1 /* 2 * Copyright (c) 2005-2011 Atheros Communications Inc. 3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. 4 * 5 * Permission to use, copy, modify, and/or distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <linux/skbuff.h> 19 20 #include "core.h" 21 #include "htc.h" 22 #include "debug.h" 23 #include "wmi.h" 24 #include "mac.h" 25 26 void ath10k_wmi_flush_tx(struct ath10k *ar) 27 { 28 int ret; 29 30 ret = wait_event_timeout(ar->wmi.wq, 31 atomic_read(&ar->wmi.pending_tx_count) == 0, 32 5*HZ); 33 if (atomic_read(&ar->wmi.pending_tx_count) == 0) 34 return; 35 36 if (ret == 0) 37 ret = -ETIMEDOUT; 38 39 if (ret < 0) 40 ath10k_warn("wmi flush failed (%d)\n", ret); 41 } 42 43 int ath10k_wmi_wait_for_service_ready(struct ath10k *ar) 44 { 45 int ret; 46 ret = wait_for_completion_timeout(&ar->wmi.service_ready, 47 WMI_SERVICE_READY_TIMEOUT_HZ); 48 return ret; 49 } 50 51 int ath10k_wmi_wait_for_unified_ready(struct ath10k *ar) 52 { 53 int ret; 54 ret = wait_for_completion_timeout(&ar->wmi.unified_ready, 55 WMI_UNIFIED_READY_TIMEOUT_HZ); 56 return ret; 57 } 58 59 static struct sk_buff *ath10k_wmi_alloc_skb(u32 len) 60 { 61 struct sk_buff *skb; 62 u32 round_len = roundup(len, 4); 63 64 skb = ath10k_htc_alloc_skb(WMI_SKB_HEADROOM + round_len); 65 if (!skb) 66 return NULL; 67 68 skb_reserve(skb, WMI_SKB_HEADROOM); 69 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 70 ath10k_warn("Unaligned WMI skb\n"); 71 72 skb_put(skb, round_len); 73 memset(skb->data, 0, round_len); 74 75 return skb; 76 } 77 78 static void ath10k_wmi_htc_tx_complete(struct ath10k *ar, struct sk_buff *skb) 79 { 80 dev_kfree_skb(skb); 81 82 if (atomic_sub_return(1, &ar->wmi.pending_tx_count) == 0) 83 wake_up(&ar->wmi.wq); 84 } 85 86 /* WMI command API */ 87 static int ath10k_wmi_cmd_send(struct ath10k *ar, struct sk_buff *skb, 88 enum wmi_cmd_id cmd_id) 89 { 90 struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(skb); 91 struct wmi_cmd_hdr *cmd_hdr; 92 int status; 93 u32 cmd = 0; 94 95 if (skb_push(skb, sizeof(struct wmi_cmd_hdr)) == NULL) 96 return -ENOMEM; 97 98 cmd |= SM(cmd_id, WMI_CMD_HDR_CMD_ID); 99 100 cmd_hdr = (struct wmi_cmd_hdr *)skb->data; 101 cmd_hdr->cmd_id = __cpu_to_le32(cmd); 102 103 if (atomic_add_return(1, &ar->wmi.pending_tx_count) > 104 WMI_MAX_PENDING_TX_COUNT) { 105 /* avoid using up memory when FW hangs */ 106 atomic_dec(&ar->wmi.pending_tx_count); 107 return -EBUSY; 108 } 109 110 memset(skb_cb, 0, sizeof(*skb_cb)); 111 112 trace_ath10k_wmi_cmd(cmd_id, skb->data, skb->len); 113 114 status = ath10k_htc_send(ar->htc, ar->wmi.eid, skb); 115 if (status) { 116 dev_kfree_skb_any(skb); 117 atomic_dec(&ar->wmi.pending_tx_count); 118 return status; 119 } 120 121 return 0; 122 } 123 124 static int ath10k_wmi_event_scan(struct ath10k *ar, struct sk_buff *skb) 125 { 126 struct wmi_scan_event *event = (struct wmi_scan_event *)skb->data; 127 enum wmi_scan_event_type event_type; 128 enum wmi_scan_completion_reason reason; 129 u32 freq; 130 u32 req_id; 131 u32 scan_id; 132 u32 vdev_id; 133 134 event_type = __le32_to_cpu(event->event_type); 135 reason = __le32_to_cpu(event->reason); 136 freq = __le32_to_cpu(event->channel_freq); 137 req_id = __le32_to_cpu(event->scan_req_id); 138 scan_id = __le32_to_cpu(event->scan_id); 139 vdev_id = __le32_to_cpu(event->vdev_id); 140 141 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENTID\n"); 142 ath10k_dbg(ATH10K_DBG_WMI, 143 "scan event type %d reason %d freq %d req_id %d " 144 "scan_id %d vdev_id %d\n", 145 event_type, reason, freq, req_id, scan_id, vdev_id); 146 147 spin_lock_bh(&ar->data_lock); 148 149 switch (event_type) { 150 case WMI_SCAN_EVENT_STARTED: 151 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_STARTED\n"); 152 if (ar->scan.in_progress && ar->scan.is_roc) 153 ieee80211_ready_on_channel(ar->hw); 154 155 complete(&ar->scan.started); 156 break; 157 case WMI_SCAN_EVENT_COMPLETED: 158 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_COMPLETED\n"); 159 switch (reason) { 160 case WMI_SCAN_REASON_COMPLETED: 161 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_COMPLETED\n"); 162 break; 163 case WMI_SCAN_REASON_CANCELLED: 164 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_CANCELED\n"); 165 break; 166 case WMI_SCAN_REASON_PREEMPTED: 167 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_PREEMPTED\n"); 168 break; 169 case WMI_SCAN_REASON_TIMEDOUT: 170 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_REASON_TIMEDOUT\n"); 171 break; 172 default: 173 break; 174 } 175 176 ar->scan_channel = NULL; 177 if (!ar->scan.in_progress) { 178 ath10k_warn("no scan requested, ignoring\n"); 179 break; 180 } 181 182 if (ar->scan.is_roc) { 183 ath10k_offchan_tx_purge(ar); 184 185 if (!ar->scan.aborting) 186 ieee80211_remain_on_channel_expired(ar->hw); 187 } else { 188 ieee80211_scan_completed(ar->hw, ar->scan.aborting); 189 } 190 191 del_timer(&ar->scan.timeout); 192 complete_all(&ar->scan.completed); 193 ar->scan.in_progress = false; 194 break; 195 case WMI_SCAN_EVENT_BSS_CHANNEL: 196 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_BSS_CHANNEL\n"); 197 ar->scan_channel = NULL; 198 break; 199 case WMI_SCAN_EVENT_FOREIGN_CHANNEL: 200 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_FOREIGN_CHANNEL\n"); 201 ar->scan_channel = ieee80211_get_channel(ar->hw->wiphy, freq); 202 if (ar->scan.in_progress && ar->scan.is_roc && 203 ar->scan.roc_freq == freq) { 204 complete(&ar->scan.on_channel); 205 } 206 break; 207 case WMI_SCAN_EVENT_DEQUEUED: 208 ath10k_dbg(ATH10K_DBG_WMI, "SCAN_EVENT_DEQUEUED\n"); 209 break; 210 case WMI_SCAN_EVENT_PREEMPTED: 211 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_PREEMPTED\n"); 212 break; 213 case WMI_SCAN_EVENT_START_FAILED: 214 ath10k_dbg(ATH10K_DBG_WMI, "WMI_SCAN_EVENT_START_FAILED\n"); 215 break; 216 default: 217 break; 218 } 219 220 spin_unlock_bh(&ar->data_lock); 221 return 0; 222 } 223 224 static inline enum ieee80211_band phy_mode_to_band(u32 phy_mode) 225 { 226 enum ieee80211_band band; 227 228 switch (phy_mode) { 229 case MODE_11A: 230 case MODE_11NA_HT20: 231 case MODE_11NA_HT40: 232 case MODE_11AC_VHT20: 233 case MODE_11AC_VHT40: 234 case MODE_11AC_VHT80: 235 band = IEEE80211_BAND_5GHZ; 236 break; 237 case MODE_11G: 238 case MODE_11B: 239 case MODE_11GONLY: 240 case MODE_11NG_HT20: 241 case MODE_11NG_HT40: 242 case MODE_11AC_VHT20_2G: 243 case MODE_11AC_VHT40_2G: 244 case MODE_11AC_VHT80_2G: 245 default: 246 band = IEEE80211_BAND_2GHZ; 247 } 248 249 return band; 250 } 251 252 static inline u8 get_rate_idx(u32 rate, enum ieee80211_band band) 253 { 254 u8 rate_idx = 0; 255 256 /* rate in Kbps */ 257 switch (rate) { 258 case 1000: 259 rate_idx = 0; 260 break; 261 case 2000: 262 rate_idx = 1; 263 break; 264 case 5500: 265 rate_idx = 2; 266 break; 267 case 11000: 268 rate_idx = 3; 269 break; 270 case 6000: 271 rate_idx = 4; 272 break; 273 case 9000: 274 rate_idx = 5; 275 break; 276 case 12000: 277 rate_idx = 6; 278 break; 279 case 18000: 280 rate_idx = 7; 281 break; 282 case 24000: 283 rate_idx = 8; 284 break; 285 case 36000: 286 rate_idx = 9; 287 break; 288 case 48000: 289 rate_idx = 10; 290 break; 291 case 54000: 292 rate_idx = 11; 293 break; 294 default: 295 break; 296 } 297 298 if (band == IEEE80211_BAND_5GHZ) { 299 if (rate_idx > 3) 300 /* Omit CCK rates */ 301 rate_idx -= 4; 302 else 303 rate_idx = 0; 304 } 305 306 return rate_idx; 307 } 308 309 static int ath10k_wmi_event_mgmt_rx(struct ath10k *ar, struct sk_buff *skb) 310 { 311 struct wmi_mgmt_rx_event *event = (struct wmi_mgmt_rx_event *)skb->data; 312 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb); 313 struct ieee80211_hdr *hdr; 314 u32 rx_status; 315 u32 channel; 316 u32 phy_mode; 317 u32 snr; 318 u32 rate; 319 u32 buf_len; 320 u16 fc; 321 322 channel = __le32_to_cpu(event->hdr.channel); 323 buf_len = __le32_to_cpu(event->hdr.buf_len); 324 rx_status = __le32_to_cpu(event->hdr.status); 325 snr = __le32_to_cpu(event->hdr.snr); 326 phy_mode = __le32_to_cpu(event->hdr.phy_mode); 327 rate = __le32_to_cpu(event->hdr.rate); 328 329 memset(status, 0, sizeof(*status)); 330 331 ath10k_dbg(ATH10K_DBG_MGMT, 332 "event mgmt rx status %08x\n", rx_status); 333 334 if (rx_status & WMI_RX_STATUS_ERR_DECRYPT) { 335 dev_kfree_skb(skb); 336 return 0; 337 } 338 339 if (rx_status & WMI_RX_STATUS_ERR_KEY_CACHE_MISS) { 340 dev_kfree_skb(skb); 341 return 0; 342 } 343 344 if (rx_status & WMI_RX_STATUS_ERR_CRC) 345 status->flag |= RX_FLAG_FAILED_FCS_CRC; 346 if (rx_status & WMI_RX_STATUS_ERR_MIC) 347 status->flag |= RX_FLAG_MMIC_ERROR; 348 349 status->band = phy_mode_to_band(phy_mode); 350 status->freq = ieee80211_channel_to_frequency(channel, status->band); 351 status->signal = snr + ATH10K_DEFAULT_NOISE_FLOOR; 352 status->rate_idx = get_rate_idx(rate, status->band); 353 354 skb_pull(skb, sizeof(event->hdr)); 355 356 hdr = (struct ieee80211_hdr *)skb->data; 357 fc = le16_to_cpu(hdr->frame_control); 358 359 if (fc & IEEE80211_FCTL_PROTECTED) { 360 status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_IV_STRIPPED | 361 RX_FLAG_MMIC_STRIPPED; 362 hdr->frame_control = __cpu_to_le16(fc & 363 ~IEEE80211_FCTL_PROTECTED); 364 } 365 366 ath10k_dbg(ATH10K_DBG_MGMT, 367 "event mgmt rx skb %p len %d ftype %02x stype %02x\n", 368 skb, skb->len, 369 fc & IEEE80211_FCTL_FTYPE, fc & IEEE80211_FCTL_STYPE); 370 371 ath10k_dbg(ATH10K_DBG_MGMT, 372 "event mgmt rx freq %d band %d snr %d, rate_idx %d\n", 373 status->freq, status->band, status->signal, 374 status->rate_idx); 375 376 /* 377 * packets from HTC come aligned to 4byte boundaries 378 * because they can originally come in along with a trailer 379 */ 380 skb_trim(skb, buf_len); 381 382 ieee80211_rx(ar->hw, skb); 383 return 0; 384 } 385 386 static void ath10k_wmi_event_chan_info(struct ath10k *ar, struct sk_buff *skb) 387 { 388 ath10k_dbg(ATH10K_DBG_WMI, "WMI_CHAN_INFO_EVENTID\n"); 389 } 390 391 static void ath10k_wmi_event_echo(struct ath10k *ar, struct sk_buff *skb) 392 { 393 ath10k_dbg(ATH10K_DBG_WMI, "WMI_ECHO_EVENTID\n"); 394 } 395 396 static void ath10k_wmi_event_debug_mesg(struct ath10k *ar, struct sk_buff *skb) 397 { 398 ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_MESG_EVENTID\n"); 399 } 400 401 static void ath10k_wmi_event_update_stats(struct ath10k *ar, 402 struct sk_buff *skb) 403 { 404 struct wmi_stats_event *ev = (struct wmi_stats_event *)skb->data; 405 406 ath10k_dbg(ATH10K_DBG_WMI, "WMI_UPDATE_STATS_EVENTID\n"); 407 408 ath10k_debug_read_target_stats(ar, ev); 409 } 410 411 static void ath10k_wmi_event_vdev_start_resp(struct ath10k *ar, 412 struct sk_buff *skb) 413 { 414 struct wmi_vdev_start_response_event *ev; 415 416 ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_START_RESP_EVENTID\n"); 417 418 ev = (struct wmi_vdev_start_response_event *)skb->data; 419 420 if (WARN_ON(__le32_to_cpu(ev->status))) 421 return; 422 423 complete(&ar->vdev_setup_done); 424 } 425 426 static void ath10k_wmi_event_vdev_stopped(struct ath10k *ar, 427 struct sk_buff *skb) 428 { 429 ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_STOPPED_EVENTID\n"); 430 complete(&ar->vdev_setup_done); 431 } 432 433 static void ath10k_wmi_event_peer_sta_kickout(struct ath10k *ar, 434 struct sk_buff *skb) 435 { 436 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PEER_STA_KICKOUT_EVENTID\n"); 437 } 438 439 /* 440 * FIXME 441 * 442 * We don't report to mac80211 sleep state of connected 443 * stations. Due to this mac80211 can't fill in TIM IE 444 * correctly. 445 * 446 * I know of no way of getting nullfunc frames that contain 447 * sleep transition from connected stations - these do not 448 * seem to be sent from the target to the host. There also 449 * doesn't seem to be a dedicated event for that. So the 450 * only way left to do this would be to read tim_bitmap 451 * during SWBA. 452 * 453 * We could probably try using tim_bitmap from SWBA to tell 454 * mac80211 which stations are asleep and which are not. The 455 * problem here is calling mac80211 functions so many times 456 * could take too long and make us miss the time to submit 457 * the beacon to the target. 458 * 459 * So as a workaround we try to extend the TIM IE if there 460 * is unicast buffered for stations with aid > 7 and fill it 461 * in ourselves. 462 */ 463 static void ath10k_wmi_update_tim(struct ath10k *ar, 464 struct ath10k_vif *arvif, 465 struct sk_buff *bcn, 466 struct wmi_bcn_info *bcn_info) 467 { 468 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)bcn->data; 469 struct ieee80211_tim_ie *tim; 470 u8 *ies, *ie; 471 u8 ie_len, pvm_len; 472 473 /* if next SWBA has no tim_changed the tim_bitmap is garbage. 474 * we must copy the bitmap upon change and reuse it later */ 475 if (__le32_to_cpu(bcn_info->tim_info.tim_changed)) { 476 int i; 477 478 BUILD_BUG_ON(sizeof(arvif->u.ap.tim_bitmap) != 479 sizeof(bcn_info->tim_info.tim_bitmap)); 480 481 for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) { 482 __le32 t = bcn_info->tim_info.tim_bitmap[i / 4]; 483 u32 v = __le32_to_cpu(t); 484 arvif->u.ap.tim_bitmap[i] = (v >> ((i % 4) * 8)) & 0xFF; 485 } 486 487 /* FW reports either length 0 or 16 488 * so we calculate this on our own */ 489 arvif->u.ap.tim_len = 0; 490 for (i = 0; i < sizeof(arvif->u.ap.tim_bitmap); i++) 491 if (arvif->u.ap.tim_bitmap[i]) 492 arvif->u.ap.tim_len = i; 493 494 arvif->u.ap.tim_len++; 495 } 496 497 ies = bcn->data; 498 ies += ieee80211_hdrlen(hdr->frame_control); 499 ies += 12; /* fixed parameters */ 500 501 ie = (u8 *)cfg80211_find_ie(WLAN_EID_TIM, ies, 502 (u8 *)skb_tail_pointer(bcn) - ies); 503 if (!ie) { 504 /* highly unlikely for mac80211 */ 505 ath10k_warn("no tim ie found;\n"); 506 return; 507 } 508 509 tim = (void *)ie + 2; 510 ie_len = ie[1]; 511 pvm_len = ie_len - 3; /* exclude dtim count, dtim period, bmap ctl */ 512 513 if (pvm_len < arvif->u.ap.tim_len) { 514 int expand_size = sizeof(arvif->u.ap.tim_bitmap) - pvm_len; 515 int move_size = skb_tail_pointer(bcn) - (ie + 2 + ie_len); 516 void *next_ie = ie + 2 + ie_len; 517 518 if (skb_put(bcn, expand_size)) { 519 memmove(next_ie + expand_size, next_ie, move_size); 520 521 ie[1] += expand_size; 522 ie_len += expand_size; 523 pvm_len += expand_size; 524 } else { 525 ath10k_warn("tim expansion failed\n"); 526 } 527 } 528 529 if (pvm_len > sizeof(arvif->u.ap.tim_bitmap)) { 530 ath10k_warn("tim pvm length is too great (%d)\n", pvm_len); 531 return; 532 } 533 534 tim->bitmap_ctrl = !!__le32_to_cpu(bcn_info->tim_info.tim_mcast); 535 memcpy(tim->virtual_map, arvif->u.ap.tim_bitmap, pvm_len); 536 537 ath10k_dbg(ATH10K_DBG_MGMT, "dtim %d/%d mcast %d pvmlen %d\n", 538 tim->dtim_count, tim->dtim_period, 539 tim->bitmap_ctrl, pvm_len); 540 } 541 542 static void ath10k_p2p_fill_noa_ie(u8 *data, u32 len, 543 struct wmi_p2p_noa_info *noa) 544 { 545 struct ieee80211_p2p_noa_attr *noa_attr; 546 u8 ctwindow_oppps = noa->ctwindow_oppps; 547 u8 ctwindow = ctwindow_oppps >> WMI_P2P_OPPPS_CTWINDOW_OFFSET; 548 bool oppps = !!(ctwindow_oppps & WMI_P2P_OPPPS_ENABLE_BIT); 549 __le16 *noa_attr_len; 550 u16 attr_len; 551 u8 noa_descriptors = noa->num_descriptors; 552 int i; 553 554 /* P2P IE */ 555 data[0] = WLAN_EID_VENDOR_SPECIFIC; 556 data[1] = len - 2; 557 data[2] = (WLAN_OUI_WFA >> 16) & 0xff; 558 data[3] = (WLAN_OUI_WFA >> 8) & 0xff; 559 data[4] = (WLAN_OUI_WFA >> 0) & 0xff; 560 data[5] = WLAN_OUI_TYPE_WFA_P2P; 561 562 /* NOA ATTR */ 563 data[6] = IEEE80211_P2P_ATTR_ABSENCE_NOTICE; 564 noa_attr_len = (__le16 *)&data[7]; /* 2 bytes */ 565 noa_attr = (struct ieee80211_p2p_noa_attr *)&data[9]; 566 567 noa_attr->index = noa->index; 568 noa_attr->oppps_ctwindow = ctwindow; 569 if (oppps) 570 noa_attr->oppps_ctwindow |= IEEE80211_P2P_OPPPS_ENABLE_BIT; 571 572 for (i = 0; i < noa_descriptors; i++) { 573 noa_attr->desc[i].count = 574 __le32_to_cpu(noa->descriptors[i].type_count); 575 noa_attr->desc[i].duration = noa->descriptors[i].duration; 576 noa_attr->desc[i].interval = noa->descriptors[i].interval; 577 noa_attr->desc[i].start_time = noa->descriptors[i].start_time; 578 } 579 580 attr_len = 2; /* index + oppps_ctwindow */ 581 attr_len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc); 582 *noa_attr_len = __cpu_to_le16(attr_len); 583 } 584 585 static u32 ath10k_p2p_calc_noa_ie_len(struct wmi_p2p_noa_info *noa) 586 { 587 u32 len = 0; 588 u8 noa_descriptors = noa->num_descriptors; 589 u8 opp_ps_info = noa->ctwindow_oppps; 590 bool opps_enabled = !!