1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2005-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved. 6 */ 7 8 #include <linux/pci.h> 9 #include <linux/module.h> 10 #include <linux/interrupt.h> 11 #include <linux/spinlock.h> 12 #include <linux/bitops.h> 13 14 #include "core.h" 15 #include "debug.h" 16 #include "coredump.h" 17 18 #include "targaddrs.h" 19 #include "bmi.h" 20 21 #include "hif.h" 22 #include "htc.h" 23 24 #include "ce.h" 25 #include "pci.h" 26 27 enum ath10k_pci_reset_mode { 28 ATH10K_PCI_RESET_AUTO = 0, 29 ATH10K_PCI_RESET_WARM_ONLY = 1, 30 }; 31 32 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO; 33 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO; 34 35 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644); 36 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)"); 37 38 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644); 39 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)"); 40 41 /* how long wait to wait for target to initialise, in ms */ 42 #define ATH10K_PCI_TARGET_WAIT 3000 43 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3 44 45 /* Maximum number of bytes that can be handled atomically by 46 * diag read and write. 47 */ 48 #define ATH10K_DIAG_TRANSFER_LIMIT 0x5000 49 50 #define QCA99X0_PCIE_BAR0_START_REG 0x81030 51 #define QCA99X0_CPU_MEM_ADDR_REG 0x4d00c 52 #define QCA99X0_CPU_MEM_DATA_REG 0x4d010 53 54 static const struct pci_device_id ath10k_pci_id_table[] = { 55 /* PCI-E QCA988X V2 (Ubiquiti branded) */ 56 { PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) }, 57 58 { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */ 59 { PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */ 60 { PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */ 61 { PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */ 62 { PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */ 63 { PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */ 64 { PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */ 65 { PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */ 66 {0} 67 }; 68 69 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = { 70 /* QCA988X pre 2.0 chips are not supported because they need some nasty 71 * hacks. ath10k doesn't have them and these devices crash horribly 72 * because of that. 73 */ 74 { QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV }, 75 { QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV }, 76 77 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV }, 78 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV }, 79 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV }, 80 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV }, 81 { QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV }, 82 83 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV }, 84 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV }, 85 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV }, 86 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV }, 87 { QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV }, 88 89 { QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV }, 90 91 { QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV }, 92 93 { QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV }, 94 95 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV }, 96 { QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV }, 97 98 { QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV }, 99 }; 100 101 static void ath10k_pci_buffer_cleanup(struct ath10k *ar); 102 static int ath10k_pci_cold_reset(struct ath10k *ar); 103 static int ath10k_pci_safe_chip_reset(struct ath10k *ar); 104 static int ath10k_pci_init_irq(struct ath10k *ar); 105 static int ath10k_pci_deinit_irq(struct ath10k *ar); 106 static int ath10k_pci_request_irq(struct ath10k *ar); 107 static void ath10k_pci_free_irq(struct ath10k *ar); 108 static int ath10k_pci_bmi_wait(struct ath10k *ar, 109 struct ath10k_ce_pipe *tx_pipe, 110 struct ath10k_ce_pipe *rx_pipe, 111 struct bmi_xfer *xfer); 112 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar); 113 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state); 114 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state); 115 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state); 116 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state); 117 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state); 118 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state); 119 120 static const struct ce_attr pci_host_ce_config_wlan[] = { 121 /* CE0: host->target HTC control and raw streams */ 122 { 123 .flags = CE_ATTR_FLAGS, 124 .src_nentries = 16, 125 .src_sz_max = 256, 126 .dest_nentries = 0, 127 .send_cb = ath10k_pci_htc_tx_cb, 128 }, 129 130 /* CE1: target->host HTT + HTC control */ 131 { 132 .flags = CE_ATTR_FLAGS, 133 .src_nentries = 0, 134 .src_sz_max = 2048, 135 .dest_nentries = 512, 136 .recv_cb = ath10k_pci_htt_htc_rx_cb, 137 }, 138 139 /* CE2: target->host WMI */ 140 { 141 .flags = CE_ATTR_FLAGS, 142 .src_nentries = 0, 143 .src_sz_max = 2048, 144 .dest_nentries = 128, 145 .recv_cb = ath10k_pci_htc_rx_cb, 146 }, 147 148 /* CE3: host->target WMI */ 149 { 150 .flags = CE_ATTR_FLAGS, 151 .src_nentries = 32, 152 .src_sz_max = 2048, 153 .dest_nentries = 0, 154 .send_cb = ath10k_pci_htc_tx_cb, 155 }, 156 157 /* CE4: host->target HTT */ 158 { 159 .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, 160 .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES, 161 .src_sz_max = 256, 162 .dest_nentries = 0, 163 .send_cb = ath10k_pci_htt_tx_cb, 164 }, 165 166 /* CE5: target->host HTT (HIF->HTT) */ 167 { 168 .flags = CE_ATTR_FLAGS, 169 .src_nentries = 0, 170 .src_sz_max = 512, 171 .dest_nentries = 512, 172 .recv_cb = ath10k_pci_htt_rx_cb, 173 }, 174 175 /* CE6: target autonomous hif_memcpy */ 176 { 177 .flags = CE_ATTR_FLAGS, 178 .src_nentries = 0, 179 .src_sz_max = 0, 180 .dest_nentries = 0, 181 }, 182 183 /* CE7: ce_diag, the Diagnostic Window */ 184 { 185 .flags = CE_ATTR_FLAGS | CE_ATTR_POLL, 186 .src_nentries = 2, 187 .src_sz_max = DIAG_TRANSFER_LIMIT, 188 .dest_nentries = 2, 189 }, 190 191 /* CE8: target->host pktlog */ 192 { 193 .flags = CE_ATTR_FLAGS, 194 .src_nentries = 0, 195 .src_sz_max = 2048, 196 .dest_nentries = 128, 197 .recv_cb = ath10k_pci_pktlog_rx_cb, 198 }, 199 200 /* CE9 target autonomous qcache memcpy */ 201 { 202 .flags = CE_ATTR_FLAGS, 203 .src_nentries = 0, 204 .src_sz_max = 0, 205 .dest_nentries = 0, 206 }, 207 208 /* CE10: target autonomous hif memcpy */ 209 { 210 .flags = CE_ATTR_FLAGS, 211 .src_nentries = 0, 212 .src_sz_max = 0, 213 .dest_nentries = 0, 214 }, 215 216 /* CE11: target autonomous hif memcpy */ 217 { 218 .flags = CE_ATTR_FLAGS, 219 .src_nentries = 0, 220 .src_sz_max = 0, 221 .dest_nentries = 0, 222 }, 223 }; 224 225 /* Target firmware's Copy Engine configuration. */ 226 static const struct ce_pipe_config pci_target_ce_config_wlan[] = { 227 /* CE0: host->target HTC control and raw streams */ 228 { 229 .pipenum = __cpu_to_le32(0), 230 .pipedir = __cpu_to_le32(PIPEDIR_OUT), 231 .nentries = __cpu_to_le32(32), 232 .nbytes_max = __cpu_to_le32(256), 233 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 234 .reserved = __cpu_to_le32(0), 235 }, 236 237 /* CE1: target->host HTT + HTC control */ 238 { 239 .pipenum = __cpu_to_le32(1), 240 .pipedir = __cpu_to_le32(PIPEDIR_IN), 241 .nentries = __cpu_to_le32(32), 242 .nbytes_max = __cpu_to_le32(2048), 243 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 244 .reserved = __cpu_to_le32(0), 245 }, 246 247 /* CE2: target->host WMI */ 248 { 249 .pipenum = __cpu_to_le32(2), 250 .pipedir = __cpu_to_le32(PIPEDIR_IN), 251 .nentries = __cpu_to_le32(64), 252 .nbytes_max = __cpu_to_le32(2048), 253 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 254 .reserved = __cpu_to_le32(0), 255 }, 256 257 /* CE3: host->target WMI */ 258 { 259 .pipenum = __cpu_to_le32(3), 260 .pipedir = __cpu_to_le32(PIPEDIR_OUT), 261 .nentries = __cpu_to_le32(32), 262 .nbytes_max = __cpu_to_le32(2048), 263 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 264 .reserved = __cpu_to_le32(0), 265 }, 266 267 /* CE4: host->target HTT */ 268 { 269 .pipenum = __cpu_to_le32(4), 270 .pipedir = __cpu_to_le32(PIPEDIR_OUT), 271 .nentries = __cpu_to_le32(256), 272 .nbytes_max = __cpu_to_le32(256), 273 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 274 .reserved = __cpu_to_le32(0), 275 }, 276 277 /* NB: 50% of src nentries, since tx has 2 frags */ 278 279 /* CE5: target->host HTT (HIF->HTT) */ 280 { 281 .pipenum = __cpu_to_le32(5), 282 .pipedir = __cpu_to_le32(PIPEDIR_IN), 283 .nentries = __cpu_to_le32(32), 284 .nbytes_max = __cpu_to_le32(512), 285 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 286 .reserved = __cpu_to_le32(0), 287 }, 288 289 /* CE6: Reserved for target autonomous hif_memcpy */ 290 { 291 .pipenum = __cpu_to_le32(6), 292 .pipedir = __cpu_to_le32(PIPEDIR_INOUT), 293 .nentries = __cpu_to_le32(32), 294 .nbytes_max = __cpu_to_le32(4096), 295 .flags = __cpu_to_le32(CE_ATTR_FLAGS), 296 .reserved = __cpu_to_le32(0), 297 }, 298 299 /* CE7 used only by Host */ 300 { 301 .pipenum = __cpu_to_le32(7), 302 .pipedir = __cpu_to_le32(PIPEDIR_INOUT), 303 .nentries = __cpu_to_le32(0), 304 .nbytes_max = __cpu_to_le32(0), 305 .flags = __cpu_to_le32(0), 306 .reserved = __cpu_to_le32(0), 307 }, 308 309 /* CE8 target->host packtlog */ 310 { 311 .pipenum = __cpu_to_le32(8), 312 .pipedir = __cpu_to_le32(PIPEDIR_IN), 313 .nentries = __cpu_to_le32(64), 314 .nbytes_max = __cpu_to_le32(2048), 315 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), 316 .reserved = __cpu_to_le32(0), 317 }, 318 319 /* CE9 target autonomous qcache memcpy */ 320 { 321 .pipenum = __cpu_to_le32(9), 322 .pipedir = __cpu_to_le32(PIPEDIR_INOUT), 323 .nentries = __cpu_to_le32(32), 324 .nbytes_max = __cpu_to_le32(2048), 325 .flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR), 326 .reserved = __cpu_to_le32(0), 327 }, 328 329 /* It not necessary to send target wlan configuration for CE10 & CE11 330 * as these CEs are not actively used in target. 331 */ 332 }; 333 334 /* 335 * Map from service/endpoint to Copy Engine. 336 * This table is derived from the CE_PCI TABLE, above. 337 * It is passed to the Target at startup for use by firmware. 338 */ 339 static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = { 340 { 341 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), 342 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 343 __cpu_to_le32(3), 344 }, 345 { 346 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO), 347 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 348 __cpu_to_le32(2), 349 }, 350 { 351 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), 352 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 353 __cpu_to_le32(3), 354 }, 355 { 356 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK), 357 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 358 __cpu_to_le32(2), 359 }, 360 { 361 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), 362 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 363 __cpu_to_le32(3), 364 }, 365 { 366 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE), 367 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 368 __cpu_to_le32(2), 369 }, 370 { 371 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), 372 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 373 __cpu_to_le32(3), 374 }, 375 { 376 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI), 377 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 378 __cpu_to_le32(2), 379 }, 380 { 381 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), 382 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 383 __cpu_to_le32(3), 384 }, 385 { 386 __cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL), 387 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 388 __cpu_to_le32(2), 389 }, 390 { 391 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), 392 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 393 __cpu_to_le32(0), 394 }, 395 { 396 __cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL), 397 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 398 __cpu_to_le32(1), 399 }, 400 { /* not used */ 401 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), 402 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 403 __cpu_to_le32(0), 404 }, 405 { /* not used */ 406 __cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS), 407 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 408 __cpu_to_le32(1), 409 }, 410 { 411 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), 412 __cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */ 413 __cpu_to_le32(4), 414 }, 415 { 416 __cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG), 417 __cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */ 418 __cpu_to_le32(5), 419 }, 420 421 /* (Additions here) */ 422 423 { /* must be last */ 424 __cpu_to_le32(0), 425 __cpu_to_le32(0), 426 __cpu_to_le32(0), 427 }, 428 }; 429 430 static bool ath10k_pci_is_awake(struct ath10k *ar) 431 { 432 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 433 u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 434 RTC_STATE_ADDRESS); 435 436 return RTC_STATE_V_GET(val) == RTC_STATE_V_ON; 437 } 438 439 static void __ath10k_pci_wake(struct ath10k *ar) 440 { 441 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 442 443 lockdep_assert_held(&ar_pci->ps_lock); 444 445 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n", 446 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 447 448 iowrite32(PCIE_SOC_WAKE_V_MASK, 