xref: /linux/drivers/net/wireless/ath/ath10k/snoc.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2018 The Linux Foundation. All rights reserved.
4  */
5 
6 #include <linux/bits.h>
7 #include <linux/clk.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/platform_device.h>
13 #include <linux/property.h>
14 #include <linux/regulator/consumer.h>
15 #include <linux/remoteproc/qcom_rproc.h>
16 #include <linux/of_address.h>
17 #include <linux/iommu.h>
18 
19 #include "ce.h"
20 #include "coredump.h"
21 #include "debug.h"
22 #include "hif.h"
23 #include "htc.h"
24 #include "snoc.h"
25 
26 #define ATH10K_SNOC_RX_POST_RETRY_MS 50
27 #define CE_POLL_PIPE 4
28 #define ATH10K_SNOC_WAKE_IRQ 2
29 
30 static char *const ce_name[] = {
31 	"WLAN_CE_0",
32 	"WLAN_CE_1",
33 	"WLAN_CE_2",
34 	"WLAN_CE_3",
35 	"WLAN_CE_4",
36 	"WLAN_CE_5",
37 	"WLAN_CE_6",
38 	"WLAN_CE_7",
39 	"WLAN_CE_8",
40 	"WLAN_CE_9",
41 	"WLAN_CE_10",
42 	"WLAN_CE_11",
43 };
44 
45 static const char * const ath10k_regulators[] = {
46 	"vdd-0.8-cx-mx",
47 	"vdd-1.8-xo",
48 	"vdd-1.3-rfa",
49 	"vdd-3.3-ch0",
50 	"vdd-3.3-ch1",
51 };
52 
53 static const char * const ath10k_clocks[] = {
54 	"cxo_ref_clk_pin", "qdss",
55 };
56 
57 static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
58 static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
59 static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
60 static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
61 static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
62 static void ath10k_snoc_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
63 
64 static const struct ath10k_snoc_drv_priv drv_priv = {
65 	.hw_rev = ATH10K_HW_WCN3990,
66 	.dma_mask = DMA_BIT_MASK(35),
67 	.msa_size = 0x100000,
68 };
69 
70 #define WCN3990_SRC_WR_IDX_OFFSET 0x3C
71 #define WCN3990_DST_WR_IDX_OFFSET 0x40
72 
73 static struct ath10k_shadow_reg_cfg target_shadow_reg_cfg_map[] = {
74 		{
75 			.ce_id = __cpu_to_le16(0),
76 			.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
77 		},
78 
79 		{
80 			.ce_id = __cpu_to_le16(3),
81 			.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
82 		},
83 
84 		{
85 			.ce_id = __cpu_to_le16(4),
86 			.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
87 		},
88 
89 		{
90 			.ce_id = __cpu_to_le16(5),
91 			.reg_offset =  __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
92 		},
93 
94 		{
95 			.ce_id = __cpu_to_le16(7),
96 			.reg_offset = __cpu_to_le16(WCN3990_SRC_WR_IDX_OFFSET),
97 		},
98 
99 		{
100 			.ce_id = __cpu_to_le16(1),
101 			.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
102 		},
103 
104 		{
105 			.ce_id = __cpu_to_le16(2),
106 			.reg_offset =  __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
107 		},
108 
109 		{
110 			.ce_id = __cpu_to_le16(7),
111 			.reg_offset =  __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
112 		},
113 
114 		{
115 			.ce_id = __cpu_to_le16(8),
116 			.reg_offset =  __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
117 		},
118 
119 		{
120 			.ce_id = __cpu_to_le16(9),
121 			.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
122 		},
123 
124 		{
125 			.ce_id = __cpu_to_le16(10),
126 			.reg_offset =  __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
127 		},
128 
129 		{
130 			.ce_id = __cpu_to_le16(11),
131 			.reg_offset = __cpu_to_le16(WCN3990_DST_WR_IDX_OFFSET),
132 		},
133 };
134 
135 static struct ce_attr host_ce_config_wlan[] = {
136 	/* CE0: host->target HTC control streams */
137 	{
138 		.flags = CE_ATTR_FLAGS,
139 		.src_nentries = 16,
140 		.src_sz_max = 2048,
141 		.dest_nentries = 0,
142 		.send_cb = ath10k_snoc_htc_tx_cb,
143 	},
144 
145 	/* CE1: target->host HTT + HTC control */
146 	{
147 		.flags = CE_ATTR_FLAGS,
148 		.src_nentries = 0,
149 		.src_sz_max = 2048,
150 		.dest_nentries = 512,
151 		.recv_cb = ath10k_snoc_htt_htc_rx_cb,
152 	},
153 
154 	/* CE2: target->host WMI */
155 	{
156 		.flags = CE_ATTR_FLAGS,
157 		.src_nentries = 0,
158 		.src_sz_max = 2048,
159 		.dest_nentries = 64,
160 		.recv_cb = ath10k_snoc_htc_rx_cb,
161 	},
162 
163 	/* CE3: host->target WMI */
164 	{
165 		.flags = CE_ATTR_FLAGS,
166 		.src_nentries = 32,
167 		.src_sz_max = 2048,
168 		.dest_nentries = 0,
169 		.send_cb = ath10k_snoc_htc_tx_cb,
170 	},
171 
172 	/* CE4: host->target HTT */
173 	{
174 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
175 		.src_nentries = 2048,
176 		.src_sz_max = 256,
177 		.dest_nentries = 0,
178 		.send_cb = ath10k_snoc_htt_tx_cb,
179 	},
180 
181 	/* CE5: target->host HTT (ipa_uc->target ) */
182 	{
183 		.flags = CE_ATTR_FLAGS,
184 		.src_nentries = 0,
185 		.src_sz_max = 512,
186 		.dest_nentries = 512,
187 		.recv_cb = ath10k_snoc_htt_rx_cb,
188 	},
189 
190 	/* CE6: target autonomous hif_memcpy */
191 	{
192 		.flags = CE_ATTR_FLAGS,
193 		.src_nentries = 0,
194 		.src_sz_max = 0,
195 		.dest_nentries = 0,
196 	},
197 
198 	/* CE7: ce_diag, the Diagnostic Window */
199 	{
200 		.flags = CE_ATTR_FLAGS,
201 		.src_nentries = 2,
202 		.src_sz_max = 2048,
203 		.dest_nentries = 2,
204 	},
205 
206 	/* CE8: Target to uMC */
207 	{
208 		.flags = CE_ATTR_FLAGS,
209 		.src_nentries = 0,
210 		.src_sz_max = 2048,
211 		.dest_nentries = 128,
212 	},
213 
214 	/* CE9 target->host HTT */
215 	{
216 		.flags = CE_ATTR_FLAGS,
217 		.src_nentries = 0,
218 		.src_sz_max = 2048,
219 		.dest_nentries = 512,
220 		.recv_cb = ath10k_snoc_htt_htc_rx_cb,
221 	},
222 
223 	/* CE10: target->host HTT */
224 	{
225 		.flags = CE_ATTR_FLAGS,
226 		.src_nentries = 0,
227 		.src_sz_max = 2048,
228 		.dest_nentries = 512,
229 		.recv_cb = ath10k_snoc_htt_htc_rx_cb,
230 	},
231 
232 	/* CE11: target -> host PKTLOG */
233 	{
234 		.flags = CE_ATTR_FLAGS,
235 		.src_nentries = 0,
236 		.src_sz_max = 2048,
237 		.dest_nentries = 512,
238 		.recv_cb = ath10k_snoc_pktlog_rx_cb,
239 	},
240 };
241 
242 static struct ce_pipe_config target_ce_config_wlan[] = {
243 	/* CE0: host->target HTC control and raw streams */
244 	{
245 		.pipenum = __cpu_to_le32(0),
246 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
247 		.nentries = __cpu_to_le32(32),
248 		.nbytes_max = __cpu_to_le32(2048),
249 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
250 		.reserved = __cpu_to_le32(0),
251 	},
252 
253 	/* CE1: target->host HTT + HTC control */
254 	{
255 		.pipenum = __cpu_to_le32(1),
256 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
257 		.nentries = __cpu_to_le32(32),
258 		.nbytes_max = __cpu_to_le32(2048),
259 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
260 		.reserved = __cpu_to_le32(0),
261 	},
262 
263 	/* CE2: target->host WMI */
264 	{
265 		.pipenum = __cpu_to_le32(2),
266 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
267 		.nentries = __cpu_to_le32(64),
268 		.nbytes_max = __cpu_to_le32(2048),
269 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
270 		.reserved = __cpu_to_le32(0),
271 	},
272 
273 	/* CE3: host->target WMI */
274 	{
275 		.pipenum = __cpu_to_le32(3),
276 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
277 		.nentries = __cpu_to_le32(32),
278 		.nbytes_max = __cpu_to_le32(2048),
279 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
280 		.reserved = __cpu_to_le32(0),
281 	},
282 
283 	/* CE4: host->target HTT */
284 	{
285 		.pipenum = __cpu_to_le32(4),
286 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
287 		.nentries = __cpu_to_le32(256),
288 		.nbytes_max = __cpu_to_le32(256),
289 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
290 		.reserved = __cpu_to_le32(0),
291 	},
292 
293 	/* CE5: target->host HTT (HIF->HTT) */
294 	{
295 		.pipenum = __cpu_to_le32(5),
296 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
297 		.nentries = __cpu_to_le32(1024),
298 		.nbytes_max = __cpu_to_le32(64),
299 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
300 		.reserved = __cpu_to_le32(0),
301 	},
302 
303 	/* CE6: Reserved for target autonomous hif_memcpy */
304 	{
305 		.pipenum = __cpu_to_le32(6),
306 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
307 		.nentries = __cpu_to_le32(32),
308 		.nbytes_max = __cpu_to_le32(16384),
309 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
310 		.reserved = __cpu_to_le32(0),
311 	},
312 
313 	/* CE7 used only by Host */
314 	{
315 		.pipenum = __cpu_to_le32(7),
316 		.pipedir = __cpu_to_le32(4),
317 		.nentries = __cpu_to_le32(0),
318 		.nbytes_max = __cpu_to_le32(0),
319 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
320 		.reserved = __cpu_to_le32(0),
321 	},
322 
323 	/* CE8 Target to uMC */
324 	{
325 		.pipenum = __cpu_to_le32(8),
326 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
327 		.nentries = __cpu_to_le32(32),
328 		.nbytes_max = __cpu_to_le32(2048),
329 		.flags = __cpu_to_le32(0),
330 		.reserved = __cpu_to_le32(0),
