xref: /linux/drivers/net/wireless/ath/ath10k/pci.c (revision fd7d598270724cc787982ea48bbe17ad383a8b7f)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  */
6 
7 #include <linux/pci.h>
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/spinlock.h>
11 #include <linux/bitops.h>
12 
13 #include "core.h"
14 #include "debug.h"
15 #include "coredump.h"
16 
17 #include "targaddrs.h"
18 #include "bmi.h"
19 
20 #include "hif.h"
21 #include "htc.h"
22 
23 #include "ce.h"
24 #include "pci.h"
25 
26 enum ath10k_pci_reset_mode {
27 	ATH10K_PCI_RESET_AUTO = 0,
28 	ATH10K_PCI_RESET_WARM_ONLY = 1,
29 };
30 
31 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
32 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
33 
34 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
35 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
36 
37 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
38 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
39 
40 /* how long wait to wait for target to initialise, in ms */
41 #define ATH10K_PCI_TARGET_WAIT 3000
42 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
43 
44 /* Maximum number of bytes that can be handled atomically by
45  * diag read and write.
46  */
47 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
48 
49 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
50 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
51 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
52 
53 static const struct pci_device_id ath10k_pci_id_table[] = {
54 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
55 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
56 
57 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
58 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
59 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
60 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
61 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
62 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
63 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
64 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
65 	{0}
66 };
67 
68 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
69 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
70 	 * hacks. ath10k doesn't have them and these devices crash horribly
71 	 * because of that.
72 	 */
73 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
74 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75 
76 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
78 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
79 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
80 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
81 
82 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
84 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
85 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
86 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
87 
88 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
89 
90 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
91 
92 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
93 
94 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
95 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
96 
97 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
98 };
99 
100 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
101 static int ath10k_pci_cold_reset(struct ath10k *ar);
102 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
103 static int ath10k_pci_init_irq(struct ath10k *ar);
104 static int ath10k_pci_deinit_irq(struct ath10k *ar);
105 static int ath10k_pci_request_irq(struct ath10k *ar);
106 static void ath10k_pci_free_irq(struct ath10k *ar);
107 static int ath10k_pci_bmi_wait(struct ath10k *ar,
108 			       struct ath10k_ce_pipe *tx_pipe,
109 			       struct ath10k_ce_pipe *rx_pipe,
110 			       struct bmi_xfer *xfer);
111 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
112 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
113 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
114 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
115 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
116 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
117 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
118 
119 static const struct ce_attr pci_host_ce_config_wlan[] = {
120 	/* CE0: host->target HTC control and raw streams */
121 	{
122 		.flags = CE_ATTR_FLAGS,
123 		.src_nentries = 16,
124 		.src_sz_max = 256,
125 		.dest_nentries = 0,
126 		.send_cb = ath10k_pci_htc_tx_cb,
127 	},
128 
129 	/* CE1: target->host HTT + HTC control */
130 	{
131 		.flags = CE_ATTR_FLAGS,
132 		.src_nentries = 0,
133 		.src_sz_max = 2048,
134 		.dest_nentries = 512,
135 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
136 	},
137 
138 	/* CE2: target->host WMI */
139 	{
140 		.flags = CE_ATTR_FLAGS,
141 		.src_nentries = 0,
142 		.src_sz_max = 2048,
143 		.dest_nentries = 128,
144 		.recv_cb = ath10k_pci_htc_rx_cb,
145 	},
146 
147 	/* CE3: host->target WMI */
148 	{
149 		.flags = CE_ATTR_FLAGS,
150 		.src_nentries = 32,
151 		.src_sz_max = 2048,
152 		.dest_nentries = 0,
153 		.send_cb = ath10k_pci_htc_tx_cb,
154 	},
155 
156 	/* CE4: host->target HTT */
157 	{
158 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
159 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
160 		.src_sz_max = 256,
161 		.dest_nentries = 0,
162 		.send_cb = ath10k_pci_htt_tx_cb,
163 	},
164 
165 	/* CE5: target->host HTT (HIF->HTT) */
166 	{
167 		.flags = CE_ATTR_FLAGS,
168 		.src_nentries = 0,
169 		.src_sz_max = 512,
170 		.dest_nentries = 512,
171 		.recv_cb = ath10k_pci_htt_rx_cb,
172 	},
173 
174 	/* CE6: target autonomous hif_memcpy */
175 	{
176 		.flags = CE_ATTR_FLAGS,
177 		.src_nentries = 0,
178 		.src_sz_max = 0,
179 		.dest_nentries = 0,
180 	},
181 
182 	/* CE7: ce_diag, the Diagnostic Window */
183 	{
184 		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
185 		.src_nentries = 2,
186 		.src_sz_max = DIAG_TRANSFER_LIMIT,
187 		.dest_nentries = 2,
188 	},
189 
190 	/* CE8: target->host pktlog */
191 	{
192 		.flags = CE_ATTR_FLAGS,
193 		.src_nentries = 0,
194 		.src_sz_max = 2048,
195 		.dest_nentries = 128,
196 		.recv_cb = ath10k_pci_pktlog_rx_cb,
197 	},
198 
199 	/* CE9 target autonomous qcache memcpy */
200 	{
201 		.flags = CE_ATTR_FLAGS,
202 		.src_nentries = 0,
203 		.src_sz_max = 0,
204 		.dest_nentries = 0,
205 	},
206 
207 	/* CE10: target autonomous hif memcpy */
208 	{
209 		.flags = CE_ATTR_FLAGS,
210 		.src_nentries = 0,
211 		.src_sz_max = 0,
212 		.dest_nentries = 0,
213 	},
214 
215 	/* CE11: target autonomous hif memcpy */
216 	{
217 		.flags = CE_ATTR_FLAGS,
218 		.src_nentries = 0,
219 		.src_sz_max = 0,
220 		.dest_nentries = 0,
221 	},
222 };
223 
224 /* Target firmware's Copy Engine configuration. */
225 static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
226 	/* CE0: host->target HTC control and raw streams */
227 	{
228 		.pipenum = __cpu_to_le32(0),
229 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
230 		.nentries = __cpu_to_le32(32),
231 		.nbytes_max = __cpu_to_le32(256),
232 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
233 		.reserved = __cpu_to_le32(0),
234 	},
235 
236 	/* CE1: target->host HTT + HTC control */
237 	{
238 		.pipenum = __cpu_to_le32(1),
239 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
240 		.nentries = __cpu_to_le32(32),
241 		.nbytes_max = __cpu_to_le32(2048),
242 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
243 		.reserved = __cpu_to_le32(0),
244 	},
245 
246 	/* CE2: target->host WMI */
247 	{
248 		.pipenum = __cpu_to_le32(2),
249 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
250 		.nentries = __cpu_to_le32(64),
251 		.nbytes_max = __cpu_to_le32(2048),
252 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
253 		.reserved = __cpu_to_le32(0),
254 	},
255 
256 	/* CE3: host->target WMI */
257 	{
258 		.pipenum = __cpu_to_le32(3),
259 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
260 		.nentries = __cpu_to_le32(32),
261 		.nbytes_max = __cpu_to_le32(2048),
262 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
263 		.reserved = __cpu_to_le32(0),
264 	},
265 
266 	/* CE4: host->target HTT */
267 	{
268 		.pipenum = __cpu_to_le32(4),
269 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
270 		.nentries = __cpu_to_le32(256),
271 		.nbytes_max = __cpu_to_le32(256),
272 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
273 		.reserved = __cpu_to_le32(0),
274 	},
275 
276 	/* NB: 50% of src nentries, since tx has 2 frags */
277 
278 	/* CE5: target->host HTT (HIF->HTT) */
279 	{
280 		.pipenum = __cpu_to_le32(5),
281 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
282 		.nentries = __cpu_to_le32(32),
283 		.nbytes_max = __cpu_to_le32(512),
284 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
285 		.reserved = __cpu_to_le32(0),
286 	},
287 
288 	/* CE6: Reserved for target autonomous hif_memcpy */
289 	{
290 		.pipenum = __cpu_to_le32(6),
291 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
292 		.nentries = __cpu_to_le32(32),
293 		.nbytes_max = __cpu_to_le32(4096),
294 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
295 		.reserved = __cpu_to_le32(0),
296 	},
297 
298 	/* CE7 used only by Host */
299 	{
300 		.pipenum = __cpu_to_le32(7),
301 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
302 		.nentries = __cpu_to_le32(0),
303 		.nbytes_max = __cpu_to_le32(0),
304 		.flags = __cpu_to_le32(0),
305 		.reserved = __cpu_to_le32(0),
306 	},
307 
308 	/* CE8 target->host packtlog */
309 	{
310 		.pipenum = __cpu_to_le32(8),
311 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
312 		.nentries = __cpu_to_le32(64),
313 		.nbytes_max = __cpu_to_le32(2048),
314 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
315 		.reserved = __cpu_to_le32(0),
316 	},
317 
318 	/* CE9 target autonomous qcache memcpy */
319 	{
320 		.pipenum = __cpu_to_le32(9),
321 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
322 		.nentries = __cpu_to_le32(32),
323 		.nbytes_max = __cpu_to_le32(2048),
324 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
325 		.reserved = __cpu_to_le32(0),
326 	},
327 
328 	/* It not necessary to send target wlan configuration for CE10 & CE11
329 	 * as these CEs are not actively used in target.
330 	 */
331 };
332 
333 /*
334  * Map from service/endpoint to Copy Engine.
335  * This table is derived from the CE_PCI TABLE, above.
336  * It is passed to the Target at startup for use by firmware.
