; 1954 u32 stbc; 1955 1956 lockdep_assert_held(&ar->conf_mutex); 1957 1958 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 1959 return; 1960 1961 if (!ht_cap->ht_supported) 1962 return; 1963 1964 band = def.chan->band; 1965 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; 1966 1967 if (ath11k_peer_assoc_h_ht_masked(ht_mcs_mask)) 1968 return; 1969 1970 arg->ht_flag = true; 1971 1972 arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1973 ht_cap->ampdu_factor)) - 1; 1974 1975 arg->peer_mpdu_density = 1976 ath11k_parse_mpdudensity(ht_cap->ampdu_density); 1977 1978 arg->peer_ht_caps = ht_cap->cap; 1979 arg->peer_rate_caps |= WMI_HOST_RC_HT_FLAG; 1980 1981 if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING) 1982 arg->ldpc_flag = true; 1983 1984 if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) { 1985 arg->bw_40 = true; 1986 arg->peer_rate_caps |= WMI_HOST_RC_CW40_FLAG; 1987 } 1988 1989 /* As firmware handles this two flags (IEEE80211_HT_CAP_SGI_20 1990 * and IEEE80211_HT_CAP_SGI_40) for enabling SGI, we reset 1991 * both flags if guard interval is Default GI 1992 */ 1993 if (arvif->bitrate_mask.control[band].gi == NL80211_TXRATE_DEFAULT_GI) 1994 arg->peer_ht_caps &= ~(IEEE80211_HT_CAP_SGI_20 | 1995 IEEE80211_HT_CAP_SGI_40); 1996 1997 if (arvif->bitrate_mask.control[band].gi != NL80211_TXRATE_FORCE_LGI) { 1998 if (ht_cap->cap & (IEEE80211_HT_CAP_SGI_20 | 1999 IEEE80211_HT_CAP_SGI_40)) 2000 arg->peer_rate_caps |= WMI_HOST_RC_SGI_FLAG; 2001 } 2002 2003 if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) { 2004 arg->peer_rate_caps |= WMI_HOST_RC_TX_STBC_FLAG; 2005 arg->stbc_flag = true; 2006 } 2007 2008 if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) { 2009 stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC; 2010 stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT; 2011 stbc = stbc << WMI_HOST_RC_RX_STBC_FLAG_S; 2012 arg->peer_rate_caps |= stbc; 2013 arg->stbc_flag = true; 2014 } 2015 2016 if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2]) 2017 arg->peer_rate_caps |= WMI_HOST_RC_TS_FLAG; 2018 else if (ht_cap->mcs.rx_mask[1]) 2019 arg->peer_rate_caps |= WMI_HOST_RC_DS_FLAG; 2020 2021 for (i = 0, n = 0, max_nss = 0; i < IEEE80211_HT_MCS_MASK_LEN * 8; i++) 2022 if ((ht_cap->mcs.rx_mask[i / 8] & BIT(i % 8)) && 2023 (ht_mcs_mask[i / 8] & BIT(i % 8))) { 2024 max_nss = (i / 8) + 1; 2025 arg->peer_ht_rates.rates[n++] = i; 2026 } 2027 2028 /* This is a workaround for HT-enabled STAs which break the spec 2029 * and have no HT capabilities RX mask (no HT RX MCS map). 2030 * 2031 * As per spec, in section 20.3.5 Modulation and coding scheme (MCS), 2032 * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs. 2033 * 2034 * Firmware asserts if such situation occurs. 2035 */ 2036 if (n == 0) { 2037 arg->peer_ht_rates.num_rates = 8; 2038 for (i = 0; i < arg->peer_ht_rates.num_rates; i++) 2039 arg->peer_ht_rates.rates[i] = i; 2040 } else { 2041 arg->peer_ht_rates.num_rates = n; 2042 arg->peer_nss = min(sta->deflink.rx_nss, max_nss); 2043 } 2044 2045 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "ht peer %pM mcs cnt %d nss %d\n", 2046 arg->peer_mac, 2047 arg->peer_ht_rates.num_rates, 2048 arg->peer_nss); 2049 } 2050 2051 static int ath11k_mac_get_max_vht_mcs_map(u16 mcs_map, int nss) 2052 { 2053 switch ((mcs_map >> (2 * nss)) & 0x3) { 2054 case IEEE80211_VHT_MCS_SUPPORT_0_7: return BIT(8) - 1; 2055 case IEEE80211_VHT_MCS_SUPPORT_0_8: return BIT(9) - 1; 2056 case IEEE80211_VHT_MCS_SUPPORT_0_9: return BIT(10) - 1; 2057 } 2058 return 0; 2059 } 2060 2061 static u16 2062 ath11k_peer_assoc_h_vht_limit(u16 tx_mcs_set, 2063 const u16 vht_mcs_limit[NL80211_VHT_NSS_MAX]) 2064 { 2065 int idx_limit; 2066 int nss; 2067 u16 mcs_map; 2068 u16 mcs; 2069 2070 for (nss = 0; nss < NL80211_VHT_NSS_MAX; nss++) { 2071 mcs_map = ath11k_mac_get_max_vht_mcs_map(tx_mcs_set, nss) & 2072 vht_mcs_limit[nss]; 2073 2074 if (mcs_map) 2075 idx_limit = fls(mcs_map) - 1; 2076 else 2077 idx_limit = -1; 2078 2079 switch (idx_limit) { 2080 case 0: 2081 case 1: 2082 case 2: 2083 case 3: 2084 case 4: 2085 case 5: 2086 case 6: 2087 case 7: 2088 mcs = IEEE80211_VHT_MCS_SUPPORT_0_7; 2089 break; 2090 case 8: 2091 mcs = IEEE80211_VHT_MCS_SUPPORT_0_8; 2092 break; 2093 case 9: 2094 mcs = IEEE80211_VHT_MCS_SUPPORT_0_9; 2095 break; 2096 default: 2097 WARN_ON(1); 2098 fallthrough; 2099 case -1: 2100 mcs = IEEE80211_VHT_MCS_NOT_SUPPORTED; 2101 break; 2102 } 2103 2104 tx_mcs_set &= ~(0x3 << (nss * 2)); 2105 tx_mcs_set |= mcs << (nss * 2); 2106 } 2107 2108 return tx_mcs_set; 2109 } 2110 2111 static u8 ath11k_get_nss_160mhz(struct ath11k *ar, 2112 u8 max_nss) 2113 { 2114 u8 nss_ratio_info = ar->pdev->cap.nss_ratio_info; 2115 u8 max_sup_nss = 0; 2116 2117 switch (nss_ratio_info) { 2118 case WMI_NSS_RATIO_1BY2_NSS: 2119 max_sup_nss = max_nss >> 1; 2120 break; 2121 case WMI_NSS_RATIO_3BY4_NSS: 2122 ath11k_warn(ar->ab, "WMI_NSS_RATIO_3BY4_NSS not supported\n"); 2123 break; 2124 case WMI_NSS_RATIO_1_NSS: 2125 max_sup_nss = max_nss; 2126 break; 2127 case WMI_NSS_RATIO_2_NSS: 2128 ath11k_warn(ar->ab, "WMI_NSS_RATIO_2_NSS not supported\n"); 2129 break; 2130 default: 2131 ath11k_warn(ar->ab, "invalid nss ratio received from firmware: %d\n", 2132 nss_ratio_info); 2133 break; 2134 } 2135 2136 return max_sup_nss; 2137 } 2138 2139 static void ath11k_peer_assoc_h_vht(struct ath11k *ar, 2140 struct ieee80211_vif *vif, 2141 struct ieee80211_sta *sta, 2142 struct peer_assoc_params *arg) 2143 { 2144 const struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap; 2145 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 2146 struct cfg80211_chan_def def; 2147 enum nl80211_band band; 2148 u16 *vht_mcs_mask; 2149 u8 ampdu_factor; 2150 u8 max_nss, vht_mcs; 2151 int i, vht_nss, nss_idx; 2152 bool user_rate_valid = true; 2153 u32 rx_nss, tx_nss, nss_160; 2154 2155 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 2156 return; 2157 2158 if (!vht_cap->vht_supported) 2159 return; 2160 2161 band = def.chan->band; 2162 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; 2163 2164 if (ath11k_peer_assoc_h_vht_masked(vht_mcs_mask)) 2165 return; 2166 2167 arg->vht_flag = true; 2168 2169 /* TODO: similar flags required? */ 2170 arg->vht_capable = true; 2171 2172 if (def.chan->band == NL80211_BAND_2GHZ) 2173 arg->vht_ng_flag = true; 2174 2175 arg->peer_vht_caps = vht_cap->cap; 2176 2177 ampdu_factor = (vht_cap->cap & 2178 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >> 2179 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; 2180 2181 /* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to 2182 * zero in VHT IE. Using it would result in degraded throughput. 2183 * arg->peer_max_mpdu at this point contains HT max_mpdu so keep 2184 * it if VHT max_mpdu is smaller. 2185 */ 2186 arg->peer_max_mpdu = max(arg->peer_max_mpdu, 2187 (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR + 2188 ampdu_factor)) - 1); 2189 2190 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) 2191 arg->bw_80 = true; 2192 2193 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) 2194 arg->bw_160 = true; 2195 2196 vht_nss = ath11k_mac_max_vht_nss(vht_mcs_mask); 2197 2198 if (vht_nss > sta->deflink.rx_nss) { 2199 user_rate_valid = false; 2200 for (nss_idx = sta->deflink.rx_nss - 1; nss_idx >= 0; nss_idx--) { 2201 if (vht_mcs_mask[nss_idx]) { 2202 user_rate_valid = true; 2203 break; 2204 } 2205 } 2206 } 2207 2208 if (!user_rate_valid) { 2209 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "setting vht range mcs value to peer supported nss %d for peer %pM\n", 2210 sta->deflink.rx_nss, sta->addr); 2211 vht_mcs_mask[sta->deflink.rx_nss - 1] = vht_mcs_mask[vht_nss - 1]; 2212 } 2213 2214 /* Calculate peer NSS capability from VHT capabilities if STA 2215 * supports VHT. 2216 */ 2217 for (i = 0, max_nss = 0; i < NL80211_VHT_NSS_MAX; i++) { 2218 vht_mcs = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map) >> 2219 (2 * i) & 3; 2220 2221 if (vht_mcs != IEEE80211_VHT_MCS_NOT_SUPPORTED && 2222 vht_mcs_mask[i]) 2223 max_nss = i + 1; 2224 } 2225 arg->peer_nss = min(sta->deflink.rx_nss, max_nss); 2226 arg->rx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.rx_highest); 2227 arg->rx_mcs_set = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map); 2228 arg->tx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.tx_highest); 2229 arg->tx_mcs_set = ath11k_peer_assoc_h_vht_limit( 2230 __le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map), vht_mcs_mask); 2231 2232 /* In IPQ8074 platform, VHT mcs rate 10 and 11 is enabled by default. 2233 * VHT mcs rate 10 and 11 is not suppoerted in 11ac standard. 2234 * so explicitly disable the VHT MCS rate 10 and 11 in 11ac mode. 2235 */ 2236 arg->tx_mcs_set &= ~IEEE80211_VHT_MCS_SUPPORT_0_11_MASK; 2237 arg->tx_mcs_set |= IEEE80211_DISABLE_VHT_MCS_SUPPORT_0_11; 2238 2239 if ((arg->tx_mcs_set & IEEE80211_VHT_MCS_NOT_SUPPORTED) == 2240 IEEE80211_VHT_MCS_NOT_SUPPORTED) 2241 arg->peer_vht_caps &= ~IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE; 2242 2243 /* TODO: Check */ 2244 arg->tx_max_mcs_nss = 0xFF; 2245 2246 if (arg->peer_phymode == MODE_11AC_VHT160 || 2247 arg->peer_phymode == MODE_11AC_VHT80_80) { 2248 tx_nss = ath11k_get_nss_160mhz(ar, max_nss); 2249 rx_nss = min(arg->peer_nss, tx_nss); 2250 arg->peer_bw_rxnss_override = ATH11K_BW_NSS_MAP_ENABLE; 2251 2252 if (!rx_nss) { 2253 ath11k_warn(ar->ab, "invalid max_nss\n"); 2254 return; 2255 } 2256 2257 if (arg->peer_phymode == MODE_11AC_VHT160) 2258 nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_160MHZ, rx_nss - 1); 2259 else 2260 nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_80_80MHZ, rx_nss - 1); 2261 2262 arg->peer_bw_rxnss_override |= nss_160; 2263 } 2264 2265 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 2266 "vht peer %pM max_mpdu %d flags 0x%x nss_override 0x%x\n", 2267 sta->addr, arg->peer_max_mpdu, arg->peer_flags, 2268 arg->peer_bw_rxnss_override); 2269 } 2270 2271 static int ath11k_mac_get_max_he_mcs_map(u16 mcs_map, int nss) 2272 { 2273 switch ((mcs_map >> (2 * nss)) & 0x3) { 2274 case IEEE80211_HE_MCS_SUPPORT_0_7: return BIT(8) - 1; 2275 case IEEE80211_HE_MCS_SUPPORT_0_9: return BIT(10) - 1; 2276 case IEEE80211_HE_MCS_SUPPORT_0_11: return BIT(12) - 1; 2277 } 2278 return 0; 2279 } 2280 2281 static u16 ath11k_peer_assoc_h_he_limit(u16 tx_mcs_set, 2282 const u16 he_mcs_limit[NL80211_HE_NSS_MAX]) 2283 { 2284 int idx_limit; 2285 int nss; 2286 u16 mcs_map; 2287 u16 mcs; 2288 2289 for (nss = 0; nss < NL80211_HE_NSS_MAX; nss++) { 2290 mcs_map = ath11k_mac_get_max_he_mcs_map(tx_mcs_set, nss) & 2291 he_mcs_limit[nss]; 2292 2293 if (mcs_map) 2294 idx_limit = fls(mcs_map) - 1; 2295 else 2296 idx_limit = -1; 2297 2298 switch (idx_limit) { 2299 case 0 ... 7: 2300 mcs = IEEE80211_HE_MCS_SUPPORT_0_7; 2301 break; 2302 case 8: 2303 case 9: 2304 mcs = IEEE80211_HE_MCS_SUPPORT_0_9; 2305 break; 2306 case 10: 2307 case 11: 2308 mcs = IEEE80211_HE_MCS_SUPPORT_0_11; 2309 break; 2310 default: 2311 WARN_ON(1); 2312 fallthrough; 2313 case -1: 2314 mcs = IEEE80211_HE_MCS_NOT_SUPPORTED; 2315 break; 2316 } 2317 2318 tx_mcs_set &= ~(0x3 << (nss * 2)); 2319 tx_mcs_set |= mcs << (nss * 2); 2320 } 2321 2322 return tx_mcs_set; 2323 } 2324 2325 static bool 2326 ath11k_peer_assoc_h_he_masked(const u16 *he_mcs_mask) 2327 { 2328 int nss; 2329 2330 for (nss = 0; nss < NL80211_HE_NSS_MAX; nss++) 2331 if (he_mcs_mask[nss]) 2332 return false; 2333 2334 return true; 2335 } 2336 2337 static void ath11k_peer_assoc_h_he(struct ath11k *ar, 2338 struct ieee80211_vif *vif, 2339 struct ieee80211_sta *sta, 2340 struct peer_assoc_params *arg) 2341 { 2342 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 2343 struct cfg80211_chan_def def; 2344 const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap; 2345 enum nl80211_band band; 2346 u16 he_mcs_mask[NL80211_HE_NSS_MAX]; 2347 u8 max_nss, he_mcs; 2348 u16 he_tx_mcs = 0, v = 0; 2349 int i, he_nss, nss_idx; 2350 bool user_rate_valid = true; 2351 u32 rx_nss, tx_nss, nss_160; 2352 u8 ampdu_factor, rx_mcs_80, rx_mcs_160; 2353 u16 mcs_160_map, mcs_80_map; 2354 bool support_160; 2355 2356 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 2357 return; 2358 2359 if (!he_cap->has_he) 2360 return; 2361 2362 band = def.chan->band; 2363 memcpy(he_mcs_mask, arvif->bitrate_mask.control[band].he_mcs, 2364 sizeof(he_mcs_mask)); 2365 2366 if (ath11k_peer_assoc_h_he_masked(he_mcs_mask)) 2367 return; 2368 2369 arg->he_flag = true; 2370 support_160 = !!(he_cap->he_cap_elem.phy_cap_info[0] & 2371 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G); 2372 2373 /* Supported HE-MCS and NSS Set of peer he_cap is intersection with self he_cp */ 2374 mcs_160_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_160); 2375 mcs_80_map = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80); 2376 2377 /* Initialize rx_mcs_160 to 9 which is an invalid value */ 2378 rx_mcs_160 = 9; 2379 if (support_160) { 2380 for (i = 7; i >= 0; i--) { 2381 u8 mcs_160 = (mcs_160_map >> (2 * i)) & 3; 2382 2383 if (mcs_160 != IEEE80211_VHT_MCS_NOT_SUPPORTED) { 2384 rx_mcs_160 = i + 1; 2385 break; 2386 } 2387 } 2388 } 2389 2390 /* Initialize rx_mcs_80 to 9 which is an invalid value */ 2391 rx_mcs_80 = 9; 2392 for (i = 7; i >= 0; i--) { 2393 u8 mcs_80 = (mcs_80_map >> (2 * i)) & 3; 2394 2395 if (mcs_80 != IEEE80211_VHT_MCS_NOT_SUPPORTED) { 2396 rx_mcs_80 = i + 1; 2397 break; 2398 } 2399 } 2400 2401 if (support_160) 2402 max_nss = min(rx_mcs_80, rx_mcs_160); 2403 else 2404 max_nss = rx_mcs_80; 2405 2406 arg->peer_nss = min(sta->deflink.rx_nss, max_nss); 2407 2408 memcpy_and_pad(&arg->peer_he_cap_macinfo, 2409 sizeof(arg->peer_he_cap_macinfo), 2410 he_cap->he_cap_elem.mac_cap_info, 2411 sizeof(he_cap->he_cap_elem.mac_cap_info), 2412 0); 2413 memcpy_and_pad(&arg->peer_he_cap_phyinfo, 2414 sizeof(arg->peer_he_cap_phyinfo), 2415 he_cap->he_cap_elem.phy_cap_info, 2416 sizeof(he_cap->he_cap_elem.phy_cap_info), 2417 0); 2418 arg->peer_he_ops = vif->bss_conf.he_oper.params; 2419 2420 /* the top most byte is used to indicate BSS color info */ 2421 arg->peer_he_ops &= 0xffffff; 2422 2423 /* As per section 26.6.1 11ax Draft5.0, if the Max AMPDU Exponent Extension 2424 * in HE cap is zero, use the arg->peer_max_mpdu as calculated while parsing 2425 * VHT caps(if VHT caps is present) or HT caps (if VHT caps is not present). 2426 * 2427 * For non-zero value of Max AMPDU Extponent Extension in HE MAC caps, 2428 * if a HE STA sends VHT cap and HE cap IE in assoc request then, use 2429 * MAX_AMPDU_LEN_FACTOR as 20 to calculate max_ampdu length. 2430 * If a HE STA that does not send VHT cap, but HE and HT cap in assoc 2431 * request, then use MAX_AMPDU_LEN_FACTOR as 16 to calculate max_ampdu 2432 * length. 2433 */ 2434 ampdu_factor = u8_get_bits(he_cap->he_cap_elem.mac_cap_info[3], 2435 IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK); 2436 2437 if (ampdu_factor) { 2438 if (sta->deflink.vht_cap.vht_supported) 2439 arg->peer_max_mpdu = (1 << (IEEE80211_HE_VHT_MAX_AMPDU_FACTOR + 2440 ampdu_factor)) - 1; 2441 else if (sta->deflink.ht_cap.ht_supported) 2442 arg->peer_max_mpdu = (1 << (IEEE80211_HE_HT_MAX_AMPDU_FACTOR + 2443 ampdu_factor)) - 1; 2444 } 2445 2446 if (he_cap->he_cap_elem.phy_cap_info[6] & 2447 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { 2448 int bit = 7; 2449 int nss, ru; 2450 2451 arg->peer_ppet.numss_m1 = he_cap->ppe_thres[0] & 2452 IEEE80211_PPE_THRES_NSS_MASK; 2453 arg->peer_ppet.ru_bit_mask = 2454 (he_cap->ppe_thres[0] & 2455 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK) >> 2456 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS; 2457 2458 for (nss = 0; nss <= arg->peer_ppet.numss_m1; nss++) { 2459 for (ru = 0; ru < 4; ru++) { 2460 u32 val = 0; 2461 int i; 2462 2463 if ((arg->peer_ppet.ru_bit_mask & BIT(ru)) == 0) 2464 continue; 2465 for (i = 0; i < 6; i++) { 2466 val >>= 1; 2467 val |= ((he_cap->ppe_thres[bit / 8] >> 2468 (bit % 8)) & 0x1) << 5; 2469 bit++; 2470 } 2471 arg->peer_ppet.ppet16_ppet8_ru3_ru0[nss] |= 2472 val << (ru * 6); 2473 } 2474 } 2475 } 2476 2477 if (he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_RES) 2478 arg->twt_responder = true; 2479 if (he_cap->he_cap_elem.mac_cap_info[0] & IEEE80211_HE_MAC_CAP0_TWT_REQ) 2480 arg->twt_requester = true; 2481 2482 he_nss = ath11k_mac_max_he_nss(he_mcs_mask); 2483 2484 if (he_nss > sta->deflink.rx_nss) { 2485 user_rate_valid = false; 2486 for (nss_idx = sta->deflink.rx_nss - 1; nss_idx >= 0; nss_idx--) { 2487 if (he_mcs_mask[nss_idx]) { 2488 user_rate_valid = true; 2489 break; 2490 } 2491 } 2492 } 2493 2494 if (!user_rate_valid) { 2495 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "setting he range mcs value to peer supported nss %d for peer %pM\n", 2496 sta->deflink.rx_nss, sta->addr); 2497 he_mcs_mask[sta->deflink.rx_nss - 1] = he_mcs_mask[he_nss - 1]; 2498 } 2499 2500 switch (sta->deflink.bandwidth) { 2501 case IEEE80211_STA_RX_BW_160: 2502 if (he_cap->he_cap_elem.phy_cap_info[0] & 2503 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) { 2504 v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80p80); 2505 v = ath11k_peer_assoc_h_he_limit(v, he_mcs_mask); 2506 arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80_80] = v; 2507 2508 v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_80p80); 2509 arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80_80] = v; 2510 2511 arg->peer_he_mcs_count++; 2512 he_tx_mcs = v; 2513 } 2514 v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_160); 2515 arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_160] = v; 2516 2517 v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_160); 2518 v = ath11k_peer_assoc_h_he_limit(v, he_mcs_mask); 2519 arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_160] = v; 2520 2521 arg->peer_he_mcs_count++; 2522 if (!he_tx_mcs) 2523 he_tx_mcs = v; 2524 fallthrough; 2525 2526 default: 2527 v = le16_to_cpu(he_cap->he_mcs_nss_supp.rx_mcs_80); 2528 arg->peer_he_rx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80] = v; 2529 2530 v = le16_to_cpu(he_cap->he_mcs_nss_supp.tx_mcs_80); 2531 v = ath11k_peer_assoc_h_he_limit(v, he_mcs_mask); 2532 arg->peer_he_tx_mcs_set[WMI_HECAP_TXRX_MCS_NSS_IDX_80] = v; 2533 2534 arg->peer_he_mcs_count++; 2535 if (!he_tx_mcs) 2536 he_tx_mcs = v; 2537 break; 2538 } 2539 2540 /* Calculate peer NSS capability from HE capabilities if STA 2541 * supports HE. 2542 */ 2543 for (i = 0, max_nss = 0; i < NL80211_HE_NSS_MAX; i++) { 2544 he_mcs = he_tx_mcs >> (2 * i) & 3; 2545 2546 /* In case of fixed rates, MCS Range in he_tx_mcs might have 2547 * unsupported range, with he_mcs_mask set, so check either of them 2548 * to find nss. 2549 */ 2550 if (he_mcs != IEEE80211_HE_MCS_NOT_SUPPORTED || 2551 he_mcs_mask[i]) 2552 max_nss = i + 1; 2553 } 2554 arg->peer_nss = min(sta->deflink.rx_nss, max_nss); 2555 2556 if (arg->peer_phymode == MODE_11AX_HE160 || 2557 arg->peer_phymode == MODE_11AX_HE80_80) { 2558 tx_nss = ath11k_get_nss_160mhz(ar, max_nss); 2559 rx_nss = min(arg->peer_nss, tx_nss); 2560 arg->peer_bw_rxnss_override = ATH11K_BW_NSS_MAP_ENABLE; 2561 2562 if (!rx_nss) { 2563 ath11k_warn(ar->ab, "invalid max_nss\n"); 2564 return; 2565 } 2566 2567 if (arg->peer_phymode == MODE_11AX_HE160) 2568 nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_160MHZ, rx_nss - 1); 2569 else 2570 nss_160 = FIELD_PREP(ATH11K_PEER_RX_NSS_80_80MHZ, rx_nss - 1); 2571 2572 arg->peer_bw_rxnss_override |= nss_160; 2573 } 2574 2575 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 2576 "he peer %pM nss %d mcs cnt %d nss_override 0x%x\n", 2577 sta->addr, arg->peer_nss, 2578 arg->peer_he_mcs_count, 2579 arg->peer_bw_rxnss_override); 2580 } 2581 2582 static void ath11k_peer_assoc_h_he_6ghz(struct ath11k *ar, 2583 struct ieee80211_vif *vif, 2584 struct ieee80211_sta *sta, 2585 struct peer_assoc_params *arg) 2586 { 2587 const struct ieee80211_sta_he_cap *he_cap = &sta->deflink.he_cap; 2588 struct cfg80211_chan_def def; 2589 enum nl80211_band band; 2590 u8 ampdu_factor; 2591 2592 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 2593 return; 2594 2595 band = def.chan->band; 2596 2597 if (!arg->he_flag || band != NL80211_BAND_6GHZ || !sta->deflink.he_6ghz_capa.capa) 2598 return; 2599 2600 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2601 arg->bw_40 = true; 2602 2603 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) 2604 arg->bw_80 = true; 2605 2606 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) 2607 arg->bw_160 = true; 2608 2609 arg->peer_he_caps_6ghz = le16_to_cpu(sta->deflink.he_6ghz_capa.capa); 2610 arg->peer_mpdu_density = 2611 ath11k_parse_mpdudensity(FIELD_GET(IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START, 2612 arg->peer_he_caps_6ghz)); 2613 2614 /* From IEEE Std 802.11ax-2021 - Section 10.12.2: An HE STA shall be capable of 2615 * receiving A-MPDU where the A-MPDU pre-EOF padding length is up to the value 2616 * indicated by the Maximum A-MPDU Length Exponent Extension field in the HE 2617 * Capabilities element and the Maximum A-MPDU Length Exponent field in HE 6 GHz 2618 * Band Capabilities element in the 6 GHz band. 2619 * 2620 * Here, we are extracting the Max A-MPDU Exponent Extension from HE caps and 2621 * factor is the Maximum A-MPDU Length Exponent from HE 6 GHZ Band capability. 2622 */ 2623 ampdu_factor = FIELD_GET(IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK, 2624 he_cap->he_cap_elem.mac_cap_info[3]) + 2625 FIELD_GET(IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP, 2626 arg->peer_he_caps_6ghz); 2627 2628 arg->peer_max_mpdu = (1u << (IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR + 2629 ampdu_factor)) - 1; 2630 } 2631 2632 static void ath11k_peer_assoc_h_smps(struct ieee80211_sta *sta, 2633 struct peer_assoc_params *arg) 2634 { 2635 const struct ieee80211_sta_ht_cap *ht_cap = &sta->deflink.ht_cap; 2636 int smps; 2637 2638 if (!ht_cap->ht_supported && !sta->deflink.he_6ghz_capa.capa) 2639 return; 2640 2641 if (ht_cap->ht_supported) { 2642 smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS; 2643 smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT; 2644 } else { 2645 smps = le16_get_bits(sta->deflink.he_6ghz_capa.capa, 2646 IEEE80211_HE_6GHZ_CAP_SM_PS); 2647 } 2648 2649 switch (smps) { 2650 case WLAN_HT_CAP_SM_PS_STATIC: 2651 arg->static_mimops_flag = true; 2652 break; 2653 case WLAN_HT_CAP_SM_PS_DYNAMIC: 2654 arg->dynamic_mimops_flag = true; 2655 break; 2656 case WLAN_HT_CAP_SM_PS_DISABLED: 2657 arg->spatial_mux_flag = true; 2658 break; 2659 default: 2660 break; 2661 } 2662 } 2663 2664 static void ath11k_peer_assoc_h_qos(struct ath11k *ar, 2665 struct ieee80211_vif *vif, 2666 struct ieee80211_sta *sta, 2667 struct peer_assoc_params *arg) 2668 { 2669 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 2670 2671 switch (arvif->vdev_type) { 2672 case WMI_VDEV_TYPE_AP: 2673 if (sta->wme) { 2674 /* TODO: Check WME vs QoS */ 2675 arg->is_wme_set = true; 2676 arg->qos_flag = true; 2677 } 2678 2679 if (sta->wme && sta->uapsd_queues) { 2680 /* TODO: Check WME vs QoS */ 2681 arg->is_wme_set = true; 2682 arg->apsd_flag = true; 2683 arg->peer_rate_caps |= WMI_HOST_RC_UAPSD_FLAG; 2684 } 2685 break; 2686 case WMI_VDEV_TYPE_STA: 2687 if (sta->wme) { 2688 arg->is_wme_set = true; 2689 arg->qos_flag = true; 2690 } 2691 break; 2692 default: 2693 break; 2694 } 2695 2696 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "peer %pM qos %d\n", 2697 sta->addr, arg->qos_flag); 2698 } 2699 2700 static int ath11k_peer_assoc_qos_ap(struct ath11k *ar, 2701 struct ath11k_vif *arvif, 2702 struct ieee80211_sta *sta) 2703 { 2704 struct ap_ps_params params; 2705 u32 max_sp; 2706 u32 uapsd; 2707 int ret; 2708 2709 lockdep_assert_held(&ar->conf_mutex); 2710 2711 params.vdev_id = arvif->vdev_id; 2712 2713 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "uapsd_queues 0x%x max_sp %d\n", 2714 sta->uapsd_queues, sta->max_sp); 2715 2716 uapsd = 0; 2717 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) 2718 uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN | 2719 WMI_AP_PS_UAPSD_AC3_TRIGGER_EN; 2720 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI) 2721 uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN | 2722 WMI_AP_PS_UAPSD_AC2_TRIGGER_EN; 2723 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK) 2724 uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN | 2725 WMI_AP_PS_UAPSD_AC1_TRIGGER_EN; 2726 if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE) 2727 uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN | 2728 WMI_AP_PS_UAPSD_AC0_TRIGGER_EN; 2729 2730 max_sp = 0; 2731 if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP) 2732 max_sp = sta->max_sp; 2733 2734 params.param = WMI_AP_PS_PEER_PARAM_UAPSD; 2735 params.value = uapsd; 2736 ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, ¶ms); 2737 if (ret) 2738 goto err; 2739 2740 params.param = WMI_AP_PS_PEER_PARAM_MAX_SP; 2741 params.value = max_sp; 2742 ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, ¶ms); 2743 if (ret) 2744 goto err; 2745 2746 /* TODO revisit during testing */ 2747 params.param = WMI_AP_PS_PEER_PARAM_SIFS_RESP_FRMTYPE; 2748 params.value = DISABLE_SIFS_RESPONSE_TRIGGER; 2749 ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, ¶ms); 2750 if (ret) 2751 goto err; 2752 2753 params.param = WMI_AP_PS_PEER_PARAM_SIFS_RESP_UAPSD; 2754 params.value = DISABLE_SIFS_RESPONSE_TRIGGER; 2755 ret = ath11k_wmi_send_set_ap_ps_param_cmd(ar, sta->addr, ¶ms); 2756 if (ret) 2757 goto err; 2758 2759 return 0; 2760 2761 err: 2762 ath11k_warn(ar->ab, "failed to set ap ps peer param %d for vdev %i: %d\n", 2763 params.param, arvif->vdev_id, ret); 2764 return ret; 2765 } 2766 2767 static bool ath11k_mac_sta_has_ofdm_only(struct ieee80211_sta *sta) 2768 { 2769 return sta->deflink.supp_rates[NL80211_BAND_2GHZ] >> 2770 ATH11K_MAC_FIRST_OFDM_RATE_IDX; 2771 } 2772 2773 static enum wmi_phy_mode ath11k_mac_get_phymode_vht(struct ath11k *ar, 2774 struct ieee80211_sta *sta) 2775 { 2776 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) { 2777 switch (sta->deflink.vht_cap.cap & 2778 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK) { 2779 case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ: 2780 return MODE_11AC_VHT160; 2781 case IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ: 2782 return MODE_11AC_VHT80_80; 2783 default: 2784 /* not sure if this is a valid case? */ 2785 return MODE_11AC_VHT160; 2786 } 2787 } 2788 2789 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) 2790 return MODE_11AC_VHT80; 2791 2792 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2793 return MODE_11AC_VHT40; 2794 2795 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20) 2796 return MODE_11AC_VHT20; 2797 2798 return MODE_UNKNOWN; 2799 } 2800 2801 static enum wmi_phy_mode ath11k_mac_get_phymode_he(struct ath11k *ar, 2802 struct ieee80211_sta *sta) 2803 { 2804 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_160) { 2805 if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] & 2806 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 2807 return MODE_11AX_HE160; 2808 else if (sta->deflink.he_cap.he_cap_elem.phy_cap_info[0] & 2809 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) 2810 return MODE_11AX_HE80_80; 2811 /* not sure if this is a valid case? */ 2812 return MODE_11AX_HE160; 2813 } 2814 2815 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) 2816 return MODE_11AX_HE80; 2817 2818 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2819 return MODE_11AX_HE40; 2820 2821 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_20) 2822 return MODE_11AX_HE20; 2823 2824 return MODE_UNKNOWN; 2825 } 2826 2827 static void ath11k_peer_assoc_h_phymode(struct ath11k *ar, 2828 struct ieee80211_vif *vif, 2829 struct ieee80211_sta *sta, 2830 struct peer_assoc_params *arg) 2831 { 2832 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 2833 struct cfg80211_chan_def def; 2834 enum nl80211_band band; 2835 const u8 *ht_mcs_mask; 2836 const u16 *vht_mcs_mask; 2837 const u16 *he_mcs_mask; 2838 enum wmi_phy_mode phymode = MODE_UNKNOWN; 2839 2840 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 2841 return; 2842 2843 band = def.chan->band; 2844 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; 2845 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; 2846 he_mcs_mask = arvif->bitrate_mask.control[band].he_mcs; 2847 2848 switch (band) { 2849 case NL80211_BAND_2GHZ: 2850 if (sta->deflink.he_cap.has_he && 2851 !ath11k_peer_assoc_h_he_masked(he_mcs_mask)) { 2852 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_80) 2853 phymode = MODE_11AX_HE80_2G; 2854 else if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2855 phymode = MODE_11AX_HE40_2G; 2856 else 2857 phymode = MODE_11AX_HE20_2G; 2858 } else if (sta->deflink.vht_cap.vht_supported && 2859 !ath11k_peer_assoc_h_vht_masked(vht_mcs_mask)) { 2860 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2861 phymode = MODE_11AC_VHT40; 2862 else 2863 phymode = MODE_11AC_VHT20; 2864 } else if (sta->deflink.ht_cap.ht_supported && 2865 !ath11k_peer_assoc_h_ht_masked(ht_mcs_mask)) { 2866 if (sta->deflink.bandwidth == IEEE80211_STA_RX_BW_40) 2867 phymode = MODE_11NG_HT40; 2868 else 2869 phymode = MODE_11NG_HT20; 2870 } else if (ath11k_mac_sta_has_ofdm_only(sta)) { 2871 phymode = MODE_11G; 2872 } else { 2873 phymode = MODE_11B; 2874 } 2875 break; 2876 case NL80211_BAND_5GHZ: 2877 case NL80211_BAND_6GHZ: 2878 /* Check HE first */ 2879 if (sta->deflink.he_cap.has_he && 2880 !ath11k_peer_assoc_h_he_masked(he_mcs_mask)) { 2881 phymode = ath11k_mac_get_phymode_he(ar, sta); 2882 } else if (sta->deflink.vht_cap.vht_supported && 2883 !ath11k_peer_assoc_h_vht_masked(vht_mcs_mask)) { 2884 phymode = ath11k_mac_get_phymode_vht(ar, sta); 2885 } else if (sta->deflink.ht_cap.ht_supported && 2886 !ath11k_peer_assoc_h_ht_masked(ht_mcs_mask)) { 2887 if (sta->deflink.bandwidth >= IEEE80211_STA_RX_BW_40) 2888 phymode = MODE_11NA_HT40; 2889 else 2890 phymode = MODE_11NA_HT20; 2891 } else { 2892 phymode = MODE_11A; 2893 } 2894 break; 2895 default: 2896 break; 2897 } 2898 2899 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "peer %pM phymode %s\n", 2900 sta->addr, ath11k_wmi_phymode_str(phymode)); 2901 2902 arg->peer_phymode = phymode; 2903 WARN_ON(phymode == MODE_UNKNOWN); 2904 } 2905 2906 static void ath11k_peer_assoc_prepare(struct ath11k *ar, 2907 struct ieee80211_vif *vif, 2908 struct ieee80211_sta *sta, 2909 struct peer_assoc_params *arg, 2910 bool reassoc) 2911 { 2912 struct ath11k_sta *arsta; 2913 2914 lockdep_assert_held(&ar->conf_mutex); 2915 2916 arsta = ath11k_sta_to_arsta(sta); 2917 2918 memset(arg, 0, sizeof(*arg)); 2919 2920 reinit_completion(&ar->peer_assoc_done); 2921 2922 arg->peer_new_assoc = !reassoc; 2923 ath11k_peer_assoc_h_basic(ar, vif, sta, arg); 2924 ath11k_peer_assoc_h_crypto(ar, vif, sta, arg); 2925 ath11k_peer_assoc_h_rates(ar, vif, sta, arg); 2926 ath11k_peer_assoc_h_phymode(ar, vif, sta, arg); 2927 ath11k_peer_assoc_h_ht(ar, vif, sta, arg); 2928 ath11k_peer_assoc_h_vht(ar, vif, sta, arg); 2929 ath11k_peer_assoc_h_he(ar, vif, sta, arg); 2930 ath11k_peer_assoc_h_he_6ghz(ar, vif, sta, arg); 2931 ath11k_peer_assoc_h_qos(ar, vif, sta, arg); 2932 ath11k_peer_assoc_h_smps(sta, arg); 2933 2934 arsta->peer_nss = arg->peer_nss; 2935 2936 /* TODO: amsdu_disable req? */ 2937 } 2938 2939 static int ath11k_setup_peer_smps(struct ath11k *ar, struct ath11k_vif *arvif, 2940 const u8 *addr, 2941 const struct ieee80211_sta_ht_cap *ht_cap, 2942 u16 he_6ghz_capa) 2943 { 2944 int smps; 2945 2946 if (!ht_cap->ht_supported && !he_6ghz_capa) 2947 return 0; 2948 2949 if (ht_cap->ht_supported) { 2950 smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS; 2951 smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT; 2952 } else { 2953 smps = FIELD_GET(IEEE80211_HE_6GHZ_CAP_SM_PS, he_6ghz_capa); 2954 } 2955 2956 if (smps >= ARRAY_SIZE(ath11k_smps_map)) 2957 return -EINVAL; 2958 2959 return ath11k_wmi_set_peer_param(ar, addr, arvif->vdev_id, 2960 WMI_PEER_MIMO_PS_STATE, 2961 ath11k_smps_map[smps]); 2962 } 2963 2964 static bool ath11k_mac_set_he_txbf_conf(struct ath11k_vif *arvif) 2965 { 2966 struct ath11k *ar = arvif->ar; 2967 u32 param, value; 2968 int ret; 2969 2970 if (!arvif->vif->bss_conf.he_support) 2971 return true; 2972 2973 param = WMI_VDEV_PARAM_SET_HEMU_MODE; 2974 value = 0; 2975 if (arvif->vif->bss_conf.he_su_beamformer) { 2976 value |= FIELD_PREP(HE_MODE_SU_TX_BFER, HE_SU_BFER_ENABLE); 2977 if (arvif->vif->bss_conf.he_mu_beamformer && 2978 arvif->vdev_type == WMI_VDEV_TYPE_AP) 2979 value |= FIELD_PREP(HE_MODE_MU_TX_BFER, HE_MU_BFER_ENABLE); 2980 } 2981 2982 if (arvif->vif->type != NL80211_IFTYPE_MESH_POINT) { 2983 value |= FIELD_PREP(HE_MODE_DL_OFDMA, HE_DL_MUOFDMA_ENABLE) | 2984 FIELD_PREP(HE_MODE_UL_OFDMA, HE_UL_MUOFDMA_ENABLE); 2985 2986 if (arvif->vif->bss_conf.he_full_ul_mumimo) 2987 value |= FIELD_PREP(HE_MODE_UL_MUMIMO, HE_UL_MUMIMO_ENABLE); 2988 2989 if (arvif->vif->bss_conf.he_su_beamformee) 2990 value |= FIELD_PREP(HE_MODE_SU_TX_BFEE, HE_SU_BFEE_ENABLE); 2991 } 2992 2993 