(opp_ps_info & WMI_P2P_OPPPS_ENABLE_BIT); 591 592 593 if (!noa_descriptors && !opps_enabled) 594 return len; 595 596 len += 1 + 1 + 4; /* EID + len + OUI */ 597 len += 1 + 2; /* noa attr + attr len */ 598 len += 1 + 1; /* index + oppps_ctwindow */ 599 len += noa_descriptors * sizeof(struct ieee80211_p2p_noa_desc); 600 601 return len; 602 } 603 604 static void ath10k_wmi_update_noa(struct ath10k *ar, struct ath10k_vif *arvif, 605 struct sk_buff *bcn, 606 struct wmi_bcn_info *bcn_info) 607 { 608 struct wmi_p2p_noa_info *noa = &bcn_info->p2p_noa_info; 609 u8 *new_data, *old_data = arvif->u.ap.noa_data; 610 u32 new_len; 611 612 if (arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO) 613 return; 614 615 ath10k_dbg(ATH10K_DBG_MGMT, "noa changed: %d\n", noa->changed); 616 if (noa->changed & WMI_P2P_NOA_CHANGED_BIT) { 617 new_len = ath10k_p2p_calc_noa_ie_len(noa); 618 if (!new_len) 619 goto cleanup; 620 621 new_data = kmalloc(new_len, GFP_ATOMIC); 622 if (!new_data) 623 goto cleanup; 624 625 ath10k_p2p_fill_noa_ie(new_data, new_len, noa); 626 627 spin_lock_bh(&ar->data_lock); 628 arvif->u.ap.noa_data = new_data; 629 arvif->u.ap.noa_len = new_len; 630 spin_unlock_bh(&ar->data_lock); 631 kfree(old_data); 632 } 633 634 if (arvif->u.ap.noa_data) 635 if (!pskb_expand_head(bcn, 0, arvif->u.ap.noa_len, GFP_ATOMIC)) 636 memcpy(skb_put(bcn, arvif->u.ap.noa_len), 637 arvif->u.ap.noa_data, 638 arvif->u.ap.noa_len); 639 return; 640 641 cleanup: 642 spin_lock_bh(&ar->data_lock); 643 arvif->u.ap.noa_data = NULL; 644 arvif->u.ap.noa_len = 0; 645 spin_unlock_bh(&ar->data_lock); 646 kfree(old_data); 647 } 648 649 650 static void ath10k_wmi_event_host_swba(struct ath10k *ar, struct sk_buff *skb) 651 { 652 struct wmi_host_swba_event *ev; 653 u32 map; 654 int i = -1; 655 struct wmi_bcn_info *bcn_info; 656 struct ath10k_vif *arvif; 657 struct wmi_bcn_tx_arg arg; 658 struct sk_buff *bcn; 659 int vdev_id = 0; 660 int ret; 661 662 ath10k_dbg(ATH10K_DBG_MGMT, "WMI_HOST_SWBA_EVENTID\n"); 663 664 ev = (struct wmi_host_swba_event *)skb->data; 665 map = __le32_to_cpu(ev->vdev_map); 666 667 ath10k_dbg(ATH10K_DBG_MGMT, "host swba:\n" 668 "-vdev map 0x%x\n", 669 ev->vdev_map); 670 671 for (; map; map >>= 1, vdev_id++) { 672 if (!(map & 0x1)) 673 continue; 674 675 i++; 676 677 if (i >= WMI_MAX_AP_VDEV) { 678 ath10k_warn("swba has corrupted vdev map\n"); 679 break; 680 } 681 682 bcn_info = &ev->bcn_info[i]; 683 684 ath10k_dbg(ATH10K_DBG_MGMT, 685 "-bcn_info[%d]:\n" 686 "--tim_len %d\n" 687 "--tim_mcast %d\n" 688 "--tim_changed %d\n" 689 "--tim_num_ps_pending %d\n" 690 "--tim_bitmap 0x%08x%08x%08x%08x\n", 691 i, 692 __le32_to_cpu(bcn_info->tim_info.tim_len), 693 __le32_to_cpu(bcn_info->tim_info.tim_mcast), 694 __le32_to_cpu(bcn_info->tim_info.tim_changed), 695 __le32_to_cpu(bcn_info->tim_info.tim_num_ps_pending), 696 __le32_to_cpu(bcn_info->tim_info.tim_bitmap[3]), 697 __le32_to_cpu(bcn_info->tim_info.tim_bitmap[2]), 698 __le32_to_cpu(bcn_info->tim_info.tim_bitmap[1]), 699 __le32_to_cpu(bcn_info->tim_info.tim_bitmap[0])); 700 701 arvif = ath10k_get_arvif(ar, vdev_id); 702 if (arvif == NULL) { 703 ath10k_warn("no vif for vdev_id %d found\n", vdev_id); 704 continue; 705 } 706 707 bcn = ieee80211_beacon_get(ar->hw, arvif->vif); 708 if (!bcn) { 709 ath10k_warn("could not get mac80211 beacon\n"); 710 continue; 711 } 712 713 ath10k_tx_h_seq_no(bcn); 714 ath10k_wmi_update_tim(ar, arvif, bcn, bcn_info); 715 ath10k_wmi_update_noa(ar, arvif, bcn, bcn_info); 716 717 arg.vdev_id = arvif->vdev_id; 718 arg.tx_rate = 0; 719 arg.tx_power = 0; 720 arg.bcn = bcn->data; 721 arg.bcn_len = bcn->len; 722 723 ret = ath10k_wmi_beacon_send(ar, &arg); 724 if (ret) 725 ath10k_warn("could not send beacon (%d)\n", ret); 726 727 dev_kfree_skb_any(bcn); 728 } 729 } 730 731 static void ath10k_wmi_event_tbttoffset_update(struct ath10k *ar, 732 struct sk_buff *skb) 733 { 734 ath10k_dbg(ATH10K_DBG_WMI, "WMI_TBTTOFFSET_UPDATE_EVENTID\n"); 735 } 736 737 static void ath10k_wmi_event_phyerr(struct ath10k *ar, struct sk_buff *skb) 738 { 739 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PHYERR_EVENTID\n"); 740 } 741 742 static void ath10k_wmi_event_roam(struct ath10k *ar, struct sk_buff *skb) 743 { 744 ath10k_dbg(ATH10K_DBG_WMI, "WMI_ROAM_EVENTID\n"); 745 } 746 747 static void ath10k_wmi_event_profile_match(struct ath10k *ar, 748 struct sk_buff *skb) 749 { 750 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PROFILE_MATCH\n"); 751 } 752 753 static void ath10k_wmi_event_debug_print(struct ath10k *ar, 754 struct sk_buff *skb) 755 { 756 ath10k_dbg(ATH10K_DBG_WMI, "WMI_DEBUG_PRINT_EVENTID\n"); 757 } 758 759 static void ath10k_wmi_event_pdev_qvit(struct ath10k *ar, struct sk_buff *skb) 760 { 761 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_QVIT_EVENTID\n"); 762 } 763 764 static void ath10k_wmi_event_wlan_profile_data(struct ath10k *ar, 765 struct sk_buff *skb) 766 { 767 ath10k_dbg(ATH10K_DBG_WMI, "WMI_WLAN_PROFILE_DATA_EVENTID\n"); 768 } 769 770 static void ath10k_wmi_event_rtt_measurement_report(struct ath10k *ar, 771 struct sk_buff *skb) 772 { 773 ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_MEASUREMENT_REPORT_EVENTID\n"); 774 } 775 776 static void ath10k_wmi_event_tsf_measurement_report(struct ath10k *ar, 777 struct sk_buff *skb) 778 { 779 ath10k_dbg(ATH10K_DBG_WMI, "WMI_TSF_MEASUREMENT_REPORT_EVENTID\n"); 780 } 781 782 static void ath10k_wmi_event_rtt_error_report(struct ath10k *ar, 783 struct sk_buff *skb) 784 { 785 ath10k_dbg(ATH10K_DBG_WMI, "WMI_RTT_ERROR_REPORT_EVENTID\n"); 786 } 787 788 static void ath10k_wmi_event_wow_wakeup_host(struct ath10k *ar, 789 struct sk_buff *skb) 790 { 791 ath10k_dbg(ATH10K_DBG_WMI, "WMI_WOW_WAKEUP_HOST_EVENTID\n"); 792 } 793 794 static void ath10k_wmi_event_dcs_interference(struct ath10k *ar, 795 struct sk_buff *skb) 796 { 797 ath10k_dbg(ATH10K_DBG_WMI, "WMI_DCS_INTERFERENCE_EVENTID\n"); 798 } 799 800 static void ath10k_wmi_event_pdev_tpc_config(struct ath10k *ar, 801 struct sk_buff *skb) 802 { 803 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_TPC_CONFIG_EVENTID\n"); 804 } 805 806 static void ath10k_wmi_event_pdev_ftm_intg(struct ath10k *ar, 807 struct sk_buff *skb) 808 { 809 ath10k_dbg(ATH10K_DBG_WMI, "WMI_PDEV_FTM_INTG_EVENTID\n"); 810 } 811 812 static void ath10k_wmi_event_gtk_offload_status(struct ath10k *ar, 813 struct sk_buff *skb) 814 { 815 ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_OFFLOAD_STATUS_EVENTID\n"); 816 } 817 818 static void ath10k_wmi_event_gtk_rekey_fail(struct ath10k *ar, 819 struct sk_buff *skb) 820 { 821 ath10k_dbg(ATH10K_DBG_WMI, "WMI_GTK_REKEY_FAIL_EVENTID\n"); 822 } 823 824 static void ath10k_wmi_event_delba_complete(struct ath10k *ar, 825 struct sk_buff *skb) 826 { 827 ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_DELBA_COMPLETE_EVENTID\n"); 828 } 829 830 static void ath10k_wmi_event_addba_complete(struct ath10k *ar, 831 struct sk_buff *skb) 832 { 833 ath10k_dbg(ATH10K_DBG_WMI, "WMI_TX_ADDBA_COMPLETE_EVENTID\n"); 834 } 835 836 static void ath10k_wmi_event_vdev_install_key_complete(struct ath10k *ar, 837 struct sk_buff *skb) 838 { 839 ath10k_dbg(ATH10K_DBG_WMI, "WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID\n"); 840 } 841 842 static void ath10k_wmi_service_ready_event_rx(struct ath10k *ar, 843 struct sk_buff *skb) 844 { 845 struct wmi_service_ready_event *ev = (void *)skb->data; 846 847 if (skb->len < sizeof(*ev)) { 848 ath10k_warn("Service ready event was %d B but expected %zu B. Wrong firmware version?