1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2004-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2012,2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2016-2017 Erik Stromdahl <erik.stromdahl@gmail.com> 6 * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/mmc/card.h> 11 #include <linux/mmc/mmc.h> 12 #include <linux/mmc/host.h> 13 #include <linux/mmc/sdio_func.h> 14 #include <linux/mmc/sdio_ids.h> 15 #include <linux/mmc/sdio.h> 16 #include <linux/mmc/sd.h> 17 #include <linux/bitfield.h> 18 #include "core.h" 19 #include "bmi.h" 20 #include "debug.h" 21 #include "hif.h" 22 #include "htc.h" 23 #include "mac.h" 24 #include "targaddrs.h" 25 #include "trace.h" 26 #include "sdio.h" 27 #include "coredump.h" 28 29 void ath10k_sdio_fw_crashed_dump(struct ath10k *ar); 30 31 #define ATH10K_SDIO_VSG_BUF_SIZE (64 * 1024) 32 33 /* inlined helper functions */ 34 35 static inline int ath10k_sdio_calc_txrx_padded_len(struct ath10k_sdio *ar_sdio, 36 size_t len) 37 { 38 return __ALIGN_MASK((len), ar_sdio->mbox_info.block_mask); 39 } 40 41 static inline enum ath10k_htc_ep_id pipe_id_to_eid(u8 pipe_id) 42 { 43 return (enum ath10k_htc_ep_id)pipe_id; 44 } 45 46 static inline void ath10k_sdio_mbox_free_rx_pkt(struct ath10k_sdio_rx_data *pkt) 47 { 48 dev_kfree_skb(pkt->skb); 49 pkt->skb = NULL; 50 pkt->alloc_len = 0; 51 pkt->act_len = 0; 52 pkt->trailer_only = false; 53 } 54 55 static inline int ath10k_sdio_mbox_alloc_rx_pkt(struct ath10k_sdio_rx_data *pkt, 56 size_t act_len, size_t full_len, 57 bool part_of_bundle, 58 bool last_in_bundle) 59 { 60 pkt->skb = dev_alloc_skb(full_len); 61 if (!pkt->skb) 62 return -ENOMEM; 63 64 pkt->act_len = act_len; 65 pkt->alloc_len = full_len; 66 pkt->part_of_bundle = part_of_bundle; 67 pkt->last_in_bundle = last_in_bundle; 68 pkt->trailer_only = false; 69 70 return 0; 71 } 72 73 static inline bool is_trailer_only_msg(struct ath10k_sdio_rx_data *pkt) 74 { 75 bool trailer_only = false; 76 struct ath10k_htc_hdr *htc_hdr = 77 (struct ath10k_htc_hdr *)pkt->skb->data; 78 u16 len = __le16_to_cpu(htc_hdr->len); 79 80 if (len == htc_hdr->trailer_len) 81 trailer_only = true; 82 83 return trailer_only; 84 } 85 86 /* sdio/mmc functions */ 87 88 static inline void ath10k_sdio_set_cmd52_arg(u32 *arg, u8 write, u8 raw, 89 unsigned int address, 90 unsigned char val) 91 { 92 *arg = FIELD_PREP(BIT(31), write) | 93 FIELD_PREP(BIT(27), raw) | 94 FIELD_PREP(BIT(26), 1) | 95 FIELD_PREP(GENMASK(25, 9), address) | 96 FIELD_PREP(BIT(8), 1) | 97 FIELD_PREP(GENMASK(7, 0), val); 98 } 99 100 static int ath10k_sdio_func0_cmd52_wr_byte(struct mmc_card *card, 101 unsigned int address, 102 unsigned char byte) 103 { 104 struct mmc_command io_cmd; 105 106 memset(&io_cmd, 0, sizeof(io_cmd)); 107 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 1, 0, address, byte); 108 io_cmd.opcode = SD_IO_RW_DIRECT; 109 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 110 111 return mmc_wait_for_cmd(card->host, &io_cmd, 0); 112 } 113 114 static int ath10k_sdio_func0_cmd52_rd_byte(struct mmc_card *card, 115 unsigned int address, 116 unsigned char *byte) 117 { 118 struct mmc_command io_cmd; 119 int ret; 120 121 memset(&io_cmd, 0, sizeof(io_cmd)); 122 ath10k_sdio_set_cmd52_arg(&io_cmd.arg, 0, 0, address, 0); 123 io_cmd.opcode = SD_IO_RW_DIRECT; 124 io_cmd.flags = MMC_RSP_R5 | MMC_CMD_AC; 125 126 ret = mmc_wait_for_cmd(card->host, &io_cmd, 0); 127 if (!ret) 128 *byte = io_cmd.resp[0]; 129 130 return ret; 131 } 132 133 static int ath10k_sdio_config(struct ath10k *ar) 134 { 135 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 136 struct sdio_func *func = ar_sdio->func; 137 unsigned char byte, asyncintdelay = 2; 138 int ret; 139 140 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio configuration\n"); 141 142 sdio_claim_host(func); 143 144 byte = 0; 145 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 146 SDIO_CCCR_DRIVE_STRENGTH, 147 &byte); 148 149 byte &= ~ATH10K_SDIO_DRIVE_DTSX_MASK; 150 byte |= FIELD_PREP(ATH10K_SDIO_DRIVE_DTSX_MASK, 151 ATH10K_SDIO_DRIVE_DTSX_TYPE_D); 152 153 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 154 SDIO_CCCR_DRIVE_STRENGTH, 155 byte); 156 157 byte = 0; 158 ret = ath10k_sdio_func0_cmd52_rd_byte( 159 func->card, 160 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 161 &byte); 162 163 byte |= (CCCR_SDIO_DRIVER_STRENGTH_ENABLE_A | 164 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_C | 165 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_D); 166 167 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 168 CCCR_SDIO_DRIVER_STRENGTH_ENABLE_ADDR, 169 byte); 170 if (ret) { 171 ath10k_warn(ar, "failed to enable driver strength: %d\n", ret); 172 goto out; 173 } 174 175 byte = 0; 176 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 177 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 178 &byte); 179 180 byte |= SDIO_IRQ_MODE_ASYNC_4BIT_IRQ_SDIO3; 181 182 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 183 CCCR_SDIO_IRQ_MODE_REG_SDIO3, 184 byte); 185 if (ret) { 186 ath10k_warn(ar, "failed to enable 4-bit async irq mode: %d\n", 187 ret); 188 goto out; 189 } 190 191 byte = 0; 192 ret = ath10k_sdio_func0_cmd52_rd_byte(func->card, 193 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 194 &byte); 195 196 byte &= ~CCCR_SDIO_ASYNC_INT_DELAY_MASK; 197 byte |= FIELD_PREP(CCCR_SDIO_ASYNC_INT_DELAY_MASK, asyncintdelay); 198 199 ret = ath10k_sdio_func0_cmd52_wr_byte(func->card, 200 CCCR_SDIO_ASYNC_INT_DELAY_ADDRESS, 201 byte); 202 203 /* give us some time to enable, in ms */ 204 func->enable_timeout = 100; 205 206 ret = sdio_set_block_size(func, ar_sdio->mbox_info.block_size); 207 if (ret) { 208 ath10k_warn(ar, "failed to set sdio block size to %d: %d\n", 209 ar_sdio->mbox_info.block_size, ret); 210 goto out; 211 } 212 213 out: 214 sdio_release_host(func); 215 return ret; 216 } 217 218 static int ath10k_sdio_write32(struct ath10k *ar, u32 addr, u32 val) 219 { 220 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 221 struct sdio_func *func = ar_sdio->func; 222 int ret; 223 224 sdio_claim_host(func); 225 226 sdio_writel(func, val, addr, &ret); 227 if (ret) { 228 ath10k_warn(ar, "failed to write 0x%x to address 0x%x: %d\n", 229 val, addr, ret); 230 goto out; 231 } 232 233 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write32 addr 0x%x val 0x%x\n", 234 addr, val); 235 236 out: 237 sdio_release_host(func); 238 239 return ret; 240 } 241 242 static int ath10k_sdio_writesb32(struct ath10k *ar, u32 addr, u32 val) 243 { 244 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 245 struct sdio_func *func = ar_sdio->func; 246 __le32 *buf; 247 int ret; 248 249 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 250 if (!buf) 251 return -ENOMEM; 252 253 *buf = cpu_to_le32(val); 254 255 sdio_claim_host(func); 256 257 ret = sdio_writesb(func, addr, buf, sizeof(*buf)); 258 if (ret) { 259 ath10k_warn(ar, "failed to write value 0x%x to fixed sb address 0x%x: %d\n", 260 val, addr, ret); 261 goto out; 262 } 263 264 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio writesb32 addr 0x%x val 0x%x\n", 265 addr, val); 266 267 out: 268 sdio_release_host(func); 269 270 kfree(buf); 271 272 return ret; 273 } 274 275 static int ath10k_sdio_read32(struct ath10k *ar, u32 addr, u32 *val) 276 { 277 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 278 struct sdio_func *func = ar_sdio->func; 279 int ret; 280 281 sdio_claim_host(func); 282 *val = sdio_readl(func, addr, &ret); 283 if (ret) { 284 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 285 addr, ret); 286 goto out; 287 } 288 289 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read32 addr 0x%x val 0x%x\n", 290 addr, *val); 291 292 out: 293 sdio_release_host(func); 294 295 return ret; 296 } 297 298 static int ath10k_sdio_read(struct ath10k *ar, u32 addr, void *buf, size_t len) 299 { 300 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 301 struct sdio_func *func = ar_sdio->func; 302 int ret; 303 304 sdio_claim_host(func); 305 306 ret = sdio_memcpy_fromio(func, buf, addr, len); 307 if (ret) { 308 ath10k_warn(ar, "failed to read from address 0x%x: %d\n", 309 addr, ret); 310 goto out; 311 } 312 313 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read addr 0x%x buf 0x%p len %zu\n", 314 addr, buf, len); 315 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio read ", buf, len); 316 317 out: 318 sdio_release_host(func); 319 320 return ret; 321 } 322 323 static int ath10k_sdio_write(struct ath10k *ar, u32 addr, const void *buf, size_t len) 324 { 325 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 326 struct sdio_func *func = ar_sdio->func; 327 int ret; 328 329 sdio_claim_host(func); 330 331 /* For some reason toio() doesn't have const for the buffer, need 332 * an ugly hack to workaround that. 333 */ 334 ret = sdio_memcpy_toio(func, addr, (void *)buf, len); 335 if (ret) { 336 ath10k_warn(ar, "failed to write to address 0x%x: %d\n", 337 addr, ret); 338 goto out; 339 } 340 341 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio write addr 0x%x buf 0x%p len %zu\n", 342 addr, buf, len); 343 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio write ", buf, len); 344 345 out: 346 sdio_release_host(func); 347 348 return ret; 349 } 350 351 static int ath10k_sdio_readsb(struct ath10k *ar, u32 addr, void *buf, size_t len) 352 { 353 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 354 struct sdio_func *func = ar_sdio->func; 355 int ret; 356 357 sdio_claim_host(func); 358 359 