337  */
338 static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
339 	{
340 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
341 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
342 		__cpu_to_le32(3),
343 	},
344 	{
345 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
346 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
347 		__cpu_to_le32(2),
348 	},
349 	{
350 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
351 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
352 		__cpu_to_le32(3),
353 	},
354 	{
355 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
356 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
357 		__cpu_to_le32(2),
358 	},
359 	{
360 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
361 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
362 		__cpu_to_le32(3),
363 	},
364 	{
365 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
366 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
367 		__cpu_to_le32(2),
368 	},
369 	{
370 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
371 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
372 		__cpu_to_le32(3),
373 	},
374 	{
375 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
376 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
377 		__cpu_to_le32(2),
378 	},
379 	{
380 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
381 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
382 		__cpu_to_le32(3),
383 	},
384 	{
385 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
386 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
387 		__cpu_to_le32(2),
388 	},
389 	{
390 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
391 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
392 		__cpu_to_le32(0),
393 	},
394 	{
395 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
396 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
397 		__cpu_to_le32(1),
398 	},
399 	{ /* not used */
400 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
401 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
402 		__cpu_to_le32(0),
403 	},
404 	{ /* not used */
405 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
406 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
407 		__cpu_to_le32(1),
408 	},
409 	{
410 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
411 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
412 		__cpu_to_le32(4),
413 	},
414 	{
415 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
416 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
417 		__cpu_to_le32(5),
418 	},
419 
420 	/* (Additions here) */
421 
422 	{ /* must be last */
423 		__cpu_to_le32(0),
424 		__cpu_to_le32(0),
425 		__cpu_to_le32(0),
426 	},
427 };
428 
429 static bool ath10k_pci_is_awake(struct ath10k *ar)
430 {
431 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
432 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
433 			   RTC_STATE_ADDRESS);
434 
435 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
436 }
437 
438 static void __ath10k_pci_wake(struct ath10k *ar)
439 {
440 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
441 
442 	lockdep_assert_held(&ar_pci->ps_lock);
443 
444 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
445 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
446 
447 	iowrite32(PCIE_SOC_WAKE_V_MASK,
448 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
449 		  PCIE_SOC_WAKE_ADDRESS);
450 }
451 
452 static void __ath10k_pci_sleep(struct ath10k *ar)
453 {
454 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
455 
456 	lockdep_assert_held(&ar_pci->ps_lock);
457 
458 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
459 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
460 
461 	iowrite32(PCIE_SOC_WAKE_RESET,
462 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
463 		  PCIE_SOC_WAKE_ADDRESS);
464 	ar_pci->ps_awake = false;
465 }
466 
467 static int ath10k_pci_wake_wait(struct ath10k *ar)
468 {
469 	int tot_delay = 0;
470 	int curr_delay = 5;
471 
472 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
473 		if (ath10k_pci_is_awake(ar)) {
474 			if (tot_delay > PCIE_WAKE_LATE_US)
475 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
476 					    tot_delay / 1000);
477 			return 0;
478 		}
479 
480 		udelay(curr_delay);
481 		tot_delay += curr_delay;
482 
483 		if (curr_delay < 50)
484 			curr_delay += 5;
485 	}
486 
487 	return -ETIMEDOUT;
488 }
489 
490 static int ath10k_pci_force_wake(struct ath10k *ar)
491 {
492 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
493 	unsigned long flags;
494 	int ret = 0;
495 
496 	if (ar_pci->pci_ps)
497 		return ret;
498 
499 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
500 
501 	if (!ar_pci->ps_awake) {
502 		iowrite32(PCIE_SOC_WAKE_V_MASK,
503 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
504 			  PCIE_SOC_WAKE_ADDRESS);
505 
506 		ret = ath10k_pci_wake_wait(ar);
507 		if (ret == 0)
508 			ar_pci->ps_awake = true;
509 	}
510 
511 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
512 
513 	return ret;
514 }
515 
516 static void ath10k_pci_force_sleep(struct ath10k *ar)
517 {
518 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
519 	unsigned long flags;
520 
521 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
522 
523 	iowrite32(PCIE_SOC_WAKE_RESET,
524 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
525 		  PCIE_SOC_WAKE_ADDRESS);
526 	ar_pci->ps_awake = false;
527 
528 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
529 }
530 
531 static int ath10k_pci_wake(struct ath10k *ar)
532 {
533 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
534 	unsigned long flags;
535 	int ret = 0;
536 
537 	if (ar_pci->pci_ps == 0)
538 		return ret;
539 
540 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
541 
542 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
543 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
544 
545 	/* This function can be called very frequently. To avoid excessive
546 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
547 	 */
548 	if (!ar_pci->ps_awake) {
549 		__ath10k_pci_wake(ar);
550 
551 		ret = ath10k_pci_wake_wait(ar);
552 		if (ret == 0)
553 			ar_pci->ps_awake = true;
554 	}
555 
556 	if (ret == 0) {
557 		ar_pci->ps_wake_refcount++;
558 		WARN_ON(ar_pci->ps_wake_refcount == 0);
559 	}
560 
561 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
562 
563 	return ret;
564 }
565 
566 static void ath10k_pci_sleep(struct ath10k *ar)
567 {
568 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
569 	unsigned long flags;
570 
571 	if (ar_pci->pci_ps == 0)
572 		return;
573 
574 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
575 
576 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
577 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
578 
579 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
580 		goto skip;
581 
582 	ar_pci->ps_wake_refcount--;
583 
584 	mod_timer(&ar_pci->ps_timer, jiffies +
585 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
586 
587 skip:
588 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
589 }
590 
591 static void ath10k_pci_ps_timer(struct timer_list *t)
592 {
593 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
594 	struct ath10k *ar = ar_pci->ar;
595 	unsigned long flags;
596 
597 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
598 
599 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
600 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
601 
602 	if (ar_pci->ps_wake_refcount > 0)
603 		goto skip;
604 
605 	__ath10k_pci_sleep(ar);
606 
607 skip:
608 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
609 }
610 
611 static void ath10k_pci_sleep_sync(struct ath10k *ar)
612 {
613 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
614 	unsigned long flags;
615 
616 	if (ar_pci->pci_ps == 0) {
617 		ath10k_pci_force_sleep(ar);
618 		return;
619 	}
620 
621 	del_timer_sync(&ar_pci->ps_timer);
622 
623 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
624 	WARN_ON(ar_pci->ps_wake_refcount > 0);
625 	__ath10k_pci_sleep(ar);
626 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
627 }
628 
629 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
630 {
631 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
632 	int ret;
633 
634 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
635 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
636 			    offset, offset + sizeof(value), ar_pci->mem_len);
637 		return;
638 	}
639 
640 	ret = ath10k_pci_wake(ar);
641 	if (ret) {
642 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
643 			    value, offset, ret);
644 		return;
645 	}
646 
647 	iowrite32(value, ar_pci->mem + offset);
648 	ath10k_pci_sleep(ar);
649 }
650 
651 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
652 {
653 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
654 	u32 val;
655 	int ret;
656 
657 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
658 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
659 			    offset, offset + sizeof(val), ar_pci->mem_len);
660 		return 0;
661 	}
662 
663 	ret = ath10k_pci_wake(ar);
664 	if (ret) {
665 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
666 			    offset, ret);
667 		return 0xffffffff;
668 	}
669 
670 	val = ioread32(ar_pci->mem + offset);
671 	ath10k_pci_sleep(ar);
672 
673 	return val;
674 }
675 
676 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
677 {
678 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
679 
680 	ce->bus_ops->write32(ar, offset, value);
681 }
682 
683 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
684 {
685 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
686 
687 	return ce->bus_ops->read32(ar, offset);
688 }
689 
690 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
691 {
692 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
693 }
694 
695 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
696 {
697 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
698 }
699 
700 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
701 {
702 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
703 }
704 
705 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
706 {
707 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
708 }
709 
710 bool ath10k_pci_irq_pending(struct ath10k *ar)
711 {
712 	u32 cause;
713 
714 	/* Check if the shared legacy irq is for us */
715 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
716 				  PCIE_INTR_CAUSE_ADDRESS);
717 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
718 		return true;
719 
720 	return false;
721 }
722 
723 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
724 {
725 	/* IMPORTANT: INTR_CLR register has to be set after
726 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
727 	 * really cleared.
728 	 */
729 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
730 			   0);
731 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
732 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
733 
734 	/* IMPORTANT: this extra read transaction is required to
735 	 * flush the posted write buffer.
736 	 */
737 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
738 				PCIE_INTR_ENABLE_ADDRESS);
739 }
740 
741 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
742 {
743 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
744 			   PCIE_INTR_ENABLE_ADDRESS,
745 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
746 
747 	/* IMPORTANT: this extra read transaction is required to
748 	 * flush the posted write buffer.
749 	 */
750 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
751 				PCIE_INTR_ENABLE_ADDRESS);
752 }
753 
754 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
755 {
756 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
757 
758 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
759 		return "msi";
760 
761 	return "legacy";
762 }
763 
764 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
765 {
766 	struct ath10k *ar = pipe->hif_ce_state;
767 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
768 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
769 	struct sk_buff *skb;
770 	dma_addr_t paddr;
771 	int ret;
772 
773 	skb = dev_alloc_skb(pipe->buf_sz);
774 	if (!skb)
775 		return -ENOMEM;
776 
777 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
778 
779 	paddr = dma_map_single(ar->dev, skb->data,
780 			       skb->len + skb_tailroom(skb),
781 			       DMA_FROM_DEVICE);
782 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
783 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
784 		dev_kfree_skb_any(skb);
785 		return -EIO;
786 	}
787 
788 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
789 
790 	spin_lock_bh(&ce->ce_lock);
791 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
792 	spin_unlock_bh(&ce->ce_lock);
793 	if (ret) {
794 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
795 				 DMA_FROM_DEVICE);
796 		dev_kfree_skb_any(skb);
797 		return ret;
798 	}
799 
800 	return 0;
801 }
802 
803 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
804 {
805 	struct ath10k *ar = pipe->hif_ce_state;
806 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
807 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
808 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
809 	int ret, num;
810 
811 	if (pipe->buf_sz == 0)
812 		return;
813 
814 	if (!ce_pipe->dest_ring)
815 		return;
816 
817 	spin_lock_bh(&ce->ce_lock);
818 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
819 	spin_unlock_bh(&ce->ce_lock);
820 
821 	while (num >= 0) {
822 		ret = __ath10k_pci_rx_post_buf(pipe);
823 		if (ret) {
824 			if (ret == -ENOSPC)
825 				break;
826 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
827 			mod_timer(&ar_pci->rx_post_retry, jiffies +
828 				  ATH10K_PCI_RX_POST_RETRY_MS);
829 			break;
830 		}
831 		num--;
832 	}
833 }
834 
835 void ath10k_pci_rx_post(struct ath10k *ar)
836 {
837 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
838 	int i;
839 
840 	for (i = 0; i < CE_COUNT; i++)
841 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
842 }
843 
844 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
845 {
846 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
847 	struct ath10k *ar = ar_pci->ar;
848 
849 	ath10k_pci_rx_post(ar);
850 }
851 
852 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
853 {
854 	u32 val = 0, region = addr & 0xfffff;
855 
856 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
857 				 & 0x7ff) << 21;
858 	val |= 0x100000 | region;
859 	return val;
860 }
861 
862 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
863  * Support to access target space below 1M for qca6174 and qca9377.
864  * If target space is below 1M, the bit[20] of converted CE addr is 0.
865  * Otherwise bit[20] of converted CE addr is 1.
866  */
867 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
868 {
869 	u32 val = 0, region = addr & 0xfffff;
870 
871 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
872 				 & 0x7ff) << 21;
873 	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
874 	return val;
875 }
876 
877 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
878 {
879 	u32 val = 0, region = addr & 0xfffff;
880 
881 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
882 	val |= 0x100000 | region;
883 	return val;
884 }
885 
886 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
887 {
888 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
889 
890 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
891 		return -ENOTSUPP;
892 
893 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
894 }
895 
896 /*
897  * Diagnostic read/write access is provided for startup/config/debug usage.
898  * Caller must guarantee proper alignment, when applicable, and single user
899  * at any moment.
900  */
901 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
902 				    int nbytes)
903 {
904 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
905 	int ret = 0;
906 	u32 *buf;
907 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
908 	struct ath10k_ce_pipe *ce_diag;
909 	/* Host buffer address in CE space */
910 	u32 ce_data;
911 	dma_addr_t ce_data_base = 0;
912 	void *data_buf;
913 	int i;
914 
915 	mutex_lock(&ar_pci->ce_diag_mutex);
916 	ce_diag = ar_pci->ce_diag;
917 
918 	/*
919 	 * Allocate a temporary bounce buffer to hold caller's data
920 	 * to be DMA'ed from Target. This guarantees
921 	 *   1) 4-byte alignment
922 	 *   2) Buffer in DMA-able space
923 	 */
924 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
925 
926 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
927 				      GFP_ATOMIC);
928 	if (!data_buf) {
929 		ret = -ENOMEM;
930 		goto done;
931 	}
932 
933 	/* The address supplied by the caller is in the
934 	 * Target CPU virtual address space.
935 	 *
936 	 * In order to use this address with the diagnostic CE,
937 	 * convert it from Target CPU virtual address space
938 	 * to CE address space
939 	 */
940 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
941 
942 	remaining_bytes = nbytes;
943 	ce_data = ce_data_base;
944 	while (remaining_bytes) {
945 		nbytes = min_t(unsigned int, remaining_bytes,
946 			       DIAG_TRANSFER_LIMIT);
947 
948 		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
949 		if (ret != 0)
950 			goto done;
951 
952 		/* Request CE to send from Target(!) address to Host buffer */
953 		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
954 		if (ret)
955 			goto done;
956 
957 		i = 0;
958 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
959 			udelay(DIAG_ACCESS_CE_WAIT_US);
960 			i += DIAG_ACCESS_CE_WAIT_US;
961 
962 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
963 				ret = -EBUSY;
964 				goto done;
965 			}
966 		}
967 
968 		i = 0;
969 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
970 						     &completed_nbytes) != 0) {
971 			udelay(DIAG_ACCESS_CE_WAIT_US);
972 			i += DIAG_ACCESS_CE_WAIT_US;
973 
974 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
975 				ret = -EBUSY;
976 				goto done;
977 			}
978 		}
979 
980 		if (nbytes != completed_nbytes) {
981 			ret = -EIO;
982 			goto done;
983 		}
984 
985 		if (*buf != ce_data) {
986 			ret = -EIO;
987 			goto done;
988 		}
989 
990 		remaining_bytes -= nbytes;
991 		memcpy(data, data_buf, nbytes);
992 
993 		address += nbytes;
994 		data += nbytes;
995 	}
996 
997 done:
998 
999 	if (data_buf)
1000 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1001 				  ce_data_base);
1002 
1003 	mutex_unlock(&ar_pci->ce_diag_mutex);
1004 
1005 	return ret;
1006 }
1007 
1008 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1009 {
1010 	__le32 val = 0;
1011 	int ret;
1012 
1013 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1014 	*value = __le32_to_cpu(val);
1015 
1016 	return ret;
1017 }
1018 
1019 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1020 				     u32 src, u32 len)
1021 {
1022 	u32 host_addr, addr;
1023 	int ret;
1024 
1025 	host_addr = host_interest_item_address(src);
1026 
1027 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1028 	if (ret != 0) {
1029 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1030 			    src, ret);
1031 		return ret;
1032 	}
1033 
1034 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1035 	if (ret != 0) {
1036 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1037 			    addr, len, ret);
1038 		return ret;
1039 	}
1040 
1041 	return 0;
1042 }
1043 
1044 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1045 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1046 
1047 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1048 			      const void *data, int nbytes)
1049 {
1050 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1051 	int ret = 0;
1052 	u32 *buf;
1053 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1054 	struct ath10k_ce_pipe *ce_diag;
1055 	void *data_buf;
1056 	dma_addr_t ce_data_base = 0;
1057 	int i;
1058 
1059 	mutex_lock(&ar_pci->ce_diag_mutex);
1060 	ce_diag = ar_pci->ce_diag;
1061 
1062 	/*
1063 	 * Allocate a temporary bounce buffer to hold caller's data
1064 	 * to be DMA'ed to Target. This guarantees
1065 	 *   1) 4-byte alignment
1066 	 *   2) Buffer in DMA-able space
1067 	 */
1068 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1069 
1070 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1071 				      GFP_ATOMIC);
1072 	if (!data_buf) {
1073 		ret = -ENOMEM;
1074 		goto done;
1075 	}
1076 
1077 	/*
1078 	 * The address supplied by the caller is in the
1079 	 * Target CPU virtual address space.