331 	},
332 
333 	/* CE9 target->host HTT */
334 	{
335 		.pipenum = __cpu_to_le32(9),
336 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
337 		.nentries = __cpu_to_le32(32),
338 		.nbytes_max = __cpu_to_le32(2048),
339 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
340 		.reserved = __cpu_to_le32(0),
341 	},
342 
343 	/* CE10 target->host HTT */
344 	{
345 		.pipenum = __cpu_to_le32(10),
346 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
347 		.nentries = __cpu_to_le32(32),
348 		.nbytes_max = __cpu_to_le32(2048),
349 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
350 		.reserved = __cpu_to_le32(0),
351 	},
352 
353 	/* CE11 target autonomous qcache memcpy */
354 	{
355 		.pipenum = __cpu_to_le32(11),
356 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
357 		.nentries = __cpu_to_le32(32),
358 		.nbytes_max = __cpu_to_le32(2048),
359 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
360 		.reserved = __cpu_to_le32(0),
361 	},
362 };
363 
364 static struct ce_service_to_pipe target_service_to_ce_map_wlan[] = {
365 	{
366 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
367 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
368 		__cpu_to_le32(3),
369 	},
370 	{
371 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
372 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
373 		__cpu_to_le32(2),
374 	},
375 	{
376 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
377 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
378 		__cpu_to_le32(3),
379 	},
380 	{
381 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
382 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
383 		__cpu_to_le32(2),
384 	},
385 	{
386 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
387 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
388 		__cpu_to_le32(3),
389 	},
390 	{
391 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
392 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
393 		__cpu_to_le32(2),
394 	},
395 	{
396 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
397 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
398 		__cpu_to_le32(3),
399 	},
400 	{
401 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
402 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
403 		__cpu_to_le32(2),
404 	},
405 	{
406 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
407 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
408 		__cpu_to_le32(3),
409 	},
410 	{
411 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
412 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
413 		__cpu_to_le32(2),
414 	},
415 	{
416 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
417 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
418 		__cpu_to_le32(0),
419 	},
420 	{
421 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
422 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
423 		__cpu_to_le32(2),
424 	},
425 	{ /* not used */
426 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
427 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
428 		__cpu_to_le32(0),
429 	},
430 	{ /* not used */
431 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
432 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
433 		__cpu_to_le32(2),
434 	},
435 	{
436 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
437 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
438 		__cpu_to_le32(4),
439 	},
440 	{
441 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
442 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
443 		__cpu_to_le32(1),
444 	},
445 	{ /* not used */
446 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
447 		__cpu_to_le32(PIPEDIR_OUT),
448 		__cpu_to_le32(5),
449 	},
450 	{ /* in = DL = target -> host */
451 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA2_MSG),
452 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
453 		__cpu_to_le32(9),
454 	},
455 	{ /* in = DL = target -> host */
456 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA3_MSG),
457 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
458 		__cpu_to_le32(10),
459 	},
460 	{ /* in = DL = target -> host pktlog */
461 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_LOG_MSG),
462 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
463 		__cpu_to_le32(11),
464 	},
465 	/* (Additions here) */
466 
467 	{ /* must be last */
468 		__cpu_to_le32(0),
469 		__cpu_to_le32(0),
470 		__cpu_to_le32(0),
471 	},
472 };
473 
474 static void ath10k_snoc_write32(struct ath10k *ar, u32 offset, u32 value)
475 {
476 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
477 
478 	iowrite32(value, ar_snoc->mem + offset);
479 }
480 
481 static u32 ath10k_snoc_read32(struct ath10k *ar, u32 offset)
482 {
483 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
484 	u32 val;
485 
486 	val = ioread32(ar_snoc->mem + offset);
487 
488 	return val;
489 }
490 
491 static int __ath10k_snoc_rx_post_buf(struct ath10k_snoc_pipe *pipe)
492 {
493 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
494 	struct ath10k *ar = pipe->hif_ce_state;
495 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
496 	struct sk_buff *skb;
497 	dma_addr_t paddr;
498 	int ret;
499 
500 	skb = dev_alloc_skb(pipe->buf_sz);
501 	if (!skb)
502 		return -ENOMEM;
503 
504 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
505 
506 	paddr = dma_map_single(ar->dev, skb->data,
507 			       skb->len + skb_tailroom(skb),
508 			       DMA_FROM_DEVICE);
509 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
510 		ath10k_warn(ar, "failed to dma map snoc rx buf\n");
511 		dev_kfree_skb_any(skb);
512 		return -EIO;
513 	}
514 
515 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
516 
517 	spin_lock_bh(&ce->ce_lock);
518 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
519 	spin_unlock_bh(&ce->ce_lock);
520 	if (ret) {
521 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
522 				 DMA_FROM_DEVICE);
523 		dev_kfree_skb_any(skb);
524 		return ret;
525 	}
526 
527 	return 0;
528 }
529 
530 static void ath10k_snoc_rx_post_pipe(struct ath10k_snoc_pipe *pipe)
531 {
532 	struct ath10k *ar = pipe->hif_ce_state;
533 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
534 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
535 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
536 	int ret, num;
537 
538 	if (pipe->buf_sz == 0)
539 		return;
540 
541 	if (!ce_pipe->dest_ring)
542 		return;
543 
544 	spin_lock_bh(&ce->ce_lock);
545 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
546 	spin_unlock_bh(&ce->ce_lock);
547 	while (num--) {
548 		ret = __ath10k_snoc_rx_post_buf(pipe);
549 		if (ret) {
550 			if (ret == -ENOSPC)
551 				break;
552 			ath10k_warn(ar, "failed to post rx buf: %d\n", ret);
553 			mod_timer(&ar_snoc->rx_post_retry, jiffies +
554 				  ATH10K_SNOC_RX_POST_RETRY_MS);
555 			break;
556 		}
557 	}
558 }
559 
560 static void ath10k_snoc_rx_post(struct ath10k *ar)
561 {
562 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
563 	int i;
564 
565 	for (i = 0; i < CE_COUNT; i++)
566 		ath10k_snoc_rx_post_pipe(&ar_snoc->pipe_info[i]);
567 }
568 
569 static void ath10k_snoc_process_rx_cb(struct ath10k_ce_pipe *ce_state,
570 				      void (*callback)(struct ath10k *ar,
571 						       struct sk_buff *skb))
572 {
573 	struct ath10k *ar = ce_state->ar;
574 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
575 	struct ath10k_snoc_pipe *pipe_info =  &ar_snoc->pipe_info[ce_state->id];
576 	struct sk_buff *skb;
577 	struct sk_buff_head list;
578 	void *transfer_context;
579 	unsigned int nbytes, max_nbytes;
580 
581 	__skb_queue_head_init(&list);
582 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
583 					     &nbytes) == 0) {
584 		skb = transfer_context;
585 		max_nbytes = skb->len + skb_tailroom(skb);
586 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
587 				 max_nbytes, DMA_FROM_DEVICE);
588 
589 		if (unlikely(max_nbytes < nbytes)) {
590 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)\n",
591 				    nbytes, max_nbytes);
592 			dev_kfree_skb_any(skb);
593 			continue;
594 		}
595 
596 		skb_put(skb, nbytes);
597 		__skb_queue_tail(&list, skb);
598 	}
599 
600 	while ((skb = __skb_dequeue(&list))) {
601 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc rx ce pipe %d len %d\n",
602 			   ce_state->id, skb->len);
603 
604 		callback(ar, skb);
605 	}
606 
607 	ath10k_snoc_rx_post_pipe(pipe_info);
608 }
609 
610 static void ath10k_snoc_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
611 {
612 	ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
613 }
614 
615 static void ath10k_snoc_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
616 {
617 	/* CE4 polling needs to be done whenever CE pipe which transports
618 	 * HTT Rx (target->host) is processed.