449 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 450 PCIE_SOC_WAKE_ADDRESS); 451 } 452 453 static void __ath10k_pci_sleep(struct ath10k *ar) 454 { 455 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 456 457 lockdep_assert_held(&ar_pci->ps_lock); 458 459 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n", 460 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 461 462 iowrite32(PCIE_SOC_WAKE_RESET, 463 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 464 PCIE_SOC_WAKE_ADDRESS); 465 ar_pci->ps_awake = false; 466 } 467 468 static int ath10k_pci_wake_wait(struct ath10k *ar) 469 { 470 int tot_delay = 0; 471 int curr_delay = 5; 472 473 while (tot_delay < PCIE_WAKE_TIMEOUT) { 474 if (ath10k_pci_is_awake(ar)) { 475 if (tot_delay > PCIE_WAKE_LATE_US) 476 ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n", 477 tot_delay / 1000); 478 return 0; 479 } 480 481 udelay(curr_delay); 482 tot_delay += curr_delay; 483 484 if (curr_delay < 50) 485 curr_delay += 5; 486 } 487 488 return -ETIMEDOUT; 489 } 490 491 static int ath10k_pci_force_wake(struct ath10k *ar) 492 { 493 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 494 unsigned long flags; 495 int ret = 0; 496 497 if (ar_pci->pci_ps) 498 return ret; 499 500 spin_lock_irqsave(&ar_pci->ps_lock, flags); 501 502 if (!ar_pci->ps_awake) { 503 iowrite32(PCIE_SOC_WAKE_V_MASK, 504 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 505 PCIE_SOC_WAKE_ADDRESS); 506 507 ret = ath10k_pci_wake_wait(ar); 508 if (ret == 0) 509 ar_pci->ps_awake = true; 510 } 511 512 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 513 514 return ret; 515 } 516 517 static void ath10k_pci_force_sleep(struct ath10k *ar) 518 { 519 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 520 unsigned long flags; 521 522 spin_lock_irqsave(&ar_pci->ps_lock, flags); 523 524 iowrite32(PCIE_SOC_WAKE_RESET, 525 ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS + 526 PCIE_SOC_WAKE_ADDRESS); 527 ar_pci->ps_awake = false; 528 529 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 530 } 531 532 static int ath10k_pci_wake(struct ath10k *ar) 533 { 534 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 535 unsigned long flags; 536 int ret = 0; 537 538 if (ar_pci->pci_ps == 0) 539 return ret; 540 541 spin_lock_irqsave(&ar_pci->ps_lock, flags); 542 543 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n", 544 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 545 546 /* This function can be called very frequently. To avoid excessive 547 * CPU stalls for MMIO reads use a cache var to hold the device state. 548 */ 549 if (!ar_pci->ps_awake) { 550 __ath10k_pci_wake(ar); 551 552 ret = ath10k_pci_wake_wait(ar); 553 if (ret == 0) 554 ar_pci->ps_awake = true; 555 } 556 557 if (ret == 0) { 558 ar_pci->ps_wake_refcount++; 559 WARN_ON(ar_pci->ps_wake_refcount == 0); 560 } 561 562 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 563 564 return ret; 565 } 566 567 static void ath10k_pci_sleep(struct ath10k *ar) 568 { 569 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 570 unsigned long flags; 571 572 if (ar_pci->pci_ps == 0) 573 return; 574 575 spin_lock_irqsave(&ar_pci->ps_lock, flags); 576 577 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n", 578 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 579 580 if (WARN_ON(ar_pci->ps_wake_refcount == 0)) 581 goto skip; 582 583 ar_pci->ps_wake_refcount--; 584 585 mod_timer(&ar_pci->ps_timer, jiffies + 586 msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC)); 587 588 skip: 589 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 590 } 591 592 static void ath10k_pci_ps_timer(struct timer_list *t) 593 { 594 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer); 595 struct ath10k *ar = ar_pci->ar; 596 unsigned long flags; 597 598 spin_lock_irqsave(&ar_pci->ps_lock, flags); 599 600 ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n", 601 ar_pci->ps_wake_refcount, ar_pci->ps_awake); 602 603 if (ar_pci->ps_wake_refcount > 0) 604 goto skip; 605 606 __ath10k_pci_sleep(ar); 607 608 skip: 609 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 610 } 611 612 static void ath10k_pci_sleep_sync(struct ath10k *ar) 613 { 614 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 615 unsigned long flags; 616 617 if (ar_pci->pci_ps == 0) { 618 ath10k_pci_force_sleep(ar); 619 return; 620 } 621 622 del_timer_sync(&ar_pci->ps_timer); 623 624 spin_lock_irqsave(&ar_pci->ps_lock, flags); 625 WARN_ON(ar_pci->ps_wake_refcount > 0); 626 __ath10k_pci_sleep(ar); 627 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 628 } 629 630 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value) 631 { 632 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 633 int ret; 634 635 if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) { 636 ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n", 637 offset, offset + sizeof(value), ar_pci->mem_len); 638 return; 639 } 640 641 ret = ath10k_pci_wake(ar); 642 if (ret) { 643 ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n", 644 value, offset, ret); 645 return; 646 } 647 648 iowrite32(value, ar_pci->mem + offset); 649 ath10k_pci_sleep(ar); 650 } 651 652 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset) 653 { 654 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 655 u32 val; 656 int ret; 657 658 if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) { 659 ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n", 660 offset, offset + sizeof(val), ar_pci->mem_len); 661 return 0; 662 } 663 664 ret = ath10k_pci_wake(ar); 665 if (ret) { 666 ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n", 667 offset, ret); 668 return 0xffffffff; 669 } 670 671 val = ioread32(ar_pci->mem + offset); 672 ath10k_pci_sleep(ar); 673 674 return val; 675 } 676 677 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value) 678 { 679 struct ath10k_ce *ce = ath10k_ce_priv(ar); 680 681 ce->bus_ops->write32(ar, offset, value); 682 } 683 684 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset) 685 { 686 struct ath10k_ce *ce = ath10k_ce_priv(ar); 687 688 return ce->bus_ops->read32(ar, offset); 689 } 690 691 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr) 692 { 693 return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr); 694 } 695 696 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val) 697 { 698 ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val); 699 } 700 701 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr) 702 { 703 return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr); 704 } 705 706 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val) 707 { 708 ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val); 709 } 710 711 bool ath10k_pci_irq_pending(struct ath10k *ar) 712 { 713 u32 cause; 714 715 /* Check if the shared legacy irq is for us */ 716 cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 717 PCIE_INTR_CAUSE_ADDRESS); 718 if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL)) 719 return true; 720 721 return false; 722 } 723 724 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar) 725 { 726 /* IMPORTANT: INTR_CLR register has to be set after 727 * INTR_ENABLE is set to 0, otherwise interrupt can not be 728 * really cleared. 729 */ 730 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 731 0); 732 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS, 733 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); 734 735 /* IMPORTANT: this extra read transaction is required to 736 * flush the posted write buffer. 737 */ 738 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 739 PCIE_INTR_ENABLE_ADDRESS); 740 } 741 742 void ath10k_pci_enable_legacy_irq(struct ath10k *ar) 743 { 744 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + 745 PCIE_INTR_ENABLE_ADDRESS, 746 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); 747 748 /* IMPORTANT: this extra read transaction is required to 749 * flush the posted write buffer. 750 */ 751 (void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 752 PCIE_INTR_ENABLE_ADDRESS); 753 } 754 755 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar) 756 { 757 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 758 759 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI) 760 return "msi"; 761 762 return "legacy"; 763 } 764 765 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe) 766 { 767 struct ath10k *ar = pipe->hif_ce_state; 768 struct ath10k_ce *ce = ath10k_ce_priv(ar); 769 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; 770 struct sk_buff *skb; 771 dma_addr_t paddr; 772 int ret; 773 774 skb = dev_alloc_skb(pipe->buf_sz); 775 if (!skb) 776 return -ENOMEM; 777 778 WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb"); 779 780 paddr = dma_map_single(ar->dev, skb->data, 781 skb->len + skb_tailroom(skb), 782 DMA_FROM_DEVICE); 783 if (unlikely(dma_mapping_error(ar->dev, paddr))) { 784 ath10k_warn(ar, "failed to dma map pci rx buf\n"); 785 dev_kfree_skb_any(skb); 786 return -EIO; 787 } 788 789 ATH10K_SKB_RXCB(skb)->paddr = paddr; 790 791 spin_lock_bh(&ce->ce_lock); 792 ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr); 793 spin_unlock_bh(&ce->ce_lock); 794 if (ret) { 795 dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb), 796 DMA_FROM_DEVICE); 797 dev_kfree_skb_any(skb); 798 return ret; 799 } 800 801 return 0; 802 } 803 804 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe) 805 { 806 struct ath10k *ar = pipe->hif_ce_state; 807 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 808 struct ath10k_ce *ce = ath10k_ce_priv(ar); 809 struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl; 810 int ret, num; 811 812 if (pipe->buf_sz == 0) 813 return; 814 815 if (!ce_pipe->dest_ring) 816 return; 817 818 spin_lock_bh(&ce->ce_lock); 819 num = __ath10k_ce_rx_num_free_bufs(ce_pipe); 820 spin_unlock_bh(&ce->ce_lock); 821 822 while (num >= 0) { 823 ret = __ath10k_pci_rx_post_buf(pipe); 824 if (ret) { 825 if (ret == -ENOSPC) 826 break; 827 ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret); 828 mod_timer(&ar_pci->rx_post_retry, jiffies + 829 ATH10K_PCI_RX_POST_RETRY_MS); 830 break; 831 } 832 num--; 833 } 834 } 835 836 void ath10k_pci_rx_post(struct ath10k *ar) 837 { 838 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 839 int i; 840 841 for (i = 0; i < CE_COUNT; i++) 842 ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]); 843 } 844 845 void ath10k_pci_rx_replenish_retry(struct timer_list *t) 846 { 847 struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry); 848 struct ath10k *ar = ar_pci->ar; 849 850 ath10k_pci_rx_post(ar); 851 } 852 853 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) 854 { 855 u32 val = 0, region = addr & 0xfffff; 856 857 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS) 858 & 0x7ff) << 21; 859 val |= 0x100000 | region; 860 return val; 861 } 862 863 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr. 864 * Support to access target space below 1M for qca6174 and qca9377. 865 * If target space is below 1M, the bit[20] of converted CE addr is 0. 866 * Otherwise bit[20] of converted CE addr is 1. 867 */ 868 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) 869 { 870 u32 val = 0, region = addr & 0xfffff; 871 872 val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS) 873 & 0x7ff) << 21; 874 val |= ((addr >= 0x100000) ? 0x100000 : 0) | region; 875 return val; 876 } 877 878 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) 879 { 880 u32 val = 0, region = addr & 0xfffff; 881 882 val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS); 883 val |= 0x100000 | region; 884 return val; 885 } 886 887 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr) 888 { 889 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 890 891 if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr)) 892 return -EOPNOTSUPP; 893 894 return ar_pci->targ_cpu_to_ce_addr(ar, addr); 895 } 896 897 /* 898 * Diagnostic read/write access is provided for startup/config/debug usage. 899 * Caller must guarantee proper alignment, when applicable, and single user 900 * at any moment. 901 */ 902 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data, 903 int nbytes) 904 { 905 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 906 int ret = 0; 907 u32 *buf; 908 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes; 909 struct ath10k_ce_pipe *ce_diag; 910 /* Host buffer address in CE space */ 911 u32 ce_data; 912 dma_addr_t ce_data_base = 0; 913 void *data_buf; 914 int i; 915 916 mutex_lock(&ar_pci->ce_diag_mutex); 917 ce_diag = ar_pci->ce_diag; 918 919 /* 920 * Allocate a temporary bounce buffer to hold caller's data 921 * to be DMA'ed from Target. This guarantees 922 * 1) 4-byte alignment 923 * 2) Buffer in DMA-able space 924 */ 925 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT); 926 927 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base, 928 GFP_ATOMIC); 929 if (!data_buf) { 930 ret = -ENOMEM; 931 goto done; 932 } 933 934 /* The address supplied by the caller is in the 935 * Target CPU virtual address space. 