1080 	 *
1081 	 * In order to use this address with the diagnostic CE,
1082 	 * convert it from
1083 	 *    Target CPU virtual address space
1084 	 * to
1085 	 *    CE address space
1086 	 */
1087 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1088 
1089 	remaining_bytes = nbytes;
1090 	while (remaining_bytes) {
1091 		/* FIXME: check cast */
1092 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1093 
1094 		/* Copy caller's data to allocated DMA buf */
1095 		memcpy(data_buf, data, nbytes);
1096 
1097 		/* Set up to receive directly into Target(!) address */
1098 		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1099 		if (ret != 0)
1100 			goto done;
1101 
1102 		/*
1103 		 * Request CE to send caller-supplied data that
1104 		 * was copied to bounce buffer to Target(!) address.
1105 		 */
1106 		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1107 		if (ret != 0)
1108 			goto done;
1109 
1110 		i = 0;
1111 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1112 			udelay(DIAG_ACCESS_CE_WAIT_US);
1113 			i += DIAG_ACCESS_CE_WAIT_US;
1114 
1115 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1116 				ret = -EBUSY;
1117 				goto done;
1118 			}
1119 		}
1120 
1121 		i = 0;
1122 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1123 						     &completed_nbytes) != 0) {
1124 			udelay(DIAG_ACCESS_CE_WAIT_US);
1125 			i += DIAG_ACCESS_CE_WAIT_US;
1126 
1127 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1128 				ret = -EBUSY;
1129 				goto done;
1130 			}
1131 		}
1132 
1133 		if (nbytes != completed_nbytes) {
1134 			ret = -EIO;
1135 			goto done;
1136 		}
1137 
1138 		if (*buf != address) {
1139 			ret = -EIO;
1140 			goto done;
1141 		}
1142 
1143 		remaining_bytes -= nbytes;
1144 		address += nbytes;
1145 		data += nbytes;
1146 	}
1147 
1148 done:
1149 	if (data_buf) {
1150 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1151 				  ce_data_base);
1152 	}
1153 
1154 	if (ret != 0)
1155 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1156 			    address, ret);
1157 
1158 	mutex_unlock(&ar_pci->ce_diag_mutex);
1159 
1160 	return ret;
1161 }
1162 
1163 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1164 {
1165 	__le32 val = __cpu_to_le32(value);
1166 
1167 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1168 }
1169 
1170 /* Called by lower (CE) layer when a send to Target completes. */
1171 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1172 {
1173 	struct ath10k *ar = ce_state->ar;
1174 	struct sk_buff_head list;
1175 	struct sk_buff *skb;
1176 
1177 	__skb_queue_head_init(&list);
1178 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1179 		/* no need to call tx completion for NULL pointers */
1180 		if (skb == NULL)
1181 			continue;
1182 
1183 		__skb_queue_tail(&list, skb);
1184 	}
1185 
1186 	while ((skb = __skb_dequeue(&list)))
1187 		ath10k_htc_tx_completion_handler(ar, skb);
1188 }
1189 
1190 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1191 				     void (*callback)(struct ath10k *ar,
1192 						      struct sk_buff *skb))
1193 {
1194 	struct ath10k *ar = ce_state->ar;
1195 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1196 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1197 	struct sk_buff *skb;
1198 	struct sk_buff_head list;
1199 	void *transfer_context;
1200 	unsigned int nbytes, max_nbytes;
1201 
1202 	__skb_queue_head_init(&list);
1203 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1204 					     &nbytes) == 0) {
1205 		skb = transfer_context;
1206 		max_nbytes = skb->len + skb_tailroom(skb);
1207 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1208 				 max_nbytes, DMA_FROM_DEVICE);
1209 
1210 		if (unlikely(max_nbytes < nbytes)) {
1211 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1212 				    nbytes, max_nbytes);
1213 			dev_kfree_skb_any(skb);
1214 			continue;
1215 		}
1216 
1217 		skb_put(skb, nbytes);
1218 		__skb_queue_tail(&list, skb);
1219 	}
1220 
1221 	while ((skb = __skb_dequeue(&list))) {
1222 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1223 			   ce_state->id, skb->len);
1224 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1225 				skb->data, skb->len);
1226 
1227 		callback(ar, skb);
1228 	}
1229 
1230 	ath10k_pci_rx_post_pipe(pipe_info);
1231 }
1232 
1233 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1234 					 void (*callback)(struct ath10k *ar,
1235 							  struct sk_buff *skb))
1236 {
1237 	struct ath10k *ar = ce_state->ar;
1238 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1239 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1240 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1241 	struct sk_buff *skb;
1242 	struct sk_buff_head list;
1243 	void *transfer_context;
1244 	unsigned int nbytes, max_nbytes, nentries;
1245 	int orig_len;
1246 
1247 	/* No need to acquire ce_lock for CE5, since this is the only place CE5
1248 	 * is processed other than init and deinit. Before releasing CE5
1249 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1250 	 */
1251 	__skb_queue_head_init(&list);
1252 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1253 						    &nbytes) == 0) {
1254 		skb = transfer_context;
1255 		max_nbytes = skb->len + skb_tailroom(skb);
1256 
1257 		if (unlikely(max_nbytes < nbytes)) {
1258 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1259 				    nbytes, max_nbytes);
1260 			continue;
1261 		}
1262 
1263 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1264 					max_nbytes, DMA_FROM_DEVICE);
1265 		skb_put(skb, nbytes);
1266 		__skb_queue_tail(&list, skb);
1267 	}
1268 
1269 	nentries = skb_queue_len(&list);
1270 	while ((skb = __skb_dequeue(&list))) {
1271 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1272 			   ce_state->id, skb->len);
1273 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1274 				skb->data, skb->len);
1275 
1276 		orig_len = skb->len;
1277 		callback(ar, skb);
1278 		skb_push(skb, orig_len - skb->len);
1279 		skb_reset_tail_pointer(skb);
1280 		skb_trim(skb, 0);
1281 
1282 		/*let device gain the buffer again*/
1283 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1284 					   skb->len + skb_tailroom(skb),
1285 					   DMA_FROM_DEVICE);
1286 	}
1287 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1288 }
1289 
1290 /* Called by lower (CE) layer when data is received from the Target. */
1291 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1292 {
1293 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1294 }
1295 
1296 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1297 {
1298 	/* CE4 polling needs to be done whenever CE pipe which transports
1299 	 * HTT Rx (target->host) is processed.
1300 	 */
1301 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1302 
1303 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1304 }
1305 
1306 /* Called by lower (CE) layer when data is received from the Target.
1307  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1308  */
1309 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1310 {
1311 	ath10k_pci_process_rx_cb(ce_state,
1312 				 ath10k_htt_rx_pktlog_completion_handler);
1313 }
1314 
1315 /* Called by lower (CE) layer when a send to HTT Target completes. */
1316 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1317 {
1318 	struct ath10k *ar = ce_state->ar;
1319 	struct sk_buff *skb;
1320 
1321 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1322 		/* no need to call tx completion for NULL pointers */
1323 		if (!skb)
1324 			continue;
1325 
1326 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1327 				 skb->len, DMA_TO_DEVICE);
1328 		ath10k_htt_hif_tx_complete(ar, skb);
1329 	}
1330 }
1331 
1332 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1333 {
1334 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1335 	ath10k_htt_t2h_msg_handler(ar, skb);
1336 }
1337 
1338 /* Called by lower (CE) layer when HTT data is received from the Target. */
1339 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1340 {
1341 	/* CE4 polling needs to be done whenever CE pipe which transports
1342 	 * HTT Rx (target->host) is processed.
1343 	 */
1344 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1345 
1346 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1347 }
1348 
1349 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1350 			 struct ath10k_hif_sg_item *items, int n_items)
1351 {
1352 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1353 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1354 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1355 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1356 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1357 	unsigned int nentries_mask;
1358 	unsigned int sw_index;
1359 	unsigned int write_index;
1360 	int err, i = 0;
1361 
1362 	spin_lock_bh(&ce->ce_lock);
1363 
1364 	nentries_mask = src_ring->nentries_mask;
1365 	sw_index = src_ring->sw_index;
1366 	write_index = src_ring->write_index;
1367 
1368 	if (unlikely(CE_RING_DELTA(nentries_mask,
1369 				   write_index, sw_index - 1) < n_items)) {
1370 		err = -ENOBUFS;
1371 		goto err;
1372 	}
1373 
1374 	for (i = 0; i < n_items - 1; i++) {
1375 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1376 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1377 			   i, &items[i].paddr, items[i].len, n_items);
1378 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1379 				items[i].vaddr, items[i].len);
1380 
1381 		err = ath10k_ce_send_nolock(ce_pipe,
1382 					    items[i].transfer_context,
1383 					    items[i].paddr,
1384 					    items[i].len,
1385 					    items[i].transfer_id,
1386 					    CE_SEND_FLAG_GATHER);
1387 		if (err)
1388 			goto err;
1389 	}
1390 
1391 	/* `i` is equal to `n_items -1` after for() */
1392 
1393 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1394 		   "pci tx item %d paddr %pad len %d n_items %d\n",
1395 		   i, &items[i].paddr, items[i].len, n_items);
1396 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1397 			items[i].vaddr, items[i].len);
1398 
1399 	err = ath10k_ce_send_nolock(ce_pipe,
1400 				    items[i].transfer_context,
1401 				    items[i].paddr,
1402 				    items[i].len,
1403 				    items[i].transfer_id,
1404 				    0);
1405 	if (err)
1406 		goto err;
1407 
1408 	spin_unlock_bh(&ce->ce_lock);
1409 	return 0;
1410 
1411 err:
1412 	for (; i > 0; i--)
1413 		__ath10k_ce_send_revert(ce_pipe);
1414 
1415 	spin_unlock_bh(&ce->ce_lock);
1416 	return err;
1417 }
1418 
1419 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1420 			     size_t buf_len)
1421 {
1422 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1423 }
1424 
1425 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1426 {
1427 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1428 
1429 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1430 
1431 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1432 }
1433 
1434 static void ath10k_pci_dump_registers(struct ath10k *ar,
1435 				      struct ath10k_fw_crash_data *crash_data)
1436 {
1437 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1438 	int i, ret;
1439 
1440 	lockdep_assert_held(&ar->dump_mutex);
1441 
1442 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1443 				      hi_failure_state,
1444 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1445 	if (ret) {
1446 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1447 		return;
1448 	}
1449 
1450 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1451 
1452 	ath10k_err(ar, "firmware register dump:\n");
1453 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1454 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1455 			   i,
1456 			   __le32_to_cpu(reg_dump_values[i]),
1457 			   __le32_to_cpu(reg_dump_values[i + 1]),
1458 			   __le32_to_cpu(reg_dump_values[i + 2]),
1459 			   __le32_to_cpu(reg_dump_values[i + 3]));
1460 
1461 	if (!crash_data)
1462 		return;
1463 
1464 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1465 		crash_data->registers[i] = reg_dump_values[i];
1466 }
1467 
1468 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1469 					  const struct ath10k_mem_region *mem_region,
1470 					  u8 *buf, size_t buf_len)
1471 {
1472 	const struct ath10k_mem_section *cur_section, *next_section;
1473 	unsigned int count, section_size, skip_size;
1474 	int ret, i, j;
1475 
1476 	if (!mem_region || !buf)
1477 		return 0;
1478 
1479 	cur_section = &mem_region->section_table.sections[0];
1480 
1481 	if (mem_region->start > cur_section->start) {
1482 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1483 			    mem_region->start, cur_section->start);
1484 		return 0;
1485 	}
1486 
1487 	skip_size = cur_section->start - mem_region->start;
1488 
1489 	/* fill the gap between the first register section and register
1490 	 * start address
1491 	 */
1492 	for (i = 0; i < skip_size; i++) {
1493 		*buf = ATH10K_MAGIC_NOT_COPIED;
1494 		buf++;
1495 	}
1496 
1497 	count = 0;
1498 
1499 	for (i = 0; cur_section != NULL; i++) {
1500 		section_size = cur_section->end - cur_section->start;
1501 
1502 		if (section_size <= 0) {
1503 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1504 				    cur_section->start,
1505 				    cur_section->end);
1506 			break;
1507 		}
1508 
1509 		if ((i + 1) == mem_region->section_table.size) {
1510 			/* last section */
1511 			next_section = NULL;
1512 			skip_size = 0;
1513 		} else {
1514 			next_section = cur_section + 1;
1515 
1516 			if (cur_section->end > next_section->start) {
1517 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1518 					    next_section->start,
1519 					    cur_section->end);
1520 				break;
1521 			}
1522 
1523 			skip_size = next_section->start - cur_section->end;
1524 		}
1525 
1526 		if (buf_len < (skip_size + section_size)) {
1527 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1528 			break;
1529 		}
1530 
1531 		buf_len -= skip_size + section_size;
1532 
1533 		/* read section to dest memory */
1534 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1535 					       buf, section_size);
1536 		if (ret) {
1537 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1538 				    cur_section->start, ret);
1539 			break;
1540 		}
1541 
1542 		buf += section_size;
1543 		count += section_size;
1544 
1545 		/* fill in the gap between this section and the next */
1546 		for (j = 0; j < skip_size; j++) {
1547 			*buf = ATH10K_MAGIC_NOT_COPIED;
1548 			buf++;
1549 		}
1550 
1551 		count += skip_size;
1552 
1553 		if (!next_section)
1554 			/* this was the last section */
1555 			break;
1556 
1557 		cur_section = next_section;
1558 	}
1559 
1560 	return count;
1561 }
1562 
1563 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1564 {
1565 	u32 val;
1566 
1567 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1568 			   FW_RAM_CONFIG_ADDRESS, config);
1569 
1570 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1571 				FW_RAM_CONFIG_ADDRESS);
1572 	if (val != config) {
1573 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1574 			    val, config);
1575 		return -EIO;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
1581 /* Always returns the length */
1582 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1583 				       const struct ath10k_mem_region *region,
1584 				       u8 *buf)
1585 {
1586 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1587 	u32 base_addr, i;
1588 
1589 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1590 	base_addr += region->start;
1591 
1592 	for (i = 0; i < region->len; i += 4) {
1593 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1594 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1595 	}
1596 
1597 	return region->len;
1598 }
1599 
1600 /* if an error happened returns < 0, otherwise the length */
1601 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1602 				      const struct ath10k_mem_region *region,
1603 				      u8 *buf)
1604 {
1605 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1606 	u32 i;
1607 	int ret;
1608 
1609 	mutex_lock(&ar->conf_mutex);
1610 	if (ar->state != ATH10K_STATE_ON) {
1611 		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1612 		ret = -EIO;
1613 		goto done;
1614 	}
1615 
1616 	for (i = 0; i < region->len; i += 4)
1617 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1618 
1619 	ret = region->len;
1620 done:
1621 	mutex_unlock(&ar->conf_mutex);
1622 	return ret;
1623 }
1624 
1625 /* if an error happened returns < 0, otherwise the length */
1626 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1627 					  const struct ath10k_mem_region *current_region,
1628 					  u8 *buf)
1629 {
1630 	int ret;
1631 
1632 	if (current_region->section_table.size > 0)
1633 		/* Copy each section individually. */
1634 		return ath10k_pci_dump_memory_section(ar,
1635 						      current_region,
1636 						      buf,
1637 						      current_region->len);
1638 
1639 	/* No individual memory sections defined so we can
1640 	 * copy the entire memory region.