\n", 849 skb->len, sizeof(*ev)); 850 return; 851 } 852 853 ar->hw_min_tx_power = __le32_to_cpu(ev->hw_min_tx_power); 854 ar->hw_max_tx_power = __le32_to_cpu(ev->hw_max_tx_power); 855 ar->ht_cap_info = __le32_to_cpu(ev->ht_cap_info); 856 ar->vht_cap_info = __le32_to_cpu(ev->vht_cap_info); 857 ar->fw_version_major = 858 (__le32_to_cpu(ev->sw_version) & 0xff000000) >> 24; 859 ar->fw_version_minor = (__le32_to_cpu(ev->sw_version) & 0x00ffffff); 860 ar->fw_version_release = 861 (__le32_to_cpu(ev->sw_version_1) & 0xffff0000) >> 16; 862 ar->fw_version_build = (__le32_to_cpu(ev->sw_version_1) & 0x0000ffff); 863 ar->phy_capability = __le32_to_cpu(ev->phy_capability); 864 865 ar->ath_common.regulatory.current_rd = 866 __le32_to_cpu(ev->hal_reg_capabilities.eeprom_rd); 867 868 ath10k_debug_read_service_map(ar, ev->wmi_service_bitmap, 869 sizeof(ev->wmi_service_bitmap)); 870 871 if (strlen(ar->hw->wiphy->fw_version) == 0) { 872 snprintf(ar->hw->wiphy->fw_version, 873 sizeof(ar->hw->wiphy->fw_version), 874 "%u.%u.%u.%u", 875 ar->fw_version_major, 876 ar->fw_version_minor, 877 ar->fw_version_release, 878 ar->fw_version_build); 879 } 880 881 /* FIXME: it probably should be better to support this */ 882 if (__le32_to_cpu(ev->num_mem_reqs) > 0) { 883 ath10k_warn("target requested %d memory chunks; ignoring\n", 884 __le32_to_cpu(ev->num_mem_reqs)); 885 } 886 887 ath10k_dbg(ATH10K_DBG_WMI, 888 "wmi event service ready sw_ver 0x%08x sw_ver1 0x%08x abi_ver %u phy_cap 0x%08x ht_cap 0x%08x vht_cap 0x%08x vht_supp_msc 0x%08x sys_cap_info 0x%08x mem_reqs %u\n", 889 __le32_to_cpu(ev->sw_version), 890 __le32_to_cpu(ev->sw_version_1), 891 __le32_to_cpu(ev->abi_version), 892 __le32_to_cpu(ev->phy_capability), 893 __le32_to_cpu(ev->ht_cap_info), 894 __le32_to_cpu(ev->vht_cap_info), 895 __le32_to_cpu(ev->vht_supp_mcs), 896 __le32_to_cpu(ev->sys_cap_info), 897 __le32_to_cpu(ev->num_mem_reqs)); 898 899 complete(&ar->wmi.service_ready); 900 } 901 902 static int ath10k_wmi_ready_event_rx(struct ath10k *ar, struct sk_buff *skb) 903 { 904 struct wmi_ready_event *ev = (struct wmi_ready_event *)skb->data; 905 906 if (WARN_ON(skb->len < sizeof(*ev))) 907 return -EINVAL; 908 909 memcpy(ar->mac_addr, ev->mac_addr.addr, ETH_ALEN); 910 911 ath10k_dbg(ATH10K_DBG_WMI, 912 "wmi event ready sw_version %u abi_version %u mac_addr %pM status %d\n", 913 __le32_to_cpu(ev->sw_version), 914 __le32_to_cpu(ev->abi_version), 915 ev->mac_addr.addr, 916 __le32_to_cpu(ev->status)); 917 918 complete(&ar->wmi.unified_ready); 919 return 0; 920 } 921 922 static void ath10k_wmi_event_process(struct ath10k *ar, struct sk_buff *skb) 923 { 924 struct wmi_cmd_hdr *cmd_hdr; 925 enum wmi_event_id id; 926 u16 len; 927 928 cmd_hdr = (struct wmi_cmd_hdr *)skb->data; 929 id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID); 930 931 if (skb_pull(skb, sizeof(struct wmi_cmd_hdr)) == NULL) 932 return; 933 934 len = skb->len; 935 936 trace_ath10k_wmi_event(id, skb->data, skb->len); 937 938 switch (id) { 939 case WMI_MGMT_RX_EVENTID: 940 ath10k_wmi_event_mgmt_rx(ar, skb); 941 /* mgmt_rx() owns the skb now! */ 942 return; 943 case WMI_SCAN_EVENTID: 944 ath10k_wmi_event_scan(ar, skb); 945 break; 946 case WMI_CHAN_INFO_EVENTID: 947 ath10k_wmi_event_chan_info(ar, skb); 948 break; 949 case WMI_ECHO_EVENTID: 950 ath10k_wmi_event_echo(ar, skb); 951 break; 952 case WMI_DEBUG_MESG_EVENTID: 953 ath10k_wmi_event_debug_mesg(ar, skb); 954 break; 955 case WMI_UPDATE_STATS_EVENTID: 956 ath10k_wmi_event_update_stats(ar, skb); 957 break; 958 case WMI_VDEV_START_RESP_EVENTID: 959 ath10k_wmi_event_vdev_start_resp(ar, skb); 960 break; 961 case WMI_VDEV_STOPPED_EVENTID: 962 ath10k_wmi_event_vdev_stopped(ar, skb); 963 break; 964 case WMI_PEER_STA_KICKOUT_EVENTID: 965 ath10k_wmi_event_peer_sta_kickout(ar, skb); 966 break; 967 case WMI_HOST_SWBA_EVENTID: 968 ath10k_wmi_event_host_swba(ar, skb); 969 break; 970 case WMI_TBTTOFFSET_UPDATE_EVENTID: 971 ath10k_wmi_event_tbttoffset_update(ar, skb); 972 break; 973 case WMI_PHYERR_EVENTID: 974 ath10k_wmi_event_phyerr(ar, skb); 975 break; 976 case WMI_ROAM_EVENTID: 977 ath10k_wmi_event_roam(ar, skb); 978 break; 979 case WMI_PROFILE_MATCH: 980 ath10k_wmi_event_profile_match(ar, skb); 981 break; 982 case WMI_DEBUG_PRINT_EVENTID: 983 ath10k_wmi_event_debug_print(ar, skb); 984 break; 985 case WMI_PDEV_QVIT_EVENTID: 986 ath10k_wmi_event_pdev_qvit(ar, skb); 987 break; 988 case WMI_WLAN_PROFILE_DATA_EVENTID: 989 ath10k_wmi_event_wlan_profile_data(ar, skb); 990 break; 991 case WMI_RTT_MEASUREMENT_REPORT_EVENTID: 992 ath10k_wmi_event_rtt_measurement_report(ar, skb); 993 break; 994 case WMI_TSF_MEASUREMENT_REPORT_EVENTID: 995 ath10k_wmi_event_tsf_measurement_report(ar, skb); 996 break; 997 case WMI_RTT_ERROR_REPORT_EVENTID: 998 ath10k_wmi_event_rtt_error_report(ar, skb); 999 break; 1000 case WMI_WOW_WAKEUP_HOST_EVENTID: 1001 ath10k_wmi_event_wow_wakeup_host(ar, skb); 1002 break; 1003 case WMI_DCS_INTERFERENCE_EVENTID: 1004 ath10k_wmi_event_dcs_interference(ar, skb); 1005 break; 1006 case WMI_PDEV_TPC_CONFIG_EVENTID: 1007 ath10k_wmi_event_pdev_tpc_config(ar, skb); 1008 break; 1009 case WMI_PDEV_FTM_INTG_EVENTID: 1010 ath10k_wmi_event_pdev_ftm_intg(ar, skb); 1011 break; 1012 case WMI_GTK_OFFLOAD_STATUS_EVENTID: 1013 ath10k_wmi_event_gtk_offload_status(ar, skb); 1014 break; 1015 case WMI_GTK_REKEY_FAIL_EVENTID: 1016 ath10k_wmi_event_gtk_rekey_fail(ar, skb); 1017 break; 1018 case WMI_TX_DELBA_COMPLETE_EVENTID: 1019 ath10k_wmi_event_delba_complete(ar, skb); 1020 break; 1021 case WMI_TX_ADDBA_COMPLETE_EVENTID: 1022 ath10k_wmi_event_addba_complete(ar, skb); 1023 break; 1024 case WMI_VDEV_INSTALL_KEY_COMPLETE_EVENTID: 1025 ath10k_wmi_event_vdev_install_key_complete(ar, skb); 1026 break; 1027 case WMI_SERVICE_READY_EVENTID: 1028 ath10k_wmi_service_ready_event_rx(ar, skb); 1029 break; 1030 case WMI_READY_EVENTID: 1031 ath10k_wmi_ready_event_rx(ar, skb); 1032 break; 1033 default: 1034 ath10k_warn("Unknown eventid: %d\n", id); 1035 break; 1036 } 1037 1038 dev_kfree_skb(skb); 1039 } 1040 1041 static void ath10k_wmi_event_work(struct work_struct *work) 1042 { 1043 struct ath10k *ar = container_of(work, struct ath10k, 1044 wmi.wmi_event_work); 1045 struct sk_buff *skb; 1046 1047 for (;;) { 1048 skb = skb_dequeue(&ar->wmi.wmi_event_list); 1049 if (!skb) 1050 break; 1051 1052 ath10k_wmi_event_process(ar, skb); 1053 } 1054 } 1055 1056 static void ath10k_wmi_process_rx(struct ath10k *ar, struct sk_buff *skb) 1057 { 1058 struct wmi_cmd_hdr *cmd_hdr = (struct wmi_cmd_hdr *)skb->data; 1059 enum wmi_event_id event_id; 1060 1061 event_id = MS(__le32_to_cpu(cmd_hdr->cmd_id), WMI_CMD_HDR_CMD_ID); 1062 1063 /* some events require to be handled ASAP 1064 * thus can't be defered to a worker thread */ 1065 switch (event_id) { 1066 case WMI_HOST_SWBA_EVENTID: 1067 case WMI_MGMT_RX_EVENTID: 1068 ath10k_wmi_event_process(ar, skb); 1069 return; 1070 default: 1071 break; 1072 } 1073 1074 skb_queue_tail(&ar->wmi.wmi_event_list, skb); 1075 queue_work(ar->workqueue, &ar->wmi.wmi_event_work); 1076 } 1077 1078 /* WMI Initialization functions */ 1079 int ath10k_wmi_attach(struct ath10k *ar) 1080 { 1081 init_completion(&ar->wmi.service_ready); 1082 init_completion(&ar->wmi.unified_ready); 1083 init_waitqueue_head(&ar->wmi.wq); 1084 1085 skb_queue_head_init(&ar->wmi.wmi_event_list); 1086 INIT_WORK(&ar->wmi.wmi_event_work, ath10k_wmi_event_work); 1087 1088 return 0; 1089 } 1090 1091 void ath10k_wmi_detach(struct ath10k *ar) 1092 { 1093 /* HTC should've drained the packets already */ 1094 if (WARN_ON(atomic_read(&ar->wmi.pending_tx_count) > 0)) 1095 ath10k_warn("there are still pending packets\n"); 1096 1097 cancel_work_sync(&ar->wmi.wmi_event_work); 1098 skb_queue_purge(&ar->wmi.wmi_event_list); 1099 } 1100 1101 int ath10k_wmi_connect_htc_service(struct ath10k *ar) 1102 { 1103 int status; 1104 struct ath10k_htc_svc_conn_req conn_req; 1105 struct ath10k_htc_svc_conn_resp conn_resp; 1106 1107 memset(&conn_req, 0, sizeof(conn_req)); 1108 memset(&conn_resp, 0, sizeof(conn_resp)); 1109 1110 /* these fields are the same for all service endpoints */ 1111 conn_req.ep_ops.ep_tx_complete = ath10k_wmi_htc_tx_complete; 