936 * 937 * In order to use this address with the diagnostic CE, 938 * convert it from Target CPU virtual address space 939 * to CE address space 940 */ 941 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address); 942 943 remaining_bytes = nbytes; 944 ce_data = ce_data_base; 945 while (remaining_bytes) { 946 nbytes = min_t(unsigned int, remaining_bytes, 947 DIAG_TRANSFER_LIMIT); 948 949 ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data); 950 if (ret != 0) 951 goto done; 952 953 /* Request CE to send from Target(!) address to Host buffer */ 954 ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0); 955 if (ret) 956 goto done; 957 958 i = 0; 959 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) { 960 udelay(DIAG_ACCESS_CE_WAIT_US); 961 i += DIAG_ACCESS_CE_WAIT_US; 962 963 if (i > DIAG_ACCESS_CE_TIMEOUT_US) { 964 ret = -EBUSY; 965 goto done; 966 } 967 } 968 969 i = 0; 970 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf, 971 &completed_nbytes) != 0) { 972 udelay(DIAG_ACCESS_CE_WAIT_US); 973 i += DIAG_ACCESS_CE_WAIT_US; 974 975 if (i > DIAG_ACCESS_CE_TIMEOUT_US) { 976 ret = -EBUSY; 977 goto done; 978 } 979 } 980 981 if (nbytes != completed_nbytes) { 982 ret = -EIO; 983 goto done; 984 } 985 986 if (*buf != ce_data) { 987 ret = -EIO; 988 goto done; 989 } 990 991 remaining_bytes -= nbytes; 992 memcpy(data, data_buf, nbytes); 993 994 address += nbytes; 995 data += nbytes; 996 } 997 998 done: 999 1000 if (data_buf) 1001 dma_free_coherent(ar->dev, alloc_nbytes, data_buf, 1002 ce_data_base); 1003 1004 mutex_unlock(&ar_pci->ce_diag_mutex); 1005 1006 return ret; 1007 } 1008 1009 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value) 1010 { 1011 __le32 val = 0; 1012 int ret; 1013 1014 ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val)); 1015 *value = __le32_to_cpu(val); 1016 1017 return ret; 1018 } 1019 1020 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest, 1021 u32 src, u32 len) 1022 { 1023 u32 host_addr, addr; 1024 int ret; 1025 1026 host_addr = host_interest_item_address(src); 1027 1028 ret = ath10k_pci_diag_read32(ar, host_addr, &addr); 1029 if (ret != 0) { 1030 ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n", 1031 src, ret); 1032 return ret; 1033 } 1034 1035 ret = ath10k_pci_diag_read_mem(ar, addr, dest, len); 1036 if (ret != 0) { 1037 ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n", 1038 addr, len, ret); 1039 return ret; 1040 } 1041 1042 return 0; 1043 } 1044 1045 #define ath10k_pci_diag_read_hi(ar, dest, src, len) \ 1046 __ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len) 1047 1048 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address, 1049 const void *data, int nbytes) 1050 { 1051 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1052 int ret = 0; 1053 u32 *buf; 1054 unsigned int completed_nbytes, alloc_nbytes, remaining_bytes; 1055 struct ath10k_ce_pipe *ce_diag; 1056 void *data_buf; 1057 dma_addr_t ce_data_base = 0; 1058 int i; 1059 1060 mutex_lock(&ar_pci->ce_diag_mutex); 1061 ce_diag = ar_pci->ce_diag; 1062 1063 /* 1064 * Allocate a temporary bounce buffer to hold caller's data 1065 * to be DMA'ed to Target. This guarantees 1066 * 1) 4-byte alignment 1067 * 2) Buffer in DMA-able space 1068 */ 1069 alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT); 1070 1071 data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base, 1072 GFP_ATOMIC); 1073 if (!data_buf) { 1074 ret = -ENOMEM; 1075 goto done; 1076 } 1077 1078 /* 1079 * The address supplied by the caller is in the 1080 * Target CPU virtual address space. 1081 * 1082 * In order to use this address with the diagnostic CE, 1083 * convert it from 1084 * Target CPU virtual address space 1085 * to 1086 * CE address space 1087 */ 1088 address = ath10k_pci_targ_cpu_to_ce_addr(ar, address); 1089 1090 remaining_bytes = nbytes; 1091 while (remaining_bytes) { 1092 /* FIXME: check cast */ 1093 nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT); 1094 1095 /* Copy caller's data to allocated DMA buf */ 1096 memcpy(data_buf, data, nbytes); 1097 1098 /* Set up to receive directly into Target(!) address */ 1099 ret = ath10k_ce_rx_post_buf(ce_diag, &address, address); 1100 if (ret != 0) 1101 goto done; 1102 1103 /* 1104 * Request CE to send caller-supplied data that 1105 * was copied to bounce buffer to Target(!) address. 1106 */ 1107 ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0); 1108 if (ret != 0) 1109 goto done; 1110 1111 i = 0; 1112 while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) { 1113 udelay(DIAG_ACCESS_CE_WAIT_US); 1114 i += DIAG_ACCESS_CE_WAIT_US; 1115 1116 if (i > DIAG_ACCESS_CE_TIMEOUT_US) { 1117 ret = -EBUSY; 1118 goto done; 1119 } 1120 } 1121 1122 i = 0; 1123 while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf, 1124 &completed_nbytes) != 0) { 1125 udelay(DIAG_ACCESS_CE_WAIT_US); 1126 i += DIAG_ACCESS_CE_WAIT_US; 1127 1128 if (i > DIAG_ACCESS_CE_TIMEOUT_US) { 1129 ret = -EBUSY; 1130 goto done; 1131 } 1132 } 1133 1134 if (nbytes != completed_nbytes) { 1135 ret = -EIO; 1136 goto done; 1137 } 1138 1139 if (*buf != address) { 1140 ret = -EIO; 1141 goto done; 1142 } 1143 1144 remaining_bytes -= nbytes; 1145 address += nbytes; 1146 data += nbytes; 1147 } 1148 1149 done: 1150 if (data_buf) { 1151 dma_free_coherent(ar->dev, alloc_nbytes, data_buf, 1152 ce_data_base); 1153 } 1154 1155 if (ret != 0) 1156 ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n", 1157 address, ret); 1158 1159 mutex_unlock(&ar_pci->ce_diag_mutex); 1160 1161 return ret; 1162 } 1163 1164 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value) 1165 { 1166 __le32 val = __cpu_to_le32(value); 1167 1168 return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val)); 1169 } 1170 1171 /* Called by lower (CE) layer when a send to Target completes. */ 1172 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state) 1173 { 1174 struct ath10k *ar = ce_state->ar; 1175 struct sk_buff_head list; 1176 struct sk_buff *skb; 1177 1178 __skb_queue_head_init(&list); 1179 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { 1180 /* no need to call tx completion for NULL pointers */ 1181 if (skb == NULL) 1182 continue; 1183 1184 __skb_queue_tail(&list, skb); 1185 } 1186 1187 while ((skb = __skb_dequeue(&list))) 1188 ath10k_htc_tx_completion_handler(ar, skb); 1189 } 1190 1191 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state, 1192 void (*callback)(struct ath10k *ar, 1193 struct sk_buff *skb)) 1194 { 1195 struct ath10k *ar = ce_state->ar; 1196 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1197 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; 1198 struct sk_buff *skb; 1199 struct sk_buff_head list; 1200 void *transfer_context; 1201 unsigned int nbytes, max_nbytes; 1202 1203 __skb_queue_head_init(&list); 1204 while (ath10k_ce_completed_recv_next(ce_state, &transfer_context, 1205 &nbytes) == 0) { 1206 skb = transfer_context; 1207 max_nbytes = skb->len + skb_tailroom(skb); 1208 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 1209 max_nbytes, DMA_FROM_DEVICE); 1210 1211 if (unlikely(max_nbytes < nbytes)) { 1212 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", 1213 nbytes, max_nbytes); 1214 dev_kfree_skb_any(skb); 1215 continue; 1216 } 1217 1218 skb_put(skb, nbytes); 1219 __skb_queue_tail(&list, skb); 1220 } 1221 1222 while ((skb = __skb_dequeue(&list))) { 1223 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n", 1224 ce_state->id, skb->len); 1225 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ", 1226 skb->data, skb->len); 1227 1228 callback(ar, skb); 1229 } 1230 1231 ath10k_pci_rx_post_pipe(pipe_info); 1232 } 1233 1234 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state, 1235 void (*callback)(struct ath10k *ar, 1236 struct sk_buff *skb)) 1237 { 1238 struct ath10k *ar = ce_state->ar; 1239 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1240 struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; 1241 struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl; 1242 struct sk_buff *skb; 1243 struct sk_buff_head list; 1244 void *transfer_context; 1245 unsigned int nbytes, max_nbytes, nentries; 1246 int orig_len; 1247 1248 /* No need to acquire ce_lock for CE5, since this is the only place CE5 1249 * is processed other than init and deinit. Before releasing CE5 1250 * buffers, interrupts are disabled. Thus CE5 access is serialized. 1251 */ 1252 __skb_queue_head_init(&list); 1253 while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context, 1254 &nbytes) == 0) { 1255 skb = transfer_context; 1256 max_nbytes = skb->len + skb_tailroom(skb); 1257 1258 if (unlikely(max_nbytes < nbytes)) { 1259 ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)", 1260 nbytes, max_nbytes); 1261 continue; 1262 } 1263 1264 dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 1265 max_nbytes, DMA_FROM_DEVICE); 1266 skb_put(skb, nbytes); 1267 __skb_queue_tail(&list, skb); 1268 } 1269 1270 nentries = skb_queue_len(&list); 1271 while ((skb = __skb_dequeue(&list))) { 1272 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n", 1273 ce_state->id, skb->len); 1274 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ", 1275 skb->data, skb->len); 1276 1277 orig_len = skb->len; 1278 callback(ar, skb); 1279 skb_push(skb, orig_len - skb->len); 1280 skb_reset_tail_pointer(skb); 1281 skb_trim(skb, 0); 1282 1283 /*let device gain the buffer again*/ 1284 dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 1285 skb->len + skb_tailroom(skb), 1286 DMA_FROM_DEVICE); 1287 } 1288 ath10k_ce_rx_update_write_idx(ce_pipe, nentries); 1289 } 1290 1291 /* Called by lower (CE) layer when data is received from the Target. */ 1292 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state) 1293 { 1294 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); 1295 } 1296 1297 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state) 1298 { 1299 /* CE4 polling needs to be done whenever CE pipe which transports 1300 * HTT Rx (target->host) is processed. 1301 */ 1302 ath10k_ce_per_engine_service(ce_state->ar, 4); 1303 1304 ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler); 1305 } 1306 1307 /* Called by lower (CE) layer when data is received from the Target. 1308 * Only 10.4 firmware uses separate CE to transfer pktlog data. 1309 */ 1310 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state) 1311 { 1312 ath10k_pci_process_rx_cb(ce_state, 1313 ath10k_htt_rx_pktlog_completion_handler); 1314 } 1315 1316 /* Called by lower (CE) layer when a send to HTT Target completes. */ 1317 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state) 1318 { 1319 struct ath10k *ar = ce_state->ar; 1320 struct sk_buff *skb; 1321 1322 while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) { 1323 /* no need to call tx completion for NULL pointers */ 1324 if (!skb) 1325 continue; 1326 1327 dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr, 1328 skb->len, DMA_TO_DEVICE); 1329 ath10k_htt_hif_tx_complete(ar, skb); 1330 } 1331 } 1332 1333 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb) 1334 { 1335 skb_pull(skb, sizeof(struct ath10k_htc_hdr)); 1336 ath10k_htt_t2h_msg_handler(ar, skb); 1337 } 1338 1339 /* Called by lower (CE) layer when HTT data is received from the Target. */ 1340 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state) 1341 { 1342 /* CE4 polling needs to be done whenever CE pipe which transports 1343 * HTT Rx (target->host) is processed. 1344 */ 1345 ath10k_ce_per_engine_service(ce_state->ar, 4); 1346 1347 ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver); 1348 } 1349 1350 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id, 1351 struct ath10k_hif_sg_item *items, int n_items) 1352 { 1353 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1354 struct ath10k_ce *ce = ath10k_ce_priv(ar); 1355 struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id]; 1356 struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl; 1357 struct ath10k_ce_ring *src_ring = ce_pipe->src_ring; 1358 unsigned int nentries_mask; 1359 unsigned int sw_index; 1360 unsigned int write_index; 1361 int err, i = 0; 1362 1363 spin_lock_bh(&ce->ce_lock); 1364 1365 nentries_mask = src_ring->nentries_mask; 1366 sw_index = src_ring->sw_index; 1367 write_index = src_ring->write_index; 1368 1369 if (unlikely(CE_RING_DELTA(nentries_mask, 1370 write_index, sw_index - 1) < n_items)) { 1371 err = -ENOBUFS; 1372 goto err; 1373 } 1374 1375 for (i = 0; i < n_items - 1; i++) { 1376 ath10k_dbg(ar, ATH10K_DBG_PCI, 1377 "pci tx item %d paddr %pad len %d n_items %d\n", 1378 i, &items[i].paddr, items[i].len, n_items); 1379 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", 1380 items[i].vaddr, items[i].len); 1381 1382 err = ath10k_ce_send_nolock(ce_pipe, 1383 items[i].transfer_context, 1384 items[i].paddr, 1385 items[i].len, 1386 items[i].transfer_id, 1387 CE_SEND_FLAG_GATHER); 1388 if (err) 1389 goto err; 1390 } 1391 1392 /* `i` is equal to `n_items -1` after for() */ 1393 1394 ath10k_dbg(ar, ATH10K_DBG_PCI, 1395 "pci tx item %d paddr %pad len %d n_items %d\n", 1396 i, &items[i].paddr, items[i].len, n_items); 1397 ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ", 1398 items[i].vaddr, items[i].len); 1399 1400 err = ath10k_ce_send_nolock(ce_pipe, 1401 items[i].transfer_context, 1402 items[i].paddr, 1403 items[i].len, 1404 items[i].transfer_id, 1405 0); 1406 if (err) 1407 goto err; 1408 1409 spin_unlock_bh(&ce->ce_lock); 1410 return 0; 1411 1412 err: 1413 for (; i > 0; i--) 1414 __ath10k_ce_send_revert(ce_pipe); 1415 1416 spin_unlock_bh(&ce->ce_lock); 1417 return err; 1418 } 1419 1420 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf, 1421 size_t buf_len) 1422 { 1423 return ath10k_pci_diag_read_mem(ar, address, buf, buf_len); 1424 } 1425 1426 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe) 1427 { 1428 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1429 1430 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n"); 1431 1432 return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl); 1433 } 1434 1435 static void ath10k_pci_dump_registers(struct ath10k *ar, 1436 struct ath10k_fw_crash_data *crash_data) 1437 { 1438 __le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; 