1641 	 */
1642 	ret = ath10k_pci_diag_read_mem(ar,
1643 				       current_region->start,
1644 				       buf,
1645 				       current_region->len);
1646 	if (ret) {
1647 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1648 			    current_region->name, ret);
1649 		return ret;
1650 	}
1651 
1652 	return current_region->len;
1653 }
1654 
1655 static void ath10k_pci_dump_memory(struct ath10k *ar,
1656 				   struct ath10k_fw_crash_data *crash_data)
1657 {
1658 	const struct ath10k_hw_mem_layout *mem_layout;
1659 	const struct ath10k_mem_region *current_region;
1660 	struct ath10k_dump_ram_data_hdr *hdr;
1661 	u32 count, shift;
1662 	size_t buf_len;
1663 	int ret, i;
1664 	u8 *buf;
1665 
1666 	lockdep_assert_held(&ar->dump_mutex);
1667 
1668 	if (!crash_data)
1669 		return;
1670 
1671 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1672 	if (!mem_layout)
1673 		return;
1674 
1675 	current_region = &mem_layout->region_table.regions[0];
1676 
1677 	buf = crash_data->ramdump_buf;
1678 	buf_len = crash_data->ramdump_buf_len;
1679 
1680 	memset(buf, 0, buf_len);
1681 
1682 	for (i = 0; i < mem_layout->region_table.size; i++) {
1683 		count = 0;
1684 
1685 		if (current_region->len > buf_len) {
1686 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1687 				    current_region->name,
1688 				    current_region->len,
1689 				    buf_len);
1690 			break;
1691 		}
1692 
1693 		/* To get IRAM dump, the host driver needs to switch target
1694 		 * ram config from DRAM to IRAM.
1695 		 */
1696 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1697 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1698 			shift = current_region->start >> 20;
1699 
1700 			ret = ath10k_pci_set_ram_config(ar, shift);
1701 			if (ret) {
1702 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1703 					    current_region->name, ret);
1704 				break;
1705 			}
1706 		}
1707 
1708 		/* Reserve space for the header. */
1709 		hdr = (void *)buf;
1710 		buf += sizeof(*hdr);
1711 		buf_len -= sizeof(*hdr);
1712 
1713 		switch (current_region->type) {
1714 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1715 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1716 			break;
1717 		case ATH10K_MEM_REGION_TYPE_IOREG:
1718 			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1719 			if (ret < 0)
1720 				break;
1721 
1722 			count = ret;
1723 			break;
1724 		default:
1725 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1726 			if (ret < 0)
1727 				break;
1728 
1729 			count = ret;
1730 			break;
1731 		}
1732 
1733 		hdr->region_type = cpu_to_le32(current_region->type);
1734 		hdr->start = cpu_to_le32(current_region->start);
1735 		hdr->length = cpu_to_le32(count);
1736 
1737 		if (count == 0)
1738 			/* Note: the header remains, just with zero length. */
1739 			break;
1740 
1741 		buf += count;
1742 		buf_len -= count;
1743 
1744 		current_region++;
1745 	}
1746 }
1747 
1748 static void ath10k_pci_fw_dump_work(struct work_struct *work)
1749 {
1750 	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1751 						 dump_work);
1752 	struct ath10k_fw_crash_data *crash_data;
1753 	struct ath10k *ar = ar_pci->ar;
1754 	char guid[UUID_STRING_LEN + 1];
1755 
1756 	mutex_lock(&ar->dump_mutex);
1757 
1758 	spin_lock_bh(&ar->data_lock);
1759 	ar->stats.fw_crash_counter++;
1760 	spin_unlock_bh(&ar->data_lock);
1761 
1762 	crash_data = ath10k_coredump_new(ar);
1763 
1764 	if (crash_data)
1765 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1766 	else
1767 		scnprintf(guid, sizeof(guid), "n/a");
1768 
1769 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1770 	ath10k_print_driver_info(ar);
1771 	ath10k_pci_dump_registers(ar, crash_data);
1772 	ath10k_ce_dump_registers(ar, crash_data);
1773 	ath10k_pci_dump_memory(ar, crash_data);
1774 
1775 	mutex_unlock(&ar->dump_mutex);
1776 
1777 	ath10k_core_start_recovery(ar);
1778 }
1779 
1780 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1781 {
1782 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1783 
1784 	queue_work(ar->workqueue, &ar_pci->dump_work);
1785 }
1786 
1787 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1788 					int force)
1789 {
1790 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1791 
1792 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1793 
1794 	if (!force) {
1795 		int resources;
1796 		/*
1797 		 * Decide whether to actually poll for completions, or just
1798 		 * wait for a later chance.
1799 		 * If there seem to be plenty of resources left, then just wait
1800 		 * since checking involves reading a CE register, which is a
1801 		 * relatively expensive operation.
1802 		 */
1803 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1804 
1805 		/*
1806 		 * If at least 50% of the total resources are still available,
1807 		 * don't bother checking again yet.
1808 		 */
1809 		if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1810 			return;
1811 	}
1812 	ath10k_ce_per_engine_service(ar, pipe);
1813 }
1814 
1815 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1816 {
1817 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1818 
1819 	del_timer_sync(&ar_pci->rx_post_retry);
1820 }
1821 
1822 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1823 				       u8 *ul_pipe, u8 *dl_pipe)
1824 {
1825 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1826 	const struct ce_service_to_pipe *entry;
1827 	bool ul_set = false, dl_set = false;
1828 	int i;
1829 
1830 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1831 
1832 	for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1833 		entry = &ar_pci->serv_to_pipe[i];
1834 
1835 		if (__le32_to_cpu(entry->service_id) != service_id)
1836 			continue;
1837 
1838 		switch (__le32_to_cpu(entry->pipedir)) {
1839 		case PIPEDIR_NONE:
1840 			break;
1841 		case PIPEDIR_IN:
1842 			WARN_ON(dl_set);
1843 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1844 			dl_set = true;
1845 			break;
1846 		case PIPEDIR_OUT:
1847 			WARN_ON(ul_set);
1848 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1849 			ul_set = true;
1850 			break;
1851 		case PIPEDIR_INOUT:
1852 			WARN_ON(dl_set);
1853 			WARN_ON(ul_set);
1854 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1855 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1856 			dl_set = true;
1857 			ul_set = true;
1858 			break;
1859 		}
1860 	}
1861 
1862 	if (!ul_set || !dl_set)
1863 		return -ENOENT;
1864 
1865 	return 0;
1866 }
1867 
1868 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1869 				     u8 *ul_pipe, u8 *dl_pipe)
1870 {
1871 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1872 
1873 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1874 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1875 						 ul_pipe, dl_pipe);
1876 }
1877 
1878 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1879 {
1880 	u32 val;
1881 
1882 	switch (ar->hw_rev) {
1883 	case ATH10K_HW_QCA988X:
1884 	case ATH10K_HW_QCA9887:
1885 	case ATH10K_HW_QCA6174:
1886 	case ATH10K_HW_QCA9377:
1887 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1888 					CORE_CTRL_ADDRESS);
1889 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1890 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1891 				   CORE_CTRL_ADDRESS, val);
1892 		break;
1893 	case ATH10K_HW_QCA99X0:
1894 	case ATH10K_HW_QCA9984:
1895 	case ATH10K_HW_QCA9888:
1896 	case ATH10K_HW_QCA4019:
1897 		/* TODO: Find appropriate register configuration for QCA99X0
1898 		 *  to mask irq/MSI.
1899 		 */
1900 		break;
1901 	case ATH10K_HW_WCN3990:
1902 		break;
1903 	}
1904 }
1905 
1906 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1907 {
1908 	u32 val;
1909 
1910 	switch (ar->hw_rev) {
1911 	case ATH10K_HW_QCA988X:
1912 	case ATH10K_HW_QCA9887:
1913 	case ATH10K_HW_QCA6174:
1914 	case ATH10K_HW_QCA9377:
1915 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1916 					CORE_CTRL_ADDRESS);
1917 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1918 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1919 				   CORE_CTRL_ADDRESS, val);
1920 		break;
1921 	case ATH10K_HW_QCA99X0:
1922 	case ATH10K_HW_QCA9984:
1923 	case ATH10K_HW_QCA9888:
1924 	case ATH10K_HW_QCA4019:
1925 		/* TODO: Find appropriate register configuration for QCA99X0
1926 		 *  to unmask irq/MSI.
1927 		 */
1928 		break;
1929 	case ATH10K_HW_WCN3990:
1930 		break;
1931 	}
1932 }
1933 
1934 static void ath10k_pci_irq_disable(struct ath10k *ar)
1935 {
1936 	ath10k_ce_disable_interrupts(ar);
1937 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1938 	ath10k_pci_irq_msi_fw_mask(ar);
1939 }
1940 
1941 static void ath10k_pci_irq_sync(struct ath10k *ar)
1942 {
1943 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1944 
1945 	synchronize_irq(ar_pci->pdev->irq);
1946 }
1947 
1948 static void ath10k_pci_irq_enable(struct ath10k *ar)
1949 {
1950 	ath10k_ce_enable_interrupts(ar);
1951 	ath10k_pci_enable_legacy_irq(ar);
1952 	ath10k_pci_irq_msi_fw_unmask(ar);
1953 }
1954 
1955 static int ath10k_pci_hif_start(struct ath10k *ar)
1956 {
1957 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1958 
1959 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1960 
1961 	ath10k_core_napi_enable(ar);
1962 
1963 	ath10k_pci_irq_enable(ar);
1964 	ath10k_pci_rx_post(ar);
1965 
1966 	pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1967 					   PCI_EXP_LNKCTL_ASPMC,
1968 					   ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
1969 
1970 	return 0;
1971 }
1972 
1973 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1974 {
1975 	struct ath10k *ar;
1976 	struct ath10k_ce_pipe *ce_pipe;
1977 	struct ath10k_ce_ring *ce_ring;
1978 	struct sk_buff *skb;
1979 	int i;
1980 
1981 	ar = pci_pipe->hif_ce_state;
1982 	ce_pipe = pci_pipe->ce_hdl;
1983 	ce_ring = ce_pipe->dest_ring;
1984 
1985 	if (!ce_ring)
1986 		return;
1987 
1988 	if (!pci_pipe->buf_sz)
1989 		return;
1990 
1991 	for (i = 0; i < ce_ring->nentries; i++) {
1992 		skb = ce_ring->per_transfer_context[i];
1993 		if (!skb)
1994 			continue;
1995 
1996 		ce_ring->per_transfer_context[i] = NULL;
1997 
1998 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1999 				 skb->len + skb_tailroom(skb),
2000 				 DMA_FROM_DEVICE);
2001 		dev_kfree_skb_any(skb);
2002 	}
2003 }
2004 
2005 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2006 {
2007 	struct ath10k *ar;
2008 	struct ath10k_ce_pipe *ce_pipe;
2009 	struct ath10k_ce_ring *ce_ring;
2010 	struct sk_buff *skb;
2011 	int i;
2012 
2013 	ar = pci_pipe->hif_ce_state;
2014 	ce_pipe = pci_pipe->ce_hdl;
2015 	ce_ring = ce_pipe->src_ring;
2016 
2017 	if (!ce_ring)
2018 		return;
2019 
2020 	if (!pci_pipe->buf_sz)
2021 		return;
2022 
2023 	for (i = 0; i < ce_ring->nentries; i++) {
2024 		skb = ce_ring->per_transfer_context[i];
2025 		if (!skb)
2026 			continue;
2027 
2028 		ce_ring->per_transfer_context[i] = NULL;
2029 
2030 		ath10k_htc_tx_completion_handler(ar, skb);
2031 	}
2032 }
2033 
2034 /*
2035  * Cleanup residual buffers for device shutdown:
2036  *    buffers that were enqueued for receive
2037  *    buffers that were to be sent
2038  * Note: Buffers that had completed but which were
2039  * not yet processed are on a completion queue. They
2040  * are handled when the completion thread shuts down.