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, value); 2994 if (ret) { 2995 ath11k_warn(ar->ab, "failed to set vdev %d HE MU mode: %d\n", 2996 arvif->vdev_id, ret); 2997 return false; 2998 } 2999 3000 param = WMI_VDEV_PARAM_SET_HE_SOUNDING_MODE; 3001 value = FIELD_PREP(HE_VHT_SOUNDING_MODE, HE_VHT_SOUNDING_MODE_ENABLE) | 3002 FIELD_PREP(HE_TRIG_NONTRIG_SOUNDING_MODE, 3003 HE_TRIG_NONTRIG_SOUNDING_MODE_ENABLE); 3004 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3005 param, value); 3006 if (ret) { 3007 ath11k_warn(ar->ab, "failed to set vdev %d sounding mode: %d\n", 3008 arvif->vdev_id, ret); 3009 return false; 3010 } 3011 return true; 3012 } 3013 3014 static bool ath11k_mac_vif_recalc_sta_he_txbf(struct ath11k *ar, 3015 struct ieee80211_vif *vif, 3016 struct ieee80211_sta_he_cap *he_cap) 3017 { 3018 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 3019 struct ieee80211_he_cap_elem he_cap_elem = {0}; 3020 struct ieee80211_sta_he_cap *cap_band = NULL; 3021 struct cfg80211_chan_def def; 3022 u32 param = WMI_VDEV_PARAM_SET_HEMU_MODE; 3023 u32 hemode = 0; 3024 int ret; 3025 3026 if (!vif->bss_conf.he_support) 3027 return true; 3028 3029 if (vif->type != NL80211_IFTYPE_STATION) 3030 return false; 3031 3032 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 3033 return false; 3034 3035 if (def.chan->band == NL80211_BAND_2GHZ) 3036 cap_band = &ar->mac.iftype[NL80211_BAND_2GHZ][vif->type].he_cap; 3037 else 3038 cap_band = &ar->mac.iftype[NL80211_BAND_5GHZ][vif->type].he_cap; 3039 3040 memcpy(&he_cap_elem, &cap_band->he_cap_elem, sizeof(he_cap_elem)); 3041 3042 if (HECAP_PHY_SUBFME_GET(he_cap_elem.phy_cap_info)) { 3043 if (HECAP_PHY_SUBFMR_GET(he_cap->he_cap_elem.phy_cap_info)) 3044 hemode |= FIELD_PREP(HE_MODE_SU_TX_BFEE, HE_SU_BFEE_ENABLE); 3045 if (HECAP_PHY_MUBFMR_GET(he_cap->he_cap_elem.phy_cap_info)) 3046 hemode |= FIELD_PREP(HE_MODE_MU_TX_BFEE, HE_MU_BFEE_ENABLE); 3047 } 3048 3049 if (vif->type != NL80211_IFTYPE_MESH_POINT) { 3050 hemode |= FIELD_PREP(HE_MODE_DL_OFDMA, HE_DL_MUOFDMA_ENABLE) | 3051 FIELD_PREP(HE_MODE_UL_OFDMA, HE_UL_MUOFDMA_ENABLE); 3052 3053 if (HECAP_PHY_ULMUMIMO_GET(he_cap_elem.phy_cap_info)) 3054 if (HECAP_PHY_ULMUMIMO_GET(he_cap->he_cap_elem.phy_cap_info)) 3055 hemode |= FIELD_PREP(HE_MODE_UL_MUMIMO, 3056 HE_UL_MUMIMO_ENABLE); 3057 3058 if (FIELD_GET(HE_MODE_MU_TX_BFEE, hemode)) 3059 hemode |= FIELD_PREP(HE_MODE_SU_TX_BFEE, HE_SU_BFEE_ENABLE); 3060 3061 if (FIELD_GET(HE_MODE_MU_TX_BFER, hemode)) 3062 hemode |= FIELD_PREP(HE_MODE_SU_TX_BFER, HE_SU_BFER_ENABLE); 3063 } 3064 3065 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, hemode); 3066 if (ret) { 3067 ath11k_warn(ar->ab, "failed to submit vdev param txbf 0x%x: %d\n", 3068 hemode, ret); 3069 return false; 3070 } 3071 3072 return true; 3073 } 3074 3075 static void ath11k_bss_assoc(struct ieee80211_hw *hw, 3076 struct ieee80211_vif *vif, 3077 struct ieee80211_bss_conf *bss_conf) 3078 { 3079 struct ath11k *ar = hw->priv; 3080 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 3081 struct peer_assoc_params peer_arg; 3082 struct ieee80211_sta *ap_sta; 3083 struct ath11k_peer *peer; 3084 bool is_auth = false; 3085 struct ieee80211_sta_he_cap he_cap; 3086 int ret; 3087 3088 lockdep_assert_held(&ar->conf_mutex); 3089 3090 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %i assoc bssid %pM aid %d\n", 3091 arvif->vdev_id, arvif->bssid, arvif->aid); 3092 3093 rcu_read_lock(); 3094 3095 ap_sta = ieee80211_find_sta(vif, bss_conf->bssid); 3096 if (!ap_sta) { 3097 ath11k_warn(ar->ab, "failed to find station entry for bss %pM vdev %i\n", 3098 bss_conf->bssid, arvif->vdev_id); 3099 rcu_read_unlock(); 3100 return; 3101 } 3102 3103 /* he_cap here is updated at assoc success for sta mode only */ 3104 he_cap = ap_sta->deflink.he_cap; 3105 3106 ath11k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg, false); 3107 3108 rcu_read_unlock(); 3109 3110 if (!ath11k_mac_vif_recalc_sta_he_txbf(ar, vif, &he_cap)) { 3111 ath11k_warn(ar->ab, "failed to recalc he txbf for vdev %i on bss %pM\n", 3112 arvif->vdev_id, bss_conf->bssid); 3113 return; 3114 } 3115 3116 peer_arg.is_assoc = true; 3117 3118 ret = ath11k_wmi_send_peer_assoc_cmd(ar, &peer_arg); 3119 if (ret) { 3120 ath11k_warn(ar->ab, "failed to run peer assoc for %pM vdev %i: %d\n", 3121 bss_conf->bssid, arvif->vdev_id, ret); 3122 return; 3123 } 3124 3125 if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) { 3126 ath11k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n", 3127 bss_conf->bssid, arvif->vdev_id); 3128 return; 3129 } 3130 3131 ret = ath11k_setup_peer_smps(ar, arvif, bss_conf->bssid, 3132 &ap_sta->deflink.ht_cap, 3133 le16_to_cpu(ap_sta->deflink.he_6ghz_capa.capa)); 3134 if (ret) { 3135 ath11k_warn(ar->ab, "failed to setup peer SMPS for vdev %d: %d\n", 3136 arvif->vdev_id, ret); 3137 return; 3138 } 3139 3140 WARN_ON(arvif->is_up); 3141 3142 arvif->aid = vif->cfg.aid; 3143 ether_addr_copy(arvif->bssid, bss_conf->bssid); 3144 3145 ret = ath11k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid, 3146 NULL, 0, 0); 3147 if (ret) { 3148 ath11k_warn(ar->ab, "failed to set vdev %d up: %d\n", 3149 arvif->vdev_id, ret); 3150 return; 3151 } 3152 3153 arvif->is_up = true; 3154 arvif->rekey_data.enable_offload = false; 3155 3156 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3157 "vdev %d up (associated) bssid %pM aid %d\n", 3158 arvif->vdev_id, bss_conf->bssid, vif->cfg.aid); 3159 3160 spin_lock_bh(&ar->ab->base_lock); 3161 3162 peer = ath11k_peer_find(ar->ab, arvif->vdev_id, arvif->bssid); 3163 if (peer && peer->is_authorized) 3164 is_auth = true; 3165 3166 spin_unlock_bh(&ar->ab->base_lock); 3167 3168 if (is_auth) { 3169 ret = ath11k_wmi_set_peer_param(ar, arvif->bssid, 3170 arvif->vdev_id, 3171 WMI_PEER_AUTHORIZE, 3172 1); 3173 if (ret) 3174 ath11k_warn(ar->ab, "Unable to authorize BSS peer: %d\n", ret); 3175 } 3176 3177 ret = ath11k_wmi_send_obss_spr_cmd(ar, arvif->vdev_id, 3178 &bss_conf->he_obss_pd); 3179 if (ret) 3180 ath11k_warn(ar->ab, "failed to set vdev %i OBSS PD parameters: %d\n", 3181 arvif->vdev_id, ret); 3182 3183 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3184 WMI_VDEV_PARAM_DTIM_POLICY, 3185 WMI_DTIM_POLICY_STICK); 3186 if (ret) 3187 ath11k_warn(ar->ab, "failed to set vdev %d dtim policy: %d\n", 3188 arvif->vdev_id, ret); 3189 3190 ath11k_mac_11d_scan_stop_all(ar->ab); 3191 } 3192 3193 static void ath11k_bss_disassoc(struct ieee80211_hw *hw, 3194 struct ieee80211_vif *vif) 3195 { 3196 struct ath11k *ar = hw->priv; 3197 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 3198 int ret; 3199 3200 lockdep_assert_held(&ar->conf_mutex); 3201 3202 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %i disassoc bssid %pM\n", 3203 arvif->vdev_id, arvif->bssid); 3204 3205 ret = ath11k_wmi_vdev_down(ar, arvif->vdev_id); 3206 if (ret) 3207 ath11k_warn(ar->ab, "failed to down vdev %i: %d\n", 3208 arvif->vdev_id, ret); 3209 3210 arvif->is_up = false; 3211 3212 memset(&arvif->rekey_data, 0, sizeof(arvif->rekey_data)); 3213 3214 cancel_delayed_work_sync(&arvif->connection_loss_work); 3215 } 3216 3217 static u32 ath11k_mac_get_rate_hw_value(int bitrate) 3218 { 3219 u32 preamble; 3220 u16 hw_value; 3221 int rate; 3222 size_t i; 3223 3224 if (ath11k_mac_bitrate_is_cck(bitrate)) 3225 preamble = WMI_RATE_PREAMBLE_CCK; 3226 else 3227 preamble = WMI_RATE_PREAMBLE_OFDM; 3228 3229 for (i = 0; i < ARRAY_SIZE(ath11k_legacy_rates); i++) { 3230 if (ath11k_legacy_rates[i].bitrate != bitrate) 3231 continue; 3232 3233 hw_value = ath11k_legacy_rates[i].hw_value; 3234 rate = ATH11K_HW_RATE_CODE(hw_value, 0, preamble); 3235 3236 return rate; 3237 } 3238 3239 return -EINVAL; 3240 } 3241 3242 static void ath11k_recalculate_mgmt_rate(struct ath11k *ar, 3243 struct ieee80211_vif *vif, 3244 struct cfg80211_chan_def *def) 3245 { 3246 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 3247 const struct ieee80211_supported_band *sband; 3248 u8 basic_rate_idx; 3249 int hw_rate_code; 3250 u32 vdev_param; 3251 u16 bitrate; 3252 int ret; 3253 3254 lockdep_assert_held(&ar->conf_mutex); 3255 3256 sband = ar->hw->wiphy->bands[def->chan->band]; 3257 basic_rate_idx = ffs(vif->bss_conf.basic_rates) - 1; 3258 bitrate = sband->bitrates[basic_rate_idx].bitrate; 3259 3260 hw_rate_code = ath11k_mac_get_rate_hw_value(bitrate); 3261 if (hw_rate_code < 0) { 3262 ath11k_warn(ar->ab, "bitrate not supported %d\n", bitrate); 3263 return; 3264 } 3265 3266 vdev_param = WMI_VDEV_PARAM_MGMT_RATE; 3267 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, 3268 hw_rate_code); 3269 if (ret) 3270 ath11k_warn(ar->ab, "failed to set mgmt tx rate %d\n", ret); 3271 3272 /* For WCN6855, firmware will clear this param when vdev starts, hence 3273 * cache it here so that we can reconfigure it once vdev starts. 3274 */ 3275 ar->hw_rate_code = hw_rate_code; 3276 3277 vdev_param = WMI_VDEV_PARAM_BEACON_RATE; 3278 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, 3279 hw_rate_code); 3280 if (ret) 3281 ath11k_warn(ar->ab, "failed to set beacon tx rate %d\n", ret); 3282 } 3283 3284 static int ath11k_mac_fils_discovery(struct ath11k_vif *arvif, 3285 struct ieee80211_bss_conf *info) 3286 { 3287 struct ath11k *ar = arvif->ar; 3288 struct sk_buff *tmpl; 3289 int ret; 3290 u32 interval; 3291 bool unsol_bcast_probe_resp_enabled = false; 3292 3293 if (info->fils_discovery.max_interval) { 3294 interval = info->fils_discovery.max_interval; 3295 3296 tmpl = ieee80211_get_fils_discovery_tmpl(ar->hw, arvif->vif); 3297 if (tmpl) 3298 ret = ath11k_wmi_fils_discovery_tmpl(ar, arvif->vdev_id, 3299 tmpl); 3300 } else if (info->unsol_bcast_probe_resp_interval) { 3301 unsol_bcast_probe_resp_enabled = 1; 3302 interval = info->unsol_bcast_probe_resp_interval; 3303 3304 tmpl = ieee80211_get_unsol_bcast_probe_resp_tmpl(ar->hw, 3305 arvif->vif); 3306 if (tmpl) 3307 ret = ath11k_wmi_probe_resp_tmpl(ar, arvif->vdev_id, 3308 tmpl); 3309 } else { /* Disable */ 3310 return ath11k_wmi_fils_discovery(ar, arvif->vdev_id, 0, false); 3311 } 3312 3313 if (!tmpl) { 3314 ath11k_warn(ar->ab, 3315 "mac vdev %i failed to retrieve %s template\n", 3316 arvif->vdev_id, (unsol_bcast_probe_resp_enabled ? 3317 "unsolicited broadcast probe response" : 3318 "FILS discovery")); 3319 return -EPERM; 3320 } 3321 kfree_skb(tmpl); 3322 3323 if (!ret) 3324 ret = ath11k_wmi_fils_discovery(ar, arvif->vdev_id, interval, 3325 unsol_bcast_probe_resp_enabled); 3326 3327 return ret; 3328 } 3329 3330 static int ath11k_mac_config_obss_pd(struct ath11k *ar, 3331 struct ieee80211_he_obss_pd *he_obss_pd) 3332 { 3333 u32 bitmap[2], param_id, param_val, pdev_id; 3334 int ret; 3335 s8 non_srg_th = 0, srg_th = 0; 3336 3337 pdev_id = ar->pdev->pdev_id; 3338 3339 /* Set and enable SRG/non-SRG OBSS PD Threshold */ 3340 param_id = WMI_PDEV_PARAM_SET_CMD_OBSS_PD_THRESHOLD; 3341 if (test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags)) { 3342 ret = ath11k_wmi_pdev_set_param(ar, param_id, 0, pdev_id); 3343 if (ret) 3344 ath11k_warn(ar->ab, 3345 "failed to set obss_pd_threshold for pdev: %u\n", 3346 pdev_id); 3347 return ret; 3348 } 3349 3350 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3351 "obss pd sr_ctrl %x non_srg_thres %u srg_max %u\n", 3352 he_obss_pd->sr_ctrl, he_obss_pd->non_srg_max_offset, 3353 he_obss_pd->max_offset); 3354 3355 param_val = 0; 3356 3357 if (he_obss_pd->sr_ctrl & 3358 IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED) { 3359 non_srg_th = ATH11K_OBSS_PD_MAX_THRESHOLD; 3360 } else { 3361 if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) 3362 non_srg_th = (ATH11K_OBSS_PD_MAX_THRESHOLD + 3363 he_obss_pd->non_srg_max_offset); 3364 else 3365 non_srg_th = ATH11K_OBSS_PD_NON_SRG_MAX_THRESHOLD; 3366 3367 param_val |= ATH11K_OBSS_PD_NON_SRG_EN; 3368 } 3369 3370 if (he_obss_pd->sr_ctrl & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) { 3371 srg_th = ATH11K_OBSS_PD_MAX_THRESHOLD + he_obss_pd->max_offset; 3372 param_val |= ATH11K_OBSS_PD_SRG_EN; 3373 } 3374 3375 if (test_bit(WMI_TLV_SERVICE_SRG_SRP_SPATIAL_REUSE_SUPPORT, 3376 ar->ab->wmi_ab.svc_map)) { 3377 param_val |= ATH11K_OBSS_PD_THRESHOLD_IN_DBM; 3378 param_val |= FIELD_PREP(GENMASK(15, 8), srg_th); 3379 } else { 3380 non_srg_th -= ATH11K_DEFAULT_NOISE_FLOOR; 3381 /* SRG not supported and threshold in dB */ 3382 param_val &= ~(ATH11K_OBSS_PD_SRG_EN | 3383 ATH11K_OBSS_PD_THRESHOLD_IN_DBM); 3384 } 3385 3386 param_val |= (non_srg_th & GENMASK(7, 0)); 3387 ret = ath11k_wmi_pdev_set_param(ar, param_id, param_val, pdev_id); 3388 if (ret) { 3389 ath11k_warn(ar->ab, 3390 "failed to set obss_pd_threshold for pdev: %u\n", 3391 pdev_id); 3392 return ret; 3393 } 3394 3395 /* Enable OBSS PD for all access category */ 3396 param_id = WMI_PDEV_PARAM_SET_CMD_OBSS_PD_PER_AC; 3397 param_val = 0xf; 3398 ret = ath11k_wmi_pdev_set_param(ar, param_id, param_val, pdev_id); 3399 if (ret) { 3400 ath11k_warn(ar->ab, 3401 "failed to set obss_pd_per_ac for pdev: %u\n", 3402 pdev_id); 3403 return ret; 3404 } 3405 3406 /* Set SR Prohibit */ 3407 param_id = WMI_PDEV_PARAM_ENABLE_SR_PROHIBIT; 3408 param_val = !!(he_obss_pd->sr_ctrl & 3409 IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED); 3410 ret = ath11k_wmi_pdev_set_param(ar, param_id, param_val, pdev_id); 3411 if (ret) { 3412 ath11k_warn(ar->ab, "failed to set sr_prohibit for pdev: %u\n", 3413 pdev_id); 3414 return ret; 3415 } 3416 3417 if (!test_bit(WMI_TLV_SERVICE_SRG_SRP_SPATIAL_REUSE_SUPPORT, 3418 ar->ab->wmi_ab.svc_map)) 3419 return 0; 3420 3421 /* Set SRG BSS Color Bitmap */ 3422 memcpy(bitmap, he_obss_pd->bss_color_bitmap, sizeof(bitmap)); 3423 ret = ath11k_wmi_pdev_set_srg_bss_color_bitmap(ar, bitmap); 3424 if (ret) { 3425 ath11k_warn(ar->ab, 3426 "failed to set bss_color_bitmap for pdev: %u\n", 3427 pdev_id); 3428 return ret; 3429 } 3430 3431 /* Set SRG Partial BSSID Bitmap */ 3432 memcpy(bitmap, he_obss_pd->partial_bssid_bitmap, sizeof(bitmap)); 3433 ret = ath11k_wmi_pdev_set_srg_patial_bssid_bitmap(ar, bitmap); 3434 if (ret) { 3435 ath11k_warn(ar->ab, 3436 "failed to set partial_bssid_bitmap for pdev: %u\n", 3437 pdev_id); 3438 return ret; 3439 } 3440 3441 memset(bitmap, 0xff, sizeof(bitmap)); 3442 3443 /* Enable all BSS Colors for SRG */ 3444 ret = ath11k_wmi_pdev_srg_obss_color_enable_bitmap(ar, bitmap); 3445 if (ret) { 3446 ath11k_warn(ar->ab, 3447 "failed to set srg_color_en_bitmap pdev: %u\n", 3448 pdev_id); 3449 return ret; 3450 } 3451 3452 /* Enable all partial BSSID mask for SRG */ 3453 ret = ath11k_wmi_pdev_srg_obss_bssid_enable_bitmap(ar, bitmap); 3454 if (ret) { 3455 ath11k_warn(ar->ab, 3456 "failed to set srg_bssid_en_bitmap pdev: %u\n", 3457 pdev_id); 3458 return ret; 3459 } 3460 3461 /* Enable all BSS Colors for non-SRG */ 3462 ret = ath11k_wmi_pdev_non_srg_obss_color_enable_bitmap(ar, bitmap); 3463 if (ret) { 3464 ath11k_warn(ar->ab, 3465 "failed to set non_srg_color_en_bitmap pdev: %u\n", 3466 pdev_id); 3467 return ret; 3468 } 3469 3470 /* Enable all partial BSSID mask for non-SRG */ 3471 ret = ath11k_wmi_pdev_non_srg_obss_bssid_enable_bitmap(ar, bitmap); 3472 if (ret) { 3473 ath11k_warn(ar->ab, 3474 "failed to set non_srg_bssid_en_bitmap pdev: %u\n", 3475 pdev_id); 3476 return ret; 3477 } 3478 3479 return 0; 3480 } 3481 3482 static bool ath11k_mac_supports_station_tpc(struct ath11k *ar, 3483 struct ath11k_vif *arvif, 3484 const struct cfg80211_chan_def *chandef) 3485 { 3486 return ath11k_wmi_supports_6ghz_cc_ext(ar) && 3487 test_bit(WMI_TLV_SERVICE_EXT_TPC_REG_SUPPORT, ar->ab->wmi_ab.svc_map) && 3488 arvif->vdev_type == WMI_VDEV_TYPE_STA && 3489 arvif->vdev_subtype == WMI_VDEV_SUBTYPE_NONE && 3490 chandef->chan && 3491 chandef->chan->band == NL80211_BAND_6GHZ; 3492 } 3493 3494 static void ath11k_mac_op_bss_info_changed(struct ieee80211_hw *hw, 3495 struct ieee80211_vif *vif, 3496 struct ieee80211_bss_conf *info, 3497 u64 changed) 3498 { 3499 struct ath11k *ar = hw->priv; 3500 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 3501 struct cfg80211_chan_def def; 3502 u32 param_id, param_value; 3503 enum nl80211_band band; 3504 u32 vdev_param; 3505 int mcast_rate; 3506 u32 preamble; 3507 u16 hw_value; 3508 u16 bitrate; 3509 int ret = 0; 3510 u8 rateidx; 3511 u32 rate, param; 3512 u32 ipv4_cnt; 3513 3514 mutex_lock(&ar->conf_mutex); 3515 3516 if (changed & BSS_CHANGED_BEACON_INT) { 3517 arvif->beacon_interval = info->beacon_int; 3518 3519 param_id = WMI_VDEV_PARAM_BEACON_INTERVAL; 3520 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3521 param_id, 3522 arvif->beacon_interval); 3523 if (ret) 3524 ath11k_warn(ar->ab, "Failed to set beacon interval for VDEV: %d\n", 3525 arvif->vdev_id); 3526 else 3527 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3528 "Beacon interval: %d set for VDEV: %d\n", 3529 arvif->beacon_interval, arvif->vdev_id); 3530 } 3531 3532 if (changed & BSS_CHANGED_BEACON) { 3533 param_id = WMI_PDEV_PARAM_BEACON_TX_MODE; 3534 param_value = WMI_BEACON_STAGGERED_MODE; 3535 ret = ath11k_wmi_pdev_set_param(ar, param_id, 3536 param_value, ar->pdev->pdev_id); 3537 if (ret) 3538 ath11k_warn(ar->ab, "Failed to set beacon mode for VDEV: %d\n", 3539 arvif->vdev_id); 3540 else 3541 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3542 "Set staggered beacon mode for VDEV: %d\n", 3543 arvif->vdev_id); 3544 3545 if (!arvif->do_not_send_tmpl || !arvif->bcca_zero_sent) { 3546 ret = ath11k_mac_setup_bcn_tmpl(arvif); 3547 if (ret) 3548 ath11k_warn(ar->ab, "failed to update bcn template: %d\n", 3549 ret); 3550 } 3551 3552 if (arvif->bcca_zero_sent) 3553 arvif->do_not_send_tmpl = true; 3554 else 3555 arvif->do_not_send_tmpl = false; 3556 3557 if (vif->bss_conf.he_support) { 3558 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3559 WMI_VDEV_PARAM_BA_MODE, 3560 WMI_BA_MODE_BUFFER_SIZE_256); 3561 if (ret) 3562 ath11k_warn(ar->ab, 3563 "failed to set BA BUFFER SIZE 256 for vdev: %d\n", 3564 arvif->vdev_id); 3565 else 3566 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3567 "Set BA BUFFER SIZE 256 for VDEV: %d\n", 3568 arvif->vdev_id); 3569 } 3570 } 3571 3572 if (changed & (BSS_CHANGED_BEACON_INFO | BSS_CHANGED_BEACON)) { 3573 arvif->dtim_period = info->dtim_period; 3574 3575 param_id = WMI_VDEV_PARAM_DTIM_PERIOD; 3576 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3577 param_id, 3578 arvif->dtim_period); 3579 3580 if (ret) 3581 ath11k_warn(ar->ab, "Failed to set dtim period for VDEV %d: %i\n", 3582 arvif->vdev_id, ret); 3583 else 3584 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3585 "DTIM period: %d set for VDEV: %d\n", 3586 arvif->dtim_period, arvif->vdev_id); 3587 } 3588 3589 if (changed & BSS_CHANGED_SSID && 3590 vif->type == NL80211_IFTYPE_AP) { 3591 arvif->u.ap.ssid_len = vif->cfg.ssid_len; 3592 if (vif->cfg.ssid_len) 3593 memcpy(arvif->u.ap.ssid, vif->cfg.ssid, 3594 vif->cfg.ssid_len); 3595 arvif->u.ap.hidden_ssid = info->hidden_ssid; 3596 } 3597 3598 if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid)) 3599 ether_addr_copy(arvif->bssid, info->bssid); 3600 3601 if (changed & BSS_CHANGED_BEACON_ENABLED) { 3602 if (info->enable_beacon) 3603 ath11k_mac_set_he_txbf_conf(arvif); 3604 ath11k_control_beaconing(arvif, info); 3605 3606 if (arvif->is_up && vif->bss_conf.he_support && 3607 vif->bss_conf.he_oper.params) { 3608 param_id = WMI_VDEV_PARAM_HEOPS_0_31; 3609 param_value = vif->bss_conf.he_oper.params; 3610 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3611 param_id, param_value); 3612 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3613 "he oper param: %x set for VDEV: %d\n", 3614 param_value, arvif->vdev_id); 3615 3616 if (ret) 3617 ath11k_warn(ar->ab, "Failed to set he oper params %x for VDEV %d: %i\n", 3618 param_value, arvif->vdev_id, ret); 3619 } 3620 } 3621 3622 if (changed & BSS_CHANGED_ERP_CTS_PROT) { 3623 u32 cts_prot; 3624 3625 cts_prot = !!(info->use_cts_prot); 3626 param_id = WMI_VDEV_PARAM_PROTECTION_MODE; 3627 3628 if (arvif->is_started) { 3629 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3630 param_id, cts_prot); 3631 if (ret) 3632 ath11k_warn(ar->ab, "Failed to set CTS prot for VDEV: %d\n", 3633 arvif->vdev_id); 3634 else 3635 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "Set CTS prot: %d for VDEV: %d\n", 3636 cts_prot, arvif->vdev_id); 3637 } else { 3638 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "defer protection mode setup, vdev is not ready yet\n"); 3639 } 3640 } 3641 3642 if (changed & BSS_CHANGED_ERP_SLOT) { 3643 u32 slottime; 3644 3645 if (info->use_short_slot) 3646 slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */ 3647 3648 else 3649 slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */ 3650 3651 param_id = WMI_VDEV_PARAM_SLOT_TIME; 3652 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3653 param_id, slottime); 3654 if (ret) 3655 ath11k_warn(ar->ab, "Failed to set erp slot for VDEV: %d\n", 3656 arvif->vdev_id); 3657 else 3658 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3659 "Set slottime: %d for VDEV: %d\n", 3660 slottime, arvif->vdev_id); 3661 } 3662 3663 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 3664 u32 preamble; 3665 3666 if (info->use_short_preamble) 3667 preamble = WMI_VDEV_PREAMBLE_SHORT; 3668 else 3669 preamble = WMI_VDEV_PREAMBLE_LONG; 3670 3671 param_id = WMI_VDEV_PARAM_PREAMBLE; 3672 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3673 param_id, preamble); 3674 if (ret) 3675 ath11k_warn(ar->ab, "Failed to set preamble for VDEV: %d\n", 3676 arvif->vdev_id); 3677 else 3678 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3679 "Set preamble: %d for VDEV: %d\n", 3680 preamble, arvif->vdev_id); 3681 } 3682 3683 if (changed & BSS_CHANGED_ASSOC) { 3684 if (vif->cfg.assoc) 3685 ath11k_bss_assoc(hw, vif, info); 3686 else 3687 ath11k_bss_disassoc(hw, vif); 3688 } 3689 3690 if (changed & BSS_CHANGED_TXPOWER) { 3691 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev_id %i txpower %d\n", 3692 arvif->vdev_id, info->txpower); 3693 arvif->txpower = info->txpower; 3694 ath11k_mac_txpower_recalc(ar); 3695 } 3696 3697 if (changed & BSS_CHANGED_PS && 3698 ar->ab->hw_params.supports_sta_ps) { 3699 arvif->ps = vif->cfg.ps; 3700 3701 ret = ath11k_mac_config_ps(ar); 3702 if (ret) 3703 ath11k_warn(ar->ab, "failed to setup ps on vdev %i: %d\n", 3704 arvif->vdev_id, ret); 3705 } 3706 3707 if (changed & BSS_CHANGED_MCAST_RATE && 3708 !ath11k_mac_vif_chan(arvif->vif, &def)) { 3709 band = def.chan->band; 3710 mcast_rate = vif->bss_conf.mcast_rate[band]; 3711 3712 if (mcast_rate > 0) 3713 rateidx = mcast_rate - 1; 3714 else 3715 rateidx = ffs(vif->bss_conf.basic_rates) - 1; 3716 3717 if (ar->pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) 3718 rateidx += ATH11K_MAC_FIRST_OFDM_RATE_IDX; 3719 3720 bitrate = ath11k_legacy_rates[rateidx].bitrate; 3721 hw_value = ath11k_legacy_rates[rateidx].hw_value; 3722 3723 if (ath11k_mac_bitrate_is_cck(bitrate)) 3724 preamble = WMI_RATE_PREAMBLE_CCK; 3725 else 3726 preamble = WMI_RATE_PREAMBLE_OFDM; 3727 3728 rate = ATH11K_HW_RATE_CODE(hw_value, 0, preamble); 3729 3730 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3731 "vdev %d mcast_rate %x\n", 3732 arvif->vdev_id, rate); 3733 3734 vdev_param = WMI_VDEV_PARAM_MCAST_DATA_RATE; 3735 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3736 vdev_param, rate); 3737 if (ret) 3738 ath11k_warn(ar->ab, 3739 "failed to set mcast rate on vdev %i: %d\n", 3740 arvif->vdev_id, ret); 3741 3742 vdev_param = WMI_VDEV_PARAM_BCAST_DATA_RATE; 3743 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3744 vdev_param, rate); 3745 if (ret) 3746 ath11k_warn(ar->ab, 3747 "failed to set bcast rate on vdev %i: %d\n", 3748 arvif->vdev_id, ret); 3749 } 3750 3751 if (changed & BSS_CHANGED_BASIC_RATES && 3752 !ath11k_mac_vif_chan(arvif->vif, &def)) 3753 ath11k_recalculate_mgmt_rate(ar, vif, &def); 3754 3755 if (changed & BSS_CHANGED_TWT) { 3756 struct wmi_twt_enable_params twt_params = {0}; 3757 3758 if (info->twt_requester || info->twt_responder) { 3759 ath11k_wmi_fill_default_twt_params(&twt_params); 3760 ath11k_wmi_send_twt_enable_cmd(ar, ar->pdev->pdev_id, 3761 &twt_params); 3762 } else { 3763 ath11k_wmi_send_twt_disable_cmd(ar, ar->pdev->pdev_id); 3764 } 3765 } 3766 3767 if (changed & BSS_CHANGED_HE_OBSS_PD) 3768 ath11k_mac_config_obss_pd(ar, &info->he_obss_pd); 3769 3770 if (changed & BSS_CHANGED_HE_BSS_COLOR) { 3771 if (vif->type == NL80211_IFTYPE_AP) { 3772 ret = ath11k_wmi_send_obss_color_collision_cfg_cmd( 3773 ar, arvif->vdev_id, info->he_bss_color.color, 3774 ATH11K_BSS_COLOR_COLLISION_DETECTION_AP_PERIOD_MS, 3775 info->he_bss_color.enabled); 3776 if (ret) 3777 ath11k_warn(ar->ab, "failed to set bss color collision on vdev %i: %d\n", 3778 arvif->vdev_id, ret); 3779 3780 param_id = WMI_VDEV_PARAM_BSS_COLOR; 3781 if (info->he_bss_color.enabled) 3782 param_value = info->he_bss_color.color << 3783 IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET; 3784 else 3785 param_value = IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED; 3786 3787 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 3788 param_id, 3789 param_value); 3790 if (ret) 3791 ath11k_warn(ar->ab, 3792 "failed to set bss color param on vdev %i: %d\n", 3793 arvif->vdev_id, ret); 3794 3795 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 3796 "bss color param 0x%x set on vdev %i\n", 3797 param_value, arvif->vdev_id); 3798 } else if (vif->type == NL80211_IFTYPE_STATION) { 3799 ret = ath11k_wmi_send_bss_color_change_enable_cmd(ar, 3800 arvif->vdev_id, 3801 1); 3802 if (ret) 3803 ath11k_warn(ar->ab, "failed to enable bss color change on vdev %i: %d\n", 3804 arvif->vdev_id, ret); 3805 ret = ath11k_wmi_send_obss_color_collision_cfg_cmd( 3806 ar, arvif->vdev_id, 0, 3807 ATH11K_BSS_COLOR_COLLISION_DETECTION_STA_PERIOD_MS, 1); 3808 if (ret) 3809 ath11k_warn(ar->ab, "failed to set bss color collision on vdev %i: %d\n", 3810 arvif->vdev_id, ret); 3811 } 3812 } 3813 3814 if (changed & BSS_CHANGED_FTM_RESPONDER && 3815 arvif->ftm_responder != info->ftm_responder && 3816 test_bit(WMI_TLV_SERVICE_RTT, ar->ab->wmi_ab.svc_map) && 3817 (vif->type == NL80211_IFTYPE_AP || 3818 vif->type == NL80211_IFTYPE_MESH_POINT)) { 3819 arvif->ftm_responder = info->ftm_responder; 3820 param = WMI_VDEV_PARAM_ENABLE_DISABLE_RTT_RESPONDER_ROLE; 3821 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, param, 3822 arvif->ftm_responder); 3823 if (ret) 3824 ath11k_warn(ar->ab, "Failed to set ftm responder %i: %d\n", 3825 arvif->vdev_id, ret); 3826 } 3827 3828 if (changed & BSS_CHANGED_FILS_DISCOVERY || 3829 changed & BSS_CHANGED_UNSOL_BCAST_PROBE_RESP) 3830 ath11k_mac_fils_discovery(arvif, info); 3831 3832 if (changed & BSS_CHANGED_ARP_FILTER) { 3833 ipv4_cnt = min(vif->cfg.arp_addr_cnt, ATH11K_IPV4_MAX_COUNT); 3834 memcpy(arvif->arp_ns_offload.ipv4_addr, 3835 vif->cfg.arp_addr_list, 3836 ipv4_cnt * sizeof(u32)); 3837 memcpy(arvif->arp_ns_offload.mac_addr, vif->addr, ETH_ALEN); 3838 arvif->arp_ns_offload.ipv4_count = ipv4_cnt; 3839 3840 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "arp_addr_cnt %d vif->addr %pM, offload_addr %pI4\n", 3841 vif->cfg.arp_addr_cnt, 3842 vif->addr, arvif->arp_ns_offload.ipv4_addr); 3843 } 3844 3845 mutex_unlock(&ar->conf_mutex); 3846 } 3847 3848 void __ath11k_mac_scan_finish(struct ath11k *ar) 3849 { 3850 lockdep_assert_held(&ar->data_lock); 3851 3852 switch (ar->scan.state) { 3853 case ATH11K_SCAN_IDLE: 3854 break; 3855 case ATH11K_SCAN_RUNNING: 3856 case ATH11K_SCAN_ABORTING: 3857 if (ar->scan.is_roc && ar->scan.roc_notify) 3858 ieee80211_remain_on_channel_expired(ar->hw); 3859 fallthrough; 3860 case ATH11K_SCAN_STARTING: 3861 if (!ar->scan.is_roc) { 3862 struct cfg80211_scan_info info = { 3863 .aborted = ((ar->scan.state == 3864 ATH11K_SCAN_ABORTING) || 3865 (ar->scan.state == 3866 ATH11K_SCAN_STARTING)), 3867 }; 3868 3869 ieee80211_scan_completed(ar->hw, &info); 3870 } 3871 3872 ar->scan.state = ATH11K_SCAN_IDLE; 3873 ar->scan_channel = NULL; 3874 ar->scan.roc_freq = 0; 3875 cancel_delayed_work(&ar->scan.timeout); 3876 complete_all(&ar->scan.completed); 3877 break; 3878 } 3879 } 3880 3881 void ath11k_mac_scan_finish(struct ath11k *ar) 3882 { 3883 spin_lock_bh(&ar->data_lock); 3884 __ath11k_mac_scan_finish(ar); 3885 spin_unlock_bh(&ar->data_lock); 3886 } 3887 3888 static int ath11k_scan_stop(struct ath11k *ar) 3889 { 3890 struct scan_cancel_param arg = { 3891 .req_type = WLAN_SCAN_CANCEL_SINGLE, 3892 .scan_id = ATH11K_SCAN_ID, 3893 }; 3894 int ret; 3895 3896 lockdep_assert_held(&ar->conf_mutex); 3897 3898 /* TODO: Fill other STOP Params */ 3899 arg.pdev_id = ar->pdev->pdev_id; 3900 3901 ret = ath11k_wmi_send_scan_stop_cmd(ar, &arg); 3902 if (ret) { 3903 ath11k_warn(ar->ab, "failed to stop wmi scan: %d\n", ret); 3904 goto out; 3905 } 3906 3907 ret = wait_for_completion_timeout(&ar->scan.completed, 3 * HZ); 3908 if (ret == 0) { 3909 ath11k_warn(ar->ab, 3910 "failed to receive scan abort comple: timed out\n"); 3911 ret = -ETIMEDOUT; 3912 } else if (ret > 0) { 3913 ret = 0; 3914 } 3915 3916 out: 3917 /* Scan state should be updated upon scan completion but in case 3918 * firmware fails to deliver the event (for whatever reason) it is 3919 * desired to clean up scan state anyway. Firmware may have just 3920 * dropped the scan completion event delivery due to transport pipe 3921 * being overflown with data and/or it can recover on its own before 3922 * next scan request is submitted. 3923 */ 3924 spin_lock_bh(&ar->data_lock); 3925 if (ar->scan.state != ATH11K_SCAN_IDLE) 3926 __ath11k_mac_scan_finish(ar); 3927 spin_unlock_bh(&ar->data_lock); 3928 3929 return ret; 3930 } 3931 3932 static void ath11k_scan_abort(struct ath11k *ar) 3933 { 3934 int ret; 3935 3936 lockdep_assert_held(&ar->conf_mutex); 3937 3938 spin_lock_bh(&ar->data_lock); 3939 3940 switch (ar->scan.state) { 3941 case ATH11K_SCAN_IDLE: 3942 /* This can happen if timeout worker kicked in and called 3943 * abortion while scan completion was being processed. 3944 */ 3945 break; 3946 case ATH11K_SCAN_STARTING: 3947 case ATH11K_SCAN_ABORTING: 3948 ath11k_warn(ar->ab, "refusing scan abortion due to invalid scan state: %d\n", 3949 ar->scan.state); 3950 break; 3951 case ATH11K_SCAN_RUNNING: 3952 ar->scan.state = ATH11K_SCAN_ABORTING; 3953 spin_unlock_bh(&ar->data_lock); 3954 3955 ret = ath11k_scan_stop(ar); 3956 if (ret) 3957 ath11k_warn(ar->ab, "failed to abort scan: %d\n", ret); 3958 3959 spin_lock_bh(&ar->data_lock); 3960 break; 3961 } 3962 3963 spin_unlock_bh(&ar->data_lock); 3964 } 3965 3966 static void ath11k_scan_timeout_work(struct work_struct *work) 3967 { 3968 struct ath11k *ar = container_of(work, struct ath11k, 3969 scan.timeout.work); 3970 3971 mutex_lock(&ar->conf_mutex); 3972 ath11k_scan_abort(ar); 3973 mutex_unlock(&ar->conf_mutex); 3974 } 3975 3976 static int ath11k_start_scan(struct ath11k *ar, 3977 struct scan_req_params *arg) 3978 { 3979 int ret; 3980 unsigned long timeout = 1 * HZ; 3981 3982 lockdep_assert_held(&ar->conf_mutex); 3983 3984 if (ath11k_spectral_get_mode(ar) == ATH11K_SPECTRAL_BACKGROUND) 3985 ath11k_spectral_reset_buffer(ar); 3986 3987 ret = ath11k_wmi_send_scan_start_cmd(ar, arg); 3988 if (ret) 3989 return ret; 3990 3991 if (test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ar->ab->wmi_ab.svc_map)) { 3992 timeout = 5 * HZ; 3993 3994 if (ar->supports_6ghz) 3995 timeout += 5 * HZ; 3996 } 3997 3998 ret = wait_for_completion_timeout(&ar->scan.started, timeout); 3999 if (ret == 0) { 4000 ret = ath11k_scan_stop(ar); 4001 if (ret) 4002 ath11k_warn(ar->ab, "failed to stop scan: %d\n", ret); 4003 4004 return -ETIMEDOUT; 4005 } 4006 4007 /* If we failed to start the scan, return error code at 4008 * this point. This is probably due to some issue in the 4009 * firmware, but no need to wedge the driver due to that... 4010 */ 4011 spin_lock_bh(&ar->data_lock); 4012 if (ar->scan.state == ATH11K_SCAN_IDLE) { 4013 spin_unlock_bh(&ar->data_lock); 4014 return -EINVAL; 4015 } 4016 spin_unlock_bh(&ar->data_lock); 4017 4018 return 0; 4019 } 4020 4021 static int ath11k_mac_op_hw_scan(struct ieee80211_hw *hw, 4022 struct ieee80211_vif *vif, 4023 struct ieee80211_scan_request *hw_req) 4024 { 4025 struct ath11k *ar = hw->priv; 4026 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 4027 struct cfg80211_scan_request *req = &hw_req->req; 4028 struct scan_req_params *arg = NULL; 4029 int ret = 0; 4030 int i; 4031 u32 scan_timeout; 4032 4033 /* Firmwares advertising the support of triggering 11D algorithm 4034 * on the scan results of a regular scan expects driver to send 4035 * WMI_11D_SCAN_START_CMDID before sending WMI_START_SCAN_CMDID. 