1439 int i, ret; 1440 1441 lockdep_assert_held(&ar->dump_mutex); 1442 1443 ret = ath10k_pci_diag_read_hi(ar, ®_dump_values[0], 1444 hi_failure_state, 1445 REG_DUMP_COUNT_QCA988X * sizeof(__le32)); 1446 if (ret) { 1447 ath10k_err(ar, "failed to read firmware dump area: %d\n", ret); 1448 return; 1449 } 1450 1451 BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4); 1452 1453 ath10k_err(ar, "firmware register dump:\n"); 1454 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4) 1455 ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", 1456 i, 1457 __le32_to_cpu(reg_dump_values[i]), 1458 __le32_to_cpu(reg_dump_values[i + 1]), 1459 __le32_to_cpu(reg_dump_values[i + 2]), 1460 __le32_to_cpu(reg_dump_values[i + 3])); 1461 1462 if (!crash_data) 1463 return; 1464 1465 for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++) 1466 crash_data->registers[i] = reg_dump_values[i]; 1467 } 1468 1469 static int ath10k_pci_dump_memory_section(struct ath10k *ar, 1470 const struct ath10k_mem_region *mem_region, 1471 u8 *buf, size_t buf_len) 1472 { 1473 const struct ath10k_mem_section *cur_section, *next_section; 1474 unsigned int count, section_size, skip_size; 1475 int ret, i, j; 1476 1477 if (!mem_region || !buf) 1478 return 0; 1479 1480 cur_section = &mem_region->section_table.sections[0]; 1481 1482 if (mem_region->start > cur_section->start) { 1483 ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n", 1484 mem_region->start, cur_section->start); 1485 return 0; 1486 } 1487 1488 skip_size = cur_section->start - mem_region->start; 1489 1490 /* fill the gap between the first register section and register 1491 * start address 1492 */ 1493 for (i = 0; i < skip_size; i++) { 1494 *buf = ATH10K_MAGIC_NOT_COPIED; 1495 buf++; 1496 } 1497 1498 count = 0; 1499 1500 for (i = 0; cur_section != NULL; i++) { 1501 section_size = cur_section->end - cur_section->start; 1502 1503 if (section_size <= 0) { 1504 ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n", 1505 cur_section->start, 1506 cur_section->end); 1507 break; 1508 } 1509 1510 if ((i + 1) == mem_region->section_table.size) { 1511 /* last section */ 1512 next_section = NULL; 1513 skip_size = 0; 1514 } else { 1515 next_section = cur_section + 1; 1516 1517 if (cur_section->end > next_section->start) { 1518 ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n", 1519 next_section->start, 1520 cur_section->end); 1521 break; 1522 } 1523 1524 skip_size = next_section->start - cur_section->end; 1525 } 1526 1527 if (buf_len < (skip_size + section_size)) { 1528 ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len); 1529 break; 1530 } 1531 1532 buf_len -= skip_size + section_size; 1533 1534 /* read section to dest memory */ 1535 ret = ath10k_pci_diag_read_mem(ar, cur_section->start, 1536 buf, section_size); 1537 if (ret) { 1538 ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n", 1539 cur_section->start, ret); 1540 break; 1541 } 1542 1543 buf += section_size; 1544 count += section_size; 1545 1546 /* fill in the gap between this section and the next */ 1547 for (j = 0; j < skip_size; j++) { 1548 *buf = ATH10K_MAGIC_NOT_COPIED; 1549 buf++; 1550 } 1551 1552 count += skip_size; 1553 1554 if (!next_section) 1555 /* this was the last section */ 1556 break; 1557 1558 cur_section = next_section; 1559 } 1560 1561 return count; 1562 } 1563 1564 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config) 1565 { 1566 u32 val; 1567 1568 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + 1569 FW_RAM_CONFIG_ADDRESS, config); 1570 1571 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 1572 FW_RAM_CONFIG_ADDRESS); 1573 if (val != config) { 1574 ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n", 1575 val, config); 1576 return -EIO; 1577 } 1578 1579 return 0; 1580 } 1581 1582 /* Always returns the length */ 1583 static int ath10k_pci_dump_memory_sram(struct ath10k *ar, 1584 const struct ath10k_mem_region *region, 1585 u8 *buf) 1586 { 1587 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1588 u32 base_addr, i; 1589 1590 base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG); 1591 base_addr += region->start; 1592 1593 for (i = 0; i < region->len; i += 4) { 1594 iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG); 1595 *(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG); 1596 } 1597 1598 return region->len; 1599 } 1600 1601 /* if an error happened returns < 0, otherwise the length */ 1602 static int ath10k_pci_dump_memory_reg(struct ath10k *ar, 1603 const struct ath10k_mem_region *region, 1604 u8 *buf) 1605 { 1606 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1607 u32 i; 1608 int ret; 1609 1610 mutex_lock(&ar->conf_mutex); 1611 if (ar->state != ATH10K_STATE_ON) { 1612 ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n"); 1613 ret = -EIO; 1614 goto done; 1615 } 1616 1617 for (i = 0; i < region->len; i += 4) 1618 *(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i); 1619 1620 ret = region->len; 1621 done: 1622 mutex_unlock(&ar->conf_mutex); 1623 return ret; 1624 } 1625 1626 /* if an error happened returns < 0, otherwise the length */ 1627 static int ath10k_pci_dump_memory_generic(struct ath10k *ar, 1628 const struct ath10k_mem_region *current_region, 1629 u8 *buf) 1630 { 1631 int ret; 1632 1633 if (current_region->section_table.size > 0) 1634 /* Copy each section individually. */ 1635 return ath10k_pci_dump_memory_section(ar, 1636 current_region, 1637 buf, 1638 current_region->len); 1639 1640 /* No individual memory sections defined so we can 1641 * copy the entire memory region. 1642 */ 1643 ret = ath10k_pci_diag_read_mem(ar, 1644 current_region->start, 1645 buf, 1646 current_region->len); 1647 if (ret) { 1648 ath10k_warn(ar, "failed to copy ramdump region %s: %d\n", 1649 current_region->name, ret); 1650 return ret; 1651 } 1652 1653 return current_region->len; 1654 } 1655 1656 static void ath10k_pci_dump_memory(struct ath10k *ar, 1657 struct ath10k_fw_crash_data *crash_data) 1658 { 1659 const struct ath10k_hw_mem_layout *mem_layout; 1660 const struct ath10k_mem_region *current_region; 1661 struct ath10k_dump_ram_data_hdr *hdr; 1662 u32 count, shift; 1663 size_t buf_len; 1664 int ret, i; 1665 u8 *buf; 1666 1667 lockdep_assert_held(&ar->dump_mutex); 1668 1669 if (!crash_data) 1670 return; 1671 1672 mem_layout = ath10k_coredump_get_mem_layout(ar); 1673 if (!mem_layout) 1674 return; 1675 1676 current_region = &mem_layout->region_table.regions[0]; 1677 1678 buf = crash_data->ramdump_buf; 1679 buf_len = crash_data->ramdump_buf_len; 1680 1681 memset(buf, 0, buf_len); 1682 1683 for (i = 0; i < mem_layout->region_table.size; i++) { 1684 count = 0; 1685 1686 if (current_region->len > buf_len) { 1687 ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n", 1688 current_region->name, 1689 current_region->len, 1690 buf_len); 1691 break; 1692 } 1693 1694 /* To get IRAM dump, the host driver needs to switch target 1695 * ram config from DRAM to IRAM. 1696 */ 1697 if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 || 1698 current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) { 1699 shift = current_region->start >> 20; 1700 1701 ret = ath10k_pci_set_ram_config(ar, shift); 1702 if (ret) { 1703 ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n", 1704 current_region->name, ret); 1705 break; 1706 } 1707 } 1708 1709 /* Reserve space for the header. */ 1710 hdr = (void *)buf; 1711 buf += sizeof(*hdr); 1712 buf_len -= sizeof(*hdr); 1713 1714 switch (current_region->type) { 1715 case ATH10K_MEM_REGION_TYPE_IOSRAM: 1716 count = ath10k_pci_dump_memory_sram(ar, current_region, buf); 1717 break; 1718 case ATH10K_MEM_REGION_TYPE_IOREG: 1719 ret = ath10k_pci_dump_memory_reg(ar, current_region, buf); 1720 if (ret < 0) 1721 break; 1722 1723 count = ret; 1724 break; 1725 default: 1726 ret = ath10k_pci_dump_memory_generic(ar, current_region, buf); 1727 if (ret < 0) 1728 break; 1729 1730 count = ret; 1731 break; 1732 } 1733 1734 hdr->region_type = cpu_to_le32(current_region->type); 1735 hdr->start = cpu_to_le32(current_region->start); 1736 hdr->length = cpu_to_le32(count); 1737 1738 if (count == 0) 1739 /* Note: the header remains, just with zero length. */ 1740 break; 1741 1742 buf += count; 1743 buf_len -= count; 1744 1745 current_region++; 1746 } 1747 } 1748 1749 static void ath10k_pci_fw_dump_work(struct work_struct *work) 1750 { 1751 struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci, 1752 dump_work); 1753 struct ath10k_fw_crash_data *crash_data; 1754 struct ath10k *ar = ar_pci->ar; 1755 char guid[UUID_STRING_LEN + 1]; 1756 1757 mutex_lock(&ar->dump_mutex); 1758 1759 spin_lock_bh(&ar->data_lock); 1760 ar->stats.fw_crash_counter++; 1761 spin_unlock_bh(&ar->data_lock); 1762 1763 crash_data = ath10k_coredump_new(ar); 1764 1765 if (crash_data) 1766 scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid); 1767 else 1768 scnprintf(guid, sizeof(guid), "n/a"); 1769 1770 ath10k_err(ar, "firmware crashed! (guid %s)\n", guid); 1771 ath10k_print_driver_info(ar); 1772 ath10k_pci_dump_registers(ar, crash_data); 1773 ath10k_ce_dump_registers(ar, crash_data); 1774 ath10k_pci_dump_memory(ar, crash_data); 1775 1776 mutex_unlock(&ar->dump_mutex); 1777 1778 ath10k_core_start_recovery(ar); 1779 } 1780 1781 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar) 1782 { 1783 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1784 1785 queue_work(ar->workqueue, &ar_pci->dump_work); 1786 } 1787 1788 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe, 1789 int force) 1790 { 1791 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1792 1793 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n"); 1794 1795 if (!force) { 1796 int resources; 1797 /* 1798 * Decide whether to actually poll for completions, or just 1799 * wait for a later chance. 1800 * If there seem to be plenty of resources left, then just wait 1801 * since checking involves reading a CE register, which is a 1802 * relatively expensive operation. 1803 */ 1804 resources = ath10k_pci_hif_get_free_queue_number(ar, pipe); 1805 1806 /* 1807 * If at least 50% of the total resources are still available, 1808 * don't bother checking again yet. 1809 */ 1810 if (resources > (ar_pci->attr[pipe].src_nentries >> 1)) 1811 return; 1812 } 1813 ath10k_ce_per_engine_service(ar, pipe); 1814 } 1815 1816 static void ath10k_pci_rx_retry_sync(struct ath10k *ar) 1817 { 1818 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1819 1820 del_timer_sync(&ar_pci->rx_post_retry); 1821 } 1822 1823 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id, 1824 u8 *ul_pipe, u8 *dl_pipe) 1825 { 1826 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1827 const struct ce_service_to_pipe *entry; 1828 bool ul_set = false, dl_set = false; 1829 int i; 1830 1831 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n"); 1832 1833 for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) { 1834 entry = &ar_pci->serv_to_pipe[i]; 1835 1836 if (__le32_to_cpu(entry->service_id) != service_id) 1837 continue; 1838 1839 switch (__le32_to_cpu(entry->pipedir)) { 1840 case PIPEDIR_NONE: 1841 break; 1842 case PIPEDIR_IN: 1843 WARN_ON(dl_set); 1844 *dl_pipe = __le32_to_cpu(entry->pipenum); 1845 dl_set = true; 1846 break; 1847 case PIPEDIR_OUT: 1848 WARN_ON(ul_set); 1849 *ul_pipe = __le32_to_cpu(entry->pipenum); 1850 ul_set = true; 1851 break; 1852 case PIPEDIR_INOUT: 1853 WARN_ON(dl_set); 1854 WARN_ON(ul_set); 1855 *dl_pipe = __le32_to_cpu(entry->pipenum); 1856 *ul_pipe = __le32_to_cpu(entry->pipenum); 1857 dl_set = true; 1858 ul_set = true; 1859 break; 1860 } 1861 } 1862 1863 if (!ul_set || !dl_set) 1864 return -ENOENT; 1865 1866 return 0; 1867 } 1868 1869 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar, 1870 u8 *ul_pipe, u8 *dl_pipe) 1871 { 1872 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n"); 1873 1874 (void)ath10k_pci_hif_map_service_to_pipe(ar, 1875 ATH10K_HTC_SVC_ID_RSVD_CTRL, 1876 ul_pipe, dl_pipe); 1877 } 1878 1879 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar) 1880 { 1881 u32 val; 1882 1883 switch (ar->hw_rev) { 1884 case ATH10K_HW_QCA988X: 1885 case ATH10K_HW_QCA9887: 1886 case ATH10K_HW_QCA6174: 1887 case ATH10K_HW_QCA9377: 1888 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 1889 CORE_CTRL_ADDRESS); 1890 val &= ~CORE_CTRL_PCIE_REG_31_MASK; 1891 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + 1892 CORE_CTRL_ADDRESS, val); 1893 break; 1894 case ATH10K_HW_QCA99X0: 1895 case ATH10K_HW_QCA9984: 1896 case ATH10K_HW_QCA9888: 1897 case ATH10K_HW_QCA4019: 1898 /* TODO: Find appropriate register configuration for QCA99X0 1899 * to mask irq/MSI. 1900 */ 1901 break; 1902 case ATH10K_HW_WCN3990: 1903 break; 1904 } 1905 } 1906 1907 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar) 1908 { 1909 u32 val; 1910 1911 switch (ar->hw_rev) { 1912 case ATH10K_HW_QCA988X: 1913 case ATH10K_HW_QCA9887: 1914 case ATH10K_HW_QCA6174: 1915 case ATH10K_HW_QCA9377: 1916 val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + 1917 CORE_CTRL_ADDRESS); 1918 val |= CORE_CTRL_PCIE_REG_31_MASK; 1919 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + 1920 CORE_CTRL_ADDRESS, val); 1921 break; 1922 case ATH10K_HW_QCA99X0: 1923 case ATH10K_HW_QCA9984: 1924 case ATH10K_HW_QCA9888: 1925 case ATH10K_HW_QCA4019: 1926 /* TODO: Find appropriate register configuration for QCA99X0 1927 * to unmask irq/MSI. 1928 */ 1929 break; 1930 case ATH10K_HW_WCN3990: 1931 break; 1932 } 1933 } 1934 1935 static void ath10k_pci_irq_disable(struct ath10k *ar) 1936 { 1937 ath10k_ce_disable_interrupts(ar); 1938 ath10k_pci_disable_and_clear_legacy_irq(ar); 1939 ath10k_pci_irq_msi_fw_mask(ar); 