619 	 */
620 	ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE);
621 
622 	ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
623 }
624 
625 /* Called by lower (CE) layer when data is received from the Target.
626  * WCN3990 firmware uses separate CE(CE11) to transfer pktlog data.
627  */
628 static void ath10k_snoc_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
629 {
630 	ath10k_snoc_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
631 }
632 
633 static void ath10k_snoc_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
634 {
635 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
636 	ath10k_htt_t2h_msg_handler(ar, skb);
637 }
638 
639 static void ath10k_snoc_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
640 {
641 	ath10k_ce_per_engine_service(ce_state->ar, CE_POLL_PIPE);
642 	ath10k_snoc_process_rx_cb(ce_state, ath10k_snoc_htt_rx_deliver);
643 }
644 
645 static void ath10k_snoc_rx_replenish_retry(struct timer_list *t)
646 {
647 	struct ath10k_snoc *ar_snoc = from_timer(ar_snoc, t, rx_post_retry);
648 	struct ath10k *ar = ar_snoc->ar;
649 
650 	ath10k_snoc_rx_post(ar);
651 }
652 
653 static void ath10k_snoc_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
654 {
655 	struct ath10k *ar = ce_state->ar;
656 	struct sk_buff_head list;
657 	struct sk_buff *skb;
658 
659 	__skb_queue_head_init(&list);
660 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
661 		if (!skb)
662 			continue;
663 
664 		__skb_queue_tail(&list, skb);
665 	}
666 
667 	while ((skb = __skb_dequeue(&list)))
668 		ath10k_htc_tx_completion_handler(ar, skb);
669 }
670 
671 static void ath10k_snoc_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
672 {
673 	struct ath10k *ar = ce_state->ar;
674 	struct sk_buff *skb;
675 
676 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
677 		if (!skb)
678 			continue;
679 
680 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
681 				 skb->len, DMA_TO_DEVICE);
682 		ath10k_htt_hif_tx_complete(ar, skb);
683 	}
684 }
685 
686 static int ath10k_snoc_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
687 				 struct ath10k_hif_sg_item *items, int n_items)
688 {
689 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
690 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
691 	struct ath10k_snoc_pipe *snoc_pipe;
692 	struct ath10k_ce_pipe *ce_pipe;
693 	int err, i = 0;
694 
695 	snoc_pipe = &ar_snoc->pipe_info[pipe_id];
696 	ce_pipe = snoc_pipe->ce_hdl;
697 	spin_lock_bh(&ce->ce_lock);
698 
699 	for (i = 0; i < n_items - 1; i++) {
700 		ath10k_dbg(ar, ATH10K_DBG_SNOC,
701 			   "snoc tx item %d paddr %pad len %d n_items %d\n",
702 			   i, &items[i].paddr, items[i].len, n_items);
703 
704 		err = ath10k_ce_send_nolock(ce_pipe,
705 					    items[i].transfer_context,
706 					    items[i].paddr,
707 					    items[i].len,
708 					    items[i].transfer_id,
709 					    CE_SEND_FLAG_GATHER);
710 		if (err)
711 			goto err;
712 	}
713 
714 	ath10k_dbg(ar, ATH10K_DBG_SNOC,
715 		   "snoc tx item %d paddr %pad len %d n_items %d\n",
716 		   i, &items[i].paddr, items[i].len, n_items);
717 
718 	err = ath10k_ce_send_nolock(ce_pipe,
719 				    items[i].transfer_context,
720 				    items[i].paddr,
721 				    items[i].len,
722 				    items[i].transfer_id,
723 				    0);
724 	if (err)
725 		goto err;
726 
727 	spin_unlock_bh(&ce->ce_lock);
728 
729 	return 0;
730 
731 err:
732 	for (; i > 0; i--)
733 		__ath10k_ce_send_revert(ce_pipe);
734 
735 	spin_unlock_bh(&ce->ce_lock);
736 	return err;
737 }
738 
739 static int ath10k_snoc_hif_get_target_info(struct ath10k *ar,
740 					   struct bmi_target_info *target_info)
741 {
742 	target_info->version = ATH10K_HW_WCN3990;
743 	target_info->type = ATH10K_HW_WCN3990;
744 
745 	return 0;
746 }
747 
748 static u16 ath10k_snoc_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
749 {
750 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
751 
752 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "hif get free queue number\n");
753 
754 	return ath10k_ce_num_free_src_entries(ar_snoc->pipe_info[pipe].ce_hdl);
755 }
756 
757 static void ath10k_snoc_hif_send_complete_check(struct ath10k *ar, u8 pipe,
758 						int force)
759 {
760 	int resources;
761 
762 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif send complete check\n");
763 
764 	if (!force) {
765 		resources = ath10k_snoc_hif_get_free_queue_number(ar, pipe);
766 
767 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
768 			return;
769 	}
770 	ath10k_ce_per_engine_service(ar, pipe);
771 }
772 
773 static int ath10k_snoc_hif_map_service_to_pipe(struct ath10k *ar,
774 					       u16 service_id,
775 					       u8 *ul_pipe, u8 *dl_pipe)
776 {
777 	const struct ce_service_to_pipe *entry;
778 	bool ul_set = false, dl_set = false;
779 	int i;
780 
781 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif map service\n");
782 
783 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
784 		entry = &target_service_to_ce_map_wlan[i];
785 
786 		if (__le32_to_cpu(entry->service_id) != service_id)
787 			continue;
788 
789 		switch (__le32_to_cpu(entry->pipedir)) {
790 		case PIPEDIR_NONE:
791 			break;
792 		case PIPEDIR_IN:
793 			WARN_ON(dl_set);
794 			*dl_pipe = __le32_to_cpu(entry->pipenum);
795 			dl_set = true;
796 			break;
797 		case PIPEDIR_OUT:
798 			WARN_ON(ul_set);
799 			*ul_pipe = __le32_to_cpu(entry->pipenum);
800 			ul_set = true;
801 			break;
802 		case PIPEDIR_INOUT:
803 			WARN_ON(dl_set);
804 			WARN_ON(ul_set);
805 			*dl_pipe = __le32_to_cpu(entry->pipenum);
806 			*ul_pipe = __le32_to_cpu(entry->pipenum);
807 			dl_set = true;
808 			ul_set = true;
809 			break;
810 		}
811 	}
812 
813 	if (!ul_set || !dl_set)
814 		return -ENOENT;
815 
816 	return 0;
817 }
818 
819 static void ath10k_snoc_hif_get_default_pipe(struct ath10k *ar,
820 					     u8 *ul_pipe, u8 *dl_pipe)
821 {
822 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc hif get default pipe\n");
823 
824 	(void)ath10k_snoc_hif_map_service_to_pipe(ar,
825 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
826 						 ul_pipe, dl_pipe);
827 }
828 
829 static inline void ath10k_snoc_irq_disable(struct ath10k *ar)
830 {
831 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
832 	int id;
833 
834 	for (id = 0; id < CE_COUNT_MAX; id++)
835 		disable_irq(ar_snoc->ce_irqs[id].irq_line);
836 }
837 
838 static inline void ath10k_snoc_irq_enable(struct ath10k *ar)