1112 conn_req.ep_ops.ep_rx_complete = ath10k_wmi_process_rx; 1113 1114 /* connect to control service */ 1115 conn_req.service_id = ATH10K_HTC_SVC_ID_WMI_CONTROL; 1116 1117 status = ath10k_htc_connect_service(ar->htc, &conn_req, &conn_resp); 1118 if (status) { 1119 ath10k_warn("failed to connect to WMI CONTROL service status: %d\n", 1120 status); 1121 return status; 1122 } 1123 1124 ar->wmi.eid = conn_resp.eid; 1125 return 0; 1126 } 1127 1128 int ath10k_wmi_pdev_set_regdomain(struct ath10k *ar, u16 rd, u16 rd2g, 1129 u16 rd5g, u16 ctl2g, u16 ctl5g) 1130 { 1131 struct wmi_pdev_set_regdomain_cmd *cmd; 1132 struct sk_buff *skb; 1133 1134 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1135 if (!skb) 1136 return -ENOMEM; 1137 1138 cmd = (struct wmi_pdev_set_regdomain_cmd *)skb->data; 1139 cmd->reg_domain = __cpu_to_le32(rd); 1140 cmd->reg_domain_2G = __cpu_to_le32(rd2g); 1141 cmd->reg_domain_5G = __cpu_to_le32(rd5g); 1142 cmd->conformance_test_limit_2G = __cpu_to_le32(ctl2g); 1143 cmd->conformance_test_limit_5G = __cpu_to_le32(ctl5g); 1144 1145 ath10k_dbg(ATH10K_DBG_WMI, 1146 "wmi pdev regdomain rd %x rd2g %x rd5g %x ctl2g %x ctl5g %x\n", 1147 rd, rd2g, rd5g, ctl2g, ctl5g); 1148 1149 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_REGDOMAIN_CMDID); 1150 } 1151 1152 int ath10k_wmi_pdev_set_channel(struct ath10k *ar, 1153 const struct wmi_channel_arg *arg) 1154 { 1155 struct wmi_set_channel_cmd *cmd; 1156 struct sk_buff *skb; 1157 1158 if (arg->passive) 1159 return -EINVAL; 1160 1161 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1162 if (!skb) 1163 return -ENOMEM; 1164 1165 cmd = (struct wmi_set_channel_cmd *)skb->data; 1166 cmd->chan.mhz = __cpu_to_le32(arg->freq); 1167 cmd->chan.band_center_freq1 = __cpu_to_le32(arg->freq); 1168 cmd->chan.mode = arg->mode; 1169 cmd->chan.min_power = arg->min_power; 1170 cmd->chan.max_power = arg->max_power; 1171 cmd->chan.reg_power = arg->max_reg_power; 1172 cmd->chan.reg_classid = arg->reg_class_id; 1173 cmd->chan.antenna_max = arg->max_antenna_gain; 1174 1175 ath10k_dbg(ATH10K_DBG_WMI, 1176 "wmi set channel mode %d freq %d\n", 1177 arg->mode, arg->freq); 1178 1179 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_CHANNEL_CMDID); 1180 } 1181 1182 int ath10k_wmi_pdev_suspend_target(struct ath10k *ar) 1183 { 1184 struct wmi_pdev_suspend_cmd *cmd; 1185 struct sk_buff *skb; 1186 1187 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1188 if (!skb) 1189 return -ENOMEM; 1190 1191 cmd = (struct wmi_pdev_suspend_cmd *)skb->data; 1192 cmd->suspend_opt = WMI_PDEV_SUSPEND; 1193 1194 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SUSPEND_CMDID); 1195 } 1196 1197 int ath10k_wmi_pdev_resume_target(struct ath10k *ar) 1198 { 1199 struct sk_buff *skb; 1200 1201 skb = ath10k_wmi_alloc_skb(0); 1202 if (skb == NULL) 1203 return -ENOMEM; 1204 1205 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_RESUME_CMDID); 1206 } 1207 1208 int ath10k_wmi_pdev_set_param(struct ath10k *ar, enum wmi_pdev_param id, 1209 u32 value) 1210 { 1211 struct wmi_pdev_set_param_cmd *cmd; 1212 struct sk_buff *skb; 1213 1214 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1215 if (!skb) 1216 return -ENOMEM; 1217 1218 cmd = (struct wmi_pdev_set_param_cmd *)skb->data; 1219 cmd->param_id = __cpu_to_le32(id); 1220 cmd->param_value = __cpu_to_le32(value); 1221 1222 ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set param %d value %d\n", 1223 id, value); 1224 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_PARAM_CMDID); 1225 } 1226 1227 int ath10k_wmi_cmd_init(struct ath10k *ar) 1228 { 1229 struct wmi_init_cmd *cmd; 1230 struct sk_buff *buf; 1231 struct wmi_resource_config config = {}; 1232 u32 val; 1233 1234 config.num_vdevs = __cpu_to_le32(TARGET_NUM_VDEVS); 1235 config.num_peers = __cpu_to_le32(TARGET_NUM_PEERS + TARGET_NUM_VDEVS); 1236 config.num_offload_peers = __cpu_to_le32(TARGET_NUM_OFFLOAD_PEERS); 1237 1238 config.num_offload_reorder_bufs = 1239 __cpu_to_le32(TARGET_NUM_OFFLOAD_REORDER_BUFS); 1240 1241 config.num_peer_keys = __cpu_to_le32(TARGET_NUM_PEER_KEYS); 1242 config.num_tids = __cpu_to_le32(TARGET_NUM_TIDS); 1243 config.ast_skid_limit = __cpu_to_le32(TARGET_AST_SKID_LIMIT); 1244 config.tx_chain_mask = __cpu_to_le32(TARGET_TX_CHAIN_MASK); 1245 config.rx_chain_mask = __cpu_to_le32(TARGET_RX_CHAIN_MASK); 1246 config.rx_timeout_pri_vo = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI); 1247 config.rx_timeout_pri_vi = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI); 1248 config.rx_timeout_pri_be = __cpu_to_le32(TARGET_RX_TIMEOUT_LO_PRI); 1249 config.rx_timeout_pri_bk = __cpu_to_le32(TARGET_RX_TIMEOUT_HI_PRI); 1250 config.rx_decap_mode = __cpu_to_le32(TARGET_RX_DECAP_MODE); 1251 1252 config.scan_max_pending_reqs = 1253 __cpu_to_le32(TARGET_SCAN_MAX_PENDING_REQS); 1254 1255 config.bmiss_offload_max_vdev = 1256 __cpu_to_le32(TARGET_BMISS_OFFLOAD_MAX_VDEV); 1257 1258 config.roam_offload_max_vdev = 1259 __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_VDEV); 1260 1261 config.roam_offload_max_ap_profiles = 1262 __cpu_to_le32(TARGET_ROAM_OFFLOAD_MAX_AP_PROFILES); 1263 1264 config.num_mcast_groups = __cpu_to_le32(TARGET_NUM_MCAST_GROUPS); 1265 config.num_mcast_table_elems = 1266 __cpu_to_le32(TARGET_NUM_MCAST_TABLE_ELEMS); 1267 1268 config.mcast2ucast_mode = __cpu_to_le32(TARGET_MCAST2UCAST_MODE); 1269 config.tx_dbg_log_size = __cpu_to_le32(TARGET_TX_DBG_LOG_SIZE); 1270 config.num_wds_entries = __cpu_to_le32(TARGET_NUM_WDS_ENTRIES); 1271 config.dma_burst_size = __cpu_to_le32(TARGET_DMA_BURST_SIZE); 1272 config.mac_aggr_delim = __cpu_to_le32(TARGET_MAC_AGGR_DELIM); 1273 1274 val = TARGET_RX_SKIP_DEFRAG_TIMEOUT_DUP_DETECTION_CHECK; 1275 config.rx_skip_defrag_timeout_dup_detection_check = __cpu_to_le32(val); 1276 1277 config.vow_config = __cpu_to_le32(TARGET_VOW_CONFIG); 1278 1279 config.gtk_offload_max_vdev = 1280 __cpu_to_le32(TARGET_GTK_OFFLOAD_MAX_VDEV); 1281 1282 config.num_msdu_desc = __cpu_to_le32(TARGET_NUM_MSDU_DESC); 1283 config.max_frag_entries = __cpu_to_le32(TARGET_MAX_FRAG_ENTRIES); 1284 1285 buf = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1286 if (!buf) 1287 return -ENOMEM; 1288 1289 cmd = (struct wmi_init_cmd *)buf->data; 1290 cmd->num_host_mem_chunks = 0; 1291 memcpy(&cmd->resource_config, &config, sizeof(config)); 1292 1293 ath10k_dbg(ATH10K_DBG_WMI, "wmi init\n"); 1294 return ath10k_wmi_cmd_send(ar, buf, WMI_INIT_CMDID); 1295 } 1296 1297 static int ath10k_wmi_start_scan_calc_len(const struct wmi_start_scan_arg *arg) 1298 { 1299 int len; 1300 1301 len = sizeof(struct wmi_start_scan_cmd); 1302 1303 if (arg->ie_len) { 1304 if (!arg->ie) 1305 return -EINVAL; 1306 if (arg->ie_len > WLAN_SCAN_PARAMS_MAX_IE_LEN) 1307 return -EINVAL; 1308 1309 len += sizeof(struct wmi_ie_data); 1310 len += roundup(arg->ie_len, 4); 1311 } 1312 1313 if (arg->n_channels) { 1314 if (!arg->channels) 1315 return -EINVAL; 1316 if (arg->n_channels > ARRAY_SIZE(arg->channels)) 1317 return -EINVAL; 1318 1319 len += sizeof(struct wmi_chan_list); 1320 len += sizeof(__le32) * arg->n_channels; 1321 } 1322 1323 if (arg->n_ssids) { 1324 if (!arg->ssids) 1325 return -EINVAL; 1326 if (arg->n_ssids > WLAN_SCAN_PARAMS_MAX_SSID) 1327 return -EINVAL; 1328 1329 len += sizeof(struct wmi_ssid_list); 1330 len += sizeof(struct wmi_ssid) * arg->n_ssids; 1331 } 1332 1333 if (arg->n_bssids) { 1334 if (!arg->bssids) 1335 return -EINVAL; 1336 if (arg->n_bssids > WLAN_SCAN_PARAMS_MAX_BSSID) 1337 return -EINVAL; 1338 1339 len += sizeof(struct wmi_bssid_list); 1340 len += sizeof(struct wmi_mac_addr) * arg->n_bssids; 1341 } 1342 1343 return len; 1344 } 1345 1346 int ath10k_wmi_start_scan(struct ath10k *ar, 1347 const struct wmi_start_scan_arg *arg) 1348 { 1349 struct wmi_start_scan_cmd *cmd; 1350 struct sk_buff *skb; 1351 struct wmi_ie_data *ie; 1352 struct wmi_chan_list *channels; 1353 struct wmi_ssid_list *ssids; 1354 struct wmi_bssid_list *bssids; 1355 u32 scan_id; 1356 u32 scan_req_id; 1357 int off; 1358 int len = 0; 1359 