len = round_down(len, ar_sdio->mbox_info.block_size); 360 361 ret = sdio_readsb(func, buf, addr, len); 362 if (ret) { 363 ath10k_warn(ar, "failed to read from fixed (sb) address 0x%x: %d\n", 364 addr, ret); 365 goto out; 366 } 367 368 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio readsb addr 0x%x buf 0x%p len %zu\n", 369 addr, buf, len); 370 ath10k_dbg_dump(ar, ATH10K_DBG_SDIO_DUMP, NULL, "sdio readsb ", buf, len); 371 372 out: 373 sdio_release_host(func); 374 375 return ret; 376 } 377 378 /* HIF mbox functions */ 379 380 static int ath10k_sdio_mbox_rx_process_packet(struct ath10k *ar, 381 struct ath10k_sdio_rx_data *pkt, 382 u32 *lookaheads, 383 int *n_lookaheads) 384 { 385 struct ath10k_htc *htc = &ar->htc; 386 struct sk_buff *skb = pkt->skb; 387 struct ath10k_htc_hdr *htc_hdr = (struct ath10k_htc_hdr *)skb->data; 388 bool trailer_present = htc_hdr->flags & ATH10K_HTC_FLAG_TRAILER_PRESENT; 389 enum ath10k_htc_ep_id eid; 390 u8 *trailer; 391 int ret; 392 393 if (trailer_present) { 394 trailer = skb->data + skb->len - htc_hdr->trailer_len; 395 396 eid = pipe_id_to_eid(htc_hdr->eid); 397 398 ret = ath10k_htc_process_trailer(htc, 399 trailer, 400 htc_hdr->trailer_len, 401 eid, 402 lookaheads, 403 n_lookaheads); 404 if (ret) 405 return ret; 406 407 if (is_trailer_only_msg(pkt)) 408 pkt->trailer_only = true; 409 410 skb_trim(skb, skb->len - htc_hdr->trailer_len); 411 } 412 413 skb_pull(skb, sizeof(*htc_hdr)); 414 415 return 0; 416 } 417 418 static int ath10k_sdio_mbox_rx_process_packets(struct ath10k *ar, 419 u32 lookaheads[], 420 int *n_lookahead) 421 { 422 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 423 struct ath10k_htc *htc = &ar->htc; 424 struct ath10k_sdio_rx_data *pkt; 425 struct ath10k_htc_ep *ep; 426 struct ath10k_skb_rxcb *cb; 427 enum ath10k_htc_ep_id id; 428 int ret, i, *n_lookahead_local; 429 u32 *lookaheads_local; 430 int lookahead_idx = 0; 431 432 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 433 lookaheads_local = lookaheads; 434 n_lookahead_local = n_lookahead; 435 436 id = ((struct ath10k_htc_hdr *) 437 &lookaheads[lookahead_idx++])->eid; 438 439 if (id >= ATH10K_HTC_EP_COUNT) { 440 ath10k_warn(ar, "invalid endpoint in look-ahead: %d\n", 441 id); 442 ret = -ENOMEM; 443 goto out; 444 } 445 446 ep = &htc->endpoint[id]; 447 448 if (ep->service_id == 0) { 449 ath10k_warn(ar, "ep %d is not connected\n", id); 450 ret = -ENOMEM; 451 goto out; 452 } 453 454 pkt = &ar_sdio->rx_pkts[i]; 455 456 if (pkt->part_of_bundle && !pkt->last_in_bundle) { 457 /* Only read lookahead's from RX trailers 458 * for the last packet in a bundle. 459 */ 460 lookahead_idx--; 461 lookaheads_local = NULL; 462 n_lookahead_local = NULL; 463 } 464 465 ret = ath10k_sdio_mbox_rx_process_packet(ar, 466 pkt, 467 lookaheads_local, 468 n_lookahead_local); 469 if (ret) 470 goto out; 471 472 if (!pkt->trailer_only) { 473 cb = ATH10K_SKB_RXCB(pkt->skb); 474 cb->eid = id; 475 476 skb_queue_tail(&ar_sdio->rx_head, pkt->skb); 477 queue_work(ar->workqueue_aux, 478 &ar_sdio->async_work_rx); 479 } else { 480 kfree_skb(pkt->skb); 481 } 482 483 /* The RX complete handler now owns the skb...*/ 484 pkt->skb = NULL; 485 pkt->alloc_len = 0; 486 } 487 488 ret = 0; 489 490 out: 491 /* Free all packets that was not passed on to the RX completion 492 * handler... 493 */ 494 for (; i < ar_sdio->n_rx_pkts; i++) 495 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 496 497 return ret; 498 } 499 500 static int ath10k_sdio_mbox_alloc_bundle(struct ath10k *ar, 501 struct ath10k_sdio_rx_data *rx_pkts, 502 struct ath10k_htc_hdr *htc_hdr, 503 size_t full_len, size_t act_len, 504 size_t *bndl_cnt) 505 { 506 int ret, i; 507 u8 max_msgs = ar->htc.max_msgs_per_htc_bundle; 508 509 *bndl_cnt = ath10k_htc_get_bundle_count(max_msgs, htc_hdr->flags); 510 511 if (*bndl_cnt > max_msgs) { 512 ath10k_warn(ar, 513 "HTC bundle length %u exceeds maximum %u\n", 514 le16_to_cpu(htc_hdr->len), 515 max_msgs); 516 return -ENOMEM; 517 } 518 519 /* Allocate bndl_cnt extra skb's for the bundle. 520 * The package containing the 521 * ATH10K_HTC_FLAG_BUNDLE_MASK flag is not included 522 * in bndl_cnt. The skb for that packet will be 523 * allocated separately. 524 */ 525 for (i = 0; i < *bndl_cnt; i++) { 526 ret = ath10k_sdio_mbox_alloc_rx_pkt(&rx_pkts[i], 527 act_len, 528 full_len, 529 true, 530 false); 531 if (ret) 532 return ret; 533 } 534 535 return 0; 536 } 537 538 static int ath10k_sdio_mbox_rx_alloc(struct ath10k *ar, 539 u32 lookaheads[], int n_lookaheads) 540 { 541 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 542 struct ath10k_htc_hdr *htc_hdr; 543 size_t full_len, act_len; 544 bool last_in_bundle; 545 int ret, i; 546 int pkt_cnt = 0; 547 548 if (n_lookaheads > ATH10K_SDIO_MAX_RX_MSGS) { 549 ath10k_warn(ar, "the total number of pkts to be fetched (%u) exceeds maximum %u\n", 550 n_lookaheads, ATH10K_SDIO_MAX_RX_MSGS); 551 ret = -ENOMEM; 552 goto err; 553 } 554 555 for (i = 0; i < n_lookaheads; i++) { 556 htc_hdr = (struct ath10k_htc_hdr *)&lookaheads[i]; 557 last_in_bundle = false; 558 559 if (le16_to_cpu(htc_hdr->len) > ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH) { 560 ath10k_warn(ar, "payload length %d exceeds max htc length: %zu\n", 561 le16_to_cpu(htc_hdr->len), 562 ATH10K_HTC_MBOX_MAX_PAYLOAD_LENGTH); 563 ret = -ENOMEM; 564 565 ath10k_core_start_recovery(ar); 566 ath10k_warn(ar, "exceeds length, start recovery\n"); 567 568 goto err; 569 } 570 571 act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 572 full_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, act_len); 573 574 if (full_len > ATH10K_SDIO_MAX_BUFFER_SIZE) { 575 ath10k_warn(ar, "rx buffer requested with invalid htc_hdr length (%d, 0x%x): %d\n", 576 htc_hdr->eid, htc_hdr->flags, 577 le16_to_cpu(htc_hdr->len)); 578 ret = -EINVAL; 579 goto err; 580 } 581 582 if (ath10k_htc_get_bundle_count( 583 ar->htc.max_msgs_per_htc_bundle, htc_hdr->flags)) { 584 /* HTC header indicates that every packet to follow 585 * has the same padded length so that it can be 586 * optimally fetched as a full bundle. 587 */ 588 size_t bndl_cnt; 589 590 ret = ath10k_sdio_mbox_alloc_bundle(ar, 591 &ar_sdio->rx_pkts[pkt_cnt], 592 htc_hdr, 593 full_len, 594 act_len, 595 &bndl_cnt); 596 597 if (ret) { 598 ath10k_warn(ar, "failed to allocate a bundle: %d\n", 599 ret); 600 goto err; 601 } 602 603 pkt_cnt += bndl_cnt; 604 605 /* next buffer will be the last in the bundle */ 606 last_in_bundle = true; 607 } 608 609 /* Allocate skb for packet. If the packet had the 610 * ATH10K_HTC_FLAG_BUNDLE_MASK flag set, all bundled 611 * packet skb's have been allocated in the previous step. 612 */ 613 if (htc_hdr->flags & ATH10K_HTC_FLAGS_RECV_1MORE_BLOCK) 614 full_len += ATH10K_HIF_MBOX_BLOCK_SIZE; 615 616 ret = ath10k_sdio_mbox_alloc_rx_pkt(&ar_sdio->rx_pkts[pkt_cnt], 617 act_len, 618 full_len, 619 last_in_bundle, 620 last_in_bundle); 621 if (ret) { 622 ath10k_warn(ar, "alloc_rx_pkt error %d\n", ret); 623 goto err; 624 } 625 626 pkt_cnt++; 627 } 628 629 ar_sdio->n_rx_pkts = pkt_cnt; 630 631 return 0; 632 633 err: 634 for (i = 0; i < ATH10K_SDIO_MAX_RX_MSGS; i++) { 635 if (!ar_sdio->rx_pkts[i].alloc_len) 636 break; 637 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 638 } 639 640 return ret; 641 } 642 643 static int ath10k_sdio_mbox_rx_fetch(struct ath10k *ar) 644 { 645 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 646 struct ath10k_sdio_rx_data *pkt = &ar_sdio->rx_pkts[0]; 647 struct sk_buff *skb = pkt->skb; 648 struct ath10k_htc_hdr *htc_hdr; 649 int ret; 650 651 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 652 skb->data, pkt->alloc_len); 653 if (ret) 654 goto err; 655 656 htc_hdr = (struct ath10k_htc_hdr *)skb->data; 657 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 658 659 if (pkt->act_len > pkt->alloc_len) { 660 ret = -EINVAL; 661 goto err; 662 } 663 664 skb_put(skb, pkt->act_len); 665 return 0; 666 667 err: 668 ar_sdio->n_rx_pkts = 0; 669 ath10k_sdio_mbox_free_rx_pkt(pkt); 670 671 return ret; 672 } 673 674 static int ath10k_sdio_mbox_rx_fetch_bundle(struct ath10k *ar) 675 { 676 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 677 struct ath10k_sdio_rx_data *pkt; 678 struct ath10k_htc_hdr *htc_hdr; 679 int ret, i; 680 u32 pkt_offset, virt_pkt_len; 681 682 virt_pkt_len = 0; 683 for (i = 0; i < ar_sdio->n_rx_pkts; i++) 684 virt_pkt_len += ar_sdio->rx_pkts[i].alloc_len; 685 686 if (virt_pkt_len > ATH10K_SDIO_VSG_BUF_SIZE) { 687 ath10k_warn(ar, "sdio vsg buffer size limit: %d\n", virt_pkt_len); 688 ret = -E2BIG; 689 goto err; 690 } 691 692 ret = ath10k_sdio_readsb(ar, ar_sdio->mbox_info.htc_addr, 693 ar_sdio->vsg_buffer, virt_pkt_len); 694 if (ret) { 695 ath10k_warn(ar, "failed to read bundle packets: %d", ret); 696 goto err; 697 } 698 699 pkt_offset = 0; 700 for (i = 0; i < ar_sdio->n_rx_pkts; i++) { 701 pkt = &ar_sdio->rx_pkts[i]; 702 htc_hdr = (struct ath10k_htc_hdr *)(ar_sdio->vsg_buffer + pkt_offset); 703 pkt->act_len = le16_to_cpu(htc_hdr->len) + sizeof(*htc_hdr); 704 705 if (pkt->act_len > pkt->alloc_len) { 706 ret = -EINVAL; 707 goto err; 708 } 709 710 skb_put_data(pkt->skb, htc_hdr, pkt->act_len); 711 pkt_offset += pkt->alloc_len; 712 } 713 714 return 0; 715 716 err: 717 /* Free all packets that was not successfully fetched. */ 718 for (i = 0; i < ar_sdio->n_rx_pkts; i++) 719 ath10k_sdio_mbox_free_rx_pkt(&ar_sdio->rx_pkts[i]); 720 721 ar_sdio->n_rx_pkts = 0; 722 723 return ret; 724 } 725 726 /* This is the timeout for mailbox processing done in the sdio irq 727 * handler. The timeout is deliberately set quite high since SDIO dump logs 728 * over serial port can/will add a substantial overhead to the processing 729 * (if enabled). 