xref: /linux/drivers/net/wireless/ath/ath10k/pci.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 #include "coredump.h"
27 
28 #include "targaddrs.h"
29 #include "bmi.h"
30 
31 #include "hif.h"
32 #include "htc.h"
33 
34 #include "ce.h"
35 #include "pci.h"
36 
37 enum ath10k_pci_reset_mode {
38 	ATH10K_PCI_RESET_AUTO = 0,
39 	ATH10K_PCI_RESET_WARM_ONLY = 1,
40 };
41 
42 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
43 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
44 
45 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
46 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
47 
48 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
49 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
50 
51 /* how long wait to wait for target to initialise, in ms */
52 #define ATH10K_PCI_TARGET_WAIT 3000
53 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
54 
55 /* Maximum number of bytes that can be handled atomically by
56  * diag read and write.
57  */
58 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
59 
60 static const struct pci_device_id ath10k_pci_id_table[] = {
61 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
62 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
63 
64 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
65 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
66 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
67 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
68 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
69 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
70 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
71 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
72 	{0}
73 };
74 
75 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
76 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
77 	 * hacks. ath10k doesn't have them and these devices crash horribly
78 	 * because of that.
79 	 */
80 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
81 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
82 
83 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
84 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
85 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
86 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
87 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
88 
89 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
90 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
91 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
92 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
93 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
94 
95 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
96 
97 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
98 
99 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
100 
101 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
102 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
103 
104 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
105 };
106 
107 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
108 static int ath10k_pci_cold_reset(struct ath10k *ar);
109 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
110 static int ath10k_pci_init_irq(struct ath10k *ar);
111 static int ath10k_pci_deinit_irq(struct ath10k *ar);
112 static int ath10k_pci_request_irq(struct ath10k *ar);
113 static void ath10k_pci_free_irq(struct ath10k *ar);
114 static int ath10k_pci_bmi_wait(struct ath10k *ar,
115 			       struct ath10k_ce_pipe *tx_pipe,
116 			       struct ath10k_ce_pipe *rx_pipe,
117 			       struct bmi_xfer *xfer);
118 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
119 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
120 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
121 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
122 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
123 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
124 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
125 
126 static struct ce_attr host_ce_config_wlan[] = {
127 	/* CE0: host->target HTC control and raw streams */
128 	{
129 		.flags = CE_ATTR_FLAGS,
130 		.src_nentries = 16,
131 		.src_sz_max = 256,
132 		.dest_nentries = 0,
133 		.send_cb = ath10k_pci_htc_tx_cb,
134 	},
135 
136 	/* CE1: target->host HTT + HTC control */
137 	{
138 		.flags = CE_ATTR_FLAGS,
139 		.src_nentries = 0,
140 		.src_sz_max = 2048,
141 		.dest_nentries = 512,
142 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
143 	},
144 
145 	/* CE2: target->host WMI */
146 	{
147 		.flags = CE_ATTR_FLAGS,
148 		.src_nentries = 0,
149 		.src_sz_max = 2048,
150 		.dest_nentries = 128,
151 		.recv_cb = ath10k_pci_htc_rx_cb,
152 	},
153 
154 	/* CE3: host->target WMI */
155 	{
156 		.flags = CE_ATTR_FLAGS,
157 		.src_nentries = 32,
158 		.src_sz_max = 2048,
159 		.dest_nentries = 0,
160 		.send_cb = ath10k_pci_htc_tx_cb,
161 	},
162 
163 	/* CE4: host->target HTT */
164 	{
165 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
166 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
167 		.src_sz_max = 256,
168 		.dest_nentries = 0,
169 		.send_cb = ath10k_pci_htt_tx_cb,
170 	},
171 
172 	/* CE5: target->host HTT (HIF->HTT) */
173 	{
174 		.flags = CE_ATTR_FLAGS,
175 		.src_nentries = 0,
176 		.src_sz_max = 512,
177 		.dest_nentries = 512,
178 		.recv_cb = ath10k_pci_htt_rx_cb,
179 	},
180 
181 	/* CE6: target autonomous hif_memcpy */
182 	{
183 		.flags = CE_ATTR_FLAGS,
184 		.src_nentries = 0,
185 		.src_sz_max = 0,
186 		.dest_nentries = 0,
187 	},
188 
189 	/* CE7: ce_diag, the Diagnostic Window */
190 	{
191 		.flags = CE_ATTR_FLAGS,
192 		.src_nentries = 2,
193 		.src_sz_max = DIAG_TRANSFER_LIMIT,
194 		.dest_nentries = 2,
195 	},
196 
197 	/* CE8: target->host pktlog */
198 	{
199 		.flags = CE_ATTR_FLAGS,
200 		.src_nentries = 0,
201 		.src_sz_max = 2048,
202 		.dest_nentries = 128,
203 		.recv_cb = ath10k_pci_pktlog_rx_cb,
204 	},
205 
206 	/* CE9 target autonomous qcache memcpy */
207 	{
208 		.flags = CE_ATTR_FLAGS,
209 		.src_nentries = 0,
210 		.src_sz_max = 0,
211 		.dest_nentries = 0,
212 	},
213 
214 	/* CE10: target autonomous hif memcpy */
215 	{
216 		.flags = CE_ATTR_FLAGS,
217 		.src_nentries = 0,
218 		.src_sz_max = 0,
219 		.dest_nentries = 0,
220 	},
221 
222 	/* CE11: target autonomous hif memcpy */
223 	{
224 		.flags = CE_ATTR_FLAGS,
225 		.src_nentries = 0,
226 		.src_sz_max = 0,
227 		.dest_nentries = 0,
228 	},
229 };
230 
231 /* Target firmware's Copy Engine configuration. */
232 static struct ce_pipe_config target_ce_config_wlan[] = {
233 	/* CE0: host->target HTC control and raw streams */
234 	{
235 		.pipenum = __cpu_to_le32(0),
236 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
237 		.nentries = __cpu_to_le32(32),
238 		.nbytes_max = __cpu_to_le32(256),
239 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
240 		.reserved = __cpu_to_le32(0),
241 	},
242 
243 	/* CE1: target->host HTT + HTC control */
244 	{
245 		.pipenum = __cpu_to_le32(1),
246 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
247 		.nentries = __cpu_to_le32(32),
248 		.nbytes_max = __cpu_to_le32(2048),
249 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
250 		.reserved = __cpu_to_le32(0),
251 	},
252 
253 	/* CE2: target->host WMI */
254 	{
255 		.pipenum = __cpu_to_le32(2),
256 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
257 		.nentries = __cpu_to_le32(64),
258 		.nbytes_max = __cpu_to_le32(2048),
259 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
260 		.reserved = __cpu_to_le32(0),
261 	},
262 
263 	/* CE3: host->target WMI */
264 	{
265 		.pipenum = __cpu_to_le32(3),
266 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
267 		.nentries = __cpu_to_le32(32),
268 		.nbytes_max = __cpu_to_le32(2048),
269 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
270 		.reserved = __cpu_to_le32(0),
271 	},
272 
273 	/* CE4: host->target HTT */
274 	{
275 		.pipenum = __cpu_to_le32(4),
276 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
277 		.nentries = __cpu_to_le32(256),
278 		.nbytes_max = __cpu_to_le32(256),
279 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
280 		.reserved = __cpu_to_le32(0),
281 	},
282 
283 	/* NB: 50% of src nentries, since tx has 2 frags */
284 
285 	/* CE5: target->host HTT (HIF->HTT) */
286 	{
287 		.pipenum = __cpu_to_le32(5),
288 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
289 		.nentries = __cpu_to_le32(32),
290 		.nbytes_max = __cpu_to_le32(512),
291 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
292 		.reserved = __cpu_to_le32(0),
293 	},
294 
295 	/* CE6: Reserved for target autonomous hif_memcpy */
296 	{
297 		.pipenum = __cpu_to_le32(6),
298 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
299 		.nentries = __cpu_to_le32(32),
300 		.nbytes_max = __cpu_to_le32(4096),
301 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
302 		.reserved = __cpu_to_le32(0),
303 	},
304 
305 	/* CE7 used only by Host */
306 	{
307 		.pipenum = __cpu_to_le32(7),
308 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
309 		.nentries = __cpu_to_le32(0),
310 		.nbytes_max = __cpu_to_le32(0),
311 		.flags = __cpu_to_le32(0),
312 		.reserved = __cpu_to_le32(0),
313 	},
314 
315 	/* CE8 target->host packtlog */
316 	{
317 		.pipenum = __cpu_to_le32(8),
318 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
319 		.nentries = __cpu_to_le32(64),
320 		.nbytes_max = __cpu_to_le32(2048),
321 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
322 		.reserved = __cpu_to_le32(0),
323 	},
324 
325 	/* CE9 target autonomous qcache memcpy */
326 	{
327 		.pipenum = __cpu_to_le32(9),
328 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
329 		.nentries = __cpu_to_le32(32),
330 		.nbytes_max = __cpu_to_le32(2048),
331 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
332 		.reserved = __cpu_to_le32(0),
333 	},
334 
335 	/* It not necessary to send target wlan configuration for CE10 & CE11
336 	 * as these CEs are not actively used in target.
337 	 */
338 };
339 
340 /*
341  * Map from service/endpoint to Copy Engine.
342  * This table is derived from the CE_PCI TABLE, above.
343  * It is passed to the Target at startup for use by firmware.