4036 * With this feature, separate 11D scan can be avoided since 4037 * regdomain can be determined with the scan results of the 4038 * regular scan. 4039 */ 4040 if (ar->state_11d == ATH11K_11D_PREPARING && 4041 test_bit(WMI_TLV_SERVICE_SUPPORT_11D_FOR_HOST_SCAN, 4042 ar->ab->wmi_ab.svc_map)) 4043 ath11k_mac_11d_scan_start(ar, arvif->vdev_id); 4044 4045 mutex_lock(&ar->conf_mutex); 4046 4047 spin_lock_bh(&ar->data_lock); 4048 switch (ar->scan.state) { 4049 case ATH11K_SCAN_IDLE: 4050 reinit_completion(&ar->scan.started); 4051 reinit_completion(&ar->scan.completed); 4052 ar->scan.state = ATH11K_SCAN_STARTING; 4053 ar->scan.is_roc = false; 4054 ar->scan.vdev_id = arvif->vdev_id; 4055 ret = 0; 4056 break; 4057 case ATH11K_SCAN_STARTING: 4058 case ATH11K_SCAN_RUNNING: 4059 case ATH11K_SCAN_ABORTING: 4060 ret = -EBUSY; 4061 break; 4062 } 4063 spin_unlock_bh(&ar->data_lock); 4064 4065 if (ret) 4066 goto exit; 4067 4068 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4069 4070 if (!arg) { 4071 ret = -ENOMEM; 4072 goto exit; 4073 } 4074 4075 ath11k_wmi_start_scan_init(ar, arg); 4076 arg->vdev_id = arvif->vdev_id; 4077 arg->scan_id = ATH11K_SCAN_ID; 4078 4079 if (ar->ab->hw_params.single_pdev_only) 4080 arg->scan_f_filter_prb_req = 1; 4081 4082 if (req->ie_len) { 4083 arg->extraie.ptr = kmemdup(req->ie, req->ie_len, GFP_KERNEL); 4084 if (!arg->extraie.ptr) { 4085 ret = -ENOMEM; 4086 goto exit; 4087 } 4088 arg->extraie.len = req->ie_len; 4089 } 4090 4091 if (req->n_ssids) { 4092 arg->num_ssids = req->n_ssids; 4093 for (i = 0; i < arg->num_ssids; i++) { 4094 arg->ssid[i].length = req->ssids[i].ssid_len; 4095 memcpy(&arg->ssid[i].ssid, req->ssids[i].ssid, 4096 req->ssids[i].ssid_len); 4097 } 4098 } else { 4099 arg->scan_f_passive = 1; 4100 } 4101 4102 if (req->n_channels) { 4103 arg->num_chan = req->n_channels; 4104 arg->chan_list = kcalloc(arg->num_chan, sizeof(*arg->chan_list), 4105 GFP_KERNEL); 4106 4107 if (!arg->chan_list) { 4108 ret = -ENOMEM; 4109 goto exit; 4110 } 4111 4112 for (i = 0; i < arg->num_chan; i++) { 4113 if (test_bit(WMI_TLV_SERVICE_SCAN_CONFIG_PER_CHANNEL, 4114 ar->ab->wmi_ab.svc_map)) { 4115 arg->chan_list[i] = 4116 u32_encode_bits(req->channels[i]->center_freq, 4117 WMI_SCAN_CONFIG_PER_CHANNEL_MASK); 4118 4119 /* If NL80211_SCAN_FLAG_COLOCATED_6GHZ is set in scan 4120 * flags, then scan all PSC channels in 6 GHz band and 4121 * those non-PSC channels where RNR IE is found during 4122 * the legacy 2.4/5 GHz scan. 4123 * If NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set, 4124 * then all channels in 6 GHz will be scanned. 4125 */ 4126 if (req->channels[i]->band == NL80211_BAND_6GHZ && 4127 req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ && 4128 !cfg80211_channel_is_psc(req->channels[i])) 4129 arg->chan_list[i] |= 4130 WMI_SCAN_CH_FLAG_SCAN_ONLY_IF_RNR_FOUND; 4131 } else { 4132 arg->chan_list[i] = req->channels[i]->center_freq; 4133 } 4134 } 4135 } 4136 4137 if (req->flags & NL80211_SCAN_FLAG_RANDOM_ADDR) { 4138 arg->scan_f_add_spoofed_mac_in_probe = 1; 4139 ether_addr_copy(arg->mac_addr.addr, req->mac_addr); 4140 ether_addr_copy(arg->mac_mask.addr, req->mac_addr_mask); 4141 } 4142 4143 /* if duration is set, default dwell times will be overwritten */ 4144 if (req->duration) { 4145 arg->dwell_time_active = req->duration; 4146 arg->dwell_time_active_2g = req->duration; 4147 arg->dwell_time_active_6g = req->duration; 4148 arg->dwell_time_passive = req->duration; 4149 arg->dwell_time_passive_6g = req->duration; 4150 arg->burst_duration = req->duration; 4151 4152 scan_timeout = min_t(u32, arg->max_rest_time * 4153 (arg->num_chan - 1) + (req->duration + 4154 ATH11K_SCAN_CHANNEL_SWITCH_WMI_EVT_OVERHEAD) * 4155 arg->num_chan, arg->max_scan_time); 4156 } else { 4157 scan_timeout = arg->max_scan_time; 4158 } 4159 4160 /* Add a margin to account for event/command processing */ 4161 scan_timeout += ATH11K_MAC_SCAN_CMD_EVT_OVERHEAD; 4162 4163 ret = ath11k_start_scan(ar, arg); 4164 if (ret) { 4165 ath11k_warn(ar->ab, "failed to start hw scan: %d\n", ret); 4166 spin_lock_bh(&ar->data_lock); 4167 ar->scan.state = ATH11K_SCAN_IDLE; 4168 spin_unlock_bh(&ar->data_lock); 4169 } 4170 4171 ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout, 4172 msecs_to_jiffies(scan_timeout)); 4173 4174 exit: 4175 if (arg) { 4176 kfree(arg->chan_list); 4177 kfree(arg->extraie.ptr); 4178 kfree(arg); 4179 } 4180 4181 mutex_unlock(&ar->conf_mutex); 4182 4183 if (ar->state_11d == ATH11K_11D_PREPARING) 4184 ath11k_mac_11d_scan_start(ar, arvif->vdev_id); 4185 4186 return ret; 4187 } 4188 4189 static void ath11k_mac_op_cancel_hw_scan(struct ieee80211_hw *hw, 4190 struct ieee80211_vif *vif) 4191 { 4192 struct ath11k *ar = hw->priv; 4193 4194 mutex_lock(&ar->conf_mutex); 4195 ath11k_scan_abort(ar); 4196 mutex_unlock(&ar->conf_mutex); 4197 4198 cancel_delayed_work_sync(&ar->scan.timeout); 4199 } 4200 4201 static int ath11k_install_key(struct ath11k_vif *arvif, 4202 struct ieee80211_key_conf *key, 4203 enum set_key_cmd cmd, 4204 const u8 *macaddr, u32 flags) 4205 { 4206 int ret; 4207 struct ath11k *ar = arvif->ar; 4208 struct wmi_vdev_install_key_arg arg = { 4209 .vdev_id = arvif->vdev_id, 4210 .key_idx = key->keyidx, 4211 .key_len = key->keylen, 4212 .key_data = key->key, 4213 .key_flags = flags, 4214 .macaddr = macaddr, 4215 }; 4216 4217 lockdep_assert_held(&arvif->ar->conf_mutex); 4218 4219 reinit_completion(&ar->install_key_done); 4220 4221 if (test_bit(ATH11K_FLAG_HW_CRYPTO_DISABLED, &ar->ab->dev_flags)) 4222 return 0; 4223 4224 if (cmd == DISABLE_KEY) { 4225 arg.key_cipher = WMI_CIPHER_NONE; 4226 arg.key_data = NULL; 4227 goto install; 4228 } 4229 4230 switch (key->cipher) { 4231 case WLAN_CIPHER_SUITE_CCMP: 4232 case WLAN_CIPHER_SUITE_CCMP_256: 4233 arg.key_cipher = WMI_CIPHER_AES_CCM; 4234 /* TODO: Re-check if flag is valid */ 4235 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT; 4236 break; 4237 case WLAN_CIPHER_SUITE_TKIP: 4238 arg.key_cipher = WMI_CIPHER_TKIP; 4239 arg.key_txmic_len = 8; 4240 arg.key_rxmic_len = 8; 4241 break; 4242 case WLAN_CIPHER_SUITE_GCMP: 4243 case WLAN_CIPHER_SUITE_GCMP_256: 4244 arg.key_cipher = WMI_CIPHER_AES_GCM; 4245 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT; 4246 break; 4247 default: 4248 ath11k_warn(ar->ab, "cipher %d is not supported\n", key->cipher); 4249 return -EOPNOTSUPP; 4250 } 4251 4252 if (test_bit(ATH11K_FLAG_RAW_MODE, &ar->ab->dev_flags)) 4253 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV | 4254 IEEE80211_KEY_FLAG_RESERVE_TAILROOM; 4255 4256 install: 4257 ret = ath11k_wmi_vdev_install_key(arvif->ar, &arg); 4258 4259 if (ret) 4260 return ret; 4261 4262 if (!wait_for_completion_timeout(&ar->install_key_done, 1 * HZ)) 4263 return -ETIMEDOUT; 4264 4265 return ar->install_key_status ? -EINVAL : 0; 4266 } 4267 4268 static int ath11k_clear_peer_keys(struct ath11k_vif *arvif, 4269 const u8 *addr) 4270 { 4271 struct ath11k *ar = arvif->ar; 4272 struct ath11k_base *ab = ar->ab; 4273 struct ath11k_peer *peer; 4274 int first_errno = 0; 4275 int ret; 4276 int i; 4277 u32 flags = 0; 4278 4279 lockdep_assert_held(&ar->conf_mutex); 4280 4281 spin_lock_bh(&ab->base_lock); 4282 peer = ath11k_peer_find(ab, arvif->vdev_id, addr); 4283 spin_unlock_bh(&ab->base_lock); 4284 4285 if (!peer) 4286 return -ENOENT; 4287 4288 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 4289 if (!peer->keys[i]) 4290 continue; 4291 4292 /* key flags are not required to delete the key */ 4293 ret = ath11k_install_key(arvif, peer->keys[i], 4294 DISABLE_KEY, addr, flags); 4295 if (ret < 0 && first_errno == 0) 4296 first_errno = ret; 4297 4298 if (ret < 0) 4299 ath11k_warn(ab, "failed to remove peer key %d: %d\n", 4300 i, ret); 4301 4302 spin_lock_bh(&ab->base_lock); 4303 peer->keys[i] = NULL; 4304 spin_unlock_bh(&ab->base_lock); 4305 } 4306 4307 return first_errno; 4308 } 4309 4310 static int ath11k_mac_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, 4311 struct ieee80211_vif *vif, struct ieee80211_sta *sta, 4312 struct ieee80211_key_conf *key) 4313 { 4314 struct ath11k *ar = hw->priv; 4315 struct ath11k_base *ab = ar->ab; 4316 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 4317 struct ath11k_peer *peer; 4318 struct ath11k_sta *arsta; 4319 const u8 *peer_addr; 4320 int ret = 0; 4321 u32 flags = 0; 4322 4323 /* BIP needs to be done in software */ 4324 if (key->cipher == WLAN_CIPHER_SUITE_AES_CMAC || 4325 key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_128 || 4326 key->cipher == WLAN_CIPHER_SUITE_BIP_GMAC_256 || 4327 key->cipher == WLAN_CIPHER_SUITE_BIP_CMAC_256) 4328 return 1; 4329 4330 if (test_bit(ATH11K_FLAG_HW_CRYPTO_DISABLED, &ar->ab->dev_flags)) 4331 return 1; 4332 4333 if (key->keyidx > WMI_MAX_KEY_INDEX) 4334 return -ENOSPC; 4335 4336 mutex_lock(&ar->conf_mutex); 4337 4338 if (sta) 4339 peer_addr = sta->addr; 4340 else if (arvif->vdev_type == WMI_VDEV_TYPE_STA) 4341 peer_addr = vif->bss_conf.bssid; 4342 else 4343 peer_addr = vif->addr; 4344 4345 key->hw_key_idx = key->keyidx; 4346 4347 /* the peer should not disappear in mid-way (unless FW goes awry) since 4348 * we already hold conf_mutex. we just make sure its there now. 4349 */ 4350 spin_lock_bh(&ab->base_lock); 4351 peer = ath11k_peer_find(ab, arvif->vdev_id, peer_addr); 4352 4353 /* flush the fragments cache during key (re)install to 4354 * ensure all frags in the new frag list belong to the same key. 4355 */ 4356 if (peer && sta && cmd == SET_KEY) 4357 ath11k_peer_frags_flush(ar, peer); 4358 spin_unlock_bh(&ab->base_lock); 4359 4360 if (!peer) { 4361 if (cmd == SET_KEY) { 4362 ath11k_warn(ab, "cannot install key for non-existent peer %pM\n", 4363 peer_addr); 4364 ret = -EOPNOTSUPP; 4365 goto exit; 4366 } else { 4367 /* if the peer doesn't exist there is no key to disable 4368 * anymore 4369 */ 4370 goto exit; 4371 } 4372 } 4373 4374 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) 4375 flags |= WMI_KEY_PAIRWISE; 4376 else 4377 flags |= WMI_KEY_GROUP; 4378 4379 ret = ath11k_install_key(arvif, key, cmd, peer_addr, flags); 4380 if (ret) { 4381 ath11k_warn(ab, "ath11k_install_key failed (%d)\n", ret); 4382 goto exit; 4383 } 4384 4385 ret = ath11k_dp_peer_rx_pn_replay_config(arvif, peer_addr, cmd, key); 4386 if (ret) { 4387 ath11k_warn(ab, "failed to offload PN replay detection %d\n", ret); 4388 goto exit; 4389 } 4390 4391 spin_lock_bh(&ab->base_lock); 4392 peer = ath11k_peer_find(ab, arvif->vdev_id, peer_addr); 4393 if (peer && cmd == SET_KEY) { 4394 peer->keys[key->keyidx] = key; 4395 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) { 4396 peer->ucast_keyidx = key->keyidx; 4397 peer->sec_type = ath11k_dp_tx_get_encrypt_type(key->cipher); 4398 } else { 4399 peer->mcast_keyidx = key->keyidx; 4400 peer->sec_type_grp = ath11k_dp_tx_get_encrypt_type(key->cipher); 4401 } 4402 } else if (peer && cmd == DISABLE_KEY) { 4403 peer->keys[key->keyidx] = NULL; 4404 if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) 4405 peer->ucast_keyidx = 0; 4406 else 4407 peer->mcast_keyidx = 0; 4408 } else if (!peer) 4409 /* impossible unless FW goes crazy */ 4410 ath11k_warn(ab, "peer %pM disappeared!\n", peer_addr); 4411 4412 if (sta) { 4413 arsta = ath11k_sta_to_arsta(sta); 4414 4415 switch (key->cipher) { 4416 case WLAN_CIPHER_SUITE_TKIP: 4417 case WLAN_CIPHER_SUITE_CCMP: 4418 case WLAN_CIPHER_SUITE_CCMP_256: 4419 case WLAN_CIPHER_SUITE_GCMP: 4420 case WLAN_CIPHER_SUITE_GCMP_256: 4421 if (cmd == SET_KEY) 4422 arsta->pn_type = HAL_PN_TYPE_WPA; 4423 else 4424 arsta->pn_type = HAL_PN_TYPE_NONE; 4425 break; 4426 default: 4427 arsta->pn_type = HAL_PN_TYPE_NONE; 4428 break; 4429 } 4430 } 4431 4432 spin_unlock_bh(&ab->base_lock); 4433 4434 exit: 4435 mutex_unlock(&ar->conf_mutex); 4436 return ret; 4437 } 4438 4439 static int 4440 ath11k_mac_bitrate_mask_num_ht_rates(struct ath11k *ar, 4441 enum nl80211_band band, 4442 const struct cfg80211_bitrate_mask *mask) 4443 { 4444 int num_rates = 0; 4445 int i; 4446 4447 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) 4448 num_rates += hweight8(mask->control[band].ht_mcs[i]); 4449 4450 return num_rates; 4451 } 4452 4453 static int 4454 ath11k_mac_bitrate_mask_num_vht_rates(struct ath11k *ar, 4455 enum nl80211_band band, 4456 const struct cfg80211_bitrate_mask *mask) 4457 { 4458 int num_rates = 0; 4459 int i; 4460 4461 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) 4462 num_rates += hweight16(mask->control[band].vht_mcs[i]); 4463 4464 return num_rates; 4465 } 4466 4467 static int 4468 ath11k_mac_bitrate_mask_num_he_rates(struct ath11k *ar, 4469 enum nl80211_band band, 4470 const struct cfg80211_bitrate_mask *mask) 4471 { 4472 int num_rates = 0; 4473 int i; 4474 4475 for (i = 0; i < ARRAY_SIZE(mask->control[band].he_mcs); i++) 4476 num_rates += hweight16(mask->control[band].he_mcs[i]); 4477 4478 return num_rates; 4479 } 4480 4481 static int 4482 ath11k_mac_set_peer_vht_fixed_rate(struct ath11k_vif *arvif, 4483 struct ieee80211_sta *sta, 4484 const struct cfg80211_bitrate_mask *mask, 4485 enum nl80211_band band) 4486 { 4487 struct ath11k *ar = arvif->ar; 4488 u8 vht_rate, nss; 4489 u32 rate_code; 4490 int ret, i; 4491 4492 lockdep_assert_held(&ar->conf_mutex); 4493 4494 nss = 0; 4495 4496 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { 4497 if (hweight16(mask->control[band].vht_mcs[i]) == 1) { 4498 nss = i + 1; 4499 vht_rate = ffs(mask->control[band].vht_mcs[i]) - 1; 4500 } 4501 } 4502 4503 if (!nss) { 4504 ath11k_warn(ar->ab, "No single VHT Fixed rate found to set for %pM", 4505 sta->addr); 4506 return -EINVAL; 4507 } 4508 4509 /* Avoid updating invalid nss as fixed rate*/ 4510 if (nss > sta->deflink.rx_nss) 4511 return -EINVAL; 4512 4513 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 4514 "Setting Fixed VHT Rate for peer %pM. Device will not switch to any other selected rates", 4515 sta->addr); 4516 4517 rate_code = ATH11K_HW_RATE_CODE(vht_rate, nss - 1, 4518 WMI_RATE_PREAMBLE_VHT); 4519 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 4520 arvif->vdev_id, 4521 WMI_PEER_PARAM_FIXED_RATE, 4522 rate_code); 4523 if (ret) 4524 ath11k_warn(ar->ab, 4525 "failed to update STA %pM Fixed Rate %d: %d\n", 4526 sta->addr, rate_code, ret); 4527 4528 return ret; 4529 } 4530 4531 static int 4532 ath11k_mac_set_peer_he_fixed_rate(struct ath11k_vif *arvif, 4533 struct ieee80211_sta *sta, 4534 const struct cfg80211_bitrate_mask *mask, 4535 enum nl80211_band band) 4536 { 4537 struct ath11k *ar = arvif->ar; 4538 u8 he_rate, nss; 4539 u32 rate_code; 4540 int ret, i; 4541 4542 lockdep_assert_held(&ar->conf_mutex); 4543 4544 nss = 0; 4545 4546 for (i = 0; i < ARRAY_SIZE(mask->control[band].he_mcs); i++) { 4547 if (hweight16(mask->control[band].he_mcs[i]) == 1) { 4548 nss = i + 1; 4549 he_rate = ffs(mask->control[band].he_mcs[i]) - 1; 4550 } 4551 } 4552 4553 if (!nss) { 4554 ath11k_warn(ar->ab, "No single he fixed rate found to set for %pM", 4555 sta->addr); 4556 return -EINVAL; 4557 } 4558 4559 /* Avoid updating invalid nss as fixed rate */ 4560 if (nss > sta->deflink.rx_nss) 4561 return -EINVAL; 4562 4563 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 4564 "setting fixed he rate for peer %pM, device will not switch to any other selected rates", 4565 sta->addr); 4566 4567 rate_code = ATH11K_HW_RATE_CODE(he_rate, nss - 1, 4568 WMI_RATE_PREAMBLE_HE); 4569 4570 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 4571 arvif->vdev_id, 4572 WMI_PEER_PARAM_FIXED_RATE, 4573 rate_code); 4574 if (ret) 4575 ath11k_warn(ar->ab, 4576 "failed to update sta %pM fixed rate %d: %d\n", 4577 sta->addr, rate_code, ret); 4578 4579 return ret; 4580 } 4581 4582 static int 4583 ath11k_mac_set_peer_ht_fixed_rate(struct ath11k_vif *arvif, 4584 struct ieee80211_sta *sta, 4585 const struct cfg80211_bitrate_mask *mask, 4586 enum nl80211_band band) 4587 { 4588 struct ath11k *ar = arvif->ar; 4589 u8 ht_rate, nss = 0; 4590 u32 rate_code; 4591 int ret, i; 4592 4593 lockdep_assert_held(&ar->conf_mutex); 4594 4595 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) { 4596 if (hweight8(mask->control[band].ht_mcs[i]) == 1) { 4597 nss = i + 1; 4598 ht_rate = ffs(mask->control[band].ht_mcs[i]) - 1; 4599 } 4600 } 4601 4602 if (!nss) { 4603 ath11k_warn(ar->ab, "No single HT Fixed rate found to set for %pM", 4604 sta->addr); 4605 return -EINVAL; 4606 } 4607 4608 /* Avoid updating invalid nss as fixed rate*/ 4609 if (nss > sta->deflink.rx_nss) 4610 return -EINVAL; 4611 4612 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 4613 "Setting Fixed HT Rate for peer %pM. Device will not switch to any other selected rates", 4614 sta->addr); 4615 4616 rate_code = ATH11K_HW_RATE_CODE(ht_rate, nss - 1, 4617 WMI_RATE_PREAMBLE_HT); 4618 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 4619 arvif->vdev_id, 4620 WMI_PEER_PARAM_FIXED_RATE, 4621 rate_code); 4622 if (ret) 4623 ath11k_warn(ar->ab, 4624 "failed to update STA %pM HT Fixed Rate %d: %d\n", 4625 sta->addr, rate_code, ret); 4626 4627 return ret; 4628 } 4629 4630 static int ath11k_station_assoc(struct ath11k *ar, 4631 struct ieee80211_vif *vif, 4632 struct ieee80211_sta *sta, 4633 bool reassoc) 4634 { 4635 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 4636 struct peer_assoc_params peer_arg; 4637 int ret = 0; 4638 struct cfg80211_chan_def def; 4639 enum nl80211_band band; 4640 struct cfg80211_bitrate_mask *mask; 4641 u8 num_ht_rates, num_vht_rates, num_he_rates; 4642 4643 lockdep_assert_held(&ar->conf_mutex); 4644 4645 if (WARN_ON(ath11k_mac_vif_chan(vif, &def))) 4646 return -EPERM; 4647 4648 band = def.chan->band; 4649 mask = &arvif->bitrate_mask; 4650 4651 ath11k_peer_assoc_prepare(ar, vif, sta, &peer_arg, reassoc); 4652 4653 peer_arg.is_assoc = true; 4654 ret = ath11k_wmi_send_peer_assoc_cmd(ar, &peer_arg); 4655 if (ret) { 4656 ath11k_warn(ar->ab, "failed to run peer assoc for STA %pM vdev %i: %d\n", 4657 sta->addr, arvif->vdev_id, ret); 4658 return ret; 4659 } 4660 4661 if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) { 4662 ath11k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n", 4663 sta->addr, arvif->vdev_id); 4664 return -ETIMEDOUT; 4665 } 4666 4667 num_vht_rates = ath11k_mac_bitrate_mask_num_vht_rates(ar, band, mask); 4668 num_he_rates = ath11k_mac_bitrate_mask_num_he_rates(ar, band, mask); 4669 num_ht_rates = ath11k_mac_bitrate_mask_num_ht_rates(ar, band, mask); 4670 4671 /* If single VHT/HE rate is configured (by set_bitrate_mask()), 4672 * peer_assoc will disable VHT/HE. This is now enabled by a peer specific 4673 * fixed param. 4674 * Note that all other rates and NSS will be disabled for this peer. 4675 */ 4676 if (sta->deflink.vht_cap.vht_supported && num_vht_rates == 1) { 4677 ret = ath11k_mac_set_peer_vht_fixed_rate(arvif, sta, mask, 4678 band); 4679 if (ret) 4680 return ret; 4681 } else if (sta->deflink.he_cap.has_he && num_he_rates == 1) { 4682 ret = ath11k_mac_set_peer_he_fixed_rate(arvif, sta, mask, 4683 band); 4684 if (ret) 4685 return ret; 4686 } else if (sta->deflink.ht_cap.ht_supported && num_ht_rates == 1) { 4687 ret = ath11k_mac_set_peer_ht_fixed_rate(arvif, sta, mask, 4688 band); 4689 if (ret) 4690 return ret; 4691 } 4692 4693 /* Re-assoc is run only to update supported rates for given station. It 4694 * doesn't make much sense to reconfigure the peer completely. 4695 */ 4696 if (reassoc) 4697 return 0; 4698 4699 ret = ath11k_setup_peer_smps(ar, arvif, sta->addr, 4700 &sta->deflink.ht_cap, 4701 le16_to_cpu(sta->deflink.he_6ghz_capa.capa)); 4702 if (ret) { 4703 ath11k_warn(ar->ab, "failed to setup peer SMPS for vdev %d: %d\n", 4704 arvif->vdev_id, ret); 4705 return ret; 4706 } 4707 4708 if (!sta->wme) { 4709 arvif->num_legacy_stations++; 4710 ret = ath11k_recalc_rtscts_prot(arvif); 4711 if (ret) 4712 return ret; 4713 } 4714 4715 if (sta->wme && sta->uapsd_queues) { 4716 ret = ath11k_peer_assoc_qos_ap(ar, arvif, sta); 4717 if (ret) { 4718 ath11k_warn(ar->ab, "failed to set qos params for STA %pM for vdev %i: %d\n", 4719 sta->addr, arvif->vdev_id, ret); 4720 return ret; 4721 } 4722 } 4723 4724 return 0; 4725 } 4726 4727 static int ath11k_station_disassoc(struct ath11k *ar, 4728 struct ieee80211_vif *vif, 4729 struct ieee80211_sta *sta) 4730 { 4731 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 4732 int ret = 0; 4733 4734 lockdep_assert_held(&ar->conf_mutex); 4735 4736 if (!sta->wme) { 4737 arvif->num_legacy_stations--; 4738 ret = ath11k_recalc_rtscts_prot(arvif); 4739 if (ret) 4740 return ret; 4741 } 4742 4743 ret = ath11k_clear_peer_keys(arvif, sta->addr); 4744 if (ret) { 4745 ath11k_warn(ar->ab, "failed to clear all peer keys for vdev %i: %d\n", 4746 arvif->vdev_id, ret); 4747 return ret; 4748 } 4749 return 0; 4750 } 4751 4752 static u32 ath11k_mac_max_nss(const u8 *ht_mcs_mask, const u16 *vht_mcs_mask, 4753 const u16 *he_mcs_mask) 4754 { 4755 return max3(ath11k_mac_max_ht_nss(ht_mcs_mask), 4756 ath11k_mac_max_vht_nss(vht_mcs_mask), 4757 ath11k_mac_max_he_nss(he_mcs_mask)); 4758 } 4759 4760 static void ath11k_sta_rc_update_wk(struct work_struct *wk) 4761 { 4762 struct ath11k *ar; 4763 struct ath11k_vif *arvif; 4764 struct ath11k_sta *arsta; 4765 struct ieee80211_sta *sta; 4766 struct cfg80211_chan_def def; 4767 enum nl80211_band band; 4768 const u8 *ht_mcs_mask; 4769 const u16 *vht_mcs_mask; 4770 const u16 *he_mcs_mask; 4771 u32 changed, bw, nss, smps, bw_prev; 4772 int err, num_ht_rates, num_vht_rates, num_he_rates; 4773 const struct cfg80211_bitrate_mask *mask; 4774 struct peer_assoc_params peer_arg; 4775 enum wmi_phy_mode peer_phymode; 4776 4777 arsta = container_of(wk, struct ath11k_sta, update_wk); 4778 sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); 4779 arvif = arsta->arvif; 4780 ar = arvif->ar; 4781 4782 if (WARN_ON(ath11k_mac_vif_chan(arvif->vif, &def))) 4783 return; 4784 4785 band = def.chan->band; 4786 ht_mcs_mask = arvif->bitrate_mask.control[band].ht_mcs; 4787 vht_mcs_mask = arvif->bitrate_mask.control[band].vht_mcs; 4788 he_mcs_mask = arvif->bitrate_mask.control[band].he_mcs; 4789 4790 spin_lock_bh(&ar->data_lock); 4791 4792 changed = arsta->changed; 4793 arsta->changed = 0; 4794 4795 bw = arsta->bw; 4796 bw_prev = arsta->bw_prev; 4797 nss = arsta->nss; 4798 smps = arsta->smps; 4799 4800 spin_unlock_bh(&ar->data_lock); 4801 4802 mutex_lock(&ar->conf_mutex); 4803 4804 nss = max_t(u32, 1, nss); 4805 nss = min(nss, ath11k_mac_max_nss(ht_mcs_mask, vht_mcs_mask, he_mcs_mask)); 4806 4807 if (changed & IEEE80211_RC_BW_CHANGED) { 4808 /* Get the peer phymode */ 4809 ath11k_peer_assoc_h_phymode(ar, arvif->vif, sta, &peer_arg); 4810 peer_phymode = peer_arg.peer_phymode; 4811 4812 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "update sta %pM peer bw %d phymode %d\n", 4813 sta->addr, bw, peer_phymode); 4814 4815 if (bw > bw_prev) { 4816 /* BW is upgraded. In this case we send WMI_PEER_PHYMODE 4817 * followed by WMI_PEER_CHWIDTH 4818 */ 4819 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "BW upgrade for sta %pM new BW %d, old BW %d\n", 4820 sta->addr, bw, bw_prev); 4821 4822 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4823 WMI_PEER_PHYMODE, peer_phymode); 4824 4825 if (err) { 4826 ath11k_warn(ar->ab, "failed to update STA %pM peer phymode %d: %d\n", 4827 sta->addr, peer_phymode, err); 4828 goto err_rc_bw_changed; 4829 } 4830 4831 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4832 WMI_PEER_CHWIDTH, bw); 4833 4834 if (err) 4835 ath11k_warn(ar->ab, "failed to update STA %pM peer bw %d: %d\n", 4836 sta->addr, bw, err); 4837 } else { 4838 /* BW is downgraded. In this case we send WMI_PEER_CHWIDTH 4839 * followed by WMI_PEER_PHYMODE 4840 */ 4841 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "BW downgrade for sta %pM new BW %d,old BW %d\n", 4842 sta->addr, bw, bw_prev); 4843 4844 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4845 WMI_PEER_CHWIDTH, bw); 4846 4847 if (err) { 4848 ath11k_warn(ar->ab, "failed to update STA %pM peer bw %d: %d\n", 4849 sta->addr, bw, err); 4850 goto err_rc_bw_changed; 4851 } 4852 4853 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4854 WMI_PEER_PHYMODE, peer_phymode); 4855 4856 if (err) 4857 ath11k_warn(ar->ab, "failed to update STA %pM peer phymode %d: %d\n", 4858 sta->addr, peer_phymode, err); 4859 } 4860 } 4861 4862 if (changed & IEEE80211_RC_NSS_CHANGED) { 4863 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "update sta %pM nss %d\n", 4864 sta->addr, nss); 4865 4866 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4867 WMI_PEER_NSS, nss); 4868 if (err) 4869 ath11k_warn(ar->ab, "failed to update STA %pM nss %d: %d\n", 4870 sta->addr, nss, err); 4871 } 4872 4873 if (changed & IEEE80211_RC_SMPS_CHANGED) { 4874 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "update sta %pM smps %d\n", 4875 sta->addr, smps); 4876 4877 err = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 4878 WMI_PEER_MIMO_PS_STATE, smps); 4879 if (err) 4880 ath11k_warn(ar->ab, "failed to update STA %pM smps %d: %d\n", 4881 sta->addr, smps, err); 4882 } 4883 4884 if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) { 4885 mask = &arvif->bitrate_mask; 4886 num_ht_rates = ath11k_mac_bitrate_mask_num_ht_rates(ar, band, 4887 mask); 4888 num_vht_rates = ath11k_mac_bitrate_mask_num_vht_rates(ar, band, 4889 mask); 4890 num_he_rates = ath11k_mac_bitrate_mask_num_he_rates(ar, band, 4891 mask); 4892 4893 /* Peer_assoc_prepare will reject vht rates in 4894 * bitrate_mask if its not available in range format and 4895 * sets vht tx_rateset as unsupported. So multiple VHT MCS 4896 * setting(eg. MCS 4,5,6) per peer is not supported here. 4897 * But, Single rate in VHT mask can be set as per-peer 4898 * fixed rate. But even if any HT rates are configured in 4899 * the bitrate mask, device will not switch to those rates 4900 * when per-peer Fixed rate is set. 4901 * TODO: Check RATEMASK_CMDID to support auto rates selection 4902 * across HT/VHT and for multiple VHT MCS support. 4903 */ 4904 if (sta->deflink.vht_cap.vht_supported && num_vht_rates == 1) { 4905 ath11k_mac_set_peer_vht_fixed_rate(arvif, sta, mask, 4906 band); 4907 } else if (sta->deflink.he_cap.has_he && num_he_rates == 1) { 4908 ath11k_mac_set_peer_he_fixed_rate(arvif, sta, mask, 4909 band); 4910 } else if (sta->deflink.ht_cap.ht_supported && num_ht_rates == 1) { 4911 ath11k_mac_set_peer_ht_fixed_rate(arvif, sta, mask, 4912 band); 4913 } else { 4914 /* If the peer is non-VHT/HE or no fixed VHT/HE rate 4915 * is provided in the new bitrate mask we set the 4916 * other rates using peer_assoc command. Also clear 4917 * the peer fixed rate settings as it has higher proprity 4918 * than peer assoc 4919 */ 4920 err = ath11k_wmi_set_peer_param(ar, sta->addr, 4921 arvif->vdev_id, 4922 WMI_PEER_PARAM_FIXED_RATE, 4923 WMI_FIXED_RATE_NONE); 4924 if (err) 4925 ath11k_warn(ar->ab, 4926 "failed to disable peer fixed rate for sta %pM: %d\n", 4927 sta->addr, err); 4928 4929 ath11k_peer_assoc_prepare(ar, arvif->vif, sta, 4930 &peer_arg, true); 4931 4932 peer_arg.is_assoc = false; 4933 err = ath11k_wmi_send_peer_assoc_cmd(ar, &peer_arg); 4934 if (err) 4935 ath11k_warn(ar->ab, "failed to run peer assoc for STA %pM vdev %i: %d\n", 4936 sta->addr, arvif->vdev_id, err); 4937 4938 if (!wait_for_completion_timeout(&ar->peer_assoc_done, 1 * HZ)) 4939 ath11k_warn(ar->ab, "failed to get peer assoc conf event for %pM vdev %i\n", 4940 sta->addr, arvif->vdev_id); 4941 } 4942 } 4943 4944 err_rc_bw_changed: 4945 mutex_unlock(&ar->conf_mutex); 4946 } 4947 4948 static void ath11k_sta_set_4addr_wk(struct work_struct *wk) 4949 { 4950 struct ath11k *ar; 4951 struct ath11k_vif *arvif; 4952 struct ath11k_sta *arsta; 4953 struct ieee80211_sta *sta; 4954 int ret = 0; 4955 4956 arsta = container_of(wk, struct ath11k_sta, set_4addr_wk); 4957 sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); 4958 arvif = arsta->arvif; 4959 ar = arvif->ar; 4960 4961 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 4962 "setting USE_4ADDR for peer %pM\n", sta->addr); 4963 4964 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 4965 arvif->vdev_id, 4966 WMI_PEER_USE_4ADDR, 1); 4967 4968 if (ret) 4969 ath11k_warn(ar->ab, "failed to set peer %pM 4addr capability: %d\n", 4970 sta->addr, ret); 4971 } 4972 4973 static int ath11k_mac_inc_num_stations(struct ath11k_vif *arvif, 4974 struct ieee80211_sta *sta) 4975 { 4976 struct ath11k *ar = arvif->ar; 4977 4978 lockdep_assert_held(&ar->conf_mutex); 4979 4980 if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) 4981 return 0; 4982 4983 if (ar->num_stations >= ar->max_num_stations) 4984 return -ENOBUFS; 4985 4986 ar->num_stations++; 4987 4988 return 0; 4989 } 4990 4991 static void ath11k_mac_dec_num_stations(struct ath11k_vif *arvif, 4992 struct ieee80211_sta *sta) 4993 { 4994 struct ath11k *ar = arvif->ar; 4995 4996 lockdep_assert_held(&ar->conf_mutex); 4997 4998 if (arvif->vdev_type == WMI_VDEV_TYPE_STA && !sta->tdls) 4999 return; 5000 5001 ar->num_stations--; 5002 } 5003 5004 static u32 ath11k_mac_ieee80211_sta_bw_to_wmi(struct ath11k *ar, 5005 struct ieee80211_sta *sta) 5006 { 5007 u32 bw = WMI_PEER_CHWIDTH_20MHZ; 5008 5009 switch (sta->deflink.bandwidth) { 5010 case IEEE80211_STA_RX_BW_20: 5011 bw = WMI_PEER_CHWIDTH_20MHZ; 5012 break; 5013 case IEEE80211_STA_RX_BW_40: 5014 bw = WMI_PEER_CHWIDTH_40MHZ; 5015 break; 5016 case IEEE80211_STA_RX_BW_80: 5017 bw = WMI_PEER_CHWIDTH_80MHZ; 5018 break; 5019 case IEEE80211_STA_RX_BW_160: 5020 bw = WMI_PEER_CHWIDTH_160MHZ; 5021 break; 5022 default: 5023 ath11k_warn(ar->ab, "Invalid bandwidth %d for %pM\n", 5024 sta->deflink.bandwidth, sta->addr); 5025 bw = WMI_PEER_CHWIDTH_20MHZ; 5026 break; 5027 } 5028 5029 return bw; 5030 } 5031 5032 static int ath11k_mac_op_sta_set_txpwr(struct ieee80211_hw *hw, 5033 struct ieee80211_vif *vif, 5034 struct ieee80211_sta *sta) 5035 { 5036 struct ath11k *ar = hw->priv; 5037 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 5038 int ret = 0; 5039 s16 txpwr; 5040 5041 if (sta->deflink.txpwr.type == NL80211_TX_POWER_AUTOMATIC) { 5042 txpwr = 0; 5043 } else { 5044 txpwr = sta->deflink.txpwr.power; 5045 if (!txpwr) 5046 return -EINVAL; 5047 } 5048 5049 if (txpwr > ATH11K_TX_POWER_MAX_VAL || txpwr < ATH11K_TX_POWER_MIN_VAL) 5050 return -EINVAL; 5051 5052 mutex_lock(&ar->conf_mutex); 5053 5054 ret = ath11k_wmi_set_peer_param(ar, sta->addr, arvif->vdev_id, 5055 WMI_PEER_USE_FIXED_PWR, txpwr); 5056 if (ret) { 5057 ath11k_warn(ar->ab, "failed to set tx power for station ret: %d\n", 5058 ret); 5059 goto out; 5060 } 5061 5062 out: 5063 mutex_unlock(&ar->conf_mutex); 5064 return ret; 5065 } 5066 5067 static void ath11k_mac_op_sta_set_4addr(struct ieee80211_hw *hw, 5068 struct ieee80211_vif *vif, 5069 struct ieee80211_sta *sta, bool enabled) 5070 { 5071 struct ath11k *ar = hw->priv; 5072 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 5073 5074 if (enabled && !arsta->use_4addr_set) { 5075 ieee80211_queue_work(ar->hw, &arsta->set_4addr_wk); 5076 arsta->use_4addr_set = true; 5077 } 5078 } 5079 5080 static void ath11k_mac_op_sta_rc_update(struct ieee80211_hw *hw, 5081 struct ieee80211_vif *vif, 5082 struct ieee80211_sta *sta, 5083 u32 changed) 5084 { 5085 struct ath11k *ar = hw->priv; 5086 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 5087 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 5088 struct ath11k_peer *peer; 5089 u32 bw, smps; 5090 5091 spin_lock_bh(&ar->ab->base_lock); 5092 5093 peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr); 5094 if (!peer) { 5095 spin_unlock_bh(&ar->ab->base_lock); 5096 ath11k_warn(ar->ab, "mac sta rc update failed to find peer %pM on vdev %i\n", 5097 sta->addr, arvif->vdev_id); 5098 return; 5099 } 5100 5101 spin_unlock_bh(&ar->ab->base_lock); 5102 5103 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 5104 "sta rc update for %pM changed %08x bw %d nss %d smps %d\n", 5105 sta->addr, changed, sta->deflink.bandwidth, 5106 sta->deflink.rx_nss, 5107 sta->deflink.smps_mode); 5108 5109 spin_lock_bh(&ar->data_lock); 5110 5111 if (changed & IEEE80211_RC_BW_CHANGED) { 5112 bw = ath11k_mac_ieee80211_sta_bw_to_wmi(ar, sta); 5113 arsta->bw_prev = arsta->bw; 5114 arsta->bw = bw; 5115 } 5116 5117 if (changed & IEEE80211_RC_NSS_CHANGED) 5118 arsta->nss = sta->deflink.rx_nss; 5119 5120 if (changed & IEEE80211_RC_SMPS_CHANGED) { 5121 smps = WMI_PEER_SMPS_PS_NONE; 5122 5123 switch (sta->deflink.smps_mode) { 5124 case IEEE80211_SMPS_AUTOMATIC: 5125 case IEEE80211_SMPS_OFF: 5126 smps = WMI_PEER_SMPS_PS_NONE; 5127 break; 5128 case IEEE80211_SMPS_STATIC: 5129 smps = WMI_PEER_SMPS_STATIC; 5130 break; 5131 case IEEE80211_SMPS_DYNAMIC: 5132 smps = WMI_PEER_SMPS_DYNAMIC; 5133 break; 5134 default: 5135 ath11k_warn(ar->ab, "Invalid smps %d in sta rc update for %pM\n", 5136 sta->deflink.smps_mode, sta->addr); 5137 smps = WMI_PEER_SMPS_PS_NONE; 5138 break; 5139 } 5140 5141 arsta->smps = smps; 5142 } 5143 5144 arsta->changed |= changed; 5145 5146 spin_unlock_bh(&ar->data_lock); 5147 5148 ieee80211_queue_work(hw, &arsta->update_wk); 5149 } 5150 5151 static int ath11k_conf_tx_uapsd(struct ath11k *ar, struct ieee80211_vif *vif, 5152 u16 ac, bool enable) 5153 { 5154 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 5155 u32 value = 0; 5156 int ret = 0; 5157 5158 if (arvif->vdev_type != WMI_VDEV_TYPE_STA) 5159 return 0; 5160 5161 switch (ac) { 5162 case IEEE80211_AC_VO: 5163 value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN | 5164 WMI_STA_PS_UAPSD_AC3_TRIGGER_EN; 5165 break; 5166 case IEEE80211_AC_VI: 5167 value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN | 5168 WMI_STA_PS_UAPSD_AC2_TRIGGER_EN; 5169 break; 5170 case IEEE80211_AC_BE: 5171 value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN | 5172 WMI_STA_PS_UAPSD_AC1_TRIGGER_EN; 5173 break; 5174 case IEEE80211_AC_BK: 5175 value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN | 5176 WMI_STA_PS_UAPSD_AC0_TRIGGER_EN; 5177 break; 5178 } 5179 5180 if (enable) 5181 arvif->u.sta.uapsd |= value; 5182 else 5183 arvif->u.sta.uapsd &= ~value; 5184 5185 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 5186 WMI_STA_PS_PARAM_UAPSD, 5187 arvif->u.sta.uapsd); 5188 if (ret) { 5189 ath11k_warn(ar->ab, "could not set uapsd params %d\n", ret); 5190 goto exit; 5191 } 5192 5193 if (arvif->u.sta.uapsd) 5194 value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD; 5195 else 5196 value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; 5197 5198 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 5199 WMI_STA_PS_PARAM_RX_WAKE_POLICY, 5200 value); 5201 if (ret) 5202 ath11k_warn(ar->ab, "could not set rx wake param %d\n", ret); 5203 5204 exit: 5205 return ret; 5206 } 5207 5208 static int ath11k_mac_op_conf_tx(struct ieee80211_hw *hw, 5209 struct ieee80211_vif *vif, 5210 unsigned int link_id, u16 ac, 5211 const struct ieee80211_tx_queue_params *params) 5212 { 5213 struct ath11k *ar = hw->priv; 5214 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 5215 struct wmi_wmm_params_arg *p = NULL; 5216 int ret; 5217 5218 mutex_lock(&ar->conf_mutex); 5219 5220 switch (ac) { 5221 case IEEE80211_AC_VO: 5222 p = &arvif->wmm_params.ac_vo; 5223 break; 5224 case IEEE80211_AC_VI: 5225 p = &arvif->wmm_params.ac_vi; 5226 break; 5227 case IEEE80211_AC_BE: 5228 p = &arvif->wmm_params.ac_be; 5229 break; 5230 case IEEE80211_AC_BK: 5231 p = &arvif->wmm_params.ac_bk; 5232 break; 5233 } 5234 5235 if (WARN_ON(!p)) { 5236 ret = -EINVAL; 5237 goto exit; 5238 } 5239 5240 p->cwmin = params->cw_min; 5241 p->cwmax = params->cw_max; 5242 p->aifs = params->aifs; 5243 p->txop = params->txop; 5244 5245 ret = ath11k_wmi_send_wmm_update_cmd_tlv(ar, arvif->vdev_id, 5246 &arvif->wmm_params); 5247 if (ret) { 5248 ath11k_warn(ar->ab, "failed to set wmm params: %d\n", ret); 5249 goto exit; 5250 } 5251 5252 ret = ath11k_conf_tx_uapsd(ar, vif, ac, params->uapsd); 5253 5254 if (ret) 5255 ath11k_warn(ar->ab, "failed to set sta uapsd: %d\n", ret); 5256 5257 exit: 5258 mutex_unlock(&ar->conf_mutex); 5259 return ret; 5260 } 5261 5262 static struct ieee80211_sta_ht_cap 5263 ath11k_create_ht_cap(struct ath11k *ar, u32 ar_ht_cap, u32 rate_cap_rx_chainmask) 5264 { 5265 int i; 5266 struct ieee80211_sta_ht_cap ht_cap = {0}; 5267 u32 ar_vht_cap = ar->pdev->cap.vht_cap; 5268 5269 if (!