int i; 1360 1361 len = ath10k_wmi_start_scan_calc_len(arg); 1362 if (len < 0) 1363 return len; /* len contains error code here */ 1364 1365 skb = ath10k_wmi_alloc_skb(len); 1366 if (!skb) 1367 return -ENOMEM; 1368 1369 scan_id = WMI_HOST_SCAN_REQ_ID_PREFIX; 1370 scan_id |= arg->scan_id; 1371 1372 scan_req_id = WMI_HOST_SCAN_REQUESTOR_ID_PREFIX; 1373 scan_req_id |= arg->scan_req_id; 1374 1375 cmd = (struct wmi_start_scan_cmd *)skb->data; 1376 cmd->scan_id = __cpu_to_le32(scan_id); 1377 cmd->scan_req_id = __cpu_to_le32(scan_req_id); 1378 cmd->vdev_id = __cpu_to_le32(arg->vdev_id); 1379 cmd->scan_priority = __cpu_to_le32(arg->scan_priority); 1380 cmd->notify_scan_events = __cpu_to_le32(arg->notify_scan_events); 1381 cmd->dwell_time_active = __cpu_to_le32(arg->dwell_time_active); 1382 cmd->dwell_time_passive = __cpu_to_le32(arg->dwell_time_passive); 1383 cmd->min_rest_time = __cpu_to_le32(arg->min_rest_time); 1384 cmd->max_rest_time = __cpu_to_le32(arg->max_rest_time); 1385 cmd->repeat_probe_time = __cpu_to_le32(arg->repeat_probe_time); 1386 cmd->probe_spacing_time = __cpu_to_le32(arg->probe_spacing_time); 1387 cmd->idle_time = __cpu_to_le32(arg->idle_time); 1388 cmd->max_scan_time = __cpu_to_le32(arg->max_scan_time); 1389 cmd->probe_delay = __cpu_to_le32(arg->probe_delay); 1390 cmd->scan_ctrl_flags = __cpu_to_le32(arg->scan_ctrl_flags); 1391 1392 /* TLV list starts after fields included in the struct */ 1393 off = sizeof(*cmd); 1394 1395 if (arg->n_channels) { 1396 channels = (void *)skb->data + off; 1397 channels->tag = __cpu_to_le32(WMI_CHAN_LIST_TAG); 1398 channels->num_chan = __cpu_to_le32(arg->n_channels); 1399 1400 for (i = 0; i < arg->n_channels; i++) 1401 channels->channel_list[i] = 1402 __cpu_to_le32(arg->channels[i]); 1403 1404 off += sizeof(*channels); 1405 off += sizeof(__le32) * arg->n_channels; 1406 } 1407 1408 if (arg->n_ssids) { 1409 ssids = (void *)skb->data + off; 1410 ssids->tag = __cpu_to_le32(WMI_SSID_LIST_TAG); 1411 ssids->num_ssids = __cpu_to_le32(arg->n_ssids); 1412 1413 for (i = 0; i < arg->n_ssids; i++) { 1414 ssids->ssids[i].ssid_len = 1415 __cpu_to_le32(arg->ssids[i].len); 1416 memcpy(&ssids->ssids[i].ssid, 1417 arg->ssids[i].ssid, 1418 arg->ssids[i].len); 1419 } 1420 1421 off += sizeof(*ssids); 1422 off += sizeof(struct wmi_ssid) * arg->n_ssids; 1423 } 1424 1425 if (arg->n_bssids) { 1426 bssids = (void *)skb->data + off; 1427 bssids->tag = __cpu_to_le32(WMI_BSSID_LIST_TAG); 1428 bssids->num_bssid = __cpu_to_le32(arg->n_bssids); 1429 1430 for (i = 0; i < arg->n_bssids; i++) 1431 memcpy(&bssids->bssid_list[i], 1432 arg->bssids[i].bssid, 1433 ETH_ALEN); 1434 1435 off += sizeof(*bssids); 1436 off += sizeof(struct wmi_mac_addr) * arg->n_bssids; 1437 } 1438 1439 if (arg->ie_len) { 1440 ie = (void *)skb->data + off; 1441 ie->tag = __cpu_to_le32(WMI_IE_TAG); 1442 ie->ie_len = __cpu_to_le32(arg->ie_len); 1443 memcpy(ie->ie_data, arg->ie, arg->ie_len); 1444 1445 off += sizeof(*ie); 1446 off += roundup(arg->ie_len, 4); 1447 } 1448 1449 if (off != skb->len) { 1450 dev_kfree_skb(skb); 1451 return -EINVAL; 1452 } 1453 1454 ath10k_dbg(ATH10K_DBG_WMI, "wmi start scan\n"); 1455 return ath10k_wmi_cmd_send(ar, skb, WMI_START_SCAN_CMDID); 1456 } 1457 1458 void ath10k_wmi_start_scan_init(struct ath10k *ar, 1459 struct wmi_start_scan_arg *arg) 1460 { 1461 /* setup commonly used values */ 1462 arg->scan_req_id = 1; 1463 arg->scan_priority = WMI_SCAN_PRIORITY_LOW; 1464 arg->dwell_time_active = 50; 1465 arg->dwell_time_passive = 150; 1466 arg->min_rest_time = 50; 1467 arg->max_rest_time = 500; 1468 arg->repeat_probe_time = 0; 1469 arg->probe_spacing_time = 0; 1470 arg->idle_time = 0; 1471 arg->max_scan_time = 5000; 1472 arg->probe_delay = 5; 1473 arg->notify_scan_events = WMI_SCAN_EVENT_STARTED 1474 | WMI_SCAN_EVENT_COMPLETED 1475 | WMI_SCAN_EVENT_BSS_CHANNEL 1476 | WMI_SCAN_EVENT_FOREIGN_CHANNEL 1477 | WMI_SCAN_EVENT_DEQUEUED; 1478 arg->scan_ctrl_flags |= WMI_SCAN_ADD_OFDM_RATES; 1479 arg->scan_ctrl_flags |= WMI_SCAN_CHAN_STAT_EVENT; 1480 arg->n_bssids = 1; 1481 arg->bssids[0].bssid = "\xFF\xFF\xFF\xFF\xFF\xFF"; 1482 } 1483 1484 int ath10k_wmi_stop_scan(struct ath10k *ar, const struct wmi_stop_scan_arg *arg) 1485 { 1486 struct wmi_stop_scan_cmd *cmd; 1487 struct sk_buff *skb; 1488 u32 scan_id; 1489 u32 req_id; 1490 1491 if (arg->req_id > 0xFFF) 1492 return -EINVAL; 1493 if (arg->req_type == WMI_SCAN_STOP_ONE && arg->u.scan_id > 0xFFF) 1494 return -EINVAL; 1495 1496 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1497 if (!skb) 1498 return -ENOMEM; 1499 1500 scan_id = arg->u.scan_id; 1501 scan_id |= WMI_HOST_SCAN_REQ_ID_PREFIX; 1502 1503 req_id = arg->req_id; 1504 req_id |= WMI_HOST_SCAN_REQUESTOR_ID_PREFIX; 1505 1506 cmd = (struct wmi_stop_scan_cmd *)skb->data; 1507 cmd->req_type = __cpu_to_le32(arg->req_type); 1508 cmd->vdev_id = __cpu_to_le32(arg->u.vdev_id); 1509 cmd->scan_id = __cpu_to_le32(scan_id); 1510 cmd->scan_req_id = __cpu_to_le32(req_id); 1511 1512 ath10k_dbg(ATH10K_DBG_WMI, 1513 "wmi stop scan reqid %d req_type %d vdev/scan_id %d\n", 1514 arg->req_id, arg->req_type, arg->u.scan_id); 1515 return ath10k_wmi_cmd_send(ar, skb, WMI_STOP_SCAN_CMDID); 1516 } 1517 1518 int ath10k_wmi_vdev_create(struct ath10k *ar, u32 vdev_id, 1519 enum wmi_vdev_type type, 1520 enum wmi_vdev_subtype subtype, 1521 const u8 macaddr[ETH_ALEN]) 1522 { 1523 struct wmi_vdev_create_cmd *cmd; 1524 struct sk_buff *skb; 1525 1526 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1527 if (!skb) 1528 return -ENOMEM; 1529 1530 cmd = (struct wmi_vdev_create_cmd *)skb->data; 1531 cmd->vdev_id = __cpu_to_le32(vdev_id); 1532 cmd->vdev_type = __cpu_to_le32(type); 1533 cmd->vdev_subtype = __cpu_to_le32(subtype); 1534 memcpy(cmd->vdev_macaddr.addr, macaddr, ETH_ALEN); 1535 1536 ath10k_dbg(ATH10K_DBG_WMI, 1537 "WMI vdev create: id %d type %d subtype %d macaddr %pM\n", 1538 vdev_id, type, subtype, macaddr); 1539 1540 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_CREATE_CMDID); 1541 } 1542 1543 int ath10k_wmi_vdev_delete(struct ath10k *ar, u32 vdev_id) 1544 { 1545 struct wmi_vdev_delete_cmd *cmd; 1546 struct sk_buff *skb; 1547 1548 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1549 if (!skb) 1550 return -ENOMEM; 1551 1552 cmd = (struct wmi_vdev_delete_cmd *)skb->data; 1553 cmd->vdev_id = __cpu_to_le32(vdev_id); 1554 1555 ath10k_dbg(ATH10K_DBG_WMI, 1556 "WMI vdev delete id %d\n", vdev_id); 1557 1558 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DELETE_CMDID); 1559 } 1560 1561 static int ath10k_wmi_vdev_start_restart(struct ath10k *ar, 1562 const struct wmi_vdev_start_request_arg *arg, 1563 enum wmi_cmd_id cmd_id) 1564 { 1565 struct wmi_vdev_start_request_cmd *cmd; 1566 struct sk_buff *skb; 1567 const char *cmdname; 1568 u32 flags = 0; 1569 1570 if (cmd_id != WMI_VDEV_START_REQUEST_CMDID && 1571 cmd_id != WMI_VDEV_RESTART_REQUEST_CMDID) 1572 return -EINVAL; 1573 if (WARN_ON(arg->ssid && arg->ssid_len == 0)) 1574 return -EINVAL; 1575 if (WARN_ON(arg->hidden_ssid && !arg->ssid)) 1576 return -EINVAL; 1577 if (WARN_ON(arg->ssid_len > sizeof(cmd->ssid.ssid))) 1578 return -EINVAL; 1579 1580 if (cmd_id == WMI_VDEV_START_REQUEST_CMDID) 1581 cmdname = "start"; 1582 else if (cmd_id == WMI_VDEV_RESTART_REQUEST_CMDID) 1583 cmdname = "restart"; 1584 else 1585 return -EINVAL; /* should not happen, we already check cmd_id */ 1586 1587 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1588 if (!skb) 1589 return -ENOMEM; 1590 1591 if (arg->hidden_ssid) 1592 flags |= WMI_VDEV_START_HIDDEN_SSID; 1593 if (arg->pmf_enabled) 1594 flags |= WMI_VDEV_START_PMF_ENABLED; 1595 1596 cmd = (struct wmi_vdev_start_request_cmd *)skb->data; 1597 cmd->vdev_id = __cpu_to_le32(arg->vdev_id); 1598 cmd->disable_hw_ack = __cpu_to_le32(arg->disable_hw_ack); 1599 cmd->beacon_interval = __cpu_to_le32(arg->bcn_intval); 1600 cmd->dtim_period = __cpu_to_le32(arg->dtim_period); 1601 cmd->flags = __cpu_to_le32(flags); 1602 cmd->bcn_tx_rate = __cpu_to_le32(arg->bcn_tx_rate); 1603 cmd->bcn_tx_power = __cpu_to_le32(arg->bcn_tx_power); 1604 1605 if (arg->ssid) { 1606 cmd->ssid.ssid_len = __cpu_to_le32(arg->ssid_len); 1607 memcpy(cmd->ssid.ssid, arg->ssid, arg->ssid_len); 1608 } 1609 1610 cmd->chan.mhz = __cpu_to_le32(arg->channel.freq); 1611 1612 cmd->chan.band_center_freq1 = 1613 __cpu_to_le32(arg->channel.band_center_freq1); 1614 1615 cmd->chan.mode = arg->channel.mode; 1616 cmd->chan.min_power = arg->channel.min_power; 1617 cmd->chan.max_power = arg->channel.max_power; 1618 cmd->chan.reg_power = arg->channel.max_reg_power; 1619 cmd->chan.reg_classid = arg->channel.reg_class_id; 1620 cmd->chan.antenna_max = arg->channel.max_antenna_gain; 1621 1622 ath10k_dbg(ATH10K_DBG_WMI, 1623 "wmi vdev %s id 0x%x freq %d, mode %d, ch_flags: 0x%0X," 1624 "max_power: %d\n", cmdname, arg->vdev_id, arg->channel.freq, 1625 arg->channel.mode, flags, arg->channel.max_power); 1626 1627 return ath10k_wmi_cmd_send(ar, skb, cmd_id); 1628 } 1629 1630 int ath10k_wmi_vdev_start(struct ath10k *ar, 1631 const struct wmi_vdev_start_request_arg *arg) 1632 { 1633 return ath10k_wmi_vdev_start_restart(ar, arg, 1634 WMI_VDEV_START_REQUEST_CMDID); 1635 } 1636 1637 int ath10k_wmi_vdev_restart(struct ath10k *ar, 1638 const struct wmi_vdev_start_request_arg *arg) 1639 { 1640 return ath10k_wmi_vdev_start_restart(ar, arg, 1641 WMI_VDEV_RESTART_REQUEST_CMDID); 1642 } 1643 1644 int ath10k_wmi_vdev_stop(struct ath10k *ar, u32 vdev_id) 1645 { 1646 struct wmi_vdev_stop_cmd *cmd; 1647 struct sk_buff *skb; 1648 1649 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1650 if (!skb) 1651 return -ENOMEM; 1652 1653 cmd = (struct wmi_vdev_stop_cmd *)skb->data; 1654 cmd->vdev_id = __cpu_to_le32(vdev_id); 1655 1656 ath10k_dbg(ATH10K_DBG_WMI, "wmi vdev stop id 0x%x\n", vdev_id); 1657 1658 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_STOP_CMDID); 1659 } 1660 1661 int ath10k_wmi_vdev_up(struct ath10k *ar, u32 vdev_id, u32 aid, const u8 *bssid) 1662 { 1663 struct wmi_vdev_up_cmd *cmd; 1664 struct sk_buff *skb; 1665 1666 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1667 if (!skb) 1668 return -ENOMEM; 1669 1670 cmd = (struct wmi_vdev_up_cmd *)skb->data; 1671 cmd->vdev_id = __cpu_to_le32(vdev_id); 1672 cmd->vdev_assoc_id = __cpu_to_le32(aid); 1673 memcpy(&cmd->vdev_bssid.addr, bssid, 6); 1674 1675 ath10k_dbg(ATH10K_DBG_WMI, 1676 "wmi mgmt vdev up id 0x%x assoc id %d bssid %pM\n", 1677 vdev_id, aid, bssid); 1678 1679 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_UP_CMDID); 1680 } 1681 1682 int ath10k_wmi_vdev_down(struct ath10k *ar, u32 vdev_id) 1683 { 1684 struct wmi_vdev_down_cmd *cmd; 1685 struct sk_buff *skb; 1686 1687 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1688 if (!skb) 1689 return -ENOMEM; 1690 1691 cmd = (struct wmi_vdev_down_cmd *)skb->data; 1692 cmd->vdev_id = __cpu_to_le32(vdev_id); 1693 1694 ath10k_dbg(ATH10K_DBG_WMI, 1695 "wmi mgmt vdev down id 0x%x\n", vdev_id); 1696 1697 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_DOWN_CMDID); 1698 } 1699 1700 int ath10k_wmi_vdev_set_param(struct ath10k *ar, u32 vdev_id, 1701 enum wmi_vdev_param param_id, u32 param_value) 1702 { 1703 struct wmi_vdev_set_param_cmd *cmd; 1704 struct sk_buff *skb; 1705 1706 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1707 if (!skb) 1708 return -ENOMEM; 1709 1710 cmd = (struct wmi_vdev_set_param_cmd *)skb->data; 1711 cmd->vdev_id = __cpu_to_le32(vdev_id); 1712 cmd->param_id = __cpu_to_le32(param_id); 1713 cmd->param_value = __cpu_to_le32(param_value); 1714 1715 ath10k_dbg(ATH10K_DBG_WMI, 1716 "wmi vdev id 0x%x set param %d value %d\n", 1717 vdev_id, param_id, param_value); 1718 1719 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_SET_PARAM_CMDID); 1720 } 1721 1722 int ath10k_wmi_vdev_install_key(struct ath10k *ar, 1723 const struct wmi_vdev_install_key_arg *arg) 1724 { 1725 struct wmi_vdev_install_key_cmd *cmd; 1726 struct sk_buff *skb; 1727 1728 if (arg->key_cipher == WMI_CIPHER_NONE && arg->key_data != NULL) 1729 return -EINVAL; 1730 if (arg->key_cipher != WMI_CIPHER_NONE && arg->key_data == NULL) 1731 return -EINVAL; 1732 1733 skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->key_len); 1734 if (!skb) 1735 return -ENOMEM; 1736 1737 cmd = (struct wmi_vdev_install_key_cmd *)skb->data; 1738 cmd->vdev_id = __cpu_to_le32(arg->vdev_id); 1739 cmd->key_idx = __cpu_to_le32(arg->key_idx); 1740 cmd->key_flags = __cpu_to_le32(arg->key_flags); 1741 cmd->key_cipher = __cpu_to_le32(arg->key_cipher); 1742 cmd->key_len = __cpu_to_le32(arg->key_len); 1743 cmd->key_txmic_len = __cpu_to_le32(arg->key_txmic_len); 1744 cmd->key_rxmic_len = __cpu_to_le32(arg->key_rxmic_len); 1745 1746 if (arg->macaddr) 1747 memcpy(cmd->peer_macaddr.addr, arg->macaddr, ETH_ALEN); 1748 if (arg->key_data) 1749 memcpy(cmd->key_data, arg->key_data, arg->key_len); 1750 1751 return ath10k_wmi_cmd_send(ar, skb, WMI_VDEV_INSTALL_KEY_CMDID); 1752 } 1753 1754 int ath10k_wmi_peer_create(struct ath10k *ar, u32 vdev_id, 1755 const u8 peer_addr[ETH_ALEN]) 1756 { 1757 struct wmi_peer_create_cmd *cmd; 1758 struct sk_buff *skb; 1759 1760 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1761 if (!skb) 1762 return -ENOMEM; 1763 1764 cmd = (struct wmi_peer_create_cmd *)skb->data; 1765 cmd->vdev_id = __cpu_to_le32(vdev_id); 1766 memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN); 1767 1768 ath10k_dbg(ATH10K_DBG_WMI, 1769 "wmi peer create vdev_id %d peer_addr %pM\n", 1770 vdev_id, peer_addr); 1771 return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_CREATE_CMDID); 1772 } 1773 1774 int ath10k_wmi_peer_delete(struct ath10k *ar, u32 vdev_id, 1775 const u8 peer_addr[ETH_ALEN]) 1776 { 1777 struct wmi_peer_delete_cmd *cmd; 1778 struct sk_buff *skb; 1779 1780 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1781 if (!skb) 1782 return -ENOMEM; 1783 1784 cmd = (struct wmi_peer_delete_cmd *)skb->data; 1785 cmd->vdev_id = __cpu_to_le32(vdev_id); 1786 memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN); 1787 1788 ath10k_dbg(ATH10K_DBG_WMI, 1789 "wmi peer delete vdev_id %d peer_addr %pM\n", 1790 vdev_id, peer_addr); 1791 return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_DELETE_CMDID); 1792 } 1793 1794 int ath10k_wmi_peer_flush(struct ath10k *ar, u32 vdev_id, 1795 const u8 peer_addr[ETH_ALEN], u32 tid_bitmap) 1796 { 1797 struct wmi_peer_flush_tids_cmd *cmd; 1798 struct sk_buff *skb; 1799 1800 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1801 if (!skb) 1802 return -ENOMEM; 1803 1804 cmd = (struct wmi_peer_flush_tids_cmd *)skb->data; 1805 cmd->vdev_id = __cpu_to_le32(vdev_id); 1806 cmd->peer_tid_bitmap = __cpu_to_le32(tid_bitmap); 1807 memcpy(cmd->peer_macaddr.addr, peer_addr, ETH_ALEN); 1808 1809 ath10k_dbg(ATH10K_DBG_WMI, 1810 "wmi peer flush vdev_id %d peer_addr %pM tids %08x\n", 1811 vdev_id, peer_addr, tid_bitmap); 1812 return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_FLUSH_TIDS_CMDID); 1813 } 1814 1815 int ath10k_wmi_peer_set_param(struct ath10k *ar, u32 vdev_id, 1816 const u8 *peer_addr, enum wmi_peer_param param_id, 1817 u32 param_value) 1818 { 1819 struct wmi_peer_set_param_cmd *cmd; 1820 struct sk_buff *skb; 1821 1822 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1823 if (!skb) 1824 return -ENOMEM; 1825 1826 cmd = (struct wmi_peer_set_param_cmd *)skb->data; 1827 cmd->vdev_id = __cpu_to_le32(vdev_id); 1828 cmd->param_id = __cpu_to_le32(param_id); 1829 cmd->param_value = __cpu_to_le32(param_value); 1830 memcpy(&cmd->peer_macaddr.addr, peer_addr, 6); 1831 1832 ath10k_dbg(ATH10K_DBG_WMI, 1833 "wmi vdev %d peer 0x%pM set param %d value %d\n", 1834 vdev_id, peer_addr, param_id, param_value); 1835 1836 return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_SET_PARAM_CMDID); 1837 } 1838 1839 int ath10k_wmi_set_psmode(struct ath10k *ar, u32 vdev_id, 1840 enum wmi_sta_ps_mode psmode) 1841 { 1842 struct wmi_sta_powersave_mode_cmd *cmd; 1843 struct sk_buff *skb; 1844 1845 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1846 if (!skb) 1847 return -ENOMEM; 1848 