344  */
345 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
346 	{
347 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
348 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
349 		__cpu_to_le32(3),
350 	},
351 	{
352 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
353 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
354 		__cpu_to_le32(2),
355 	},
356 	{
357 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
358 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
359 		__cpu_to_le32(3),
360 	},
361 	{
362 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
363 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
364 		__cpu_to_le32(2),
365 	},
366 	{
367 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
368 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
369 		__cpu_to_le32(3),
370 	},
371 	{
372 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
373 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
374 		__cpu_to_le32(2),
375 	},
376 	{
377 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
378 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
379 		__cpu_to_le32(3),
380 	},
381 	{
382 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
383 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
384 		__cpu_to_le32(2),
385 	},
386 	{
387 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
388 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
389 		__cpu_to_le32(3),
390 	},
391 	{
392 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
393 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
394 		__cpu_to_le32(2),
395 	},
396 	{
397 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
398 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
399 		__cpu_to_le32(0),
400 	},
401 	{
402 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
403 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
404 		__cpu_to_le32(1),
405 	},
406 	{ /* not used */
407 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
408 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
409 		__cpu_to_le32(0),
410 	},
411 	{ /* not used */
412 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
413 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
414 		__cpu_to_le32(1),
415 	},
416 	{
417 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
418 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
419 		__cpu_to_le32(4),
420 	},
421 	{
422 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
423 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
424 		__cpu_to_le32(5),
425 	},
426 
427 	/* (Additions here) */
428 
429 	{ /* must be last */
430 		__cpu_to_le32(0),
431 		__cpu_to_le32(0),
432 		__cpu_to_le32(0),
433 	},
434 };
435 
436 static bool ath10k_pci_is_awake(struct ath10k *ar)
437 {
438 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
439 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
440 			   RTC_STATE_ADDRESS);
441 
442 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
443 }
444 
445 static void __ath10k_pci_wake(struct ath10k *ar)
446 {
447 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
448 
449 	lockdep_assert_held(&ar_pci->ps_lock);
450 
451 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
452 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
453 
454 	iowrite32(PCIE_SOC_WAKE_V_MASK,
455 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
456 		  PCIE_SOC_WAKE_ADDRESS);
457 }
458 
459 static void __ath10k_pci_sleep(struct ath10k *ar)
460 {
461 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
462 
463 	lockdep_assert_held(&ar_pci->ps_lock);
464 
465 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
466 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
467 
468 	iowrite32(PCIE_SOC_WAKE_RESET,
469 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
470 		  PCIE_SOC_WAKE_ADDRESS);
471 	ar_pci->ps_awake = false;
472 }
473 
474 static int ath10k_pci_wake_wait(struct ath10k *ar)
475 {
476 	int tot_delay = 0;
477 	int curr_delay = 5;
478 
479 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
480 		if (ath10k_pci_is_awake(ar)) {
481 			if (tot_delay > PCIE_WAKE_LATE_US)
482 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
483 					    tot_delay / 1000);
484 			return 0;
485 		}
486 
487 		udelay(curr_delay);
488 		tot_delay += curr_delay;
489 
490 		if (curr_delay < 50)
491 			curr_delay += 5;
492 	}
493 
494 	return -ETIMEDOUT;
495 }
496 
497 static int ath10k_pci_force_wake(struct ath10k *ar)
498 {
499 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
500 	unsigned long flags;
501 	int ret = 0;
502 
503 	if (ar_pci->pci_ps)
504 		return ret;
505 
506 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
507 
508 	if (!ar_pci->ps_awake) {
509 		iowrite32(PCIE_SOC_WAKE_V_MASK,
510 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
511 			  PCIE_SOC_WAKE_ADDRESS);
512 
513 		ret = ath10k_pci_wake_wait(ar);
514 		if (ret == 0)
515 			ar_pci->ps_awake = true;
516 	}
517 
518 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
519 
520 	return ret;
521 }
522 
523 static void ath10k_pci_force_sleep(struct ath10k *ar)
524 {
525 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
526 	unsigned long flags;
527 
528 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
529 
530 	iowrite32(PCIE_SOC_WAKE_RESET,
531 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
532 		  PCIE_SOC_WAKE_ADDRESS);
533 	ar_pci->ps_awake = false;
534 
535 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
536 }
537 
538 static int ath10k_pci_wake(struct ath10k *ar)
539 {
540 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
541 	unsigned long flags;
542 	int ret = 0;
543 
544 	if (ar_pci->pci_ps == 0)
545 		return ret;
546 
547 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
548 
549 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
550 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
551 
552 	/* This function can be called very frequently. To avoid excessive
553 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
554 	 */
555 	if (!ar_pci->ps_awake) {
556 		__ath10k_pci_wake(ar);
557 
558 		ret = ath10k_pci_wake_wait(ar);
559 		if (ret == 0)
560 			ar_pci->ps_awake = true;
561 	}
562 
563 	if (ret == 0) {
564 		ar_pci->ps_wake_refcount++;
565 		WARN_ON(ar_pci->ps_wake_refcount == 0);
566 	}
567 
568 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
569 
570 	return ret;
571 }
572 
573 static void ath10k_pci_sleep(struct ath10k *ar)
574 {
575 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
576 	unsigned long flags;
577 
578 	if (ar_pci->pci_ps == 0)
579 		return;
580 
581 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
582 
583 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
584 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
585 
586 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
587 		goto skip;
588 
589 	ar_pci->ps_wake_refcount--;
590 
591 	mod_timer(&ar_pci->ps_timer, jiffies +
592 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
593 
594 skip:
595 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
596 }
597 
598 static void ath10k_pci_ps_timer(struct timer_list *t)
599 {
600 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
601 	struct ath10k *ar = ar_pci->ar;
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
605 
606 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
607 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
608 
609 	if (ar_pci->ps_wake_refcount > 0)
610 		goto skip;
611 
612 	__ath10k_pci_sleep(ar);
613 
614 skip:
615 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
616 }
617 
618 static void ath10k_pci_sleep_sync(struct ath10k *ar)
619 {
620 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
621 	unsigned long flags;
622 
623 	if (ar_pci->pci_ps == 0) {
624 		ath10k_pci_force_sleep(ar);
625 		return;
626 	}
627 
628 	del_timer_sync(&ar_pci->ps_timer);
629 
630 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
631 	WARN_ON(ar_pci->ps_wake_refcount > 0);
632 	__ath10k_pci_sleep(ar);
633 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
634 }
635 
636 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
637 {
638 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
639 	int ret;
640 
641 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
642 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
643 			    offset, offset + sizeof(value), ar_pci->mem_len);
644 		return;
645 	}
646 
647 	ret = ath10k_pci_wake(ar);
648 	if (ret) {
649 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
650 			    value, offset, ret);
651 		return;
652 	}
653 
654 	iowrite32(value, ar_pci->mem + offset);
655 	ath10k_pci_sleep(ar);
656 }
657 
658 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
659 {
660 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
661 	u32 val;
662 	int ret;
663 
664 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
665 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
666 			    offset, offset + sizeof(val), ar_pci->mem_len);
667 		return 0;
668 	}
669 
670 	ret = ath10k_pci_wake(ar);
671 	if (ret) {
672 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
673 			    offset, ret);
674 		return 0xffffffff;
675 	}
676 
677 	val = ioread32(ar_pci->mem + offset);
678 	ath10k_pci_sleep(ar);
679 
680 	return val;
681 }
682 
683 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
684 {
685 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
686 
687 	ce->bus_ops->write32(ar, offset, value);
688 }
689 
690 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
691 {
692 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
693 
694 	return ce->bus_ops->read32(ar, offset);
695 }
696 
697 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
698 {
699 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
700 }
701 
702 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
703 {
704 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
705 }
706 
707 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
708 {
709 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
710 }
711 
712 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
713 {
714 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
715 }
716 
717 bool ath10k_pci_irq_pending(struct ath10k *ar)
718 {
719 	u32 cause;
720 
721 	/* Check if the shared legacy irq is for us */
722 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
723 				  PCIE_INTR_CAUSE_ADDRESS);
724 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
725 		return true;
726 
727 	return false;
728 }
729 
730 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
731 {
732 	/* IMPORTANT: INTR_CLR register has to be set after
733 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
734 	 * really cleared.
735 	 */
736 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
737 			   0);
738 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
739 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
740 
741 	/* IMPORTANT: this extra read transaction is required to
742 	 * flush the posted write buffer.
743 	 */
744 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
745 				PCIE_INTR_ENABLE_ADDRESS);
746 }
747 
748 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
749 {
750 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
751 			   PCIE_INTR_ENABLE_ADDRESS,
752 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
753 
754 	/* IMPORTANT: this extra read transaction is required to
755 	 * flush the posted write buffer.
756 	 */
757 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
758 				PCIE_INTR_ENABLE_ADDRESS);
759 }
760 
761 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
762 {
763 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
764 
765 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
766 		return "msi";
767 
768 	return "legacy";
769 }
770 
771 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
772 {
773 	struct ath10k *ar = pipe->hif_ce_state;
774 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
775 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
776 	struct sk_buff *skb;
777 	dma_addr_t paddr;
778 	int ret;
779 
780 	skb = dev_alloc_skb(pipe->buf_sz);
781 	if (!skb)
782 		return -ENOMEM;
783 
784 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
785 
786 	paddr = dma_map_single(ar->dev, skb->data,
787 			       skb->len + skb_tailroom(skb),
788 			       DMA_FROM_DEVICE);
789 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
790 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
791 		dev_kfree_skb_any(skb);
792 		return -EIO;
793 	}
794 
795 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
796 
797 	spin_lock_bh(&ce->ce_lock);
798 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
799 	spin_unlock_bh(&ce->ce_lock);
800 	if (ret) {
801 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
802 				 DMA_FROM_DEVICE);
803 		dev_kfree_skb_any(skb);
804 		return ret;
805 	}
806 
807 	return 0;
808 }
809 
810 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
811 {
812 	struct ath10k *ar = pipe->hif_ce_state;
813 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
814 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
815 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
816 	int ret, num;
817 
818 	if (pipe->buf_sz == 0)
819 		return;
820 
821 	if (!ce_pipe->dest_ring)
822 		return;
823 
824 	spin_lock_bh(&ce->ce_lock);
825 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
826 	spin_unlock_bh(&ce->ce_lock);
827 
828 	while (num >= 0) {
829 		ret = __ath10k_pci_rx_post_buf(pipe);
830 		if (ret) {
831 			if (ret == -ENOSPC)
832 				break;
833 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
834 			mod_timer(&ar_pci->rx_post_retry, jiffies +
835 				  ATH10K_PCI_RX_POST_RETRY_MS);
836 			break;
837 		}
838 		num--;
839 	}
840 }
841 
842 void ath10k_pci_rx_post(struct ath10k *ar)
843 {
844 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
845 	int i;
846 
847 	for (i = 0; i < CE_COUNT; i++)
848 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
849 }
850 
851 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
852 {
853 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
854 	struct ath10k *ar = ar_pci->ar;
855 
856 	ath10k_pci_rx_post(ar);
857 }
858 
859 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
860 {
861 	u32 val = 0, region = addr & 0xfffff;
862 
863 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
864 				 & 0x7ff) << 21;
865 	val |= 0x100000 | region;
866 	return val;
867 }
868 
869 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
870 {
871 	u32 val = 0, region = addr & 0xfffff;
872 
873 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
874 	val |= 0x100000 | region;
875 	return val;
876 }
877 
878 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
879 {
880 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
881 
882 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
883 		return -ENOTSUPP;
884 
885 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
886 }
887 
888 /*
889  * Diagnostic read/write access is provided for startup/config/debug usage.
890  * Caller must guarantee proper alignment, when applicable, and single user
891  * at any moment.
892  */
893 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
894 				    int nbytes)
895 {
896 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
897 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
898 	int ret = 0;
899 	u32 *buf;
900 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
901 	struct ath10k_ce_pipe *ce_diag;
902 	/* Host buffer address in CE space */
903 	u32 ce_data;
904 	dma_addr_t ce_data_base = 0;
905 	void *data_buf = NULL;
906 	int i;
907 
908 	spin_lock_bh(&ce->ce_lock);
909 
910 	ce_diag = ar_pci->ce_diag;
911 
912 	/*
913 	 * Allocate a temporary bounce buffer to hold caller's data
914 	 * to be DMA'ed from Target. This guarantees
915 	 *   1) 4-byte alignment
916 	 *   2) Buffer in DMA-able space
917 	 */
918 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
919 
920 	data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
921 						       alloc_nbytes,
922 						       &ce_data_base,
923 						       GFP_ATOMIC);
924 
925 	if (!data_buf) {
926 		ret = -ENOMEM;
927 		goto done;
928 	}
929 
930 	remaining_bytes = nbytes;
931 	ce_data = ce_data_base;
932 	while (remaining_bytes) {
933 		nbytes = min_t(unsigned int, remaining_bytes,
934 			       DIAG_TRANSFER_LIMIT);
935 
936 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &ce_data, ce_data);
937 		if (ret != 0)
938 			goto done;
939 
940 		/* Request CE to send from Target(!) address to Host buffer */
941 		/*
942 		 * The address supplied by the caller is in the
943 		 * Target CPU virtual address space.
944 		 *
945 		 * In order to use this address with the diagnostic CE,
946 		 * convert it from Target CPU virtual address space
947 		 * to CE address space
948 		 */
949 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
950 
951 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
952 					    0);
953 		if (ret)
954 			goto done;
955 
956 		i = 0;
957 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
958 							    NULL) != 0) {
959 			mdelay(1);
960 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
961 				ret = -EBUSY;
962 				goto done;
963 			}
964 		}
965 
966 		i = 0;
967 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
968 							    (void **)&buf,
969 							    &completed_nbytes)
970 								!= 0) {
971 			mdelay(1);
972 
973 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
974 				ret = -EBUSY;
975 				goto done;
976 			}
977 		}
978 
979 		if (nbytes != completed_nbytes) {
980 			ret = -EIO;
981 			goto done;
982 		}
983 
984 		if (*buf != ce_data) {
985 			ret = -EIO;
986 			goto done;
987 		}
988 
989 		remaining_bytes -= nbytes;
990 		memcpy(data, data_buf, nbytes);
991 
992 		address += nbytes;
993 		data += nbytes;
994 	}
995 
996 done:
997 
998 	if (data_buf)
999 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1000 				  ce_data_base);
1001 
1002 	spin_unlock_bh(&ce->ce_lock);
1003 
1004 	return ret;
1005 }
1006 
1007 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1008 {
1009 	__le32 val = 0;
1010 	int ret;
1011 
1012 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1013 	*value = __le32_to_cpu(val);
1014 
1015 	return ret;
1016 }
1017 
1018 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1019 				     u32 src, u32 len)
1020 {
1021 	u32 host_addr, addr;
1022 	int ret;
1023 
1024 	host_addr = host_interest_item_address(src);
1025 
1026 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1027 	if (ret != 0) {
1028 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1029 			    src, ret);
1030 		return ret;
1031 	}
1032 
1033 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1034 	if (ret != 0) {
1035 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1036 			    addr, len, ret);
1037 		return ret;
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1044 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1045 
1046 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1047 			      const void *data, int nbytes)
1048 {
1049 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1050 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1051 	int ret = 0;
1052 	u32 *buf;
1053 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1054 	struct ath10k_ce_pipe *ce_diag;
1055 	void *data_buf = NULL;
1056 	u32 ce_data;	/* Host buffer address in CE space */
1057 	dma_addr_t ce_data_base = 0;
1058 	int i;
1059 
1060 	spin_lock_bh(&ce->ce_lock);
1061 
1062 	ce_diag = ar_pci->ce_diag;
1063 
1064 	/*
1065 	 * Allocate a temporary bounce buffer to hold caller's data
1066 	 * to be DMA'ed to Target. This guarantees
1067 	 *   1) 4-byte alignment
1068 	 *   2) Buffer in DMA-able space
1069 	 */
1070 	orig_nbytes = nbytes;
1071 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1072 						       orig_nbytes,
1073 						       &ce_data_base,
1074 						       GFP_ATOMIC);
1075 	if (!data_buf) {
1076 		ret = -ENOMEM;
1077 		goto done;
1078 	}
1079 
1080 	/* Copy caller's data to allocated DMA buf */
1081 	memcpy(data_buf, data, orig_nbytes);
1082 
1083 	/*
1084 	 * The address supplied by the caller is in the
1085 	 * Target CPU virtual address space.