2041  */
2042 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2043 {
2044 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2045 	int pipe_num;
2046 
2047 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2048 		struct ath10k_pci_pipe *pipe_info;
2049 
2050 		pipe_info = &ar_pci->pipe_info[pipe_num];
2051 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2052 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2053 	}
2054 }
2055 
2056 void ath10k_pci_ce_deinit(struct ath10k *ar)
2057 {
2058 	int i;
2059 
2060 	for (i = 0; i < CE_COUNT; i++)
2061 		ath10k_ce_deinit_pipe(ar, i);
2062 }
2063 
2064 void ath10k_pci_flush(struct ath10k *ar)
2065 {
2066 	ath10k_pci_rx_retry_sync(ar);
2067 	ath10k_pci_buffer_cleanup(ar);
2068 }
2069 
2070 static void ath10k_pci_hif_stop(struct ath10k *ar)
2071 {
2072 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2073 	unsigned long flags;
2074 
2075 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2076 
2077 	ath10k_pci_irq_disable(ar);
2078 	ath10k_pci_irq_sync(ar);
2079 
2080 	ath10k_core_napi_sync_disable(ar);
2081 
2082 	cancel_work_sync(&ar_pci->dump_work);
2083 
2084 	/* Most likely the device has HTT Rx ring configured. The only way to
2085 	 * prevent the device from accessing (and possible corrupting) host
2086 	 * memory is to reset the chip now.
2087 	 *
2088 	 * There's also no known way of masking MSI interrupts on the device.
2089 	 * For ranged MSI the CE-related interrupts can be masked. However
2090 	 * regardless how many MSI interrupts are assigned the first one
2091 	 * is always used for firmware indications (crashes) and cannot be
2092 	 * masked. To prevent the device from asserting the interrupt reset it
2093 	 * before proceeding with cleanup.
2094 	 */
2095 	ath10k_pci_safe_chip_reset(ar);
2096 
2097 	ath10k_pci_flush(ar);
2098 
2099 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2100 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2101 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2102 }
2103 
2104 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2105 				    void *req, u32 req_len,
2106 				    void *resp, u32 *resp_len)
2107 {
2108 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2109 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2110 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2111 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2112 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2113 	dma_addr_t req_paddr = 0;
2114 	dma_addr_t resp_paddr = 0;
2115 	struct bmi_xfer xfer = {};
2116 	void *treq, *tresp = NULL;
2117 	int ret = 0;
2118 
2119 	might_sleep();
2120 
2121 	if (resp && !resp_len)
2122 		return -EINVAL;
2123 
2124 	if (resp && resp_len && *resp_len == 0)
2125 		return -EINVAL;
2126 
2127 	treq = kmemdup(req, req_len, GFP_KERNEL);
2128 	if (!treq)
2129 		return -ENOMEM;
2130 
2131 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2132 	ret = dma_mapping_error(ar->dev, req_paddr);
2133 	if (ret) {
2134 		ret = -EIO;
2135 		goto err_dma;
2136 	}
2137 
2138 	if (resp && resp_len) {
2139 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2140 		if (!tresp) {
2141 			ret = -ENOMEM;
2142 			goto err_req;
2143 		}
2144 
2145 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2146 					    DMA_FROM_DEVICE);
2147 		ret = dma_mapping_error(ar->dev, resp_paddr);
2148 		if (ret) {
2149 			ret = -EIO;
2150 			goto err_req;
2151 		}
2152 
2153 		xfer.wait_for_resp = true;
2154 		xfer.resp_len = 0;
2155 
2156 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2157 	}
2158 
2159 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2160 	if (ret)
2161 		goto err_resp;
2162 
2163 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2164 	if (ret) {
2165 		dma_addr_t unused_buffer;
2166 		unsigned int unused_nbytes;
2167 		unsigned int unused_id;
2168 
2169 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2170 					   &unused_nbytes, &unused_id);
2171 	} else {
2172 		/* non-zero means we did not time out */
2173 		ret = 0;
2174 	}
2175 
2176 err_resp:
2177 	if (resp) {
2178 		dma_addr_t unused_buffer;
2179 
2180 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2181 		dma_unmap_single(ar->dev, resp_paddr,
2182 				 *resp_len, DMA_FROM_DEVICE);
2183 	}
2184 err_req:
2185 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2186 
2187 	if (ret == 0 && resp_len) {
2188 		*resp_len = min(*resp_len, xfer.resp_len);
2189 		memcpy(resp, tresp, *resp_len);
2190 	}
2191 err_dma:
2192 	kfree(treq);
2193 	kfree(tresp);
2194 
2195 	return ret;
2196 }
2197 
2198 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2199 {
2200 	struct bmi_xfer *xfer;
2201 
2202 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2203 		return;
2204 
2205 	xfer->tx_done = true;
2206 }
2207 
2208 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2209 {
2210 	struct ath10k *ar = ce_state->ar;
2211 	struct bmi_xfer *xfer;
2212 	unsigned int nbytes;
2213 
2214 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2215 					  &nbytes))
2216 		return;
2217 
2218 	if (WARN_ON_ONCE(!xfer))
2219 		return;
2220 
2221 	if (!xfer->wait_for_resp) {
2222 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2223 		return;
2224 	}
2225 
2226 	xfer->resp_len = nbytes;
2227 	xfer->rx_done = true;
2228 }
2229 
2230 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2231 			       struct ath10k_ce_pipe *tx_pipe,
2232 			       struct ath10k_ce_pipe *rx_pipe,
2233 			       struct bmi_xfer *xfer)
2234 {
2235 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2236 	unsigned long started = jiffies;
2237 	unsigned long dur;
2238 	int ret;
2239 
2240 	while (time_before_eq(jiffies, timeout)) {
2241 		ath10k_pci_bmi_send_done(tx_pipe);
2242 		ath10k_pci_bmi_recv_data(rx_pipe);
2243 
2244 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2245 			ret = 0;
2246 			goto out;
2247 		}
2248 
2249 		schedule();
2250 	}
2251 
2252 	ret = -ETIMEDOUT;
2253 
2254 out:
2255 	dur = jiffies - started;
2256 	if (dur > HZ)
2257 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2258 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2259 			   dur, HZ, ret);
2260 	return ret;
2261 }
2262 
2263 /*
2264  * Send an interrupt to the device to wake up the Target CPU
2265  * so it has an opportunity to notice any changed state.
2266  */
2267 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2268 {
2269 	u32 addr, val;
2270 
2271 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2272 	val = ath10k_pci_read32(ar, addr);
2273 	val |= CORE_CTRL_CPU_INTR_MASK;
2274 	ath10k_pci_write32(ar, addr, val);
2275 
2276 	return 0;
2277 }
2278 
2279 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2280 {
2281 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2282 
2283 	switch (ar_pci->pdev->device) {
2284 	case QCA988X_2_0_DEVICE_ID_UBNT:
2285 	case QCA988X_2_0_DEVICE_ID:
2286 	case QCA99X0_2_0_DEVICE_ID:
2287 	case QCA9888_2_0_DEVICE_ID:
2288 	case QCA9984_1_0_DEVICE_ID:
2289 	case QCA9887_1_0_DEVICE_ID:
2290 		return 1;
2291 	case QCA6164_2_1_DEVICE_ID:
2292 	case QCA6174_2_1_DEVICE_ID:
2293 		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2294 		case QCA6174_HW_1_0_CHIP_ID_REV:
2295 		case QCA6174_HW_1_1_CHIP_ID_REV:
2296 		case QCA6174_HW_2_1_CHIP_ID_REV:
2297 		case QCA6174_HW_2_2_CHIP_ID_REV:
2298 			return 3;
2299 		case QCA6174_HW_1_3_CHIP_ID_REV:
2300 			return 2;
2301 		case QCA6174_HW_3_0_CHIP_ID_REV:
2302 		case QCA6174_HW_3_1_CHIP_ID_REV:
2303 		case QCA6174_HW_3_2_CHIP_ID_REV:
2304 			return 9;
2305 		}
2306 		break;
2307 	case QCA9377_1_0_DEVICE_ID:
2308 		return 9;
2309 	}
2310 
2311 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2312 	return 1;
2313 }
2314 
2315 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2316 {
2317 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2318 
2319 	return ce->bus_ops->get_num_banks(ar);
2320 }
2321 
2322 int ath10k_pci_init_config(struct ath10k *ar)
2323 {
2324 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2325 	u32 interconnect_targ_addr;
2326 	u32 pcie_state_targ_addr = 0;
2327 	u32 pipe_cfg_targ_addr = 0;
2328 	u32 svc_to_pipe_map = 0;
2329 	u32 pcie_config_flags = 0;
2330 	u32 ealloc_value;
2331 	u32 ealloc_targ_addr;
2332 	u32 flag2_value;
2333 	u32 flag2_targ_addr;
2334 	int ret = 0;
2335 
2336 	/* Download to Target the CE Config and the service-to-CE map */
2337 	interconnect_targ_addr =
2338 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2339 
2340 	/* Supply Target-side CE configuration */
2341 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2342 				     &pcie_state_targ_addr);
2343 	if (ret != 0) {
2344 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2345 		return ret;
2346 	}
2347 
2348 	if (pcie_state_targ_addr == 0) {
2349 		ret = -EIO;
2350 		ath10k_err(ar, "Invalid pcie state addr\n");
2351 		return ret;
2352 	}
2353 
2354 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2355 					  offsetof(struct pcie_state,
2356 						   pipe_cfg_addr)),
2357 				     &pipe_cfg_targ_addr);
2358 	if (ret != 0) {
2359 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2360 		return ret;
2361 	}
2362 
2363 	if (pipe_cfg_targ_addr == 0) {
2364 		ret = -EIO;
2365 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2366 		return ret;
2367 	}
2368 
2369 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2370 					ar_pci->pipe_config,
2371 					sizeof(struct ce_pipe_config) *
2372 					NUM_TARGET_CE_CONFIG_WLAN);
2373 
2374 	if (ret != 0) {
2375 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2376 		return ret;
2377 	}
2378 
2379 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2380 					  offsetof(struct pcie_state,
2381 						   svc_to_pipe_map)),
2382 				     &svc_to_pipe_map);
2383 	if (ret != 0) {
2384 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2385 		return ret;
2386 	}
2387 
2388 	if (svc_to_pipe_map == 0) {
2389 		ret = -EIO;
2390 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2391 		return ret;
2392 	}
2393 
2394 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2395 					ar_pci->serv_to_pipe,
2396 					sizeof(pci_target_service_to_ce_map_wlan));
2397 	if (ret != 0) {
2398 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2399 		return ret;
2400 	}
2401 
2402 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2403 					  offsetof(struct pcie_state,
2404 						   config_flags)),
2405 				     &pcie_config_flags);
2406 	if (ret != 0) {
2407 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2408 		return ret;
2409 	}
2410 
2411 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2412 
2413 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2414 					   offsetof(struct pcie_state,
2415 						    config_flags)),
2416 				      pcie_config_flags);
2417 	if (ret != 0) {
2418 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2419 		return ret;
2420 	}
2421 
2422 	/* configure early allocation */
2423 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2424 
2425 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2426 	if (ret != 0) {
2427 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2428 		return ret;
2429 	}
2430 
2431 	/* first bank is switched to IRAM */
2432 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2433 			 HI_EARLY_ALLOC_MAGIC_MASK);
2434 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2435 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2436 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2437 
2438 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2439 	if (ret != 0) {
2440 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2441 		return ret;
2442 	}
2443 
2444 	/* Tell Target to proceed with initialization */
2445 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2446 
2447 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2448 	if (ret != 0) {
2449 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2450 		return ret;
2451 	}
2452 
2453 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2454 
2455 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2456 	if (ret != 0) {
2457 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2458 		return ret;
2459 	}
2460 
2461 	return 0;
2462 }
2463 
2464 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2465 {
2466 	struct ce_attr *attr;
2467 	struct ce_pipe_config *config;
2468 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2469 
2470 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2471 	 * since it is currently used for other feature.