730 */ 731 #define SDIO_MBOX_PROCESSING_TIMEOUT_HZ (20 * HZ) 732 733 static int ath10k_sdio_mbox_rxmsg_pending_handler(struct ath10k *ar, 734 u32 msg_lookahead, bool *done) 735 { 736 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 737 u32 lookaheads[ATH10K_SDIO_MAX_RX_MSGS]; 738 int n_lookaheads = 1; 739 unsigned long timeout; 740 int ret; 741 742 *done = true; 743 744 /* Copy the lookahead obtained from the HTC register table into our 745 * temp array as a start value. 746 */ 747 lookaheads[0] = msg_lookahead; 748 749 timeout = jiffies + SDIO_MBOX_PROCESSING_TIMEOUT_HZ; 750 do { 751 /* Try to allocate as many HTC RX packets indicated by 752 * n_lookaheads. 753 */ 754 ret = ath10k_sdio_mbox_rx_alloc(ar, lookaheads, 755 n_lookaheads); 756 if (ret) 757 break; 758 759 if (ar_sdio->n_rx_pkts >= 2) 760 /* A recv bundle was detected, force IRQ status 761 * re-check again. 762 */ 763 *done = false; 764 765 if (ar_sdio->n_rx_pkts > 1) 766 ret = ath10k_sdio_mbox_rx_fetch_bundle(ar); 767 else 768 ret = ath10k_sdio_mbox_rx_fetch(ar); 769 770 /* Process fetched packets. This will potentially update 771 * n_lookaheads depending on if the packets contain lookahead 772 * reports. 773 */ 774 n_lookaheads = 0; 775 ret = ath10k_sdio_mbox_rx_process_packets(ar, 776 lookaheads, 777 &n_lookaheads); 778 779 if (!n_lookaheads || ret) 780 break; 781 782 /* For SYNCH processing, if we get here, we are running 783 * through the loop again due to updated lookaheads. Set 784 * flag that we should re-check IRQ status registers again 785 * before leaving IRQ processing, this can net better 786 * performance in high throughput situations. 787 */ 788 *done = false; 789 } while (time_before(jiffies, timeout)); 790 791 if (ret && (ret != -ECANCELED)) 792 ath10k_warn(ar, "failed to get pending recv messages: %d\n", 793 ret); 794 795 return ret; 796 } 797 798 static int ath10k_sdio_mbox_proc_dbg_intr(struct ath10k *ar) 799 { 800 u32 val; 801 int ret; 802 803 /* TODO: Add firmware crash handling */ 804 ath10k_warn(ar, "firmware crashed\n"); 805 806 /* read counter to clear the interrupt, the debug error interrupt is 807 * counter 0. 808 */ 809 ret = ath10k_sdio_read32(ar, MBOX_COUNT_DEC_ADDRESS, &val); 810 if (ret) 811 ath10k_warn(ar, "failed to clear debug interrupt: %d\n", ret); 812 813 return ret; 814 } 815 816 static int ath10k_sdio_mbox_proc_counter_intr(struct ath10k *ar) 817 { 818 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 819 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 820 u8 counter_int_status; 821 int ret; 822 823 mutex_lock(&irq_data->mtx); 824 counter_int_status = irq_data->irq_proc_reg->counter_int_status & 825 irq_data->irq_en_reg->cntr_int_status_en; 826 827 /* NOTE: other modules like GMBOX may use the counter interrupt for 828 * credit flow control on other counters, we only need to check for 829 * the debug assertion counter interrupt. 830 */ 831 if (counter_int_status & ATH10K_SDIO_TARGET_DEBUG_INTR_MASK) 832 ret = ath10k_sdio_mbox_proc_dbg_intr(ar); 833 else 834 ret = 0; 835 836 mutex_unlock(&irq_data->mtx); 837 838 return ret; 839 } 840 841 static int ath10k_sdio_mbox_proc_err_intr(struct ath10k *ar) 842 { 843 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 844 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 845 u8 error_int_status; 846 int ret; 847 848 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio error interrupt\n"); 849 850 error_int_status = irq_data->irq_proc_reg->error_int_status & 0x0F; 851 if (!error_int_status) { 852 ath10k_warn(ar, "invalid error interrupt status: 0x%x\n", 853 error_int_status); 854 return -EIO; 855 } 856 857 ath10k_dbg(ar, ATH10K_DBG_SDIO, 858 "sdio error_int_status 0x%x\n", error_int_status); 859 860 if (FIELD_GET(MBOX_ERROR_INT_STATUS_WAKEUP_MASK, 861 error_int_status)) 862 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio interrupt error wakeup\n"); 863 864 if (FIELD_GET(MBOX_ERROR_INT_STATUS_RX_UNDERFLOW_MASK, 865 error_int_status)) 866 ath10k_warn(ar, "rx underflow interrupt error\n"); 867 868 if (FIELD_GET(MBOX_ERROR_INT_STATUS_TX_OVERFLOW_MASK, 869 error_int_status)) 870 ath10k_warn(ar, "tx overflow interrupt error\n"); 871 872 /* Clear the interrupt */ 873 irq_data->irq_proc_reg->error_int_status &= ~error_int_status; 874 875 /* set W1C value to clear the interrupt, this hits the register first */ 876 ret = ath10k_sdio_writesb32(ar, MBOX_ERROR_INT_STATUS_ADDRESS, 877 error_int_status); 878 if (ret) { 879 ath10k_warn(ar, "unable to write to error int status address: %d\n", 880 ret); 881 return ret; 882 } 883 884 return 0; 885 } 886 887 static int ath10k_sdio_mbox_proc_cpu_intr(struct ath10k *ar) 888 { 889 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 890 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 891 u8 cpu_int_status; 892 int ret; 893 894 mutex_lock(&irq_data->mtx); 895 cpu_int_status = irq_data->irq_proc_reg->cpu_int_status & 896 irq_data->irq_en_reg->cpu_int_status_en; 897 if (!cpu_int_status) { 898 ath10k_warn(ar, "CPU interrupt status is zero\n"); 899 ret = -EIO; 900 goto out; 901 } 902 903 /* Clear the interrupt */ 904 irq_data->irq_proc_reg->cpu_int_status &= ~cpu_int_status; 905 906 /* Set up the register transfer buffer to hit the register 4 times, 907 * this is done to make the access 4-byte aligned to mitigate issues 908 * with host bus interconnects that restrict bus transfer lengths to 909 * be a multiple of 4-bytes. 910 * 911 * Set W1C value to clear the interrupt, this hits the register first. 912 */ 913 ret = ath10k_sdio_writesb32(ar, MBOX_CPU_INT_STATUS_ADDRESS, 914 cpu_int_status); 915 if (ret) { 916 ath10k_warn(ar, "unable to write to cpu interrupt status address: %d\n", 917 ret); 918 goto out; 919 } 920 921 out: 922 mutex_unlock(&irq_data->mtx); 923 if (cpu_int_status & MBOX_CPU_STATUS_ENABLE_ASSERT_MASK) 924 ath10k_sdio_fw_crashed_dump(ar); 925 926 return ret; 927 } 928 929 static int ath10k_sdio_mbox_read_int_status(struct ath10k *ar, 930 u8 *host_int_status, 931 u32 *lookahead) 932 { 933 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 934 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 935 struct ath10k_sdio_irq_proc_regs *irq_proc_reg = irq_data->irq_proc_reg; 936 struct ath10k_sdio_irq_enable_regs *irq_en_reg = irq_data->irq_en_reg; 937 u8 htc_mbox = FIELD_PREP(ATH10K_HTC_MAILBOX_MASK, 1); 938 int ret; 939 940 mutex_lock(&irq_data->mtx); 941 942 *lookahead = 0; 943 *host_int_status = 0; 944 945 /* int_status_en is supposed to be non zero, otherwise interrupts 946 * shouldn't be enabled. There is however a short time frame during 947 * initialization between the irq register and int_status_en init 948 * where this can happen. 949 * We silently ignore this condition. 950 */ 951 if (!irq_en_reg->int_status_en) { 952 ret = 0; 953 goto out; 954 } 955 956 /* Read the first sizeof(struct ath10k_irq_proc_registers) 957 * bytes of the HTC register table. This 958 * will yield us the value of different int status 959 * registers and the lookahead registers. 960 */ 961 ret = ath10k_sdio_read(ar, MBOX_HOST_INT_STATUS_ADDRESS, 962 irq_proc_reg, sizeof(*irq_proc_reg)); 963 if (ret) { 964 ath10k_core_start_recovery(ar); 965 ath10k_warn(ar, "read int status fail, start recovery\n"); 966 goto out; 967 } 968 969 /* Update only those registers that are enabled */ 970 *host_int_status = irq_proc_reg->host_int_status & 971 irq_en_reg->int_status_en; 972 973 /* Look at mbox status */ 974 if (!(*host_int_status & htc_mbox)) { 975 *lookahead = 0; 976 ret = 0; 977 goto out; 978 } 979 980 /* Mask out pending mbox value, we use look ahead as 981 * the real flag for mbox processing. 982 */ 983 *host_int_status &= ~htc_mbox; 984 if (irq_proc_reg->rx_lookahead_valid & htc_mbox) { 985 *lookahead = le32_to_cpu( 986 irq_proc_reg->rx_lookahead[ATH10K_HTC_MAILBOX]); 987 if (!*lookahead) 988 ath10k_warn(ar, "sdio mbox lookahead is zero\n"); 989 } 990 991 out: 992 mutex_unlock(&irq_data->mtx); 993 return ret; 994 } 995 996 static int ath10k_sdio_mbox_proc_pending_irqs(struct ath10k *ar, 997 bool *done) 998 { 999 u8 host_int_status; 1000 u32 lookahead; 1001 int ret; 1002 1003 /* NOTE: HIF implementation guarantees that the context of this 1004 * call allows us to perform SYNCHRONOUS I/O, that is we can block, 1005 * sleep or call any API that can block or switch thread/task 1006 * contexts. This is a fully schedulable context. 1007 */ 1008 1009 ret = ath10k_sdio_mbox_read_int_status(ar, 1010 &host_int_status, 1011 &lookahead); 1012 if (ret) { 1013 *done = true; 1014 goto out; 1015 } 1016 1017 if (!host_int_status && !lookahead) { 1018 ret = 0; 1019 *done = true; 1020 goto out; 1021 } 1022 1023 if (lookahead) { 1024 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1025 "sdio pending mailbox msg lookahead 0x%08x\n", 1026 lookahead); 1027 1028 ret = ath10k_sdio_mbox_rxmsg_pending_handler(ar, 1029 lookahead, 1030 done); 1031 if (ret) 1032 goto out; 1033 } 1034 1035 /* now, handle the rest of the interrupts */ 1036 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1037 "sdio host_int_status 0x%x\n", host_int_status); 1038 1039 if (FIELD_GET(MBOX_HOST_INT_STATUS_CPU_MASK, host_int_status)) { 1040 /* CPU Interrupt */ 1041 ret = ath10k_sdio_mbox_proc_cpu_intr(ar); 1042 if (ret) 1043 goto out; 1044 } 1045 1046 if (FIELD_GET(MBOX_HOST_INT_STATUS_ERROR_MASK, host_int_status)) { 1047 /* Error Interrupt */ 1048 ret = ath10k_sdio_mbox_proc_err_intr(ar); 1049 if (ret) 1050 goto out; 1051 } 1052 1053 if (FIELD_GET(MBOX_HOST_INT_STATUS_COUNTER_MASK, host_int_status)) 1054 /* Counter Interrupt */ 1055 ret = ath10k_sdio_mbox_proc_counter_intr(ar); 1056 1057 ret = 0; 1058 1059 out: 1060 /* An optimization to bypass reading the IRQ status registers 1061 * unnecessarily which can re-wake the target, if upper layers 1062 * determine that we are in a low-throughput mode, we can rely on 1063 * taking another interrupt rather than re-checking the status 1064 * registers which can re-wake the target. 