1086 	 *
1087 	 * In order to use this address with the diagnostic CE,
1088 	 * convert it from
1089 	 *    Target CPU virtual address space
1090 	 * to
1091 	 *    CE address space
1092 	 */
1093 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1094 
1095 	remaining_bytes = orig_nbytes;
1096 	ce_data = ce_data_base;
1097 	while (remaining_bytes) {
1098 		/* FIXME: check cast */
1099 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1100 
1101 		/* Set up to receive directly into Target(!) address */
1102 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &address, address);
1103 		if (ret != 0)
1104 			goto done;
1105 
1106 		/*
1107 		 * Request CE to send caller-supplied data that
1108 		 * was copied to bounce buffer to Target(!) address.
1109 		 */
1110 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1111 					    nbytes, 0, 0);
1112 		if (ret != 0)
1113 			goto done;
1114 
1115 		i = 0;
1116 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1117 							    NULL) != 0) {
1118 			mdelay(1);
1119 
1120 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1121 				ret = -EBUSY;
1122 				goto done;
1123 			}
1124 		}
1125 
1126 		i = 0;
1127 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1128 							    (void **)&buf,
1129 							    &completed_nbytes)
1130 								!= 0) {
1131 			mdelay(1);
1132 
1133 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1134 				ret = -EBUSY;
1135 				goto done;
1136 			}
1137 		}
1138 
1139 		if (nbytes != completed_nbytes) {
1140 			ret = -EIO;
1141 			goto done;
1142 		}
1143 
1144 		if (*buf != address) {
1145 			ret = -EIO;
1146 			goto done;
1147 		}
1148 
1149 		remaining_bytes -= nbytes;
1150 		address += nbytes;
1151 		ce_data += nbytes;
1152 	}
1153 
1154 done:
1155 	if (data_buf) {
1156 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1157 				  ce_data_base);
1158 	}
1159 
1160 	if (ret != 0)
1161 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1162 			    address, ret);
1163 
1164 	spin_unlock_bh(&ce->ce_lock);
1165 
1166 	return ret;
1167 }
1168 
1169 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1170 {
1171 	__le32 val = __cpu_to_le32(value);
1172 
1173 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1174 }
1175 
1176 /* Called by lower (CE) layer when a send to Target completes. */
1177 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1178 {
1179 	struct ath10k *ar = ce_state->ar;
1180 	struct sk_buff_head list;
1181 	struct sk_buff *skb;
1182 
1183 	__skb_queue_head_init(&list);
1184 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1185 		/* no need to call tx completion for NULL pointers */
1186 		if (skb == NULL)
1187 			continue;
1188 
1189 		__skb_queue_tail(&list, skb);
1190 	}
1191 
1192 	while ((skb = __skb_dequeue(&list)))
1193 		ath10k_htc_tx_completion_handler(ar, skb);
1194 }
1195 
1196 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1197 				     void (*callback)(struct ath10k *ar,
1198 						      struct sk_buff *skb))
1199 {
1200 	struct ath10k *ar = ce_state->ar;
1201 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1202 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1203 	struct sk_buff *skb;
1204 	struct sk_buff_head list;
1205 	void *transfer_context;
1206 	unsigned int nbytes, max_nbytes;
1207 
1208 	__skb_queue_head_init(&list);
1209 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1210 					     &nbytes) == 0) {
1211 		skb = transfer_context;
1212 		max_nbytes = skb->len + skb_tailroom(skb);
1213 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1214 				 max_nbytes, DMA_FROM_DEVICE);
1215 
1216 		if (unlikely(max_nbytes < nbytes)) {
1217 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1218 				    nbytes, max_nbytes);
1219 			dev_kfree_skb_any(skb);
1220 			continue;
1221 		}
1222 
1223 		skb_put(skb, nbytes);
1224 		__skb_queue_tail(&list, skb);
1225 	}
1226 
1227 	while ((skb = __skb_dequeue(&list))) {
1228 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1229 			   ce_state->id, skb->len);
1230 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1231 				skb->data, skb->len);
1232 
1233 		callback(ar, skb);
1234 	}
1235 
1236 	ath10k_pci_rx_post_pipe(pipe_info);
1237 }
1238 
1239 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1240 					 void (*callback)(struct ath10k *ar,
1241 							  struct sk_buff *skb))
1242 {
1243 	struct ath10k *ar = ce_state->ar;
1244 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1245 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1246 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1247 	struct sk_buff *skb;
1248 	struct sk_buff_head list;
1249 	void *transfer_context;
1250 	unsigned int nbytes, max_nbytes, nentries;
1251 	int orig_len;
1252 
1253 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1254 	 * is processed other than init and deinit. Before releasing CE5
1255 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1256 	 */
1257 	__skb_queue_head_init(&list);
1258 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1259 						    &nbytes) == 0) {
1260 		skb = transfer_context;
1261 		max_nbytes = skb->len + skb_tailroom(skb);
1262 
1263 		if (unlikely(max_nbytes < nbytes)) {
1264 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1265 				    nbytes, max_nbytes);
1266 			continue;
1267 		}
1268 
1269 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1270 					max_nbytes, DMA_FROM_DEVICE);
1271 		skb_put(skb, nbytes);
1272 		__skb_queue_tail(&list, skb);
1273 	}
1274 
1275 	nentries = skb_queue_len(&list);
1276 	while ((skb = __skb_dequeue(&list))) {
1277 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1278 			   ce_state->id, skb->len);
1279 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1280 				skb->data, skb->len);
1281 
1282 		orig_len = skb->len;
1283 		callback(ar, skb);
1284 		skb_push(skb, orig_len - skb->len);
1285 		skb_reset_tail_pointer(skb);
1286 		skb_trim(skb, 0);
1287 
1288 		/*let device gain the buffer again*/
1289 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1290 					   skb->len + skb_tailroom(skb),
1291 					   DMA_FROM_DEVICE);
1292 	}
1293 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1294 }
1295 
1296 /* Called by lower (CE) layer when data is received from the Target. */
1297 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1298 {
1299 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1300 }
1301 
1302 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1303 {
1304 	/* CE4 polling needs to be done whenever CE pipe which transports
1305 	 * HTT Rx (target->host) is processed.
1306 	 */
1307 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1308 
1309 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1310 }
1311 
1312 /* Called by lower (CE) layer when data is received from the Target.
1313  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1314  */
1315 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1316 {
1317 	ath10k_pci_process_rx_cb(ce_state,
1318 				 ath10k_htt_rx_pktlog_completion_handler);
1319 }
1320 
1321 /* Called by lower (CE) layer when a send to HTT Target completes. */
1322 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1323 {
1324 	struct ath10k *ar = ce_state->ar;
1325 	struct sk_buff *skb;
1326 
1327 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1328 		/* no need to call tx completion for NULL pointers */
1329 		if (!skb)
1330 			continue;
1331 
1332 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1333 				 skb->len, DMA_TO_DEVICE);
1334 		ath10k_htt_hif_tx_complete(ar, skb);
1335 	}
1336 }
1337 
1338 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1339 {
1340 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1341 	ath10k_htt_t2h_msg_handler(ar, skb);
1342 }
1343 
1344 /* Called by lower (CE) layer when HTT data is received from the Target. */
1345 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1346 {
1347 	/* CE4 polling needs to be done whenever CE pipe which transports
1348 	 * HTT Rx (target->host) is processed.
1349 	 */
1350 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1351 
1352 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1353 }
1354 
1355 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1356 			 struct ath10k_hif_sg_item *items, int n_items)
1357 {
1358 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1359 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1360 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1361 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1362 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1363 	unsigned int nentries_mask;
1364 	unsigned int sw_index;
1365 	unsigned int write_index;
1366 	int err, i = 0;
1367 
1368 	spin_lock_bh(&ce->ce_lock);
1369 
1370 	nentries_mask = src_ring->nentries_mask;
1371 	sw_index = src_ring->sw_index;
1372 	write_index = src_ring->write_index;
1373 
1374 	if (unlikely(CE_RING_DELTA(nentries_mask,
1375 				   write_index, sw_index - 1) < n_items)) {
1376 		err = -ENOBUFS;
1377 		goto err;
1378 	}
1379 
1380 	for (i = 0; i < n_items - 1; i++) {
1381 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1382 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1383 			   i, items[i].paddr, items[i].len, n_items);
1384 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1385 				items[i].vaddr, items[i].len);
1386 
1387 		err = ath10k_ce_send_nolock(ce_pipe,
1388 					    items[i].transfer_context,
1389 					    items[i].paddr,
1390 					    items[i].len,
1391 					    items[i].transfer_id,
1392 					    CE_SEND_FLAG_GATHER);
1393 		if (err)
1394 			goto err;
1395 	}
1396 
1397 	/* `i` is equal to `n_items -1` after for() */
1398 
1399 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1400 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1401 		   i, items[i].paddr, items[i].len, n_items);
1402 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1403 			items[i].vaddr, items[i].len);
1404 
1405 	err = ath10k_ce_send_nolock(ce_pipe,
1406 				    items[i].transfer_context,
1407 				    items[i].paddr,
1408 				    items[i].len,
1409 				    items[i].transfer_id,
1410 				    0);
1411 	if (err)
1412 		goto err;
1413 
1414 	spin_unlock_bh(&ce->ce_lock);
1415 	return 0;
1416 
1417 err:
1418 	for (; i > 0; i--)
1419 		__ath10k_ce_send_revert(ce_pipe);
1420 
1421 	spin_unlock_bh(&ce->ce_lock);
1422 	return err;
1423 }
1424 
1425 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1426 			     size_t buf_len)
1427 {
1428 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1429 }
1430 
1431 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1432 {
1433 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1434 
1435 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1436 
1437 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1438 }
1439 
1440 static void ath10k_pci_dump_registers(struct ath10k *ar,
1441 				      struct ath10k_fw_crash_data *crash_data)
1442 {
1443 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1444 	int i, ret;
1445 
1446 	lockdep_assert_held(&ar->data_lock);
1447 
1448 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1449 				      hi_failure_state,
1450 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1451 	if (ret) {
1452 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1453 		return;
1454 	}
1455 
1456 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1457 
1458 	ath10k_err(ar, "firmware register dump:\n");
1459 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1460 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1461 			   i,
1462 			   __le32_to_cpu(reg_dump_values[i]),
1463 			   __le32_to_cpu(reg_dump_values[i + 1]),
1464 			   __le32_to_cpu(reg_dump_values[i + 2]),
1465 			   __le32_to_cpu(reg_dump_values[i + 3]));
1466 
1467 	if (!crash_data)
1468 		return;
1469 
1470 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1471 		crash_data->registers[i] = reg_dump_values[i];
1472 }
1473 
1474 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1475 					  const struct ath10k_mem_region *mem_region,
1476 					  u8 *buf, size_t buf_len)
1477 {
1478 	const struct ath10k_mem_section *cur_section, *next_section;
1479 	unsigned int count, section_size, skip_size;
1480 	int ret, i, j;
1481 
1482 	if (!mem_region || !buf)
1483 		return 0;
1484 
1485 	cur_section = &mem_region->section_table.sections[0];
1486 
1487 	if (mem_region->start > cur_section->start) {
1488 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1489 			    mem_region->start, cur_section->start);
1490 		return 0;
1491 	}
1492 
1493 	skip_size = cur_section->start - mem_region->start;
1494 
1495 	/* fill the gap between the first register section and register
1496 	 * start address
1497 	 */
1498 	for (i = 0; i < skip_size; i++) {
1499 		*buf = ATH10K_MAGIC_NOT_COPIED;
1500 		buf++;
1501 	}
1502 
1503 	count = 0;
1504 
1505 	for (i = 0; cur_section != NULL; i++) {
1506 		section_size = cur_section->end - cur_section->start;
1507 
1508 		if (section_size <= 0) {
1509 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1510 				    cur_section->start,
1511 				    cur_section->end);
1512 			break;
1513 		}
1514 
1515 		if ((i + 1) == mem_region->section_table.size) {
1516 			/* last section */
1517 			next_section = NULL;
1518 			skip_size = 0;
1519 		} else {
1520 			next_section = cur_section + 1;
1521 
1522 			if (cur_section->end > next_section->start) {
1523 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1524 					    next_section->start,
1525 					    cur_section->end);
1526 				break;
1527 			}
1528 
1529 			skip_size = next_section->start - cur_section->end;
1530 		}
1531 
1532 		if (buf_len < (skip_size + section_size)) {
1533 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1534 			break;
1535 		}
1536 
1537 		buf_len -= skip_size + section_size;
1538 
1539 		/* read section to dest memory */
1540 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1541 					       buf, section_size);
1542 		if (ret) {
1543 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1544 				    cur_section->start, ret);
1545 			break;
1546 		}
1547 
1548 		buf += section_size;
1549 		count += section_size;
1550 
1551 		/* fill in the gap between this section and the next */
1552 		for (j = 0; j < skip_size; j++) {
1553 			*buf = ATH10K_MAGIC_NOT_COPIED;
1554 			buf++;
1555 		}
1556 
1557 		count += skip_size;
1558 
1559 		if (!next_section)
1560 			/* this was the last section */
1561 			break;
1562 
1563 		cur_section = next_section;
1564 	}
1565 
1566 	return count;
1567 }
1568 
1569 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1570 {
1571 	u32 val;
1572 
1573 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1574 			   FW_RAM_CONFIG_ADDRESS, config);
1575 
1576 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1577 				FW_RAM_CONFIG_ADDRESS);
1578 	if (val != config) {
1579 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1580 			    val, config);
1581 		return -EIO;
1582 	}
1583 
1584 	return 0;
1585 }
1586 
1587 static void ath10k_pci_dump_memory(struct ath10k *ar,
1588 				   struct ath10k_fw_crash_data *crash_data)
1589 {
1590 	const struct ath10k_hw_mem_layout *mem_layout;
1591 	const struct ath10k_mem_region *current_region;
1592 	struct ath10k_dump_ram_data_hdr *hdr;
1593 	u32 count, shift;
1594 	size_t buf_len;
1595 	int ret, i;
1596 	u8 *buf;
1597 
1598 	lockdep_assert_held(&ar->data_lock);
1599 
1600 	if (!crash_data)
1601 		return;
1602 
1603 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1604 	if (!mem_layout)
1605 		return;
1606 
1607 	current_region = &mem_layout->region_table.regions[0];
1608 
1609 	buf = crash_data->ramdump_buf;
1610 	buf_len = crash_data->ramdump_buf_len;
1611 
1612 	memset(buf, 0, buf_len);
1613 
1614 	for (i = 0; i < mem_layout->region_table.size; i++) {
1615 		count = 0;
1616 
1617 		if (current_region->len > buf_len) {
1618 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1619 				    current_region->name,
1620 				    current_region->len,
1621 				    buf_len);
1622 			break;
1623 		}
1624 
1625 		/* To get IRAM dump, the host driver needs to switch target
1626 		 * ram config from DRAM to IRAM.