(ar_ht_cap & WMI_HT_CAP_ENABLED)) 5270 return ht_cap; 5271 5272 ht_cap.ht_supported = 1; 5273 ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; 5274 ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_NONE; 5275 ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; 5276 ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40; 5277 ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT; 5278 5279 if (ar_ht_cap & WMI_HT_CAP_HT20_SGI) 5280 ht_cap.cap |= IEEE80211_HT_CAP_SGI_20; 5281 5282 if (ar_ht_cap & WMI_HT_CAP_HT40_SGI) 5283 ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; 5284 5285 if (ar_ht_cap & WMI_HT_CAP_DYNAMIC_SMPS) { 5286 u32 smps; 5287 5288 smps = WLAN_HT_CAP_SM_PS_DYNAMIC; 5289 smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; 5290 5291 ht_cap.cap |= smps; 5292 } 5293 5294 if (ar_ht_cap & WMI_HT_CAP_TX_STBC) 5295 ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC; 5296 5297 if (ar_ht_cap & WMI_HT_CAP_RX_STBC) { 5298 u32 stbc; 5299 5300 stbc = ar_ht_cap; 5301 stbc &= WMI_HT_CAP_RX_STBC; 5302 stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT; 5303 stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT; 5304 stbc &= IEEE80211_HT_CAP_RX_STBC; 5305 5306 ht_cap.cap |= stbc; 5307 } 5308 5309 if (ar_ht_cap & WMI_HT_CAP_RX_LDPC) 5310 ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; 5311 5312 if (ar_ht_cap & WMI_HT_CAP_L_SIG_TXOP_PROT) 5313 ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT; 5314 5315 if (ar_vht_cap & WMI_VHT_CAP_MAX_MPDU_LEN_MASK) 5316 ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU; 5317 5318 for (i = 0; i < ar->num_rx_chains; i++) { 5319 if (rate_cap_rx_chainmask & BIT(i)) 5320 ht_cap.mcs.rx_mask[i] = 0xFF; 5321 } 5322 5323 ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED; 5324 5325 return ht_cap; 5326 } 5327 5328 static int ath11k_mac_set_txbf_conf(struct ath11k_vif *arvif) 5329 { 5330 u32 value = 0; 5331 struct ath11k *ar = arvif->ar; 5332 int nsts; 5333 int sound_dim; 5334 u32 vht_cap = ar->pdev->cap.vht_cap; 5335 u32 vdev_param = WMI_VDEV_PARAM_TXBF; 5336 5337 if (vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)) { 5338 nsts = vht_cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; 5339 nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT; 5340 if (nsts > (ar->num_rx_chains - 1)) 5341 nsts = ar->num_rx_chains - 1; 5342 value |= SM(nsts, WMI_TXBF_STS_CAP_OFFSET); 5343 } 5344 5345 if (vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)) { 5346 sound_dim = vht_cap & 5347 IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK; 5348 sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT; 5349 if (sound_dim > (ar->num_tx_chains - 1)) 5350 sound_dim = ar->num_tx_chains - 1; 5351 value |= SM(sound_dim, WMI_BF_SOUND_DIM_OFFSET); 5352 } 5353 5354 if (!value) 5355 return 0; 5356 5357 if (vht_cap & IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE) { 5358 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFER; 5359 5360 if ((vht_cap & IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE) && 5361 arvif->vdev_type == WMI_VDEV_TYPE_AP) 5362 value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFER; 5363 } 5364 5365 /* TODO: SUBFEE not validated in HK, disable here until validated? */ 5366 5367 if (vht_cap & IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE) { 5368 value |= WMI_VDEV_PARAM_TXBF_SU_TX_BFEE; 5369 5370 if ((vht_cap & IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE) && 5371 arvif->vdev_type == WMI_VDEV_TYPE_STA) 5372 value |= WMI_VDEV_PARAM_TXBF_MU_TX_BFEE; 5373 } 5374 5375 return ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 5376 vdev_param, value); 5377 } 5378 5379 static void ath11k_set_vht_txbf_cap(struct ath11k *ar, u32 *vht_cap) 5380 { 5381 bool subfer, subfee; 5382 int sound_dim = 0, nsts = 0; 5383 5384 subfer = !!(*vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE)); 5385 subfee = !!(*vht_cap & (IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE)); 5386 5387 if (ar->num_tx_chains < 2) { 5388 *vht_cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE); 5389 subfer = false; 5390 } 5391 5392 if (ar->num_rx_chains < 2) { 5393 *vht_cap &= ~(IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE); 5394 subfee = false; 5395 } 5396 5397 /* If SU Beaformer is not set, then disable MU Beamformer Capability */ 5398 if (!subfer) 5399 *vht_cap &= ~(IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE); 5400 5401 /* If SU Beaformee is not set, then disable MU Beamformee Capability */ 5402 if (!subfee) 5403 *vht_cap &= ~(IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE); 5404 5405 sound_dim = (*vht_cap & IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK); 5406 sound_dim >>= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT; 5407 *vht_cap &= ~IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK; 5408 5409 nsts = (*vht_cap & IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK); 5410 nsts >>= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT; 5411 *vht_cap &= ~IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; 5412 5413 /* Enable Sounding Dimension Field only if SU BF is enabled */ 5414 if (subfer) { 5415 if (sound_dim > (ar->num_tx_chains - 1)) 5416 sound_dim = ar->num_tx_chains - 1; 5417 5418 sound_dim <<= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT; 5419 sound_dim &= IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK; 5420 *vht_cap |= sound_dim; 5421 } 5422 5423 /* Enable Beamformee STS Field only if SU BF is enabled */ 5424 if (subfee) { 5425 if (nsts > (ar->num_rx_chains - 1)) 5426 nsts = ar->num_rx_chains - 1; 5427 5428 nsts <<= IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT; 5429 nsts &= IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK; 5430 *vht_cap |= nsts; 5431 } 5432 } 5433 5434 static struct ieee80211_sta_vht_cap 5435 ath11k_create_vht_cap(struct ath11k *ar, u32 rate_cap_tx_chainmask, 5436 u32 rate_cap_rx_chainmask) 5437 { 5438 struct ieee80211_sta_vht_cap vht_cap = {0}; 5439 u16 txmcs_map, rxmcs_map; 5440 int i; 5441 5442 vht_cap.vht_supported = 1; 5443 vht_cap.cap = ar->pdev->cap.vht_cap; 5444 5445 if (ar->pdev->cap.nss_ratio_enabled) 5446 vht_cap.vht_mcs.tx_highest |= 5447 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE); 5448 5449 ath11k_set_vht_txbf_cap(ar, &vht_cap.cap); 5450 5451 rxmcs_map = 0; 5452 txmcs_map = 0; 5453 for (i = 0; i < 8; i++) { 5454 if (i < ar->num_tx_chains && rate_cap_tx_chainmask & BIT(i)) 5455 txmcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2); 5456 else 5457 txmcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2); 5458 5459 if (i < ar->num_rx_chains && rate_cap_rx_chainmask & BIT(i)) 5460 rxmcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i * 2); 5461 else 5462 rxmcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i * 2); 5463 } 5464 5465 if (rate_cap_tx_chainmask <= 1) 5466 vht_cap.cap &= ~IEEE80211_VHT_CAP_TXSTBC; 5467 5468 vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(rxmcs_map); 5469 vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(txmcs_map); 5470 5471 return vht_cap; 5472 } 5473 5474 static void ath11k_mac_setup_ht_vht_cap(struct ath11k *ar, 5475 struct ath11k_pdev_cap *cap, 5476 u32 *ht_cap_info) 5477 { 5478 struct ieee80211_supported_band *band; 5479 u32 rate_cap_tx_chainmask; 5480 u32 rate_cap_rx_chainmask; 5481 u32 ht_cap; 5482 5483 rate_cap_tx_chainmask = ar->cfg_tx_chainmask >> cap->tx_chain_mask_shift; 5484 rate_cap_rx_chainmask = ar->cfg_rx_chainmask >> cap->rx_chain_mask_shift; 5485 5486 if (cap->supported_bands & WMI_HOST_WLAN_2G_CAP) { 5487 band = &ar->mac.sbands[NL80211_BAND_2GHZ]; 5488 ht_cap = cap->band[NL80211_BAND_2GHZ].ht_cap_info; 5489 if (ht_cap_info) 5490 *ht_cap_info = ht_cap; 5491 band->ht_cap = ath11k_create_ht_cap(ar, ht_cap, 5492 rate_cap_rx_chainmask); 5493 } 5494 5495 if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP && 5496 (ar->ab->hw_params.single_pdev_only || 5497 !ar->supports_6ghz)) { 5498 band = &ar->mac.sbands[NL80211_BAND_5GHZ]; 5499 ht_cap = cap->band[NL80211_BAND_5GHZ].ht_cap_info; 5500 if (ht_cap_info) 5501 *ht_cap_info = ht_cap; 5502 band->ht_cap = ath11k_create_ht_cap(ar, ht_cap, 5503 rate_cap_rx_chainmask); 5504 band->vht_cap = ath11k_create_vht_cap(ar, rate_cap_tx_chainmask, 5505 rate_cap_rx_chainmask); 5506 } 5507 } 5508 5509 static int ath11k_check_chain_mask(struct ath11k *ar, u32 ant, bool is_tx_ant) 5510 { 5511 /* TODO: Check the request chainmask against the supported 5512 * chainmask table which is advertised in extented_service_ready event 5513 */ 5514 5515 return 0; 5516 } 5517 5518 static void ath11k_gen_ppe_thresh(struct ath11k_ppe_threshold *fw_ppet, 5519 u8 *he_ppet) 5520 { 5521 int nss, ru; 5522 u8 bit = 7; 5523 5524 he_ppet[0] = fw_ppet->numss_m1 & IEEE80211_PPE_THRES_NSS_MASK; 5525 he_ppet[0] |= (fw_ppet->ru_bit_mask << 5526 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS) & 5527 IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK; 5528 for (nss = 0; nss <= fw_ppet->numss_m1; nss++) { 5529 for (ru = 0; ru < 4; ru++) { 5530 u8 val; 5531 int i; 5532 5533 if ((fw_ppet->ru_bit_mask & BIT(ru)) == 0) 5534 continue; 5535 val = (fw_ppet->ppet16_ppet8_ru3_ru0[nss] >> (ru * 6)) & 5536 0x3f; 5537 val = ((val >> 3) & 0x7) | ((val & 0x7) << 3); 5538 for (i = 5; i >= 0; i--) { 5539 he_ppet[bit / 8] |= 5540 ((val >> i) & 0x1) << ((bit % 8)); 5541 bit++; 5542 } 5543 } 5544 } 5545 } 5546 5547 static void 5548 ath11k_mac_filter_he_cap_mesh(struct ieee80211_he_cap_elem *he_cap_elem) 5549 { 5550 u8 m; 5551 5552 m = IEEE80211_HE_MAC_CAP0_TWT_RES | 5553 IEEE80211_HE_MAC_CAP0_TWT_REQ; 5554 he_cap_elem->mac_cap_info[0] &= ~m; 5555 5556 m = IEEE80211_HE_MAC_CAP2_TRS | 5557 IEEE80211_HE_MAC_CAP2_BCAST_TWT | 5558 IEEE80211_HE_MAC_CAP2_MU_CASCADING; 5559 he_cap_elem->mac_cap_info[2] &= ~m; 5560 5561 m = IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED | 5562 IEEE80211_HE_MAC_CAP2_BCAST_TWT | 5563 IEEE80211_HE_MAC_CAP2_MU_CASCADING; 5564 he_cap_elem->mac_cap_info[3] &= ~m; 5565 5566 m = IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG | 5567 IEEE80211_HE_MAC_CAP4_BQR; 5568 he_cap_elem->mac_cap_info[4] &= ~m; 5569 5570 m = IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION | 5571 IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU | 5572 IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING | 5573 IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX; 5574 he_cap_elem->mac_cap_info[5] &= ~m; 5575 5576 m = IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO | 5577 IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO; 5578 he_cap_elem->phy_cap_info[2] &= ~m; 5579 5580 m = IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU | 5581 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK | 5582 IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK; 5583 he_cap_elem->phy_cap_info[3] &= ~m; 5584 5585 m = IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER; 5586 he_cap_elem->phy_cap_info[4] &= ~m; 5587 5588 m = IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK; 5589 he_cap_elem->phy_cap_info[5] &= ~m; 5590 5591 m = IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU | 5592 IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB | 5593 IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB | 5594 IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO; 5595 he_cap_elem->phy_cap_info[6] &= ~m; 5596 5597 m = IEEE80211_HE_PHY_CAP7_PSR_BASED_SR | 5598 IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP | 5599 IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ | 5600 IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ; 5601 he_cap_elem->phy_cap_info[7] &= ~m; 5602 5603 m = IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI | 5604 IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G | 5605 IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU | 5606 IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU; 5607 he_cap_elem->phy_cap_info[8] &= ~m; 5608 5609 m = IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM | 5610 IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK | 5611 IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU | 5612 IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU | 5613 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB | 5614 IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB; 5615 he_cap_elem->phy_cap_info[9] &= ~m; 5616 } 5617 5618 static __le16 ath11k_mac_setup_he_6ghz_cap(struct ath11k_pdev_cap *pcap, 5619 struct ath11k_band_cap *bcap) 5620 { 5621 u8 val; 5622 5623 bcap->he_6ghz_capa = IEEE80211_HT_MPDU_DENSITY_NONE; 5624 if (bcap->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) 5625 bcap->he_6ghz_capa |= 5626 FIELD_PREP(IEEE80211_HE_6GHZ_CAP_SM_PS, 5627 WLAN_HT_CAP_SM_PS_DYNAMIC); 5628 else 5629 bcap->he_6ghz_capa |= 5630 FIELD_PREP(IEEE80211_HE_6GHZ_CAP_SM_PS, 5631 WLAN_HT_CAP_SM_PS_DISABLED); 5632 val = FIELD_GET(IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK, 5633 pcap->vht_cap); 5634 bcap->he_6ghz_capa |= 5635 FIELD_PREP(IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP, val); 5636 val = FIELD_GET(IEEE80211_VHT_CAP_MAX_MPDU_MASK, pcap->vht_cap); 5637 bcap->he_6ghz_capa |= 5638 FIELD_PREP(IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN, val); 5639 if (pcap->vht_cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN) 5640 bcap->he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS; 5641 if (pcap->vht_cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN) 5642 bcap->he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS; 5643 5644 return cpu_to_le16(bcap->he_6ghz_capa); 5645 } 5646 5647 static void ath11k_mac_set_hemcsmap(struct ath11k *ar, 5648 struct ath11k_pdev_cap *cap, 5649 struct ieee80211_sta_he_cap *he_cap, 5650 int band) 5651 { 5652 u16 txmcs_map, rxmcs_map; 5653 u32 i; 5654 5655 rxmcs_map = 0; 5656 txmcs_map = 0; 5657 for (i = 0; i < 8; i++) { 5658 if (i < ar->num_tx_chains && 5659 (ar->cfg_tx_chainmask >> cap->tx_chain_mask_shift) & BIT(i)) 5660 txmcs_map |= IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2); 5661 else 5662 txmcs_map |= IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2); 5663 5664 if (i < ar->num_rx_chains && 5665 (ar->cfg_rx_chainmask >> cap->tx_chain_mask_shift) & BIT(i)) 5666 rxmcs_map |= IEEE80211_HE_MCS_SUPPORT_0_11 << (i * 2); 5667 else 5668 rxmcs_map |= IEEE80211_HE_MCS_NOT_SUPPORTED << (i * 2); 5669 } 5670 he_cap->he_mcs_nss_supp.rx_mcs_80 = 5671 cpu_to_le16(rxmcs_map & 0xffff); 5672 he_cap->he_mcs_nss_supp.tx_mcs_80 = 5673 cpu_to_le16(txmcs_map & 0xffff); 5674 he_cap->he_mcs_nss_supp.rx_mcs_160 = 5675 cpu_to_le16(rxmcs_map & 0xffff); 5676 he_cap->he_mcs_nss_supp.tx_mcs_160 = 5677 cpu_to_le16(txmcs_map & 0xffff); 5678 he_cap->he_mcs_nss_supp.rx_mcs_80p80 = 5679 cpu_to_le16(rxmcs_map & 0xffff); 5680 he_cap->he_mcs_nss_supp.tx_mcs_80p80 = 5681 cpu_to_le16(txmcs_map & 0xffff); 5682 } 5683 5684 static int ath11k_mac_copy_he_cap(struct ath11k *ar, 5685 struct ath11k_pdev_cap *cap, 5686 struct ieee80211_sband_iftype_data *data, 5687 int band) 5688 { 5689 int i, idx = 0; 5690 5691 for (i = 0; i < NUM_NL80211_IFTYPES; i++) { 5692 struct ieee80211_sta_he_cap *he_cap = &data[idx].he_cap; 5693 struct ath11k_band_cap *band_cap = &cap->band[band]; 5694 struct ieee80211_he_cap_elem *he_cap_elem = 5695 &he_cap->he_cap_elem; 5696 5697 switch (i) { 5698 case NL80211_IFTYPE_STATION: 5699 case NL80211_IFTYPE_AP: 5700 case NL80211_IFTYPE_MESH_POINT: 5701 break; 5702 5703 default: 5704 continue; 5705 } 5706 5707 data[idx].types_mask = BIT(i); 5708 he_cap->has_he = true; 5709 memcpy(he_cap_elem->mac_cap_info, band_cap->he_cap_info, 5710 sizeof(he_cap_elem->mac_cap_info)); 5711 memcpy(he_cap_elem->phy_cap_info, band_cap->he_cap_phy_info, 5712 sizeof(he_cap_elem->phy_cap_info)); 5713 5714 he_cap_elem->mac_cap_info[1] &= 5715 IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK; 5716 5717 he_cap_elem->phy_cap_info[5] &= 5718 ~IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK; 5719 he_cap_elem->phy_cap_info[5] |= ar->num_tx_chains - 1; 5720 5721 switch (i) { 5722 case NL80211_IFTYPE_AP: 5723 he_cap_elem->phy_cap_info[3] &= 5724 ~IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK; 5725 he_cap_elem->phy_cap_info[9] |= 5726 IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU; 5727 break; 5728 case NL80211_IFTYPE_STATION: 5729 he_cap_elem->mac_cap_info[0] &= 5730 ~IEEE80211_HE_MAC_CAP0_TWT_RES; 5731 he_cap_elem->mac_cap_info[0] |= 5732 IEEE80211_HE_MAC_CAP0_TWT_REQ; 5733 he_cap_elem->phy_cap_info[9] |= 5734 IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU; 5735 break; 5736 case NL80211_IFTYPE_MESH_POINT: 5737 ath11k_mac_filter_he_cap_mesh(he_cap_elem); 5738 break; 5739 } 5740 5741 ath11k_mac_set_hemcsmap(ar, cap, he_cap, band); 5742 5743 memset(he_cap->ppe_thres, 0, sizeof(he_cap->ppe_thres)); 5744 if (he_cap_elem->phy_cap_info[6] & 5745 IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) 5746 ath11k_gen_ppe_thresh(&band_cap->he_ppet, 5747 he_cap->ppe_thres); 5748 5749 if (band == NL80211_BAND_6GHZ) { 5750 data[idx].he_6ghz_capa.capa = 5751 ath11k_mac_setup_he_6ghz_cap(cap, band_cap); 5752 } 5753 idx++; 5754 } 5755 5756 return idx; 5757 } 5758 5759 static void ath11k_mac_setup_he_cap(struct ath11k *ar, 5760 struct ath11k_pdev_cap *cap) 5761 { 5762 struct ieee80211_supported_band *band; 5763 int count; 5764 5765 if (cap->supported_bands & WMI_HOST_WLAN_2G_CAP) { 5766 count = ath11k_mac_copy_he_cap(ar, cap, 5767 ar->mac.iftype[NL80211_BAND_2GHZ], 5768 NL80211_BAND_2GHZ); 5769 band = &ar->mac.sbands[NL80211_BAND_2GHZ]; 5770 _ieee80211_set_sband_iftype_data(band, 5771 ar->mac.iftype[NL80211_BAND_2GHZ], 5772 count); 5773 } 5774 5775 if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP) { 5776 count = ath11k_mac_copy_he_cap(ar, cap, 5777 ar->mac.iftype[NL80211_BAND_5GHZ], 5778 NL80211_BAND_5GHZ); 5779 band = &ar->mac.sbands[NL80211_BAND_5GHZ]; 5780 _ieee80211_set_sband_iftype_data(band, 5781 ar->mac.iftype[NL80211_BAND_5GHZ], 5782 count); 5783 } 5784 5785 if (cap->supported_bands & WMI_HOST_WLAN_5G_CAP && 5786 ar->supports_6ghz) { 5787 count = ath11k_mac_copy_he_cap(ar, cap, 5788 ar->mac.iftype[NL80211_BAND_6GHZ], 5789 NL80211_BAND_6GHZ); 5790 band = &ar->mac.sbands[NL80211_BAND_6GHZ]; 5791 _ieee80211_set_sband_iftype_data(band, 5792 ar->mac.iftype[NL80211_BAND_6GHZ], 5793 count); 5794 } 5795 } 5796 5797 static int __ath11k_set_antenna(struct ath11k *ar, u32 tx_ant, u32 rx_ant) 5798 { 5799 int ret; 5800 5801 lockdep_assert_held(&ar->conf_mutex); 5802 5803 if (ath11k_check_chain_mask(ar, tx_ant, true)) 5804 return -EINVAL; 5805 5806 if (ath11k_check_chain_mask(ar, rx_ant, false)) 5807 return -EINVAL; 5808 5809 ar->cfg_tx_chainmask = tx_ant; 5810 ar->cfg_rx_chainmask = rx_ant; 5811 5812 if (ar->state != ATH11K_STATE_ON && 5813 ar->state != ATH11K_STATE_RESTARTED) 5814 return 0; 5815 5816 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_TX_CHAIN_MASK, 5817 tx_ant, ar->pdev->pdev_id); 5818 if (ret) { 5819 ath11k_warn(ar->ab, "failed to set tx-chainmask: %d, req 0x%x\n", 5820 ret, tx_ant); 5821 return ret; 5822 } 5823 5824 ar->num_tx_chains = get_num_chains(tx_ant); 5825 5826 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_RX_CHAIN_MASK, 5827 rx_ant, ar->pdev->pdev_id); 5828 if (ret) { 5829 ath11k_warn(ar->ab, "failed to set rx-chainmask: %d, req 0x%x\n", 5830 ret, rx_ant); 5831 return ret; 5832 } 5833 5834 ar->num_rx_chains = get_num_chains(rx_ant); 5835 5836 /* Reload HT/VHT/HE capability */ 5837 ath11k_mac_setup_ht_vht_cap(ar, &ar->pdev->cap, NULL); 5838 ath11k_mac_setup_he_cap(ar, &ar->pdev->cap); 5839 5840 return 0; 5841 } 5842 5843 static void ath11k_mgmt_over_wmi_tx_drop(struct ath11k *ar, struct sk_buff *skb) 5844 { 5845 int num_mgmt; 5846 5847 ieee80211_free_txskb(ar->hw, skb); 5848 5849 num_mgmt = atomic_dec_if_positive(&ar->num_pending_mgmt_tx); 5850 5851 if (num_mgmt < 0) 5852 WARN_ON_ONCE(1); 5853 5854 if (!num_mgmt) 5855 wake_up(&ar->txmgmt_empty_waitq); 5856 } 5857 5858 static void ath11k_mac_tx_mgmt_free(struct ath11k *ar, int buf_id) 5859 { 5860 struct sk_buff *msdu; 5861 struct ieee80211_tx_info *info; 5862 5863 spin_lock_bh(&ar->txmgmt_idr_lock); 5864 msdu = idr_remove(&ar->txmgmt_idr, buf_id); 5865 spin_unlock_bh(&ar->txmgmt_idr_lock); 5866 5867 if (!msdu) 5868 return; 5869 5870 dma_unmap_single(ar->ab->dev, ATH11K_SKB_CB(msdu)->paddr, msdu->len, 5871 DMA_TO_DEVICE); 5872 5873 info = IEEE80211_SKB_CB(msdu); 5874 memset(&info->status, 0, sizeof(info->status)); 5875 5876 ath11k_mgmt_over_wmi_tx_drop(ar, msdu); 5877 } 5878 5879 int ath11k_mac_tx_mgmt_pending_free(int buf_id, void *skb, void *ctx) 5880 { 5881 struct ath11k *ar = ctx; 5882 5883 ath11k_mac_tx_mgmt_free(ar, buf_id); 5884 5885 return 0; 5886 } 5887 5888 static int ath11k_mac_vif_txmgmt_idr_remove(int buf_id, void *skb, void *ctx) 5889 { 5890 struct ieee80211_vif *vif = ctx; 5891 struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB((struct sk_buff *)skb); 5892 struct ath11k *ar = skb_cb->ar; 5893 5894 if (skb_cb->vif == vif) 5895 ath11k_mac_tx_mgmt_free(ar, buf_id); 5896 5897 return 0; 5898 } 5899 5900 static int ath11k_mac_mgmt_tx_wmi(struct ath11k *ar, struct ath11k_vif *arvif, 5901 struct sk_buff *skb) 5902 { 5903 struct ath11k_base *ab = ar->ab; 5904 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 5905 struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB(skb); 5906 struct ieee80211_tx_info *info; 5907 enum hal_encrypt_type enctype; 5908 unsigned int mic_len; 5909 dma_addr_t paddr; 5910 int buf_id; 5911 int ret; 5912 5913 ATH11K_SKB_CB(skb)->ar = ar; 5914 5915 spin_lock_bh(&ar->txmgmt_idr_lock); 5916 buf_id = idr_alloc(&ar->txmgmt_idr, skb, 0, 5917 ATH11K_TX_MGMT_NUM_PENDING_MAX, GFP_ATOMIC); 5918 spin_unlock_bh(&ar->txmgmt_idr_lock); 5919 5920 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 5921 "tx mgmt frame, buf id %d\n", buf_id); 5922 5923 if (buf_id < 0) 5924 return -ENOSPC; 5925 5926 info = IEEE80211_SKB_CB(skb); 5927 if (!(info->flags & IEEE80211_TX_CTL_HW_80211_ENCAP)) { 5928 if ((ieee80211_is_action(hdr->frame_control) || 5929 ieee80211_is_deauth(hdr->frame_control) || 5930 ieee80211_is_disassoc(hdr->frame_control)) && 5931 ieee80211_has_protected(hdr->frame_control)) { 5932 if (!(skb_cb->flags & ATH11K_SKB_CIPHER_SET)) 5933 ath11k_warn(ab, "WMI management tx frame without ATH11K_SKB_CIPHER_SET"); 5934 5935 enctype = ath11k_dp_tx_get_encrypt_type(skb_cb->cipher); 5936 mic_len = ath11k_dp_rx_crypto_mic_len(ar, enctype); 5937 skb_put(skb, mic_len); 5938 } 5939 } 5940 5941 paddr = dma_map_single(ab->dev, skb->data, skb->len, DMA_TO_DEVICE); 5942 if (dma_mapping_error(ab->dev, paddr)) { 5943 ath11k_warn(ab, "failed to DMA map mgmt Tx buffer\n"); 5944 ret = -EIO; 5945 goto err_free_idr; 5946 } 5947 5948 ATH11K_SKB_CB(skb)->paddr = paddr; 5949 5950 ret = ath11k_wmi_mgmt_send(ar, arvif->vdev_id, buf_id, skb); 5951 if (ret) { 5952 ath11k_warn(ar->ab, "failed to send mgmt frame: %d\n", ret); 5953 goto err_unmap_buf; 5954 } 5955 5956 return 0; 5957 5958 err_unmap_buf: 5959 dma_unmap_single(ab->dev, ATH11K_SKB_CB(skb)->paddr, 5960 skb->len, DMA_TO_DEVICE); 5961 err_free_idr: 5962 spin_lock_bh(&ar->txmgmt_idr_lock); 5963 idr_remove(&ar->txmgmt_idr, buf_id); 5964 spin_unlock_bh(&ar->txmgmt_idr_lock); 5965 5966 return ret; 5967 } 5968 5969 static void ath11k_mgmt_over_wmi_tx_purge(struct ath11k *ar) 5970 { 5971 struct sk_buff *skb; 5972 5973 while ((skb = skb_dequeue(&ar->wmi_mgmt_tx_queue)) != NULL) 5974 ath11k_mgmt_over_wmi_tx_drop(ar, skb); 5975 } 5976 5977 static void ath11k_mgmt_over_wmi_tx_work(struct work_struct *work) 5978 { 5979 struct ath11k *ar = container_of(work, struct ath11k, wmi_mgmt_tx_work); 5980 struct ath11k_skb_cb *skb_cb; 5981 struct ath11k_vif *arvif; 5982 struct sk_buff *skb; 5983 int ret; 5984 5985 while ((skb = skb_dequeue(&ar->wmi_mgmt_tx_queue)) != NULL) { 5986 skb_cb = ATH11K_SKB_CB(skb); 5987 if (!skb_cb->vif) { 5988 ath11k_warn(ar->ab, "no vif found for mgmt frame\n"); 5989 ath11k_mgmt_over_wmi_tx_drop(ar, skb); 5990 continue; 5991 } 5992 5993 arvif = ath11k_vif_to_arvif(skb_cb->vif); 5994 mutex_lock(&ar->conf_mutex); 5995 if (ar->allocated_vdev_map & (1LL << arvif->vdev_id)) { 5996 ret = ath11k_mac_mgmt_tx_wmi(ar, arvif, skb); 5997 if (ret) { 5998 ath11k_warn(ar->ab, "failed to tx mgmt frame, vdev_id %d :%d\n", 5999 arvif->vdev_id, ret); 6000 ath11k_mgmt_over_wmi_tx_drop(ar, skb); 6001 } else { 6002 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 6003 "tx mgmt frame, vdev_id %d\n", 6004 arvif->vdev_id); 6005 } 6006 } else { 6007 ath11k_warn(ar->ab, 6008 "dropping mgmt frame for vdev %d, is_started %d\n", 6009 arvif->vdev_id, 6010 arvif->is_started); 6011 ath11k_mgmt_over_wmi_tx_drop(ar, skb); 6012 } 6013 mutex_unlock(&ar->conf_mutex); 6014 } 6015 } 6016 6017 static int ath11k_mac_mgmt_tx(struct ath11k *ar, struct sk_buff *skb, 6018 bool is_prb_rsp) 6019 { 6020 struct sk_buff_head *q = &ar->wmi_mgmt_tx_queue; 6021 6022 if (test_bit(ATH11K_FLAG_CRASH_FLUSH, &ar->ab->dev_flags)) 6023 return -ESHUTDOWN; 6024 6025 /* Drop probe response packets when the pending management tx 6026 * count has reached a certain threshold, so as to prioritize 6027 * other mgmt packets like auth and assoc to be sent on time 6028 * for establishing successful connections. 6029 */ 6030 if (is_prb_rsp && 6031 atomic_read(&ar->num_pending_mgmt_tx) > ATH11K_PRB_RSP_DROP_THRESHOLD) { 6032 ath11k_warn(ar->ab, 6033 "dropping probe response as pending queue is almost full\n"); 6034 return -ENOSPC; 6035 } 6036 6037 if (skb_queue_len_lockless(q) >= ATH11K_TX_MGMT_NUM_PENDING_MAX) { 6038 ath11k_warn(ar->ab, "mgmt tx queue is full\n"); 6039 return -ENOSPC; 6040 } 6041 6042 skb_queue_tail(q, skb); 6043 atomic_inc(&ar->num_pending_mgmt_tx); 6044 queue_work(ar->ab->workqueue_aux, &ar->wmi_mgmt_tx_work); 6045 6046 return 0; 6047 } 6048 6049 static void ath11k_mac_op_tx(struct ieee80211_hw *hw, 6050 struct ieee80211_tx_control *control, 6051 struct sk_buff *skb) 6052 { 6053 struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB(skb); 6054 struct ath11k *ar = hw->priv; 6055 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 6056 struct ieee80211_vif *vif = info->control.vif; 6057 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 6058 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 6059 struct ieee80211_key_conf *key = info->control.hw_key; 6060 struct ath11k_sta *arsta = NULL; 6061 u32 info_flags = info->flags; 6062 bool is_prb_rsp; 6063 int ret; 6064 6065 memset(skb_cb, 0, sizeof(*skb_cb)); 6066 skb_cb->vif = vif; 6067 6068 if (key) { 6069 skb_cb->cipher = key->cipher; 6070 skb_cb->flags |= ATH11K_SKB_CIPHER_SET; 6071 } 6072 6073 if (info_flags & IEEE80211_TX_CTL_HW_80211_ENCAP) { 6074 skb_cb->flags |= ATH11K_SKB_HW_80211_ENCAP; 6075 } else if (ieee80211_is_mgmt(hdr->frame_control)) { 6076 is_prb_rsp = ieee80211_is_probe_resp(hdr->frame_control); 6077 ret = ath11k_mac_mgmt_tx(ar, skb, is_prb_rsp); 6078 if (ret) { 6079 ath11k_warn(ar->ab, "failed to queue management frame %d\n", 6080 ret); 6081 ieee80211_free_txskb(ar->hw, skb); 6082 } 6083 return; 6084 } 6085 6086 if (control->sta) 6087 arsta = ath11k_sta_to_arsta(control->sta); 6088 6089 ret = ath11k_dp_tx(ar, arvif, arsta, skb); 6090 if (unlikely(ret)) { 6091 ath11k_warn(ar->ab, "failed to transmit frame %d\n", ret); 6092 ieee80211_free_txskb(ar->hw, skb); 6093 } 6094 } 6095 6096 void ath11k_mac_drain_tx(struct ath11k *ar) 6097 { 6098 /* make sure rcu-protected mac80211 tx path itself is drained */ 6099 synchronize_net(); 6100 6101 cancel_work_sync(&ar->wmi_mgmt_tx_work); 6102 ath11k_mgmt_over_wmi_tx_purge(ar); 6103 } 6104 6105 static int ath11k_mac_config_mon_status_default(struct ath11k *ar, bool enable) 6106 { 6107 struct htt_rx_ring_tlv_filter tlv_filter = {0}; 6108 struct ath11k_base *ab = ar->ab; 6109 int i, ret = 0; 6110 u32 ring_id; 6111 6112 if (enable) { 6113 tlv_filter = ath11k_mac_mon_status_filter_default; 6114 if (ath11k_debugfs_rx_filter(ar)) 6115 tlv_filter.rx_filter = ath11k_debugfs_rx_filter(ar); 6116 } 6117 6118 for (i = 0; i < ab->hw_params.num_rxdma_per_pdev; i++) { 6119 ring_id = ar->dp.rx_mon_status_refill_ring[i].refill_buf_ring.ring_id; 6120 ret = ath11k_dp_tx_htt_rx_filter_setup(ar->ab, ring_id, 6121 ar->dp.mac_id + i, 6122 HAL_RXDMA_MONITOR_STATUS, 6123 DP_RX_BUFFER_SIZE, 6124 &tlv_filter); 6125 } 6126 6127 if (enable && !ar->ab->hw_params.rxdma1_enable) 6128 mod_timer(&ar->ab->mon_reap_timer, jiffies + 6129 msecs_to_jiffies(ATH11K_MON_TIMER_INTERVAL)); 6130 6131 return ret; 6132 } 6133 6134 static void ath11k_mac_wait_reconfigure(struct ath11k_base *ab) 6135 { 6136 int recovery_start_count; 6137 6138 if (!ab->is_reset) 6139 return; 6140 6141 recovery_start_count = atomic_inc_return(&ab->recovery_start_count); 6142 ath11k_dbg(ab, ATH11K_DBG_MAC, "recovery start count %d\n", recovery_start_count); 6143 6144 if (recovery_start_count == ab->num_radios) { 6145 complete(&ab->recovery_start); 6146 ath11k_dbg(ab, ATH11K_DBG_MAC, "recovery started success\n"); 6147 } 6148 6149 ath11k_dbg(ab, ATH11K_DBG_MAC, "waiting reconfigure...\n"); 6150 6151 wait_for_completion_timeout(&ab->reconfigure_complete, 6152 ATH11K_RECONFIGURE_TIMEOUT_HZ); 6153 } 6154 6155 static int ath11k_mac_op_start(struct ieee80211_hw *hw) 6156 { 6157 struct ath11k *ar = hw->priv; 6158 struct ath11k_base *ab = ar->ab; 6159 struct ath11k_pdev *pdev = ar->pdev; 6160 int ret; 6161 6162 if (ath11k_ftm_mode) { 6163 ath11k_warn(ab, "mac operations not supported in factory test mode\n"); 6164 return -EOPNOTSUPP; 6165 } 6166 6167 ath11k_mac_drain_tx(ar); 6168 mutex_lock(&ar->conf_mutex); 6169 6170 switch (ar->state) { 6171 case ATH11K_STATE_OFF: 6172 ar->state = ATH11K_STATE_ON; 6173 break; 6174 case ATH11K_STATE_RESTARTING: 6175 ar->state = ATH11K_STATE_RESTARTED; 6176 ath11k_mac_wait_reconfigure(ab); 6177 break; 6178 case ATH11K_STATE_RESTARTED: 6179 case ATH11K_STATE_WEDGED: 6180 case ATH11K_STATE_ON: 6181 case ATH11K_STATE_FTM: 6182 WARN_ON(1); 6183 ret = -EINVAL; 6184 goto err; 6185 } 6186 6187 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_PMF_QOS, 6188 1, pdev->pdev_id); 6189 6190 if (ret) { 6191 ath11k_err(ar->ab, "failed to enable PMF QOS: (%d\n", ret); 6192 goto err; 6193 } 6194 6195 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_DYNAMIC_BW, 1, 6196 pdev->pdev_id); 6197 if (ret) { 6198 ath11k_err(ar->ab, "failed to enable dynamic bw: %d\n", ret); 6199 goto err; 6200 } 6201 6202 if (test_bit(WMI_TLV_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi->wmi_ab->svc_map)) { 6203 ret = ath11k_wmi_scan_prob_req_oui(ar, ar->mac_addr); 6204 if (ret) { 6205 ath11k_err(ab, "failed to set prob req oui: %i\n", ret); 6206 goto err; 6207 } 6208 } 6209 6210 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_ARP_AC_OVERRIDE, 6211 0, pdev->pdev_id); 6212 if (ret) { 6213 ath11k_err(ab, "failed to set ac override for ARP: %d\n", 6214 ret); 6215 goto err; 6216 } 6217 6218 ret = ath11k_wmi_send_dfs_phyerr_offload_enable_cmd(ar, pdev->pdev_id); 6219 if (ret) { 6220 ath11k_err(ab, "failed to offload radar detection: %d\n", 6221 ret); 6222 goto err; 6223 } 6224 6225 ret = ath11k_dp_tx_htt_h2t_ppdu_stats_req(ar, 6226 HTT_PPDU_STATS_TAG_DEFAULT); 6227 if (ret) { 6228 ath11k_err(ab, "failed to req ppdu stats: %d\n", ret); 6229 goto err; 6230 } 6231 6232 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_MESH_MCAST_ENABLE, 6233 1, pdev->pdev_id); 6234 6235 if (ret) { 6236 ath11k_err(ar->ab, "failed to enable MESH MCAST ENABLE: (%d\n", ret); 6237 goto err; 6238 } 6239 6240 __ath11k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask); 6241 6242 /* TODO: Do we need to enable ANI? */ 6243 6244 ath11k_reg_update_chan_list(ar, false); 6245 6246 ar->num_started_vdevs = 0; 6247 ar->num_created_vdevs = 0; 6248 ar->num_peers = 0; 6249 ar->allocated_vdev_map = 0; 6250 6251 /* Configure monitor status ring with default rx_filter to get rx status 6252 * such as rssi, rx_duration. 