1940 } 1941 1942 static void ath10k_pci_irq_sync(struct ath10k *ar) 1943 { 1944 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1945 1946 synchronize_irq(ar_pci->pdev->irq); 1947 } 1948 1949 static void ath10k_pci_irq_enable(struct ath10k *ar) 1950 { 1951 ath10k_ce_enable_interrupts(ar); 1952 ath10k_pci_enable_legacy_irq(ar); 1953 ath10k_pci_irq_msi_fw_unmask(ar); 1954 } 1955 1956 static int ath10k_pci_hif_start(struct ath10k *ar) 1957 { 1958 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 1959 1960 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n"); 1961 1962 ath10k_core_napi_enable(ar); 1963 1964 ath10k_pci_irq_enable(ar); 1965 ath10k_pci_rx_post(ar); 1966 1967 pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL, 1968 PCI_EXP_LNKCTL_ASPMC, 1969 ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC); 1970 1971 return 0; 1972 } 1973 1974 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe) 1975 { 1976 struct ath10k *ar; 1977 struct ath10k_ce_pipe *ce_pipe; 1978 struct ath10k_ce_ring *ce_ring; 1979 struct sk_buff *skb; 1980 int i; 1981 1982 ar = pci_pipe->hif_ce_state; 1983 ce_pipe = pci_pipe->ce_hdl; 1984 ce_ring = ce_pipe->dest_ring; 1985 1986 if (!ce_ring) 1987 return; 1988 1989 if (!pci_pipe->buf_sz) 1990 return; 1991 1992 for (i = 0; i < ce_ring->nentries; i++) { 1993 skb = ce_ring->per_transfer_context[i]; 1994 if (!skb) 1995 continue; 1996 1997 ce_ring->per_transfer_context[i] = NULL; 1998 1999 dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr, 2000 skb->len + skb_tailroom(skb), 2001 DMA_FROM_DEVICE); 2002 dev_kfree_skb_any(skb); 2003 } 2004 } 2005 2006 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe) 2007 { 2008 struct ath10k *ar; 2009 struct ath10k_ce_pipe *ce_pipe; 2010 struct ath10k_ce_ring *ce_ring; 2011 struct sk_buff *skb; 2012 int i; 2013 2014 ar = pci_pipe->hif_ce_state; 2015 ce_pipe = pci_pipe->ce_hdl; 2016 ce_ring = ce_pipe->src_ring; 2017 2018 if (!ce_ring) 2019 return; 2020 2021 if (!pci_pipe->buf_sz) 2022 return; 2023 2024 for (i = 0; i < ce_ring->nentries; i++) { 2025 skb = ce_ring->per_transfer_context[i]; 2026 if (!skb) 2027 continue; 2028 2029 ce_ring->per_transfer_context[i] = NULL; 2030 2031 ath10k_htc_tx_completion_handler(ar, skb); 2032 } 2033 } 2034 2035 /* 2036 * Cleanup residual buffers for device shutdown: 2037 * buffers that were enqueued for receive 2038 * buffers that were to be sent 2039 * Note: Buffers that had completed but which were 2040 * not yet processed are on a completion queue. They 2041 * are handled when the completion thread shuts down. 2042 */ 2043 static void ath10k_pci_buffer_cleanup(struct ath10k *ar) 2044 { 2045 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2046 int pipe_num; 2047 2048 for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { 2049 struct ath10k_pci_pipe *pipe_info; 2050 2051 pipe_info = &ar_pci->pipe_info[pipe_num]; 2052 ath10k_pci_rx_pipe_cleanup(pipe_info); 2053 ath10k_pci_tx_pipe_cleanup(pipe_info); 2054 } 2055 } 2056 2057 void ath10k_pci_ce_deinit(struct ath10k *ar) 2058 { 2059 int i; 2060 2061 for (i = 0; i < CE_COUNT; i++) 2062 ath10k_ce_deinit_pipe(ar, i); 2063 } 2064 2065 void ath10k_pci_flush(struct ath10k *ar) 2066 { 2067 ath10k_pci_rx_retry_sync(ar); 2068 ath10k_pci_buffer_cleanup(ar); 2069 } 2070 2071 static void ath10k_pci_hif_stop(struct ath10k *ar) 2072 { 2073 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2074 unsigned long flags; 2075 2076 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n"); 2077 2078 ath10k_pci_irq_disable(ar); 2079 ath10k_pci_irq_sync(ar); 2080 2081 ath10k_core_napi_sync_disable(ar); 2082 2083 cancel_work_sync(&ar_pci->dump_work); 2084 2085 /* Most likely the device has HTT Rx ring configured. The only way to 2086 * prevent the device from accessing (and possible corrupting) host 2087 * memory is to reset the chip now. 2088 * 2089 * There's also no known way of masking MSI interrupts on the device. 2090 * For ranged MSI the CE-related interrupts can be masked. However 2091 * regardless how many MSI interrupts are assigned the first one 2092 * is always used for firmware indications (crashes) and cannot be 2093 * masked. To prevent the device from asserting the interrupt reset it 2094 * before proceeding with cleanup. 2095 */ 2096 ath10k_pci_safe_chip_reset(ar); 2097 2098 ath10k_pci_flush(ar); 2099 2100 spin_lock_irqsave(&ar_pci->ps_lock, flags); 2101 WARN_ON(ar_pci->ps_wake_refcount > 0); 2102 spin_unlock_irqrestore(&ar_pci->ps_lock, flags); 2103 } 2104 2105 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar, 2106 void *req, u32 req_len, 2107 void *resp, u32 *resp_len) 2108 { 2109 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2110 struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG]; 2111 struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST]; 2112 struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl; 2113 struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl; 2114 dma_addr_t req_paddr = 0; 2115 dma_addr_t resp_paddr = 0; 2116 struct bmi_xfer xfer = {}; 2117 void *treq, *tresp = NULL; 2118 int ret = 0; 2119 2120 might_sleep(); 2121 2122 if (resp && !resp_len) 2123 return -EINVAL; 2124 2125 if (resp && resp_len && *resp_len == 0) 2126 return -EINVAL; 2127 2128 treq = kmemdup(req, req_len, GFP_KERNEL); 2129 if (!treq) 2130 return -ENOMEM; 2131 2132 req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE); 2133 ret = dma_mapping_error(ar->dev, req_paddr); 2134 if (ret) { 2135 ret = -EIO; 2136 goto err_dma; 2137 } 2138 2139 if (resp && resp_len) { 2140 tresp = kzalloc(*resp_len, GFP_KERNEL); 2141 if (!tresp) { 2142 ret = -ENOMEM; 2143 goto err_req; 2144 } 2145 2146 resp_paddr = dma_map_single(ar->dev, tresp, *resp_len, 2147 DMA_FROM_DEVICE); 2148 ret = dma_mapping_error(ar->dev, resp_paddr); 2149 if (ret) { 2150 ret = -EIO; 2151 goto err_req; 2152 } 2153 2154 xfer.wait_for_resp = true; 2155 xfer.resp_len = 0; 2156 2157 ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr); 2158 } 2159 2160 ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0); 2161 if (ret) 2162 goto err_resp; 2163 2164 ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer); 2165 if (ret) { 2166 dma_addr_t unused_buffer; 2167 unsigned int unused_nbytes; 2168 unsigned int unused_id; 2169 2170 ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer, 2171 &unused_nbytes, &unused_id); 2172 } else { 2173 /* non-zero means we did not time out */ 2174 ret = 0; 2175 } 2176 2177 err_resp: 2178 if (resp) { 2179 dma_addr_t unused_buffer; 2180 2181 ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer); 2182 dma_unmap_single(ar->dev, resp_paddr, 2183 *resp_len, DMA_FROM_DEVICE); 2184 } 2185 err_req: 2186 dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE); 2187 2188 if (ret == 0 && resp_len) { 2189 *resp_len = min(*resp_len, xfer.resp_len); 2190 memcpy(resp, tresp, *resp_len); 2191 } 2192 err_dma: 2193 kfree(treq); 2194 kfree(tresp); 2195 2196 return ret; 2197 } 2198 2199 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state) 2200 { 2201 struct bmi_xfer *xfer; 2202 2203 if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer)) 2204 return; 2205 2206 xfer->tx_done = true; 2207 } 2208 2209 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state) 2210 { 2211 struct ath10k *ar = ce_state->ar; 2212 struct bmi_xfer *xfer; 2213 unsigned int nbytes; 2214 2215 if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, 2216 &nbytes)) 2217 return; 2218 2219 if (WARN_ON_ONCE(!xfer)) 2220 return; 2221 2222 if (!xfer->wait_for_resp) { 2223 ath10k_warn(ar, "unexpected: BMI data received; ignoring\n"); 2224 return; 2225 } 2226 2227 xfer->resp_len = nbytes; 2228 xfer->rx_done = true; 2229 } 2230 2231 static int ath10k_pci_bmi_wait(struct ath10k *ar, 2232 struct ath10k_ce_pipe *tx_pipe, 2233 struct ath10k_ce_pipe *rx_pipe, 2234 struct bmi_xfer *xfer) 2235 { 2236 unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ; 2237 unsigned long started = jiffies; 2238 unsigned long dur; 2239 int ret; 2240 2241 while (time_before_eq(jiffies, timeout)) { 2242 ath10k_pci_bmi_send_done(tx_pipe); 2243 ath10k_pci_bmi_recv_data(rx_pipe); 2244 2245 if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) { 2246 ret = 0; 2247 goto out; 2248 } 2249 2250 schedule(); 2251 } 2252 2253 ret = -ETIMEDOUT; 2254 2255 out: 2256 dur = jiffies - started; 2257 if (dur > HZ) 2258 ath10k_dbg(ar, ATH10K_DBG_BMI, 2259 "bmi cmd took %lu jiffies hz %d ret %d\n", 2260 dur, HZ, ret); 2261 return ret; 2262 } 2263 2264 /* 2265 * Send an interrupt to the device to wake up the Target CPU 2266 * so it has an opportunity to notice any changed state. 2267 */ 2268 static int ath10k_pci_wake_target_cpu(struct ath10k *ar) 2269 { 2270 u32 addr, val; 2271 2272 addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS; 2273 val = ath10k_pci_read32(ar, addr); 2274 val |= CORE_CTRL_CPU_INTR_MASK; 2275 ath10k_pci_write32(ar, addr, val); 2276 2277 return 0; 2278 } 2279 2280 static int ath10k_pci_get_num_banks(struct ath10k *ar) 2281 { 2282 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2283 2284 switch (ar_pci->pdev->device) { 2285 case QCA988X_2_0_DEVICE_ID_UBNT: 2286 case QCA988X_2_0_DEVICE_ID: 2287 case QCA99X0_2_0_DEVICE_ID: 2288 case QCA9888_2_0_DEVICE_ID: 2289 case QCA9984_1_0_DEVICE_ID: 2290 case QCA9887_1_0_DEVICE_ID: 2291 return 1; 2292 case QCA6164_2_1_DEVICE_ID: 2293 case QCA6174_2_1_DEVICE_ID: 2294 switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) { 2295 case QCA6174_HW_1_0_CHIP_ID_REV: 2296 case QCA6174_HW_1_1_CHIP_ID_REV: 2297 case QCA6174_HW_2_1_CHIP_ID_REV: 2298 case QCA6174_HW_2_2_CHIP_ID_REV: 2299 return 3; 2300 case QCA6174_HW_1_3_CHIP_ID_REV: 2301 return 2; 2302 case QCA6174_HW_3_0_CHIP_ID_REV: 2303 case QCA6174_HW_3_1_CHIP_ID_REV: 2304 case QCA6174_HW_3_2_CHIP_ID_REV: 2305 return 9; 2306 } 2307 break; 2308 case QCA9377_1_0_DEVICE_ID: 2309 return 9; 2310 } 2311 2312 ath10k_warn(ar, "unknown number of banks, assuming 1\n"); 2313 return 1; 2314 } 2315 2316 static int ath10k_bus_get_num_banks(struct ath10k *ar) 2317 { 2318 struct ath10k_ce *ce = ath10k_ce_priv(ar); 2319 2320 return ce->bus_ops->get_num_banks(ar); 2321 } 2322 2323 int ath10k_pci_init_config(struct ath10k *ar) 2324 { 2325 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2326 u32 interconnect_targ_addr; 2327 u32 pcie_state_targ_addr = 0; 2328 u32 pipe_cfg_targ_addr = 0; 2329 u32 svc_to_pipe_map = 0; 2330 u32 pcie_config_flags = 0; 2331 u32 ealloc_value; 2332 u32 ealloc_targ_addr; 2333 u32 flag2_value; 2334 u32 flag2_targ_addr; 2335 int ret = 0; 2336 2337 /* Download to Target the CE Config and the service-to-CE map */ 2338 interconnect_targ_addr = 2339 host_interest_item_address(HI_ITEM(hi_interconnect_state)); 2340 2341 /* Supply Target-side CE configuration */ 2342 ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr, 2343 &pcie_state_targ_addr); 2344 if (ret != 0) { 2345 ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret); 2346 return ret; 2347 } 2348 2349 if (pcie_state_targ_addr == 0) { 2350 ret = -EIO; 2351 ath10k_err(ar, "Invalid pcie state addr\n"); 2352 return ret; 2353 } 2354 2355 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + 2356 offsetof(struct pcie_state, 2357 pipe_cfg_addr)), 2358 &pipe_cfg_targ_addr); 2359 if (ret != 0) { 2360 ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret); 2361 return ret; 2362 } 2363 2364 if (pipe_cfg_targ_addr == 0) { 2365 ret = -EIO; 2366 ath10k_err(ar, "Invalid pipe cfg addr\n"); 2367 return ret; 2368 } 2369 2370 ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr, 2371 ar_pci->pipe_config, 2372 sizeof(struct ce_pipe_config) * 2373 NUM_TARGET_CE_CONFIG_WLAN); 2374 2375 if (ret != 0) { 2376 ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret); 2377 return ret; 2378 } 2379 2380 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + 2381 offsetof(struct pcie_state, 2382 svc_to_pipe_map)), 2383 &svc_to_pipe_map); 2384 if (ret != 0) { 2385 ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret); 2386 return ret; 2387 } 2388 2389 if (svc_to_pipe_map == 0) { 2390 ret = -EIO; 2391 ath10k_err(ar, "Invalid svc_to_pipe map\n"); 2392 return ret; 2393 } 2394 2395 ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map, 2396 ar_pci->serv_to_pipe, 2397 sizeof(pci_target_service_to_ce_map_wlan)); 2398 if (ret != 0) { 2399 ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret); 2400 return ret; 2401 } 2402 2403 ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr + 2404 offsetof(struct pcie_state, 2405 config_flags)), 2406 &pcie_config_flags); 2407 if (ret != 0) { 2408 ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret); 2409 return ret; 2410 } 2411 2412 pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1; 2413 2414 ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr + 2415 offsetof(struct pcie_state, 2416 config_flags)), 2417 pcie_config_flags); 2418 if (ret != 0) { 2419 ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret); 2420 return ret; 2421 } 2422 2423 /* configure early allocation */ 2424 ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc)); 2425 2426 ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value); 2427 if (ret != 0) { 2428 ath10k_err(ar, "Failed to get early alloc val: %d\n", ret); 2429 return ret; 2430 } 2431 2432 /* first bank is switched to IRAM */ 2433 ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) & 2434 HI_EARLY_ALLOC_MAGIC_MASK); 2435 ealloc_value |= ((ath10k_bus_get_num_banks(ar) << 2436 HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) & 2437 HI_EARLY_ALLOC_IRAM_BANKS_MASK); 2438 2439 ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value); 2440 if (ret != 0) { 2441 ath10k_err(ar, "Failed to set early alloc val: %d\n", ret); 2442 return ret; 2443 } 2444 2445 /* Tell Target to proceed with initialization */ 2446 flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2)); 2447 2448 ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value); 2449 if (ret != 0) { 2450 ath10k_err(ar, "Failed to get option val: %d\n", ret); 2451 return ret; 2452 } 2453 2454 flag2_value |= HI_OPTION_EARLY_CFG_DONE; 2455 2456 ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value); 2457 if (ret != 0) { 2458 ath10k_err(ar, "Failed to set option val: %d\n", ret); 2459 return ret; 2460 } 2461 2462 return 0; 2463 } 2464 2465 static void ath10k_pci_override_ce_config(struct ath10k *ar) 2466 { 2467 struct ce_attr *attr; 2468 struct ce_pipe_config *config; 2469 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2470 2471 /* For QCA6174 we're overriding the Copy Engine 5 configuration, 2472 * since it is currently used for other feature. 