1627 		 */
1628 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1629 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1630 			shift = current_region->start >> 20;
1631 
1632 			ret = ath10k_pci_set_ram_config(ar, shift);
1633 			if (ret) {
1634 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1635 					    current_region->name, ret);
1636 				break;
1637 			}
1638 		}
1639 
1640 		/* Reserve space for the header. */
1641 		hdr = (void *)buf;
1642 		buf += sizeof(*hdr);
1643 		buf_len -= sizeof(*hdr);
1644 
1645 		if (current_region->section_table.size > 0) {
1646 			/* Copy each section individually. */
1647 			count = ath10k_pci_dump_memory_section(ar,
1648 							       current_region,
1649 							       buf,
1650 							       current_region->len);
1651 		} else {
1652 			/* No individiual memory sections defined so we can
1653 			 * copy the entire memory region.
1654 			 */
1655 			ret = ath10k_pci_diag_read_mem(ar,
1656 						       current_region->start,
1657 						       buf,
1658 						       current_region->len);
1659 			if (ret) {
1660 				ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1661 					    current_region->name, ret);
1662 				break;
1663 			}
1664 
1665 			count = current_region->len;
1666 		}
1667 
1668 		hdr->region_type = cpu_to_le32(current_region->type);
1669 		hdr->start = cpu_to_le32(current_region->start);
1670 		hdr->length = cpu_to_le32(count);
1671 
1672 		if (count == 0)
1673 			/* Note: the header remains, just with zero length. */
1674 			break;
1675 
1676 		buf += count;
1677 		buf_len -= count;
1678 
1679 		current_region++;
1680 	}
1681 }
1682 
1683 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1684 {
1685 	struct ath10k_fw_crash_data *crash_data;
1686 	char guid[UUID_STRING_LEN + 1];
1687 
1688 	spin_lock_bh(&ar->data_lock);
1689 
1690 	ar->stats.fw_crash_counter++;
1691 
1692 	crash_data = ath10k_coredump_new(ar);
1693 
1694 	if (crash_data)
1695 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1696 	else
1697 		scnprintf(guid, sizeof(guid), "n/a");
1698 
1699 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1700 	ath10k_print_driver_info(ar);
1701 	ath10k_pci_dump_registers(ar, crash_data);
1702 	ath10k_ce_dump_registers(ar, crash_data);
1703 	ath10k_pci_dump_memory(ar, crash_data);
1704 
1705 	spin_unlock_bh(&ar->data_lock);
1706 
1707 	queue_work(ar->workqueue, &ar->restart_work);
1708 }
1709 
1710 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1711 					int force)
1712 {
1713 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1714 
1715 	if (!force) {
1716 		int resources;
1717 		/*
1718 		 * Decide whether to actually poll for completions, or just
1719 		 * wait for a later chance.
1720 		 * If there seem to be plenty of resources left, then just wait
1721 		 * since checking involves reading a CE register, which is a
1722 		 * relatively expensive operation.
1723 		 */
1724 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1725 
1726 		/*
1727 		 * If at least 50% of the total resources are still available,
1728 		 * don't bother checking again yet.
1729 		 */
1730 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1731 			return;
1732 	}
1733 	ath10k_ce_per_engine_service(ar, pipe);
1734 }
1735 
1736 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1737 {
1738 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1739 
1740 	del_timer_sync(&ar_pci->rx_post_retry);
1741 }
1742 
1743 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1744 				       u8 *ul_pipe, u8 *dl_pipe)
1745 {
1746 	const struct service_to_pipe *entry;
1747 	bool ul_set = false, dl_set = false;
1748 	int i;
1749 
1750 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1751 
1752 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1753 		entry = &target_service_to_ce_map_wlan[i];
1754 
1755 		if (__le32_to_cpu(entry->service_id) != service_id)
1756 			continue;
1757 
1758 		switch (__le32_to_cpu(entry->pipedir)) {
1759 		case PIPEDIR_NONE:
1760 			break;
1761 		case PIPEDIR_IN:
1762 			WARN_ON(dl_set);
1763 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1764 			dl_set = true;
1765 			break;
1766 		case PIPEDIR_OUT:
1767 			WARN_ON(ul_set);
1768 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1769 			ul_set = true;
1770 			break;
1771 		case PIPEDIR_INOUT:
1772 			WARN_ON(dl_set);
1773 			WARN_ON(ul_set);
1774 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1775 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1776 			dl_set = true;
1777 			ul_set = true;
1778 			break;
1779 		}
1780 	}
1781 
1782 	if (WARN_ON(!ul_set || !dl_set))
1783 		return -ENOENT;
1784 
1785 	return 0;
1786 }
1787 
1788 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1789 				     u8 *ul_pipe, u8 *dl_pipe)
1790 {
1791 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1792 
1793 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1794 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1795 						 ul_pipe, dl_pipe);
1796 }
1797 
1798 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1799 {
1800 	u32 val;
1801 
1802 	switch (ar->hw_rev) {
1803 	case ATH10K_HW_QCA988X:
1804 	case ATH10K_HW_QCA9887:
1805 	case ATH10K_HW_QCA6174:
1806 	case ATH10K_HW_QCA9377:
1807 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1808 					CORE_CTRL_ADDRESS);
1809 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1810 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1811 				   CORE_CTRL_ADDRESS, val);
1812 		break;
1813 	case ATH10K_HW_QCA99X0:
1814 	case ATH10K_HW_QCA9984:
1815 	case ATH10K_HW_QCA9888:
1816 	case ATH10K_HW_QCA4019:
1817 		/* TODO: Find appropriate register configuration for QCA99X0
1818 		 *  to mask irq/MSI.
1819 		 */
1820 		break;
1821 	case ATH10K_HW_WCN3990:
1822 		break;
1823 	}
1824 }
1825 
1826 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1827 {
1828 	u32 val;
1829 
1830 	switch (ar->hw_rev) {
1831 	case ATH10K_HW_QCA988X:
1832 	case ATH10K_HW_QCA9887:
1833 	case ATH10K_HW_QCA6174:
1834 	case ATH10K_HW_QCA9377:
1835 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1836 					CORE_CTRL_ADDRESS);
1837 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1838 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1839 				   CORE_CTRL_ADDRESS, val);
1840 		break;
1841 	case ATH10K_HW_QCA99X0:
1842 	case ATH10K_HW_QCA9984:
1843 	case ATH10K_HW_QCA9888:
1844 	case ATH10K_HW_QCA4019:
1845 		/* TODO: Find appropriate register configuration for QCA99X0
1846 		 *  to unmask irq/MSI.
1847 		 */
1848 		break;
1849 	case ATH10K_HW_WCN3990:
1850 		break;
1851 	}
1852 }
1853 
1854 static void ath10k_pci_irq_disable(struct ath10k *ar)
1855 {
1856 	ath10k_ce_disable_interrupts(ar);
1857 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1858 	ath10k_pci_irq_msi_fw_mask(ar);
1859 }
1860 
1861 static void ath10k_pci_irq_sync(struct ath10k *ar)
1862 {
1863 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1864 
1865 	synchronize_irq(ar_pci->pdev->irq);
1866 }
1867 
1868 static void ath10k_pci_irq_enable(struct ath10k *ar)
1869 {
1870 	ath10k_ce_enable_interrupts(ar);
1871 	ath10k_pci_enable_legacy_irq(ar);
1872 	ath10k_pci_irq_msi_fw_unmask(ar);
1873 }
1874 
1875 static int ath10k_pci_hif_start(struct ath10k *ar)
1876 {
1877 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1878 
1879 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1880 
1881 	napi_enable(&ar->napi);
1882 
1883 	ath10k_pci_irq_enable(ar);
1884 	ath10k_pci_rx_post(ar);
1885 
1886 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1887 				   ar_pci->link_ctl);
1888 
1889 	return 0;
1890 }
1891 
1892 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1893 {
1894 	struct ath10k *ar;
1895 	struct ath10k_ce_pipe *ce_pipe;
1896 	struct ath10k_ce_ring *ce_ring;
1897 	struct sk_buff *skb;
1898 	int i;
1899 
1900 	ar = pci_pipe->hif_ce_state;
1901 	ce_pipe = pci_pipe->ce_hdl;
1902 	ce_ring = ce_pipe->dest_ring;
1903 
1904 	if (!ce_ring)
1905 		return;
1906 
1907 	if (!pci_pipe->buf_sz)
1908 		return;
1909 
1910 	for (i = 0; i < ce_ring->nentries; i++) {
1911 		skb = ce_ring->per_transfer_context[i];
1912 		if (!skb)
1913 			continue;
1914 
1915 		ce_ring->per_transfer_context[i] = NULL;
1916 
1917 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1918 				 skb->len + skb_tailroom(skb),
1919 				 DMA_FROM_DEVICE);
1920 		dev_kfree_skb_any(skb);
1921 	}
1922 }
1923 
1924 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1925 {
1926 	struct ath10k *ar;
1927 	struct ath10k_ce_pipe *ce_pipe;
1928 	struct ath10k_ce_ring *ce_ring;
1929 	struct sk_buff *skb;
1930 	int i;
1931 
1932 	ar = pci_pipe->hif_ce_state;
1933 	ce_pipe = pci_pipe->ce_hdl;
1934 	ce_ring = ce_pipe->src_ring;
1935 
1936 	if (!ce_ring)
1937 		return;
1938 
1939 	if (!pci_pipe->buf_sz)
1940 		return;
1941 
1942 	for (i = 0; i < ce_ring->nentries; i++) {
1943 		skb = ce_ring->per_transfer_context[i];
1944 		if (!skb)
1945 			continue;
1946 
1947 		ce_ring->per_transfer_context[i] = NULL;
1948 
1949 		ath10k_htc_tx_completion_handler(ar, skb);
1950 	}
1951 }
1952 
1953 /*
1954  * Cleanup residual buffers for device shutdown:
1955  *    buffers that were enqueued for receive
1956  *    buffers that were to be sent
1957  * Note: Buffers that had completed but which were
1958  * not yet processed are on a completion queue. They
1959  * are handled when the completion thread shuts down.