1065 * 1066 * NOTE : for host interfaces that makes use of detecting pending 1067 * mbox messages at hif can not use this optimization due to 1068 * possible side effects, SPI requires the host to drain all 1069 * messages from the mailbox before exiting the ISR routine. 1070 */ 1071 1072 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1073 "sdio pending irqs done %d status %d", 1074 *done, ret); 1075 1076 return ret; 1077 } 1078 1079 static void ath10k_sdio_set_mbox_info(struct ath10k *ar) 1080 { 1081 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1082 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1083 u16 device = ar_sdio->func->device, dev_id_base, dev_id_chiprev; 1084 1085 mbox_info->htc_addr = ATH10K_HIF_MBOX_BASE_ADDR; 1086 mbox_info->block_size = ATH10K_HIF_MBOX_BLOCK_SIZE; 1087 mbox_info->block_mask = ATH10K_HIF_MBOX_BLOCK_SIZE - 1; 1088 mbox_info->gmbox_addr = ATH10K_HIF_GMBOX_BASE_ADDR; 1089 mbox_info->gmbox_sz = ATH10K_HIF_GMBOX_WIDTH; 1090 1091 mbox_info->ext_info[0].htc_ext_addr = ATH10K_HIF_MBOX0_EXT_BASE_ADDR; 1092 1093 dev_id_base = (device & 0x0F00); 1094 dev_id_chiprev = (device & 0x00FF); 1095 switch (dev_id_base) { 1096 case (SDIO_DEVICE_ID_ATHEROS_AR6005 & 0x0F00): 1097 if (dev_id_chiprev < 4) 1098 mbox_info->ext_info[0].htc_ext_sz = 1099 ATH10K_HIF_MBOX0_EXT_WIDTH; 1100 else 1101 /* from QCA6174 2.0(0x504), the width has been extended 1102 * to 56K 1103 */ 1104 mbox_info->ext_info[0].htc_ext_sz = 1105 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1106 break; 1107 case (SDIO_DEVICE_ID_ATHEROS_QCA9377 & 0x0F00): 1108 mbox_info->ext_info[0].htc_ext_sz = 1109 ATH10K_HIF_MBOX0_EXT_WIDTH_ROME_2_0; 1110 break; 1111 default: 1112 mbox_info->ext_info[0].htc_ext_sz = 1113 ATH10K_HIF_MBOX0_EXT_WIDTH; 1114 } 1115 1116 mbox_info->ext_info[1].htc_ext_addr = 1117 mbox_info->ext_info[0].htc_ext_addr + 1118 mbox_info->ext_info[0].htc_ext_sz + 1119 ATH10K_HIF_MBOX_DUMMY_SPACE_SIZE; 1120 mbox_info->ext_info[1].htc_ext_sz = ATH10K_HIF_MBOX1_EXT_WIDTH; 1121 } 1122 1123 /* BMI functions */ 1124 1125 static int ath10k_sdio_bmi_credits(struct ath10k *ar) 1126 { 1127 u32 addr, cmd_credits; 1128 unsigned long timeout; 1129 int ret; 1130 1131 /* Read the counter register to get the command credits */ 1132 addr = MBOX_COUNT_DEC_ADDRESS + ATH10K_HIF_MBOX_NUM_MAX * 4; 1133 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1134 cmd_credits = 0; 1135 1136 while (time_before(jiffies, timeout) && !cmd_credits) { 1137 /* Hit the credit counter with a 4-byte access, the first byte 1138 * read will hit the counter and cause a decrement, while the 1139 * remaining 3 bytes has no effect. The rationale behind this 1140 * is to make all HIF accesses 4-byte aligned. 1141 */ 1142 ret = ath10k_sdio_read32(ar, addr, &cmd_credits); 1143 if (ret) { 1144 ath10k_warn(ar, 1145 "unable to decrement the command credit count register: %d\n", 1146 ret); 1147 return ret; 1148 } 1149 1150 /* The counter is only 8 bits. 1151 * Ignore anything in the upper 3 bytes 1152 */ 1153 cmd_credits &= 0xFF; 1154 } 1155 1156 if (!cmd_credits) { 1157 ath10k_warn(ar, "bmi communication timeout\n"); 1158 return -ETIMEDOUT; 1159 } 1160 1161 return 0; 1162 } 1163 1164 static int ath10k_sdio_bmi_get_rx_lookahead(struct ath10k *ar) 1165 { 1166 unsigned long timeout; 1167 u32 rx_word; 1168 int ret; 1169 1170 timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 1171 rx_word = 0; 1172 1173 while ((time_before(jiffies, timeout)) && !rx_word) { 1174 ret = ath10k_sdio_read32(ar, 1175 MBOX_HOST_INT_STATUS_ADDRESS, 1176 &rx_word); 1177 if (ret) { 1178 ath10k_warn(ar, "unable to read RX_LOOKAHEAD_VALID: %d\n", ret); 1179 return ret; 1180 } 1181 1182 /* all we really want is one bit */ 1183 rx_word &= 1; 1184 } 1185 1186 if (!rx_word) { 1187 ath10k_warn(ar, "bmi_recv_buf FIFO empty\n"); 1188 return -EINVAL; 1189 } 1190 1191 return ret; 1192 } 1193 1194 static int ath10k_sdio_bmi_exchange_msg(struct ath10k *ar, 1195 void *req, u32 req_len, 1196 void *resp, u32 *resp_len) 1197 { 1198 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1199 u32 addr; 1200 int ret; 1201 1202 if (req) { 1203 ret = ath10k_sdio_bmi_credits(ar); 1204 if (ret) 1205 return ret; 1206 1207 addr = ar_sdio->mbox_info.htc_addr; 1208 1209 memcpy(ar_sdio->bmi_buf, req, req_len); 1210 ret = ath10k_sdio_write(ar, addr, ar_sdio->bmi_buf, req_len); 1211 if (ret) { 1212 ath10k_warn(ar, 1213 "unable to send the bmi data to the device: %d\n", 1214 ret); 1215 return ret; 1216 } 1217 } 1218 1219 if (!resp || !resp_len) 1220 /* No response expected */ 1221 return 0; 1222 1223 /* During normal bootup, small reads may be required. 1224 * Rather than issue an HIF Read and then wait as the Target 1225 * adds successive bytes to the FIFO, we wait here until 1226 * we know that response data is available. 1227 * 1228 * This allows us to cleanly timeout on an unexpected 1229 * Target failure rather than risk problems at the HIF level. 1230 * In particular, this avoids SDIO timeouts and possibly garbage 1231 * data on some host controllers. And on an interconnect 1232 * such as Compact Flash (as well as some SDIO masters) which 1233 * does not provide any indication on data timeout, it avoids 1234 * a potential hang or garbage response. 1235 * 1236 * Synchronization is more difficult for reads larger than the 1237 * size of the MBOX FIFO (128B), because the Target is unable 1238 * to push the 129th byte of data until AFTER the Host posts an 1239 * HIF Read and removes some FIFO data. So for large reads the 1240 * Host proceeds to post an HIF Read BEFORE all the data is 1241 * actually available to read. Fortunately, large BMI reads do 1242 * not occur in practice -- they're supported for debug/development. 1243 * 1244 * So Host/Target BMI synchronization is divided into these cases: 1245 * CASE 1: length < 4 1246 * Should not happen 1247 * 1248 * CASE 2: 4 <= length <= 128 1249 * Wait for first 4 bytes to be in FIFO 1250 * If CONSERVATIVE_BMI_READ is enabled, also wait for 1251 * a BMI command credit, which indicates that the ENTIRE 1252 * response is available in the FIFO 1253 * 1254 * CASE 3: length > 128 1255 * Wait for the first 4 bytes to be in FIFO 1256 * 1257 * For most uses, a small timeout should be sufficient and we will 1258 * usually see a response quickly; but there may be some unusual 1259 * (debug) cases of BMI_EXECUTE where we want an larger timeout. 1260 * For now, we use an unbounded busy loop while waiting for 1261 * BMI_EXECUTE. 1262 * 1263 * If BMI_EXECUTE ever needs to support longer-latency execution, 1264 * especially in production, this code needs to be enhanced to sleep 1265 * and yield. Also note that BMI_COMMUNICATION_TIMEOUT is currently 1266 * a function of Host processor speed. 1267 */ 1268 ret = ath10k_sdio_bmi_get_rx_lookahead(ar); 1269 if (ret) 1270 return ret; 1271 1272 /* We always read from the start of the mbox address */ 1273 addr = ar_sdio->mbox_info.htc_addr; 1274 ret = ath10k_sdio_read(ar, addr, ar_sdio->bmi_buf, *resp_len); 1275 if (ret) { 1276 ath10k_warn(ar, 1277 "unable to read the bmi data from the device: %d\n", 1278 ret); 1279 return ret; 1280 } 1281 1282 memcpy(resp, ar_sdio->bmi_buf, *resp_len); 1283 1284 return 0; 1285 } 1286 1287 /* sdio async handling functions */ 1288 1289 static struct ath10k_sdio_bus_request 1290 *ath10k_sdio_alloc_busreq(struct ath10k *ar) 1291 { 1292 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1293 struct ath10k_sdio_bus_request *bus_req; 1294 1295 spin_lock_bh(&ar_sdio->lock); 1296 1297 if (list_empty(&ar_sdio->bus_req_freeq)) { 1298 bus_req = NULL; 1299 goto out; 1300 } 1301 1302 bus_req = list_first_entry(&ar_sdio->bus_req_freeq, 1303 struct ath10k_sdio_bus_request, list); 1304 list_del(&bus_req->list); 1305 1306 out: 1307 spin_unlock_bh(&ar_sdio->lock); 1308 return bus_req; 1309 } 1310 1311 static void ath10k_sdio_free_bus_req(struct ath10k *ar, 1312 struct ath10k_sdio_bus_request *bus_req) 1313 { 1314 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1315 1316 memset(bus_req, 0, sizeof(*bus_req)); 1317 1318 spin_lock_bh(&ar_sdio->lock); 1319 list_add_tail(&bus_req->list, &ar_sdio->bus_req_freeq); 1320 spin_unlock_bh(&ar_sdio->lock); 1321 } 1322 1323 static void __ath10k_sdio_write_async(struct ath10k *ar, 1324 struct ath10k_sdio_bus_request *req) 1325 { 1326 struct ath10k_htc_ep *ep; 1327 struct sk_buff *skb; 1328 int ret; 1329 1330 skb = req->skb; 1331 ret = ath10k_sdio_write(ar, req->address, skb->data, skb->len); 1332 if (ret) 1333 ath10k_warn(ar, "failed to write skb to 0x%x asynchronously: %d", 1334 req->address, ret); 1335 1336 if (req->htc_msg) { 1337 ep = &ar->htc.endpoint[req->eid]; 1338 ath10k_htc_notify_tx_completion(ep, skb); 1339 } else if (req->comp) { 1340 complete(req->comp); 1341 } 1342 1343 ath10k_sdio_free_bus_req(ar, req); 1344 } 1345 1346 /* To improve throughput use workqueue to deliver packets to HTC layer, 1347 * this way SDIO bus is utilised much better. 