2473 */ 2474 2475 /* Override Host's Copy Engine 5 configuration */ 2476 attr = &ar_pci->attr[5]; 2477 attr->src_sz_max = 0; 2478 attr->dest_nentries = 0; 2479 2480 /* Override Target firmware's Copy Engine configuration */ 2481 config = &ar_pci->pipe_config[5]; 2482 config->pipedir = __cpu_to_le32(PIPEDIR_OUT); 2483 config->nbytes_max = __cpu_to_le32(2048); 2484 2485 /* Map from service/endpoint to Copy Engine */ 2486 ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1); 2487 } 2488 2489 int ath10k_pci_alloc_pipes(struct ath10k *ar) 2490 { 2491 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2492 struct ath10k_pci_pipe *pipe; 2493 struct ath10k_ce *ce = ath10k_ce_priv(ar); 2494 int i, ret; 2495 2496 for (i = 0; i < CE_COUNT; i++) { 2497 pipe = &ar_pci->pipe_info[i]; 2498 pipe->ce_hdl = &ce->ce_states[i]; 2499 pipe->pipe_num = i; 2500 pipe->hif_ce_state = ar; 2501 2502 ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]); 2503 if (ret) { 2504 ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n", 2505 i, ret); 2506 return ret; 2507 } 2508 2509 /* Last CE is Diagnostic Window */ 2510 if (i == CE_DIAG_PIPE) { 2511 ar_pci->ce_diag = pipe->ce_hdl; 2512 continue; 2513 } 2514 2515 pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max); 2516 } 2517 2518 return 0; 2519 } 2520 2521 void ath10k_pci_free_pipes(struct ath10k *ar) 2522 { 2523 int i; 2524 2525 for (i = 0; i < CE_COUNT; i++) 2526 ath10k_ce_free_pipe(ar, i); 2527 } 2528 2529 int ath10k_pci_init_pipes(struct ath10k *ar) 2530 { 2531 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2532 int i, ret; 2533 2534 for (i = 0; i < CE_COUNT; i++) { 2535 ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]); 2536 if (ret) { 2537 ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n", 2538 i, ret); 2539 return ret; 2540 } 2541 } 2542 2543 return 0; 2544 } 2545 2546 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar) 2547 { 2548 return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) & 2549 FW_IND_EVENT_PENDING; 2550 } 2551 2552 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar) 2553 { 2554 u32 val; 2555 2556 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); 2557 val &= ~FW_IND_EVENT_PENDING; 2558 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val); 2559 } 2560 2561 static bool ath10k_pci_has_device_gone(struct ath10k *ar) 2562 { 2563 u32 val; 2564 2565 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); 2566 return (val == 0xffffffff); 2567 } 2568 2569 /* this function effectively clears target memory controller assert line */ 2570 static void ath10k_pci_warm_reset_si0(struct ath10k *ar) 2571 { 2572 u32 val; 2573 2574 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2575 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2576 val | SOC_RESET_CONTROL_SI0_RST_MASK); 2577 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2578 2579 msleep(10); 2580 2581 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2582 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2583 val & ~SOC_RESET_CONTROL_SI0_RST_MASK); 2584 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2585 2586 msleep(10); 2587 } 2588 2589 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar) 2590 { 2591 u32 val; 2592 2593 ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0); 2594 2595 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2596 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2597 val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK); 2598 } 2599 2600 static void ath10k_pci_warm_reset_ce(struct ath10k *ar) 2601 { 2602 u32 val; 2603 2604 val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS); 2605 2606 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2607 val | SOC_RESET_CONTROL_CE_RST_MASK); 2608 msleep(10); 2609 ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS, 2610 val & ~SOC_RESET_CONTROL_CE_RST_MASK); 2611 } 2612 2613 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar) 2614 { 2615 u32 val; 2616 2617 val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS); 2618 ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS, 2619 val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK); 2620 } 2621 2622 static int ath10k_pci_warm_reset(struct ath10k *ar) 2623 { 2624 int ret; 2625 2626 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n"); 2627 2628 spin_lock_bh(&ar->data_lock); 2629 ar->stats.fw_warm_reset_counter++; 2630 spin_unlock_bh(&ar->data_lock); 2631 2632 ath10k_pci_irq_disable(ar); 2633 2634 /* Make sure the target CPU is not doing anything dangerous, e.g. if it 2635 * were to access copy engine while host performs copy engine reset 2636 * then it is possible for the device to confuse pci-e controller to 2637 * the point of bringing host system to a complete stop (i.e. hang). 2638 */ 2639 ath10k_pci_warm_reset_si0(ar); 2640 ath10k_pci_warm_reset_cpu(ar); 2641 ath10k_pci_init_pipes(ar); 2642 ath10k_pci_wait_for_target_init(ar); 2643 2644 ath10k_pci_warm_reset_clear_lf(ar); 2645 ath10k_pci_warm_reset_ce(ar); 2646 ath10k_pci_warm_reset_cpu(ar); 2647 ath10k_pci_init_pipes(ar); 2648 2649 ret = ath10k_pci_wait_for_target_init(ar); 2650 if (ret) { 2651 ath10k_warn(ar, "failed to wait for target init: %d\n", ret); 2652 return ret; 2653 } 2654 2655 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n"); 2656 2657 return 0; 2658 } 2659 2660 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar) 2661 { 2662 ath10k_pci_irq_disable(ar); 2663 return ath10k_pci_qca99x0_chip_reset(ar); 2664 } 2665 2666 static int ath10k_pci_safe_chip_reset(struct ath10k *ar) 2667 { 2668 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2669 2670 if (!ar_pci->pci_soft_reset) 2671 return -EOPNOTSUPP; 2672 2673 return ar_pci->pci_soft_reset(ar); 2674 } 2675 2676 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar) 2677 { 2678 int i, ret; 2679 u32 val; 2680 2681 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n"); 2682 2683 /* Some hardware revisions (e.g. CUS223v2) has issues with cold reset. 2684 * It is thus preferred to use warm reset which is safer but may not be 2685 * able to recover the device from all possible fail scenarios. 2686 * 2687 * Warm reset doesn't always work on first try so attempt it a few 2688 * times before giving up. 2689 */ 2690 for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) { 2691 ret = ath10k_pci_warm_reset(ar); 2692 if (ret) { 2693 ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n", 2694 i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS, 2695 ret); 2696 continue; 2697 } 2698 2699 /* FIXME: Sometimes copy engine doesn't recover after warm 2700 * reset. In most cases this needs cold reset. In some of these 2701 * cases the device is in such a state that a cold reset may 2702 * lock up the host. 2703 * 2704 * Reading any host interest register via copy engine is 2705 * sufficient to verify if device is capable of booting 2706 * firmware blob. 2707 */ 2708 ret = ath10k_pci_init_pipes(ar); 2709 if (ret) { 2710 ath10k_warn(ar, "failed to init copy engine: %d\n", 2711 ret); 2712 continue; 2713 } 2714 2715 ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS, 2716 &val); 2717 if (ret) { 2718 ath10k_warn(ar, "failed to poke copy engine: %d\n", 2719 ret); 2720 continue; 2721 } 2722 2723 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n"); 2724 return 0; 2725 } 2726 2727 if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) { 2728 ath10k_warn(ar, "refusing cold reset as requested\n"); 2729 return -EPERM; 2730 } 2731 2732 ret = ath10k_pci_cold_reset(ar); 2733 if (ret) { 2734 ath10k_warn(ar, "failed to cold reset: %d\n", ret); 2735 return ret; 2736 } 2737 2738 ret = ath10k_pci_wait_for_target_init(ar); 2739 if (ret) { 2740 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", 2741 ret); 2742 return ret; 2743 } 2744 2745 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n"); 2746 2747 return 0; 2748 } 2749 2750 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar) 2751 { 2752 int ret; 2753 2754 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n"); 2755 2756 /* FIXME: QCA6174 requires cold + warm reset to work. */ 2757 2758 ret = ath10k_pci_cold_reset(ar); 2759 if (ret) { 2760 ath10k_warn(ar, "failed to cold reset: %d\n", ret); 2761 return ret; 2762 } 2763 2764 ret = ath10k_pci_wait_for_target_init(ar); 2765 if (ret) { 2766 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", 2767 ret); 2768 return ret; 2769 } 2770 2771 ret = ath10k_pci_warm_reset(ar); 2772 if (ret) { 2773 ath10k_warn(ar, "failed to warm reset: %d\n", ret); 2774 return ret; 2775 } 2776 2777 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n"); 2778 2779 return 0; 2780 } 2781 2782 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar) 2783 { 2784 int ret; 2785 2786 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n"); 2787 2788 ret = ath10k_pci_cold_reset(ar); 2789 if (ret) { 2790 ath10k_warn(ar, "failed to cold reset: %d\n", ret); 2791 return ret; 2792 } 2793 2794 ret = ath10k_pci_wait_for_target_init(ar); 2795 if (ret) { 2796 ath10k_warn(ar, "failed to wait for target after cold reset: %d\n", 2797 ret); 2798 return ret; 2799 } 2800 2801 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n"); 2802 2803 return 0; 2804 } 2805 2806 static int ath10k_pci_chip_reset(struct ath10k *ar) 2807 { 2808 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2809 2810 if (WARN_ON(!ar_pci->pci_hard_reset)) 2811 return -EOPNOTSUPP; 2812 2813 return ar_pci->pci_hard_reset(ar); 2814 } 2815 2816 static int ath10k_pci_hif_power_up(struct ath10k *ar, 2817 enum ath10k_firmware_mode fw_mode) 2818 { 2819 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2820 int ret; 2821 2822 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n"); 2823 2824 pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL, 2825 &ar_pci->link_ctl); 2826 pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL, 2827 PCI_EXP_LNKCTL_ASPMC); 2828 2829 /* 2830 * Bring the target up cleanly. 2831 * 2832 * The target may be in an undefined state with an AUX-powered Target 2833 * and a Host in WoW mode. If the Host crashes, loses power, or is 2834 * restarted (without unloading the driver) then the Target is left 2835 * (aux) powered and running. On a subsequent driver load, the Target 2836 * is in an unexpected state. We try to catch that here in order to 2837 * reset the Target and retry the probe. 2838 */ 2839 ret = ath10k_pci_chip_reset(ar); 2840 if (ret) { 2841 if (ath10k_pci_has_fw_crashed(ar)) { 2842 ath10k_warn(ar, "firmware crashed during chip reset\n"); 2843 ath10k_pci_fw_crashed_clear(ar); 2844 ath10k_pci_fw_crashed_dump(ar); 2845 } 2846 2847 ath10k_err(ar, "failed to reset chip: %d\n", ret); 2848 goto err_sleep; 2849 } 2850 2851 ret = ath10k_pci_init_pipes(ar); 2852 if (ret) { 2853 ath10k_err(ar, "failed to initialize CE: %d\n", ret); 2854 goto err_sleep; 2855 } 2856 2857 ret = ath10k_pci_init_config(ar); 2858 if (ret) { 2859 ath10k_err(ar, "failed to setup init config: %d\n", ret); 2860 goto err_ce; 2861 } 2862 2863 ret = ath10k_pci_wake_target_cpu(ar); 2864 if (ret) { 2865 ath10k_err(ar, "could not wake up target CPU: %d\n", ret); 2866 goto err_ce; 2867 } 2868 2869 return 0; 2870 2871 err_ce: 2872 ath10k_pci_ce_deinit(ar); 2873 2874 err_sleep: 2875 return ret; 2876 } 2877 2878 void ath10k_pci_hif_power_down(struct ath10k *ar) 2879 { 2880 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n"); 2881 2882 /* Currently hif_power_up performs effectively a reset and hif_stop 2883 * resets the chip as well so there's no point in resetting here. 2884 */ 2885 } 2886 2887 static int ath10k_pci_hif_suspend(struct ath10k *ar) 2888 { 2889 /* Nothing to do; the important stuff is in the driver suspend. */ 2890 return 0; 2891 } 2892 2893 static int ath10k_pci_suspend(struct ath10k *ar) 2894 { 2895 /* The grace timer can still be counting down and ar->ps_awake be true. 2896 * It is known that the device may be asleep after resuming regardless 2897 * of the SoC powersave state before suspending. Hence make sure the 2898 * device is asleep before proceeding. 2899 */ 2900 ath10k_pci_sleep_sync(ar); 2901 2902 return 0; 2903 } 2904 2905 static int ath10k_pci_hif_resume(struct ath10k *ar) 2906 { 2907 /* Nothing to do; the important stuff is in the driver resume. */ 2908 return 0; 2909 } 2910 2911 static int ath10k_pci_resume(struct ath10k *ar) 2912 { 2913 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 2914 struct pci_dev *pdev = ar_pci->pdev; 2915 u32 val; 2916 int ret = 0; 2917 2918 ret = ath10k_pci_force_wake(ar); 2919 if (ret) { 2920 ath10k_err(ar, "failed to wake up target: %d\n", ret); 2921 return ret; 2922 } 2923 2924 /* Suspend/Resume resets the PCI configuration space, so we have to 2925 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries 2926 * from interfering with C3 CPU state. pci_restore_state won't help 2927 * here since it only restores the first 64 bytes pci config header. 