1960  */
1961 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1962 {
1963 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1964 	int pipe_num;
1965 
1966 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1967 		struct ath10k_pci_pipe *pipe_info;
1968 
1969 		pipe_info = &ar_pci->pipe_info[pipe_num];
1970 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1971 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1972 	}
1973 }
1974 
1975 void ath10k_pci_ce_deinit(struct ath10k *ar)
1976 {
1977 	int i;
1978 
1979 	for (i = 0; i < CE_COUNT; i++)
1980 		ath10k_ce_deinit_pipe(ar, i);
1981 }
1982 
1983 void ath10k_pci_flush(struct ath10k *ar)
1984 {
1985 	ath10k_pci_rx_retry_sync(ar);
1986 	ath10k_pci_buffer_cleanup(ar);
1987 }
1988 
1989 static void ath10k_pci_hif_stop(struct ath10k *ar)
1990 {
1991 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1992 	unsigned long flags;
1993 
1994 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1995 
1996 	/* Most likely the device has HTT Rx ring configured. The only way to
1997 	 * prevent the device from accessing (and possible corrupting) host
1998 	 * memory is to reset the chip now.
1999 	 *
2000 	 * There's also no known way of masking MSI interrupts on the device.
2001 	 * For ranged MSI the CE-related interrupts can be masked. However
2002 	 * regardless how many MSI interrupts are assigned the first one
2003 	 * is always used for firmware indications (crashes) and cannot be
2004 	 * masked. To prevent the device from asserting the interrupt reset it
2005 	 * before proceeding with cleanup.
2006 	 */
2007 	ath10k_pci_safe_chip_reset(ar);
2008 
2009 	ath10k_pci_irq_disable(ar);
2010 	ath10k_pci_irq_sync(ar);
2011 	ath10k_pci_flush(ar);
2012 	napi_synchronize(&ar->napi);
2013 	napi_disable(&ar->napi);
2014 
2015 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2016 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2017 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2018 }
2019 
2020 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2021 				    void *req, u32 req_len,
2022 				    void *resp, u32 *resp_len)
2023 {
2024 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2025 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2026 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2027 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2028 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2029 	dma_addr_t req_paddr = 0;
2030 	dma_addr_t resp_paddr = 0;
2031 	struct bmi_xfer xfer = {};
2032 	void *treq, *tresp = NULL;
2033 	int ret = 0;
2034 
2035 	might_sleep();
2036 
2037 	if (resp && !resp_len)
2038 		return -EINVAL;
2039 
2040 	if (resp && resp_len && *resp_len == 0)
2041 		return -EINVAL;
2042 
2043 	treq = kmemdup(req, req_len, GFP_KERNEL);
2044 	if (!treq)
2045 		return -ENOMEM;
2046 
2047 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2048 	ret = dma_mapping_error(ar->dev, req_paddr);
2049 	if (ret) {
2050 		ret = -EIO;
2051 		goto err_dma;
2052 	}
2053 
2054 	if (resp && resp_len) {
2055 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2056 		if (!tresp) {
2057 			ret = -ENOMEM;
2058 			goto err_req;
2059 		}
2060 
2061 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2062 					    DMA_FROM_DEVICE);
2063 		ret = dma_mapping_error(ar->dev, resp_paddr);
2064 		if (ret) {
2065 			ret = -EIO;
2066 			goto err_req;
2067 		}
2068 
2069 		xfer.wait_for_resp = true;
2070 		xfer.resp_len = 0;
2071 
2072 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2073 	}
2074 
2075 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2076 	if (ret)
2077 		goto err_resp;
2078 
2079 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2080 	if (ret) {
2081 		dma_addr_t unused_buffer;
2082 		unsigned int unused_nbytes;
2083 		unsigned int unused_id;
2084 
2085 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2086 					   &unused_nbytes, &unused_id);
2087 	} else {
2088 		/* non-zero means we did not time out */
2089 		ret = 0;
2090 	}
2091 
2092 err_resp:
2093 	if (resp) {
2094 		dma_addr_t unused_buffer;
2095 
2096 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2097 		dma_unmap_single(ar->dev, resp_paddr,
2098 				 *resp_len, DMA_FROM_DEVICE);
2099 	}
2100 err_req:
2101 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2102 
2103 	if (ret == 0 && resp_len) {
2104 		*resp_len = min(*resp_len, xfer.resp_len);
2105 		memcpy(resp, tresp, xfer.resp_len);
2106 	}
2107 err_dma:
2108 	kfree(treq);
2109 	kfree(tresp);
2110 
2111 	return ret;
2112 }
2113 
2114 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2115 {
2116 	struct bmi_xfer *xfer;
2117 
2118 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2119 		return;
2120 
2121 	xfer->tx_done = true;
2122 }
2123 
2124 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2125 {
2126 	struct ath10k *ar = ce_state->ar;
2127 	struct bmi_xfer *xfer;
2128 	unsigned int nbytes;
2129 
2130 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2131 					  &nbytes))
2132 		return;
2133 
2134 	if (WARN_ON_ONCE(!xfer))
2135 		return;
2136 
2137 	if (!xfer->wait_for_resp) {
2138 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2139 		return;
2140 	}
2141 
2142 	xfer->resp_len = nbytes;
2143 	xfer->rx_done = true;
2144 }
2145 
2146 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2147 			       struct ath10k_ce_pipe *tx_pipe,
2148 			       struct ath10k_ce_pipe *rx_pipe,
2149 			       struct bmi_xfer *xfer)
2150 {
2151 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2152 	unsigned long started = jiffies;
2153 	unsigned long dur;
2154 	int ret;
2155 
2156 	while (time_before_eq(jiffies, timeout)) {
2157 		ath10k_pci_bmi_send_done(tx_pipe);
2158 		ath10k_pci_bmi_recv_data(rx_pipe);
2159 
2160 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2161 			ret = 0;
2162 			goto out;
2163 		}
2164 
2165 		schedule();
2166 	}
2167 
2168 	ret = -ETIMEDOUT;
2169 
2170 out:
2171 	dur = jiffies - started;
2172 	if (dur > HZ)
2173 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2174 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2175 			   dur, HZ, ret);
2176 	return ret;
2177 }
2178 
2179 /*
2180  * Send an interrupt to the device to wake up the Target CPU
2181  * so it has an opportunity to notice any changed state.
2182  */
2183 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2184 {
2185 	u32 addr, val;
2186 
2187 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2188 	val = ath10k_pci_read32(ar, addr);
2189 	val |= CORE_CTRL_CPU_INTR_MASK;
2190 	ath10k_pci_write32(ar, addr, val);
2191 
2192 	return 0;
2193 }
2194 
2195 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2196 {
2197 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2198 
2199 	switch (ar_pci->pdev->device) {
2200 	case QCA988X_2_0_DEVICE_ID_UBNT:
2201 	case QCA988X_2_0_DEVICE_ID:
2202 	case QCA99X0_2_0_DEVICE_ID:
2203 	case QCA9888_2_0_DEVICE_ID:
2204 	case QCA9984_1_0_DEVICE_ID:
2205 	case QCA9887_1_0_DEVICE_ID:
2206 		return 1;
2207 	case QCA6164_2_1_DEVICE_ID:
2208 	case QCA6174_2_1_DEVICE_ID:
2209 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
2210 		case QCA6174_HW_1_0_CHIP_ID_REV:
2211 		case QCA6174_HW_1_1_CHIP_ID_REV:
2212 		case QCA6174_HW_2_1_CHIP_ID_REV:
2213 		case QCA6174_HW_2_2_CHIP_ID_REV:
2214 			return 3;
2215 		case QCA6174_HW_1_3_CHIP_ID_REV:
2216 			return 2;
2217 		case QCA6174_HW_3_0_CHIP_ID_REV:
2218 		case QCA6174_HW_3_1_CHIP_ID_REV:
2219 		case QCA6174_HW_3_2_CHIP_ID_REV:
2220 			return 9;
2221 		}
2222 		break;
2223 	case QCA9377_1_0_DEVICE_ID:
2224 		return 4;
2225 	}
2226 
2227 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2228 	return 1;
2229 }
2230 
2231 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2232 {
2233 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2234 
2235 	return ce->bus_ops->get_num_banks(ar);
2236 }
2237 
2238 int ath10k_pci_init_config(struct ath10k *ar)
2239 {
2240 	u32 interconnect_targ_addr;
2241 	u32 pcie_state_targ_addr = 0;
2242 	u32 pipe_cfg_targ_addr = 0;
2243 	u32 svc_to_pipe_map = 0;
2244 	u32 pcie_config_flags = 0;
2245 	u32 ealloc_value;
2246 	u32 ealloc_targ_addr;
2247 	u32 flag2_value;
2248 	u32 flag2_targ_addr;
2249 	int ret = 0;
2250 
2251 	/* Download to Target the CE Config and the service-to-CE map */
2252 	interconnect_targ_addr =
2253 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2254 
2255 	/* Supply Target-side CE configuration */
2256 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2257 				     &pcie_state_targ_addr);
2258 	if (ret != 0) {
2259 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2260 		return ret;
2261 	}
2262 
2263 	if (pcie_state_targ_addr == 0) {
2264 		ret = -EIO;
2265 		ath10k_err(ar, "Invalid pcie state addr\n");
2266 		return ret;
2267 	}
2268 
2269 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2270 					  offsetof(struct pcie_state,
2271 						   pipe_cfg_addr)),
2272 				     &pipe_cfg_targ_addr);
2273 	if (ret != 0) {
2274 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2275 		return ret;
2276 	}
2277 
2278 	if (pipe_cfg_targ_addr == 0) {
2279 		ret = -EIO;
2280 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2281 		return ret;
2282 	}
2283 
2284 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2285 					target_ce_config_wlan,
2286 					sizeof(struct ce_pipe_config) *
2287 					NUM_TARGET_CE_CONFIG_WLAN);
2288 
2289 	if (ret != 0) {
2290 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2291 		return ret;
2292 	}
2293 
2294 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2295 					  offsetof(struct pcie_state,
2296 						   svc_to_pipe_map)),
2297 				     &svc_to_pipe_map);
2298 	if (ret != 0) {
2299 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2300 		return ret;
2301 	}
2302 
2303 	if (svc_to_pipe_map == 0) {
2304 		ret = -EIO;
2305 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2306 		return ret;
2307 	}
2308 
2309 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2310 					target_service_to_ce_map_wlan,
2311 					sizeof(target_service_to_ce_map_wlan));
2312 	if (ret != 0) {
2313 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2314 		return ret;
2315 	}
2316 
2317 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2318 					  offsetof(struct pcie_state,
2319 						   config_flags)),
2320 				     &pcie_config_flags);
2321 	if (ret != 0) {
2322 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2323 		return ret;
2324 	}
2325 
2326 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2327 
2328 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2329 					   offsetof(struct pcie_state,
2330 						    config_flags)),
2331 				      pcie_config_flags);
2332 	if (ret != 0) {
2333 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2334 		return ret;
2335 	}
2336 
2337 	/* configure early allocation */
2338 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2339 
2340 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2341 	if (ret != 0) {
2342 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2343 		return ret;
2344 	}
2345 
2346 	/* first bank is switched to IRAM */
2347 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2348 			 HI_EARLY_ALLOC_MAGIC_MASK);
2349 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2350 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2351 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2352 
2353 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2354 	if (ret != 0) {
2355 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2356 		return ret;
2357 	}
2358 
2359 	/* Tell Target to proceed with initialization */
2360 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2361 
2362 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2363 	if (ret != 0) {
2364 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2365 		return ret;
2366 	}
2367 
2368 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2369 
2370 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2371 	if (ret != 0) {
2372 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2373 		return ret;
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2380 {
2381 	struct ce_attr *attr;
2382 	struct ce_pipe_config *config;
2383 
2384 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2385 	 * since it is currently used for other feature.