2472 	 */
2473 
2474 	/* Override Host's Copy Engine 5 configuration */
2475 	attr = &ar_pci->attr[5];
2476 	attr->src_sz_max = 0;
2477 	attr->dest_nentries = 0;
2478 
2479 	/* Override Target firmware's Copy Engine configuration */
2480 	config = &ar_pci->pipe_config[5];
2481 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2482 	config->nbytes_max = __cpu_to_le32(2048);
2483 
2484 	/* Map from service/endpoint to Copy Engine */
2485 	ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2486 }
2487 
2488 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2489 {
2490 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2491 	struct ath10k_pci_pipe *pipe;
2492 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2493 	int i, ret;
2494 
2495 	for (i = 0; i < CE_COUNT; i++) {
2496 		pipe = &ar_pci->pipe_info[i];
2497 		pipe->ce_hdl = &ce->ce_states[i];
2498 		pipe->pipe_num = i;
2499 		pipe->hif_ce_state = ar;
2500 
2501 		ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2502 		if (ret) {
2503 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2504 				   i, ret);
2505 			return ret;
2506 		}
2507 
2508 		/* Last CE is Diagnostic Window */
2509 		if (i == CE_DIAG_PIPE) {
2510 			ar_pci->ce_diag = pipe->ce_hdl;
2511 			continue;
2512 		}
2513 
2514 		pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2515 	}
2516 
2517 	return 0;
2518 }
2519 
2520 void ath10k_pci_free_pipes(struct ath10k *ar)
2521 {
2522 	int i;
2523 
2524 	for (i = 0; i < CE_COUNT; i++)
2525 		ath10k_ce_free_pipe(ar, i);
2526 }
2527 
2528 int ath10k_pci_init_pipes(struct ath10k *ar)
2529 {
2530 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2531 	int i, ret;
2532 
2533 	for (i = 0; i < CE_COUNT; i++) {
2534 		ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2535 		if (ret) {
2536 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2537 				   i, ret);
2538 			return ret;
2539 		}
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2546 {
2547 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2548 	       FW_IND_EVENT_PENDING;
2549 }
2550 
2551 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2552 {
2553 	u32 val;
2554 
2555 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2556 	val &= ~FW_IND_EVENT_PENDING;
2557 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2558 }
2559 
2560 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2561 {
2562 	u32 val;
2563 
2564 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2565 	return (val == 0xffffffff);
2566 }
2567 
2568 /* this function effectively clears target memory controller assert line */
2569 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2570 {
2571 	u32 val;
2572 
2573 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2574 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2575 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2576 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2577 
2578 	msleep(10);
2579 
2580 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2581 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2582 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2583 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2584 
2585 	msleep(10);
2586 }
2587 
2588 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2589 {
2590 	u32 val;
2591 
2592 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2593 
2594 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2595 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2596 			       val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2597 }
2598 
2599 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2600 {
2601 	u32 val;
2602 
2603 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2604 
2605 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2606 			       val | SOC_RESET_CONTROL_CE_RST_MASK);
2607 	msleep(10);
2608 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2609 			       val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2610 }
2611 
2612 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2613 {
2614 	u32 val;
2615 
2616 	val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2617 	ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2618 			       val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2619 }
2620 
2621 static int ath10k_pci_warm_reset(struct ath10k *ar)
2622 {
2623 	int ret;
2624 
2625 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2626 
2627 	spin_lock_bh(&ar->data_lock);
2628 	ar->stats.fw_warm_reset_counter++;
2629 	spin_unlock_bh(&ar->data_lock);
2630 
2631 	ath10k_pci_irq_disable(ar);
2632 
2633 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2634 	 * were to access copy engine while host performs copy engine reset
2635 	 * then it is possible for the device to confuse pci-e controller to
2636 	 * the point of bringing host system to a complete stop (i.e. hang).
2637 	 */
2638 	ath10k_pci_warm_reset_si0(ar);
2639 	ath10k_pci_warm_reset_cpu(ar);
2640 	ath10k_pci_init_pipes(ar);
2641 	ath10k_pci_wait_for_target_init(ar);
2642 
2643 	ath10k_pci_warm_reset_clear_lf(ar);
2644 	ath10k_pci_warm_reset_ce(ar);
2645 	ath10k_pci_warm_reset_cpu(ar);
2646 	ath10k_pci_init_pipes(ar);
2647 
2648 	ret = ath10k_pci_wait_for_target_init(ar);
2649 	if (ret) {
2650 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2651 		return ret;
2652 	}
2653 
2654 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2655 
2656 	return 0;
2657 }
2658 
2659 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2660 {
2661 	ath10k_pci_irq_disable(ar);
2662 	return ath10k_pci_qca99x0_chip_reset(ar);
2663 }
2664 
2665 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2666 {
2667 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2668 
2669 	if (!ar_pci->pci_soft_reset)
2670 		return -ENOTSUPP;
2671 
2672 	return ar_pci->pci_soft_reset(ar);
2673 }
2674 
2675 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2676 {
2677 	int i, ret;
2678 	u32 val;
2679 
2680 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2681 
2682 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2683 	 * It is thus preferred to use warm reset which is safer but may not be
2684 	 * able to recover the device from all possible fail scenarios.
2685 	 *
2686 	 * Warm reset doesn't always work on first try so attempt it a few
2687 	 * times before giving up.
2688 	 */
2689 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2690 		ret = ath10k_pci_warm_reset(ar);
2691 		if (ret) {
2692 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2693 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2694 				    ret);
2695 			continue;
2696 		}
2697 
2698 		/* FIXME: Sometimes copy engine doesn't recover after warm
2699 		 * reset. In most cases this needs cold reset. In some of these
2700 		 * cases the device is in such a state that a cold reset may
2701 		 * lock up the host.
2702 		 *
2703 		 * Reading any host interest register via copy engine is
2704 		 * sufficient to verify if device is capable of booting
2705 		 * firmware blob.
2706 		 */
2707 		ret = ath10k_pci_init_pipes(ar);
2708 		if (ret) {
2709 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2710 				    ret);
2711 			continue;
2712 		}
2713 
2714 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2715 					     &val);
2716 		if (ret) {
2717 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2718 				    ret);
2719 			continue;
2720 		}
2721 
2722 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2723 		return 0;
2724 	}
2725 
2726 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2727 		ath10k_warn(ar, "refusing cold reset as requested\n");
2728 		return -EPERM;
2729 	}
2730 
2731 	ret = ath10k_pci_cold_reset(ar);
2732 	if (ret) {
2733 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2734 		return ret;
2735 	}
2736 
2737 	ret = ath10k_pci_wait_for_target_init(ar);
2738 	if (ret) {
2739 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2740 			    ret);
2741 		return ret;
2742 	}
2743 
2744 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2745 
2746 	return 0;
2747 }
2748 
2749 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2750 {
2751 	int ret;
2752 
2753 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2754 
2755 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2756 
2757 	ret = ath10k_pci_cold_reset(ar);
2758 	if (ret) {
2759 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2760 		return ret;
2761 	}
2762 
2763 	ret = ath10k_pci_wait_for_target_init(ar);
2764 	if (ret) {
2765 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2766 			    ret);
2767 		return ret;
2768 	}
2769 
2770 	ret = ath10k_pci_warm_reset(ar);
2771 	if (ret) {
2772 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2773 		return ret;
2774 	}
2775 
2776 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2777 
2778 	return 0;
2779 }
2780 
2781 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2782 {
2783 	int ret;
2784 
2785 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2786 
2787 	ret = ath10k_pci_cold_reset(ar);
2788 	if (ret) {
2789 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2790 		return ret;
2791 	}
2792 
2793 	ret = ath10k_pci_wait_for_target_init(ar);
2794 	if (ret) {
2795 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2796 			    ret);
2797 		return ret;
2798 	}
2799 
2800 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2801 
2802 	return 0;
2803 }
2804 
2805 static int ath10k_pci_chip_reset(struct ath10k *ar)
2806 {
2807 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2808 
2809 	if (WARN_ON(!ar_pci->pci_hard_reset))
2810 		return -ENOTSUPP;
2811 
2812 	return ar_pci->pci_hard_reset(ar);
2813 }
2814 
2815 static int ath10k_pci_hif_power_up(struct ath10k *ar,
2816 				   enum ath10k_firmware_mode fw_mode)
2817 {
2818 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2819 	int ret;
2820 
2821 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2822 
2823 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2824 				  &ar_pci->link_ctl);
2825 	pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2826 				   PCI_EXP_LNKCTL_ASPMC);
2827 
2828 	/*
2829 	 * Bring the target up cleanly.
2830 	 *
2831 	 * The target may be in an undefined state with an AUX-powered Target
2832 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2833 	 * restarted (without unloading the driver) then the Target is left
2834 	 * (aux) powered and running. On a subsequent driver load, the Target
2835 	 * is in an unexpected state. We try to catch that here in order to
2836 	 * reset the Target and retry the probe.
2837 	 */
2838 	ret = ath10k_pci_chip_reset(ar);
2839 	if (ret) {
2840 		if (ath10k_pci_has_fw_crashed(ar)) {
2841 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2842 			ath10k_pci_fw_crashed_clear(ar);
2843 			ath10k_pci_fw_crashed_dump(ar);
2844 		}
2845 
2846 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2847 		goto err_sleep;
2848 	}
2849 
2850 	ret = ath10k_pci_init_pipes(ar);
2851 	if (ret) {
2852 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2853 		goto err_sleep;
2854 	}
2855 
2856 	ret = ath10k_pci_init_config(ar);
2857 	if (ret) {
2858 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2859 		goto err_ce;
2860 	}
2861 
2862 	ret = ath10k_pci_wake_target_cpu(ar);
2863 	if (ret) {
2864 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2865 		goto err_ce;
2866 	}
2867 
2868 	return 0;
2869 
2870 err_ce:
2871 	ath10k_pci_ce_deinit(ar);
2872 
2873 err_sleep:
2874 	return ret;
2875 }
2876 
2877 void ath10k_pci_hif_power_down(struct ath10k *ar)
2878 {
2879 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2880 
2881 	/* Currently hif_power_up performs effectively a reset and hif_stop
2882 	 * resets the chip as well so there's no point in resetting here.
2883 	 */
2884 }
2885 
2886 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2887 {
2888 	/* Nothing to do; the important stuff is in the driver suspend. */
2889 	return 0;
2890 }
2891 
2892 static int ath10k_pci_suspend(struct ath10k *ar)
2893 {
2894 	/* The grace timer can still be counting down and ar->ps_awake be true.
2895 	 * It is known that the device may be asleep after resuming regardless
2896 	 * of the SoC powersave state before suspending. Hence make sure the
2897 	 * device is asleep before proceeding.
2898 	 */
2899 	ath10k_pci_sleep_sync(ar);
2900 
2901 	return 0;
2902 }
2903 
2904 static int ath10k_pci_hif_resume(struct ath10k *ar)
2905 {
2906 	/* Nothing to do; the important stuff is in the driver resume. */
2907 	return 0;
2908 }
2909 
2910 static int ath10k_pci_resume(struct ath10k *ar)
2911 {
2912 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2913 	struct pci_dev *pdev = ar_pci->pdev;
2914 	u32 val;
2915 	int ret = 0;
2916 
2917 	ret = ath10k_pci_force_wake(ar);
2918 	if (ret) {
2919 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2920 		return ret;
2921 	}
2922 
2923 	/* Suspend/Resume resets the PCI configuration space, so we have to
2924 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2925 	 * from interfering with C3 CPU state. pci_restore_state won't help
2926 	 * here since it only restores the first 64 bytes pci config header.