2928 */ 2929 pci_read_config_dword(pdev, 0x40, &val); 2930 if ((val & 0x0000ff00) != 0) 2931 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); 2932 2933 return ret; 2934 } 2935 2936 static bool ath10k_pci_validate_cal(void *data, size_t size) 2937 { 2938 __le16 *cal_words = data; 2939 u16 checksum = 0; 2940 size_t i; 2941 2942 if (size % 2 != 0) 2943 return false; 2944 2945 for (i = 0; i < size / 2; i++) 2946 checksum ^= le16_to_cpu(cal_words[i]); 2947 2948 return checksum == 0xffff; 2949 } 2950 2951 static void ath10k_pci_enable_eeprom(struct ath10k *ar) 2952 { 2953 /* Enable SI clock */ 2954 ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0); 2955 2956 /* Configure GPIOs for I2C operation */ 2957 ath10k_pci_write32(ar, 2958 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET + 2959 4 * QCA9887_1_0_I2C_SDA_GPIO_PIN, 2960 SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG, 2961 GPIO_PIN0_CONFIG) | 2962 SM(1, GPIO_PIN0_PAD_PULL)); 2963 2964 ath10k_pci_write32(ar, 2965 GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET + 2966 4 * QCA9887_1_0_SI_CLK_GPIO_PIN, 2967 SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) | 2968 SM(1, GPIO_PIN0_PAD_PULL)); 2969 2970 ath10k_pci_write32(ar, 2971 GPIO_BASE_ADDRESS + 2972 QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS, 2973 1u << QCA9887_1_0_SI_CLK_GPIO_PIN); 2974 2975 /* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */ 2976 ath10k_pci_write32(ar, 2977 SI_BASE_ADDRESS + SI_CONFIG_OFFSET, 2978 SM(1, SI_CONFIG_ERR_INT) | 2979 SM(1, SI_CONFIG_BIDIR_OD_DATA) | 2980 SM(1, SI_CONFIG_I2C) | 2981 SM(1, SI_CONFIG_POS_SAMPLE) | 2982 SM(1, SI_CONFIG_INACTIVE_DATA) | 2983 SM(1, SI_CONFIG_INACTIVE_CLK) | 2984 SM(8, SI_CONFIG_DIVIDER)); 2985 } 2986 2987 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out) 2988 { 2989 u32 reg; 2990 int wait_limit; 2991 2992 /* set device select byte and for the read operation */ 2993 reg = QCA9887_EEPROM_SELECT_READ | 2994 SM(addr, QCA9887_EEPROM_ADDR_LO) | 2995 SM(addr >> 8, QCA9887_EEPROM_ADDR_HI); 2996 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg); 2997 2998 /* write transmit data, transfer length, and START bit */ 2999 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, 3000 SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) | 3001 SM(4, SI_CS_TX_CNT)); 3002 3003 /* wait max 1 sec */ 3004 wait_limit = 100000; 3005 3006 /* wait for SI_CS_DONE_INT */ 3007 do { 3008 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET); 3009 if (MS(reg, SI_CS_DONE_INT)) 3010 break; 3011 3012 wait_limit--; 3013 udelay(10); 3014 } while (wait_limit > 0); 3015 3016 if (!MS(reg, SI_CS_DONE_INT)) { 3017 ath10k_err(ar, "timeout while reading device EEPROM at %04x\n", 3018 addr); 3019 return -ETIMEDOUT; 3020 } 3021 3022 /* clear SI_CS_DONE_INT */ 3023 ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg); 3024 3025 if (MS(reg, SI_CS_DONE_ERR)) { 3026 ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr); 3027 return -EIO; 3028 } 3029 3030 /* extract receive data */ 3031 reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET); 3032 *out = reg; 3033 3034 return 0; 3035 } 3036 3037 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data, 3038 size_t *data_len) 3039 { 3040 u8 *caldata = NULL; 3041 size_t calsize, i; 3042 int ret; 3043 3044 if (!QCA_REV_9887(ar)) 3045 return -EOPNOTSUPP; 3046 3047 calsize = ar->hw_params.cal_data_len; 3048 caldata = kmalloc(calsize, GFP_KERNEL); 3049 if (!caldata) 3050 return -ENOMEM; 3051 3052 ath10k_pci_enable_eeprom(ar); 3053 3054 for (i = 0; i < calsize; i++) { 3055 ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]); 3056 if (ret) 3057 goto err_free; 3058 } 3059 3060 if (!ath10k_pci_validate_cal(caldata, calsize)) 3061 goto err_free; 3062 3063 *data = caldata; 3064 *data_len = calsize; 3065 3066 return 0; 3067 3068 err_free: 3069 kfree(caldata); 3070 3071 return -EINVAL; 3072 } 3073 3074 static const struct ath10k_hif_ops ath10k_pci_hif_ops = { 3075 .tx_sg = ath10k_pci_hif_tx_sg, 3076 .diag_read = ath10k_pci_hif_diag_read, 3077 .diag_write = ath10k_pci_diag_write_mem, 3078 .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg, 3079 .start = ath10k_pci_hif_start, 3080 .stop = ath10k_pci_hif_stop, 3081 .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe, 3082 .get_default_pipe = ath10k_pci_hif_get_default_pipe, 3083 .send_complete_check = ath10k_pci_hif_send_complete_check, 3084 .get_free_queue_number = ath10k_pci_hif_get_free_queue_number, 3085 .power_up = ath10k_pci_hif_power_up, 3086 .power_down = ath10k_pci_hif_power_down, 3087 .read32 = ath10k_pci_read32, 3088 .write32 = ath10k_pci_write32, 3089 .suspend = ath10k_pci_hif_suspend, 3090 .resume = ath10k_pci_hif_resume, 3091 .fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom, 3092 }; 3093 3094 /* 3095 * Top-level interrupt handler for all PCI interrupts from a Target. 3096 * When a block of MSI interrupts is allocated, this top-level handler 3097 * is not used; instead, we directly call the correct sub-handler. 3098 */ 3099 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg) 3100 { 3101 struct ath10k *ar = arg; 3102 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3103 int ret; 3104 3105 if (ath10k_pci_has_device_gone(ar)) 3106 return IRQ_NONE; 3107 3108 ret = ath10k_pci_force_wake(ar); 3109 if (ret) { 3110 ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret); 3111 return IRQ_NONE; 3112 } 3113 3114 if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) && 3115 !ath10k_pci_irq_pending(ar)) 3116 return IRQ_NONE; 3117 3118 ath10k_pci_disable_and_clear_legacy_irq(ar); 3119 ath10k_pci_irq_msi_fw_mask(ar); 3120 napi_schedule(&ar->napi); 3121 3122 return IRQ_HANDLED; 3123 } 3124 3125 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget) 3126 { 3127 struct ath10k *ar = container_of(ctx, struct ath10k, napi); 3128 int done = 0; 3129 3130 if (ath10k_pci_has_fw_crashed(ar)) { 3131 ath10k_pci_fw_crashed_clear(ar); 3132 ath10k_pci_fw_crashed_dump(ar); 3133 napi_complete(ctx); 3134 return done; 3135 } 3136 3137 ath10k_ce_per_engine_service_any(ar); 3138 3139 done = ath10k_htt_txrx_compl_task(ar, budget); 3140 3141 if (done < budget) { 3142 napi_complete_done(ctx, done); 3143 /* In case of MSI, it is possible that interrupts are received 3144 * while NAPI poll is inprogress. So pending interrupts that are 3145 * received after processing all copy engine pipes by NAPI poll 3146 * will not be handled again. This is causing failure to 3147 * complete boot sequence in x86 platform. So before enabling 3148 * interrupts safer to check for pending interrupts for 3149 * immediate servicing. 3150 */ 3151 if (ath10k_ce_interrupt_summary(ar)) { 3152 napi_schedule(ctx); 3153 goto out; 3154 } 3155 ath10k_pci_enable_legacy_irq(ar); 3156 ath10k_pci_irq_msi_fw_unmask(ar); 3157 } 3158 3159 out: 3160 return done; 3161 } 3162 3163 static int ath10k_pci_request_irq_msi(struct ath10k *ar) 3164 { 3165 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3166 int ret; 3167 3168 ret = request_irq(ar_pci->pdev->irq, 3169 ath10k_pci_interrupt_handler, 3170 IRQF_SHARED, "ath10k_pci", ar); 3171 if (ret) { 3172 ath10k_warn(ar, "failed to request MSI irq %d: %d\n", 3173 ar_pci->pdev->irq, ret); 3174 return ret; 3175 } 3176 3177 return 0; 3178 } 3179 3180 static int ath10k_pci_request_irq_legacy(struct ath10k *ar) 3181 { 3182 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3183 int ret; 3184 3185 ret = request_irq(ar_pci->pdev->irq, 3186 ath10k_pci_interrupt_handler, 3187 IRQF_SHARED, "ath10k_pci", ar); 3188 if (ret) { 3189 ath10k_warn(ar, "failed to request legacy irq %d: %d\n", 3190 ar_pci->pdev->irq, ret); 3191 return ret; 3192 } 3193 3194 return 0; 3195 } 3196 3197 static int ath10k_pci_request_irq(struct ath10k *ar) 3198 { 3199 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3200 3201 switch (ar_pci->oper_irq_mode) { 3202 case ATH10K_PCI_IRQ_LEGACY: 3203 return ath10k_pci_request_irq_legacy(ar); 3204 case ATH10K_PCI_IRQ_MSI: 3205 return ath10k_pci_request_irq_msi(ar); 3206 default: 3207 return -EINVAL; 3208 } 3209 } 3210 3211 static void ath10k_pci_free_irq(struct ath10k *ar) 3212 { 3213 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3214 3215 free_irq(ar_pci->pdev->irq, ar); 3216 } 3217 3218 void ath10k_pci_init_napi(struct ath10k *ar) 3219 { 3220 netif_napi_add(ar->napi_dev, &ar->napi, ath10k_pci_napi_poll); 3221 } 3222 3223 static int ath10k_pci_init_irq(struct ath10k *ar) 3224 { 3225 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3226 int ret; 3227 3228 ath10k_pci_init_napi(ar); 3229 3230 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO) 3231 ath10k_info(ar, "limiting irq mode to: %d\n", 3232 ath10k_pci_irq_mode); 3233 3234 /* Try MSI */ 3235 if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) { 3236 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI; 3237 ret = pci_enable_msi(ar_pci->pdev); 3238 if (ret == 0) 3239 return 0; 3240 3241 /* MHI failed, try legacy irq next */ 3242 } 3243 3244 /* Try legacy irq 3245 * 3246 * A potential race occurs here: The CORE_BASE write 3247 * depends on target correctly decoding AXI address but 3248 * host won't know when target writes BAR to CORE_CTRL. 3249 * This write might get lost if target has NOT written BAR. 3250 * For now, fix the race by repeating the write in below 3251 * synchronization checking. 3252 */ 3253 ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY; 3254 3255 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 3256 PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL); 3257 3258 return 0; 3259 } 3260 3261 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar) 3262 { 3263 ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS, 3264 0); 3265 } 3266 3267 static int ath10k_pci_deinit_irq(struct ath10k *ar) 3268 { 3269 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3270 3271 switch (ar_pci->oper_irq_mode) { 3272 case ATH10K_PCI_IRQ_LEGACY: 3273 ath10k_pci_deinit_irq_legacy(ar); 3274 break; 3275 default: 3276 pci_disable_msi(ar_pci->pdev); 3277 break; 3278 } 3279 3280 return 0; 3281 } 3282 3283 int ath10k_pci_wait_for_target_init(struct ath10k *ar) 3284 { 3285 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3286 unsigned long timeout; 3287 u32 val; 3288 3289 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n"); 3290 3291 timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT); 3292 3293 do { 3294 val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS); 3295 3296 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n", 3297 val); 3298 3299 /* target should never return this */ 3300 if (val == 0xffffffff) 3301 continue; 3302 3303 /* the device has crashed so don't bother trying anymore */ 3304 if (val & FW_IND_EVENT_PENDING) 3305 break; 3306 3307 if (val & FW_IND_INITIALIZED) 3308 break; 3309 3310 if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) 3311 /* Fix potential race by repeating CORE_BASE writes */ 3312 ath10k_pci_enable_legacy_irq(ar); 3313 3314 mdelay(10); 3315 } while (time_before(jiffies, timeout)); 3316 3317 ath10k_pci_disable_and_clear_legacy_irq(ar); 3318 ath10k_pci_irq_msi_fw_mask(ar); 3319 3320 if (val == 0xffffffff) { 3321 ath10k_err(ar, "failed to read device register, device is gone\n"); 3322 return -EIO; 3323 } 3324 3325 if (val & FW_IND_EVENT_PENDING) { 3326 ath10k_warn(ar, "device has crashed during init\n"); 3327 return -ECOMM; 3328 } 3329 3330 if (!(val & FW_IND_INITIALIZED)) { 3331 ath10k_err(ar, "failed to receive initialized event from target: %08x\n", 3332 val); 3333 return -ETIMEDOUT; 3334 } 3335 3336 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n"); 3337 return 0; 3338 } 3339 3340 static int ath10k_pci_cold_reset(struct ath10k *ar) 3341 { 3342 u32 val; 3343 3344 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n"); 3345 3346 spin_lock_bh(&ar->data_lock); 3347 3348 ar->stats.fw_cold_reset_counter++; 3349 3350 spin_unlock_bh(&ar->data_lock); 3351 3352 /* Put Target, including PCIe, into RESET. */ 3353 val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS); 3354 val |= 1; 3355 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); 3356 3357 /* After writing into SOC_GLOBAL_RESET to put device into 3358 * reset and pulling out of reset pcie may not be stable 3359 * for any immediate pcie register access and cause bus error, 3360 * add delay before any pcie access request to fix this issue. 