1348 */ 1349 static void ath10k_rx_indication_async_work(struct work_struct *work) 1350 { 1351 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1352 async_work_rx); 1353 struct ath10k *ar = ar_sdio->ar; 1354 struct ath10k_htc_ep *ep; 1355 struct ath10k_skb_rxcb *cb; 1356 struct sk_buff *skb; 1357 1358 while (true) { 1359 skb = skb_dequeue(&ar_sdio->rx_head); 1360 if (!skb) 1361 break; 1362 cb = ATH10K_SKB_RXCB(skb); 1363 ep = &ar->htc.endpoint[cb->eid]; 1364 ep->ep_ops.ep_rx_complete(ar, skb); 1365 } 1366 1367 if (test_bit(ATH10K_FLAG_CORE_REGISTERED, &ar->dev_flags)) { 1368 local_bh_disable(); 1369 napi_schedule(&ar->napi); 1370 local_bh_enable(); 1371 } 1372 } 1373 1374 static int ath10k_sdio_read_rtc_state(struct ath10k_sdio *ar_sdio, unsigned char *state) 1375 { 1376 struct ath10k *ar = ar_sdio->ar; 1377 unsigned char rtc_state = 0; 1378 int ret = 0; 1379 1380 rtc_state = sdio_f0_readb(ar_sdio->func, ATH10K_CIS_RTC_STATE_ADDR, &ret); 1381 if (ret) { 1382 ath10k_warn(ar, "failed to read rtc state: %d\n", ret); 1383 return ret; 1384 } 1385 1386 *state = rtc_state & 0x3; 1387 1388 return ret; 1389 } 1390 1391 static int ath10k_sdio_set_mbox_sleep(struct ath10k *ar, bool enable_sleep) 1392 { 1393 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1394 u32 val; 1395 int retry = ATH10K_CIS_READ_RETRY, ret = 0; 1396 unsigned char rtc_state = 0; 1397 1398 sdio_claim_host(ar_sdio->func); 1399 1400 ret = ath10k_sdio_read32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, &val); 1401 if (ret) { 1402 ath10k_warn(ar, "failed to read fifo/chip control register: %d\n", 1403 ret); 1404 goto release; 1405 } 1406 1407 if (enable_sleep) { 1408 val &= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_OFF; 1409 ar_sdio->mbox_state = SDIO_MBOX_SLEEP_STATE; 1410 } else { 1411 val |= ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL_DISABLE_SLEEP_ON; 1412 ar_sdio->mbox_state = SDIO_MBOX_AWAKE_STATE; 1413 } 1414 1415 ret = ath10k_sdio_write32(ar, ATH10K_FIFO_TIMEOUT_AND_CHIP_CONTROL, val); 1416 if (ret) { 1417 ath10k_warn(ar, "failed to write to FIFO_TIMEOUT_AND_CHIP_CONTROL: %d", 1418 ret); 1419 } 1420 1421 if (!enable_sleep) { 1422 do { 1423 udelay(ATH10K_CIS_READ_WAIT_4_RTC_CYCLE_IN_US); 1424 ret = ath10k_sdio_read_rtc_state(ar_sdio, &rtc_state); 1425 1426 if (ret) { 1427 ath10k_warn(ar, "failed to disable mbox sleep: %d", ret); 1428 break; 1429 } 1430 1431 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio read rtc state: %d\n", 1432 rtc_state); 1433 1434 if (rtc_state == ATH10K_CIS_RTC_STATE_ON) 1435 break; 1436 1437 udelay(ATH10K_CIS_XTAL_SETTLE_DURATION_IN_US); 1438 retry--; 1439 } while (retry > 0); 1440 } 1441 1442 release: 1443 sdio_release_host(ar_sdio->func); 1444 1445 return ret; 1446 } 1447 1448 static void ath10k_sdio_sleep_timer_handler(struct timer_list *t) 1449 { 1450 struct ath10k_sdio *ar_sdio = timer_container_of(ar_sdio, t, 1451 sleep_timer); 1452 1453 ar_sdio->mbox_state = SDIO_MBOX_REQUEST_TO_SLEEP_STATE; 1454 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1455 } 1456 1457 static void ath10k_sdio_write_async_work(struct work_struct *work) 1458 { 1459 struct ath10k_sdio *ar_sdio = container_of(work, struct ath10k_sdio, 1460 wr_async_work); 1461 struct ath10k *ar = ar_sdio->ar; 1462 struct ath10k_sdio_bus_request *req, *tmp_req; 1463 struct ath10k_mbox_info *mbox_info = &ar_sdio->mbox_info; 1464 1465 spin_lock_bh(&ar_sdio->wr_async_lock); 1466 1467 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1468 list_del(&req->list); 1469 spin_unlock_bh(&ar_sdio->wr_async_lock); 1470 1471 if (req->address >= mbox_info->htc_addr && 1472 ar_sdio->mbox_state == SDIO_MBOX_SLEEP_STATE) { 1473 ath10k_sdio_set_mbox_sleep(ar, false); 1474 mod_timer(&ar_sdio->sleep_timer, jiffies + 1475 msecs_to_jiffies(ATH10K_MIN_SLEEP_INACTIVITY_TIME_MS)); 1476 } 1477 1478 __ath10k_sdio_write_async(ar, req); 1479 spin_lock_bh(&ar_sdio->wr_async_lock); 1480 } 1481 1482 spin_unlock_bh(&ar_sdio->wr_async_lock); 1483 1484 if (ar_sdio->mbox_state == SDIO_MBOX_REQUEST_TO_SLEEP_STATE) 1485 ath10k_sdio_set_mbox_sleep(ar, true); 1486 } 1487 1488 static int ath10k_sdio_prep_async_req(struct ath10k *ar, u32 addr, 1489 struct sk_buff *skb, 1490 struct completion *comp, 1491 bool htc_msg, enum ath10k_htc_ep_id eid) 1492 { 1493 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1494 struct ath10k_sdio_bus_request *bus_req; 1495 1496 /* Allocate a bus request for the message and queue it on the 1497 * SDIO workqueue. 1498 */ 1499 bus_req = ath10k_sdio_alloc_busreq(ar); 1500 if (!bus_req) { 1501 ath10k_warn(ar, 1502 "unable to allocate bus request for async request\n"); 1503 return -ENOMEM; 1504 } 1505 1506 bus_req->skb = skb; 1507 bus_req->eid = eid; 1508 bus_req->address = addr; 1509 bus_req->htc_msg = htc_msg; 1510 bus_req->comp = comp; 1511 1512 spin_lock_bh(&ar_sdio->wr_async_lock); 1513 list_add_tail(&bus_req->list, &ar_sdio->wr_asyncq); 1514 spin_unlock_bh(&ar_sdio->wr_async_lock); 1515 1516 return 0; 1517 } 1518 1519 /* IRQ handler */ 1520 1521 static void ath10k_sdio_irq_handler(struct sdio_func *func) 1522 { 1523 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 1524 struct ath10k *ar = ar_sdio->ar; 1525 unsigned long timeout; 1526 bool done = false; 1527 int ret; 1528 1529 /* Release the host during interrupts so we can pick it back up when 1530 * we process commands. 1531 */ 1532 sdio_release_host(ar_sdio->func); 1533 1534 timeout = jiffies + ATH10K_SDIO_HIF_COMMUNICATION_TIMEOUT_HZ; 1535 do { 1536 ret = ath10k_sdio_mbox_proc_pending_irqs(ar, &done); 1537 if (ret) 1538 break; 1539 } while (time_before(jiffies, timeout) && !done); 1540 1541 ath10k_mac_tx_push_pending(ar); 1542 1543 sdio_claim_host(ar_sdio->func); 1544 1545 if (ret && ret != -ECANCELED) 1546 ath10k_warn(ar, "failed to process pending SDIO interrupts: %d\n", 1547 ret); 1548 } 1549 1550 /* sdio HIF functions */ 1551 1552 static int ath10k_sdio_disable_intrs(struct ath10k *ar) 1553 { 1554 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1555 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1556 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1557 int ret; 1558 1559 mutex_lock(&irq_data->mtx); 1560 1561 memset(regs, 0, sizeof(*regs)); 1562 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1563 ®s->int_status_en, sizeof(*regs)); 1564 if (ret) 1565 ath10k_warn(ar, "unable to disable sdio interrupts: %d\n", ret); 1566 1567 mutex_unlock(&irq_data->mtx); 1568 1569 return ret; 1570 } 1571 1572 static int ath10k_sdio_hif_power_up(struct ath10k *ar, 1573 enum ath10k_firmware_mode fw_mode) 1574 { 1575 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1576 struct sdio_func *func = ar_sdio->func; 1577 int ret; 1578 1579 if (!ar_sdio->is_disabled) 1580 return 0; 1581 1582 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power on\n"); 1583 1584 ret = ath10k_sdio_config(ar); 1585 if (ret) { 1586 ath10k_err(ar, "failed to config sdio: %d\n", ret); 1587 return ret; 1588 } 1589 1590 sdio_claim_host(func); 1591 1592 ret = sdio_enable_func(func); 1593 if (ret) { 1594 ath10k_warn(ar, "unable to enable sdio function: %d)\n", ret); 1595 sdio_release_host(func); 1596 return ret; 1597 } 1598 1599 sdio_release_host(func); 1600 1601 /* Wait for hardware to initialise. It should take a lot less than 1602 * 20 ms but let's be conservative here. 1603 */ 1604 msleep(20); 1605 1606 ar_sdio->is_disabled = false; 1607 1608 ret = ath10k_sdio_disable_intrs(ar); 1609 if (ret) 1610 return ret; 1611 1612 return 0; 1613 } 1614 1615 static void ath10k_sdio_hif_power_down(struct ath10k *ar) 1616 { 1617 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1618 int ret; 1619 1620 if (ar_sdio->is_disabled) 1621 return; 1622 1623 ath10k_dbg(ar, ATH10K_DBG_BOOT, "sdio power off\n"); 1624 1625 timer_delete_sync(&ar_sdio->sleep_timer); 1626 ath10k_sdio_set_mbox_sleep(ar, true); 1627 1628 /* Disable the card */ 1629 sdio_claim_host(ar_sdio->func); 1630 1631 ret = sdio_disable_func(ar_sdio->func); 1632 if (ret) { 1633 ath10k_warn(ar, "unable to disable sdio function: %d\n", ret); 1634 sdio_release_host(ar_sdio->func); 1635 return; 1636 } 1637 1638 ret = mmc_hw_reset(ar_sdio->func->card); 1639 if (ret) 1640 ath10k_warn(ar, "unable to reset sdio: %d\n", ret); 1641 1642 sdio_release_host(ar_sdio->func); 1643 1644 ar_sdio->is_disabled = true; 1645 } 1646 1647 static int ath10k_sdio_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1648 struct ath10k_hif_sg_item *items, int n_items) 1649 { 1650 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1651 enum ath10k_htc_ep_id eid; 1652 struct sk_buff *skb; 1653 int ret, i; 1654 1655 eid = pipe_id_to_eid(pipe_id); 1656 1657 for (i = 0; i < n_items; i++) { 1658 size_t padded_len; 1659 u32 address; 1660 1661 skb = items[i].transfer_context; 1662 padded_len = ath10k_sdio_calc_txrx_padded_len(ar_sdio, 1663 skb->len); 1664 skb_trim(skb, padded_len); 1665 1666 /* Write TX data to the end of the mbox address space */ 1667 address = ar_sdio->mbox_addr[eid] + ar_sdio->mbox_size[eid] - 1668 skb->len; 1669 ret = ath10k_sdio_prep_async_req(ar, address, skb, 1670 NULL, true, eid); 1671 if (ret) 1672 return ret; 1673 } 1674 1675 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1676 1677 return 0; 1678 } 1679 1680 static int ath10k_sdio_enable_intrs(struct ath10k *ar) 1681 { 1682 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1683 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1684 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1685 int ret; 1686 1687 mutex_lock(&irq_data->mtx); 1688 1689 /* Enable all but CPU interrupts */ 1690 regs->int_status_en = FIELD_PREP(MBOX_INT_STATUS_ENABLE_ERROR_MASK, 1) | 1691 FIELD_PREP(MBOX_INT_STATUS_ENABLE_CPU_MASK, 1) | 1692 FIELD_PREP(MBOX_INT_STATUS_ENABLE_COUNTER_MASK, 1); 1693 1694 /* NOTE: There are some cases where HIF can do detection of 1695 * pending mbox messages which is disabled now. 1696 */ 1697 regs->int_status_en |= 1698 FIELD_PREP(MBOX_INT_STATUS_ENABLE_MBOX_DATA_MASK, 1); 1699 1700 /* Set up the CPU Interrupt Status Register, enable CPU sourced interrupt #0 1701 * #0 is used for report assertion from target 1702 */ 1703 regs->cpu_int_status_en = FIELD_PREP(MBOX_CPU_STATUS_ENABLE_ASSERT_MASK, 1); 1704 1705 /* Set up the Error Interrupt status Register */ 1706 regs->err_int_status_en = 1707 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_RX_UNDERFLOW_MASK, 1) | 1708 FIELD_PREP(MBOX_ERROR_STATUS_ENABLE_TX_OVERFLOW_MASK, 1); 1709 1710 /* Enable Counter interrupt status register to get fatal errors for 1711 * debugging. 