2386 	 */
2387 
2388 	/* Override Host's Copy Engine 5 configuration */
2389 	attr = &host_ce_config_wlan[5];
2390 	attr->src_sz_max = 0;
2391 	attr->dest_nentries = 0;
2392 
2393 	/* Override Target firmware's Copy Engine configuration */
2394 	config = &target_ce_config_wlan[5];
2395 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2396 	config->nbytes_max = __cpu_to_le32(2048);
2397 
2398 	/* Map from service/endpoint to Copy Engine */
2399 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2400 }
2401 
2402 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2403 {
2404 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2405 	struct ath10k_pci_pipe *pipe;
2406 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2407 	int i, ret;
2408 
2409 	for (i = 0; i < CE_COUNT; i++) {
2410 		pipe = &ar_pci->pipe_info[i];
2411 		pipe->ce_hdl = &ce->ce_states[i];
2412 		pipe->pipe_num = i;
2413 		pipe->hif_ce_state = ar;
2414 
2415 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2416 		if (ret) {
2417 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2418 				   i, ret);
2419 			return ret;
2420 		}
2421 
2422 		/* Last CE is Diagnostic Window */
2423 		if (i == CE_DIAG_PIPE) {
2424 			ar_pci->ce_diag = pipe->ce_hdl;
2425 			continue;
2426 		}
2427 
2428 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2429 	}
2430 
2431 	return 0;
2432 }
2433 
2434 void ath10k_pci_free_pipes(struct ath10k *ar)
2435 {
2436 	int i;
2437 
2438 	for (i = 0; i < CE_COUNT; i++)
2439 		ath10k_ce_free_pipe(ar, i);
2440 }
2441 
2442 int ath10k_pci_init_pipes(struct ath10k *ar)
2443 {
2444 	int i, ret;
2445 
2446 	for (i = 0; i < CE_COUNT; i++) {
2447 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2448 		if (ret) {
2449 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2450 				   i, ret);
2451 			return ret;
2452 		}
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2459 {
2460 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2461 	       FW_IND_EVENT_PENDING;
2462 }
2463 
2464 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2465 {
2466 	u32 val;
2467 
2468 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2469 	val &= ~FW_IND_EVENT_PENDING;
2470 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2471 }
2472 
2473 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2474 {
2475 	u32 val;
2476 
2477 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2478 	return (val == 0xffffffff);
2479 }
2480 
2481 /* this function effectively clears target memory controller assert line */
2482 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2483 {
2484 	u32 val;
2485 
2486 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2487 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2488 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2489 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2490 
2491 	msleep(10);
2492 
2493 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2494 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2495 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2496 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2497 
2498 	msleep(10);
2499 }
2500 
2501 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2502 {
2503 	u32 val;
2504 
2505 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2506 
2507 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2508 				SOC_RESET_CONTROL_ADDRESS);
2509 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2510 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2511 }
2512 
2513 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2514 {
2515 	u32 val;
2516 
2517 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2518 				SOC_RESET_CONTROL_ADDRESS);
2519 
2520 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2521 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2522 	msleep(10);
2523 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2524 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2525 }
2526 
2527 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2528 {
2529 	u32 val;
2530 
2531 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2532 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2533 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2534 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2535 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2536 }
2537 
2538 static int ath10k_pci_warm_reset(struct ath10k *ar)
2539 {
2540 	int ret;
2541 
2542 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2543 
2544 	spin_lock_bh(&ar->data_lock);
2545 	ar->stats.fw_warm_reset_counter++;
2546 	spin_unlock_bh(&ar->data_lock);
2547 
2548 	ath10k_pci_irq_disable(ar);
2549 
2550 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2551 	 * were to access copy engine while host performs copy engine reset
2552 	 * then it is possible for the device to confuse pci-e controller to
2553 	 * the point of bringing host system to a complete stop (i.e. hang).
2554 	 */
2555 	ath10k_pci_warm_reset_si0(ar);
2556 	ath10k_pci_warm_reset_cpu(ar);
2557 	ath10k_pci_init_pipes(ar);
2558 	ath10k_pci_wait_for_target_init(ar);
2559 
2560 	ath10k_pci_warm_reset_clear_lf(ar);
2561 	ath10k_pci_warm_reset_ce(ar);
2562 	ath10k_pci_warm_reset_cpu(ar);
2563 	ath10k_pci_init_pipes(ar);
2564 
2565 	ret = ath10k_pci_wait_for_target_init(ar);
2566 	if (ret) {
2567 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2568 		return ret;
2569 	}
2570 
2571 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2572 
2573 	return 0;
2574 }
2575 
2576 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2577 {
2578 	ath10k_pci_irq_disable(ar);
2579 	return ath10k_pci_qca99x0_chip_reset(ar);
2580 }
2581 
2582 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2583 {
2584 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2585 
2586 	if (!ar_pci->pci_soft_reset)
2587 		return -ENOTSUPP;
2588 
2589 	return ar_pci->pci_soft_reset(ar);
2590 }
2591 
2592 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2593 {
2594 	int i, ret;
2595 	u32 val;
2596 
2597 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2598 
2599 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2600 	 * It is thus preferred to use warm reset which is safer but may not be
2601 	 * able to recover the device from all possible fail scenarios.
2602 	 *
2603 	 * Warm reset doesn't always work on first try so attempt it a few
2604 	 * times before giving up.
2605 	 */
2606 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2607 		ret = ath10k_pci_warm_reset(ar);
2608 		if (ret) {
2609 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2610 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2611 				    ret);
2612 			continue;
2613 		}
2614 
2615 		/* FIXME: Sometimes copy engine doesn't recover after warm
2616 		 * reset. In most cases this needs cold reset. In some of these
2617 		 * cases the device is in such a state that a cold reset may
2618 		 * lock up the host.
2619 		 *
2620 		 * Reading any host interest register via copy engine is
2621 		 * sufficient to verify if device is capable of booting
2622 		 * firmware blob.
2623 		 */
2624 		ret = ath10k_pci_init_pipes(ar);
2625 		if (ret) {
2626 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2627 				    ret);
2628 			continue;
2629 		}
2630 
2631 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2632 					     &val);
2633 		if (ret) {
2634 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2635 				    ret);
2636 			continue;
2637 		}
2638 
2639 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2640 		return 0;
2641 	}
2642 
2643 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2644 		ath10k_warn(ar, "refusing cold reset as requested\n");
2645 		return -EPERM;
2646 	}
2647 
2648 	ret = ath10k_pci_cold_reset(ar);
2649 	if (ret) {
2650 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2651 		return ret;
2652 	}
2653 
2654 	ret = ath10k_pci_wait_for_target_init(ar);
2655 	if (ret) {
2656 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2657 			    ret);
2658 		return ret;
2659 	}
2660 
2661 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2662 
2663 	return 0;
2664 }
2665 
2666 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2667 {
2668 	int ret;
2669 
2670 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2671 
2672 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2673 
2674 	ret = ath10k_pci_cold_reset(ar);
2675 	if (ret) {
2676 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2677 		return ret;
2678 	}
2679 
2680 	ret = ath10k_pci_wait_for_target_init(ar);
2681 	if (ret) {
2682 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2683 			    ret);
2684 		return ret;
2685 	}
2686 
2687 	ret = ath10k_pci_warm_reset(ar);
2688 	if (ret) {
2689 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2690 		return ret;
2691 	}
2692 
2693 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2694 
2695 	return 0;
2696 }
2697 
2698 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2699 {
2700 	int ret;
2701 
2702 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2703 
2704 	ret = ath10k_pci_cold_reset(ar);
2705 	if (ret) {
2706 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2707 		return ret;
2708 	}
2709 
2710 	ret = ath10k_pci_wait_for_target_init(ar);
2711 	if (ret) {
2712 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2713 			    ret);
2714 		return ret;
2715 	}
2716 
2717 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2718 
2719 	return 0;
2720 }
2721 
2722 static int ath10k_pci_chip_reset(struct ath10k *ar)
2723 {
2724 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2725 
2726 	if (WARN_ON(!ar_pci->pci_hard_reset))
2727 		return -ENOTSUPP;
2728 
2729 	return ar_pci->pci_hard_reset(ar);
2730 }
2731 
2732 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2733 {
2734 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2735 	int ret;
2736 
2737 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2738 
2739 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2740 				  &ar_pci->link_ctl);
2741 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2742 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2743 
2744 	/*
2745 	 * Bring the target up cleanly.
2746 	 *
2747 	 * The target may be in an undefined state with an AUX-powered Target
2748 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2749 	 * restarted (without unloading the driver) then the Target is left
2750 	 * (aux) powered and running. On a subsequent driver load, the Target
2751 	 * is in an unexpected state. We try to catch that here in order to
2752 	 * reset the Target and retry the probe.
2753 	 */
2754 	ret = ath10k_pci_chip_reset(ar);
2755 	if (ret) {
2756 		if (ath10k_pci_has_fw_crashed(ar)) {
2757 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2758 			ath10k_pci_fw_crashed_clear(ar);
2759 			ath10k_pci_fw_crashed_dump(ar);
2760 		}
2761 
2762 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2763 		goto err_sleep;
2764 	}
2765 
2766 	ret = ath10k_pci_init_pipes(ar);
2767 	if (ret) {
2768 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2769 		goto err_sleep;
2770 	}
2771 
2772 	ret = ath10k_pci_init_config(ar);
2773 	if (ret) {
2774 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2775 		goto err_ce;
2776 	}
2777 
2778 	ret = ath10k_pci_wake_target_cpu(ar);
2779 	if (ret) {
2780 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2781 		goto err_ce;
2782 	}
2783 
2784 	return 0;
2785 
2786 err_ce:
2787 	ath10k_pci_ce_deinit(ar);
2788 
2789 err_sleep:
2790 	return ret;
2791 }
2792 
2793 void ath10k_pci_hif_power_down(struct ath10k *ar)
2794 {
2795 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2796 
2797 	/* Currently hif_power_up performs effectively a reset and hif_stop
2798 	 * resets the chip as well so there's no point in resetting here.
2799 	 */
2800 }
2801 
2802 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2803 {
2804 	/* Nothing to do; the important stuff is in the driver suspend. */
2805 	return 0;
2806 }
2807 
2808 static int ath10k_pci_suspend(struct ath10k *ar)
2809 {
2810 	/* The grace timer can still be counting down and ar->ps_awake be true.
2811 	 * It is known that the device may be asleep after resuming regardless
2812 	 * of the SoC powersave state before suspending. Hence make sure the
2813 	 * device is asleep before proceeding.
2814 	 */
2815 	ath10k_pci_sleep_sync(ar);
2816 
2817 	return 0;
2818 }
2819 
2820 static int ath10k_pci_hif_resume(struct ath10k *ar)
2821 {
2822 	/* Nothing to do; the important stuff is in the driver resume. */
2823 	return 0;
2824 }
2825 
2826 static int ath10k_pci_resume(struct ath10k *ar)
2827 {
2828 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2829 	struct pci_dev *pdev = ar_pci->pdev;
2830 	u32 val;
2831 	int ret = 0;
2832 
2833 	ret = ath10k_pci_force_wake(ar);
2834 	if (ret) {
2835 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2836 		return ret;
2837 	}
2838 
2839 	/* Suspend/Resume resets the PCI configuration space, so we have to
2840 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2841 	 * from interfering with C3 CPU state. pci_restore_state won't help
2842 	 * here since it only restores the first 64 bytes pci config header.