839 {
840 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
841 	int id;
842 
843 	for (id = 0; id < CE_COUNT_MAX; id++)
844 		enable_irq(ar_snoc->ce_irqs[id].irq_line);
845 }
846 
847 static void ath10k_snoc_rx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe)
848 {
849 	struct ath10k_ce_pipe *ce_pipe;
850 	struct ath10k_ce_ring *ce_ring;
851 	struct sk_buff *skb;
852 	struct ath10k *ar;
853 	int i;
854 
855 	ar = snoc_pipe->hif_ce_state;
856 	ce_pipe = snoc_pipe->ce_hdl;
857 	ce_ring = ce_pipe->dest_ring;
858 
859 	if (!ce_ring)
860 		return;
861 
862 	if (!snoc_pipe->buf_sz)
863 		return;
864 
865 	for (i = 0; i < ce_ring->nentries; i++) {
866 		skb = ce_ring->per_transfer_context[i];
867 		if (!skb)
868 			continue;
869 
870 		ce_ring->per_transfer_context[i] = NULL;
871 
872 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
873 				 skb->len + skb_tailroom(skb),
874 				 DMA_FROM_DEVICE);
875 		dev_kfree_skb_any(skb);
876 	}
877 }
878 
879 static void ath10k_snoc_tx_pipe_cleanup(struct ath10k_snoc_pipe *snoc_pipe)
880 {
881 	struct ath10k_ce_pipe *ce_pipe;
882 	struct ath10k_ce_ring *ce_ring;
883 	struct sk_buff *skb;
884 	struct ath10k *ar;
885 	int i;
886 
887 	ar = snoc_pipe->hif_ce_state;
888 	ce_pipe = snoc_pipe->ce_hdl;
889 	ce_ring = ce_pipe->src_ring;
890 
891 	if (!ce_ring)
892 		return;
893 
894 	if (!snoc_pipe->buf_sz)
895 		return;
896 
897 	for (i = 0; i < ce_ring->nentries; i++) {
898 		skb = ce_ring->per_transfer_context[i];
899 		if (!skb)
900 			continue;
901 
902 		ce_ring->per_transfer_context[i] = NULL;
903 
904 		ath10k_htc_tx_completion_handler(ar, skb);
905 	}
906 }
907 
908 static void ath10k_snoc_buffer_cleanup(struct ath10k *ar)
909 {
910 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
911 	struct ath10k_snoc_pipe *pipe_info;
912 	int pipe_num;
913 
914 	del_timer_sync(&ar_snoc->rx_post_retry);
915 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
916 		pipe_info = &ar_snoc->pipe_info[pipe_num];
917 		ath10k_snoc_rx_pipe_cleanup(pipe_info);
918 		ath10k_snoc_tx_pipe_cleanup(pipe_info);
919 	}
920 }
921 
922 static void ath10k_snoc_hif_stop(struct ath10k *ar)
923 {
924 	if (!test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags))
925 		ath10k_snoc_irq_disable(ar);
926 
927 	ath10k_core_napi_sync_disable(ar);
928 	ath10k_snoc_buffer_cleanup(ar);
929 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
930 }
931 
932 static int ath10k_snoc_hif_start(struct ath10k *ar)
933 {
934 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
935 
936 	bitmap_clear(ar_snoc->pending_ce_irqs, 0, CE_COUNT_MAX);
937 
938 	dev_set_threaded(ar->napi_dev, true);
939 	ath10k_core_napi_enable(ar);
940 	ath10k_snoc_irq_enable(ar);
941 	ath10k_snoc_rx_post(ar);
942 
943 	clear_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags);
944 
945 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
946 
947 	return 0;
948 }
949 
950 static int ath10k_snoc_init_pipes(struct ath10k *ar)
951 {
952 	int i, ret;
953 
954 	for (i = 0; i < CE_COUNT; i++) {
955 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
956 		if (ret) {
957 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
958 				   i, ret);
959 			return ret;
960 		}
961 	}
962 
963 	return 0;
964 }
965 
966 static int ath10k_snoc_wlan_enable(struct ath10k *ar,
967 				   enum ath10k_firmware_mode fw_mode)
968 {
969 	struct ath10k_tgt_pipe_cfg tgt_cfg[CE_COUNT_MAX];
970 	struct ath10k_qmi_wlan_enable_cfg cfg;
971 	enum wlfw_driver_mode_enum_v01 mode;
972 	int pipe_num;
973 
974 	for (pipe_num = 0; pipe_num < CE_COUNT_MAX; pipe_num++) {
975 		tgt_cfg[pipe_num].pipe_num =
976 				target_ce_config_wlan[pipe_num].pipenum;
977 		tgt_cfg[pipe_num].pipe_dir =
978 				target_ce_config_wlan[pipe_num].pipedir;
979 		tgt_cfg[pipe_num].nentries =
980 				target_ce_config_wlan[pipe_num].nentries;
981 		tgt_cfg[pipe_num].nbytes_max =
982 				target_ce_config_wlan[pipe_num].nbytes_max;
983 		tgt_cfg[pipe_num].flags =
984 				target_ce_config_wlan[pipe_num].flags;
985 		tgt_cfg[pipe_num].reserved = 0;
986 	}
987 
988 	cfg.num_ce_tgt_cfg = sizeof(target_ce_config_wlan) /
989 				sizeof(struct ath10k_tgt_pipe_cfg);
990 	cfg.ce_tgt_cfg = (struct ath10k_tgt_pipe_cfg *)
991 		&tgt_cfg;
992 	cfg.num_ce_svc_pipe_cfg = sizeof(target_service_to_ce_map_wlan) /
993 				  sizeof(struct ath10k_svc_pipe_cfg);
994 	cfg.ce_svc_cfg = (struct ath10k_svc_pipe_cfg *)
995 		&target_service_to_ce_map_wlan;
996 	cfg.num_shadow_reg_cfg = ARRAY_SIZE(target_shadow_reg_cfg_map);
997 	cfg.shadow_reg_cfg = (struct ath10k_shadow_reg_cfg *)
998 		&target_shadow_reg_cfg_map;
999 
1000 	switch (fw_mode) {
1001 	case ATH10K_FIRMWARE_MODE_NORMAL:
1002 		mode = QMI_WLFW_MISSION_V01;
1003 		break;
1004 	case ATH10K_FIRMWARE_MODE_UTF:
1005 		mode = QMI_WLFW_FTM_V01;
1006 		break;
1007 	default:
1008 		ath10k_err(ar, "invalid firmware mode %d\n", fw_mode);
1009 		return -EINVAL;
1010 	}
1011 
1012 	return ath10k_qmi_wlan_enable(ar, &cfg, mode,
1013 				       NULL);
1014 }
1015 
1016 static int ath10k_hw_power_on(struct ath10k *ar)
1017 {
1018 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1019 	int ret;
1020 
1021 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "soc power on\n");
1022 
1023 	ret = regulator_bulk_enable(ar_snoc->num_vregs, ar_snoc->vregs);
1024 	if (ret)
1025 		return ret;
1026 
1027 	ret = clk_bulk_prepare_enable(ar_snoc->num_clks, ar_snoc->clks);
1028 	if (ret)
1029 		goto vreg_off;
1030 
1031 	return ret;
1032 
1033 vreg_off:
1034 	regulator_bulk_disable(ar_snoc->num_vregs, ar_snoc->vregs);
1035 	return ret;
1036 }
1037 
1038 static int ath10k_hw_power_off(struct ath10k *ar)
1039 {
1040 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1041 
1042 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "soc power off\n");
1043 
1044 	clk_bulk_disable_unprepare(ar_snoc->num_clks, ar_snoc->clks);
1045 
1046 	return regulator_bulk_disable(ar_snoc->num_vregs, ar_snoc->vregs);
1047 }
1048 
1049 static void ath10k_snoc_wlan_disable(struct ath10k *ar)
1050 {
1051 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1052 
1053 	/* If both ATH10K_FLAG_CRASH_FLUSH and ATH10K_SNOC_FLAG_RECOVERY
1054 	 * flags are not set, it means that the driver has restarted
1055 	 * due to a crash inject via debugfs. In this case, the driver
1056 	 * needs to restart the firmware and hence send qmi wlan disable,
1057 	 * during the driver restart sequence.