1712 */ 1713 regs->cntr_int_status_en = 1714 FIELD_PREP(MBOX_COUNTER_INT_STATUS_ENABLE_BIT_MASK, 1715 ATH10K_SDIO_TARGET_DEBUG_INTR_MASK); 1716 1717 ret = ath10k_sdio_write(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1718 ®s->int_status_en, sizeof(*regs)); 1719 if (ret) 1720 ath10k_warn(ar, 1721 "failed to update mbox interrupt status register : %d\n", 1722 ret); 1723 1724 mutex_unlock(&irq_data->mtx); 1725 return ret; 1726 } 1727 1728 /* HIF diagnostics */ 1729 1730 static int ath10k_sdio_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1731 size_t buf_len) 1732 { 1733 int ret; 1734 void *mem; 1735 1736 mem = kzalloc(buf_len, GFP_KERNEL); 1737 if (!mem) 1738 return -ENOMEM; 1739 1740 /* set window register to start read cycle */ 1741 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_READ_ADDR_ADDRESS, address); 1742 if (ret) { 1743 ath10k_warn(ar, "failed to set mbox window read address: %d", ret); 1744 goto out; 1745 } 1746 1747 /* read the data */ 1748 ret = ath10k_sdio_read(ar, MBOX_WINDOW_DATA_ADDRESS, mem, buf_len); 1749 if (ret) { 1750 ath10k_warn(ar, "failed to read from mbox window data address: %d\n", 1751 ret); 1752 goto out; 1753 } 1754 1755 memcpy(buf, mem, buf_len); 1756 1757 out: 1758 kfree(mem); 1759 1760 return ret; 1761 } 1762 1763 static int ath10k_sdio_diag_read32(struct ath10k *ar, u32 address, 1764 u32 *value) 1765 { 1766 __le32 *val; 1767 int ret; 1768 1769 val = kzalloc(sizeof(*val), GFP_KERNEL); 1770 if (!val) 1771 return -ENOMEM; 1772 1773 ret = ath10k_sdio_hif_diag_read(ar, address, val, sizeof(*val)); 1774 if (ret) 1775 goto out; 1776 1777 *value = __le32_to_cpu(*val); 1778 1779 out: 1780 kfree(val); 1781 1782 return ret; 1783 } 1784 1785 static int ath10k_sdio_hif_diag_write_mem(struct ath10k *ar, u32 address, 1786 const void *data, int nbytes) 1787 { 1788 int ret; 1789 1790 /* set write data */ 1791 ret = ath10k_sdio_write(ar, MBOX_WINDOW_DATA_ADDRESS, data, nbytes); 1792 if (ret) { 1793 ath10k_warn(ar, 1794 "failed to write 0x%p to mbox window data address: %d\n", 1795 data, ret); 1796 return ret; 1797 } 1798 1799 /* set window register, which starts the write cycle */ 1800 ret = ath10k_sdio_write32(ar, MBOX_WINDOW_WRITE_ADDR_ADDRESS, address); 1801 if (ret) { 1802 ath10k_warn(ar, "failed to set mbox window write address: %d", ret); 1803 return ret; 1804 } 1805 1806 return 0; 1807 } 1808 1809 static int ath10k_sdio_hif_start_post(struct ath10k *ar) 1810 { 1811 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1812 u32 addr, val; 1813 int ret = 0; 1814 1815 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1816 1817 ret = ath10k_sdio_diag_read32(ar, addr, &val); 1818 if (ret) { 1819 ath10k_warn(ar, "unable to read hi_acs_flags : %d\n", ret); 1820 return ret; 1821 } 1822 1823 if (val & HI_ACS_FLAGS_SDIO_SWAP_MAILBOX_FW_ACK) { 1824 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1825 "sdio mailbox swap service enabled\n"); 1826 ar_sdio->swap_mbox = true; 1827 } else { 1828 ath10k_dbg(ar, ATH10K_DBG_SDIO, 1829 "sdio mailbox swap service disabled\n"); 1830 ar_sdio->swap_mbox = false; 1831 } 1832 1833 ath10k_sdio_set_mbox_sleep(ar, true); 1834 1835 return 0; 1836 } 1837 1838 static int ath10k_sdio_get_htt_tx_complete(struct ath10k *ar) 1839 { 1840 u32 addr, val; 1841 int ret; 1842 1843 addr = host_interest_item_address(HI_ITEM(hi_acs_flags)); 1844 1845 ret = ath10k_sdio_diag_read32(ar, addr, &val); 1846 if (ret) { 1847 ath10k_warn(ar, 1848 "unable to read hi_acs_flags for htt tx complete: %d\n", ret); 1849 return ret; 1850 } 1851 1852 ret = (val & HI_ACS_FLAGS_SDIO_REDUCE_TX_COMPL_FW_ACK); 1853 1854 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio reduce tx complete fw%sack\n", 1855 ret ? " " : " not "); 1856 1857 return ret; 1858 } 1859 1860 /* HIF start/stop */ 1861 1862 static int ath10k_sdio_hif_start(struct ath10k *ar) 1863 { 1864 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1865 int ret; 1866 1867 ath10k_core_napi_enable(ar); 1868 1869 /* Sleep 20 ms before HIF interrupts are disabled. 1870 * This will give target plenty of time to process the BMI done 1871 * request before interrupts are disabled. 1872 */ 1873 msleep(20); 1874 ret = ath10k_sdio_disable_intrs(ar); 1875 if (ret) 1876 return ret; 1877 1878 /* eid 0 always uses the lower part of the extended mailbox address 1879 * space (ext_info[0].htc_ext_addr). 1880 */ 1881 ar_sdio->mbox_addr[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 1882 ar_sdio->mbox_size[0] = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 1883 1884 sdio_claim_host(ar_sdio->func); 1885 1886 /* Register the isr */ 1887 ret = sdio_claim_irq(ar_sdio->func, ath10k_sdio_irq_handler); 1888 if (ret) { 1889 ath10k_warn(ar, "failed to claim sdio interrupt: %d\n", ret); 1890 sdio_release_host(ar_sdio->func); 1891 return ret; 1892 } 1893 1894 sdio_release_host(ar_sdio->func); 1895 1896 ret = ath10k_sdio_enable_intrs(ar); 1897 if (ret) 1898 ath10k_warn(ar, "failed to enable sdio interrupts: %d\n", ret); 1899 1900 /* Enable sleep and then disable it again */ 1901 ret = ath10k_sdio_set_mbox_sleep(ar, true); 1902 if (ret) 1903 return ret; 1904 1905 /* Wait for 20ms for the written value to take effect */ 1906 msleep(20); 1907 1908 ret = ath10k_sdio_set_mbox_sleep(ar, false); 1909 if (ret) 1910 return ret; 1911 1912 return 0; 1913 } 1914 1915 #define SDIO_IRQ_DISABLE_TIMEOUT_HZ (3 * HZ) 1916 1917 static void ath10k_sdio_irq_disable(struct ath10k *ar) 1918 { 1919 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1920 struct ath10k_sdio_irq_data *irq_data = &ar_sdio->irq_data; 1921 struct ath10k_sdio_irq_enable_regs *regs = irq_data->irq_en_reg; 1922 struct sk_buff *skb; 1923 struct completion irqs_disabled_comp; 1924 int ret; 1925 1926 skb = dev_alloc_skb(sizeof(*regs)); 1927 if (!skb) 1928 return; 1929 1930 mutex_lock(&irq_data->mtx); 1931 1932 memset(regs, 0, sizeof(*regs)); /* disable all interrupts */ 1933 memcpy(skb->data, regs, sizeof(*regs)); 1934 skb_put(skb, sizeof(*regs)); 1935 1936 mutex_unlock(&irq_data->mtx); 1937 1938 init_completion(&irqs_disabled_comp); 1939 ret = ath10k_sdio_prep_async_req(ar, MBOX_INT_STATUS_ENABLE_ADDRESS, 1940 skb, &irqs_disabled_comp, false, 0); 1941 if (ret) 1942 goto out; 1943 1944 queue_work(ar_sdio->workqueue, &ar_sdio->wr_async_work); 1945 1946 /* Wait for the completion of the IRQ disable request. 1947 * If there is a timeout we will try to disable irq's anyway. 1948 */ 1949 ret = wait_for_completion_timeout(&irqs_disabled_comp, 1950 SDIO_IRQ_DISABLE_TIMEOUT_HZ); 1951 if (!ret) 1952 ath10k_warn(ar, "sdio irq disable request timed out\n"); 1953 1954 sdio_claim_host(ar_sdio->func); 1955 1956 ret = sdio_release_irq(ar_sdio->func); 1957 if (ret) 1958 ath10k_warn(ar, "failed to release sdio interrupt: %d\n", ret); 1959 1960 sdio_release_host(ar_sdio->func); 1961 1962 out: 1963 kfree_skb(skb); 1964 } 1965 1966 static void ath10k_sdio_hif_stop(struct ath10k *ar) 1967 { 1968 struct ath10k_sdio_bus_request *req, *tmp_req; 1969 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 1970 struct sk_buff *skb; 1971 1972 ath10k_sdio_irq_disable(ar); 1973 1974 cancel_work_sync(&ar_sdio->async_work_rx); 1975 1976 while ((skb = skb_dequeue(&ar_sdio->rx_head))) 1977 dev_kfree_skb_any(skb); 1978 1979 cancel_work_sync(&ar_sdio->wr_async_work); 1980 1981 spin_lock_bh(&ar_sdio->wr_async_lock); 1982 1983 /* Free all bus requests that have not been handled */ 1984 list_for_each_entry_safe(req, tmp_req, &ar_sdio->wr_asyncq, list) { 1985 struct ath10k_htc_ep *ep; 1986 1987 list_del(&req->list); 1988 1989 if (req->htc_msg) { 1990 ep = &ar->htc.endpoint[req->eid]; 1991 ath10k_htc_notify_tx_completion(ep, req->skb); 1992 } else if (req->skb) { 1993 kfree_skb(req->skb); 1994 } 1995 ath10k_sdio_free_bus_req(ar, req); 1996 } 1997 1998 spin_unlock_bh(&ar_sdio->wr_async_lock); 1999 2000 ath10k_core_napi_sync_disable(ar); 2001 } 2002 2003 #ifdef CONFIG_PM 2004 2005 static int ath10k_sdio_hif_suspend(struct ath10k *ar) 2006 { 2007 return 0; 2008 } 2009 2010 static int ath10k_sdio_hif_resume(struct ath10k *ar) 2011 { 2012 switch (ar->state) { 2013 case ATH10K_STATE_OFF: 2014 ath10k_dbg(ar, ATH10K_DBG_SDIO, 2015 "sdio resume configuring sdio\n"); 2016 2017 /* need to set sdio settings after power is cut from sdio */ 2018 ath10k_sdio_config(ar); 2019 break; 2020 2021 case ATH10K_STATE_ON: 2022 default: 2023 break; 2024 } 2025 2026 return 0; 2027 } 2028 #endif 2029 2030 static int ath10k_sdio_hif_map_service_to_pipe(struct ath10k *ar, 2031 u16 service_id, 2032 u8 *ul_pipe, u8 *dl_pipe) 2033 { 2034 struct ath10k_sdio *ar_sdio = ath10k_sdio_priv(ar); 2035 struct ath10k_htc *htc = &ar->htc; 2036 u32 htt_addr, wmi_addr, htt_mbox_size, wmi_mbox_size; 2037 enum ath10k_htc_ep_id eid; 2038 bool ep_found = false; 2039 int i; 2040 2041 /* For sdio, we are interested in the mapping between eid 2042 * and pipeid rather than service_id to pipe_id. 2043 * First we find out which eid has been allocated to the 2044 * service... 