2843 	 */
2844 	pci_read_config_dword(pdev, 0x40, &val);
2845 	if ((val & 0x0000ff00) != 0)
2846 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2847 
2848 	return ret;
2849 }
2850 
2851 static bool ath10k_pci_validate_cal(void *data, size_t size)
2852 {
2853 	__le16 *cal_words = data;
2854 	u16 checksum = 0;
2855 	size_t i;
2856 
2857 	if (size % 2 != 0)
2858 		return false;
2859 
2860 	for (i = 0; i < size / 2; i++)
2861 		checksum ^= le16_to_cpu(cal_words[i]);
2862 
2863 	return checksum == 0xffff;
2864 }
2865 
2866 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2867 {
2868 	/* Enable SI clock */
2869 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2870 
2871 	/* Configure GPIOs for I2C operation */
2872 	ath10k_pci_write32(ar,
2873 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2874 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2875 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2876 			      GPIO_PIN0_CONFIG) |
2877 			   SM(1, GPIO_PIN0_PAD_PULL));
2878 
2879 	ath10k_pci_write32(ar,
2880 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2881 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2882 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2883 			   SM(1, GPIO_PIN0_PAD_PULL));
2884 
2885 	ath10k_pci_write32(ar,
2886 			   GPIO_BASE_ADDRESS +
2887 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2888 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2889 
2890 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2891 	ath10k_pci_write32(ar,
2892 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2893 			   SM(1, SI_CONFIG_ERR_INT) |
2894 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2895 			   SM(1, SI_CONFIG_I2C) |
2896 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2897 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2898 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2899 			   SM(8, SI_CONFIG_DIVIDER));
2900 }
2901 
2902 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2903 {
2904 	u32 reg;
2905 	int wait_limit;
2906 
2907 	/* set device select byte and for the read operation */
2908 	reg = QCA9887_EEPROM_SELECT_READ |
2909 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2910 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2911 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2912 
2913 	/* write transmit data, transfer length, and START bit */
2914 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2915 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2916 			   SM(4, SI_CS_TX_CNT));
2917 
2918 	/* wait max 1 sec */
2919 	wait_limit = 100000;
2920 
2921 	/* wait for SI_CS_DONE_INT */
2922 	do {
2923 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
2924 		if (MS(reg, SI_CS_DONE_INT))
2925 			break;
2926 
2927 		wait_limit--;
2928 		udelay(10);
2929 	} while (wait_limit > 0);
2930 
2931 	if (!MS(reg, SI_CS_DONE_INT)) {
2932 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
2933 			   addr);
2934 		return -ETIMEDOUT;
2935 	}
2936 
2937 	/* clear SI_CS_DONE_INT */
2938 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
2939 
2940 	if (MS(reg, SI_CS_DONE_ERR)) {
2941 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
2942 		return -EIO;
2943 	}
2944 
2945 	/* extract receive data */
2946 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
2947 	*out = reg;
2948 
2949 	return 0;
2950 }
2951 
2952 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
2953 					   size_t *data_len)
2954 {
2955 	u8 *caldata = NULL;
2956 	size_t calsize, i;
2957 	int ret;
2958 
2959 	if (!QCA_REV_9887(ar))
2960 		return -EOPNOTSUPP;
2961 
2962 	calsize = ar->hw_params.cal_data_len;
2963 	caldata = kmalloc(calsize, GFP_KERNEL);
2964 	if (!caldata)
2965 		return -ENOMEM;
2966 
2967 	ath10k_pci_enable_eeprom(ar);
2968 
2969 	for (i = 0; i < calsize; i++) {
2970 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
2971 		if (ret)
2972 			goto err_free;
2973 	}
2974 
2975 	if (!ath10k_pci_validate_cal(caldata, calsize))
2976 		goto err_free;
2977 
2978 	*data = caldata;
2979 	*data_len = calsize;
2980 
2981 	return 0;
2982 
2983 err_free:
2984 	kfree(caldata);
2985 
2986 	return -EINVAL;
2987 }
2988 
2989 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2990 	.tx_sg			= ath10k_pci_hif_tx_sg,
2991 	.diag_read		= ath10k_pci_hif_diag_read,
2992 	.diag_write		= ath10k_pci_diag_write_mem,
2993 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2994 	.start			= ath10k_pci_hif_start,
2995 	.stop			= ath10k_pci_hif_stop,
2996 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2997 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2998 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2999 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3000 	.power_up		= ath10k_pci_hif_power_up,
3001 	.power_down		= ath10k_pci_hif_power_down,
3002 	.read32			= ath10k_pci_read32,
3003 	.write32		= ath10k_pci_write32,
3004 	.suspend		= ath10k_pci_hif_suspend,
3005 	.resume			= ath10k_pci_hif_resume,
3006 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3007 };
3008 
3009 /*
3010  * Top-level interrupt handler for all PCI interrupts from a Target.
3011  * When a block of MSI interrupts is allocated, this top-level handler
3012  * is not used; instead, we directly call the correct sub-handler.
3013  */
3014 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3015 {
3016 	struct ath10k *ar = arg;
3017 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3018 	int ret;
3019 
3020 	if (ath10k_pci_has_device_gone(ar))
3021 		return IRQ_NONE;
3022 
3023 	ret = ath10k_pci_force_wake(ar);
3024 	if (ret) {
3025 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3026 		return IRQ_NONE;
3027 	}
3028 
3029 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3030 	    !ath10k_pci_irq_pending(ar))
3031 		return IRQ_NONE;
3032 
3033 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3034 	ath10k_pci_irq_msi_fw_mask(ar);
3035 	napi_schedule(&ar->napi);
3036 
3037 	return IRQ_HANDLED;
3038 }
3039 
3040 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3041 {
3042 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3043 	int done = 0;
3044 
3045 	if (ath10k_pci_has_fw_crashed(ar)) {
3046 		ath10k_pci_fw_crashed_clear(ar);
3047 		ath10k_pci_fw_crashed_dump(ar);
3048 		napi_complete(ctx);
3049 		return done;
3050 	}
3051 
3052 	ath10k_ce_per_engine_service_any(ar);
3053 
3054 	done = ath10k_htt_txrx_compl_task(ar, budget);
3055 
3056 	if (done < budget) {
3057 		napi_complete_done(ctx, done);
3058 		/* In case of MSI, it is possible that interrupts are received
3059 		 * while NAPI poll is inprogress. So pending interrupts that are
3060 		 * received after processing all copy engine pipes by NAPI poll
3061 		 * will not be handled again. This is causing failure to
3062 		 * complete boot sequence in x86 platform. So before enabling
3063 		 * interrupts safer to check for pending interrupts for
3064 		 * immediate servicing.
3065 		 */
3066 		if (ath10k_ce_interrupt_summary(ar)) {
3067 			napi_reschedule(ctx);
3068 			goto out;
3069 		}
3070 		ath10k_pci_enable_legacy_irq(ar);
3071 		ath10k_pci_irq_msi_fw_unmask(ar);
3072 	}
3073 
3074 out:
3075 	return done;
3076 }
3077 
3078 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3079 {
3080 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3081 	int ret;
3082 
3083 	ret = request_irq(ar_pci->pdev->irq,
3084 			  ath10k_pci_interrupt_handler,
3085 			  IRQF_SHARED, "ath10k_pci", ar);
3086 	if (ret) {
3087 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3088 			    ar_pci->pdev->irq, ret);
3089 		return ret;
3090 	}
3091 
3092 	return 0;
3093 }
3094 
3095 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3096 {
3097 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3098 	int ret;
3099 
3100 	ret = request_irq(ar_pci->pdev->irq,
3101 			  ath10k_pci_interrupt_handler,
3102 			  IRQF_SHARED, "ath10k_pci", ar);
3103 	if (ret) {
3104 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3105 			    ar_pci->pdev->irq, ret);
3106 		return ret;
3107 	}
3108 
3109 	return 0;
3110 }
3111 
3112 static int ath10k_pci_request_irq(struct ath10k *ar)
3113 {
3114 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3115 
3116 	switch (ar_pci->oper_irq_mode) {
3117 	case ATH10K_PCI_IRQ_LEGACY:
3118 		return ath10k_pci_request_irq_legacy(ar);
3119 	case ATH10K_PCI_IRQ_MSI:
3120 		return ath10k_pci_request_irq_msi(ar);
3121 	default:
3122 		return -EINVAL;
3123 	}
3124 }
3125 
3126 static void ath10k_pci_free_irq(struct ath10k *ar)
3127 {
3128 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3129 
3130 	free_irq(ar_pci->pdev->irq, ar);
3131 }
3132 
3133 void ath10k_pci_init_napi(struct ath10k *ar)
3134 {
3135 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3136 		       ATH10K_NAPI_BUDGET);
3137 }
3138 
3139 static int ath10k_pci_init_irq(struct ath10k *ar)
3140 {
3141 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3142 	int ret;
3143 
3144 	ath10k_pci_init_napi(ar);
3145 
3146 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3147 		ath10k_info(ar, "limiting irq mode to: %d\n",
3148 			    ath10k_pci_irq_mode);
3149 
3150 	/* Try MSI */
3151 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3152 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3153 		ret = pci_enable_msi(ar_pci->pdev);
3154 		if (ret == 0)
3155 			return 0;
3156 
3157 		/* fall-through */
3158 	}
3159 
3160 	/* Try legacy irq
3161 	 *
3162 	 * A potential race occurs here: The CORE_BASE write
3163 	 * depends on target correctly decoding AXI address but
3164 	 * host won't know when target writes BAR to CORE_CTRL.
3165 	 * This write might get lost if target has NOT written BAR.
3166 	 * For now, fix the race by repeating the write in below
3167 	 * synchronization checking.
3168 	 */
3169 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3170 
3171 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3172 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3173 
3174 	return 0;
3175 }
3176 
3177 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3178 {
3179 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3180 			   0);
3181 }
3182 
3183 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3184 {
3185 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3186 
3187 	switch (ar_pci->oper_irq_mode) {
3188 	case ATH10K_PCI_IRQ_LEGACY:
3189 		ath10k_pci_deinit_irq_legacy(ar);
3190 		break;
3191 	default:
3192 		pci_disable_msi(ar_pci->pdev);
3193 		break;
3194 	}
3195 
3196 	return 0;
3197 }
3198 
3199 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3200 {
3201 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3202 	unsigned long timeout;
3203 	u32 val;
3204 
3205 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3206 
3207 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3208 
3209 	do {
3210 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3211 
3212 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3213 			   val);
3214 
3215 		/* target should never return this */
3216 		if (val == 0xffffffff)
3217 			continue;
3218 
3219 		/* the device has crashed so don't bother trying anymore */
3220 		if (val & FW_IND_EVENT_PENDING)
3221 			break;
3222 
3223 		if (val & FW_IND_INITIALIZED)
3224 			break;
3225 
3226 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3227 			/* Fix potential race by repeating CORE_BASE writes */
3228 			ath10k_pci_enable_legacy_irq(ar);
3229 
3230 		mdelay(10);
3231 	} while (time_before(jiffies, timeout));
3232 
3233 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3234 	ath10k_pci_irq_msi_fw_mask(ar);
3235 
3236 	if (val == 0xffffffff) {
3237 		ath10k_err(ar, "failed to read device register, device is gone\n");
3238 		return -EIO;
3239 	}
3240 
3241 	if (val & FW_IND_EVENT_PENDING) {
3242 		ath10k_warn(ar, "device has crashed during init\n");
3243 		return -ECOMM;
3244 	}
3245 
3246 	if (!(val & FW_IND_INITIALIZED)) {
3247 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3248 			   val);
3249 		return -ETIMEDOUT;
3250 	}
3251 
3252 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3253 	return 0;
3254 }
3255 
3256 static int ath10k_pci_cold_reset(struct ath10k *ar)
3257 {
3258 	u32 val;
3259 
3260 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3261 
3262 	spin_lock_bh(&ar->data_lock);
3263 
3264 	ar->stats.fw_cold_reset_counter++;
3265 
3266 	spin_unlock_bh(&ar->data_lock);
3267 
3268 	/* Put Target, including PCIe, into RESET. */
3269 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3270 	val |= 1;
3271 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3272 
3273 	/* After writing into SOC_GLOBAL_RESET to put device into
3274 	 * reset and pulling out of reset pcie may not be stable
3275 	 * for any immediate pcie register access and cause bus error,
3276 	 * add delay before any pcie access request to fix this issue.