1058 	 */
1059 	if (!test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags) ||
1060 	    !test_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags))
1061 		ath10k_qmi_wlan_disable(ar);
1062 }
1063 
1064 static void ath10k_snoc_hif_power_down(struct ath10k *ar)
1065 {
1066 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
1067 
1068 	ath10k_snoc_wlan_disable(ar);
1069 	ath10k_ce_free_rri(ar);
1070 	ath10k_hw_power_off(ar);
1071 }
1072 
1073 static int ath10k_snoc_hif_power_up(struct ath10k *ar,
1074 				    enum ath10k_firmware_mode fw_mode)
1075 {
1076 	int ret;
1077 
1078 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "%s:WCN3990 driver state = %d\n",
1079 		   __func__, ar->state);
1080 
1081 	ret = ath10k_hw_power_on(ar);
1082 	if (ret) {
1083 		ath10k_err(ar, "failed to power on device: %d\n", ret);
1084 		return ret;
1085 	}
1086 
1087 	ret = ath10k_snoc_wlan_enable(ar, fw_mode);
1088 	if (ret) {
1089 		ath10k_err(ar, "failed to enable wcn3990: %d\n", ret);
1090 		goto err_hw_power_off;
1091 	}
1092 
1093 	ath10k_ce_alloc_rri(ar);
1094 
1095 	ret = ath10k_snoc_init_pipes(ar);
1096 	if (ret) {
1097 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
1098 		goto err_free_rri;
1099 	}
1100 
1101 	ath10k_ce_enable_interrupts(ar);
1102 
1103 	return 0;
1104 
1105 err_free_rri:
1106 	ath10k_ce_free_rri(ar);
1107 	ath10k_snoc_wlan_disable(ar);
1108 
1109 err_hw_power_off:
1110 	ath10k_hw_power_off(ar);
1111 
1112 	return ret;
1113 }
1114 
1115 static int ath10k_snoc_hif_set_target_log_mode(struct ath10k *ar,
1116 					       u8 fw_log_mode)
1117 {
1118 	u8 fw_dbg_mode;
1119 
1120 	if (fw_log_mode)
1121 		fw_dbg_mode = ATH10K_ENABLE_FW_LOG_CE;
1122 	else
1123 		fw_dbg_mode = ATH10K_ENABLE_FW_LOG_DIAG;
1124 
1125 	return ath10k_qmi_set_fw_log_mode(ar, fw_dbg_mode);
1126 }
1127 
1128 #ifdef CONFIG_PM
1129 static int ath10k_snoc_hif_suspend(struct ath10k *ar)
1130 {
1131 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1132 	int ret;
1133 
1134 	if (!device_may_wakeup(ar->dev))
1135 		return -EPERM;
1136 
1137 	ret = enable_irq_wake(ar_snoc->ce_irqs[ATH10K_SNOC_WAKE_IRQ].irq_line);
1138 	if (ret) {
1139 		ath10k_err(ar, "failed to enable wakeup irq :%d\n", ret);
1140 		return ret;
1141 	}
1142 
1143 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc device suspended\n");
1144 
1145 	return ret;
1146 }
1147 
1148 static int ath10k_snoc_hif_resume(struct ath10k *ar)
1149 {
1150 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1151 	int ret;
1152 
1153 	if (!device_may_wakeup(ar->dev))
1154 		return -EPERM;
1155 
1156 	ret = disable_irq_wake(ar_snoc->ce_irqs[ATH10K_SNOC_WAKE_IRQ].irq_line);
1157 	if (ret) {
1158 		ath10k_err(ar, "failed to disable wakeup irq: %d\n", ret);
1159 		return ret;
1160 	}
1161 
1162 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc device resumed\n");
1163 
1164 	return ret;
1165 }
1166 #endif
1167 
1168 static const struct ath10k_hif_ops ath10k_snoc_hif_ops = {
1169 	.read32		= ath10k_snoc_read32,
1170 	.write32	= ath10k_snoc_write32,
1171 	.start		= ath10k_snoc_hif_start,
1172 	.stop		= ath10k_snoc_hif_stop,
1173 	.map_service_to_pipe	= ath10k_snoc_hif_map_service_to_pipe,
1174 	.get_default_pipe	= ath10k_snoc_hif_get_default_pipe,
1175 	.power_up		= ath10k_snoc_hif_power_up,
1176 	.power_down		= ath10k_snoc_hif_power_down,
1177 	.tx_sg			= ath10k_snoc_hif_tx_sg,
1178 	.send_complete_check	= ath10k_snoc_hif_send_complete_check,
1179 	.get_free_queue_number	= ath10k_snoc_hif_get_free_queue_number,
1180 	.get_target_info	= ath10k_snoc_hif_get_target_info,
1181 	.set_target_log_mode    = ath10k_snoc_hif_set_target_log_mode,
1182 
1183 #ifdef CONFIG_PM
1184 	.suspend                = ath10k_snoc_hif_suspend,
1185 	.resume                 = ath10k_snoc_hif_resume,
1186 #endif
1187 };
1188 
1189 static const struct ath10k_bus_ops ath10k_snoc_bus_ops = {
1190 	.read32		= ath10k_snoc_read32,
1191 	.write32	= ath10k_snoc_write32,
1192 };
1193 
1194 static int ath10k_snoc_get_ce_id_from_irq(struct ath10k *ar, int irq)
1195 {
1196 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1197 	int i;
1198 
1199 	for (i = 0; i < CE_COUNT_MAX; i++) {
1200 		if (ar_snoc->ce_irqs[i].irq_line == irq)
1201 			return i;
1202 	}
1203 	ath10k_err(ar, "No matching CE id for irq %d\n", irq);
1204 
1205 	return -EINVAL;
1206 }
1207 
1208 static irqreturn_t ath10k_snoc_per_engine_handler(int irq, void *arg)
1209 {
1210 	struct ath10k *ar = arg;
1211 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1212 	int ce_id = ath10k_snoc_get_ce_id_from_irq(ar, irq);
1213 
1214 	if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_snoc->pipe_info)) {
1215 		ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
1216 			    ce_id);
1217 		return IRQ_HANDLED;
1218 	}
1219 
1220 	ath10k_ce_disable_interrupt(ar, ce_id);
1221 	set_bit(ce_id, ar_snoc->pending_ce_irqs);
1222 
1223 	napi_schedule(&ar->napi);
1224 
1225 	return IRQ_HANDLED;
1226 }
1227 
1228 static int ath10k_snoc_napi_poll(struct napi_struct *ctx, int budget)
1229 {
1230 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
1231 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1232 	int done = 0;
1233 	int ce_id;
1234 
1235 	if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) {
1236 		napi_complete(ctx);
1237 		return done;
1238 	}
1239 
1240 	for (ce_id = 0; ce_id < CE_COUNT; ce_id++)
1241 		if (test_and_clear_bit(ce_id, ar_snoc->pending_ce_irqs)) {
1242 			ath10k_ce_per_engine_service(ar, ce_id);
1243 			ath10k_ce_enable_interrupt(ar, ce_id);
1244 		}
1245 
1246 	done = ath10k_htt_txrx_compl_task(ar, budget);
1247 
1248 	if (done < budget)
1249 		napi_complete(ctx);
1250 
1251 	return done;
1252 }
1253 
1254 static void ath10k_snoc_init_napi(struct ath10k *ar)
1255 {
1256 	netif_napi_add(ar->napi_dev, &ar->napi, ath10k_snoc_napi_poll);
1257 }
1258 
1259 static int ath10k_snoc_request_irq(struct ath10k *ar)
1260 {
1261 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1262 	int ret, id;
1263 
1264 	for (id = 0; id < CE_COUNT_MAX; id++) {
1265 		ret = request_irq(ar_snoc->ce_irqs[id].irq_line,
1266 				  ath10k_snoc_per_engine_handler,
1267 				  IRQF_NO_AUTOEN, ce_name[id], ar);
1268 		if (ret) {
1269 			ath10k_err(ar,