6253 */ 6254 ret = ath11k_mac_config_mon_status_default(ar, true); 6255 if (ret) { 6256 ath11k_err(ab, "failed to configure monitor status ring with default rx_filter: (%d)\n", 6257 ret); 6258 goto err; 6259 } 6260 6261 /* Configure the hash seed for hash based reo dest ring selection */ 6262 ath11k_wmi_pdev_lro_cfg(ar, ar->pdev->pdev_id); 6263 6264 /* allow device to enter IMPS */ 6265 if (ab->hw_params.idle_ps) { 6266 ret = ath11k_wmi_pdev_set_param(ar, WMI_PDEV_PARAM_IDLE_PS_CONFIG, 6267 1, pdev->pdev_id); 6268 if (ret) { 6269 ath11k_err(ab, "failed to enable idle ps: %d\n", ret); 6270 goto err; 6271 } 6272 } 6273 6274 mutex_unlock(&ar->conf_mutex); 6275 6276 rcu_assign_pointer(ab->pdevs_active[ar->pdev_idx], 6277 &ab->pdevs[ar->pdev_idx]); 6278 6279 return 0; 6280 6281 err: 6282 ar->state = ATH11K_STATE_OFF; 6283 mutex_unlock(&ar->conf_mutex); 6284 6285 return ret; 6286 } 6287 6288 static void ath11k_mac_op_stop(struct ieee80211_hw *hw, bool suspend) 6289 { 6290 struct ath11k *ar = hw->priv; 6291 struct htt_ppdu_stats_info *ppdu_stats, *tmp; 6292 int ret; 6293 6294 ath11k_mac_drain_tx(ar); 6295 6296 mutex_lock(&ar->conf_mutex); 6297 ret = ath11k_mac_config_mon_status_default(ar, false); 6298 if (ret) 6299 ath11k_err(ar->ab, "failed to clear rx_filter for monitor status ring: (%d)\n", 6300 ret); 6301 6302 clear_bit(ATH11K_CAC_RUNNING, &ar->dev_flags); 6303 ar->state = ATH11K_STATE_OFF; 6304 mutex_unlock(&ar->conf_mutex); 6305 6306 cancel_delayed_work_sync(&ar->scan.timeout); 6307 cancel_work_sync(&ar->regd_update_work); 6308 cancel_work_sync(&ar->ab->update_11d_work); 6309 6310 if (ar->state_11d == ATH11K_11D_PREPARING) { 6311 ar->state_11d = ATH11K_11D_IDLE; 6312 complete(&ar->completed_11d_scan); 6313 } 6314 6315 spin_lock_bh(&ar->data_lock); 6316 list_for_each_entry_safe(ppdu_stats, tmp, &ar->ppdu_stats_info, list) { 6317 list_del(&ppdu_stats->list); 6318 kfree(ppdu_stats); 6319 } 6320 spin_unlock_bh(&ar->data_lock); 6321 6322 rcu_assign_pointer(ar->ab->pdevs_active[ar->pdev_idx], NULL); 6323 6324 synchronize_rcu(); 6325 6326 atomic_set(&ar->num_pending_mgmt_tx, 0); 6327 } 6328 6329 static int ath11k_mac_setup_vdev_params_mbssid(struct ath11k_vif *arvif, 6330 u32 *flags, u32 *tx_vdev_id) 6331 { 6332 struct ath11k *ar = arvif->ar; 6333 struct ath11k_vif *tx_arvif; 6334 struct ieee80211_vif *tx_vif; 6335 6336 *tx_vdev_id = 0; 6337 tx_vif = arvif->vif->mbssid_tx_vif; 6338 if (!tx_vif) { 6339 *flags = WMI_HOST_VDEV_FLAGS_NON_MBSSID_AP; 6340 return 0; 6341 } 6342 6343 tx_arvif = ath11k_vif_to_arvif(tx_vif); 6344 6345 if (arvif->vif->bss_conf.nontransmitted) { 6346 if (ar->hw->wiphy != ieee80211_vif_to_wdev(tx_vif)->wiphy) 6347 return -EINVAL; 6348 6349 *flags = WMI_HOST_VDEV_FLAGS_NON_TRANSMIT_AP; 6350 *tx_vdev_id = ath11k_vif_to_arvif(tx_vif)->vdev_id; 6351 } else if (tx_arvif == arvif) { 6352 *flags = WMI_HOST_VDEV_FLAGS_TRANSMIT_AP; 6353 } else { 6354 return -EINVAL; 6355 } 6356 6357 if (arvif->vif->bss_conf.ema_ap) 6358 *flags |= WMI_HOST_VDEV_FLAGS_EMA_MODE; 6359 6360 return 0; 6361 } 6362 6363 static int ath11k_mac_setup_vdev_create_params(struct ath11k_vif *arvif, 6364 struct vdev_create_params *params) 6365 { 6366 struct ath11k *ar = arvif->ar; 6367 struct ath11k_pdev *pdev = ar->pdev; 6368 int ret; 6369 6370 params->if_id = arvif->vdev_id; 6371 params->type = arvif->vdev_type; 6372 params->subtype = arvif->vdev_subtype; 6373 params->pdev_id = pdev->pdev_id; 6374 params->mbssid_flags = 0; 6375 params->mbssid_tx_vdev_id = 0; 6376 6377 if (!test_bit(WMI_TLV_SERVICE_MBSS_PARAM_IN_VDEV_START_SUPPORT, 6378 ar->ab->wmi_ab.svc_map)) { 6379 ret = ath11k_mac_setup_vdev_params_mbssid(arvif, 6380 ¶ms->mbssid_flags, 6381 ¶ms->mbssid_tx_vdev_id); 6382 if (ret) 6383 return ret; 6384 } 6385 6386 if (pdev->cap.supported_bands & WMI_HOST_WLAN_2G_CAP) { 6387 params->chains[NL80211_BAND_2GHZ].tx = ar->num_tx_chains; 6388 params->chains[NL80211_BAND_2GHZ].rx = ar->num_rx_chains; 6389 } 6390 if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP) { 6391 params->chains[NL80211_BAND_5GHZ].tx = ar->num_tx_chains; 6392 params->chains[NL80211_BAND_5GHZ].rx = ar->num_rx_chains; 6393 } 6394 if (pdev->cap.supported_bands & WMI_HOST_WLAN_5G_CAP && 6395 ar->supports_6ghz) { 6396 params->chains[NL80211_BAND_6GHZ].tx = ar->num_tx_chains; 6397 params->chains[NL80211_BAND_6GHZ].rx = ar->num_rx_chains; 6398 } 6399 return 0; 6400 } 6401 6402 static void ath11k_mac_op_update_vif_offload(struct ieee80211_hw *hw, 6403 struct ieee80211_vif *vif) 6404 { 6405 struct ath11k *ar = hw->priv; 6406 struct ath11k_base *ab = ar->ab; 6407 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 6408 u32 param_id, param_value; 6409 int ret; 6410 6411 param_id = WMI_VDEV_PARAM_TX_ENCAP_TYPE; 6412 if (ath11k_frame_mode != ATH11K_HW_TXRX_ETHERNET || 6413 (vif->type != NL80211_IFTYPE_STATION && 6414 vif->type != NL80211_IFTYPE_AP)) 6415 vif->offload_flags &= ~(IEEE80211_OFFLOAD_ENCAP_ENABLED | 6416 IEEE80211_OFFLOAD_DECAP_ENABLED); 6417 6418 if (vif->offload_flags & IEEE80211_OFFLOAD_ENCAP_ENABLED) 6419 param_value = ATH11K_HW_TXRX_ETHERNET; 6420 else if (test_bit(ATH11K_FLAG_RAW_MODE, &ab->dev_flags)) 6421 param_value = ATH11K_HW_TXRX_RAW; 6422 else 6423 param_value = ATH11K_HW_TXRX_NATIVE_WIFI; 6424 6425 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 6426 param_id, param_value); 6427 if (ret) { 6428 ath11k_warn(ab, "failed to set vdev %d tx encap mode: %d\n", 6429 arvif->vdev_id, ret); 6430 vif->offload_flags &= ~IEEE80211_OFFLOAD_ENCAP_ENABLED; 6431 } 6432 6433 param_id = WMI_VDEV_PARAM_RX_DECAP_TYPE; 6434 if (vif->offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED) 6435 param_value = ATH11K_HW_TXRX_ETHERNET; 6436 else if (test_bit(ATH11K_FLAG_RAW_MODE, &ab->dev_flags)) 6437 param_value = ATH11K_HW_TXRX_RAW; 6438 else 6439 param_value = ATH11K_HW_TXRX_NATIVE_WIFI; 6440 6441 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 6442 param_id, param_value); 6443 if (ret) { 6444 ath11k_warn(ab, "failed to set vdev %d rx decap mode: %d\n", 6445 arvif->vdev_id, ret); 6446 vif->offload_flags &= ~IEEE80211_OFFLOAD_DECAP_ENABLED; 6447 } 6448 } 6449 6450 static bool ath11k_mac_vif_ap_active_any(struct ath11k_base *ab) 6451 { 6452 struct ath11k *ar; 6453 struct ath11k_pdev *pdev; 6454 struct ath11k_vif *arvif; 6455 int i; 6456 6457 for (i = 0; i < ab->num_radios; i++) { 6458 pdev = &ab->pdevs[i]; 6459 ar = pdev->ar; 6460 list_for_each_entry(arvif, &ar->arvifs, list) { 6461 if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_AP) 6462 return true; 6463 } 6464 } 6465 return false; 6466 } 6467 6468 void ath11k_mac_11d_scan_start(struct ath11k *ar, u32 vdev_id) 6469 { 6470 struct wmi_11d_scan_start_params param; 6471 int ret; 6472 6473 mutex_lock(&ar->ab->vdev_id_11d_lock); 6474 6475 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev id for 11d scan %d\n", 6476 ar->vdev_id_11d_scan); 6477 6478 if (ar->regdom_set_by_user) 6479 goto fin; 6480 6481 if (ar->vdev_id_11d_scan != ATH11K_11D_INVALID_VDEV_ID) 6482 goto fin; 6483 6484 if (!test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ar->ab->wmi_ab.svc_map)) 6485 goto fin; 6486 6487 if (ath11k_mac_vif_ap_active_any(ar->ab)) 6488 goto fin; 6489 6490 param.vdev_id = vdev_id; 6491 param.start_interval_msec = 0; 6492 param.scan_period_msec = ATH11K_SCAN_11D_INTERVAL; 6493 6494 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "start 11d scan\n"); 6495 6496 ret = ath11k_wmi_send_11d_scan_start_cmd(ar, ¶m); 6497 if (ret) { 6498 ath11k_warn(ar->ab, "failed to start 11d scan vdev %d ret: %d\n", 6499 vdev_id, ret); 6500 } else { 6501 ar->vdev_id_11d_scan = vdev_id; 6502 if (ar->state_11d == ATH11K_11D_PREPARING) 6503 ar->state_11d = ATH11K_11D_RUNNING; 6504 } 6505 6506 fin: 6507 if (ar->state_11d == ATH11K_11D_PREPARING) { 6508 ar->state_11d = ATH11K_11D_IDLE; 6509 complete(&ar->completed_11d_scan); 6510 } 6511 6512 mutex_unlock(&ar->ab->vdev_id_11d_lock); 6513 } 6514 6515 void ath11k_mac_11d_scan_stop(struct ath11k *ar) 6516 { 6517 int ret; 6518 u32 vdev_id; 6519 6520 if (!test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ar->ab->wmi_ab.svc_map)) 6521 return; 6522 6523 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "stop 11d scan\n"); 6524 6525 mutex_lock(&ar->ab->vdev_id_11d_lock); 6526 6527 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "stop 11d vdev id %d\n", 6528 ar->vdev_id_11d_scan); 6529 6530 if (ar->state_11d == ATH11K_11D_PREPARING) { 6531 ar->state_11d = ATH11K_11D_IDLE; 6532 complete(&ar->completed_11d_scan); 6533 } 6534 6535 if (ar->vdev_id_11d_scan != ATH11K_11D_INVALID_VDEV_ID) { 6536 vdev_id = ar->vdev_id_11d_scan; 6537 6538 ret = ath11k_wmi_send_11d_scan_stop_cmd(ar, vdev_id); 6539 if (ret) { 6540 ath11k_warn(ar->ab, 6541 "failed to stopt 11d scan vdev %d ret: %d\n", 6542 vdev_id, ret); 6543 } else { 6544 ar->vdev_id_11d_scan = ATH11K_11D_INVALID_VDEV_ID; 6545 ar->state_11d = ATH11K_11D_IDLE; 6546 complete(&ar->completed_11d_scan); 6547 } 6548 } 6549 mutex_unlock(&ar->ab->vdev_id_11d_lock); 6550 } 6551 6552 void ath11k_mac_11d_scan_stop_all(struct ath11k_base *ab) 6553 { 6554 struct ath11k *ar; 6555 struct ath11k_pdev *pdev; 6556 int i; 6557 6558 ath11k_dbg(ab, ATH11K_DBG_MAC, "stop soc 11d scan\n"); 6559 6560 for (i = 0; i < ab->num_radios; i++) { 6561 pdev = &ab->pdevs[i]; 6562 ar = pdev->ar; 6563 6564 ath11k_mac_11d_scan_stop(ar); 6565 } 6566 } 6567 6568 static int ath11k_mac_vdev_delete(struct ath11k *ar, struct ath11k_vif *arvif) 6569 { 6570 unsigned long time_left; 6571 struct ieee80211_vif *vif = arvif->vif; 6572 int ret = 0; 6573 6574 lockdep_assert_held(&ar->conf_mutex); 6575 6576 reinit_completion(&ar->vdev_delete_done); 6577 6578 ret = ath11k_wmi_vdev_delete(ar, arvif->vdev_id); 6579 if (ret) { 6580 ath11k_warn(ar->ab, "failed to delete WMI vdev %d: %d\n", 6581 arvif->vdev_id, ret); 6582 return ret; 6583 } 6584 6585 time_left = wait_for_completion_timeout(&ar->vdev_delete_done, 6586 ATH11K_VDEV_DELETE_TIMEOUT_HZ); 6587 if (time_left == 0) { 6588 ath11k_warn(ar->ab, "Timeout in receiving vdev delete response\n"); 6589 return -ETIMEDOUT; 6590 } 6591 6592 ar->ab->free_vdev_map |= 1LL << (arvif->vdev_id); 6593 ar->allocated_vdev_map &= ~(1LL << arvif->vdev_id); 6594 ar->num_created_vdevs--; 6595 6596 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %pM deleted, vdev_id %d\n", 6597 vif->addr, arvif->vdev_id); 6598 6599 return ret; 6600 } 6601 6602 static int ath11k_mac_op_add_interface(struct ieee80211_hw *hw, 6603 struct ieee80211_vif *vif) 6604 { 6605 struct ath11k *ar = hw->priv; 6606 struct ath11k_base *ab = ar->ab; 6607 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 6608 struct vdev_create_params vdev_param = {0}; 6609 struct peer_create_params peer_param; 6610 u32 param_id, param_value; 6611 u16 nss; 6612 int i; 6613 int ret, fbret; 6614 int bit; 6615 6616 vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD; 6617 6618 mutex_lock(&ar->conf_mutex); 6619 6620 if (vif->type == NL80211_IFTYPE_AP && 6621 ar->num_peers > (ar->max_num_peers - 1)) { 6622 ath11k_warn(ab, "failed to create vdev due to insufficient peer entry resource in firmware\n"); 6623 ret = -ENOBUFS; 6624 goto err; 6625 } 6626 6627 if (ar->num_created_vdevs > (TARGET_NUM_VDEVS(ab) - 1)) { 6628 ath11k_warn(ab, "failed to create vdev %u, reached max vdev limit %d\n", 6629 ar->num_created_vdevs, TARGET_NUM_VDEVS(ab)); 6630 ret = -EBUSY; 6631 goto err; 6632 } 6633 6634 memset(arvif, 0, sizeof(*arvif)); 6635 6636 arvif->ar = ar; 6637 arvif->vif = vif; 6638 6639 INIT_LIST_HEAD(&arvif->list); 6640 INIT_DELAYED_WORK(&arvif->connection_loss_work, 6641 ath11k_mac_vif_sta_connection_loss_work); 6642 6643 for (i = 0; i < ARRAY_SIZE(arvif->bitrate_mask.control); i++) { 6644 arvif->bitrate_mask.control[i].legacy = 0xffffffff; 6645 arvif->bitrate_mask.control[i].gi = NL80211_TXRATE_FORCE_SGI; 6646 memset(arvif->bitrate_mask.control[i].ht_mcs, 0xff, 6647 sizeof(arvif->bitrate_mask.control[i].ht_mcs)); 6648 memset(arvif->bitrate_mask.control[i].vht_mcs, 0xff, 6649 sizeof(arvif->bitrate_mask.control[i].vht_mcs)); 6650 memset(arvif->bitrate_mask.control[i].he_mcs, 0xff, 6651 sizeof(arvif->bitrate_mask.control[i].he_mcs)); 6652 } 6653 6654 bit = __ffs64(ab->free_vdev_map); 6655 6656 arvif->vdev_id = bit; 6657 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE; 6658 6659 switch (vif->type) { 6660 case NL80211_IFTYPE_UNSPECIFIED: 6661 case NL80211_IFTYPE_STATION: 6662 arvif->vdev_type = WMI_VDEV_TYPE_STA; 6663 if (vif->p2p) 6664 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT; 6665 break; 6666 case NL80211_IFTYPE_MESH_POINT: 6667 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_MESH_11S; 6668 fallthrough; 6669 case NL80211_IFTYPE_AP: 6670 arvif->vdev_type = WMI_VDEV_TYPE_AP; 6671 if (vif->p2p) 6672 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO; 6673 break; 6674 case NL80211_IFTYPE_MONITOR: 6675 arvif->vdev_type = WMI_VDEV_TYPE_MONITOR; 6676 ar->monitor_vdev_id = bit; 6677 break; 6678 case NL80211_IFTYPE_P2P_DEVICE: 6679 arvif->vdev_type = WMI_VDEV_TYPE_STA; 6680 arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE; 6681 break; 6682 6683 default: 6684 WARN_ON(1); 6685 break; 6686 } 6687 6688 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "add interface id %d type %d subtype %d map %llx\n", 6689 arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype, 6690 ab->free_vdev_map); 6691 6692 vif->cab_queue = arvif->vdev_id % (ATH11K_HW_MAX_QUEUES - 1); 6693 for (i = 0; i < ARRAY_SIZE(vif->hw_queue); i++) 6694 vif->hw_queue[i] = i % (ATH11K_HW_MAX_QUEUES - 1); 6695 6696 ret = ath11k_mac_setup_vdev_create_params(arvif, &vdev_param); 6697 if (ret) { 6698 ath11k_warn(ab, "failed to create vdev parameters %d: %d\n", 6699 arvif->vdev_id, ret); 6700 goto err; 6701 } 6702 6703 ret = ath11k_wmi_vdev_create(ar, vif->addr, &vdev_param); 6704 if (ret) { 6705 ath11k_warn(ab, "failed to create WMI vdev %d: %d\n", 6706 arvif->vdev_id, ret); 6707 goto err; 6708 } 6709 6710 ar->num_created_vdevs++; 6711 ath11k_dbg(ab, ATH11K_DBG_MAC, "vdev %pM created, vdev_id %d\n", 6712 vif->addr, arvif->vdev_id); 6713 ar->allocated_vdev_map |= 1LL << arvif->vdev_id; 6714 ab->free_vdev_map &= ~(1LL << arvif->vdev_id); 6715 6716 spin_lock_bh(&ar->data_lock); 6717 list_add(&arvif->list, &ar->arvifs); 6718 spin_unlock_bh(&ar->data_lock); 6719 6720 ath11k_mac_op_update_vif_offload(hw, vif); 6721 6722 nss = get_num_chains(ar->cfg_tx_chainmask) ? : 1; 6723 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 6724 WMI_VDEV_PARAM_NSS, nss); 6725 if (ret) { 6726 ath11k_warn(ab, "failed to set vdev %d chainmask 0x%x, nss %d :%d\n", 6727 arvif->vdev_id, ar->cfg_tx_chainmask, nss, ret); 6728 goto err_vdev_del; 6729 } 6730 6731 switch (arvif->vdev_type) { 6732 case WMI_VDEV_TYPE_AP: 6733 peer_param.vdev_id = arvif->vdev_id; 6734 peer_param.peer_addr = vif->addr; 6735 peer_param.peer_type = WMI_PEER_TYPE_DEFAULT; 6736 ret = ath11k_peer_create(ar, arvif, NULL, &peer_param); 6737 if (ret) { 6738 ath11k_warn(ab, "failed to vdev %d create peer for AP: %d\n", 6739 arvif->vdev_id, ret); 6740 goto err_vdev_del; 6741 } 6742 6743 ret = ath11k_mac_set_kickout(arvif); 6744 if (ret) { 6745 ath11k_warn(ar->ab, "failed to set vdev %i kickout parameters: %d\n", 6746 arvif->vdev_id, ret); 6747 goto err_peer_del; 6748 } 6749 6750 ath11k_mac_11d_scan_stop_all(ar->ab); 6751 break; 6752 case WMI_VDEV_TYPE_STA: 6753 param_id = WMI_STA_PS_PARAM_RX_WAKE_POLICY; 6754 param_value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; 6755 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 6756 param_id, param_value); 6757 if (ret) { 6758 ath11k_warn(ar->ab, "failed to set vdev %d RX wake policy: %d\n", 6759 arvif->vdev_id, ret); 6760 goto err_peer_del; 6761 } 6762 6763 param_id = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD; 6764 param_value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS; 6765 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 6766 param_id, param_value); 6767 if (ret) { 6768 ath11k_warn(ar->ab, "failed to set vdev %d TX wake threshold: %d\n", 6769 arvif->vdev_id, ret); 6770 goto err_peer_del; 6771 } 6772 6773 param_id = WMI_STA_PS_PARAM_PSPOLL_COUNT; 6774 param_value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX; 6775 ret = ath11k_wmi_set_sta_ps_param(ar, arvif->vdev_id, 6776 param_id, param_value); 6777 if (ret) { 6778 ath11k_warn(ar->ab, "failed to set vdev %d pspoll count: %d\n", 6779 arvif->vdev_id, ret); 6780 goto err_peer_del; 6781 } 6782 6783 ret = ath11k_wmi_pdev_set_ps_mode(ar, arvif->vdev_id, 6784 WMI_STA_PS_MODE_DISABLED); 6785 if (ret) { 6786 ath11k_warn(ar->ab, "failed to disable vdev %d ps mode: %d\n", 6787 arvif->vdev_id, ret); 6788 goto err_peer_del; 6789 } 6790 6791 if (test_bit(WMI_TLV_SERVICE_11D_OFFLOAD, ab->wmi_ab.svc_map)) { 6792 reinit_completion(&ar->completed_11d_scan); 6793 ar->state_11d = ATH11K_11D_PREPARING; 6794 } 6795 break; 6796 case WMI_VDEV_TYPE_MONITOR: 6797 set_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags); 6798 break; 6799 default: 6800 break; 6801 } 6802 6803 arvif->txpower = vif->bss_conf.txpower; 6804 ret = ath11k_mac_txpower_recalc(ar); 6805 if (ret) 6806 goto err_peer_del; 6807 6808 param_id = WMI_VDEV_PARAM_RTS_THRESHOLD; 6809 param_value = ar->hw->wiphy->rts_threshold; 6810 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 6811 param_id, param_value); 6812 if (ret) { 6813 ath11k_warn(ar->ab, "failed to set rts threshold for vdev %d: %d\n", 6814 arvif->vdev_id, ret); 6815 } 6816 6817 ath11k_dp_vdev_tx_attach(ar, arvif); 6818 6819 if (vif->type != NL80211_IFTYPE_MONITOR && 6820 test_bit(ATH11K_FLAG_MONITOR_CONF_ENABLED, &ar->monitor_flags)) { 6821 ret = ath11k_mac_monitor_vdev_create(ar); 6822 if (ret) 6823 ath11k_warn(ar->ab, "failed to create monitor vdev during add interface: %d", 6824 ret); 6825 } 6826 6827 if (ath11k_wmi_supports_6ghz_cc_ext(ar)) { 6828 struct cur_regulatory_info *reg_info; 6829 6830 reg_info = &ab->reg_info_store[ar->pdev_idx]; 6831 ath11k_dbg(ab, ATH11K_DBG_MAC, "interface added to change reg rules\n"); 6832 ath11k_reg_handle_chan_list(ab, reg_info, IEEE80211_REG_LPI_AP); 6833 } 6834 6835 mutex_unlock(&ar->conf_mutex); 6836 6837 return 0; 6838 6839 err_peer_del: 6840 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 6841 fbret = ath11k_peer_delete(ar, arvif->vdev_id, vif->addr); 6842 if (fbret) { 6843 ath11k_warn(ar->ab, "fallback fail to delete peer addr %pM vdev_id %d ret %d\n", 6844 vif->addr, arvif->vdev_id, fbret); 6845 goto err; 6846 } 6847 } 6848 6849 err_vdev_del: 6850 ath11k_mac_vdev_delete(ar, arvif); 6851 spin_lock_bh(&ar->data_lock); 6852 list_del(&arvif->list); 6853 spin_unlock_bh(&ar->data_lock); 6854 6855 err: 6856 mutex_unlock(&ar->conf_mutex); 6857 6858 return ret; 6859 } 6860 6861 static int ath11k_mac_vif_unref(int buf_id, void *skb, void *ctx) 6862 { 6863 struct ieee80211_vif *vif = ctx; 6864 struct ath11k_skb_cb *skb_cb = ATH11K_SKB_CB(skb); 6865 6866 if (skb_cb->vif == vif) 6867 skb_cb->vif = NULL; 6868 6869 return 0; 6870 } 6871 6872 static void ath11k_mac_op_remove_interface(struct ieee80211_hw *hw, 6873 struct ieee80211_vif *vif) 6874 { 6875 struct ath11k *ar = hw->priv; 6876 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 6877 struct ath11k_base *ab = ar->ab; 6878 int ret; 6879 int i; 6880 6881 cancel_delayed_work_sync(&arvif->connection_loss_work); 6882 6883 mutex_lock(&ar->conf_mutex); 6884 6885 ath11k_dbg(ab, ATH11K_DBG_MAC, "remove interface (vdev %d)\n", 6886 arvif->vdev_id); 6887 6888 ret = ath11k_spectral_vif_stop(arvif); 6889 if (ret) 6890 ath11k_warn(ab, "failed to stop spectral for vdev %i: %d\n", 6891 arvif->vdev_id, ret); 6892 6893 if (arvif->vdev_type == WMI_VDEV_TYPE_STA) 6894 ath11k_mac_11d_scan_stop(ar); 6895 6896 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 6897 ret = ath11k_peer_delete(ar, arvif->vdev_id, vif->addr); 6898 if (ret) 6899 ath11k_warn(ab, "failed to submit AP self-peer removal on vdev %d: %d\n", 6900 arvif->vdev_id, ret); 6901 } 6902 6903 ret = ath11k_mac_vdev_delete(ar, arvif); 6904 if (ret) { 6905 ath11k_warn(ab, "failed to delete vdev %d: %d\n", 6906 arvif->vdev_id, ret); 6907 goto err_vdev_del; 6908 } 6909 6910 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { 6911 clear_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags); 6912 ar->monitor_vdev_id = -1; 6913 } else if (test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags) && 6914 !test_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags)) { 6915 ret = ath11k_mac_monitor_vdev_delete(ar); 6916 if (ret) 6917 /* continue even if there's an error */ 6918 ath11k_warn(ar->ab, "failed to delete vdev monitor during remove interface: %d", 6919 ret); 6920 } 6921 6922 err_vdev_del: 6923 spin_lock_bh(&ar->data_lock); 6924 list_del(&arvif->list); 6925 spin_unlock_bh(&ar->data_lock); 6926 6927 ath11k_peer_cleanup(ar, arvif->vdev_id); 6928 6929 idr_for_each(&ar->txmgmt_idr, 6930 ath11k_mac_vif_txmgmt_idr_remove, vif); 6931 6932 for (i = 0; i < ab->hw_params.max_tx_ring; i++) { 6933 spin_lock_bh(&ab->dp.tx_ring[i].tx_idr_lock); 6934 idr_for_each(&ab->dp.tx_ring[i].txbuf_idr, 6935 ath11k_mac_vif_unref, vif); 6936 spin_unlock_bh(&ab->dp.tx_ring[i].tx_idr_lock); 6937 } 6938 6939 /* Recalc txpower for remaining vdev */ 6940 ath11k_mac_txpower_recalc(ar); 6941 6942 /* TODO: recal traffic pause state based on the available vdevs */ 6943 6944 mutex_unlock(&ar->conf_mutex); 6945 } 6946 6947 /* FIXME: Has to be verified. */ 6948 #define SUPPORTED_FILTERS \ 6949 (FIF_ALLMULTI | \ 6950 FIF_CONTROL | \ 6951 FIF_PSPOLL | \ 6952 FIF_OTHER_BSS | \ 6953 FIF_BCN_PRBRESP_PROMISC | \ 6954 FIF_PROBE_REQ | \ 6955 FIF_FCSFAIL) 6956 6957 static void ath11k_mac_op_configure_filter(struct ieee80211_hw *hw, 6958 unsigned int changed_flags, 6959 unsigned int *total_flags, 6960 u64 multicast) 6961 { 6962 struct ath11k *ar = hw->priv; 6963 6964 mutex_lock(&ar->conf_mutex); 6965 6966 *total_flags &= SUPPORTED_FILTERS; 6967 ar->filter_flags = *total_flags; 6968 6969 mutex_unlock(&ar->conf_mutex); 6970 } 6971 6972 static int ath11k_mac_op_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) 6973 { 6974 struct ath11k *ar = hw->priv; 6975 6976 mutex_lock(&ar->conf_mutex); 6977 6978 *tx_ant = ar->cfg_tx_chainmask; 6979 *rx_ant = ar->cfg_rx_chainmask; 6980 6981 mutex_unlock(&ar->conf_mutex); 6982 6983 return 0; 6984 } 6985 6986 static int ath11k_mac_op_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) 6987 { 6988 struct ath11k *ar = hw->priv; 6989 int ret; 6990 6991 mutex_lock(&ar->conf_mutex); 6992 ret = __ath11k_set_antenna(ar, tx_ant, rx_ant); 6993 mutex_unlock(&ar->conf_mutex); 6994 6995 return ret; 6996 } 6997 6998 static int ath11k_mac_op_ampdu_action(struct ieee80211_hw *hw, 6999 struct ieee80211_vif *vif, 7000 struct ieee80211_ampdu_params *params) 7001 { 7002 struct ath11k *ar = hw->priv; 7003 int ret = -EINVAL; 7004 7005 mutex_lock(&ar->conf_mutex); 7006 7007 switch (params->action) { 7008 case IEEE80211_AMPDU_RX_START: 7009 ret = ath11k_dp_rx_ampdu_start(ar, params); 7010 break; 7011 case IEEE80211_AMPDU_RX_STOP: 7012 ret = ath11k_dp_rx_ampdu_stop(ar, params); 7013 break; 7014 case IEEE80211_AMPDU_TX_START: 7015 case IEEE80211_AMPDU_TX_STOP_CONT: 7016 case IEEE80211_AMPDU_TX_STOP_FLUSH: 7017 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 7018 case IEEE80211_AMPDU_TX_OPERATIONAL: 7019 /* Tx A-MPDU aggregation offloaded to hw/fw so deny mac80211 7020 * Tx aggregation requests. 7021 */ 7022 ret = -EOPNOTSUPP; 7023 break; 7024 } 7025 7026 mutex_unlock(&ar->conf_mutex); 7027 7028 return ret; 7029 } 7030 7031 static int ath11k_mac_op_add_chanctx(struct ieee80211_hw *hw, 7032 struct ieee80211_chanctx_conf *ctx) 7033 { 7034 struct ath11k *ar = hw->priv; 7035 struct ath11k_base *ab = ar->ab; 7036 7037 ath11k_dbg(ab, ATH11K_DBG_MAC, 7038 "chanctx add freq %u width %d ptr %p\n", 7039 ctx->def.chan->center_freq, ctx->def.width, ctx); 7040 7041 mutex_lock(&ar->conf_mutex); 7042 7043 spin_lock_bh(&ar->data_lock); 7044 /* TODO: In case of multiple channel context, populate rx_channel from 7045 * Rx PPDU desc information. 7046 */ 7047 ar->rx_channel = ctx->def.chan; 7048 spin_unlock_bh(&ar->data_lock); 7049 7050 mutex_unlock(&ar->conf_mutex); 7051 7052 return 0; 7053 } 7054 7055 static void ath11k_mac_op_remove_chanctx(struct ieee80211_hw *hw, 7056 struct ieee80211_chanctx_conf *ctx) 7057 { 7058 struct ath11k *ar = hw->priv; 7059 struct ath11k_base *ab = ar->ab; 7060 7061 ath11k_dbg(ab, ATH11K_DBG_MAC, 7062 "chanctx remove freq %u width %d ptr %p\n", 7063 ctx->def.chan->center_freq, ctx->def.width, ctx); 7064 7065 mutex_lock(&ar->conf_mutex); 7066 7067 spin_lock_bh(&ar->data_lock); 7068 /* TODO: In case of there is one more channel context left, populate 7069 * rx_channel with the channel of that remaining channel context. 7070 */ 7071 ar->rx_channel = NULL; 7072 spin_unlock_bh(&ar->data_lock); 7073 7074 mutex_unlock(&ar->conf_mutex); 7075 } 7076 7077 static int 7078 ath11k_mac_vdev_start_restart(struct ath11k_vif *arvif, 7079 struct ieee80211_chanctx_conf *ctx, 7080 bool restart) 7081 { 7082 struct ath11k *ar = arvif->ar; 7083 struct ath11k_base *ab = ar->ab; 7084 struct wmi_vdev_start_req_arg arg = {}; 7085 const struct cfg80211_chan_def *chandef = &ctx->def; 7086 int ret = 0; 7087 unsigned int dfs_cac_time; 7088 7089 lockdep_assert_held(&ar->conf_mutex); 7090 7091 reinit_completion(&ar->vdev_setup_done); 7092 7093 arg.vdev_id = arvif->vdev_id; 7094 arg.dtim_period = arvif->dtim_period; 7095 arg.bcn_intval = arvif->beacon_interval; 7096 7097 arg.channel.freq = chandef->chan->center_freq; 7098 arg.channel.band_center_freq1 = chandef->center_freq1; 7099 arg.channel.band_center_freq2 = chandef->center_freq2; 7100 arg.channel.mode = 7101 ath11k_phymodes[chandef->chan->band][chandef->width]; 7102 7103 arg.channel.min_power = 0; 7104 arg.channel.max_power = chandef->chan->max_power; 7105 arg.channel.max_reg_power = chandef->chan->max_reg_power; 7106 arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain; 7107 7108 arg.pref_tx_streams = ar->num_tx_chains; 7109 arg.pref_rx_streams = ar->num_rx_chains; 7110 7111 arg.mbssid_flags = 0; 7112 arg.mbssid_tx_vdev_id = 0; 7113 if (test_bit(WMI_TLV_SERVICE_MBSS_PARAM_IN_VDEV_START_SUPPORT, 7114 ar->ab->wmi_ab.svc_map)) { 7115 ret = ath11k_mac_setup_vdev_params_mbssid(arvif, 7116 &arg.mbssid_flags, 7117 &arg.mbssid_tx_vdev_id); 7118 if (ret) 7119 return ret; 7120 } 7121 7122 if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { 7123 arg.ssid = arvif->u.ap.ssid; 7124 arg.ssid_len = arvif->u.ap.ssid_len; 7125 arg.hidden_ssid = arvif->u.ap.hidden_ssid; 7126 7127 /* For now allow DFS for AP mode */ 7128 arg.channel.chan_radar = 7129 !!(chandef->chan->flags & IEEE80211_CHAN_RADAR); 7130 7131 arg.channel.freq2_radar = ctx->radar_enabled; 7132 7133 arg.channel.passive = arg.channel.chan_radar; 7134 7135 spin_lock_bh(&ab->base_lock); 7136 arg.regdomain = ar->ab->dfs_region; 7137 spin_unlock_bh(&ab->base_lock); 7138 } 7139 7140 arg.channel.passive |= !!(chandef->chan->flags & IEEE80211_CHAN_NO_IR); 7141 7142 ath11k_dbg(ab, ATH11K_DBG_MAC, 7143 "vdev %d start center_freq %d phymode %s\n", 7144 arg.vdev_id, arg.channel.freq, 7145 ath11k_wmi_phymode_str(arg.channel.mode)); 7146 7147 ret = ath11k_wmi_vdev_start(ar, &arg, restart); 7148 if (ret) { 7149 ath11k_warn(ar->ab, "failed to %s WMI vdev %i\n", 7150 restart ? "restart" : "start", arg.vdev_id); 7151 return ret; 7152 } 7153 7154 ret = ath11k_mac_vdev_setup_sync(ar); 7155 if (ret) { 7156 ath11k_warn(ab, "failed to synchronize setup for vdev %i %s: %d\n", 7157 arg.vdev_id, restart ? "restart" : "start", ret); 7158 return ret; 7159 } 7160 7161 /* TODO: For now we only set TPC power here. However when 7162 * channel changes, say CSA, it should be updated again. 7163 */ 7164 if (ath11k_mac_supports_station_tpc(ar, arvif, chandef)) { 7165 ath11k_mac_fill_reg_tpc_info(ar, arvif->vif, &arvif->chanctx); 7166 ath11k_wmi_send_vdev_set_tpc_power(ar, arvif->vdev_id, 7167 &arvif->reg_tpc_info); 7168 } 7169 7170 if (!restart) 7171 ar->num_started_vdevs++; 7172 7173 ath11k_dbg(ab, ATH11K_DBG_MAC, "vdev %pM started, vdev_id %d\n", 7174 arvif->vif->addr, arvif->vdev_id); 7175 7176 /* Enable CAC Flag in the driver by checking the all sub-channel's DFS 7177 * state as NL80211_DFS_USABLE which indicates CAC needs to be 7178 * done before channel usage. This flags is used to drop rx packets. 7179 * during CAC. 7180 */ 7181 /* TODO Set the flag for other interface types as required */ 7182 if (arvif->vdev_type == WMI_VDEV_TYPE_AP && ctx->radar_enabled && 7183 cfg80211_chandef_dfs_usable(ar->hw->wiphy, chandef)) { 7184 set_bit(ATH11K_CAC_RUNNING, &ar->dev_flags); 7185 dfs_cac_time = cfg80211_chandef_dfs_cac_time(ar->hw->wiphy, 7186 chandef); 7187 ath11k_dbg(ab, ATH11K_DBG_MAC, 7188 "cac started dfs_cac_time %u center_freq %d center_freq1 %d for vdev %d\n", 7189 dfs_cac_time, arg.channel.freq, chandef->center_freq1, 7190 arg.vdev_id); 7191 } 7192 7193 ret = ath11k_mac_set_txbf_conf(arvif); 7194 if (ret) 7195 ath11k_warn(ab, "failed to set txbf conf for vdev %d: %d\n", 7196 arvif->vdev_id, ret); 7197 7198 return 0; 7199 } 7200 7201 static int ath11k_mac_vdev_stop(struct ath11k_vif *arvif) 7202 { 7203 struct ath11k *ar = arvif->ar; 7204 int ret; 7205 7206 lockdep_assert_held(&ar->conf_mutex); 7207 7208 reinit_completion(&ar->vdev_setup_done); 7209 7210 ret = ath11k_wmi_vdev_stop(ar, arvif->vdev_id); 7211 if (ret) { 7212 ath11k_warn(ar->ab, "failed to stop WMI vdev %i: %d\n", 7213 arvif->vdev_id, ret); 7214 goto err; 7215 } 7216 7217 ret = ath11k_mac_vdev_setup_sync(ar); 7218 if (ret) { 7219 ath11k_warn(ar->ab, "failed to synchronize setup for vdev %i: %d\n", 7220 arvif->vdev_id, ret); 7221 goto err; 7222 } 7223 7224 WARN_ON(ar->num_started_vdevs == 0); 7225 7226 ar->num_started_vdevs--; 7227 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "vdev %pM stopped, vdev_id %d\n", 7228 arvif->vif->addr, arvif->vdev_id); 7229 7230 if (test_bit(ATH11K_CAC_RUNNING, &ar->dev_flags)) { 7231 clear_bit(ATH11K_CAC_RUNNING, &ar->dev_flags); 7232 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "CAC Stopped for vdev %d\n", 7233 arvif->vdev_id); 7234 } 7235 7236 return 0; 7237 err: 7238 return ret; 7239 } 7240 7241 static int ath11k_mac_vdev_start(struct ath11k_vif *arvif, 7242 struct ieee80211_chanctx_conf *ctx) 7243 { 7244 return ath11k_mac_vdev_start_restart(arvif, ctx, false); 7245 } 7246 7247 static int ath11k_mac_vdev_restart(struct ath11k_vif *arvif, 7248 struct ieee80211_chanctx_conf *ctx) 7249 { 7250 return ath11k_mac_vdev_start_restart(arvif, ctx, true); 7251 } 7252 7253 struct ath11k_mac_change_chanctx_arg { 7254 struct ieee80211_chanctx_conf *ctx; 7255 struct ieee80211_vif_chanctx_switch *vifs; 7256 int n_vifs; 7257 int next_vif; 7258 }; 7259 7260 static void 7261 ath11k_mac_change_chanctx_cnt_iter(void *data, u8 *mac, 7262 struct ieee80211_vif *vif) 7263 { 7264 struct ath11k_mac_change_chanctx_arg *arg = data; 7265 7266 if (rcu_access_pointer(vif->bss_conf.chanctx_conf) != arg->ctx) 7267 return; 7268 7269 arg->n_vifs++; 7270 } 7271 7272 static void 7273 ath11k_mac_change_chanctx_fill_iter(void *data, u8 *mac, 7274 struct ieee80211_vif *vif) 7275 { 7276 struct ath11k_mac_change_chanctx_arg *arg = data; 7277 struct ieee80211_chanctx_conf *ctx; 7278 7279 ctx = rcu_access_pointer(vif->bss_conf.chanctx_conf); 7280 if (ctx != arg->ctx) 7281 return; 7282 7283 if (WARN_ON(arg->next_vif == arg->n_vifs)) 7284 return; 7285 7286 arg->vifs[arg->next_vif].vif = vif; 7287 arg->vifs[arg->next_vif].old_ctx = ctx; 7288 arg->vifs[arg->next_vif].new_ctx = ctx; 7289 arg->next_vif++; 7290 } 7291 7292 static void 7293 ath11k_mac_update_vif_chan(struct ath11k *ar, 7294 struct ieee80211_vif_chanctx_switch *vifs, 7295 int n_vifs) 7296 { 7297 struct ath11k_base *ab = ar->ab; 7298 struct ath11k_vif *arvif, *tx_arvif = NULL; 7299 struct ieee80211_vif *mbssid_tx_vif; 7300 int ret; 7301 int i; 7302 bool monitor_vif = false; 7303 7304 lockdep_assert_held(&ar->conf_mutex); 7305 7306 /* Associated channel resources of all relevant vdevs 7307 * should be available for the channel switch now. 7308 */ 7309 7310 /* TODO: Update ar->rx_channel */ 7311 7312 for (i = 0; i < n_vifs; i++) { 7313 arvif = ath11k_vif_to_arvif(vifs[i].vif); 7314 7315 if (WARN_ON(!arvif->is_started)) 7316 continue; 7317 7318 /* change_chanctx can be called even before vdev_up from 7319 * ieee80211_start_ap->ieee80211_vif_use_channel-> 7320 * ieee80211_recalc_radar_chanctx. 