3277 	 */
3278 	msleep(20);
3279 
3280 	/* Pull Target, including PCIe, out of RESET. */
3281 	val &= ~1;
3282 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3283 
3284 	msleep(20);
3285 
3286 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3287 
3288 	return 0;
3289 }
3290 
3291 static int ath10k_pci_claim(struct ath10k *ar)
3292 {
3293 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3294 	struct pci_dev *pdev = ar_pci->pdev;
3295 	int ret;
3296 
3297 	pci_set_drvdata(pdev, ar);
3298 
3299 	ret = pci_enable_device(pdev);
3300 	if (ret) {
3301 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3302 		return ret;
3303 	}
3304 
3305 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3306 	if (ret) {
3307 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3308 			   ret);
3309 		goto err_device;
3310 	}
3311 
3312 	/* Target expects 32 bit DMA. Enforce it. */
3313 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3314 	if (ret) {
3315 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3316 		goto err_region;
3317 	}
3318 
3319 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3320 	if (ret) {
3321 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3322 			   ret);
3323 		goto err_region;
3324 	}
3325 
3326 	pci_set_master(pdev);
3327 
3328 	/* Arrange for access to Target SoC registers. */
3329 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3330 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3331 	if (!ar_pci->mem) {
3332 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3333 		ret = -EIO;
3334 		goto err_master;
3335 	}
3336 
3337 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3338 	return 0;
3339 
3340 err_master:
3341 	pci_clear_master(pdev);
3342 
3343 err_region:
3344 	pci_release_region(pdev, BAR_NUM);
3345 
3346 err_device:
3347 	pci_disable_device(pdev);
3348 
3349 	return ret;
3350 }
3351 
3352 static void ath10k_pci_release(struct ath10k *ar)
3353 {
3354 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3355 	struct pci_dev *pdev = ar_pci->pdev;
3356 
3357 	pci_iounmap(pdev, ar_pci->mem);
3358 	pci_release_region(pdev, BAR_NUM);
3359 	pci_clear_master(pdev);
3360 	pci_disable_device(pdev);
3361 }
3362 
3363 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3364 {
3365 	const struct ath10k_pci_supp_chip *supp_chip;
3366 	int i;
3367 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3368 
3369 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3370 		supp_chip = &ath10k_pci_supp_chips[i];
3371 
3372 		if (supp_chip->dev_id == dev_id &&
3373 		    supp_chip->rev_id == rev_id)
3374 			return true;
3375 	}
3376 
3377 	return false;
3378 }
3379 
3380 int ath10k_pci_setup_resource(struct ath10k *ar)
3381 {
3382 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3383 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3384 	int ret;
3385 
3386 	spin_lock_init(&ce->ce_lock);
3387 	spin_lock_init(&ar_pci->ps_lock);
3388 
3389 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3390 
3391 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3392 		ath10k_pci_override_ce_config(ar);
3393 
3394 	ret = ath10k_pci_alloc_pipes(ar);
3395 	if (ret) {
3396 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3397 			   ret);
3398 		return ret;
3399 	}
3400 
3401 	return 0;
3402 }
3403 
3404 void ath10k_pci_release_resource(struct ath10k *ar)
3405 {
3406 	ath10k_pci_rx_retry_sync(ar);
3407 	netif_napi_del(&ar->napi);
3408 	ath10k_pci_ce_deinit(ar);
3409 	ath10k_pci_free_pipes(ar);
3410 }
3411 
3412 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3413 	.read32		= ath10k_bus_pci_read32,
3414 	.write32	= ath10k_bus_pci_write32,
3415 	.get_num_banks	= ath10k_pci_get_num_banks,
3416 };
3417 
3418 static int ath10k_pci_probe(struct pci_dev *pdev,
3419 			    const struct pci_device_id *pci_dev)
3420 {
3421 	int ret = 0;
3422 	struct ath10k *ar;
3423 	struct ath10k_pci *ar_pci;
3424 	enum ath10k_hw_rev hw_rev;
3425 	u32 chip_id;
3426 	bool pci_ps;
3427 	int (*pci_soft_reset)(struct ath10k *ar);
3428 	int (*pci_hard_reset)(struct ath10k *ar);
3429 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3430 
3431 	switch (pci_dev->device) {
3432 	case QCA988X_2_0_DEVICE_ID_UBNT:
3433 	case QCA988X_2_0_DEVICE_ID:
3434 		hw_rev = ATH10K_HW_QCA988X;
3435 		pci_ps = false;
3436 		pci_soft_reset = ath10k_pci_warm_reset;
3437 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3438 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3439 		break;
3440 	case QCA9887_1_0_DEVICE_ID:
3441 		hw_rev = ATH10K_HW_QCA9887;
3442 		pci_ps = false;
3443 		pci_soft_reset = ath10k_pci_warm_reset;
3444 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3445 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3446 		break;
3447 	case QCA6164_2_1_DEVICE_ID:
3448 	case QCA6174_2_1_DEVICE_ID:
3449 		hw_rev = ATH10K_HW_QCA6174;
3450 		pci_ps = true;
3451 		pci_soft_reset = ath10k_pci_warm_reset;
3452 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3453 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3454 		break;
3455 	case QCA99X0_2_0_DEVICE_ID:
3456 		hw_rev = ATH10K_HW_QCA99X0;
3457 		pci_ps = false;
3458 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3459 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3460 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3461 		break;
3462 	case QCA9984_1_0_DEVICE_ID:
3463 		hw_rev = ATH10K_HW_QCA9984;
3464 		pci_ps = false;
3465 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3466 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3467 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3468 		break;
3469 	case QCA9888_2_0_DEVICE_ID:
3470 		hw_rev = ATH10K_HW_QCA9888;
3471 		pci_ps = false;
3472 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3473 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3474 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3475 		break;
3476 	case QCA9377_1_0_DEVICE_ID:
3477 		hw_rev = ATH10K_HW_QCA9377;
3478 		pci_ps = true;
3479 		pci_soft_reset = NULL;
3480 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3481 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3482 		break;
3483 	default:
3484 		WARN_ON(1);
3485 		return -ENOTSUPP;
3486 	}
3487 
3488 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3489 				hw_rev, &ath10k_pci_hif_ops);
3490 	if (!ar) {
3491 		dev_err(&pdev->dev, "failed to allocate core\n");
3492 		return -ENOMEM;
3493 	}
3494 
3495 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3496 		   pdev->vendor, pdev->device,
3497 		   pdev->subsystem_vendor, pdev->subsystem_device);
3498 
3499 	ar_pci = ath10k_pci_priv(ar);
3500 	ar_pci->pdev = pdev;
3501 	ar_pci->dev = &pdev->dev;
3502 	ar_pci->ar = ar;
3503 	ar->dev_id = pci_dev->device;
3504 	ar_pci->pci_ps = pci_ps;
3505 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3506 	ar_pci->pci_soft_reset = pci_soft_reset;
3507 	ar_pci->pci_hard_reset = pci_hard_reset;
3508 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3509 	ar->ce_priv = &ar_pci->ce;
3510 
3511 	ar->id.vendor = pdev->vendor;
3512 	ar->id.device = pdev->device;
3513 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3514 	ar->id.subsystem_device = pdev->subsystem_device;
3515 
3516 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3517 
3518 	ret = ath10k_pci_setup_resource(ar);
3519 	if (ret) {
3520 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3521 		goto err_core_destroy;
3522 	}
3523 
3524 	ret = ath10k_pci_claim(ar);
3525 	if (ret) {
3526 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3527 		goto err_free_pipes;
3528 	}
3529 
3530 	ret = ath10k_pci_force_wake(ar);
3531 	if (ret) {
3532 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3533 		goto err_sleep;
3534 	}
3535 
3536 	ath10k_pci_ce_deinit(ar);
3537 	ath10k_pci_irq_disable(ar);
3538 
3539 	ret = ath10k_pci_init_irq(ar);
3540 	if (ret) {
3541 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3542 		goto err_sleep;
3543 	}
3544 
3545 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3546 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3547 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3548 
3549 	ret = ath10k_pci_request_irq(ar);
3550 	if (ret) {
3551 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3552 		goto err_deinit_irq;
3553 	}
3554 
3555 	ret = ath10k_pci_chip_reset(ar);
3556 	if (ret) {
3557 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3558 		goto err_free_irq;
3559 	}
3560 
3561 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3562 	if (chip_id == 0xffffffff) {
3563 		ath10k_err(ar, "failed to get chip id\n");
3564 		goto err_free_irq;
3565 	}
3566 
3567 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3568 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3569 			   pdev->device, chip_id);
3570 		goto err_free_irq;
3571 	}
3572 
3573 	ret = ath10k_core_register(ar, chip_id);
3574 	if (ret) {
3575 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3576 		goto err_free_irq;
3577 	}
3578 
3579 	return 0;
3580 
3581 err_free_irq:
3582 	ath10k_pci_free_irq(ar);
3583 	ath10k_pci_rx_retry_sync(ar);
3584 
3585 err_deinit_irq:
3586 	ath10k_pci_deinit_irq(ar);
3587 
3588 err_sleep:
3589 	ath10k_pci_sleep_sync(ar);
3590 	ath10k_pci_release(ar);
3591 
3592 err_free_pipes:
3593 	ath10k_pci_free_pipes(ar);
3594 
3595 err_core_destroy:
3596 	ath10k_core_destroy(ar);
3597 
3598 	return ret;
3599 }
3600 
3601 static void ath10k_pci_remove(struct pci_dev *pdev)
3602 {
3603 	struct ath10k *ar = pci_get_drvdata(pdev);
3604 	struct ath10k_pci *ar_pci;
3605 
3606 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3607 
3608 	if (!ar)
3609 		return;
3610 
3611 	ar_pci = ath10k_pci_priv(ar);
3612 
3613 	if (!ar_pci)
3614 		return;
3615 
3616 	ath10k_core_unregister(ar);
3617 	ath10k_pci_free_irq(ar);
3618 	ath10k_pci_deinit_irq(ar);
3619 	ath10k_pci_release_resource(ar);
3620 	ath10k_pci_sleep_sync(ar);
3621 	ath10k_pci_release(ar);
3622 	ath10k_core_destroy(ar);
3623 }
3624 
3625 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3626 
3627 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3628 {
3629 	struct ath10k *ar = dev_get_drvdata(dev);
3630 	int ret;
3631 
3632 	ret = ath10k_pci_suspend(ar);
3633 	if (ret)
3634 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3635 
3636 	return ret;
3637 }
3638 
3639 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3640 {
3641 	struct ath10k *ar = dev_get_drvdata(dev);
3642 	int ret;
3643 
3644 	ret = ath10k_pci_resume(ar);
3645 	if (ret)
3646 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3647 
3648 	return ret;
3649 }
3650 
3651 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3652 			 ath10k_pci_pm_suspend,
3653 			 ath10k_pci_pm_resume);
3654 
3655 static struct pci_driver ath10k_pci_driver = {
3656 	.name = "ath10k_pci",
3657 	.id_table = ath10k_pci_id_table,
3658 	.probe = ath10k_pci_probe,
3659 	.remove = ath10k_pci_remove,
3660 #ifdef CONFIG_PM
3661 	.driver.pm = &ath10k_pci_pm_ops,
3662 #endif
3663 };
3664 
3665 static int __init ath10k_pci_init(void)
3666 {
3667 	int ret;
3668 
3669 	ret = pci_register_driver(&ath10k_pci_driver);
3670 	if (ret)
3671 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3672 		       ret);
3673 
3674 	ret = ath10k_ahb_init();
3675 	if (ret)
3676 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3677 
3678 	return ret;
3679 }
3680 module_init(ath10k_pci_init);
3681 
3682 static void __exit ath10k_pci_exit(void)
3683 {
3684 	pci_unregister_driver(&ath10k_pci_driver);
3685 	ath10k_ahb_exit();
3686 }
3687 
3688 module_exit(ath10k_pci_exit);
3689 
3690 MODULE_AUTHOR("Qualcomm Atheros");
3691 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3692 MODULE_LICENSE("Dual BSD/GPL");
3693 
3694 /* QCA988x 2.0 firmware files */
3695 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3696 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3697 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3698 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3699 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3700 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3701 
3702 /* QCA9887 1.0 firmware files */
3703 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3704 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3705 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3706 
3707 /* QCA6174 2.1 firmware files */
3708 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3709 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3710 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3711 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3712 
3713 /* QCA6174 3.1 firmware files */
3714 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3715 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3716 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3717 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3718 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3719 
3720 /* QCA9377 1.0 firmware files */
3721 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3722 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3723