1270 				   "failed to register IRQ handler for CE %d: %d\n",
1271 				   id, ret);
1272 			goto err_irq;
1273 		}
1274 	}
1275 
1276 	return 0;
1277 
1278 err_irq:
1279 	for (id -= 1; id >= 0; id--)
1280 		free_irq(ar_snoc->ce_irqs[id].irq_line, ar);
1281 
1282 	return ret;
1283 }
1284 
1285 static void ath10k_snoc_free_irq(struct ath10k *ar)
1286 {
1287 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1288 	int id;
1289 
1290 	for (id = 0; id < CE_COUNT_MAX; id++)
1291 		free_irq(ar_snoc->ce_irqs[id].irq_line, ar);
1292 }
1293 
1294 static int ath10k_snoc_resource_init(struct ath10k *ar)
1295 {
1296 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1297 	struct platform_device *pdev;
1298 	struct resource *res;
1299 	int i, ret = 0;
1300 
1301 	pdev = ar_snoc->dev;
1302 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "membase");
1303 	if (!res) {
1304 		ath10k_err(ar, "Memory base not found in DT\n");
1305 		return -EINVAL;
1306 	}
1307 
1308 	ar_snoc->mem_pa = res->start;
1309 	ar_snoc->mem = devm_ioremap(&pdev->dev, ar_snoc->mem_pa,
1310 				    resource_size(res));
1311 	if (!ar_snoc->mem) {
1312 		ath10k_err(ar, "Memory base ioremap failed with physical address %pa\n",
1313 			   &ar_snoc->mem_pa);
1314 		return -EINVAL;
1315 	}
1316 
1317 	for (i = 0; i < CE_COUNT; i++) {
1318 		ret = platform_get_irq(ar_snoc->dev, i);
1319 		if (ret < 0)
1320 			return ret;
1321 		ar_snoc->ce_irqs[i].irq_line = ret;
1322 	}
1323 
1324 	ret = device_property_read_u32(&pdev->dev, "qcom,xo-cal-data",
1325 				       &ar_snoc->xo_cal_data);
1326 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc xo-cal-data return %d\n", ret);
1327 	if (ret == 0) {
1328 		ar_snoc->xo_cal_supported = true;
1329 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "xo cal data %x\n",
1330 			   ar_snoc->xo_cal_data);
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 static void ath10k_snoc_quirks_init(struct ath10k *ar)
1337 {
1338 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1339 	struct device *dev = &ar_snoc->dev->dev;
1340 
1341 	/* ignore errors, keep NULL if there is no property */
1342 	of_property_read_string(dev->of_node, "firmware-name", &ar->board_name);
1343 
1344 	if (of_property_read_bool(dev->of_node, "qcom,snoc-host-cap-8bit-quirk"))
1345 		set_bit(ATH10K_SNOC_FLAG_8BIT_HOST_CAP_QUIRK, &ar_snoc->flags);
1346 }
1347 
1348 int ath10k_snoc_fw_indication(struct ath10k *ar, u64 type)
1349 {
1350 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1351 	struct ath10k_bus_params bus_params = {};
1352 	int ret;
1353 
1354 	if (test_bit(ATH10K_SNOC_FLAG_UNREGISTERING, &ar_snoc->flags))
1355 		return 0;
1356 
1357 	switch (type) {
1358 	case ATH10K_QMI_EVENT_FW_READY_IND:
1359 		if (test_bit(ATH10K_SNOC_FLAG_REGISTERED, &ar_snoc->flags)) {
1360 			ath10k_core_start_recovery(ar);
1361 			break;
1362 		}
1363 
1364 		bus_params.dev_type = ATH10K_DEV_TYPE_LL;
1365 		bus_params.chip_id = ar_snoc->target_info.soc_version;
1366 		ret = ath10k_core_register(ar, &bus_params);
1367 		if (ret) {
1368 			ath10k_err(ar, "Failed to register driver core: %d\n",
1369 				   ret);
1370 			return ret;
1371 		}
1372 		set_bit(ATH10K_SNOC_FLAG_REGISTERED, &ar_snoc->flags);
1373 		break;
1374 	case ATH10K_QMI_EVENT_FW_DOWN_IND:
1375 		set_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags);
1376 		set_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags);
1377 		break;
1378 	default:
1379 		ath10k_err(ar, "invalid fw indication: %llx\n", type);
1380 		return -EINVAL;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 static int ath10k_snoc_setup_resource(struct ath10k *ar)
1387 {
1388 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1389 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1390 	struct ath10k_snoc_pipe *pipe;
1391 	int i, ret;
1392 
1393 	timer_setup(&ar_snoc->rx_post_retry, ath10k_snoc_rx_replenish_retry, 0);
1394 	spin_lock_init(&ce->ce_lock);
1395 	for (i = 0; i < CE_COUNT; i++) {
1396 		pipe = &ar_snoc->pipe_info[i];
1397 		pipe->ce_hdl = &ce->ce_states[i];
1398 		pipe->pipe_num = i;
1399 		pipe->hif_ce_state = ar;
1400 
1401 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
1402 		if (ret) {
1403 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
1404 				   i, ret);
1405 			return ret;
1406 		}
1407 
1408 		pipe->buf_sz = host_ce_config_wlan[i].src_sz_max;
1409 	}
1410 	ath10k_snoc_init_napi(ar);
1411 
1412 	return 0;
1413 }
1414 
1415 static void ath10k_snoc_release_resource(struct ath10k *ar)
1416 {
1417 	int i;
1418 
1419 	netif_napi_del(&ar->napi);
1420 	for (i = 0; i < CE_COUNT; i++)
1421 		ath10k_ce_free_pipe(ar, i);
1422 }
1423 
1424 static void ath10k_msa_dump_memory(struct ath10k *ar,
1425 				   struct ath10k_fw_crash_data *crash_data)
1426 {
1427 	const struct ath10k_hw_mem_layout *mem_layout;
1428 	const struct ath10k_mem_region *current_region;
1429 	struct ath10k_dump_ram_data_hdr *hdr;
1430 	size_t buf_len;
1431 	u8 *buf;
1432 
1433 	if (!crash_data || !crash_data->ramdump_buf)
1434 		return;
1435 
1436 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1437 	if (!mem_layout)
1438 		return;
1439 
1440 	current_region = &mem_layout->region_table.regions[0];
1441 
1442 	buf = crash_data->ramdump_buf;
1443 	buf_len = crash_data->ramdump_buf_len;
1444 	memset(buf, 0, buf_len);
1445 
1446 	/* Reserve space for the header. */
1447 	hdr = (void *)buf;
1448 	buf += sizeof(*hdr);
1449 	buf_len -= sizeof(*hdr);
1450 
1451 	hdr->region_type = cpu_to_le32(current_region->type);
1452 	hdr->start = cpu_to_le32((unsigned long)ar->msa.vaddr);
1453 	hdr->length = cpu_to_le32(ar->msa.mem_size);
1454 
1455 	if (current_region->len < ar->msa.mem_size) {
1456 		memcpy(buf, ar->msa.vaddr, current_region->len);
1457 		ath10k_warn(ar, "msa dump length is less than msa size %x, %x\n",
1458 			    current_region->len, ar->msa.mem_size);
1459 	} else {
1460 		memcpy(buf, ar->msa.vaddr, ar->msa.mem_size);
1461 	}
1462 }
1463 
1464 void ath10k_snoc_fw_crashed_dump(struct ath10k *ar)
1465 {
1466 	struct ath10k_fw_crash_data *crash_data;
1467 	char guid[UUID_STRING_LEN + 1];
1468 
1469 	mutex_lock(&ar->dump_mutex);
1470 
1471 	spin_lock_bh(&ar->data_lock);
1472 	ar->stats.fw_crash_counter++;
1473 	spin_unlock_bh(&ar->data_lock);