7321 * 7322 * Firmware expect vdev_restart only if vdev is up. 7323 * If vdev is down then it expect vdev_stop->vdev_start. 7324 */ 7325 if (arvif->is_up) { 7326 ret = ath11k_mac_vdev_restart(arvif, vifs[i].new_ctx); 7327 if (ret) { 7328 ath11k_warn(ab, "failed to restart vdev %d: %d\n", 7329 arvif->vdev_id, ret); 7330 continue; 7331 } 7332 } else { 7333 ret = ath11k_mac_vdev_stop(arvif); 7334 if (ret) { 7335 ath11k_warn(ab, "failed to stop vdev %d: %d\n", 7336 arvif->vdev_id, ret); 7337 continue; 7338 } 7339 7340 ret = ath11k_mac_vdev_start(arvif, vifs[i].new_ctx); 7341 if (ret) 7342 ath11k_warn(ab, "failed to start vdev %d: %d\n", 7343 arvif->vdev_id, ret); 7344 7345 continue; 7346 } 7347 7348 ret = ath11k_mac_setup_bcn_tmpl(arvif); 7349 if (ret) 7350 ath11k_warn(ab, "failed to update bcn tmpl during csa: %d\n", 7351 ret); 7352 7353 mbssid_tx_vif = arvif->vif->mbssid_tx_vif; 7354 if (mbssid_tx_vif) 7355 tx_arvif = ath11k_vif_to_arvif(mbssid_tx_vif); 7356 7357 ret = ath11k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, 7358 arvif->bssid, 7359 tx_arvif ? tx_arvif->bssid : NULL, 7360 arvif->vif->bss_conf.bssid_index, 7361 1 << arvif->vif->bss_conf.bssid_indicator); 7362 if (ret) { 7363 ath11k_warn(ab, "failed to bring vdev up %d: %d\n", 7364 arvif->vdev_id, ret); 7365 continue; 7366 } 7367 } 7368 7369 /* Restart the internal monitor vdev on new channel */ 7370 if (!monitor_vif && 7371 test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) { 7372 ret = ath11k_mac_monitor_stop(ar); 7373 if (ret) { 7374 ath11k_warn(ar->ab, "failed to stop monitor during vif channel update: %d", 7375 ret); 7376 return; 7377 } 7378 7379 ret = ath11k_mac_monitor_start(ar); 7380 if (ret) { 7381 ath11k_warn(ar->ab, "failed to start monitor during vif channel update: %d", 7382 ret); 7383 return; 7384 } 7385 } 7386 } 7387 7388 static void 7389 ath11k_mac_update_active_vif_chan(struct ath11k *ar, 7390 struct ieee80211_chanctx_conf *ctx) 7391 { 7392 struct ath11k_mac_change_chanctx_arg arg = { .ctx = ctx }; 7393 7394 lockdep_assert_held(&ar->conf_mutex); 7395 7396 ieee80211_iterate_active_interfaces_atomic(ar->hw, 7397 IEEE80211_IFACE_ITER_NORMAL, 7398 ath11k_mac_change_chanctx_cnt_iter, 7399 &arg); 7400 if (arg.n_vifs == 0) 7401 return; 7402 7403 arg.vifs = kcalloc(arg.n_vifs, sizeof(arg.vifs[0]), GFP_KERNEL); 7404 if (!arg.vifs) 7405 return; 7406 7407 ieee80211_iterate_active_interfaces_atomic(ar->hw, 7408 IEEE80211_IFACE_ITER_NORMAL, 7409 ath11k_mac_change_chanctx_fill_iter, 7410 &arg); 7411 7412 ath11k_mac_update_vif_chan(ar, arg.vifs, arg.n_vifs); 7413 7414 kfree(arg.vifs); 7415 } 7416 7417 static void ath11k_mac_op_change_chanctx(struct ieee80211_hw *hw, 7418 struct ieee80211_chanctx_conf *ctx, 7419 u32 changed) 7420 { 7421 struct ath11k *ar = hw->priv; 7422 struct ath11k_base *ab = ar->ab; 7423 7424 mutex_lock(&ar->conf_mutex); 7425 7426 ath11k_dbg(ab, ATH11K_DBG_MAC, 7427 "chanctx change freq %u width %d ptr %p changed %x\n", 7428 ctx->def.chan->center_freq, ctx->def.width, ctx, changed); 7429 7430 /* This shouldn't really happen because channel switching should use 7431 * switch_vif_chanctx(). 7432 */ 7433 if (WARN_ON(changed & IEEE80211_CHANCTX_CHANGE_CHANNEL)) 7434 goto unlock; 7435 7436 if (changed & IEEE80211_CHANCTX_CHANGE_WIDTH || 7437 changed & IEEE80211_CHANCTX_CHANGE_RADAR) 7438 ath11k_mac_update_active_vif_chan(ar, ctx); 7439 7440 /* TODO: Recalc radar detection */ 7441 7442 unlock: 7443 mutex_unlock(&ar->conf_mutex); 7444 } 7445 7446 static int ath11k_mac_start_vdev_delay(struct ieee80211_hw *hw, 7447 struct ieee80211_vif *vif) 7448 { 7449 struct ath11k *ar = hw->priv; 7450 struct ath11k_base *ab = ar->ab; 7451 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 7452 int ret; 7453 7454 if (WARN_ON(arvif->is_started)) 7455 return -EBUSY; 7456 7457 ret = ath11k_mac_vdev_start(arvif, &arvif->chanctx); 7458 if (ret) { 7459 ath11k_warn(ab, "failed to start vdev %i addr %pM on freq %d: %d\n", 7460 arvif->vdev_id, vif->addr, 7461 arvif->chanctx.def.chan->center_freq, ret); 7462 return ret; 7463 } 7464 7465 /* Reconfigure hardware rate code since it is cleared by firmware. 7466 */ 7467 if (ar->hw_rate_code > 0) { 7468 u32 vdev_param = WMI_VDEV_PARAM_MGMT_RATE; 7469 7470 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, vdev_param, 7471 ar->hw_rate_code); 7472 if (ret) { 7473 ath11k_warn(ar->ab, "failed to set mgmt tx rate %d\n", ret); 7474 return ret; 7475 } 7476 } 7477 7478 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { 7479 ret = ath11k_wmi_vdev_up(ar, arvif->vdev_id, 0, ar->mac_addr, 7480 NULL, 0, 0); 7481 if (ret) { 7482 ath11k_warn(ab, "failed put monitor up: %d\n", ret); 7483 return ret; 7484 } 7485 } 7486 7487 arvif->is_started = true; 7488 7489 /* TODO: Setup ps and cts/rts protection */ 7490 return 0; 7491 } 7492 7493 static int ath11k_mac_stop_vdev_early(struct ieee80211_hw *hw, 7494 struct ieee80211_vif *vif) 7495 { 7496 struct ath11k *ar = hw->priv; 7497 struct ath11k_base *ab = ar->ab; 7498 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 7499 int ret; 7500 7501 if (WARN_ON(!arvif->is_started)) 7502 return -EBUSY; 7503 7504 ret = ath11k_mac_vdev_stop(arvif); 7505 if (ret) { 7506 ath11k_warn(ab, "failed to stop vdev %i: %d\n", 7507 arvif->vdev_id, ret); 7508 return ret; 7509 } 7510 7511 arvif->is_started = false; 7512 7513 /* TODO: Setup ps and cts/rts protection */ 7514 return 0; 7515 } 7516 7517 static u8 ath11k_mac_get_num_pwr_levels(struct cfg80211_chan_def *chan_def) 7518 { 7519 if (chan_def->chan->flags & IEEE80211_CHAN_PSD) { 7520 switch (chan_def->width) { 7521 case NL80211_CHAN_WIDTH_20: 7522 return 1; 7523 case NL80211_CHAN_WIDTH_40: 7524 return 2; 7525 case NL80211_CHAN_WIDTH_80: 7526 return 4; 7527 case NL80211_CHAN_WIDTH_80P80: 7528 case NL80211_CHAN_WIDTH_160: 7529 return 8; 7530 default: 7531 return 1; 7532 } 7533 } else { 7534 switch (chan_def->width) { 7535 case NL80211_CHAN_WIDTH_20: 7536 return 1; 7537 case NL80211_CHAN_WIDTH_40: 7538 return 2; 7539 case NL80211_CHAN_WIDTH_80: 7540 return 3; 7541 case NL80211_CHAN_WIDTH_80P80: 7542 case NL80211_CHAN_WIDTH_160: 7543 return 4; 7544 default: 7545 return 1; 7546 } 7547 } 7548 } 7549 7550 static u16 ath11k_mac_get_6ghz_start_frequency(struct cfg80211_chan_def *chan_def) 7551 { 7552 u16 diff_seq; 7553 7554 /* It is to get the lowest channel number's center frequency of the chan. 7555 * For example, 7556 * bandwidth=40 MHz, center frequency is 5965, lowest channel is 1 7557 * with center frequency 5955, its diff is 5965 - 5955 = 10. 7558 * bandwidth=80 MHz, center frequency is 5985, lowest channel is 1 7559 * with center frequency 5955, its diff is 5985 - 5955 = 30. 7560 * bandwidth=160 MHz, center frequency is 6025, lowest channel is 1 7561 * with center frequency 5955, its diff is 6025 - 5955 = 70. 7562 */ 7563 switch (chan_def->width) { 7564 case NL80211_CHAN_WIDTH_160: 7565 diff_seq = 70; 7566 break; 7567 case NL80211_CHAN_WIDTH_80: 7568 case NL80211_CHAN_WIDTH_80P80: 7569 diff_seq = 30; 7570 break; 7571 case NL80211_CHAN_WIDTH_40: 7572 diff_seq = 10; 7573 break; 7574 default: 7575 diff_seq = 0; 7576 } 7577 7578 return chan_def->center_freq1 - diff_seq; 7579 } 7580 7581 static u16 ath11k_mac_get_seg_freq(struct cfg80211_chan_def *chan_def, 7582 u16 start_seq, u8 seq) 7583 { 7584 u16 seg_seq; 7585 7586 /* It is to get the center frequency of the specific bandwidth. 7587 * start_seq means the lowest channel number's center frequency. 7588 * seq 0/1/2/3 means 20 MHz/40 MHz/80 MHz/160 MHz&80P80. 7589 * For example, 7590 * lowest channel is 1, its center frequency 5955, 7591 * center frequency is 5955 when bandwidth=20 MHz, its diff is 5955 - 5955 = 0. 7592 * lowest channel is 1, its center frequency 5955, 7593 * center frequency is 5965 when bandwidth=40 MHz, its diff is 5965 - 5955 = 10. 7594 * lowest channel is 1, its center frequency 5955, 7595 * center frequency is 5985 when bandwidth=80 MHz, its diff is 5985 - 5955 = 30. 7596 * lowest channel is 1, its center frequency 5955, 7597 * center frequency is 6025 when bandwidth=160 MHz, its diff is 6025 - 5955 = 70. 7598 */ 7599 if (chan_def->width == NL80211_CHAN_WIDTH_80P80 && seq == 3) 7600 return chan_def->center_freq2; 7601 7602 seg_seq = 10 * (BIT(seq) - 1); 7603 return seg_seq + start_seq; 7604 } 7605 7606 static void ath11k_mac_get_psd_channel(struct ath11k *ar, 7607 u16 step_freq, 7608 u16 *start_freq, 7609 u16 *center_freq, 7610 u8 i, 7611 struct ieee80211_channel **temp_chan, 7612 s8 *tx_power) 7613 { 7614 /* It is to get the center frequency for each 20 MHz. 7615 * For example, if the chan is 160 MHz and center frequency is 6025, 7616 * then it include 8 channels, they are 1/5/9/13/17/21/25/29, 7617 * channel number 1's center frequency is 5955, it is parameter start_freq. 7618 * parameter i is the step of the 8 channels. i is 0~7 for the 8 channels. 7619 * the channel 1/5/9/13/17/21/25/29 maps i=0/1/2/3/4/5/6/7, 7620 * and maps its center frequency is 5955/5975/5995/6015/6035/6055/6075/6095, 7621 * the gap is 20 for each channel, parameter step_freq means the gap. 7622 * after get the center frequency of each channel, it is easy to find the 7623 * struct ieee80211_channel of it and get the max_reg_power. 7624 */ 7625 *center_freq = *start_freq + i * step_freq; 7626 *temp_chan = ieee80211_get_channel(ar->hw->wiphy, *center_freq); 7627 *tx_power = (*temp_chan)->max_reg_power; 7628 } 7629 7630 static void ath11k_mac_get_eirp_power(struct ath11k *ar, 7631 u16 *start_freq, 7632 u16 *center_freq, 7633 u8 i, 7634 struct ieee80211_channel **temp_chan, 7635 struct cfg80211_chan_def *def, 7636 s8 *tx_power) 7637 { 7638 /* It is to get the center frequency for 20 MHz/40 MHz/80 MHz/ 7639 * 160 MHz&80P80 bandwidth, and then plus 10 to the center frequency, 7640 * it is the center frequency of a channel number. 7641 * For example, when configured channel number is 1. 7642 * center frequency is 5965 when bandwidth=40 MHz, after plus 10, it is 5975, 7643 * then it is channel number 5. 7644 * center frequency is 5985 when bandwidth=80 MHz, after plus 10, it is 5995, 7645 * then it is channel number 9. 7646 * center frequency is 6025 when bandwidth=160 MHz, after plus 10, it is 6035, 7647 * then it is channel number 17. 7648 * after get the center frequency of each channel, it is easy to find the 7649 * struct ieee80211_channel of it and get the max_reg_power. 7650 */ 7651 *center_freq = ath11k_mac_get_seg_freq(def, *start_freq, i); 7652 7653 /* For the 20 MHz, its center frequency is same with same channel */ 7654 if (i != 0) 7655 *center_freq += 10; 7656 7657 *temp_chan = ieee80211_get_channel(ar->hw->wiphy, *center_freq); 7658 *tx_power = (*temp_chan)->max_reg_power; 7659 } 7660 7661 void ath11k_mac_fill_reg_tpc_info(struct ath11k *ar, 7662 struct ieee80211_vif *vif, 7663 struct ieee80211_chanctx_conf *ctx) 7664 { 7665 struct ath11k_base *ab = ar->ab; 7666 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 7667 struct ieee80211_bss_conf *bss_conf = &vif->bss_conf; 7668 struct ath11k_reg_tpc_power_info *reg_tpc_info = &arvif->reg_tpc_info; 7669 struct ieee80211_channel *chan, *temp_chan; 7670 u8 pwr_lvl_idx, num_pwr_levels, pwr_reduction; 7671 bool is_psd_power = false, is_tpe_present = false; 7672 s8 max_tx_power[ATH11K_NUM_PWR_LEVELS], 7673 psd_power, tx_power; 7674 s8 eirp_power = 0; 7675 u16 start_freq, center_freq; 7676 7677 chan = ctx->def.chan; 7678 start_freq = ath11k_mac_get_6ghz_start_frequency(&ctx->def); 7679 pwr_reduction = bss_conf->pwr_reduction; 7680 7681 if (arvif->reg_tpc_info.num_pwr_levels) { 7682 is_tpe_present = true; 7683 num_pwr_levels = arvif->reg_tpc_info.num_pwr_levels; 7684 } else { 7685 num_pwr_levels = 7686 ath11k_mac_get_num_pwr_levels(&bss_conf->chanreq.oper); 7687 } 7688 7689 for (pwr_lvl_idx = 0; pwr_lvl_idx < num_pwr_levels; pwr_lvl_idx++) { 7690 /* STA received TPE IE*/ 7691 if (is_tpe_present) { 7692 /* local power is PSD power*/ 7693 if (chan->flags & IEEE80211_CHAN_PSD) { 7694 /* Connecting AP is psd power */ 7695 if (reg_tpc_info->is_psd_power) { 7696 is_psd_power = true; 7697 ath11k_mac_get_psd_channel(ar, 20, 7698 &start_freq, 7699 ¢er_freq, 7700 pwr_lvl_idx, 7701 &temp_chan, 7702 &tx_power); 7703 psd_power = temp_chan->psd; 7704 eirp_power = tx_power; 7705 max_tx_power[pwr_lvl_idx] = 7706 min_t(s8, 7707 psd_power, 7708 reg_tpc_info->tpe[pwr_lvl_idx]); 7709 /* Connecting AP is not psd power */ 7710 } else { 7711 ath11k_mac_get_eirp_power(ar, 7712 &start_freq, 7713 ¢er_freq, 7714 pwr_lvl_idx, 7715 &temp_chan, 7716 &ctx->def, 7717 &tx_power); 7718 psd_power = temp_chan->psd; 7719 /* convert psd power to EIRP power based 7720 * on channel width 7721 */ 7722 tx_power = 7723 min_t(s8, tx_power, 7724 psd_power + 13 + pwr_lvl_idx * 3); 7725 max_tx_power[pwr_lvl_idx] = 7726 min_t(s8, 7727 tx_power, 7728 reg_tpc_info->tpe[pwr_lvl_idx]); 7729 } 7730 /* local power is not PSD power */ 7731 } else { 7732 /* Connecting AP is psd power */ 7733 if (reg_tpc_info->is_psd_power) { 7734 is_psd_power = true; 7735 ath11k_mac_get_psd_channel(ar, 20, 7736 &start_freq, 7737 ¢er_freq, 7738 pwr_lvl_idx, 7739 &temp_chan, 7740 &tx_power); 7741 eirp_power = tx_power; 7742 max_tx_power[pwr_lvl_idx] = 7743 reg_tpc_info->tpe[pwr_lvl_idx]; 7744 /* Connecting AP is not psd power */ 7745 } else { 7746 ath11k_mac_get_eirp_power(ar, 7747 &start_freq, 7748 ¢er_freq, 7749 pwr_lvl_idx, 7750 &temp_chan, 7751 &ctx->def, 7752 &tx_power); 7753 max_tx_power[pwr_lvl_idx] = 7754 min_t(s8, 7755 tx_power, 7756 reg_tpc_info->tpe[pwr_lvl_idx]); 7757 } 7758 } 7759 /* STA not received TPE IE */ 7760 } else { 7761 /* local power is PSD power*/ 7762 if (chan->flags & IEEE80211_CHAN_PSD) { 7763 is_psd_power = true; 7764 ath11k_mac_get_psd_channel(ar, 20, 7765 &start_freq, 7766 ¢er_freq, 7767 pwr_lvl_idx, 7768 &temp_chan, 7769 &tx_power); 7770 psd_power = temp_chan->psd; 7771 eirp_power = tx_power; 7772 max_tx_power[pwr_lvl_idx] = psd_power; 7773 } else { 7774 ath11k_mac_get_eirp_power(ar, 7775 &start_freq, 7776 ¢er_freq, 7777 pwr_lvl_idx, 7778 &temp_chan, 7779 &ctx->def, 7780 &tx_power); 7781 max_tx_power[pwr_lvl_idx] = tx_power; 7782 } 7783 } 7784 7785 if (is_psd_power) { 7786 /* If AP local power constraint is present */ 7787 if (pwr_reduction) 7788 eirp_power = eirp_power - pwr_reduction; 7789 7790 /* If firmware updated max tx power is non zero, then take 7791 * the min of firmware updated ap tx power 7792 * and max power derived from above mentioned parameters. 7793 */ 7794 ath11k_dbg(ab, ATH11K_DBG_MAC, 7795 "eirp power : %d firmware report power : %d\n", 7796 eirp_power, ar->max_allowed_tx_power); 7797 /* Firmware reports lower max_allowed_tx_power during vdev 7798 * start response. In case of 6 GHz, firmware is not aware 7799 * of EIRP power unless driver sets EIRP power through WMI 7800 * TPC command. So radio which does not support idle power 7801 * save can set maximum calculated EIRP power directly to 7802 * firmware through TPC command without min comparison with 7803 * vdev start response's max_allowed_tx_power. 7804 */ 7805 if (ar->max_allowed_tx_power && ab->hw_params.idle_ps) 7806 eirp_power = min_t(s8, 7807 eirp_power, 7808 ar->max_allowed_tx_power); 7809 } else { 7810 /* If AP local power constraint is present */ 7811 if (pwr_reduction) 7812 max_tx_power[pwr_lvl_idx] = 7813 max_tx_power[pwr_lvl_idx] - pwr_reduction; 7814 /* If firmware updated max tx power is non zero, then take 7815 * the min of firmware updated ap tx power 7816 * and max power derived from above mentioned parameters. 7817 */ 7818 if (ar->max_allowed_tx_power && ab->hw_params.idle_ps) 7819 max_tx_power[pwr_lvl_idx] = 7820 min_t(s8, 7821 max_tx_power[pwr_lvl_idx], 7822 ar->max_allowed_tx_power); 7823 } 7824 reg_tpc_info->chan_power_info[pwr_lvl_idx].chan_cfreq = center_freq; 7825 reg_tpc_info->chan_power_info[pwr_lvl_idx].tx_power = 7826 max_tx_power[pwr_lvl_idx]; 7827 } 7828 7829 reg_tpc_info->num_pwr_levels = num_pwr_levels; 7830 reg_tpc_info->is_psd_power = is_psd_power; 7831 reg_tpc_info->eirp_power = eirp_power; 7832 reg_tpc_info->ap_power_type = 7833 ath11k_reg_ap_pwr_convert(vif->bss_conf.power_type); 7834 } 7835 7836 static void ath11k_mac_parse_tx_pwr_env(struct ath11k *ar, 7837 struct ieee80211_vif *vif, 7838 struct ieee80211_chanctx_conf *ctx) 7839 { 7840 struct ath11k_base *ab = ar->ab; 7841 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 7842 struct ieee80211_bss_conf *bss_conf = &vif->bss_conf; 7843 struct ieee80211_parsed_tpe_eirp *non_psd = NULL; 7844 struct ieee80211_parsed_tpe_psd *psd = NULL; 7845 enum wmi_reg_6ghz_client_type client_type; 7846 struct cur_regulatory_info *reg_info; 7847 u8 local_tpe_count, reg_tpe_count; 7848 bool use_local_tpe; 7849 int i; 7850 7851 reg_info = &ab->reg_info_store[ar->pdev_idx]; 7852 client_type = reg_info->client_type; 7853 7854 local_tpe_count = 7855 bss_conf->tpe.max_local[client_type].valid + 7856 bss_conf->tpe.psd_local[client_type].valid; 7857 reg_tpe_count = 7858 bss_conf->tpe.max_reg_client[client_type].valid + 7859 bss_conf->tpe.psd_reg_client[client_type].valid; 7860 7861 if (!reg_tpe_count && !local_tpe_count) { 7862 ath11k_warn(ab, 7863 "no transmit power envelope match client power type %d\n", 7864 client_type); 7865 return; 7866 } else if (!reg_tpe_count) { 7867 use_local_tpe = true; 7868 } else { 7869 use_local_tpe = false; 7870 } 7871 7872 if (use_local_tpe) { 7873 psd = &bss_conf->tpe.psd_local[client_type]; 7874 if (!psd->valid) 7875 psd = NULL; 7876 non_psd = &bss_conf->tpe.max_local[client_type]; 7877 if (!non_psd->valid) 7878 non_psd = NULL; 7879 } else { 7880 psd = &bss_conf->tpe.psd_reg_client[client_type]; 7881 if (!psd->valid) 7882 psd = NULL; 7883 non_psd = &bss_conf->tpe.max_reg_client[client_type]; 7884 if (!non_psd->valid) 7885 non_psd = NULL; 7886 } 7887 7888 if (non_psd && !psd) { 7889 arvif->reg_tpc_info.is_psd_power = false; 7890 arvif->reg_tpc_info.eirp_power = 0; 7891 7892 arvif->reg_tpc_info.num_pwr_levels = non_psd->count; 7893 7894 for (i = 0; i < arvif->reg_tpc_info.num_pwr_levels; i++) { 7895 ath11k_dbg(ab, ATH11K_DBG_MAC, 7896 "non PSD power[%d] : %d\n", 7897 i, non_psd->power[i]); 7898 arvif->reg_tpc_info.tpe[i] = non_psd->power[i] / 2; 7899 } 7900 } 7901 7902 if (psd) { 7903 arvif->reg_tpc_info.is_psd_power = true; 7904 arvif->reg_tpc_info.num_pwr_levels = psd->count; 7905 7906 for (i = 0; i < arvif->reg_tpc_info.num_pwr_levels; i++) { 7907 ath11k_dbg(ab, ATH11K_DBG_MAC, 7908 "TPE PSD power[%d] : %d\n", 7909 i, psd->power[i]); 7910 arvif->reg_tpc_info.tpe[i] = psd->power[i] / 2; 7911 } 7912 } 7913 } 7914 7915 static int 7916 ath11k_mac_op_assign_vif_chanctx(struct ieee80211_hw *hw, 7917 struct ieee80211_vif *vif, 7918 struct ieee80211_bss_conf *link_conf, 7919 struct ieee80211_chanctx_conf *ctx) 7920 { 7921 struct ath11k *ar = hw->priv; 7922 struct ath11k_base *ab = ar->ab; 7923 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 7924 int ret; 7925 7926 mutex_lock(&ar->conf_mutex); 7927 7928 ath11k_dbg(ab, ATH11K_DBG_MAC, 7929 "chanctx assign ptr %p vdev_id %i\n", 7930 ctx, arvif->vdev_id); 7931 7932 if (ath11k_wmi_supports_6ghz_cc_ext(ar) && 7933 ctx->def.chan->band == NL80211_BAND_6GHZ && 7934 arvif->vdev_type == WMI_VDEV_TYPE_STA) { 7935 arvif->chanctx = *ctx; 7936 ath11k_mac_parse_tx_pwr_env(ar, vif, ctx); 7937 } 7938 7939 /* for QCA6390 bss peer must be created before vdev_start */ 7940 if (ab->hw_params.vdev_start_delay && 7941 arvif->vdev_type != WMI_VDEV_TYPE_AP && 7942 arvif->vdev_type != WMI_VDEV_TYPE_MONITOR && 7943 !ath11k_peer_find_by_vdev_id(ab, arvif->vdev_id)) { 7944 memcpy(&arvif->chanctx, ctx, sizeof(*ctx)); 7945 ret = 0; 7946 goto out; 7947 } 7948 7949 if (WARN_ON(arvif->is_started)) { 7950 ret = -EBUSY; 7951 goto out; 7952 } 7953 7954 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { 7955 ret = ath11k_mac_monitor_start(ar); 7956 if (ret) { 7957 ath11k_warn(ar->ab, "failed to start monitor during vif channel context assignment: %d", 7958 ret); 7959 goto out; 7960 } 7961 7962 arvif->is_started = true; 7963 goto out; 7964 } 7965 7966 if (!arvif->is_started) { 7967 ret = ath11k_mac_vdev_start(arvif, ctx); 7968 if (ret) { 7969 ath11k_warn(ab, "failed to start vdev %i addr %pM on freq %d: %d\n", 7970 arvif->vdev_id, vif->addr, 7971 ctx->def.chan->center_freq, ret); 7972 goto out; 7973 } 7974 7975 arvif->is_started = true; 7976 } 7977 7978 if (arvif->vdev_type != WMI_VDEV_TYPE_MONITOR && 7979 test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) { 7980 ret = ath11k_mac_monitor_start(ar); 7981 if (ret) { 7982 ath11k_warn(ar->ab, "failed to start monitor during vif channel context assignment: %d", 7983 ret); 7984 goto out; 7985 } 7986 } 7987 7988 /* TODO: Setup ps and cts/rts protection */ 7989 7990 ret = 0; 7991 7992 out: 7993 mutex_unlock(&ar->conf_mutex); 7994 7995 return ret; 7996 } 7997 7998 static void 7999 ath11k_mac_op_unassign_vif_chanctx(struct ieee80211_hw *hw, 8000 struct ieee80211_vif *vif, 8001 struct ieee80211_bss_conf *link_conf, 8002 struct ieee80211_chanctx_conf *ctx) 8003 { 8004 struct ath11k *ar = hw->priv; 8005 struct ath11k_base *ab = ar->ab; 8006 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 8007 struct ath11k_peer *peer; 8008 int ret; 8009 8010 mutex_lock(&ar->conf_mutex); 8011 8012 ath11k_dbg(ab, ATH11K_DBG_MAC, 8013 "chanctx unassign ptr %p vdev_id %i\n", 8014 ctx, arvif->vdev_id); 8015 8016 if (ab->hw_params.vdev_start_delay && 8017 arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { 8018 spin_lock_bh(&ab->base_lock); 8019 peer = ath11k_peer_find_by_addr(ab, ar->mac_addr); 8020 spin_unlock_bh(&ab->base_lock); 8021 if (peer) 8022 ath11k_peer_delete(ar, arvif->vdev_id, ar->mac_addr); 8023 } 8024 8025 if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) { 8026 ret = ath11k_mac_monitor_stop(ar); 8027 if (ret) { 8028 ath11k_warn(ar->ab, "failed to stop monitor during vif channel context unassignment: %d", 8029 ret); 8030 mutex_unlock(&ar->conf_mutex); 8031 return; 8032 } 8033 8034 arvif->is_started = false; 8035 mutex_unlock(&ar->conf_mutex); 8036 return; 8037 } 8038 8039 if (arvif->is_started) { 8040 ret = ath11k_mac_vdev_stop(arvif); 8041 if (ret) 8042 ath11k_warn(ab, "failed to stop vdev %i: %d\n", 8043 arvif->vdev_id, ret); 8044 8045 arvif->is_started = false; 8046 } 8047 8048 if (ab->hw_params.vdev_start_delay && 8049 arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) 8050 ath11k_wmi_vdev_down(ar, arvif->vdev_id); 8051 8052 if (arvif->vdev_type != WMI_VDEV_TYPE_MONITOR && 8053 ar->num_started_vdevs == 1 && 8054 test_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags)) { 8055 ret = ath11k_mac_monitor_stop(ar); 8056 if (ret) 8057 /* continue even if there's an error */ 8058 ath11k_warn(ar->ab, "failed to stop monitor during vif channel context unassignment: %d", 8059 ret); 8060 } 8061 8062 if (arvif->vdev_type == WMI_VDEV_TYPE_STA) 8063 ath11k_mac_11d_scan_start(ar, arvif->vdev_id); 8064 8065 mutex_unlock(&ar->conf_mutex); 8066 } 8067 8068 static int 8069 ath11k_mac_op_switch_vif_chanctx(struct ieee80211_hw *hw, 8070 struct ieee80211_vif_chanctx_switch *vifs, 8071 int n_vifs, 8072 enum ieee80211_chanctx_switch_mode mode) 8073 { 8074 struct ath11k *ar = hw->priv; 8075 8076 mutex_lock(&ar->conf_mutex); 8077 8078 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 8079 "chanctx switch n_vifs %d mode %d\n", 8080 n_vifs, mode); 8081 ath11k_mac_update_vif_chan(ar, vifs, n_vifs); 8082 8083 mutex_unlock(&ar->conf_mutex); 8084 8085 return 0; 8086 } 8087 8088 static int 8089 ath11k_set_vdev_param_to_all_vifs(struct ath11k *ar, int param, u32 value) 8090 { 8091 struct ath11k_vif *arvif; 8092 int ret = 0; 8093 8094 mutex_lock(&ar->conf_mutex); 8095 list_for_each_entry(arvif, &ar->arvifs, list) { 8096 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "setting mac vdev %d param %d value %d\n", 8097 param, arvif->vdev_id, value); 8098 8099 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8100 param, value); 8101 if (ret) { 8102 ath11k_warn(ar->ab, "failed to set param %d for vdev %d: %d\n", 8103 param, arvif->vdev_id, ret); 8104 break; 8105 } 8106 } 8107 mutex_unlock(&ar->conf_mutex); 8108 return ret; 8109 } 8110 8111 /* mac80211 stores device specific RTS/Fragmentation threshold value, 8112 * this is set interface specific to firmware from ath11k driver 8113 */ 8114 static int ath11k_mac_op_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 8115 { 8116 struct ath11k *ar = hw->priv; 8117 int param_id = WMI_VDEV_PARAM_RTS_THRESHOLD; 8118 8119 return ath11k_set_vdev_param_to_all_vifs(ar, param_id, value); 8120 } 8121 8122 static int ath11k_mac_op_set_frag_threshold(struct ieee80211_hw *hw, u32 value) 8123 { 8124 /* Even though there's a WMI vdev param for fragmentation threshold no 8125 * known firmware actually implements it. Moreover it is not possible to 8126 * rely frame fragmentation to mac80211 because firmware clears the 8127 * "more fragments" bit in frame control making it impossible for remote 8128 * devices to reassemble frames. 8129 * 8130 * Hence implement a dummy callback just to say fragmentation isn't 8131 * supported. This effectively prevents mac80211 from doing frame 8132 * fragmentation in software. 8133 */ 8134 return -EOPNOTSUPP; 8135 } 8136 8137 static int ath11k_mac_flush_tx_complete(struct ath11k *ar) 8138 { 8139 long time_left; 8140 int ret = 0; 8141 8142 time_left = wait_event_timeout(ar->dp.tx_empty_waitq, 8143 (atomic_read(&ar->dp.num_tx_pending) == 0), 8144 ATH11K_FLUSH_TIMEOUT); 8145 if (time_left == 0) { 8146 ath11k_warn(ar->ab, "failed to flush transmit queue, data pkts pending %d\n", 8147 atomic_read(&ar->dp.num_tx_pending)); 8148 ret = -ETIMEDOUT; 8149 } 8150 8151 time_left = wait_event_timeout(ar->txmgmt_empty_waitq, 8152 (atomic_read(&ar->num_pending_mgmt_tx) == 0), 8153 ATH11K_FLUSH_TIMEOUT); 8154 if (time_left == 0) { 8155 ath11k_warn(ar->ab, "failed to flush mgmt transmit queue, mgmt pkts pending %d\n", 8156 atomic_read(&ar->num_pending_mgmt_tx)); 8157 ret = -ETIMEDOUT; 8158 } 8159 8160 return ret; 8161 } 8162 8163 int ath11k_mac_wait_tx_complete(struct ath11k *ar) 8164 { 8165 ath11k_mac_drain_tx(ar); 8166 return ath11k_mac_flush_tx_complete(ar); 8167 } 8168 8169 static void ath11k_mac_op_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 8170 u32 queues, bool drop) 8171 { 8172 struct ath11k *ar = hw->priv; 8173 8174 if (drop) 8175 return; 8176 8177 ath11k_mac_flush_tx_complete(ar); 8178 } 8179 8180 static bool 8181 ath11k_mac_has_single_legacy_rate(struct ath11k *ar, 8182 enum nl80211_band band, 8183 const struct cfg80211_bitrate_mask *mask) 8184 { 8185 int num_rates = 0; 8186 8187 num_rates = hweight32(mask->control[band].legacy); 8188 8189 if (ath11k_mac_bitrate_mask_num_ht_rates(ar, band, mask)) 8190 return false; 8191 8192 if (ath11k_mac_bitrate_mask_num_vht_rates(ar, band, mask)) 8193 return false; 8194 8195 if (ath11k_mac_bitrate_mask_num_he_rates(ar, band, mask)) 8196 return false; 8197 8198 return num_rates == 1; 8199 } 8200 8201 static __le16 8202 ath11k_mac_get_tx_mcs_map(const struct ieee80211_sta_he_cap *he_cap) 8203 { 8204 if (he_cap->he_cap_elem.phy_cap_info[0] & 8205 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) 8206 return he_cap->he_mcs_nss_supp.tx_mcs_80p80; 8207 8208 if (he_cap->he_cap_elem.phy_cap_info[0] & 8209 IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) 8210 return he_cap->he_mcs_nss_supp.tx_mcs_160; 8211 8212 return he_cap->he_mcs_nss_supp.tx_mcs_80; 8213 } 8214 8215 static bool 8216 ath11k_mac_bitrate_mask_get_single_nss(struct ath11k *ar, 8217 struct ath11k_vif *arvif, 8218 enum nl80211_band band, 8219 const struct cfg80211_bitrate_mask *mask, 8220 int *nss) 8221 { 8222 struct ieee80211_supported_band *sband = &ar->mac.sbands[band]; 8223 u16 vht_mcs_map = le16_to_cpu(sband->vht_cap.vht_mcs.tx_mcs_map); 8224 const struct ieee80211_sta_he_cap *he_cap; 8225 u16 he_mcs_map = 0; 8226 u8 ht_nss_mask = 0; 8227 u8 vht_nss_mask = 0; 8228 u8 he_nss_mask = 0; 8229 int i; 8230 8231 /* No need to consider legacy here. Basic rates are always present 8232 * in bitrate mask 8233 */ 8234 8235 for (i = 0; i < ARRAY_SIZE(mask->control[band].ht_mcs); i++) { 8236 if (mask->control[band].ht_mcs[i] == 0) 8237 continue; 8238 else if (mask->control[band].ht_mcs[i] == 8239 sband->ht_cap.mcs.rx_mask[i]) 8240 ht_nss_mask |= BIT(i); 8241 else 8242 return false; 8243 } 8244 8245 for (i = 0; i < ARRAY_SIZE(mask->control[band].vht_mcs); i++) { 8246 if (mask->control[band].vht_mcs[i] == 0) 8247 continue; 8248 else if (mask->control[band].vht_mcs[i] == 8249 ath11k_mac_get_max_vht_mcs_map(vht_mcs_map, i)) 8250 vht_nss_mask |= BIT(i); 8251 else 8252 return false; 8253 } 8254 8255 he_cap = ieee80211_get_he_iftype_cap_vif(sband, arvif->vif); 8256 if (!he_cap) 8257 return false; 8258 8259 he_mcs_map = le16_to_cpu(ath11k_mac_get_tx_mcs_map(he_cap)); 8260 8261 for (i = 0; i < ARRAY_SIZE(mask->control[band].he_mcs); i++) { 8262 if (mask->control[band].he_mcs[i] == 0) 8263 continue; 8264 8265 if (mask->control[band].he_mcs[i] == 8266 ath11k_mac_get_max_he_mcs_map(he_mcs_map, i)) 8267 he_nss_mask |= BIT(i); 8268 else 8269 return false; 8270 } 8271 8272 if (ht_nss_mask != vht_nss_mask || ht_nss_mask != he_nss_mask) 8273 return false; 8274 8275 if (ht_nss_mask == 0) 8276 return false; 8277 8278 if (BIT(fls(ht_nss_mask)) - 1 != ht_nss_mask) 8279 return false; 8280 8281 *nss = fls(ht_nss_mask); 8282 8283 return true; 8284 } 8285 8286 static int 8287 ath11k_mac_get_single_legacy_rate(struct ath11k *ar, 8288 enum nl80211_band band, 8289 const struct cfg80211_bitrate_mask *mask, 8290 u32 *rate, u8 *nss) 8291 { 8292 int rate_idx; 8293 u16 bitrate; 8294 u8 preamble; 8295 u8 hw_rate; 8296 8297 if (hweight32(mask->control[band].legacy) != 1) 8298 return -EINVAL; 8299 8300 rate_idx = ffs(mask->control[band].legacy) - 1; 8301 8302 if (band == NL80211_BAND_5GHZ || band == NL80211_BAND_6GHZ) 8303 rate_idx += ATH11K_MAC_FIRST_OFDM_RATE_IDX; 8304 8305 hw_rate = ath11k_legacy_rates[rate_idx].hw_value; 8306 bitrate = ath11k_legacy_rates[rate_idx].bitrate; 8307 8308 if (ath11k_mac_bitrate_is_cck(bitrate)) 8309 preamble = WMI_RATE_PREAMBLE_CCK; 8310 else 8311 preamble = WMI_RATE_PREAMBLE_OFDM; 8312 8313 *nss = 1; 8314 *rate = ATH11K_HW_RATE_CODE(hw_rate, 0, preamble); 8315 8316 return 0; 8317 } 8318 8319 static int 8320 ath11k_mac_set_fixed_rate_gi_ltf(struct ath11k_vif *arvif, u8 he_gi, u8 he_ltf) 8321 { 8322 struct ath11k *ar = arvif->ar; 8323 int ret; 8324 8325 /* 0.8 = 0, 1.6 = 2 and 3.2 = 3. */ 8326 if (he_gi && he_gi != 0xFF) 8327 he_gi += 1; 8328 8329 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8330 WMI_VDEV_PARAM_SGI, he_gi); 8331 if (ret) { 8332 ath11k_warn(ar->ab, "failed to set he gi %d: %d\n", 8333 he_gi, ret); 8334 return ret; 8335 } 8336 /* start from 1 */ 8337 if (he_ltf != 0xFF) 8338 he_ltf += 1; 8339 8340 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8341 WMI_VDEV_PARAM_HE_LTF, he_ltf); 8342 if (ret) { 8343 ath11k_warn(ar->ab, "failed to set he ltf %d: %d\n", 8344 he_ltf, ret); 8345 return ret; 8346 } 8347 8348 return 0; 8349 } 8350 8351 static int 8352 ath11k_mac_set_auto_rate_gi_ltf(struct ath11k_vif *arvif, u16 he_gi, u8 he_ltf) 8353 { 8354 struct ath11k *ar = arvif->ar; 8355 int ret; 8356 u32 he_ar_gi_ltf; 8357 8358 if (he_gi != 0xFF) { 8359 switch (he_gi) { 8360 case NL80211_RATE_INFO_HE_GI_0_8: 8361 he_gi = WMI_AUTORATE_800NS_GI; 8362 break; 8363 case NL80211_RATE_INFO_HE_GI_1_6: 8364 he_gi = WMI_AUTORATE_1600NS_GI; 8365 break; 8366 case NL80211_RATE_INFO_HE_GI_3_2: 8367 he_gi = WMI_AUTORATE_3200NS_GI; 8368 break; 8369 default: 8370 ath11k_warn(ar->ab, "invalid he gi: %d\n", he_gi); 8371 return -EINVAL; 8372 } 8373 } 8374 8375 if (he_ltf != 0xFF) { 8376 switch (he_ltf) { 8377 case NL80211_RATE_INFO_HE_1XLTF: 8378 he_ltf = WMI_HE_AUTORATE_LTF_1X; 8379 break; 8380 case NL80211_RATE_INFO_HE_2XLTF: 8381 he_ltf = WMI_HE_AUTORATE_LTF_2X; 8382 break; 8383 case NL80211_RATE_INFO_HE_4XLTF: 8384 he_ltf = WMI_HE_AUTORATE_LTF_4X; 8385 break; 8386 default: 8387 ath11k_warn(ar->ab, "invalid he ltf: %d\n", he_ltf); 8388 return -EINVAL; 8389 } 8390 } 8391 8392 he_ar_gi_ltf = he_gi | he_ltf; 8393 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8394 WMI_VDEV_PARAM_AUTORATE_MISC_CFG, 8395 