2927 	 */
2928 	pci_read_config_dword(pdev, 0x40, &val);
2929 	if ((val & 0x0000ff00) != 0)
2930 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2931 
2932 	return ret;
2933 }
2934 
2935 static bool ath10k_pci_validate_cal(void *data, size_t size)
2936 {
2937 	__le16 *cal_words = data;
2938 	u16 checksum = 0;
2939 	size_t i;
2940 
2941 	if (size % 2 != 0)
2942 		return false;
2943 
2944 	for (i = 0; i < size / 2; i++)
2945 		checksum ^= le16_to_cpu(cal_words[i]);
2946 
2947 	return checksum == 0xffff;
2948 }
2949 
2950 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2951 {
2952 	/* Enable SI clock */
2953 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2954 
2955 	/* Configure GPIOs for I2C operation */
2956 	ath10k_pci_write32(ar,
2957 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2958 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2959 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2960 			      GPIO_PIN0_CONFIG) |
2961 			   SM(1, GPIO_PIN0_PAD_PULL));
2962 
2963 	ath10k_pci_write32(ar,
2964 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2965 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2966 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2967 			   SM(1, GPIO_PIN0_PAD_PULL));
2968 
2969 	ath10k_pci_write32(ar,
2970 			   GPIO_BASE_ADDRESS +
2971 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2972 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2973 
2974 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2975 	ath10k_pci_write32(ar,
2976 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2977 			   SM(1, SI_CONFIG_ERR_INT) |
2978 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2979 			   SM(1, SI_CONFIG_I2C) |
2980 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2981 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2982 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2983 			   SM(8, SI_CONFIG_DIVIDER));
2984 }
2985 
2986 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2987 {
2988 	u32 reg;
2989 	int wait_limit;
2990 
2991 	/* set device select byte and for the read operation */
2992 	reg = QCA9887_EEPROM_SELECT_READ |
2993 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2994 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2995 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2996 
2997 	/* write transmit data, transfer length, and START bit */
2998 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2999 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3000 			   SM(4, SI_CS_TX_CNT));
3001 
3002 	/* wait max 1 sec */
3003 	wait_limit = 100000;
3004 
3005 	/* wait for SI_CS_DONE_INT */
3006 	do {
3007 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3008 		if (MS(reg, SI_CS_DONE_INT))
3009 			break;
3010 
3011 		wait_limit--;
3012 		udelay(10);
3013 	} while (wait_limit > 0);
3014 
3015 	if (!MS(reg, SI_CS_DONE_INT)) {
3016 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3017 			   addr);
3018 		return -ETIMEDOUT;
3019 	}
3020 
3021 	/* clear SI_CS_DONE_INT */
3022 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3023 
3024 	if (MS(reg, SI_CS_DONE_ERR)) {
3025 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3026 		return -EIO;
3027 	}
3028 
3029 	/* extract receive data */
3030 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3031 	*out = reg;
3032 
3033 	return 0;
3034 }
3035 
3036 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3037 					   size_t *data_len)
3038 {
3039 	u8 *caldata = NULL;
3040 	size_t calsize, i;
3041 	int ret;
3042 
3043 	if (!QCA_REV_9887(ar))
3044 		return -EOPNOTSUPP;
3045 
3046 	calsize = ar->hw_params.cal_data_len;
3047 	caldata = kmalloc(calsize, GFP_KERNEL);
3048 	if (!caldata)
3049 		return -ENOMEM;
3050 
3051 	ath10k_pci_enable_eeprom(ar);
3052 
3053 	for (i = 0; i < calsize; i++) {
3054 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3055 		if (ret)
3056 			goto err_free;
3057 	}
3058 
3059 	if (!ath10k_pci_validate_cal(caldata, calsize))
3060 		goto err_free;
3061 
3062 	*data = caldata;
3063 	*data_len = calsize;
3064 
3065 	return 0;
3066 
3067 err_free:
3068 	kfree(caldata);
3069 
3070 	return -EINVAL;
3071 }
3072 
3073 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3074 	.tx_sg			= ath10k_pci_hif_tx_sg,
3075 	.diag_read		= ath10k_pci_hif_diag_read,
3076 	.diag_write		= ath10k_pci_diag_write_mem,
3077 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3078 	.start			= ath10k_pci_hif_start,
3079 	.stop			= ath10k_pci_hif_stop,
3080 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3081 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3082 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3083 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3084 	.power_up		= ath10k_pci_hif_power_up,
3085 	.power_down		= ath10k_pci_hif_power_down,
3086 	.read32			= ath10k_pci_read32,
3087 	.write32		= ath10k_pci_write32,
3088 	.suspend		= ath10k_pci_hif_suspend,
3089 	.resume			= ath10k_pci_hif_resume,
3090 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3091 };
3092 
3093 /*
3094  * Top-level interrupt handler for all PCI interrupts from a Target.
3095  * When a block of MSI interrupts is allocated, this top-level handler
3096  * is not used; instead, we directly call the correct sub-handler.
3097  */
3098 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3099 {
3100 	struct ath10k *ar = arg;
3101 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3102 	int ret;
3103 
3104 	if (ath10k_pci_has_device_gone(ar))
3105 		return IRQ_NONE;
3106 
3107 	ret = ath10k_pci_force_wake(ar);
3108 	if (ret) {
3109 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3110 		return IRQ_NONE;
3111 	}
3112 
3113 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3114 	    !ath10k_pci_irq_pending(ar))
3115 		return IRQ_NONE;
3116 
3117 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3118 	ath10k_pci_irq_msi_fw_mask(ar);
3119 	napi_schedule(&ar->napi);
3120 
3121 	return IRQ_HANDLED;
3122 }
3123 
3124 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3125 {
3126 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3127 	int done = 0;
3128 
3129 	if (ath10k_pci_has_fw_crashed(ar)) {
3130 		ath10k_pci_fw_crashed_clear(ar);
3131 		ath10k_pci_fw_crashed_dump(ar);
3132 		napi_complete(ctx);
3133 		return done;
3134 	}
3135 
3136 	ath10k_ce_per_engine_service_any(ar);
3137 
3138 	done = ath10k_htt_txrx_compl_task(ar, budget);
3139 
3140 	if (done < budget) {
3141 		napi_complete_done(ctx, done);
3142 		/* In case of MSI, it is possible that interrupts are received
3143 		 * while NAPI poll is inprogress. So pending interrupts that are
3144 		 * received after processing all copy engine pipes by NAPI poll
3145 		 * will not be handled again. This is causing failure to
3146 		 * complete boot sequence in x86 platform. So before enabling
3147 		 * interrupts safer to check for pending interrupts for
3148 		 * immediate servicing.
3149 		 */
3150 		if (ath10k_ce_interrupt_summary(ar)) {
3151 			napi_reschedule(ctx);
3152 			goto out;
3153 		}
3154 		ath10k_pci_enable_legacy_irq(ar);
3155 		ath10k_pci_irq_msi_fw_unmask(ar);
3156 	}
3157 
3158 out:
3159 	return done;
3160 }
3161 
3162 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3163 {
3164 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3165 	int ret;
3166 
3167 	ret = request_irq(ar_pci->pdev->irq,
3168 			  ath10k_pci_interrupt_handler,
3169 			  IRQF_SHARED, "ath10k_pci", ar);
3170 	if (ret) {
3171 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3172 			    ar_pci->pdev->irq, ret);
3173 		return ret;
3174 	}
3175 
3176 	return 0;
3177 }
3178 
3179 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3180 {
3181 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3182 	int ret;
3183 
3184 	ret = request_irq(ar_pci->pdev->irq,
3185 			  ath10k_pci_interrupt_handler,
3186 			  IRQF_SHARED, "ath10k_pci", ar);
3187 	if (ret) {
3188 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3189 			    ar_pci->pdev->irq, ret);
3190 		return ret;
3191 	}
3192 
3193 	return 0;
3194 }
3195 
3196 static int ath10k_pci_request_irq(struct ath10k *ar)
3197 {
3198 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3199 
3200 	switch (ar_pci->oper_irq_mode) {
3201 	case ATH10K_PCI_IRQ_LEGACY:
3202 		return ath10k_pci_request_irq_legacy(ar);
3203 	case ATH10K_PCI_IRQ_MSI:
3204 		return ath10k_pci_request_irq_msi(ar);
3205 	default:
3206 		return -EINVAL;
3207 	}
3208 }
3209 
3210 static void ath10k_pci_free_irq(struct ath10k *ar)
3211 {
3212 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3213 
3214 	free_irq(ar_pci->pdev->irq, ar);
3215 }
3216 
3217 void ath10k_pci_init_napi(struct ath10k *ar)
3218 {
3219 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
3220 }
3221 
3222 static int ath10k_pci_init_irq(struct ath10k *ar)
3223 {
3224 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3225 	int ret;
3226 
3227 	ath10k_pci_init_napi(ar);
3228 
3229 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3230 		ath10k_info(ar, "limiting irq mode to: %d\n",
3231 			    ath10k_pci_irq_mode);
3232 
3233 	/* Try MSI */
3234 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3235 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3236 		ret = pci_enable_msi(ar_pci->pdev);
3237 		if (ret == 0)
3238 			return 0;
3239 
3240 		/* MHI failed, try legacy irq next */
3241 	}
3242 
3243 	/* Try legacy irq
3244 	 *
3245 	 * A potential race occurs here: The CORE_BASE write
3246 	 * depends on target correctly decoding AXI address but
3247 	 * host won't know when target writes BAR to CORE_CTRL.
3248 	 * This write might get lost if target has NOT written BAR.
3249 	 * For now, fix the race by repeating the write in below
3250 	 * synchronization checking.
3251 	 */
3252 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3253 
3254 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3255 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3256 
3257 	return 0;
3258 }
3259 
3260 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3261 {
3262 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3263 			   0);
3264 }
3265 
3266 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3267 {
3268 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3269 
3270 	switch (ar_pci->oper_irq_mode) {
3271 	case ATH10K_PCI_IRQ_LEGACY:
3272 		ath10k_pci_deinit_irq_legacy(ar);
3273 		break;
3274 	default:
3275 		pci_disable_msi(ar_pci->pdev);
3276 		break;
3277 	}
3278 
3279 	return 0;
3280 }
3281 
3282 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3283 {
3284 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3285 	unsigned long timeout;
3286 	u32 val;
3287 
3288 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3289 
3290 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3291 
3292 	do {
3293 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3294 
3295 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3296 			   val);
3297 
3298 		/* target should never return this */
3299 		if (val == 0xffffffff)
3300 			continue;
3301 
3302 		/* the device has crashed so don't bother trying anymore */
3303 		if (val & FW_IND_EVENT_PENDING)
3304 			break;
3305 
3306 		if (val & FW_IND_INITIALIZED)
3307 			break;
3308 
3309 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3310 			/* Fix potential race by repeating CORE_BASE writes */
3311 			ath10k_pci_enable_legacy_irq(ar);
3312 
3313 		mdelay(10);
3314 	} while (time_before(jiffies, timeout));
3315 
3316 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3317 	ath10k_pci_irq_msi_fw_mask(ar);
3318 
3319 	if (val == 0xffffffff) {
3320 		ath10k_err(ar, "failed to read device register, device is gone\n");
3321 		return -EIO;
3322 	}
3323 
3324 	if (val & FW_IND_EVENT_PENDING) {
3325 		ath10k_warn(ar, "device has crashed during init\n");
3326 		return -ECOMM;
3327 	}
3328 
3329 	if (!(val & FW_IND_INITIALIZED)) {
3330 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3331 			   val);
3332 		return -ETIMEDOUT;
3333 	}
3334 
3335 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3336 	return 0;
3337 }
3338 
3339 static int ath10k_pci_cold_reset(struct ath10k *ar)
3340 {
3341 	u32 val;
3342 
3343 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3344 
3345 	spin_lock_bh(&ar->data_lock);
3346 
3347 	ar->stats.fw_cold_reset_counter++;
3348 
3349 	spin_unlock_bh(&ar->data_lock);
3350 
3351 	/* Put Target, including PCIe, into RESET. */
3352 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3353 	val |= 1;
3354 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3355 
3356 	/* After writing into SOC_GLOBAL_RESET to put device into
3357 	 * reset and pulling out of reset pcie may not be stable
3358 	 * for any immediate pcie register access and cause bus error,
3359 	 * add delay before any pcie access request to fix this issue.