1474 
1475 	crash_data = ath10k_coredump_new(ar);
1476 
1477 	if (crash_data)
1478 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1479 	else
1480 		scnprintf(guid, sizeof(guid), "n/a");
1481 
1482 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1483 	ath10k_print_driver_info(ar);
1484 	ath10k_msa_dump_memory(ar, crash_data);
1485 	mutex_unlock(&ar->dump_mutex);
1486 }
1487 
1488 static int ath10k_snoc_modem_notify(struct notifier_block *nb, unsigned long action,
1489 				    void *data)
1490 {
1491 	struct ath10k_snoc *ar_snoc = container_of(nb, struct ath10k_snoc, nb);
1492 	struct ath10k *ar = ar_snoc->ar;
1493 	struct qcom_ssr_notify_data *notify_data = data;
1494 
1495 	switch (action) {
1496 	case QCOM_SSR_BEFORE_POWERUP:
1497 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem starting event\n");
1498 		clear_bit(ATH10K_SNOC_FLAG_MODEM_STOPPED, &ar_snoc->flags);
1499 		break;
1500 
1501 	case QCOM_SSR_AFTER_POWERUP:
1502 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem running event\n");
1503 		break;
1504 
1505 	case QCOM_SSR_BEFORE_SHUTDOWN:
1506 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem %s event\n",
1507 			   notify_data->crashed ? "crashed" : "stopping");
1508 		if (!notify_data->crashed)
1509 			set_bit(ATH10K_SNOC_FLAG_MODEM_STOPPED, &ar_snoc->flags);
1510 		else
1511 			clear_bit(ATH10K_SNOC_FLAG_MODEM_STOPPED, &ar_snoc->flags);
1512 		break;
1513 
1514 	case QCOM_SSR_AFTER_SHUTDOWN:
1515 		ath10k_dbg(ar, ATH10K_DBG_SNOC, "received modem offline event\n");
1516 		break;
1517 
1518 	default:
1519 		ath10k_err(ar, "received unrecognized event %lu\n", action);
1520 		break;
1521 	}
1522 
1523 	return NOTIFY_OK;
1524 }
1525 
1526 static int ath10k_modem_init(struct ath10k *ar)
1527 {
1528 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1529 	void *notifier;
1530 	int ret;
1531 
1532 	ar_snoc->nb.notifier_call = ath10k_snoc_modem_notify;
1533 
1534 	notifier = qcom_register_ssr_notifier("mpss", &ar_snoc->nb);
1535 	if (IS_ERR(notifier)) {
1536 		ret = PTR_ERR(notifier);
1537 		ath10k_err(ar, "failed to initialize modem notifier: %d\n", ret);
1538 		return ret;
1539 	}
1540 
1541 	ar_snoc->notifier = notifier;
1542 
1543 	return 0;
1544 }
1545 
1546 static void ath10k_modem_deinit(struct ath10k *ar)
1547 {
1548 	int ret;
1549 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1550 
1551 	ret = qcom_unregister_ssr_notifier(ar_snoc->notifier, &ar_snoc->nb);
1552 	if (ret)
1553 		ath10k_err(ar, "error %d unregistering notifier\n", ret);
1554 }
1555 
1556 static int ath10k_setup_msa_resources(struct ath10k *ar, u32 msa_size)
1557 {
1558 	struct device *dev = ar->dev;
1559 	struct device_node *node;
1560 	struct resource r;
1561 	int ret;
1562 
1563 	node = of_parse_phandle(dev->of_node, "memory-region", 0);
1564 	if (node) {
1565 		ret = of_address_to_resource(node, 0, &r);
1566 		of_node_put(node);
1567 		if (ret) {
1568 			dev_err(dev, "failed to resolve msa fixed region\n");
1569 			return ret;
1570 		}
1571 
1572 		ar->msa.paddr = r.start;
1573 		ar->msa.mem_size = resource_size(&r);
1574 		ar->msa.vaddr = devm_memremap(dev, ar->msa.paddr,
1575 					      ar->msa.mem_size,
1576 					      MEMREMAP_WT);
1577 		if (IS_ERR(ar->msa.vaddr)) {
1578 			dev_err(dev, "failed to map memory region: %pa\n",
1579 				&r.start);
1580 			return PTR_ERR(ar->msa.vaddr);
1581 		}
1582 	} else {
1583 		ar->msa.vaddr = dmam_alloc_coherent(dev, msa_size,
1584 						    &ar->msa.paddr,
1585 						    GFP_KERNEL);
1586 		if (!ar->msa.vaddr) {
1587 			ath10k_err(ar, "failed to allocate dma memory for msa region\n");
1588 			return -ENOMEM;
1589 		}
1590 		ar->msa.mem_size = msa_size;
1591 	}
1592 
1593 	ath10k_dbg(ar, ATH10K_DBG_QMI, "qmi msa.paddr: %pad , msa.vaddr: 0x%p\n",
1594 		   &ar->msa.paddr,
1595 		   ar->msa.vaddr);
1596 
1597 	return 0;
1598 }
1599 
1600 static int ath10k_fw_init(struct ath10k *ar)
1601 {
1602 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1603 	struct device *host_dev = &ar_snoc->dev->dev;
1604 	struct platform_device_info info;
1605 	struct iommu_domain *iommu_dom;
1606 	struct platform_device *pdev;
1607 	struct device_node *node;
1608 	int ret;
1609 
1610 	node = of_get_child_by_name(host_dev->of_node, "wifi-firmware");
1611 	if (!node) {
1612 		ar_snoc->use_tz = true;
1613 		return 0;
1614 	}
1615 
1616 	memset(&info, 0, sizeof(info));
1617 	info.fwnode = &node->fwnode;
1618 	info.parent = host_dev;
1619 	info.name = node->name;
1620 	info.dma_mask = DMA_BIT_MASK(32);
1621 
1622 	pdev = platform_device_register_full(&info);
1623 	if (IS_ERR(pdev)) {
1624 		of_node_put(node);
1625 		return PTR_ERR(pdev);
1626 	}
1627 
1628 	pdev->dev.of_node = node;
1629 
1630 	ret = of_dma_configure(&pdev->dev, node, true);
1631 	if (ret) {
1632 		ath10k_err(ar, "dma configure fail: %d\n", ret);
1633 		goto err_unregister;
1634 	}
1635 
1636 	ar_snoc->fw.dev = &pdev->dev;
1637 
1638 	iommu_dom = iommu_paging_domain_alloc(ar_snoc->fw.dev);
1639 	if (IS_ERR(iommu_dom)) {
1640 		ath10k_err(ar, "failed to allocate iommu domain\n");
1641 		ret = PTR_ERR(iommu_dom);
1642 		goto err_unregister;
1643 	}
1644 
1645 	ret = iommu_attach_device(iommu_dom, ar_snoc->fw.dev);
1646 	if (ret) {
1647 		ath10k_err(ar, "could not attach device: %d\n", ret);
1648 		goto err_iommu_free;
1649 	}
1650 
1651 	ar_snoc->fw.iommu_domain = iommu_dom;
1652 	ar_snoc->fw.fw_start_addr = ar->msa.paddr;
1653 
1654 	ret = iommu_map(iommu_dom, ar_snoc->fw.fw_start_addr,
1655 			ar->msa.paddr, ar->msa.mem_size,
1656 			IOMMU_READ | IOMMU_WRITE, GFP_KERNEL);
1657 	if (ret) {
1658 		ath10k_err(ar, "failed to map firmware region: %d\n", ret);
1659 		goto err_iommu_detach;
1660 	}
1661 
1662 	of_node_put(node);
1663 
1664 	return 0;
1665 
1666 err_iommu_detach:
1667 	iommu_detach_device(iommu_dom, ar_snoc->fw.dev);
1668 
1669 err_iommu_free:
1670 	iommu_domain_free(iommu_dom);
1671 
1672 err_unregister:
1673 	platform_device_unregister(pdev);
1674 	of_node_put(node);
1675 
1676 	return ret;
1677 }
1678 
1679 static int ath10k_fw_deinit(struct ath10k *ar)
1680 {
1681 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1682 	const size_t mapped_size = ar_snoc->fw.mapped_mem_size;
1683 	struct iommu_domain *iommu;