3361 */ 3362 msleep(20); 3363 3364 /* Pull Target, including PCIe, out of RESET. */ 3365 val &= ~1; 3366 ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); 3367 3368 msleep(20); 3369 3370 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n"); 3371 3372 return 0; 3373 } 3374 3375 static int ath10k_pci_claim(struct ath10k *ar) 3376 { 3377 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3378 struct pci_dev *pdev = ar_pci->pdev; 3379 int ret; 3380 3381 pci_set_drvdata(pdev, ar); 3382 3383 ret = pci_enable_device(pdev); 3384 if (ret) { 3385 ath10k_err(ar, "failed to enable pci device: %d\n", ret); 3386 return ret; 3387 } 3388 3389 ret = pci_request_region(pdev, BAR_NUM, "ath"); 3390 if (ret) { 3391 ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM, 3392 ret); 3393 goto err_device; 3394 } 3395 3396 /* Target expects 32 bit DMA. Enforce it. */ 3397 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3398 if (ret) { 3399 ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret); 3400 goto err_region; 3401 } 3402 3403 pci_set_master(pdev); 3404 3405 /* Arrange for access to Target SoC registers. */ 3406 ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM); 3407 ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0); 3408 if (!ar_pci->mem) { 3409 ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM); 3410 ret = -EIO; 3411 goto err_region; 3412 } 3413 3414 ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem); 3415 return 0; 3416 3417 err_region: 3418 pci_release_region(pdev, BAR_NUM); 3419 3420 err_device: 3421 pci_disable_device(pdev); 3422 3423 return ret; 3424 } 3425 3426 static void ath10k_pci_release(struct ath10k *ar) 3427 { 3428 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3429 struct pci_dev *pdev = ar_pci->pdev; 3430 3431 pci_iounmap(pdev, ar_pci->mem); 3432 pci_release_region(pdev, BAR_NUM); 3433 pci_disable_device(pdev); 3434 } 3435 3436 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id) 3437 { 3438 const struct ath10k_pci_supp_chip *supp_chip; 3439 int i; 3440 u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV); 3441 3442 for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) { 3443 supp_chip = &ath10k_pci_supp_chips[i]; 3444 3445 if (supp_chip->dev_id == dev_id && 3446 supp_chip->rev_id == rev_id) 3447 return true; 3448 } 3449 3450 return false; 3451 } 3452 3453 int ath10k_pci_setup_resource(struct ath10k *ar) 3454 { 3455 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3456 struct ath10k_ce *ce = ath10k_ce_priv(ar); 3457 int ret; 3458 3459 spin_lock_init(&ce->ce_lock); 3460 spin_lock_init(&ar_pci->ps_lock); 3461 mutex_init(&ar_pci->ce_diag_mutex); 3462 3463 INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work); 3464 3465 timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0); 3466 3467 ar_pci->attr = kmemdup(pci_host_ce_config_wlan, 3468 sizeof(pci_host_ce_config_wlan), 3469 GFP_KERNEL); 3470 if (!ar_pci->attr) 3471 return -ENOMEM; 3472 3473 ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan, 3474 sizeof(pci_target_ce_config_wlan), 3475 GFP_KERNEL); 3476 if (!ar_pci->pipe_config) { 3477 ret = -ENOMEM; 3478 goto err_free_attr; 3479 } 3480 3481 ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan, 3482 sizeof(pci_target_service_to_ce_map_wlan), 3483 GFP_KERNEL); 3484 if (!ar_pci->serv_to_pipe) { 3485 ret = -ENOMEM; 3486 goto err_free_pipe_config; 3487 } 3488 3489 if (QCA_REV_6174(ar) || QCA_REV_9377(ar)) 3490 ath10k_pci_override_ce_config(ar); 3491 3492 ret = ath10k_pci_alloc_pipes(ar); 3493 if (ret) { 3494 ath10k_err(ar, "failed to allocate copy engine pipes: %d\n", 3495 ret); 3496 goto err_free_serv_to_pipe; 3497 } 3498 3499 return 0; 3500 3501 err_free_serv_to_pipe: 3502 kfree(ar_pci->serv_to_pipe); 3503 err_free_pipe_config: 3504 kfree(ar_pci->pipe_config); 3505 err_free_attr: 3506 kfree(ar_pci->attr); 3507 return ret; 3508 } 3509 3510 void ath10k_pci_release_resource(struct ath10k *ar) 3511 { 3512 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); 3513 3514 ath10k_pci_rx_retry_sync(ar); 3515 netif_napi_del(&ar->napi); 3516 ath10k_pci_ce_deinit(ar); 3517 ath10k_pci_free_pipes(ar); 3518 kfree(ar_pci->attr); 3519 kfree(ar_pci->pipe_config); 3520 kfree(ar_pci->serv_to_pipe); 3521 } 3522 3523 static const struct ath10k_bus_ops ath10k_pci_bus_ops = { 3524 .read32 = ath10k_bus_pci_read32, 3525 .write32 = ath10k_bus_pci_write32, 3526 .get_num_banks = ath10k_pci_get_num_banks, 3527 }; 3528 3529 static int ath10k_pci_probe(struct pci_dev *pdev, 3530 const struct pci_device_id *pci_dev) 3531 { 3532 int ret = 0; 3533 struct ath10k *ar; 3534 struct ath10k_pci *ar_pci; 3535 enum ath10k_hw_rev hw_rev; 3536 struct ath10k_bus_params bus_params = {}; 3537 bool pci_ps, is_qca988x = false; 3538 int (*pci_soft_reset)(struct ath10k *ar); 3539 int (*pci_hard_reset)(struct ath10k *ar); 3540 u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr); 3541 3542 switch (pci_dev->device) { 3543 case QCA988X_2_0_DEVICE_ID_UBNT: 3544 case QCA988X_2_0_DEVICE_ID: 3545 hw_rev = ATH10K_HW_QCA988X; 3546 pci_ps = false; 3547 is_qca988x = true; 3548 pci_soft_reset = ath10k_pci_warm_reset; 3549 pci_hard_reset = ath10k_pci_qca988x_chip_reset; 3550 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr; 3551 break; 3552 case QCA9887_1_0_DEVICE_ID: 3553 hw_rev = ATH10K_HW_QCA9887; 3554 pci_ps = false; 3555 pci_soft_reset = ath10k_pci_warm_reset; 3556 pci_hard_reset = ath10k_pci_qca988x_chip_reset; 3557 targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr; 3558 break; 3559 case QCA6164_2_1_DEVICE_ID: 3560 case QCA6174_2_1_DEVICE_ID: 3561 hw_rev = ATH10K_HW_QCA6174; 3562 pci_ps = true; 3563 pci_soft_reset = ath10k_pci_warm_reset; 3564 pci_hard_reset = ath10k_pci_qca6174_chip_reset; 3565 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr; 3566 break; 3567 case QCA99X0_2_0_DEVICE_ID: 3568 hw_rev = ATH10K_HW_QCA99X0; 3569 pci_ps = false; 3570 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; 3571 pci_hard_reset = ath10k_pci_qca99x0_chip_reset; 3572 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; 3573 break; 3574 case QCA9984_1_0_DEVICE_ID: 3575 hw_rev = ATH10K_HW_QCA9984; 3576 pci_ps = false; 3577 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; 3578 pci_hard_reset = ath10k_pci_qca99x0_chip_reset; 3579 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; 3580 break; 3581 case QCA9888_2_0_DEVICE_ID: 3582 hw_rev = ATH10K_HW_QCA9888; 3583 pci_ps = false; 3584 pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset; 3585 pci_hard_reset = ath10k_pci_qca99x0_chip_reset; 3586 targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr; 3587 break; 3588 case QCA9377_1_0_DEVICE_ID: 3589 hw_rev = ATH10K_HW_QCA9377; 3590 pci_ps = true; 3591 pci_soft_reset = ath10k_pci_warm_reset; 3592 pci_hard_reset = ath10k_pci_qca6174_chip_reset; 3593 targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr; 3594 break; 3595 default: 3596 WARN_ON(1); 3597 return -EOPNOTSUPP; 3598 } 3599 3600 ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI, 3601 hw_rev, &ath10k_pci_hif_ops); 3602 if (!ar) { 3603 dev_err(&pdev->dev, "failed to allocate core\n"); 3604 return -ENOMEM; 3605 } 3606 3607 ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n", 3608 pdev->vendor, pdev->device, 3609 pdev->subsystem_vendor, pdev->subsystem_device); 3610 3611 ar_pci = ath10k_pci_priv(ar); 3612 ar_pci->pdev = pdev; 3613 ar_pci->dev = &pdev->dev; 3614 ar_pci->ar = ar; 3615 ar->dev_id = pci_dev->device; 3616 ar_pci->pci_ps = pci_ps; 3617 ar_pci->ce.bus_ops = &ath10k_pci_bus_ops; 3618 ar_pci->pci_soft_reset = pci_soft_reset; 3619 ar_pci->pci_hard_reset = pci_hard_reset; 3620 ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr; 3621 ar->ce_priv = &ar_pci->ce; 3622 3623 ar->id.vendor = pdev->vendor; 3624 ar->id.device = pdev->device; 3625 ar->id.subsystem_vendor = pdev->subsystem_vendor; 3626 ar->id.subsystem_device = pdev->subsystem_device; 3627 3628 timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0); 3629 3630 ret = ath10k_pci_setup_resource(ar); 3631 if (ret) { 3632 ath10k_err(ar, "failed to setup resource: %d\n", ret); 3633 goto err_core_destroy; 3634 } 3635 3636 ret = ath10k_pci_claim(ar); 3637 if (ret) { 3638 ath10k_err(ar, "failed to claim device: %d\n", ret); 3639 goto err_free_pipes; 3640 } 3641 3642 ret = ath10k_pci_force_wake(ar); 3643 if (ret) { 3644 ath10k_warn(ar, "failed to wake up device : %d\n", ret); 3645 goto err_sleep; 3646 } 3647 3648 ath10k_pci_ce_deinit(ar); 3649 ath10k_pci_irq_disable(ar); 3650 3651 ret = ath10k_pci_init_irq(ar); 3652 if (ret) { 3653 ath10k_err(ar, "failed to init irqs: %d\n", ret); 3654 goto err_sleep; 3655 } 3656 3657 ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n", 3658 ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode, 3659 ath10k_pci_irq_mode, ath10k_pci_reset_mode); 3660 3661 ret = ath10k_pci_request_irq(ar); 3662 if (ret) { 3663 ath10k_warn(ar, "failed to request irqs: %d\n", ret); 3664 goto err_deinit_irq; 3665 } 3666 3667 bus_params.dev_type = ATH10K_DEV_TYPE_LL; 3668 bus_params.link_can_suspend = true; 3669 /* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that 3670 * fall off the bus during chip_reset. These chips have the same pci 3671 * device id as the QCA9880 BR4A or 2R4E. So that's why the check. 3672 */ 3673 if (is_qca988x) { 3674 bus_params.chip_id = 3675 ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS); 3676 if (bus_params.chip_id != 0xffffffff) { 3677 if (!ath10k_pci_chip_is_supported(pdev->device, 3678 bus_params.chip_id)) { 3679 ret = -ENODEV; 3680 goto err_unsupported; 3681 } 3682 } 3683 } 3684 3685 ret = ath10k_pci_chip_reset(ar); 3686 if (ret) { 3687 ath10k_err(ar, "failed to reset chip: %d\n", ret); 3688 goto err_free_irq; 3689 } 3690 3691 bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS); 3692 if (bus_params.chip_id == 0xffffffff) { 3693 ret = -ENODEV; 3694 goto err_unsupported; 3695 } 3696 3697 if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) { 3698 ret = -ENODEV; 3699 goto err_unsupported; 3700 } 3701 3702 ret = ath10k_core_register(ar, &bus_params); 3703 if (ret) { 3704 ath10k_err(ar, "failed to register driver core: %d\n", ret); 3705 goto err_free_irq; 3706 } 3707 3708 return 0; 3709 3710 err_unsupported: 3711 ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n", 3712 pdev->device, bus_params.chip_id); 3713 3714 err_free_irq: 3715 ath10k_pci_free_irq(ar); 3716 3717 err_deinit_irq: 3718 ath10k_pci_release_resource(ar); 3719 3720 err_sleep: 3721 ath10k_pci_sleep_sync(ar); 3722 ath10k_pci_release(ar); 3723 3724 err_free_pipes: 3725 ath10k_pci_free_pipes(ar); 3726 3727 err_core_destroy: 3728 ath10k_core_destroy(ar); 3729 3730 return ret; 3731 } 3732 3733 static void ath10k_pci_remove(struct pci_dev *pdev) 3734 { 3735 struct ath10k *ar = pci_get_drvdata(pdev); 3736 3737 ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n"); 3738 3739 if (!ar) 3740 return; 3741 3742 ath10k_core_unregister(ar); 3743 ath10k_pci_free_irq(ar); 3744 ath10k_pci_deinit_irq(ar); 3745 ath10k_pci_release_resource(ar); 3746 ath10k_pci_sleep_sync(ar); 3747 ath10k_pci_release(ar); 3748 ath10k_core_destroy(ar); 3749 } 3750 3751 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table); 3752 3753 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev) 3754 { 3755 struct ath10k *ar = dev_get_drvdata(dev); 3756 int ret; 3757 3758 ret = ath10k_pci_suspend(ar); 3759 if (ret) 3760 ath10k_warn(ar, "failed to suspend hif: %d\n", ret); 3761 3762 return ret; 3763 } 3764 3765 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev) 3766 { 3767 struct ath10k *ar = dev_get_drvdata(dev); 3768 int ret; 3769 3770 ret = ath10k_pci_resume(ar); 3771 if (ret) 3772 ath10k_warn(ar, "failed to resume hif: %d\n", ret); 3773 3774 return ret; 3775 } 3776 3777 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops, 3778 ath10k_pci_pm_suspend, 3779 ath10k_pci_pm_resume); 3780 3781 static struct pci_driver ath10k_pci_driver = { 3782 .name = "ath10k_pci", 3783 .id_table = ath10k_pci_id_table, 3784 .probe = ath10k_pci_probe, 3785 .remove = ath10k_pci_remove, 3786 #ifdef CONFIG_PM 3787 .driver.pm = &ath10k_pci_pm_ops, 3788 #endif 3789 }; 3790 3791 static int __init ath10k_pci_init(void) 3792 { 3793 int ret1, ret2; 3794 3795 ret1 = pci_register_driver(&ath10k_pci_driver); 3796 if (ret1) 3797 printk(KERN_ERR "failed to register ath10k pci driver: %d\n", 3798 ret1); 3799 3800 ret2 = ath10k_ahb_init(); 3801 if (ret2) 3802 printk(KERN_ERR "ahb init failed: %d\n", ret2); 3803 3804 if (ret1 && ret2) 3805 return ret1; 3806 3807 /* registered to at least one bus */ 3808 return 0; 3809 } 3810 module_init(ath10k_pci_init); 3811 3812 static void __exit ath10k_pci_exit(void) 3813 { 3814 pci_unregister_driver(&ath10k_pci_driver); 3815 ath10k_ahb_exit(); 3816 } 3817 3818 module_exit(ath10k_pci_exit); 3819 3820 MODULE_AUTHOR("Qualcomm Atheros"); 3821 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros PCIe/AHB 802.11ac WLAN devices"); 3822 MODULE_LICENSE("Dual BSD/GPL"); 3823 3824 /* QCA988x 2.0 firmware files */ 3825 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE); 3826 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE); 3827 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE); 3828 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3829 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE); 3830 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3831 3832 /* QCA9887 1.0 firmware files */ 3833 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3834 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE); 3835 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3836 3837 /* QCA6174 2.1 firmware files */ 3838 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE); 3839 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE); 3840 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE); 3841 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3842 3843 /* QCA6174 3.1 firmware files */ 3844 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE); 3845 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3846 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE); 3847 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE); 3848 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE); 3849 3850 /* QCA9377 1.0 firmware files */ 3851 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE); 3852 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE); 3853 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE); 3854