1849 cmd = (struct wmi_sta_powersave_mode_cmd *)skb->data; 1850 cmd->vdev_id = __cpu_to_le32(vdev_id); 1851 cmd->sta_ps_mode = __cpu_to_le32(psmode); 1852 1853 ath10k_dbg(ATH10K_DBG_WMI, 1854 "wmi set powersave id 0x%x mode %d\n", 1855 vdev_id, psmode); 1856 1857 return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_MODE_CMDID); 1858 } 1859 1860 int ath10k_wmi_set_sta_ps_param(struct ath10k *ar, u32 vdev_id, 1861 enum wmi_sta_powersave_param param_id, 1862 u32 value) 1863 { 1864 struct wmi_sta_powersave_param_cmd *cmd; 1865 struct sk_buff *skb; 1866 1867 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1868 if (!skb) 1869 return -ENOMEM; 1870 1871 cmd = (struct wmi_sta_powersave_param_cmd *)skb->data; 1872 cmd->vdev_id = __cpu_to_le32(vdev_id); 1873 cmd->param_id = __cpu_to_le32(param_id); 1874 cmd->param_value = __cpu_to_le32(value); 1875 1876 ath10k_dbg(ATH10K_DBG_WMI, 1877 "wmi sta ps param vdev_id 0x%x param %d value %d\n", 1878 vdev_id, param_id, value); 1879 return ath10k_wmi_cmd_send(ar, skb, WMI_STA_POWERSAVE_PARAM_CMDID); 1880 } 1881 1882 int ath10k_wmi_set_ap_ps_param(struct ath10k *ar, u32 vdev_id, const u8 *mac, 1883 enum wmi_ap_ps_peer_param param_id, u32 value) 1884 { 1885 struct wmi_ap_ps_peer_cmd *cmd; 1886 struct sk_buff *skb; 1887 1888 if (!mac) 1889 return -EINVAL; 1890 1891 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1892 if (!skb) 1893 return -ENOMEM; 1894 1895 cmd = (struct wmi_ap_ps_peer_cmd *)skb->data; 1896 cmd->vdev_id = __cpu_to_le32(vdev_id); 1897 cmd->param_id = __cpu_to_le32(param_id); 1898 cmd->param_value = __cpu_to_le32(value); 1899 memcpy(&cmd->peer_macaddr, mac, ETH_ALEN); 1900 1901 ath10k_dbg(ATH10K_DBG_WMI, 1902 "wmi ap ps param vdev_id 0x%X param %d value %d mac_addr %pM\n", 1903 vdev_id, param_id, value, mac); 1904 1905 return ath10k_wmi_cmd_send(ar, skb, WMI_AP_PS_PEER_PARAM_CMDID); 1906 } 1907 1908 int ath10k_wmi_scan_chan_list(struct ath10k *ar, 1909 const struct wmi_scan_chan_list_arg *arg) 1910 { 1911 struct wmi_scan_chan_list_cmd *cmd; 1912 struct sk_buff *skb; 1913 struct wmi_channel_arg *ch; 1914 struct wmi_channel *ci; 1915 int len; 1916 int i; 1917 1918 len = sizeof(*cmd) + arg->n_channels * sizeof(struct wmi_channel); 1919 1920 skb = ath10k_wmi_alloc_skb(len); 1921 if (!skb) 1922 return -EINVAL; 1923 1924 cmd = (struct wmi_scan_chan_list_cmd *)skb->data; 1925 cmd->num_scan_chans = __cpu_to_le32(arg->n_channels); 1926 1927 for (i = 0; i < arg->n_channels; i++) { 1928 u32 flags = 0; 1929 1930 ch = &arg->channels[i]; 1931 ci = &cmd->chan_info[i]; 1932 1933 if (ch->passive) 1934 flags |= WMI_CHAN_FLAG_PASSIVE; 1935 if (ch->allow_ibss) 1936 flags |= WMI_CHAN_FLAG_ADHOC_ALLOWED; 1937 if (ch->allow_ht) 1938 flags |= WMI_CHAN_FLAG_ALLOW_HT; 1939 if (ch->allow_vht) 1940 flags |= WMI_CHAN_FLAG_ALLOW_VHT; 1941 if (ch->ht40plus) 1942 flags |= WMI_CHAN_FLAG_HT40_PLUS; 1943 1944 ci->mhz = __cpu_to_le32(ch->freq); 1945 ci->band_center_freq1 = __cpu_to_le32(ch->freq); 1946 ci->band_center_freq2 = 0; 1947 ci->min_power = ch->min_power; 1948 ci->max_power = ch->max_power; 1949 ci->reg_power = ch->max_reg_power; 1950 ci->antenna_max = ch->max_antenna_gain; 1951 ci->antenna_max = 0; 1952 1953 /* mode & flags share storage */ 1954 ci->mode = ch->mode; 1955 ci->flags |= __cpu_to_le32(flags); 1956 } 1957 1958 return ath10k_wmi_cmd_send(ar, skb, WMI_SCAN_CHAN_LIST_CMDID); 1959 } 1960 1961 int ath10k_wmi_peer_assoc(struct ath10k *ar, 1962 const struct wmi_peer_assoc_complete_arg *arg) 1963 { 1964 struct wmi_peer_assoc_complete_cmd *cmd; 1965 struct sk_buff *skb; 1966 1967 if (arg->peer_mpdu_density > 16) 1968 return -EINVAL; 1969 if (arg->peer_legacy_rates.num_rates > MAX_SUPPORTED_RATES) 1970 return -EINVAL; 1971 if (arg->peer_ht_rates.num_rates > MAX_SUPPORTED_RATES) 1972 return -EINVAL; 1973 1974 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 1975 if (!skb) 1976 return -ENOMEM; 1977 1978 cmd = (struct wmi_peer_assoc_complete_cmd *)skb->data; 1979 cmd->vdev_id = __cpu_to_le32(arg->vdev_id); 1980 cmd->peer_new_assoc = __cpu_to_le32(arg->peer_reassoc ? 0 : 1); 1981 cmd->peer_associd = __cpu_to_le32(arg->peer_aid); 1982 cmd->peer_flags = __cpu_to_le32(arg->peer_flags); 1983 cmd->peer_caps = __cpu_to_le32(arg->peer_caps); 1984 cmd->peer_listen_intval = __cpu_to_le32(arg->peer_listen_intval); 1985 cmd->peer_ht_caps = __cpu_to_le32(arg->peer_ht_caps); 1986 cmd->peer_max_mpdu = __cpu_to_le32(arg->peer_max_mpdu); 1987 cmd->peer_mpdu_density = __cpu_to_le32(arg->peer_mpdu_density); 1988 cmd->peer_rate_caps = __cpu_to_le32(arg->peer_rate_caps); 1989 cmd->peer_nss = __cpu_to_le32(arg->peer_num_spatial_streams); 1990 cmd->peer_vht_caps = __cpu_to_le32(arg->peer_vht_caps); 1991 cmd->peer_phymode = __cpu_to_le32(arg->peer_phymode); 1992 1993 memcpy(cmd->peer_macaddr.addr, arg->addr, ETH_ALEN); 1994 1995 cmd->peer_legacy_rates.num_rates = 1996 __cpu_to_le32(arg->peer_legacy_rates.num_rates); 1997 memcpy(cmd->peer_legacy_rates.rates, arg->peer_legacy_rates.rates, 1998 arg->peer_legacy_rates.num_rates); 1999 2000 cmd->peer_ht_rates.num_rates = 2001 __cpu_to_le32(arg->peer_ht_rates.num_rates); 2002 memcpy(cmd->peer_ht_rates.rates, arg->peer_ht_rates.rates, 2003 arg->peer_ht_rates.num_rates); 2004 2005 cmd->peer_vht_rates.rx_max_rate = 2006 __cpu_to_le32(arg->peer_vht_rates.rx_max_rate); 2007 cmd->peer_vht_rates.rx_mcs_set = 2008 __cpu_to_le32(arg->peer_vht_rates.rx_mcs_set); 2009 cmd->peer_vht_rates.tx_max_rate = 2010 __cpu_to_le32(arg->peer_vht_rates.tx_max_rate); 2011 cmd->peer_vht_rates.tx_mcs_set = 2012 __cpu_to_le32(arg->peer_vht_rates.tx_mcs_set); 2013 2014 return ath10k_wmi_cmd_send(ar, skb, WMI_PEER_ASSOC_CMDID); 2015 } 2016 2017 int ath10k_wmi_beacon_send(struct ath10k *ar, const struct wmi_bcn_tx_arg *arg) 2018 { 2019 struct wmi_bcn_tx_cmd *cmd; 2020 struct sk_buff *skb; 2021 2022 skb = ath10k_wmi_alloc_skb(sizeof(*cmd) + arg->bcn_len); 2023 if (!skb) 2024 return -ENOMEM; 2025 2026 cmd = (struct wmi_bcn_tx_cmd *)skb->data; 2027 cmd->hdr.vdev_id = __cpu_to_le32(arg->vdev_id); 2028 cmd->hdr.tx_rate = __cpu_to_le32(arg->tx_rate); 2029 cmd->hdr.tx_power = __cpu_to_le32(arg->tx_power); 2030 cmd->hdr.bcn_len = __cpu_to_le32(arg->bcn_len); 2031 memcpy(cmd->bcn, arg->bcn, arg->bcn_len); 2032 2033 return ath10k_wmi_cmd_send(ar, skb, WMI_BCN_TX_CMDID); 2034 } 2035 2036 static void ath10k_wmi_pdev_set_wmm_param(struct wmi_wmm_params *params, 2037 const struct wmi_wmm_params_arg *arg) 2038 { 2039 params->cwmin = __cpu_to_le32(arg->cwmin); 2040 params->cwmax = __cpu_to_le32(arg->cwmax); 2041 params->aifs = __cpu_to_le32(arg->aifs); 2042 params->txop = __cpu_to_le32(arg->txop); 2043 params->acm = __cpu_to_le32(arg->acm); 2044 params->no_ack = __cpu_to_le32(arg->no_ack); 2045 } 2046 2047 int ath10k_wmi_pdev_set_wmm_params(struct ath10k *ar, 2048 const struct wmi_pdev_set_wmm_params_arg *arg) 2049 { 2050 struct wmi_pdev_set_wmm_params *cmd; 2051 struct sk_buff *skb; 2052 2053 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 2054 if (!skb) 2055 return -ENOMEM; 2056 2057 cmd = (struct wmi_pdev_set_wmm_params *)skb->data; 2058 ath10k_wmi_pdev_set_wmm_param(&cmd->ac_be, &arg->ac_be); 2059 ath10k_wmi_pdev_set_wmm_param(&cmd->ac_bk, &arg->ac_bk); 2060 ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vi, &arg->ac_vi); 2061 ath10k_wmi_pdev_set_wmm_param(&cmd->ac_vo, &arg->ac_vo); 2062 2063 ath10k_dbg(ATH10K_DBG_WMI, "wmi pdev set wmm params\n"); 2064 return ath10k_wmi_cmd_send(ar, skb, WMI_PDEV_SET_WMM_PARAMS_CMDID); 2065 } 2066 2067 int ath10k_wmi_request_stats(struct ath10k *ar, enum wmi_stats_id stats_id) 2068 { 2069 struct wmi_request_stats_cmd *cmd; 2070 struct sk_buff *skb; 2071 2072 skb = ath10k_wmi_alloc_skb(sizeof(*cmd)); 2073 if (!skb) 2074 return -ENOMEM; 2075 2076 cmd = (struct wmi_request_stats_cmd *)skb->data; 2077 cmd->stats_id = __cpu_to_le32(stats_id); 2078 2079 ath10k_dbg(ATH10K_DBG_WMI, "wmi request stats %d\n", (int)stats_id); 2080 return ath10k_wmi_cmd_send(ar, skb, WMI_REQUEST_STATS_CMDID); 2081 } 2082