he_ar_gi_ltf); 8396 if (ret) { 8397 ath11k_warn(ar->ab, 8398 "failed to set he autorate gi %u ltf %u: %d\n", 8399 he_gi, he_ltf, ret); 8400 return ret; 8401 } 8402 8403 return 0; 8404 } 8405 8406 static int ath11k_mac_set_rate_params(struct ath11k_vif *arvif, 8407 u32 rate, u8 nss, u8 sgi, u8 ldpc, 8408 u8 he_gi, u8 he_ltf, bool he_fixed_rate) 8409 { 8410 struct ath11k *ar = arvif->ar; 8411 u32 vdev_param; 8412 int ret; 8413 8414 lockdep_assert_held(&ar->conf_mutex); 8415 8416 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 8417 "set rate params vdev %i rate 0x%02x nss 0x%02x sgi 0x%02x ldpc 0x%02x he_gi 0x%02x he_ltf 0x%02x he_fixed_rate %d\n", 8418 arvif->vdev_id, rate, nss, sgi, ldpc, he_gi, 8419 he_ltf, he_fixed_rate); 8420 8421 if (!arvif->vif->bss_conf.he_support) { 8422 vdev_param = WMI_VDEV_PARAM_FIXED_RATE; 8423 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8424 vdev_param, rate); 8425 if (ret) { 8426 ath11k_warn(ar->ab, "failed to set fixed rate param 0x%02x: %d\n", 8427 rate, ret); 8428 return ret; 8429 } 8430 } 8431 8432 vdev_param = WMI_VDEV_PARAM_NSS; 8433 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8434 vdev_param, nss); 8435 if (ret) { 8436 ath11k_warn(ar->ab, "failed to set nss param %d: %d\n", 8437 nss, ret); 8438 return ret; 8439 } 8440 8441 vdev_param = WMI_VDEV_PARAM_LDPC; 8442 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8443 vdev_param, ldpc); 8444 if (ret) { 8445 ath11k_warn(ar->ab, "failed to set ldpc param %d: %d\n", 8446 ldpc, ret); 8447 return ret; 8448 } 8449 8450 if (arvif->vif->bss_conf.he_support) { 8451 if (he_fixed_rate) { 8452 ret = ath11k_mac_set_fixed_rate_gi_ltf(arvif, he_gi, 8453 he_ltf); 8454 if (ret) { 8455 ath11k_warn(ar->ab, "failed to set fixed rate gi ltf: %d\n", 8456 ret); 8457 return ret; 8458 } 8459 } else { 8460 ret = ath11k_mac_set_auto_rate_gi_ltf(arvif, he_gi, 8461 he_ltf); 8462 if (ret) { 8463 ath11k_warn(ar->ab, "failed to set auto rate gi ltf: %d\n", 8464 ret); 8465 return ret; 8466 } 8467 } 8468 } else { 8469 vdev_param = WMI_VDEV_PARAM_SGI; 8470 ret = ath11k_wmi_vdev_set_param_cmd(ar, arvif->vdev_id, 8471 vdev_param, sgi); 8472 if (ret) { 8473 ath11k_warn(ar->ab, "failed to set sgi param %d: %d\n", 8474 sgi, ret); 8475 return ret; 8476 } 8477 } 8478 8479 return 0; 8480 } 8481 8482 static bool 8483 ath11k_mac_vht_mcs_range_present(struct ath11k *ar, 8484 enum nl80211_band band, 8485 const struct cfg80211_bitrate_mask *mask) 8486 { 8487 int i; 8488 u16 vht_mcs; 8489 8490 for (i = 0; i < NL80211_VHT_NSS_MAX; i++) { 8491 vht_mcs = mask->control[band].vht_mcs[i]; 8492 8493 switch (vht_mcs) { 8494 case 0: 8495 case BIT(8) - 1: 8496 case BIT(9) - 1: 8497 case BIT(10) - 1: 8498 break; 8499 default: 8500 return false; 8501 } 8502 } 8503 8504 return true; 8505 } 8506 8507 static bool 8508 ath11k_mac_he_mcs_range_present(struct ath11k *ar, 8509 enum nl80211_band band, 8510 const struct cfg80211_bitrate_mask *mask) 8511 { 8512 int i; 8513 u16 he_mcs; 8514 8515 for (i = 0; i < NL80211_HE_NSS_MAX; i++) { 8516 he_mcs = mask->control[band].he_mcs[i]; 8517 8518 switch (he_mcs) { 8519 case 0: 8520 case BIT(8) - 1: 8521 case BIT(10) - 1: 8522 case BIT(12) - 1: 8523 break; 8524 default: 8525 return false; 8526 } 8527 } 8528 8529 return true; 8530 } 8531 8532 static void ath11k_mac_set_bitrate_mask_iter(void *data, 8533 struct ieee80211_sta *sta) 8534 { 8535 struct ath11k_vif *arvif = data; 8536 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 8537 struct ath11k *ar = arvif->ar; 8538 8539 spin_lock_bh(&ar->data_lock); 8540 arsta->changed |= IEEE80211_RC_SUPP_RATES_CHANGED; 8541 spin_unlock_bh(&ar->data_lock); 8542 8543 ieee80211_queue_work(ar->hw, &arsta->update_wk); 8544 } 8545 8546 static void ath11k_mac_disable_peer_fixed_rate(void *data, 8547 struct ieee80211_sta *sta) 8548 { 8549 struct ath11k_vif *arvif = data; 8550 struct ath11k *ar = arvif->ar; 8551 int ret; 8552 8553 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 8554 arvif->vdev_id, 8555 WMI_PEER_PARAM_FIXED_RATE, 8556 WMI_FIXED_RATE_NONE); 8557 if (ret) 8558 ath11k_warn(ar->ab, 8559 "failed to disable peer fixed rate for STA %pM ret %d\n", 8560 sta->addr, ret); 8561 } 8562 8563 static bool 8564 ath11k_mac_validate_vht_he_fixed_rate_settings(struct ath11k *ar, enum nl80211_band band, 8565 const struct cfg80211_bitrate_mask *mask) 8566 { 8567 bool he_fixed_rate = false, vht_fixed_rate = false; 8568 struct ath11k_peer *peer; 8569 const u16 *vht_mcs_mask, *he_mcs_mask; 8570 struct ieee80211_link_sta *deflink; 8571 u8 vht_nss, he_nss; 8572 bool ret = true; 8573 8574 vht_mcs_mask = mask->control[band].vht_mcs; 8575 he_mcs_mask = mask->control[band].he_mcs; 8576 8577 if (ath11k_mac_bitrate_mask_num_vht_rates(ar, band, mask) == 1) 8578 vht_fixed_rate = true; 8579 8580 if (ath11k_mac_bitrate_mask_num_he_rates(ar, band, mask) == 1) 8581 he_fixed_rate = true; 8582 8583 if (!vht_fixed_rate && !he_fixed_rate) 8584 return true; 8585 8586 vht_nss = ath11k_mac_max_vht_nss(vht_mcs_mask); 8587 he_nss = ath11k_mac_max_he_nss(he_mcs_mask); 8588 8589 rcu_read_lock(); 8590 spin_lock_bh(&ar->ab->base_lock); 8591 list_for_each_entry(peer, &ar->ab->peers, list) { 8592 if (peer->sta) { 8593 deflink = &peer->sta->deflink; 8594 8595 if (vht_fixed_rate && (!deflink->vht_cap.vht_supported || 8596 deflink->rx_nss < vht_nss)) { 8597 ret = false; 8598 goto out; 8599 } 8600 8601 if (he_fixed_rate && (!deflink->he_cap.has_he || 8602 deflink->rx_nss < he_nss)) { 8603 ret = false; 8604 goto out; 8605 } 8606 } 8607 } 8608 8609 out: 8610 spin_unlock_bh(&ar->ab->base_lock); 8611 rcu_read_unlock(); 8612 return ret; 8613 } 8614 8615 static int 8616 ath11k_mac_op_set_bitrate_mask(struct ieee80211_hw *hw, 8617 struct ieee80211_vif *vif, 8618 const struct cfg80211_bitrate_mask *mask) 8619 { 8620 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 8621 struct cfg80211_chan_def def; 8622 struct ath11k_pdev_cap *cap; 8623 struct ath11k *ar = arvif->ar; 8624 enum nl80211_band band; 8625 const u8 *ht_mcs_mask; 8626 const u16 *vht_mcs_mask; 8627 const u16 *he_mcs_mask; 8628 u8 he_ltf = 0; 8629 u8 he_gi = 0; 8630 u32 rate; 8631 u8 nss; 8632 u8 sgi; 8633 u8 ldpc; 8634 int single_nss; 8635 int ret; 8636 int num_rates; 8637 bool he_fixed_rate = false; 8638 8639 if (ath11k_mac_vif_chan(vif, &def)) 8640 return -EPERM; 8641 8642 band = def.chan->band; 8643 cap = &ar->pdev->cap; 8644 ht_mcs_mask = mask->control[band].ht_mcs; 8645 vht_mcs_mask = mask->control[band].vht_mcs; 8646 he_mcs_mask = mask->control[band].he_mcs; 8647 ldpc = !!(cap->band[band].ht_cap_info & WMI_HT_CAP_TX_LDPC); 8648 8649 sgi = mask->control[band].gi; 8650 if (sgi == NL80211_TXRATE_FORCE_LGI) 8651 return -EINVAL; 8652 8653 he_gi = mask->control[band].he_gi; 8654 he_ltf = mask->control[band].he_ltf; 8655 8656 /* mac80211 doesn't support sending a fixed HT/VHT MCS alone, rather it 8657 * requires passing at least one of used basic rates along with them. 8658 * Fixed rate setting across different preambles(legacy, HT, VHT) is 8659 * not supported by the FW. Hence use of FIXED_RATE vdev param is not 8660 * suitable for setting single HT/VHT rates. 8661 * But, there could be a single basic rate passed from userspace which 8662 * can be done through the FIXED_RATE param. 8663 */ 8664 if (ath11k_mac_has_single_legacy_rate(ar, band, mask)) { 8665 ret = ath11k_mac_get_single_legacy_rate(ar, band, mask, &rate, 8666 &nss); 8667 if (ret) { 8668 ath11k_warn(ar->ab, "failed to get single legacy rate for vdev %i: %d\n", 8669 arvif->vdev_id, ret); 8670 return ret; 8671 } 8672 ieee80211_iterate_stations_atomic(ar->hw, 8673 ath11k_mac_disable_peer_fixed_rate, 8674 arvif); 8675 } else if (ath11k_mac_bitrate_mask_get_single_nss(ar, arvif, band, mask, 8676 &single_nss)) { 8677 rate = WMI_FIXED_RATE_NONE; 8678 nss = single_nss; 8679 mutex_lock(&ar->conf_mutex); 8680 arvif->bitrate_mask = *mask; 8681 ieee80211_iterate_stations_atomic(ar->hw, 8682 ath11k_mac_set_bitrate_mask_iter, 8683 arvif); 8684 mutex_unlock(&ar->conf_mutex); 8685 } else { 8686 rate = WMI_FIXED_RATE_NONE; 8687 8688 if (!ath11k_mac_validate_vht_he_fixed_rate_settings(ar, band, mask)) 8689 ath11k_warn(ar->ab, 8690 "could not update fixed rate settings to all peers due to mcs/nss incompatibility\n"); 8691 nss = min_t(u32, ar->num_tx_chains, 8692 ath11k_mac_max_nss(ht_mcs_mask, vht_mcs_mask, he_mcs_mask)); 8693 8694 /* If multiple rates across different preambles are given 8695 * we can reconfigure this info with all peers using PEER_ASSOC 8696 * command with the below exception cases. 8697 * - Single VHT Rate : peer_assoc command accommodates only MCS 8698 * range values i.e 0-7, 0-8, 0-9 for VHT. Though mac80211 8699 * mandates passing basic rates along with HT/VHT rates, FW 8700 * doesn't allow switching from VHT to Legacy. Hence instead of 8701 * setting legacy and VHT rates using RATEMASK_CMD vdev cmd, 8702 * we could set this VHT rate as peer fixed rate param, which 8703 * will override FIXED rate and FW rate control algorithm. 8704 * If single VHT rate is passed along with HT rates, we select 8705 * the VHT rate as fixed rate for vht peers. 8706 * - Multiple VHT Rates : When Multiple VHT rates are given,this 8707 * can be set using RATEMASK CMD which uses FW rate-ctl alg. 8708 * TODO: Setting multiple VHT MCS and replacing peer_assoc with 8709 * RATEMASK_CMDID can cover all use cases of setting rates 8710 * across multiple preambles and rates within same type. 8711 * But requires more validation of the command at this point. 8712 */ 8713 8714 num_rates = ath11k_mac_bitrate_mask_num_vht_rates(ar, band, 8715 mask); 8716 8717 if (!ath11k_mac_vht_mcs_range_present(ar, band, mask) && 8718 num_rates > 1) { 8719 /* TODO: Handle multiple VHT MCS values setting using 8720 * RATEMASK CMD 8721 */ 8722 ath11k_warn(ar->ab, 8723 "setting %d mcs values in bitrate mask not supported\n", 8724 num_rates); 8725 return -EINVAL; 8726 } 8727 8728 num_rates = ath11k_mac_bitrate_mask_num_he_rates(ar, band, 8729 mask); 8730 if (num_rates == 1) 8731 he_fixed_rate = true; 8732 8733 if (!ath11k_mac_he_mcs_range_present(ar, band, mask) && 8734 num_rates > 1) { 8735 ath11k_warn(ar->ab, 8736 "Setting more than one HE MCS Value in bitrate mask not supported\n"); 8737 return -EINVAL; 8738 } 8739 8740 mutex_lock(&ar->conf_mutex); 8741 ieee80211_iterate_stations_atomic(ar->hw, 8742 ath11k_mac_disable_peer_fixed_rate, 8743 arvif); 8744 8745 arvif->bitrate_mask = *mask; 8746 ieee80211_iterate_stations_atomic(ar->hw, 8747 ath11k_mac_set_bitrate_mask_iter, 8748 arvif); 8749 8750 mutex_unlock(&ar->conf_mutex); 8751 } 8752 8753 mutex_lock(&ar->conf_mutex); 8754 8755 ret = ath11k_mac_set_rate_params(arvif, rate, nss, sgi, ldpc, he_gi, 8756 he_ltf, he_fixed_rate); 8757 if (ret) { 8758 ath11k_warn(ar->ab, "failed to set rate params on vdev %i: %d\n", 8759 arvif->vdev_id, ret); 8760 } 8761 8762 mutex_unlock(&ar->conf_mutex); 8763 8764 return ret; 8765 } 8766 8767 static void 8768 ath11k_mac_op_reconfig_complete(struct ieee80211_hw *hw, 8769 enum ieee80211_reconfig_type reconfig_type) 8770 { 8771 struct ath11k *ar = hw->priv; 8772 struct ath11k_base *ab = ar->ab; 8773 int recovery_count; 8774 struct ath11k_vif *arvif; 8775 8776 if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART) 8777 return; 8778 8779 mutex_lock(&ar->conf_mutex); 8780 8781 if (ar->state == ATH11K_STATE_RESTARTED) { 8782 ath11k_warn(ar->ab, "pdev %d successfully recovered\n", 8783 ar->pdev->pdev_id); 8784 ar->state = ATH11K_STATE_ON; 8785 ieee80211_wake_queues(ar->hw); 8786 8787 if (ar->ab->hw_params.current_cc_support && 8788 ar->alpha2[0] != 0 && ar->alpha2[1] != 0) 8789 ath11k_reg_set_cc(ar); 8790 8791 if (ab->is_reset) { 8792 recovery_count = atomic_inc_return(&ab->recovery_count); 8793 ath11k_dbg(ab, ATH11K_DBG_BOOT, 8794 "recovery count %d\n", recovery_count); 8795 /* When there are multiple radios in an SOC, 8796 * the recovery has to be done for each radio 8797 */ 8798 if (recovery_count == ab->num_radios) { 8799 atomic_dec(&ab->reset_count); 8800 complete(&ab->reset_complete); 8801 ab->is_reset = false; 8802 atomic_set(&ab->fail_cont_count, 0); 8803 ath11k_dbg(ab, ATH11K_DBG_BOOT, "reset success\n"); 8804 } 8805 } 8806 if (ar->ab->hw_params.support_fw_mac_sequence) { 8807 list_for_each_entry(arvif, &ar->arvifs, list) { 8808 if (arvif->is_up && arvif->vdev_type == WMI_VDEV_TYPE_STA) 8809 ieee80211_hw_restart_disconnect(arvif->vif); 8810 } 8811 } 8812 } 8813 8814 mutex_unlock(&ar->conf_mutex); 8815 } 8816 8817 static void 8818 ath11k_mac_update_bss_chan_survey(struct ath11k *ar, 8819 struct ieee80211_channel *channel) 8820 { 8821 int ret; 8822 enum wmi_bss_chan_info_req_type type = WMI_BSS_SURVEY_REQ_TYPE_READ; 8823 8824 lockdep_assert_held(&ar->conf_mutex); 8825 8826 if (!test_bit(WMI_TLV_SERVICE_BSS_CHANNEL_INFO_64, ar->ab->wmi_ab.svc_map) || 8827 ar->rx_channel != channel) 8828 return; 8829 8830 if (ar->scan.state != ATH11K_SCAN_IDLE) { 8831 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 8832 "ignoring bss chan info req while scanning..\n"); 8833 return; 8834 } 8835 8836 reinit_completion(&ar->bss_survey_done); 8837 8838 ret = ath11k_wmi_pdev_bss_chan_info_request(ar, type); 8839 if (ret) { 8840 ath11k_warn(ar->ab, "failed to send pdev bss chan info request\n"); 8841 return; 8842 } 8843 8844 ret = wait_for_completion_timeout(&ar->bss_survey_done, 3 * HZ); 8845 if (ret == 0) 8846 ath11k_warn(ar->ab, "bss channel survey timed out\n"); 8847 } 8848 8849 static int ath11k_mac_op_get_survey(struct ieee80211_hw *hw, int idx, 8850 struct survey_info *survey) 8851 { 8852 struct ath11k *ar = hw->priv; 8853 struct ieee80211_supported_band *sband; 8854 struct survey_info *ar_survey; 8855 int ret = 0; 8856 8857 if (idx >= ATH11K_NUM_CHANS) 8858 return -ENOENT; 8859 8860 ar_survey = &ar->survey[idx]; 8861 8862 mutex_lock(&ar->conf_mutex); 8863 8864 sband = hw->wiphy->bands[NL80211_BAND_2GHZ]; 8865 if (sband && idx >= sband->n_channels) { 8866 idx -= sband->n_channels; 8867 sband = NULL; 8868 } 8869 8870 if (!sband) 8871 sband = hw->wiphy->bands[NL80211_BAND_5GHZ]; 8872 if (sband && idx >= sband->n_channels) { 8873 idx -= sband->n_channels; 8874 sband = NULL; 8875 } 8876 8877 if (!sband) 8878 sband = hw->wiphy->bands[NL80211_BAND_6GHZ]; 8879 if (!sband || idx >= sband->n_channels) { 8880 ret = -ENOENT; 8881 goto exit; 8882 } 8883 8884 ath11k_mac_update_bss_chan_survey(ar, &sband->channels[idx]); 8885 8886 spin_lock_bh(&ar->data_lock); 8887 memcpy(survey, ar_survey, sizeof(*survey)); 8888 spin_unlock_bh(&ar->data_lock); 8889 8890 survey->channel = &sband->channels[idx]; 8891 8892 if (ar->rx_channel == survey->channel) 8893 survey->filled |= SURVEY_INFO_IN_USE; 8894 8895 exit: 8896 mutex_unlock(&ar->conf_mutex); 8897 return ret; 8898 } 8899 8900 static void ath11k_mac_put_chain_rssi(struct station_info *sinfo, 8901 struct ath11k_sta *arsta, 8902 char *pre, 8903 bool clear) 8904 { 8905 struct ath11k *ar = arsta->arvif->ar; 8906 int i; 8907 s8 rssi; 8908 8909 for (i = 0; i < ARRAY_SIZE(sinfo->chain_signal); i++) { 8910 sinfo->chains &= ~BIT(i); 8911 rssi = arsta->chain_signal[i]; 8912 if (clear) 8913 arsta->chain_signal[i] = ATH11K_INVALID_RSSI_FULL; 8914 8915 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 8916 "sta statistics %s rssi[%d] %d\n", pre, i, rssi); 8917 8918 if (rssi != ATH11K_DEFAULT_NOISE_FLOOR && 8919 rssi != ATH11K_INVALID_RSSI_FULL && 8920 rssi != ATH11K_INVALID_RSSI_EMPTY && 8921 rssi != 0) { 8922 sinfo->chain_signal[i] = rssi; 8923 sinfo->chains |= BIT(i); 8924 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL); 8925 } 8926 } 8927 } 8928 8929 static void ath11k_mac_op_sta_statistics(struct ieee80211_hw *hw, 8930 struct ieee80211_vif *vif, 8931 struct ieee80211_sta *sta, 8932 struct station_info *sinfo) 8933 { 8934 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 8935 struct ath11k *ar = arsta->arvif->ar; 8936 s8 signal; 8937 bool db2dbm = test_bit(WMI_TLV_SERVICE_HW_DB2DBM_CONVERSION_SUPPORT, 8938 ar->ab->wmi_ab.svc_map); 8939 8940 sinfo->rx_duration = arsta->rx_duration; 8941 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_RX_DURATION); 8942 8943 sinfo->tx_duration = arsta->tx_duration; 8944 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_DURATION); 8945 8946 if (arsta->txrate.legacy || arsta->txrate.nss) { 8947 if (arsta->txrate.legacy) { 8948 sinfo->txrate.legacy = arsta->txrate.legacy; 8949 } else { 8950 sinfo->txrate.mcs = arsta->txrate.mcs; 8951 sinfo->txrate.nss = arsta->txrate.nss; 8952 sinfo->txrate.bw = arsta->txrate.bw; 8953 sinfo->txrate.he_gi = arsta->txrate.he_gi; 8954 sinfo->txrate.he_dcm = arsta->txrate.he_dcm; 8955 sinfo->txrate.he_ru_alloc = arsta->txrate.he_ru_alloc; 8956 } 8957 sinfo->txrate.flags = arsta->txrate.flags; 8958 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_TX_BITRATE); 8959 } 8960 8961 ath11k_mac_put_chain_rssi(sinfo, arsta, "ppdu", false); 8962 8963 if (!(sinfo->filled & BIT_ULL(NL80211_STA_INFO_CHAIN_SIGNAL)) && 8964 arsta->arvif->vdev_type == WMI_VDEV_TYPE_STA && 8965 ar->ab->hw_params.supports_rssi_stats && 8966 !ath11k_debugfs_get_fw_stats(ar, ar->pdev->pdev_id, 0, 8967 WMI_REQUEST_RSSI_PER_CHAIN_STAT)) { 8968 ath11k_mac_put_chain_rssi(sinfo, arsta, "fw stats", true); 8969 } 8970 8971 signal = arsta->rssi_comb; 8972 if (!signal && 8973 arsta->arvif->vdev_type == WMI_VDEV_TYPE_STA && 8974 ar->ab->hw_params.supports_rssi_stats && 8975 !(ath11k_debugfs_get_fw_stats(ar, ar->pdev->pdev_id, 0, 8976 WMI_REQUEST_VDEV_STAT))) 8977 signal = arsta->rssi_beacon; 8978 8979 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, 8980 "sta statistics db2dbm %u rssi comb %d rssi beacon %d\n", 8981 db2dbm, arsta->rssi_comb, arsta->rssi_beacon); 8982 8983 if (signal) { 8984 sinfo->signal = db2dbm ? signal : signal + ATH11K_DEFAULT_NOISE_FLOOR; 8985 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL); 8986 } 8987 8988 sinfo->signal_avg = ewma_avg_rssi_read(&arsta->avg_rssi); 8989 8990 if (!db2dbm) 8991 sinfo->signal_avg += ATH11K_DEFAULT_NOISE_FLOOR; 8992 8993 sinfo->filled |= BIT_ULL(NL80211_STA_INFO_SIGNAL_AVG); 8994 } 8995 8996 #if IS_ENABLED(CONFIG_IPV6) 8997 static void ath11k_generate_ns_mc_addr(struct ath11k *ar, 8998 struct ath11k_arp_ns_offload *offload) 8999 { 9000 int i; 9001 9002 for (i = 0; i < offload->ipv6_count; i++) { 9003 offload->self_ipv6_addr[i][0] = 0xff; 9004 offload->self_ipv6_addr[i][1] = 0x02; 9005 offload->self_ipv6_addr[i][11] = 0x01; 9006 offload->self_ipv6_addr[i][12] = 0xff; 9007 offload->self_ipv6_addr[i][13] = 9008 offload->ipv6_addr[i][13]; 9009 offload->self_ipv6_addr[i][14] = 9010 offload->ipv6_addr[i][14]; 9011 offload->self_ipv6_addr[i][15] = 9012 offload->ipv6_addr[i][15]; 9013 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "NS solicited addr %pI6\n", 9014 offload->self_ipv6_addr[i]); 9015 } 9016 } 9017 9018 static void ath11k_mac_op_ipv6_changed(struct ieee80211_hw *hw, 9019 struct ieee80211_vif *vif, 9020 struct inet6_dev *idev) 9021 { 9022 struct ath11k *ar = hw->priv; 9023 struct ath11k_arp_ns_offload *offload; 9024 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9025 struct inet6_ifaddr *ifa6; 9026 struct ifacaddr6 *ifaca6; 9027 u32 count, scope; 9028 9029 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "op ipv6 changed\n"); 9030 9031 offload = &arvif->arp_ns_offload; 9032 count = 0; 9033 9034 /* The _ipv6_changed() is called with RCU lock already held in 9035 * atomic_notifier_call_chain(), so we don't need to call 9036 * rcu_read_lock() again here. But note that with CONFIG_PREEMPT_RT 9037 * enabled, read_lock_bh() also calls rcu_read_lock(). This is OK 9038 * because RCU read critical section is allowed to get nested. 9039 */ 9040 read_lock_bh(&idev->lock); 9041 9042 memset(offload->ipv6_addr, 0, sizeof(offload->ipv6_addr)); 9043 memset(offload->self_ipv6_addr, 0, sizeof(offload->self_ipv6_addr)); 9044 memcpy(offload->mac_addr, vif->addr, ETH_ALEN); 9045 9046 /* get unicast address */ 9047 list_for_each_entry(ifa6, &idev->addr_list, if_list) { 9048 if (count >= ATH11K_IPV6_MAX_COUNT) 9049 goto generate; 9050 9051 if (ifa6->flags & IFA_F_DADFAILED) 9052 continue; 9053 scope = ipv6_addr_src_scope(&ifa6->addr); 9054 if (scope == IPV6_ADDR_SCOPE_LINKLOCAL || 9055 scope == IPV6_ADDR_SCOPE_GLOBAL) { 9056 memcpy(offload->ipv6_addr[count], &ifa6->addr.s6_addr, 9057 sizeof(ifa6->addr.s6_addr)); 9058 offload->ipv6_type[count] = ATH11K_IPV6_UC_TYPE; 9059 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "count %d ipv6 uc %pI6 scope %d\n", 9060 count, offload->ipv6_addr[count], 9061 scope); 9062 count++; 9063 } else { 9064 ath11k_warn(ar->ab, "Unsupported ipv6 scope: %d\n", scope); 9065 } 9066 } 9067 9068 /* get anycast address */ 9069 for (ifaca6 = rcu_dereference(idev->ac_list); ifaca6; 9070 ifaca6 = rcu_dereference(ifaca6->aca_next)) { 9071 if (count >= ATH11K_IPV6_MAX_COUNT) 9072 goto generate; 9073 9074 scope = ipv6_addr_src_scope(&ifaca6->aca_addr); 9075 if (scope == IPV6_ADDR_SCOPE_LINKLOCAL || 9076 scope == IPV6_ADDR_SCOPE_GLOBAL) { 9077 memcpy(offload->ipv6_addr[count], &ifaca6->aca_addr, 9078 sizeof(ifaca6->aca_addr)); 9079 offload->ipv6_type[count] = ATH11K_IPV6_AC_TYPE; 9080 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "count %d ipv6 ac %pI6 scope %d\n", 9081 count, offload->ipv6_addr[count], 9082 scope); 9083 count++; 9084 } else { 9085 ath11k_warn(ar->ab, "Unsupported ipv scope: %d\n", scope); 9086 } 9087 } 9088 9089 generate: 9090 offload->ipv6_count = count; 9091 read_unlock_bh(&idev->lock); 9092 9093 /* generate ns multicast address */ 9094 ath11k_generate_ns_mc_addr(ar, offload); 9095 } 9096 #endif 9097 9098 static void ath11k_mac_op_set_rekey_data(struct ieee80211_hw *hw, 9099 struct ieee80211_vif *vif, 9100 struct cfg80211_gtk_rekey_data *data) 9101 { 9102 struct ath11k *ar = hw->priv; 9103 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9104 struct ath11k_rekey_data *rekey_data = &arvif->rekey_data; 9105 9106 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "set rekey data vdev %d\n", 9107 arvif->vdev_id); 9108 9109 mutex_lock(&ar->conf_mutex); 9110 9111 memcpy(rekey_data->kck, data->kck, NL80211_KCK_LEN); 9112 memcpy(rekey_data->kek, data->kek, NL80211_KEK_LEN); 9113 9114 /* The supplicant works on big-endian, the firmware expects it on 9115 * little endian. 9116 */ 9117 rekey_data->replay_ctr = get_unaligned_be64(data->replay_ctr); 9118 9119 arvif->rekey_data.enable_offload = true; 9120 9121 ath11k_dbg_dump(ar->ab, ATH11K_DBG_MAC, "kck", NULL, 9122 rekey_data->kck, NL80211_KCK_LEN); 9123 ath11k_dbg_dump(ar->ab, ATH11K_DBG_MAC, "kek", NULL, 9124 rekey_data->kck, NL80211_KEK_LEN); 9125 ath11k_dbg_dump(ar->ab, ATH11K_DBG_MAC, "replay ctr", NULL, 9126 &rekey_data->replay_ctr, sizeof(rekey_data->replay_ctr)); 9127 9128 mutex_unlock(&ar->conf_mutex); 9129 } 9130 9131 static int ath11k_mac_op_set_bios_sar_specs(struct ieee80211_hw *hw, 9132 const struct cfg80211_sar_specs *sar) 9133 { 9134 struct ath11k *ar = hw->priv; 9135 const struct cfg80211_sar_sub_specs *sspec; 9136 int ret, index; 9137 u8 *sar_tbl; 9138 u32 i; 9139 9140 if (!sar || sar->type != NL80211_SAR_TYPE_POWER || 9141 sar->num_sub_specs == 0) 9142 return -EINVAL; 9143 9144 mutex_lock(&ar->conf_mutex); 9145 9146 if (!test_bit(WMI_TLV_SERVICE_BIOS_SAR_SUPPORT, ar->ab->wmi_ab.svc_map) || 9147 !ar->ab->hw_params.bios_sar_capa) { 9148 ret = -EOPNOTSUPP; 9149 goto exit; 9150 } 9151 9152 ret = ath11k_wmi_pdev_set_bios_geo_table_param(ar); 9153 if (ret) { 9154 ath11k_warn(ar->ab, "failed to set geo table: %d\n", ret); 9155 goto exit; 9156 } 9157 9158 sar_tbl = kzalloc(BIOS_SAR_TABLE_LEN, GFP_KERNEL); 9159 if (!sar_tbl) { 9160 ret = -ENOMEM; 9161 goto exit; 9162 } 9163 9164 sspec = sar->sub_specs; 9165 for (i = 0; i < sar->num_sub_specs; i++) { 9166 if (sspec->freq_range_index >= (BIOS_SAR_TABLE_LEN >> 1)) { 9167 ath11k_warn(ar->ab, "Ignore bad frequency index %u, max allowed %u\n", 9168 sspec->freq_range_index, BIOS_SAR_TABLE_LEN >> 1); 9169 continue; 9170 } 9171 9172 /* chain0 and chain1 share same power setting */ 9173 sar_tbl[sspec->freq_range_index] = sspec->power; 9174 index = sspec->freq_range_index + (BIOS_SAR_TABLE_LEN >> 1); 9175 sar_tbl[index] = sspec->power; 9176 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "sar tbl[%d] = %d\n", 9177 sspec->freq_range_index, sar_tbl[sspec->freq_range_index]); 9178 sspec++; 9179 } 9180 9181 ret = ath11k_wmi_pdev_set_bios_sar_table_param(ar, sar_tbl); 9182 if (ret) 9183 ath11k_warn(ar->ab, "failed to set sar power: %d", ret); 9184 9185 kfree(sar_tbl); 9186 exit: 9187 mutex_unlock(&ar->conf_mutex); 9188 9189 return ret; 9190 } 9191 9192 static int ath11k_mac_op_cancel_remain_on_channel(struct ieee80211_hw *hw, 9193 struct ieee80211_vif *vif) 9194 { 9195 struct ath11k *ar = hw->priv; 9196 9197 mutex_lock(&ar->conf_mutex); 9198 9199 spin_lock_bh(&ar->data_lock); 9200 ar->scan.roc_notify = false; 9201 spin_unlock_bh(&ar->data_lock); 9202 9203 ath11k_scan_abort(ar); 9204 9205 mutex_unlock(&ar->conf_mutex); 9206 9207 cancel_delayed_work_sync(&ar->scan.timeout); 9208 9209 return 0; 9210 } 9211 9212 static int ath11k_mac_op_remain_on_channel(struct ieee80211_hw *hw, 9213 struct ieee80211_vif *vif, 9214 struct ieee80211_channel *chan, 9215 int duration, 9216 enum ieee80211_roc_type type) 9217 { 9218 struct ath11k *ar = hw->priv; 9219 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9220 struct scan_req_params *arg; 9221 int ret; 9222 u32 scan_time_msec; 9223 9224 mutex_lock(&ar->conf_mutex); 9225 9226 spin_lock_bh(&ar->data_lock); 9227 switch (ar->scan.state) { 9228 case ATH11K_SCAN_IDLE: 9229 reinit_completion(&ar->scan.started); 9230 reinit_completion(&ar->scan.completed); 9231 reinit_completion(&ar->scan.on_channel); 9232 ar->scan.state = ATH11K_SCAN_STARTING; 9233 ar->scan.is_roc = true; 9234 ar->scan.vdev_id = arvif->vdev_id; 9235 ar->scan.roc_freq = chan->center_freq; 9236 ar->scan.roc_notify = true; 9237 ret = 0; 9238 break; 9239 case ATH11K_SCAN_STARTING: 9240 case ATH11K_SCAN_RUNNING: 9241 case ATH11K_SCAN_ABORTING: 9242 ret = -EBUSY; 9243 break; 9244 } 9245 spin_unlock_bh(&ar->data_lock); 9246 9247 if (ret) 9248 goto exit; 9249 9250 scan_time_msec = ar->hw->wiphy->max_remain_on_channel_duration * 2; 9251 9252 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 9253 if (!arg) { 9254 ret = -ENOMEM; 9255 goto exit; 9256 } 9257 ath11k_wmi_start_scan_init(ar, arg); 9258 arg->num_chan = 1; 9259 arg->chan_list = kcalloc(arg->num_chan, sizeof(*arg->chan_list), 9260 GFP_KERNEL); 9261 if (!arg->chan_list) { 9262 ret = -ENOMEM; 9263 goto free_arg; 9264 } 9265 9266 arg->vdev_id = arvif->vdev_id; 9267 arg->scan_id = ATH11K_SCAN_ID; 9268 arg->chan_list[0] = chan->center_freq; 9269 arg->dwell_time_active = scan_time_msec; 9270 arg->dwell_time_passive = scan_time_msec; 9271 arg->max_scan_time = scan_time_msec; 9272 arg->scan_f_passive = 1; 9273 arg->burst_duration = duration; 9274 9275 if (!ar->ab->hw_params.single_pdev_only) 9276 arg->scan_f_filter_prb_req = 1; 9277 9278 ret = ath11k_start_scan(ar, arg); 9279 if (ret) { 9280 ath11k_warn(ar->ab, "failed to start roc scan: %d\n", ret); 9281 9282 spin_lock_bh(&ar->data_lock); 9283 ar->scan.state = ATH11K_SCAN_IDLE; 9284 spin_unlock_bh(&ar->data_lock); 9285 goto free_chan_list; 9286 } 9287 9288 ret = wait_for_completion_timeout(&ar->scan.on_channel, 3 * HZ); 9289 if (ret == 0) { 9290 ath11k_warn(ar->ab, "failed to switch to channel for roc scan\n"); 9291 ret = ath11k_scan_stop(ar); 9292 if (ret) 9293 ath11k_warn(ar->ab, "failed to stop scan: %d\n", ret); 9294 ret = -ETIMEDOUT; 9295 goto free_chan_list; 9296 } 9297 9298 ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout, 9299 msecs_to_jiffies(duration)); 9300 9301 ret = 0; 9302 9303 free_chan_list: 9304 kfree(arg->chan_list); 9305 free_arg: 9306 kfree(arg); 9307 exit: 9308 mutex_unlock(&ar->conf_mutex); 9309 return ret; 9310 } 9311 9312 static int ath11k_fw_stats_request(struct ath11k *ar, 9313 struct stats_request_params *req_param) 9314 { 9315 struct ath11k_base *ab = ar->ab; 9316 unsigned long time_left; 9317 int ret; 9318 9319 lockdep_assert_held(&ar->conf_mutex); 9320 9321 spin_lock_bh(&ar->data_lock); 9322 ar->fw_stats_done = false; 9323 ath11k_fw_stats_pdevs_free(&ar->fw_stats.pdevs); 9324 spin_unlock_bh(&ar->data_lock); 9325 9326 reinit_completion(&ar->fw_stats_complete); 9327 9328 ret = ath11k_wmi_send_stats_request_cmd(ar, req_param); 9329 if (ret) { 9330 ath11k_warn(ab, "could not request fw stats (%d)\n", 9331 ret); 9332 return ret; 9333 } 9334 9335 time_left = wait_for_completion_timeout(&ar->fw_stats_complete, 9336 1 * HZ); 9337 9338 if (!time_left) 9339 return -ETIMEDOUT; 9340 9341 return 0; 9342 } 9343 9344 static int ath11k_mac_op_get_txpower(struct ieee80211_hw *hw, 9345 struct ieee80211_vif *vif, 9346 int *dbm) 9347 { 9348 struct ath11k *ar = hw->priv; 9349 struct ath11k_base *ab = ar->ab; 9350 struct stats_request_params req_param = {0}; 9351 struct ath11k_fw_stats_pdev *pdev; 9352 int ret; 9353 9354 /* Final Tx power is minimum of Target Power, CTL power, Regulatory 9355 * Power, PSD EIRP Power. We just know the Regulatory power from the 9356 * regulatory rules obtained. FW knows all these power and sets the min 9357 * of these. Hence, we request the FW pdev stats in which FW reports 9358 * the minimum of all vdev's channel Tx power. 9359 */ 9360 mutex_lock(&ar->conf_mutex); 9361 9362 if (ar->state != ATH11K_STATE_ON) 9363 goto err_fallback; 9364 9365 /* Firmware doesn't provide Tx power during CAC hence no need to fetch 9366 * the stats. 