1684 	size_t unmapped_size;
1685 
1686 	if (ar_snoc->use_tz)
1687 		return 0;
1688 
1689 	iommu = ar_snoc->fw.iommu_domain;
1690 
1691 	unmapped_size = iommu_unmap(iommu, ar_snoc->fw.fw_start_addr,
1692 				    mapped_size);
1693 	if (unmapped_size != mapped_size)
1694 		ath10k_err(ar, "failed to unmap firmware: %zu\n",
1695 			   unmapped_size);
1696 
1697 	iommu_detach_device(iommu, ar_snoc->fw.dev);
1698 	iommu_domain_free(iommu);
1699 
1700 	platform_device_unregister(to_platform_device(ar_snoc->fw.dev));
1701 
1702 	return 0;
1703 }
1704 
1705 static const struct of_device_id ath10k_snoc_dt_match[] = {
1706 	{ .compatible = "qcom,wcn3990-wifi",
1707 	 .data = &drv_priv,
1708 	},
1709 	{ }
1710 };
1711 MODULE_DEVICE_TABLE(of, ath10k_snoc_dt_match);
1712 
1713 static int ath10k_snoc_probe(struct platform_device *pdev)
1714 {
1715 	const struct ath10k_snoc_drv_priv *drv_data;
1716 	struct ath10k_snoc *ar_snoc;
1717 	struct device *dev;
1718 	struct ath10k *ar;
1719 	u32 msa_size;
1720 	int ret;
1721 	u32 i;
1722 
1723 	dev = &pdev->dev;
1724 	drv_data = device_get_match_data(dev);
1725 	if (!drv_data) {
1726 		dev_err(dev, "failed to find matching device tree id\n");
1727 		return -EINVAL;
1728 	}
1729 
1730 	ret = dma_set_mask_and_coherent(dev, drv_data->dma_mask);
1731 	if (ret) {
1732 		dev_err(dev, "failed to set dma mask: %d\n", ret);
1733 		return ret;
1734 	}
1735 
1736 	ar = ath10k_core_create(sizeof(*ar_snoc), dev, ATH10K_BUS_SNOC,
1737 				drv_data->hw_rev, &ath10k_snoc_hif_ops);
1738 	if (!ar) {
1739 		dev_err(dev, "failed to allocate core\n");
1740 		return -ENOMEM;
1741 	}
1742 
1743 	ar_snoc = ath10k_snoc_priv(ar);
1744 	ar_snoc->dev = pdev;
1745 	platform_set_drvdata(pdev, ar);
1746 	ar_snoc->ar = ar;
1747 	ar_snoc->ce.bus_ops = &ath10k_snoc_bus_ops;
1748 	ar->ce_priv = &ar_snoc->ce;
1749 	msa_size = drv_data->msa_size;
1750 
1751 	ath10k_snoc_quirks_init(ar);
1752 
1753 	ret = ath10k_snoc_resource_init(ar);
1754 	if (ret) {
1755 		ath10k_warn(ar, "failed to initialize resource: %d\n", ret);
1756 		goto err_core_destroy;
1757 	}
1758 
1759 	ret = ath10k_snoc_setup_resource(ar);
1760 	if (ret) {
1761 		ath10k_warn(ar, "failed to setup resource: %d\n", ret);
1762 		goto err_core_destroy;
1763 	}
1764 	ret = ath10k_snoc_request_irq(ar);
1765 	if (ret) {
1766 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
1767 		goto err_release_resource;
1768 	}
1769 
1770 	ar_snoc->num_vregs = ARRAY_SIZE(ath10k_regulators);
1771 	ar_snoc->vregs = devm_kcalloc(&pdev->dev, ar_snoc->num_vregs,
1772 				      sizeof(*ar_snoc->vregs), GFP_KERNEL);
1773 	if (!ar_snoc->vregs) {
1774 		ret = -ENOMEM;
1775 		goto err_free_irq;
1776 	}
1777 	for (i = 0; i < ar_snoc->num_vregs; i++)
1778 		ar_snoc->vregs[i].supply = ath10k_regulators[i];
1779 
1780 	ret = devm_regulator_bulk_get(&pdev->dev, ar_snoc->num_vregs,
1781 				      ar_snoc->vregs);
1782 	if (ret < 0)
1783 		goto err_free_irq;
1784 
1785 	ar_snoc->num_clks = ARRAY_SIZE(ath10k_clocks);
1786 	ar_snoc->clks = devm_kcalloc(&pdev->dev, ar_snoc->num_clks,
1787 				     sizeof(*ar_snoc->clks), GFP_KERNEL);
1788 	if (!ar_snoc->clks) {
1789 		ret = -ENOMEM;
1790 		goto err_free_irq;
1791 	}
1792 
1793 	for (i = 0; i < ar_snoc->num_clks; i++)
1794 		ar_snoc->clks[i].id = ath10k_clocks[i];
1795 
1796 	ret = devm_clk_bulk_get_optional(&pdev->dev, ar_snoc->num_clks,
1797 					 ar_snoc->clks);
1798 	if (ret)
1799 		goto err_free_irq;
1800 
1801 	ret = ath10k_setup_msa_resources(ar, msa_size);
1802 	if (ret) {
1803 		ath10k_warn(ar, "failed to setup msa resources: %d\n", ret);
1804 		goto err_free_irq;
1805 	}
1806 
1807 	ret = ath10k_fw_init(ar);
1808 	if (ret) {
1809 		ath10k_err(ar, "failed to initialize firmware: %d\n", ret);
1810 		goto err_free_irq;
1811 	}
1812 
1813 	ret = ath10k_qmi_init(ar, msa_size);
1814 	if (ret) {
1815 		ath10k_warn(ar, "failed to register wlfw qmi client: %d\n", ret);
1816 		goto err_fw_deinit;
1817 	}
1818 
1819 	ret = ath10k_modem_init(ar);
1820 	if (ret)
1821 		goto err_qmi_deinit;
1822 
1823 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc probe\n");
1824 
1825 	return 0;
1826 
1827 err_qmi_deinit:
1828 	ath10k_qmi_deinit(ar);
1829 
1830 err_fw_deinit:
1831 	ath10k_fw_deinit(ar);
1832 
1833 err_free_irq:
1834 	ath10k_snoc_free_irq(ar);
1835 
1836 err_release_resource:
1837 	ath10k_snoc_release_resource(ar);
1838 
1839 err_core_destroy:
1840 	ath10k_core_destroy(ar);
1841 
1842 	return ret;
1843 }
1844 
1845 static int ath10k_snoc_free_resources(struct ath10k *ar)
1846 {
1847 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1848 
1849 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc free resources\n");
1850 
1851 	set_bit(ATH10K_SNOC_FLAG_UNREGISTERING, &ar_snoc->flags);
1852 
1853 	ath10k_core_unregister(ar);
1854 	ath10k_fw_deinit(ar);
1855 	ath10k_snoc_free_irq(ar);
1856 	ath10k_snoc_release_resource(ar);
1857 	ath10k_modem_deinit(ar);
1858 	ath10k_qmi_deinit(ar);
1859 	ath10k_core_destroy(ar);
1860 
1861 	return 0;
1862 }
1863 
1864 static void ath10k_snoc_remove(struct platform_device *pdev)
1865 {
1866 	struct ath10k *ar = platform_get_drvdata(pdev);
1867 	struct ath10k_snoc *ar_snoc = ath10k_snoc_priv(ar);
1868 
1869 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc remove\n");
1870 
1871 	reinit_completion(&ar->driver_recovery);
1872 
1873 	if (test_bit(ATH10K_SNOC_FLAG_RECOVERY, &ar_snoc->flags))
1874 		wait_for_completion_timeout(&ar->driver_recovery, 3 * HZ);
1875 
1876 	ath10k_snoc_free_resources(ar);
1877 }
1878 
1879 static void ath10k_snoc_shutdown(struct platform_device *pdev)
1880 {
1881 	struct ath10k *ar = platform_get_drvdata(pdev);
1882 
1883 	ath10k_dbg(ar, ATH10K_DBG_SNOC, "snoc shutdown\n");
1884 	ath10k_snoc_free_resources(ar);
1885 }
1886 
1887 static struct platform_driver ath10k_snoc_driver = {
1888 	.probe = ath10k_snoc_probe,
1889 	.remove = ath10k_snoc_remove,
1890 	.shutdown = ath10k_snoc_shutdown,
1891 	.driver = {
1892 		.name = "ath10k_snoc",
1893 		.of_match_table = ath10k_snoc_dt_match,
1894 	},
1895 };
1896 module_platform_driver(ath10k_snoc_driver);
1897 
1898 MODULE_AUTHOR("Qualcomm");
1899 MODULE_LICENSE("Dual BSD/GPL");
1900 MODULE_DESCRIPTION("Driver support for Atheros WCN3990 SNOC devices");
1901