2045 */ 2046 for (i = 0; i < ATH10K_HTC_EP_COUNT; i++) { 2047 if (htc->endpoint[i].service_id == service_id) { 2048 eid = htc->endpoint[i].eid; 2049 ep_found = true; 2050 break; 2051 } 2052 } 2053 2054 if (!ep_found) 2055 return -EINVAL; 2056 2057 /* Then we create the simplest mapping possible between pipeid 2058 * and eid 2059 */ 2060 *ul_pipe = *dl_pipe = (u8)eid; 2061 2062 /* Normally, HTT will use the upper part of the extended 2063 * mailbox address space (ext_info[1].htc_ext_addr) and WMI ctrl 2064 * the lower part (ext_info[0].htc_ext_addr). 2065 * If fw wants swapping of mailbox addresses, the opposite is true. 2066 */ 2067 if (ar_sdio->swap_mbox) { 2068 htt_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 2069 wmi_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 2070 htt_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 2071 wmi_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 2072 } else { 2073 htt_addr = ar_sdio->mbox_info.ext_info[1].htc_ext_addr; 2074 wmi_addr = ar_sdio->mbox_info.ext_info[0].htc_ext_addr; 2075 htt_mbox_size = ar_sdio->mbox_info.ext_info[1].htc_ext_sz; 2076 wmi_mbox_size = ar_sdio->mbox_info.ext_info[0].htc_ext_sz; 2077 } 2078 2079 switch (service_id) { 2080 case ATH10K_HTC_SVC_ID_RSVD_CTRL: 2081 /* HTC ctrl ep mbox address has already been setup in 2082 * ath10k_sdio_hif_start 2083 */ 2084 break; 2085 case ATH10K_HTC_SVC_ID_WMI_CONTROL: 2086 ar_sdio->mbox_addr[eid] = wmi_addr; 2087 ar_sdio->mbox_size[eid] = wmi_mbox_size; 2088 ath10k_dbg(ar, ATH10K_DBG_SDIO, 2089 "sdio wmi ctrl mbox_addr 0x%x mbox_size %d\n", 2090 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 2091 break; 2092 case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: 2093 ar_sdio->mbox_addr[eid] = htt_addr; 2094 ar_sdio->mbox_size[eid] = htt_mbox_size; 2095 ath10k_dbg(ar, ATH10K_DBG_SDIO, 2096 "sdio htt data mbox_addr 0x%x mbox_size %d\n", 2097 ar_sdio->mbox_addr[eid], ar_sdio->mbox_size[eid]); 2098 break; 2099 default: 2100 ath10k_warn(ar, "unsupported HTC service id: %d\n", 2101 service_id); 2102 return -EINVAL; 2103 } 2104 2105 return 0; 2106 } 2107 2108 static void ath10k_sdio_hif_get_default_pipe(struct ath10k *ar, 2109 u8 *ul_pipe, u8 *dl_pipe) 2110 { 2111 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hif get default pipe\n"); 2112 2113 /* HTC ctrl ep (SVC id 1) always has eid (and pipe_id in our 2114 * case) == 0 2115 */ 2116 *ul_pipe = 0; 2117 *dl_pipe = 0; 2118 } 2119 2120 static const struct ath10k_hif_ops ath10k_sdio_hif_ops = { 2121 .tx_sg = ath10k_sdio_hif_tx_sg, 2122 .diag_read = ath10k_sdio_hif_diag_read, 2123 .diag_write = ath10k_sdio_hif_diag_write_mem, 2124 .exchange_bmi_msg = ath10k_sdio_bmi_exchange_msg, 2125 .start = ath10k_sdio_hif_start, 2126 .stop = ath10k_sdio_hif_stop, 2127 .start_post = ath10k_sdio_hif_start_post, 2128 .get_htt_tx_complete = ath10k_sdio_get_htt_tx_complete, 2129 .map_service_to_pipe = ath10k_sdio_hif_map_service_to_pipe, 2130 .get_default_pipe = ath10k_sdio_hif_get_default_pipe, 2131 .power_up = ath10k_sdio_hif_power_up, 2132 .power_down = ath10k_sdio_hif_power_down, 2133 #ifdef CONFIG_PM 2134 .suspend = ath10k_sdio_hif_suspend, 2135 .resume = ath10k_sdio_hif_resume, 2136 #endif 2137 }; 2138 2139 #ifdef CONFIG_PM_SLEEP 2140 2141 /* Empty handlers so that mmc subsystem doesn't remove us entirely during 2142 * suspend. We instead follow cfg80211 suspend/resume handlers. 2143 */ 2144 static int ath10k_sdio_pm_suspend(struct device *device) 2145 { 2146 struct sdio_func *func = dev_to_sdio_func(device); 2147 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2148 struct ath10k *ar = ar_sdio->ar; 2149 mmc_pm_flag_t pm_flag, pm_caps; 2150 int ret; 2151 2152 if (!device_may_wakeup(ar->dev)) 2153 return 0; 2154 2155 ath10k_sdio_set_mbox_sleep(ar, true); 2156 2157 pm_flag = MMC_PM_KEEP_POWER; 2158 2159 ret = sdio_set_host_pm_flags(func, pm_flag); 2160 if (ret) { 2161 pm_caps = sdio_get_host_pm_caps(func); 2162 ath10k_warn(ar, "failed to set sdio host pm flags (0x%x, 0x%x): %d\n", 2163 pm_flag, pm_caps, ret); 2164 return ret; 2165 } 2166 2167 return ret; 2168 } 2169 2170 static int ath10k_sdio_pm_resume(struct device *device) 2171 { 2172 return 0; 2173 } 2174 2175 static SIMPLE_DEV_PM_OPS(ath10k_sdio_pm_ops, ath10k_sdio_pm_suspend, 2176 ath10k_sdio_pm_resume); 2177 2178 #define ATH10K_SDIO_PM_OPS (&ath10k_sdio_pm_ops) 2179 2180 #else 2181 2182 #define ATH10K_SDIO_PM_OPS NULL 2183 2184 #endif /* CONFIG_PM_SLEEP */ 2185 2186 static int ath10k_sdio_napi_poll(struct napi_struct *ctx, int budget) 2187 { 2188 struct ath10k *ar = container_of(ctx, struct ath10k, napi); 2189 int done; 2190 2191 done = ath10k_htt_rx_hl_indication(ar, budget); 2192 ath10k_dbg(ar, ATH10K_DBG_SDIO, "napi poll: done: %d, budget:%d\n", done, budget); 2193 2194 if (done < budget) 2195 napi_complete_done(ctx, done); 2196 2197 return done; 2198 } 2199 2200 static int ath10k_sdio_read_host_interest_value(struct ath10k *ar, 2201 u32 item_offset, 2202 u32 *val) 2203 { 2204 u32 addr; 2205 int ret; 2206 2207 addr = host_interest_item_address(item_offset); 2208 2209 ret = ath10k_sdio_diag_read32(ar, addr, val); 2210 2211 if (ret) 2212 ath10k_warn(ar, "unable to read host interest offset %d value\n", 2213 item_offset); 2214 2215 return ret; 2216 } 2217 2218 static int ath10k_sdio_read_mem(struct ath10k *ar, u32 address, void *buf, 2219 u32 buf_len) 2220 { 2221 u32 val; 2222 int i, ret; 2223 2224 for (i = 0; i < buf_len; i += 4) { 2225 ret = ath10k_sdio_diag_read32(ar, address + i, &val); 2226 if (ret) { 2227 ath10k_warn(ar, "unable to read mem %d value\n", address + i); 2228 break; 2229 } 2230 memcpy(buf + i, &val, 4); 2231 } 2232 2233 return ret; 2234 } 2235 2236 static bool ath10k_sdio_is_fast_dump_supported(struct ath10k *ar) 2237 { 2238 u32 param; 2239 2240 ath10k_sdio_read_host_interest_value(ar, HI_ITEM(hi_option_flag2), ¶m); 2241 2242 ath10k_dbg(ar, ATH10K_DBG_SDIO, "sdio hi_option_flag2 %x\n", param); 2243 2244 return !!(param & HI_OPTION_SDIO_CRASH_DUMP_ENHANCEMENT_FW); 2245 } 2246 2247 static void ath10k_sdio_dump_registers(struct ath10k *ar, 2248 struct ath10k_fw_crash_data *crash_data, 2249 bool fast_dump) 2250 { 2251 u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; 2252 int i, ret; 2253 u32 reg_dump_area; 2254 2255 ret = ath10k_sdio_read_host_interest_value(ar, HI_ITEM(hi_failure_state), 2256 ®_dump_area); 2257 if (ret) { 2258 ath10k_warn(ar, "failed to read firmware dump area: %d\n", ret); 2259 return; 2260 } 2261 2262 if (fast_dump) 2263 ret = ath10k_bmi_read_memory(ar, reg_dump_area, reg_dump_values, 2264 sizeof(reg_dump_values)); 2265 else 2266 ret = ath10k_sdio_read_mem(ar, reg_dump_area, reg_dump_values, 2267 sizeof(reg_dump_values)); 2268 2269 if (ret) { 2270 ath10k_warn(ar, "failed to read firmware dump value: %d\n", ret); 2271 return; 2272 } 2273 2274 ath10k_err(ar, "firmware register dump:\n"); 2275 for (i = 0; i < ARRAY_SIZE(reg_dump_values); i += 4) 2276 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", 2277 i, 2278 reg_dump_values[i], 2279 reg_dump_values[i + 1], 2280 reg_dump_values[i + 2], 2281 reg_dump_values[i + 3]); 2282 2283 if (!crash_data) 2284 return; 2285 2286 for (i = 0; i < ARRAY_SIZE(reg_dump_values); i++) 2287 crash_data->registers[i] = __cpu_to_le32(reg_dump_values[i]); 2288 } 2289 2290 static int ath10k_sdio_dump_memory_section(struct ath10k *ar, 2291 const struct ath10k_mem_region *mem_region, 2292 u8 *buf, size_t buf_len) 2293 { 2294 const struct ath10k_mem_section *cur_section, *next_section; 2295 unsigned int count, section_size, skip_size; 2296 int ret, i, j; 2297 2298 if (!mem_region || !buf) 2299 return 0; 2300 2301 cur_section = &mem_region->section_table.sections[0]; 2302 2303 if (mem_region->start > cur_section->start) { 2304 ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n", 2305 mem_region->start, cur_section->start); 2306 return 0; 2307 } 2308 2309 skip_size = cur_section->start - mem_region->start; 2310 2311 /* fill the gap between the first register section and register 2312 * start address 2313 */ 2314 for (i = 0; i < skip_size; i++) { 2315 *buf = ATH10K_MAGIC_NOT_COPIED; 2316 buf++; 2317 } 2318 2319 count = 0; 2320 i = 0; 2321 for (; cur_section; cur_section = next_section) { 2322 section_size = cur_section->end - cur_section->start; 2323 2324 if (section_size <= 0) { 2325 ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n", 2326 cur_section->start, 2327 cur_section->end); 2328 break; 2329 } 2330 2331 if (++i == mem_region->section_table.size) { 2332 /* last section */ 2333 next_section = NULL; 2334 skip_size = 0; 2335 } else { 2336 next_section = cur_section + 1; 2337 2338 if (cur_section->end > next_section->start) { 2339 ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n", 2340 next_section->start, 2341 cur_section->end); 2342 break; 2343 } 2344 2345 skip_size = next_section->start - cur_section->end; 2346 } 2347 2348 if (buf_len < (skip_size + section_size)) { 2349 ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len); 2350 break; 2351 } 2352 2353 buf_len -= skip_size + section_size; 2354 2355 /* read section to dest memory */ 2356 ret = ath10k_sdio_read_mem(ar, cur_section->start, 2357 buf, section_size); 2358 if (ret) { 2359 ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n", 2360 cur_section->start, ret); 2361 break; 2362 } 2363 2364 buf += section_size; 2365 count += section_size; 2366 2367 /* fill in the gap between this section and the next */ 2368 for (j = 0; j < skip_size; j++) { 2369 *buf = ATH10K_MAGIC_NOT_COPIED; 2370 buf++; 2371 } 2372 2373 count += skip_size; 2374 } 2375 2376 return count; 2377 } 2378 2379 /* if an error happened returns < 0, otherwise the length */ 2380 static int ath10k_sdio_dump_memory_generic(struct ath10k *ar, 2381 const struct ath10k_mem_region *current_region, 2382 u8 *buf, 2383 bool fast_dump) 2384 { 2385 int ret; 2386 2387 if (current_region->section_table.size > 0) 2388 /* Copy each section individually. */ 2389 return ath10k_sdio_dump_memory_section(ar, 2390 current_region, 2391 buf, 2392 current_region->len); 2393 2394 /* No individual memory sections defined so we can 2395 * copy the entire memory region. 2396 */ 2397 if (fast_dump) 2398 ret = ath10k_bmi_read_memory(ar, 2399 current_region->start, 2400 buf, 2401 current_region->len); 2402 else 2403 ret = ath10k_sdio_read_mem(ar, 2404 current_region->start, 2405 buf, 2406 current_region->len); 2407 2408 if (ret) { 2409 ath10k_warn(ar, "failed to copy ramdump region %s: %d\n", 2410 current_region->name, ret); 2411 return ret; 2412 } 2413 2414 return current_region->len; 2415 } 2416 2417 static void ath10k_sdio_dump_memory(struct ath10k *ar, 2418 struct ath10k_fw_crash_data *crash_data, 2419 bool fast_dump) 2420 { 2421 const struct ath10k_hw_mem_layout *mem_layout; 2422 const struct ath10k_mem_region *current_region; 2423 struct ath10k_dump_ram_data_hdr *hdr; 2424 u32 count; 2425 size_t buf_len; 2426 int ret, i; 2427 u8 *buf; 2428 2429 if (!crash_data) 2430 return; 2431 2432 mem_layout = ath10k_coredump_get_mem_layout(ar); 2433 if (!mem_layout) 2434 return; 2435 2436 current_region = &mem_layout->region_table.regions[0]; 2437 2438 buf = crash_data->ramdump_buf; 2439 buf_len = crash_data->ramdump_buf_len; 2440 2441 memset(buf, 0, buf_len); 2442 2443 for (i = 0; i < mem_layout->region_table.size; i++) { 2444 count = 0; 2445 2446 if (current_region->len > buf_len) { 2447 ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n", 2448 current_region->name, 2449 current_region->len, 2450 buf_len); 2451 break; 2452 } 2453 2454 /* Reserve space for the header. */ 2455 hdr = (void *)buf; 2456 buf += sizeof(*hdr); 2457 buf_len -= sizeof(*hdr); 2458 2459 ret = ath10k_sdio_dump_memory_generic(ar, current_region, buf, 2460 fast_dump); 2461 if (ret >= 0) 2462 count = ret; 2463 2464 hdr->region_type = cpu_to_le32(current_region->type); 2465 hdr->start = cpu_to_le32(current_region->start); 2466 hdr->length = cpu_to_le32(count); 2467 2468 if (count == 0) 2469 /* Note: the header remains, just with zero length. */ 2470 break; 2471 2472 buf += count; 2473 buf_len -= count; 2474 2475 current_region++; 2476 } 2477 } 2478 2479 void ath10k_sdio_fw_crashed_dump(struct ath10k *ar) 2480 { 2481 struct ath10k_fw_crash_data *crash_data; 2482 char guid[UUID_STRING_LEN + 1]; 2483 bool fast_dump; 2484 2485 fast_dump = ath10k_sdio_is_fast_dump_supported(ar); 2486 2487 if (fast_dump) 2488 ath10k_bmi_start(ar); 2489 2490 ar->stats.fw_crash_counter++; 2491 2492 ath10k_sdio_disable_intrs(ar); 2493 2494 crash_data = ath10k_coredump_new(ar); 2495 2496 if (crash_data) 2497 scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid); 2498 else 2499 scnprintf(guid, sizeof(guid), "n/a"); 2500 2501 ath10k_err(ar, "firmware crashed! (guid %s)\n", guid); 2502 ath10k_print_driver_info(ar); 2503 ath10k_sdio_dump_registers(ar, crash_data, fast_dump); 2504 ath10k_sdio_dump_memory(ar, crash_data, fast_dump); 2505 2506 ath10k_sdio_enable_intrs(ar); 2507 2508 ath10k_core_start_recovery(ar); 2509 } 2510 2511 static int ath10k_sdio_probe(struct sdio_func *func, 2512 const struct sdio_device_id *id) 2513 { 2514 struct ath10k_sdio *ar_sdio; 2515 struct ath10k *ar; 2516 enum ath10k_hw_rev hw_rev; 2517 u32 dev_id_base; 2518 struct ath10k_bus_params bus_params = {}; 2519 int ret, i; 2520 2521 /* Assumption: All SDIO based chipsets (so far) are QCA6174 based. 2522 * If there will be newer chipsets that does not use the hw reg 2523 * setup as defined in qca6174_regs and qca6174_values, this 2524 * assumption is no longer valid and hw_rev must be setup differently 2525 * depending on chipset. 2526 */ 2527 hw_rev = ATH10K_HW_QCA6174; 2528 2529 ar = ath10k_core_create(sizeof(*ar_sdio), &func->dev, ATH10K_BUS_SDIO, 2530 hw_rev, &ath10k_sdio_hif_ops); 2531 if (!ar) { 2532 dev_err(&func->dev, "failed to allocate core\n"); 2533 return -ENOMEM; 2534 } 2535 2536 netif_napi_add(ar->napi_dev, &ar->napi, ath10k_sdio_napi_poll); 2537 2538 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2539 "sdio new func %d vendor 0x%x device 0x%x block 0x%x/0x%x\n", 2540 func->num, func->vendor, func->device, 2541 func->max_blksize, func->cur_blksize); 2542 2543 ar_sdio = ath10k_sdio_priv(ar); 2544 2545 ar_sdio->irq_data.irq_proc_reg = 2546 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_proc_regs), 2547 GFP_KERNEL); 2548 if (!ar_sdio->irq_data.irq_proc_reg) { 2549 ret = -ENOMEM; 2550 goto err_core_destroy; 2551 } 2552 2553 ar_sdio->vsg_buffer = devm_kmalloc(ar->dev, ATH10K_SDIO_VSG_BUF_SIZE, GFP_KERNEL); 2554 if (!ar_sdio->vsg_buffer) { 2555 ret = -ENOMEM; 2556 goto err_core_destroy; 2557 } 2558 2559 ar_sdio->irq_data.irq_en_reg = 2560 devm_kzalloc(ar->dev, sizeof(struct ath10k_sdio_irq_enable_regs), 2561 GFP_KERNEL); 2562 if (!ar_sdio->irq_data.irq_en_reg) { 2563 ret = -ENOMEM; 2564 goto err_core_destroy; 2565 } 2566 2567 ar_sdio->bmi_buf = devm_kzalloc(ar->dev, BMI_MAX_LARGE_CMDBUF_SIZE, GFP_KERNEL); 2568 if (!ar_sdio->bmi_buf) { 2569 ret = -ENOMEM; 2570 goto err_core_destroy; 2571 } 2572 2573 ar_sdio->func = func; 2574 sdio_set_drvdata(func, ar_sdio); 2575 2576 ar_sdio->is_disabled = true; 2577 ar_sdio->ar = ar; 2578 2579 spin_lock_init(&ar_sdio->lock); 2580 spin_lock_init(&ar_sdio->wr_async_lock); 2581 mutex_init(&ar_sdio->irq_data.mtx); 2582 2583 INIT_LIST_HEAD(&ar_sdio->bus_req_freeq); 2584 INIT_LIST_HEAD(&ar_sdio->wr_asyncq); 2585 2586 INIT_WORK(&ar_sdio->wr_async_work, ath10k_sdio_write_async_work); 2587 ar_sdio->workqueue = create_singlethread_workqueue("ath10k_sdio_wq"); 2588 if (!ar_sdio->workqueue) { 2589 ret = -ENOMEM; 2590 goto err_core_destroy; 2591 } 2592 2593 for (i = 0; i < ATH10K_SDIO_BUS_REQUEST_MAX_NUM; i++) 2594 ath10k_sdio_free_bus_req(ar, &ar_sdio->bus_req[i]); 2595 2596 skb_queue_head_init(&ar_sdio->rx_head); 2597 INIT_WORK(&ar_sdio->async_work_rx, ath10k_rx_indication_async_work); 2598 2599 dev_id_base = (id->device & 0x0F00); 2600 if (dev_id_base != (SDIO_DEVICE_ID_ATHEROS_AR6005 & 0x0F00) && 2601 dev_id_base != (SDIO_DEVICE_ID_ATHEROS_QCA9377 & 0x0F00)) { 2602 ret = -ENODEV; 2603 ath10k_err(ar, "unsupported device id %u (0x%x)\n", 2604 dev_id_base, id->device); 2605 goto err_free_wq; 2606 } 2607 2608 ar->dev_id = QCA9377_1_0_DEVICE_ID; 2609 ar->id.vendor = id->vendor; 2610 ar->id.device = id->device; 2611 2612 ath10k_sdio_set_mbox_info(ar); 2613 2614 bus_params.dev_type = ATH10K_DEV_TYPE_HL; 2615 /* TODO: don't know yet how to get chip_id with SDIO */ 2616 bus_params.chip_id = 0; 2617 bus_params.hl_msdu_ids = true; 2618 2619 ar->hw->max_mtu = ETH_DATA_LEN; 2620 2621 ret = ath10k_core_register(ar, &bus_params); 2622 if (ret) { 2623 ath10k_err(ar, "failed to register driver core: %d\n", ret); 2624 goto err_free_wq; 2625 } 2626 2627 timer_setup(&ar_sdio->sleep_timer, ath10k_sdio_sleep_timer_handler, 0); 2628 2629 return 0; 2630 2631 err_free_wq: 2632 destroy_workqueue(ar_sdio->workqueue); 2633 err_core_destroy: 2634 ath10k_core_destroy(ar); 2635 2636 return ret; 2637 } 2638 2639 static void ath10k_sdio_remove(struct sdio_func *func) 2640 { 2641 struct ath10k_sdio *ar_sdio = sdio_get_drvdata(func); 2642 struct ath10k *ar = ar_sdio->ar; 2643 2644 ath10k_dbg(ar, ATH10K_DBG_BOOT, 2645 "sdio removed func %d vendor 0x%x device 0x%x\n", 2646 func->num, func->vendor, func->device); 2647 2648 ath10k_core_unregister(ar); 2649 2650 netif_napi_del(&ar->napi); 2651 2652 destroy_workqueue(ar_sdio->workqueue); 2653 2654 ath10k_core_destroy(ar); 2655 } 2656 2657 static const struct sdio_device_id ath10k_sdio_devices[] = { 2658 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_AR6005)}, 2659 {SDIO_DEVICE(SDIO_VENDOR_ID_ATHEROS, SDIO_DEVICE_ID_ATHEROS_QCA9377)}, 2660 {}, 2661 }; 2662 2663 MODULE_DEVICE_TABLE(sdio, ath10k_sdio_devices); 2664 2665 static struct sdio_driver ath10k_sdio_driver = { 2666 .name = "ath10k_sdio", 2667 .id_table = ath10k_sdio_devices, 2668 .probe = ath10k_sdio_probe, 2669 .remove = ath10k_sdio_remove, 2670 .drv = { 2671 .pm = ATH10K_SDIO_PM_OPS, 2672 }, 2673 }; 2674 module_sdio_driver(ath10k_sdio_driver); 2675 2676 MODULE_AUTHOR("Qualcomm Atheros"); 2677 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN SDIO devices"); 2678 MODULE_LICENSE("Dual BSD/GPL"); 2679