9367 */ 9368 if (test_bit(ATH11K_CAC_RUNNING, &ar->dev_flags)) { 9369 mutex_unlock(&ar->conf_mutex); 9370 return -EAGAIN; 9371 } 9372 9373 req_param.pdev_id = ar->pdev->pdev_id; 9374 req_param.stats_id = WMI_REQUEST_PDEV_STAT; 9375 9376 ret = ath11k_fw_stats_request(ar, &req_param); 9377 if (ret) { 9378 ath11k_warn(ab, "failed to request fw pdev stats: %d\n", ret); 9379 goto err_fallback; 9380 } 9381 9382 spin_lock_bh(&ar->data_lock); 9383 pdev = list_first_entry_or_null(&ar->fw_stats.pdevs, 9384 struct ath11k_fw_stats_pdev, list); 9385 if (!pdev) { 9386 spin_unlock_bh(&ar->data_lock); 9387 goto err_fallback; 9388 } 9389 9390 /* tx power is set as 2 units per dBm in FW. */ 9391 *dbm = pdev->chan_tx_power / 2; 9392 9393 spin_unlock_bh(&ar->data_lock); 9394 mutex_unlock(&ar->conf_mutex); 9395 9396 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "txpower from firmware %d, reported %d dBm\n", 9397 pdev->chan_tx_power, *dbm); 9398 return 0; 9399 9400 err_fallback: 9401 mutex_unlock(&ar->conf_mutex); 9402 /* We didn't get txpower from FW. Hence, relying on vif->bss_conf.txpower */ 9403 *dbm = vif->bss_conf.txpower; 9404 ath11k_dbg(ar->ab, ATH11K_DBG_MAC, "txpower from firmware NaN, reported %d dBm\n", 9405 *dbm); 9406 return 0; 9407 } 9408 9409 static int ath11k_mac_station_add(struct ath11k *ar, 9410 struct ieee80211_vif *vif, 9411 struct ieee80211_sta *sta) 9412 { 9413 struct ath11k_base *ab = ar->ab; 9414 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9415 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 9416 struct peer_create_params peer_param; 9417 int ret; 9418 9419 lockdep_assert_held(&ar->conf_mutex); 9420 9421 ret = ath11k_mac_inc_num_stations(arvif, sta); 9422 if (ret) { 9423 ath11k_warn(ab, "refusing to associate station: too many connected already (%d)\n", 9424 ar->max_num_stations); 9425 goto exit; 9426 } 9427 9428 arsta->rx_stats = kzalloc(sizeof(*arsta->rx_stats), GFP_KERNEL); 9429 if (!arsta->rx_stats) { 9430 ret = -ENOMEM; 9431 goto dec_num_station; 9432 } 9433 9434 peer_param.vdev_id = arvif->vdev_id; 9435 peer_param.peer_addr = sta->addr; 9436 peer_param.peer_type = WMI_PEER_TYPE_DEFAULT; 9437 9438 ret = ath11k_peer_create(ar, arvif, sta, &peer_param); 9439 if (ret) { 9440 ath11k_warn(ab, "Failed to add peer: %pM for VDEV: %d\n", 9441 sta->addr, arvif->vdev_id); 9442 goto free_rx_stats; 9443 } 9444 9445 ath11k_dbg(ab, ATH11K_DBG_MAC, "Added peer: %pM for VDEV: %d\n", 9446 sta->addr, arvif->vdev_id); 9447 9448 if (ath11k_debugfs_is_extd_tx_stats_enabled(ar)) { 9449 arsta->tx_stats = kzalloc(sizeof(*arsta->tx_stats), GFP_KERNEL); 9450 if (!arsta->tx_stats) { 9451 ret = -ENOMEM; 9452 goto free_peer; 9453 } 9454 } 9455 9456 if (ieee80211_vif_is_mesh(vif)) { 9457 ath11k_dbg(ab, ATH11K_DBG_MAC, 9458 "setting USE_4ADDR for mesh STA %pM\n", sta->addr); 9459 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 9460 arvif->vdev_id, 9461 WMI_PEER_USE_4ADDR, 1); 9462 if (ret) { 9463 ath11k_warn(ab, "failed to set mesh STA %pM 4addr capability: %d\n", 9464 sta->addr, ret); 9465 goto free_tx_stats; 9466 } 9467 } 9468 9469 ret = ath11k_dp_peer_setup(ar, arvif->vdev_id, sta->addr); 9470 if (ret) { 9471 ath11k_warn(ab, "failed to setup dp for peer %pM on vdev %i (%d)\n", 9472 sta->addr, arvif->vdev_id, ret); 9473 goto free_tx_stats; 9474 } 9475 9476 if (ab->hw_params.vdev_start_delay && 9477 !arvif->is_started && 9478 arvif->vdev_type != WMI_VDEV_TYPE_AP) { 9479 ret = ath11k_mac_start_vdev_delay(ar->hw, vif); 9480 if (ret) { 9481 ath11k_warn(ab, "failed to delay vdev start: %d\n", ret); 9482 goto free_tx_stats; 9483 } 9484 } 9485 9486 ewma_avg_rssi_init(&arsta->avg_rssi); 9487 return 0; 9488 9489 free_tx_stats: 9490 kfree(arsta->tx_stats); 9491 arsta->tx_stats = NULL; 9492 free_peer: 9493 ath11k_peer_delete(ar, arvif->vdev_id, sta->addr); 9494 free_rx_stats: 9495 kfree(arsta->rx_stats); 9496 arsta->rx_stats = NULL; 9497 dec_num_station: 9498 ath11k_mac_dec_num_stations(arvif, sta); 9499 exit: 9500 return ret; 9501 } 9502 9503 static int ath11k_mac_station_remove(struct ath11k *ar, 9504 struct ieee80211_vif *vif, 9505 struct ieee80211_sta *sta) 9506 { 9507 struct ath11k_base *ab = ar->ab; 9508 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9509 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 9510 int ret; 9511 9512 if (ab->hw_params.vdev_start_delay && 9513 arvif->is_started && 9514 arvif->vdev_type != WMI_VDEV_TYPE_AP) { 9515 ret = ath11k_mac_stop_vdev_early(ar->hw, vif); 9516 if (ret) { 9517 ath11k_warn(ab, "failed to do early vdev stop: %d\n", ret); 9518 return ret; 9519 } 9520 } 9521 9522 ath11k_dp_peer_cleanup(ar, arvif->vdev_id, sta->addr); 9523 9524 ret = ath11k_peer_delete(ar, arvif->vdev_id, sta->addr); 9525 if (ret) 9526 ath11k_warn(ab, "Failed to delete peer: %pM for VDEV: %d\n", 9527 sta->addr, arvif->vdev_id); 9528 else 9529 ath11k_dbg(ab, ATH11K_DBG_MAC, "Removed peer: %pM for VDEV: %d\n", 9530 sta->addr, arvif->vdev_id); 9531 9532 ath11k_mac_dec_num_stations(arvif, sta); 9533 9534 kfree(arsta->tx_stats); 9535 arsta->tx_stats = NULL; 9536 9537 kfree(arsta->rx_stats); 9538 arsta->rx_stats = NULL; 9539 9540 return ret; 9541 } 9542 9543 static int ath11k_mac_op_sta_state(struct ieee80211_hw *hw, 9544 struct ieee80211_vif *vif, 9545 struct ieee80211_sta *sta, 9546 enum ieee80211_sta_state old_state, 9547 enum ieee80211_sta_state new_state) 9548 { 9549 struct ath11k *ar = hw->priv; 9550 struct ath11k_vif *arvif = ath11k_vif_to_arvif(vif); 9551 struct ath11k_sta *arsta = ath11k_sta_to_arsta(sta); 9552 enum ieee80211_ap_reg_power power_type; 9553 struct cur_regulatory_info *reg_info; 9554 struct ath11k_peer *peer; 9555 int ret = 0; 9556 9557 /* cancel must be done outside the mutex to avoid deadlock */ 9558 if ((old_state == IEEE80211_STA_NONE && 9559 new_state == IEEE80211_STA_NOTEXIST)) { 9560 cancel_work_sync(&arsta->update_wk); 9561 cancel_work_sync(&arsta->set_4addr_wk); 9562 } 9563 9564 mutex_lock(&ar->conf_mutex); 9565 9566 if (old_state == IEEE80211_STA_NOTEXIST && 9567 new_state == IEEE80211_STA_NONE) { 9568 memset(arsta, 0, sizeof(*arsta)); 9569 arsta->arvif = arvif; 9570 arsta->peer_ps_state = WMI_PEER_PS_STATE_DISABLED; 9571 INIT_WORK(&arsta->update_wk, ath11k_sta_rc_update_wk); 9572 INIT_WORK(&arsta->set_4addr_wk, ath11k_sta_set_4addr_wk); 9573 9574 ret = ath11k_mac_station_add(ar, vif, sta); 9575 if (ret) 9576 ath11k_warn(ar->ab, "Failed to add station: %pM for VDEV: %d\n", 9577 sta->addr, arvif->vdev_id); 9578 } else if ((old_state == IEEE80211_STA_NONE && 9579 new_state == IEEE80211_STA_NOTEXIST)) { 9580 ret = ath11k_mac_station_remove(ar, vif, sta); 9581 if (ret) 9582 ath11k_warn(ar->ab, "Failed to remove station: %pM for VDEV: %d\n", 9583 sta->addr, arvif->vdev_id); 9584 9585 mutex_lock(&ar->ab->tbl_mtx_lock); 9586 spin_lock_bh(&ar->ab->base_lock); 9587 peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr); 9588 if (peer && peer->sta == sta) { 9589 ath11k_warn(ar->ab, "Found peer entry %pM n vdev %i after it was supposedly removed\n", 9590 vif->addr, arvif->vdev_id); 9591 ath11k_peer_rhash_delete(ar->ab, peer); 9592 peer->sta = NULL; 9593 list_del(&peer->list); 9594 kfree(peer); 9595 ar->num_peers--; 9596 } 9597 spin_unlock_bh(&ar->ab->base_lock); 9598 mutex_unlock(&ar->ab->tbl_mtx_lock); 9599 } else if (old_state == IEEE80211_STA_AUTH && 9600 new_state == IEEE80211_STA_ASSOC && 9601 (vif->type == NL80211_IFTYPE_AP || 9602 vif->type == NL80211_IFTYPE_MESH_POINT || 9603 vif->type == NL80211_IFTYPE_ADHOC)) { 9604 ret = ath11k_station_assoc(ar, vif, sta, false); 9605 if (ret) 9606 ath11k_warn(ar->ab, "Failed to associate station: %pM\n", 9607 sta->addr); 9608 9609 spin_lock_bh(&ar->data_lock); 9610 /* Set arsta bw and prev bw */ 9611 arsta->bw = ath11k_mac_ieee80211_sta_bw_to_wmi(ar, sta); 9612 arsta->bw_prev = arsta->bw; 9613 spin_unlock_bh(&ar->data_lock); 9614 } else if (old_state == IEEE80211_STA_ASSOC && 9615 new_state == IEEE80211_STA_AUTHORIZED) { 9616 spin_lock_bh(&ar->ab->base_lock); 9617 9618 peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr); 9619 if (peer) 9620 peer->is_authorized = true; 9621 9622 spin_unlock_bh(&ar->ab->base_lock); 9623 9624 if (vif->type == NL80211_IFTYPE_STATION && arvif->is_up) { 9625 ret = ath11k_wmi_set_peer_param(ar, sta->addr, 9626 arvif->vdev_id, 9627 WMI_PEER_AUTHORIZE, 9628 1); 9629 if (ret) 9630 ath11k_warn(ar->ab, "Unable to authorize peer %pM vdev %d: %d\n", 9631 sta->addr, arvif->vdev_id, ret); 9632 } 9633 9634 if (!ret && 9635 ath11k_wmi_supports_6ghz_cc_ext(ar) && 9636 arvif->vdev_type == WMI_VDEV_TYPE_STA && 9637 arvif->chanctx.def.chan && 9638 arvif->chanctx.def.chan->band == NL80211_BAND_6GHZ) { 9639 reg_info = &ar->ab->reg_info_store[ar->pdev_idx]; 9640 power_type = vif->bss_conf.power_type; 9641 9642 if (power_type == IEEE80211_REG_UNSET_AP) { 9643 ath11k_warn(ar->ab, "invalid power type %d\n", 9644 power_type); 9645 ret = -EINVAL; 9646 } else { 9647 ret = ath11k_reg_handle_chan_list(ar->ab, 9648 reg_info, 9649 power_type); 9650 if (ret) 9651 ath11k_warn(ar->ab, 9652 "failed to handle chan list with power type %d\n", 9653 power_type); 9654 } 9655 } 9656 } else if (old_state == IEEE80211_STA_AUTHORIZED && 9657 new_state == IEEE80211_STA_ASSOC) { 9658 spin_lock_bh(&ar->ab->base_lock); 9659 9660 peer = ath11k_peer_find(ar->ab, arvif->vdev_id, sta->addr); 9661 if (peer) 9662 peer->is_authorized = false; 9663 9664 spin_unlock_bh(&ar->ab->base_lock); 9665 } else if (old_state == IEEE80211_STA_ASSOC && 9666 new_state == IEEE80211_STA_AUTH && 9667 (vif->type == NL80211_IFTYPE_AP || 9668 vif->type == NL80211_IFTYPE_MESH_POINT || 9669 vif->type == NL80211_IFTYPE_ADHOC)) { 9670 ret = ath11k_station_disassoc(ar, vif, sta); 9671 if (ret) 9672 ath11k_warn(ar->ab, "Failed to disassociate station: %pM\n", 9673 sta->addr); 9674 } 9675 9676 mutex_unlock(&ar->conf_mutex); 9677 return ret; 9678 } 9679 9680 static const struct ieee80211_ops ath11k_ops = { 9681 .tx = ath11k_mac_op_tx, 9682 .wake_tx_queue = ieee80211_handle_wake_tx_queue, 9683 .start = ath11k_mac_op_start, 9684 .stop = ath11k_mac_op_stop, 9685 .reconfig_complete = ath11k_mac_op_reconfig_complete, 9686 .add_interface = ath11k_mac_op_add_interface, 9687 .remove_interface = ath11k_mac_op_remove_interface, 9688 .update_vif_offload = ath11k_mac_op_update_vif_offload, 9689 .config = ath11k_mac_op_config, 9690 .bss_info_changed = ath11k_mac_op_bss_info_changed, 9691 .configure_filter = ath11k_mac_op_configure_filter, 9692 .hw_scan = ath11k_mac_op_hw_scan, 9693 .cancel_hw_scan = ath11k_mac_op_cancel_hw_scan, 9694 .set_key = ath11k_mac_op_set_key, 9695 .set_rekey_data = ath11k_mac_op_set_rekey_data, 9696 .sta_state = ath11k_mac_op_sta_state, 9697 .sta_set_4addr = ath11k_mac_op_sta_set_4addr, 9698 .sta_set_txpwr = ath11k_mac_op_sta_set_txpwr, 9699 .sta_rc_update = ath11k_mac_op_sta_rc_update, 9700 .conf_tx = ath11k_mac_op_conf_tx, 9701 .set_antenna = ath11k_mac_op_set_antenna, 9702 .get_antenna = ath11k_mac_op_get_antenna, 9703 .ampdu_action = ath11k_mac_op_ampdu_action, 9704 .add_chanctx = ath11k_mac_op_add_chanctx, 9705 .remove_chanctx = ath11k_mac_op_remove_chanctx, 9706 .change_chanctx = ath11k_mac_op_change_chanctx, 9707 .assign_vif_chanctx = ath11k_mac_op_assign_vif_chanctx, 9708 .unassign_vif_chanctx = ath11k_mac_op_unassign_vif_chanctx, 9709 .switch_vif_chanctx = ath11k_mac_op_switch_vif_chanctx, 9710 .set_rts_threshold = ath11k_mac_op_set_rts_threshold, 9711 .set_frag_threshold = ath11k_mac_op_set_frag_threshold, 9712 .set_bitrate_mask = ath11k_mac_op_set_bitrate_mask, 9713 .get_survey = ath11k_mac_op_get_survey, 9714 .flush = ath11k_mac_op_flush, 9715 .sta_statistics = ath11k_mac_op_sta_statistics, 9716 CFG80211_TESTMODE_CMD(ath11k_tm_cmd) 9717 9718 #ifdef CONFIG_PM 9719 .suspend = ath11k_wow_op_suspend, 9720 .resume = ath11k_wow_op_resume, 9721 .set_wakeup = ath11k_wow_op_set_wakeup, 9722 #endif 9723 9724 #ifdef CONFIG_ATH11K_DEBUGFS 9725 .vif_add_debugfs = ath11k_debugfs_op_vif_add, 9726 .sta_add_debugfs = ath11k_debugfs_sta_op_add, 9727 #endif 9728 9729 #if IS_ENABLED(CONFIG_IPV6) 9730 .ipv6_addr_change = ath11k_mac_op_ipv6_changed, 9731 #endif 9732 .get_txpower = ath11k_mac_op_get_txpower, 9733 9734 .set_sar_specs = ath11k_mac_op_set_bios_sar_specs, 9735 .remain_on_channel = ath11k_mac_op_remain_on_channel, 9736 .cancel_remain_on_channel = ath11k_mac_op_cancel_remain_on_channel, 9737 }; 9738 9739 static void ath11k_mac_update_ch_list(struct ath11k *ar, 9740 struct ieee80211_supported_band *band, 9741 u32 freq_low, u32 freq_high) 9742 { 9743 int i; 9744 9745 if (!(freq_low && freq_high)) 9746 return; 9747 9748 for (i = 0; i < band->n_channels; i++) { 9749 if (band->channels[i].center_freq < freq_low || 9750 band->channels[i].center_freq > freq_high) 9751 band->channels[i].flags |= IEEE80211_CHAN_DISABLED; 9752 } 9753 } 9754 9755 static u32 ath11k_get_phy_id(struct ath11k *ar, u32 band) 9756 { 9757 struct ath11k_pdev *pdev = ar->pdev; 9758 struct ath11k_pdev_cap *pdev_cap = &pdev->cap; 9759 9760 if (band == WMI_HOST_WLAN_2G_CAP) 9761 return pdev_cap->band[NL80211_BAND_2GHZ].phy_id; 9762 9763 if (band == WMI_HOST_WLAN_5G_CAP) 9764 return pdev_cap->band[NL80211_BAND_5GHZ].phy_id; 9765 9766 ath11k_warn(ar->ab, "unsupported phy cap:%d\n", band); 9767 9768 return 0; 9769 } 9770 9771 static int ath11k_mac_setup_channels_rates(struct ath11k *ar, 9772 u32 supported_bands) 9773 { 9774 struct ieee80211_supported_band *band; 9775 struct ath11k_hal_reg_capabilities_ext *reg_cap, *temp_reg_cap; 9776 void *channels; 9777 u32 phy_id; 9778 9779 BUILD_BUG_ON((ARRAY_SIZE(ath11k_2ghz_channels) + 9780 ARRAY_SIZE(ath11k_5ghz_channels) + 9781 ARRAY_SIZE(ath11k_6ghz_channels)) != 9782 ATH11K_NUM_CHANS); 9783 9784 reg_cap = &ar->ab->hal_reg_cap[ar->pdev_idx]; 9785 temp_reg_cap = reg_cap; 9786 9787 if (supported_bands & WMI_HOST_WLAN_2G_CAP) { 9788 channels = kmemdup(ath11k_2ghz_channels, 9789 sizeof(ath11k_2ghz_channels), 9790 GFP_KERNEL); 9791 if (!channels) 9792 return -ENOMEM; 9793 9794 band = &ar->mac.sbands[NL80211_BAND_2GHZ]; 9795 band->band = NL80211_BAND_2GHZ; 9796 band->n_channels = ARRAY_SIZE(ath11k_2ghz_channels); 9797 band->channels = channels; 9798 band->n_bitrates = ath11k_g_rates_size; 9799 band->bitrates = ath11k_g_rates; 9800 ar->hw->wiphy->bands[NL80211_BAND_2GHZ] = band; 9801 9802 if (ar->ab->hw_params.single_pdev_only) { 9803 phy_id = ath11k_get_phy_id(ar, WMI_HOST_WLAN_2G_CAP); 9804 temp_reg_cap = &ar->ab->hal_reg_cap[phy_id]; 9805 } 9806 ath11k_mac_update_ch_list(ar, band, 9807 temp_reg_cap->low_2ghz_chan, 9808 temp_reg_cap->high_2ghz_chan); 9809 } 9810 9811 if (supported_bands & WMI_HOST_WLAN_5G_CAP) { 9812 if (reg_cap->high_5ghz_chan >= ATH11K_MIN_6G_FREQ) { 9813 channels = kmemdup(ath11k_6ghz_channels, 9814 sizeof(ath11k_6ghz_channels), GFP_KERNEL); 9815 if (!channels) { 9816 kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); 9817 return -ENOMEM; 9818 } 9819 9820 ar->supports_6ghz = true; 9821 band = &ar->mac.sbands[NL80211_BAND_6GHZ]; 9822 band->band = NL80211_BAND_6GHZ; 9823 band->n_channels = ARRAY_SIZE(ath11k_6ghz_channels); 9824 band->channels = channels; 9825 band->n_bitrates = ath11k_a_rates_size; 9826 band->bitrates = ath11k_a_rates; 9827 ar->hw->wiphy->bands[NL80211_BAND_6GHZ] = band; 9828 9829 if (ar->ab->hw_params.single_pdev_only) { 9830 phy_id = ath11k_get_phy_id(ar, WMI_HOST_WLAN_5G_CAP); 9831 temp_reg_cap = &ar->ab->hal_reg_cap[phy_id]; 9832 } 9833 9834 ath11k_mac_update_ch_list(ar, band, 9835 temp_reg_cap->low_5ghz_chan, 9836 temp_reg_cap->high_5ghz_chan); 9837 } 9838 9839 if (reg_cap->low_5ghz_chan < ATH11K_MIN_6G_FREQ) { 9840 channels = kmemdup(ath11k_5ghz_channels, 9841 sizeof(ath11k_5ghz_channels), 9842 GFP_KERNEL); 9843 if (!channels) { 9844 kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); 9845 kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels); 9846 return -ENOMEM; 9847 } 9848 9849 band = &ar->mac.sbands[NL80211_BAND_5GHZ]; 9850 band->band = NL80211_BAND_5GHZ; 9851 band->n_channels = ARRAY_SIZE(ath11k_5ghz_channels); 9852 band->channels = channels; 9853 band->n_bitrates = ath11k_a_rates_size; 9854 band->bitrates = ath11k_a_rates; 9855 ar->hw->wiphy->bands[NL80211_BAND_5GHZ] = band; 9856 9857 if (ar->ab->hw_params.single_pdev_only) { 9858 phy_id = ath11k_get_phy_id(ar, WMI_HOST_WLAN_5G_CAP); 9859 temp_reg_cap = &ar->ab->hal_reg_cap[phy_id]; 9860 } 9861 9862 ath11k_mac_update_ch_list(ar, band, 9863 temp_reg_cap->low_5ghz_chan, 9864 temp_reg_cap->high_5ghz_chan); 9865 } 9866 } 9867 9868 return 0; 9869 } 9870 9871 static void ath11k_mac_setup_mac_address_list(struct ath11k *ar) 9872 { 9873 struct mac_address *addresses; 9874 u16 n_addresses; 9875 int i; 9876 9877 if (!ar->ab->hw_params.support_dual_stations) 9878 return; 9879 9880 n_addresses = ar->ab->hw_params.num_vdevs; 9881 addresses = kcalloc(n_addresses, sizeof(*addresses), GFP_KERNEL); 9882 if (!addresses) 9883 return; 9884 9885 memcpy(addresses[0].addr, ar->mac_addr, ETH_ALEN); 9886 for (i = 1; i < n_addresses; i++) { 9887 memcpy(addresses[i].addr, ar->mac_addr, ETH_ALEN); 9888 /* set Local Administered Address bit */ 9889 addresses[i].addr[0] |= 0x2; 9890 9891 addresses[i].addr[0] += (i - 1) << 4; 9892 } 9893 9894 ar->hw->wiphy->addresses = addresses; 9895 ar->hw->wiphy->n_addresses = n_addresses; 9896 } 9897 9898 static int ath11k_mac_setup_iface_combinations(struct ath11k *ar) 9899 { 9900 struct ath11k_base *ab = ar->ab; 9901 struct ieee80211_iface_combination *combinations; 9902 struct ieee80211_iface_limit *limits; 9903 int n_limits; 9904 bool p2p; 9905 9906 p2p = ab->hw_params.interface_modes & BIT(NL80211_IFTYPE_P2P_DEVICE); 9907 9908 combinations = kzalloc(sizeof(*combinations), GFP_KERNEL); 9909 if (!combinations) 9910 return -ENOMEM; 9911 9912 if (p2p) 9913 n_limits = 3; 9914 else 9915 n_limits = 2; 9916 9917 limits = kcalloc(n_limits, sizeof(*limits), GFP_KERNEL); 9918 if (!limits) { 9919 kfree(combinations); 9920 return -ENOMEM; 9921 } 9922 9923 limits[0].types |= BIT(NL80211_IFTYPE_STATION); 9924 limits[1].types |= BIT(NL80211_IFTYPE_AP); 9925 if (IS_ENABLED(CONFIG_MAC80211_MESH) && 9926 ab->hw_params.interface_modes & BIT(NL80211_IFTYPE_MESH_POINT)) 9927 limits[1].types |= BIT(NL80211_IFTYPE_MESH_POINT); 9928 9929 combinations[0].limits = limits; 9930 combinations[0].n_limits = n_limits; 9931 combinations[0].beacon_int_infra_match = true; 9932 combinations[0].beacon_int_min_gcd = 100; 9933 9934 if (ab->hw_params.support_dual_stations) { 9935 limits[0].max = 2; 9936 limits[1].max = 1; 9937 9938 combinations[0].max_interfaces = ab->hw_params.num_vdevs; 9939 combinations[0].num_different_channels = 2; 9940 } else { 9941 limits[0].max = 1; 9942 limits[1].max = 16; 9943 9944 combinations[0].max_interfaces = 16; 9945 combinations[0].num_different_channels = 1; 9946 combinations[0].radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | 9947 BIT(NL80211_CHAN_WIDTH_20) | 9948 BIT(NL80211_CHAN_WIDTH_40) | 9949 BIT(NL80211_CHAN_WIDTH_80) | 9950 BIT(NL80211_CHAN_WIDTH_80P80) | 9951 BIT(NL80211_CHAN_WIDTH_160); 9952 } 9953 9954 if (p2p) { 9955 limits[1].types |= BIT(NL80211_IFTYPE_P2P_CLIENT) | 9956 BIT(NL80211_IFTYPE_P2P_GO); 9957 limits[2].max = 1; 9958 limits[2].types |= BIT(NL80211_IFTYPE_P2P_DEVICE); 9959 } 9960 9961 ar->hw->wiphy->iface_combinations = combinations; 9962 ar->hw->wiphy->n_iface_combinations = 1; 9963 9964 return 0; 9965 } 9966 9967 static const u8 ath11k_if_types_ext_capa[] = { 9968 [0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING, 9969 [2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT, 9970 [7] = WLAN_EXT_CAPA8_OPMODE_NOTIF, 9971 }; 9972 9973 static const u8 ath11k_if_types_ext_capa_sta[] = { 9974 [0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING, 9975 [2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT, 9976 [7] = WLAN_EXT_CAPA8_OPMODE_NOTIF, 9977 [9] = WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT, 9978 }; 9979 9980 static const u8 ath11k_if_types_ext_capa_ap[] = { 9981 [0] = WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING, 9982 [2] = WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT, 9983 [7] = WLAN_EXT_CAPA8_OPMODE_NOTIF, 9984 [9] = WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT, 9985 [10] = WLAN_EXT_CAPA11_EMA_SUPPORT, 9986 }; 9987 9988 static const struct wiphy_iftype_ext_capab ath11k_iftypes_ext_capa[] = { 9989 { 9990 .extended_capabilities = ath11k_if_types_ext_capa, 9991 .extended_capabilities_mask = ath11k_if_types_ext_capa, 9992 .extended_capabilities_len = sizeof(ath11k_if_types_ext_capa), 9993 }, { 9994 .iftype = NL80211_IFTYPE_STATION, 9995 .extended_capabilities = ath11k_if_types_ext_capa_sta, 9996 .extended_capabilities_mask = ath11k_if_types_ext_capa_sta, 9997 .extended_capabilities_len = 9998 sizeof(ath11k_if_types_ext_capa_sta), 9999 }, { 10000 .iftype = NL80211_IFTYPE_AP, 10001 .extended_capabilities = ath11k_if_types_ext_capa_ap, 10002 .extended_capabilities_mask = ath11k_if_types_ext_capa_ap, 10003 .extended_capabilities_len = 10004 sizeof(ath11k_if_types_ext_capa_ap), 10005 }, 10006 }; 10007 10008 static void __ath11k_mac_unregister(struct ath11k *ar) 10009 { 10010 cancel_work_sync(&ar->regd_update_work); 10011 10012 ieee80211_unregister_hw(ar->hw); 10013 10014 idr_for_each(&ar->txmgmt_idr, ath11k_mac_tx_mgmt_pending_free, ar); 10015 idr_destroy(&ar->txmgmt_idr); 10016 10017 kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); 10018 kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels); 10019 kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels); 10020 10021 kfree(ar->hw->wiphy->iface_combinations[0].limits); 10022 kfree(ar->hw->wiphy->iface_combinations); 10023 10024 kfree(ar->hw->wiphy->addresses); 10025 10026 SET_IEEE80211_DEV(ar->hw, NULL); 10027 } 10028 10029 void ath11k_mac_unregister(struct ath11k_base *ab) 10030 { 10031 struct ath11k *ar; 10032 struct ath11k_pdev *pdev; 10033 int i; 10034 10035 for (i = 0; i < ab->num_radios; i++) { 10036 pdev = &ab->pdevs[i]; 10037 ar = pdev->ar; 10038 if (!ar) 10039 continue; 10040 10041 __ath11k_mac_unregister(ar); 10042 } 10043 10044 ath11k_peer_rhash_tbl_destroy(ab); 10045 } 10046 10047 static int __ath11k_mac_register(struct ath11k *ar) 10048 { 10049 struct ath11k_base *ab = ar->ab; 10050 struct ath11k_pdev_cap *cap = &ar->pdev->cap; 10051 static const u32 cipher_suites[] = { 10052 WLAN_CIPHER_SUITE_TKIP, 10053 WLAN_CIPHER_SUITE_CCMP, 10054 WLAN_CIPHER_SUITE_AES_CMAC, 10055 WLAN_CIPHER_SUITE_BIP_CMAC_256, 10056 WLAN_CIPHER_SUITE_BIP_GMAC_128, 10057 WLAN_CIPHER_SUITE_BIP_GMAC_256, 10058 WLAN_CIPHER_SUITE_GCMP, 10059 WLAN_CIPHER_SUITE_GCMP_256, 10060 WLAN_CIPHER_SUITE_CCMP_256, 10061 }; 10062 int ret; 10063 u32 ht_cap = 0; 10064 10065 ath11k_pdev_caps_update(ar); 10066 10067 SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr); 10068 ath11k_mac_setup_mac_address_list(ar); 10069 10070 SET_IEEE80211_DEV(ar->hw, ab->dev); 10071 10072 ret = ath11k_mac_setup_channels_rates(ar, 10073 cap->supported_bands); 10074 if (ret) 10075 goto err; 10076 10077 wiphy_read_of_freq_limits(ar->hw->wiphy); 10078 ath11k_mac_setup_ht_vht_cap(ar, cap, &ht_cap); 10079 ath11k_mac_setup_he_cap(ar, cap); 10080 10081 ret = ath11k_mac_setup_iface_combinations(ar); 10082 if (ret) { 10083 ath11k_err(ar->ab, "failed to setup interface combinations: %d\n", ret); 10084 goto err_free_channels; 10085 } 10086 10087 ar->hw->wiphy->available_antennas_rx = cap->rx_chain_mask; 10088 ar->hw->wiphy->available_antennas_tx = cap->tx_chain_mask; 10089 10090 ar->hw->wiphy->interface_modes = ab->hw_params.interface_modes; 10091 10092 if (ab->hw_params.single_pdev_only && ar->supports_6ghz) 10093 ieee80211_hw_set(ar->hw, SINGLE_SCAN_ON_ALL_BANDS); 10094 10095 if (ab->hw_params.supports_multi_bssid) { 10096 ieee80211_hw_set(ar->hw, SUPPORTS_MULTI_BSSID); 10097 ieee80211_hw_set(ar->hw, SUPPORTS_ONLY_HE_MULTI_BSSID); 10098 } 10099 10100 ieee80211_hw_set(ar->hw, SIGNAL_DBM); 10101 ieee80211_hw_set(ar->hw, SUPPORTS_PS); 10102 ieee80211_hw_set(ar->hw, SUPPORTS_DYNAMIC_PS); 10103 ieee80211_hw_set(ar->hw, MFP_CAPABLE); 10104 ieee80211_hw_set(ar->hw, REPORTS_TX_ACK_STATUS); 10105 ieee80211_hw_set(ar->hw, HAS_RATE_CONTROL); 10106 ieee80211_hw_set(ar->hw, AP_LINK_PS); 10107 ieee80211_hw_set(ar->hw, SPECTRUM_MGMT); 10108 ieee80211_hw_set(ar->hw, CONNECTION_MONITOR); 10109 ieee80211_hw_set(ar->hw, SUPPORTS_PER_STA_GTK); 10110 ieee80211_hw_set(ar->hw, WANT_MONITOR_VIF); 10111 ieee80211_hw_set(ar->hw, CHANCTX_STA_CSA); 10112 ieee80211_hw_set(ar->hw, QUEUE_CONTROL); 10113 ieee80211_hw_set(ar->hw, SUPPORTS_TX_FRAG); 10114 ieee80211_hw_set(ar->hw, REPORTS_LOW_ACK); 10115 10116 if (ath11k_frame_mode == ATH11K_HW_TXRX_ETHERNET) { 10117 ieee80211_hw_set(ar->hw, SUPPORTS_TX_ENCAP_OFFLOAD); 10118 ieee80211_hw_set(ar->hw, SUPPORTS_RX_DECAP_OFFLOAD); 10119 } 10120 10121 if (cap->nss_ratio_enabled) 10122 ieee80211_hw_set(ar->hw, SUPPORTS_VHT_EXT_NSS_BW); 10123 10124 if ((ht_cap & WMI_HT_CAP_ENABLED) || ar->supports_6ghz) { 10125 ieee80211_hw_set(ar->hw, AMPDU_AGGREGATION); 10126 ieee80211_hw_set(ar->hw, TX_AMPDU_SETUP_IN_HW); 10127 ieee80211_hw_set(ar->hw, SUPPORTS_REORDERING_BUFFER); 10128 ieee80211_hw_set(ar->hw, SUPPORTS_AMSDU_IN_AMPDU); 10129 ieee80211_hw_set(ar->hw, USES_RSS); 10130 } 10131 10132 ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS; 10133 ar->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 10134 10135 /* TODO: Check if HT capability advertised from firmware is different 10136 * for each band for a dual band capable radio. It will be tricky to 10137 * handle it when the ht capability different for each band. 10138 */ 10139 if (ht_cap & WMI_HT_CAP_DYNAMIC_SMPS || 10140 (ar->supports_6ghz && ab->hw_params.supports_dynamic_smps_6ghz)) 10141 ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS; 10142 10143 ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID; 10144 ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN; 10145 10146 ar->hw->max_listen_interval = ATH11K_MAX_HW_LISTEN_INTERVAL; 10147 10148 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; 10149 ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; 10150 ar->hw->wiphy->max_remain_on_channel_duration = 5000; 10151 10152 ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD; 10153 ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE | 10154 NL80211_FEATURE_AP_SCAN; 10155 10156 ar->max_num_stations = TARGET_NUM_STATIONS(ab); 10157 ar->max_num_peers = TARGET_NUM_PEERS_PDEV(ab); 10158 10159 ar->hw->wiphy->max_ap_assoc_sta = ar->max_num_stations; 10160 10161 if (test_bit(WMI_TLV_SERVICE_SPOOF_MAC_SUPPORT, ar->wmi->wmi_ab->svc_map)) { 10162 ar->hw->wiphy->features |= 10163 NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; 10164 } 10165 10166 if (test_bit(WMI_TLV_SERVICE_NLO, ar->wmi->wmi_ab->svc_map)) { 10167 ar->hw->wiphy->max_sched_scan_ssids = WMI_PNO_MAX_SUPP_NETWORKS; 10168 ar->hw->wiphy->max_match_sets = WMI_PNO_MAX_SUPP_NETWORKS; 10169 ar->hw->wiphy->max_sched_scan_ie_len = WMI_PNO_MAX_IE_LENGTH; 10170 ar->hw->wiphy->max_sched_scan_plans = WMI_PNO_MAX_SCHED_SCAN_PLANS; 10171 ar->hw->wiphy->max_sched_scan_plan_interval = 10172 WMI_PNO_MAX_SCHED_SCAN_PLAN_INT; 10173 ar->hw->wiphy->max_sched_scan_plan_iterations = 10174 WMI_PNO_MAX_SCHED_SCAN_PLAN_ITRNS; 10175 ar->hw->wiphy->features |= NL80211_FEATURE_ND_RANDOM_MAC_ADDR; 10176 } 10177 10178 ret = ath11k_wow_init(ar); 10179 if (ret) { 10180 ath11k_warn(ar->ab, "failed to init wow: %d\n", ret); 10181 goto err_free_if_combs; 10182 } 10183 10184 if (test_bit(WMI_TLV_SERVICE_TX_DATA_MGMT_ACK_RSSI, 10185 ar->ab->wmi_ab.svc_map)) 10186 wiphy_ext_feature_set(ar->hw->wiphy, 10187 NL80211_EXT_FEATURE_ACK_SIGNAL_SUPPORT); 10188 10189 ar->hw->queues = ATH11K_HW_MAX_QUEUES; 10190 ar->hw->wiphy->tx_queue_len = ATH11K_QUEUE_LEN; 10191 ar->hw->offchannel_tx_hw_queue = ATH11K_HW_MAX_QUEUES - 1; 10192 ar->hw->max_rx_aggregation_subframes = IEEE80211_MAX_AMPDU_BUF_HE; 10193 10194 ar->hw->vif_data_size = sizeof(struct ath11k_vif); 10195 ar->hw->sta_data_size = sizeof(struct ath11k_sta); 10196 10197 wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 10198 wiphy_ext_feature_set(ar->hw->wiphy, NL80211_EXT_FEATURE_STA_TX_PWR); 10199 if (test_bit(WMI_TLV_SERVICE_BSS_COLOR_OFFLOAD, 10200 ar->ab->wmi_ab.svc_map)) { 10201 wiphy_ext_feature_set(ar->hw->wiphy, 10202 NL80211_EXT_FEATURE_BSS_COLOR); 10203 ieee80211_hw_set(ar->hw, DETECTS_COLOR_COLLISION); 10204 } 10205 10206 ar->hw->wiphy->cipher_suites = cipher_suites; 10207 ar->hw->wiphy->n_cipher_suites = ARRAY_SIZE(cipher_suites); 10208 10209 ar->hw->wiphy->iftype_ext_capab = ath11k_iftypes_ext_capa; 10210 ar->hw->wiphy->num_iftype_ext_capab = 10211 ARRAY_SIZE(ath11k_iftypes_ext_capa); 10212 10213 if (ar->supports_6ghz) { 10214 wiphy_ext_feature_set(ar->hw->wiphy, 10215 NL80211_EXT_FEATURE_FILS_DISCOVERY); 10216 wiphy_ext_feature_set(ar->hw->wiphy, 10217 NL80211_EXT_FEATURE_UNSOL_BCAST_PROBE_RESP); 10218 } 10219 10220 wiphy_ext_feature_set(ar->hw->wiphy, 10221 NL80211_EXT_FEATURE_SET_SCAN_DWELL); 10222 10223 if (test_bit(WMI_TLV_SERVICE_RTT, ar->ab->wmi_ab.svc_map)) 10224 wiphy_ext_feature_set(ar->hw->wiphy, 10225 NL80211_EXT_FEATURE_ENABLE_FTM_RESPONDER); 10226 10227 ar->hw->wiphy->mbssid_max_interfaces = TARGET_NUM_VDEVS(ab); 10228 ar->hw->wiphy->ema_max_profile_periodicity = TARGET_EMA_MAX_PROFILE_PERIOD; 10229 10230 ath11k_reg_init(ar); 10231 10232 if (!test_bit(ATH11K_FLAG_RAW_MODE, &ab->dev_flags)) { 10233 ar->hw->netdev_features = NETIF_F_HW_CSUM; 10234 ieee80211_hw_set(ar->hw, SW_CRYPTO_CONTROL); 10235 ieee80211_hw_set(ar->hw, SUPPORT_FAST_XMIT); 10236 } 10237 10238 if (test_bit(WMI_TLV_SERVICE_BIOS_SAR_SUPPORT, ar->ab->wmi_ab.svc_map) && 10239 ab->hw_params.bios_sar_capa) 10240 ar->hw->wiphy->sar_capa = ab->hw_params.bios_sar_capa; 10241 10242 ret = ieee80211_register_hw(ar->hw); 10243 if (ret) { 10244 ath11k_err(ar->ab, "ieee80211 registration failed: %d\n", ret); 10245 goto err_free_if_combs; 10246 } 10247 10248 if (!ab->hw_params.supports_monitor) 10249 /* There's a race between calling ieee80211_register_hw() 10250 * and here where the monitor mode is enabled for a little 10251 * while. But that time is so short and in practise it make 10252 * a difference in real life. 10253 */ 10254 ar->hw->wiphy->interface_modes &= ~BIT(NL80211_IFTYPE_MONITOR); 10255 10256 /* Apply the regd received during initialization */ 10257 ret = ath11k_regd_update(ar); 10258 if (ret) { 10259 ath11k_err(ar->ab, "ath11k regd update failed: %d\n", ret); 10260 goto err_unregister_hw; 10261 } 10262 10263 if (ab->hw_params.current_cc_support && ab->new_alpha2[0]) { 10264 memcpy(&ar->alpha2, ab->new_alpha2, 2); 10265 ret = ath11k_reg_set_cc(ar); 10266 if (ret) 10267 ath11k_warn(ar->ab, 10268 "failed set cc code for mac register: %d\n", ret); 10269 } 10270 10271 ret = ath11k_debugfs_register(ar); 10272 if (ret) { 10273 ath11k_err(ar->ab, "debugfs registration failed: %d\n", ret); 10274 goto err_unregister_hw; 10275 } 10276 10277 return 0; 10278 10279 err_unregister_hw: 10280 ieee80211_unregister_hw(ar->hw); 10281 10282 err_free_if_combs: 10283 kfree(ar->hw->wiphy->iface_combinations[0].limits); 10284 kfree(ar->hw->wiphy->iface_combinations); 10285 10286 err_free_channels: 10287 kfree(ar->mac.sbands[NL80211_BAND_2GHZ].channels); 10288 kfree(ar->mac.sbands[NL80211_BAND_5GHZ].channels); 10289 kfree(ar->mac.sbands[NL80211_BAND_6GHZ].channels); 10290 10291 err: 10292 SET_IEEE80211_DEV(ar->hw, NULL); 10293 return ret; 10294 } 10295 10296 int ath11k_mac_register(struct ath11k_base *ab) 10297 { 10298 struct ath11k *ar; 10299 struct ath11k_pdev *pdev; 10300 int i; 10301 int ret; 10302 u8 mac_addr[ETH_ALEN] = {0}; 10303 10304 if (test_bit(ATH11K_FLAG_REGISTERED, &ab->dev_flags)) 10305 return 0; 10306 10307 /* Initialize channel counters frequency value in hertz */ 10308 ab->cc_freq_hz = IPQ8074_CC_FREQ_HERTZ; 10309 ab->free_vdev_map = (1LL << (ab->num_radios * TARGET_NUM_VDEVS(ab))) - 1; 10310 10311 ret = ath11k_peer_rhash_tbl_init(ab); 10312 if (ret) 10313 return ret; 10314 10315 device_get_mac_address(ab->dev, mac_addr); 10316 10317 for (i = 0; i < ab->num_radios; i++) { 10318 pdev = &ab->pdevs[i]; 10319 ar = pdev->ar; 10320 if (ab->pdevs_macaddr_valid) { 10321 ether_addr_copy(ar->mac_addr, pdev->mac_addr); 10322 } else { 10323 if (is_zero_ether_addr(mac_addr)) 10324 ether_addr_copy(ar->mac_addr, ab->mac_addr); 10325 else 10326 ether_addr_copy(ar->mac_addr, mac_addr); 10327 ar->mac_addr[4] += i; 10328 } 10329 10330 idr_init(&ar->txmgmt_idr); 10331 spin_lock_init(&ar->txmgmt_idr_lock); 10332 10333 ret = __ath11k_mac_register(ar); 10334 if (ret) 10335 goto err_cleanup; 10336 10337 init_waitqueue_head(&ar->txmgmt_empty_waitq); 10338 } 10339 10340 return 0; 10341 10342 err_cleanup: 10343 for (i = i - 1; i >= 0; i--) { 10344 pdev = &ab->pdevs[i]; 10345 ar = pdev->ar; 10346 __ath11k_mac_unregister(ar); 10347 } 10348 10349 ath11k_peer_rhash_tbl_destroy(ab); 10350 10351 return ret; 10352 } 10353 10354 int ath11k_mac_allocate(struct ath11k_base *ab) 10355 { 10356 struct ieee80211_hw *hw; 10357 struct ath11k *ar; 10358 struct ath11k_pdev *pdev; 10359 int ret; 10360 int i; 10361 10362 if (test_bit(ATH11K_FLAG_REGISTERED, &ab->dev_flags)) 10363 return 0; 10364 10365 for (i = 0; i < ab->num_radios; i++) { 10366 pdev = &ab->pdevs[i]; 10367 hw = ieee80211_alloc_hw(sizeof(struct ath11k), &ath11k_ops); 10368 if (!hw) { 10369 ath11k_warn(ab, "failed to allocate mac80211 hw device\n"); 10370 ret = -ENOMEM; 10371 goto err_free_mac; 10372 } 10373 10374 ar = hw->priv; 10375 ar->hw = hw; 10376 ar->ab = ab; 10377 ar->pdev = pdev; 10378 ar->pdev_idx = i; 10379 ar->lmac_id = ath11k_hw_get_mac_from_pdev_id(&ab->hw_params, i); 10380 10381 ar->wmi = &ab->wmi_ab.wmi[i]; 10382 /* FIXME wmi[0] is already initialized during attach, 10383 * Should we do this again? 10384 */ 10385 ath11k_wmi_pdev_attach(ab, i); 10386 10387 ar->cfg_tx_chainmask = pdev->cap.tx_chain_mask; 10388 ar->cfg_rx_chainmask = pdev->cap.rx_chain_mask; 10389 ar->num_tx_chains = get_num_chains(pdev->cap.tx_chain_mask); 10390 ar->num_rx_chains = get_num_chains(pdev->cap.rx_chain_mask); 10391 10392 pdev->ar = ar; 10393 spin_lock_init(&ar->data_lock); 10394 INIT_LIST_HEAD(&ar->arvifs); 10395 INIT_LIST_HEAD(&ar->ppdu_stats_info); 10396 mutex_init(&ar->conf_mutex); 10397 init_completion(&ar->vdev_setup_done); 10398 init_completion(&ar->vdev_delete_done); 10399 init_completion(&ar->peer_assoc_done); 10400 init_completion(&ar->peer_delete_done); 10401 init_completion(&ar->install_key_done); 10402 init_completion(&ar->bss_survey_done); 10403 init_completion(&ar->scan.started); 10404 init_completion(&ar->scan.completed); 10405 init_completion(&ar->scan.on_channel); 10406 init_completion(&ar->thermal.wmi_sync); 10407 10408 INIT_DELAYED_WORK(&ar->scan.timeout, ath11k_scan_timeout_work); 10409 INIT_WORK(&ar->regd_update_work, ath11k_regd_update_work); 10410 10411 INIT_WORK(&ar->wmi_mgmt_tx_work, ath11k_mgmt_over_wmi_tx_work); 10412 skb_queue_head_init(&ar->wmi_mgmt_tx_queue); 10413 10414 clear_bit(ATH11K_FLAG_MONITOR_STARTED, &ar->monitor_flags); 10415 10416 ar->monitor_vdev_id = -1; 10417 clear_bit(ATH11K_FLAG_MONITOR_VDEV_CREATED, &ar->monitor_flags); 10418 ar->vdev_id_11d_scan = ATH11K_11D_INVALID_VDEV_ID; 10419 init_completion(&ar->completed_11d_scan); 10420 10421 ath11k_fw_stats_init(ar); 10422 } 10423 10424 return 0; 10425 10426 err_free_mac: 10427 ath11k_mac_destroy(ab); 10428 10429 return ret; 10430 } 10431 10432 void ath11k_mac_destroy(struct ath11k_base *ab) 10433 { 10434 struct ath11k *ar; 10435 struct ath11k_pdev *pdev; 10436 int i; 10437 10438 for (i = 0; i < ab->num_radios; i++) { 10439 pdev = &ab->pdevs[i]; 10440 ar = pdev->ar; 10441 if (!ar) 10442 continue; 10443 10444 ath11k_fw_stats_free(&ar->fw_stats); 10445 ieee80211_free_hw(ar->hw); 10446 pdev->ar = NULL; 10447 } 10448 } 10449 10450 int ath11k_mac_vif_set_keepalive(struct ath11k_vif *arvif, 10451 enum wmi_sta_keepalive_method method, 10452 u32 interval) 10453 { 10454 struct ath11k *ar = arvif->ar; 10455 struct wmi_sta_keepalive_arg arg = {}; 10456 int ret; 10457 10458 lockdep_assert_held(&ar->conf_mutex); 10459 10460 if (arvif->vdev_type != WMI_VDEV_TYPE_STA) 10461 return 0; 10462 10463 if (!test_bit(WMI_TLV_SERVICE_STA_KEEP_ALIVE, ar->ab->wmi_ab.svc_map)) 10464 return 0; 10465 10466 arg.vdev_id = arvif->vdev_id; 10467 arg.enabled = 1; 10468 arg.method = method; 10469 arg.interval = interval; 10470 10471 ret = ath11k_wmi_sta_keepalive(ar, &arg); 10472 if (ret) { 10473 ath11k_warn(ar->ab, "failed to set keepalive on vdev %i: %d\n", 10474 arvif->vdev_id, ret); 10475 return ret; 10476 } 10477 10478 return 0; 10479 } 10480