3360 	 */
3361 	msleep(20);
3362 
3363 	/* Pull Target, including PCIe, out of RESET. */
3364 	val &= ~1;
3365 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3366 
3367 	msleep(20);
3368 
3369 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3370 
3371 	return 0;
3372 }
3373 
3374 static int ath10k_pci_claim(struct ath10k *ar)
3375 {
3376 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3377 	struct pci_dev *pdev = ar_pci->pdev;
3378 	int ret;
3379 
3380 	pci_set_drvdata(pdev, ar);
3381 
3382 	ret = pci_enable_device(pdev);
3383 	if (ret) {
3384 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3385 		return ret;
3386 	}
3387 
3388 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3389 	if (ret) {
3390 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3391 			   ret);
3392 		goto err_device;
3393 	}
3394 
3395 	/* Target expects 32 bit DMA. Enforce it. */
3396 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3397 	if (ret) {
3398 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3399 		goto err_region;
3400 	}
3401 
3402 	pci_set_master(pdev);
3403 
3404 	/* Arrange for access to Target SoC registers. */
3405 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3406 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3407 	if (!ar_pci->mem) {
3408 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3409 		ret = -EIO;
3410 		goto err_region;
3411 	}
3412 
3413 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3414 	return 0;
3415 
3416 err_region:
3417 	pci_release_region(pdev, BAR_NUM);
3418 
3419 err_device:
3420 	pci_disable_device(pdev);
3421 
3422 	return ret;
3423 }
3424 
3425 static void ath10k_pci_release(struct ath10k *ar)
3426 {
3427 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3428 	struct pci_dev *pdev = ar_pci->pdev;
3429 
3430 	pci_iounmap(pdev, ar_pci->mem);
3431 	pci_release_region(pdev, BAR_NUM);
3432 	pci_disable_device(pdev);
3433 }
3434 
3435 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3436 {
3437 	const struct ath10k_pci_supp_chip *supp_chip;
3438 	int i;
3439 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3440 
3441 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3442 		supp_chip = &ath10k_pci_supp_chips[i];
3443 
3444 		if (supp_chip->dev_id == dev_id &&
3445 		    supp_chip->rev_id == rev_id)
3446 			return true;
3447 	}
3448 
3449 	return false;
3450 }
3451 
3452 int ath10k_pci_setup_resource(struct ath10k *ar)
3453 {
3454 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3455 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3456 	int ret;
3457 
3458 	spin_lock_init(&ce->ce_lock);
3459 	spin_lock_init(&ar_pci->ps_lock);
3460 	mutex_init(&ar_pci->ce_diag_mutex);
3461 
3462 	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3463 
3464 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3465 
3466 	ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3467 			       sizeof(pci_host_ce_config_wlan),
3468 			       GFP_KERNEL);
3469 	if (!ar_pci->attr)
3470 		return -ENOMEM;
3471 
3472 	ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3473 				      sizeof(pci_target_ce_config_wlan),
3474 				      GFP_KERNEL);
3475 	if (!ar_pci->pipe_config) {
3476 		ret = -ENOMEM;
3477 		goto err_free_attr;
3478 	}
3479 
3480 	ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3481 				       sizeof(pci_target_service_to_ce_map_wlan),
3482 				       GFP_KERNEL);
3483 	if (!ar_pci->serv_to_pipe) {
3484 		ret = -ENOMEM;
3485 		goto err_free_pipe_config;
3486 	}
3487 
3488 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3489 		ath10k_pci_override_ce_config(ar);
3490 
3491 	ret = ath10k_pci_alloc_pipes(ar);
3492 	if (ret) {
3493 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3494 			   ret);
3495 		goto err_free_serv_to_pipe;
3496 	}
3497 
3498 	return 0;
3499 
3500 err_free_serv_to_pipe:
3501 	kfree(ar_pci->serv_to_pipe);
3502 err_free_pipe_config:
3503 	kfree(ar_pci->pipe_config);
3504 err_free_attr:
3505 	kfree(ar_pci->attr);
3506 	return ret;
3507 }
3508 
3509 void ath10k_pci_release_resource(struct ath10k *ar)
3510 {
3511 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3512 
3513 	ath10k_pci_rx_retry_sync(ar);
3514 	netif_napi_del(&ar->napi);
3515 	ath10k_pci_ce_deinit(ar);
3516 	ath10k_pci_free_pipes(ar);
3517 	kfree(ar_pci->attr);
3518 	kfree(ar_pci->pipe_config);
3519 	kfree(ar_pci->serv_to_pipe);
3520 }
3521 
3522 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3523 	.read32		= ath10k_bus_pci_read32,
3524 	.write32	= ath10k_bus_pci_write32,
3525 	.get_num_banks	= ath10k_pci_get_num_banks,
3526 };
3527 
3528 static int ath10k_pci_probe(struct pci_dev *pdev,
3529 			    const struct pci_device_id *pci_dev)
3530 {
3531 	int ret = 0;
3532 	struct ath10k *ar;
3533 	struct ath10k_pci *ar_pci;
3534 	enum ath10k_hw_rev hw_rev;
3535 	struct ath10k_bus_params bus_params = {};
3536 	bool pci_ps, is_qca988x = false;
3537 	int (*pci_soft_reset)(struct ath10k *ar);
3538 	int (*pci_hard_reset)(struct ath10k *ar);
3539 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3540 
3541 	switch (pci_dev->device) {
3542 	case QCA988X_2_0_DEVICE_ID_UBNT:
3543 	case QCA988X_2_0_DEVICE_ID:
3544 		hw_rev = ATH10K_HW_QCA988X;
3545 		pci_ps = false;
3546 		is_qca988x = true;
3547 		pci_soft_reset = ath10k_pci_warm_reset;
3548 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3549 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3550 		break;
3551 	case QCA9887_1_0_DEVICE_ID:
3552 		hw_rev = ATH10K_HW_QCA9887;
3553 		pci_ps = false;
3554 		pci_soft_reset = ath10k_pci_warm_reset;
3555 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3556 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3557 		break;
3558 	case QCA6164_2_1_DEVICE_ID:
3559 	case QCA6174_2_1_DEVICE_ID:
3560 		hw_rev = ATH10K_HW_QCA6174;
3561 		pci_ps = true;
3562 		pci_soft_reset = ath10k_pci_warm_reset;
3563 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3564 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3565 		break;
3566 	case QCA99X0_2_0_DEVICE_ID:
3567 		hw_rev = ATH10K_HW_QCA99X0;
3568 		pci_ps = false;
3569 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3570 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3571 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3572 		break;
3573 	case QCA9984_1_0_DEVICE_ID:
3574 		hw_rev = ATH10K_HW_QCA9984;
3575 		pci_ps = false;
3576 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3577 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3578 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3579 		break;
3580 	case QCA9888_2_0_DEVICE_ID:
3581 		hw_rev = ATH10K_HW_QCA9888;
3582 		pci_ps = false;
3583 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3584 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3585 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3586 		break;
3587 	case QCA9377_1_0_DEVICE_ID:
3588 		hw_rev = ATH10K_HW_QCA9377;
3589 		pci_ps = true;
3590 		pci_soft_reset = ath10k_pci_warm_reset;
3591 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3592 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3593 		break;
3594 	default:
3595 		WARN_ON(1);
3596 		return -ENOTSUPP;
3597 	}
3598 
3599 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3600 				hw_rev, &ath10k_pci_hif_ops);
3601 	if (!ar) {
3602 		dev_err(&pdev->dev, "failed to allocate core\n");
3603 		return -ENOMEM;
3604 	}
3605 
3606 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3607 		   pdev->vendor, pdev->device,
3608 		   pdev->subsystem_vendor, pdev->subsystem_device);
3609 
3610 	ar_pci = ath10k_pci_priv(ar);
3611 	ar_pci->pdev = pdev;
3612 	ar_pci->dev = &pdev->dev;
3613 	ar_pci->ar = ar;
3614 	ar->dev_id = pci_dev->device;
3615 	ar_pci->pci_ps = pci_ps;
3616 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3617 	ar_pci->pci_soft_reset = pci_soft_reset;
3618 	ar_pci->pci_hard_reset = pci_hard_reset;
3619 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3620 	ar->ce_priv = &ar_pci->ce;
3621 
3622 	ar->id.vendor = pdev->vendor;
3623 	ar->id.device = pdev->device;
3624 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3625 	ar->id.subsystem_device = pdev->subsystem_device;
3626 
3627 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3628 
3629 	ret = ath10k_pci_setup_resource(ar);
3630 	if (ret) {
3631 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3632 		goto err_core_destroy;
3633 	}
3634 
3635 	ret = ath10k_pci_claim(ar);
3636 	if (ret) {
3637 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3638 		goto err_free_pipes;
3639 	}
3640 
3641 	ret = ath10k_pci_force_wake(ar);
3642 	if (ret) {
3643 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3644 		goto err_sleep;
3645 	}
3646 
3647 	ath10k_pci_ce_deinit(ar);
3648 	ath10k_pci_irq_disable(ar);
3649 
3650 	ret = ath10k_pci_init_irq(ar);
3651 	if (ret) {
3652 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3653 		goto err_sleep;
3654 	}
3655 
3656 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3657 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3658 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3659 
3660 	ret = ath10k_pci_request_irq(ar);
3661 	if (ret) {
3662 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3663 		goto err_deinit_irq;
3664 	}
3665 
3666 	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3667 	bus_params.link_can_suspend = true;
3668 	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3669 	 * fall off the bus during chip_reset. These chips have the same pci
3670 	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3671 	 */
3672 	if (is_qca988x) {
3673 		bus_params.chip_id =
3674 			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3675 		if (bus_params.chip_id != 0xffffffff) {
3676 			if (!ath10k_pci_chip_is_supported(pdev->device,
3677 							  bus_params.chip_id)) {
3678 				ret = -ENODEV;
3679 				goto err_unsupported;
3680 			}
3681 		}
3682 	}
3683 
3684 	ret = ath10k_pci_chip_reset(ar);
3685 	if (ret) {
3686 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3687 		goto err_free_irq;
3688 	}
3689 
3690 	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3691 	if (bus_params.chip_id == 0xffffffff) {
3692 		ret = -ENODEV;
3693 		goto err_unsupported;
3694 	}
3695 
3696 	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3697 		ret = -ENODEV;
3698 		goto err_unsupported;
3699 	}
3700 
3701 	ret = ath10k_core_register(ar, &bus_params);
3702 	if (ret) {
3703 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3704 		goto err_free_irq;
3705 	}
3706 
3707 	return 0;
3708 
3709 err_unsupported:
3710 	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3711 		   pdev->device, bus_params.chip_id);
3712 
3713 err_free_irq:
3714 	ath10k_pci_free_irq(ar);
3715 
3716 err_deinit_irq:
3717 	ath10k_pci_release_resource(ar);
3718 
3719 err_sleep:
3720 	ath10k_pci_sleep_sync(ar);
3721 	ath10k_pci_release(ar);
3722 
3723 err_free_pipes:
3724 	ath10k_pci_free_pipes(ar);
3725 
3726 err_core_destroy:
3727 	ath10k_core_destroy(ar);
3728 
3729 	return ret;
3730 }
3731 
3732 static void ath10k_pci_remove(struct pci_dev *pdev)
3733 {
3734 	struct ath10k *ar = pci_get_drvdata(pdev);
3735 
3736 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3737 
3738 	if (!ar)
3739 		return;
3740 
3741 	ath10k_core_unregister(ar);
3742 	ath10k_pci_free_irq(ar);
3743 	ath10k_pci_deinit_irq(ar);
3744 	ath10k_pci_release_resource(ar);
3745 	ath10k_pci_sleep_sync(ar);
3746 	ath10k_pci_release(ar);
3747 	ath10k_core_destroy(ar);
3748 }
3749 
3750 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3751 
3752 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3753 {
3754 	struct ath10k *ar = dev_get_drvdata(dev);
3755 	int ret;
3756 
3757 	ret = ath10k_pci_suspend(ar);
3758 	if (ret)
3759 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3760 
3761 	return ret;
3762 }
3763 
3764 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3765 {
3766 	struct ath10k *ar = dev_get_drvdata(dev);
3767 	int ret;
3768 
3769 	ret = ath10k_pci_resume(ar);
3770 	if (ret)
3771 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3772 
3773 	return ret;
3774 }
3775 
3776 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3777 			 ath10k_pci_pm_suspend,
3778 			 ath10k_pci_pm_resume);
3779 
3780 static struct pci_driver ath10k_pci_driver = {
3781 	.name = "ath10k_pci",
3782 	.id_table = ath10k_pci_id_table,
3783 	.probe = ath10k_pci_probe,
3784 	.remove = ath10k_pci_remove,
3785 #ifdef CONFIG_PM
3786 	.driver.pm = &ath10k_pci_pm_ops,
3787 #endif
3788 };
3789 
3790 static int __init ath10k_pci_init(void)
3791 {
3792 	int ret1, ret2;
3793 
3794 	ret1 = pci_register_driver(&ath10k_pci_driver);
3795 	if (ret1)
3796 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3797 		       ret1);
3798 
3799 	ret2 = ath10k_ahb_init();
3800 	if (ret2)
3801 		printk(KERN_ERR "ahb init failed: %d\n", ret2);
3802 
3803 	if (ret1 && ret2)
3804 		return ret1;
3805 
3806 	/* registered to at least one bus */
3807 	return 0;
3808 }
3809 module_init(ath10k_pci_init);
3810 
3811 static void __exit ath10k_pci_exit(void)
3812 {
3813 	pci_unregister_driver(&ath10k_pci_driver);
3814 	ath10k_ahb_exit();
3815 }
3816 
3817 module_exit(ath10k_pci_exit);
3818 
3819 MODULE_AUTHOR("Qualcomm Atheros");
3820 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros PCIe/AHB 802.11ac WLAN devices");
3821 MODULE_LICENSE("Dual BSD/GPL");
3822 
3823 /* QCA988x 2.0 firmware files */
3824 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3825 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3826 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3827 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3828 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3829 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3830 
3831 /* QCA9887 1.0 firmware files */
3832 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3833 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3834 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3835 
3836 /* QCA6174 2.1 firmware files */
3837 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3838 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3839 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3840 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3841 
3842 /* QCA6174 3.1 firmware files */
3843 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3844 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3845 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3846 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3847 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3848 
3849 /* QCA9377 1.0 firmware files */
3850 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3851 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3852 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3853