xref: /linux/drivers/net/wireless/ath/ath10k/pci.c (revision 9da8320bb97768e35f2e64fa7642015271d672eb)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 
27 #include "targaddrs.h"
28 #include "bmi.h"
29 
30 #include "hif.h"
31 #include "htc.h"
32 
33 #include "ce.h"
34 #include "pci.h"
35 
36 enum ath10k_pci_irq_mode {
37 	ATH10K_PCI_IRQ_AUTO = 0,
38 	ATH10K_PCI_IRQ_LEGACY = 1,
39 	ATH10K_PCI_IRQ_MSI = 2,
40 };
41 
42 enum ath10k_pci_reset_mode {
43 	ATH10K_PCI_RESET_AUTO = 0,
44 	ATH10K_PCI_RESET_WARM_ONLY = 1,
45 };
46 
47 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
48 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
49 
50 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
51 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
52 
53 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
54 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
55 
56 /* how long wait to wait for target to initialise, in ms */
57 #define ATH10K_PCI_TARGET_WAIT 3000
58 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
59 
60 static const struct pci_device_id ath10k_pci_id_table[] = {
61 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
62 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
63 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
64 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
65 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
66 	{0}
67 };
68 
69 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
70 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
71 	 * hacks. ath10k doesn't have them and these devices crash horribly
72 	 * because of that.
73 	 */
74 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
75 
76 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
77 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
78 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
79 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
80 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
81 
82 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
83 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
84 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
85 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
86 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
87 
88 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
89 
90 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
91 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
92 };
93 
94 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
95 static int ath10k_pci_cold_reset(struct ath10k *ar);
96 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
97 static int ath10k_pci_wait_for_target_init(struct ath10k *ar);
98 static int ath10k_pci_init_irq(struct ath10k *ar);
99 static int ath10k_pci_deinit_irq(struct ath10k *ar);
100 static int ath10k_pci_request_irq(struct ath10k *ar);
101 static void ath10k_pci_free_irq(struct ath10k *ar);
102 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
103 			       struct ath10k_ce_pipe *rx_pipe,
104 			       struct bmi_xfer *xfer);
105 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
106 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
107 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
108 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
109 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
110 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
111 
112 static struct ce_attr host_ce_config_wlan[] = {
113 	/* CE0: host->target HTC control and raw streams */
114 	{
115 		.flags = CE_ATTR_FLAGS,
116 		.src_nentries = 16,
117 		.src_sz_max = 256,
118 		.dest_nentries = 0,
119 		.send_cb = ath10k_pci_htc_tx_cb,
120 	},
121 
122 	/* CE1: target->host HTT + HTC control */
123 	{
124 		.flags = CE_ATTR_FLAGS,
125 		.src_nentries = 0,
126 		.src_sz_max = 2048,
127 		.dest_nentries = 512,
128 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
129 	},
130 
131 	/* CE2: target->host WMI */
132 	{
133 		.flags = CE_ATTR_FLAGS,
134 		.src_nentries = 0,
135 		.src_sz_max = 2048,
136 		.dest_nentries = 128,
137 		.recv_cb = ath10k_pci_htc_rx_cb,
138 	},
139 
140 	/* CE3: host->target WMI */
141 	{
142 		.flags = CE_ATTR_FLAGS,
143 		.src_nentries = 32,
144 		.src_sz_max = 2048,
145 		.dest_nentries = 0,
146 		.send_cb = ath10k_pci_htc_tx_cb,
147 	},
148 
149 	/* CE4: host->target HTT */
150 	{
151 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
152 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
153 		.src_sz_max = 256,
154 		.dest_nentries = 0,
155 		.send_cb = ath10k_pci_htt_tx_cb,
156 	},
157 
158 	/* CE5: target->host HTT (HIF->HTT) */
159 	{
160 		.flags = CE_ATTR_FLAGS,
161 		.src_nentries = 0,
162 		.src_sz_max = 512,
163 		.dest_nentries = 512,
164 		.recv_cb = ath10k_pci_htt_rx_cb,
165 	},
166 
167 	/* CE6: target autonomous hif_memcpy */
168 	{
169 		.flags = CE_ATTR_FLAGS,
170 		.src_nentries = 0,
171 		.src_sz_max = 0,
172 		.dest_nentries = 0,
173 	},
174 
175 	/* CE7: ce_diag, the Diagnostic Window */
176 	{
177 		.flags = CE_ATTR_FLAGS,
178 		.src_nentries = 2,
179 		.src_sz_max = DIAG_TRANSFER_LIMIT,
180 		.dest_nentries = 2,
181 	},
182 
183 	/* CE8: target->host pktlog */
184 	{
185 		.flags = CE_ATTR_FLAGS,
186 		.src_nentries = 0,
187 		.src_sz_max = 2048,
188 		.dest_nentries = 128,
189 	},
190 
191 	/* CE9 target autonomous qcache memcpy */
192 	{
193 		.flags = CE_ATTR_FLAGS,
194 		.src_nentries = 0,
195 		.src_sz_max = 0,
196 		.dest_nentries = 0,
197 	},
198 
199 	/* CE10: target autonomous hif memcpy */
200 	{
201 		.flags = CE_ATTR_FLAGS,
202 		.src_nentries = 0,
203 		.src_sz_max = 0,
204 		.dest_nentries = 0,
205 	},
206 
207 	/* CE11: target autonomous hif memcpy */
208 	{
209 		.flags = CE_ATTR_FLAGS,
210 		.src_nentries = 0,
211 		.src_sz_max = 0,
212 		.dest_nentries = 0,
213 	},
214 };
215 
216 /* Target firmware's Copy Engine configuration. */
217 static struct ce_pipe_config target_ce_config_wlan[] = {
218 	/* CE0: host->target HTC control and raw streams */
219 	{
220 		.pipenum = __cpu_to_le32(0),
221 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
222 		.nentries = __cpu_to_le32(32),
223 		.nbytes_max = __cpu_to_le32(256),
224 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
225 		.reserved = __cpu_to_le32(0),
226 	},
227 
228 	/* CE1: target->host HTT + HTC control */
229 	{
230 		.pipenum = __cpu_to_le32(1),
231 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
232 		.nentries = __cpu_to_le32(32),
233 		.nbytes_max = __cpu_to_le32(2048),
234 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
235 		.reserved = __cpu_to_le32(0),
236 	},
237 
238 	/* CE2: target->host WMI */
239 	{
240 		.pipenum = __cpu_to_le32(2),
241 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
242 		.nentries = __cpu_to_le32(64),
243 		.nbytes_max = __cpu_to_le32(2048),
244 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
245 		.reserved = __cpu_to_le32(0),
246 	},
247 
248 	/* CE3: host->target WMI */
249 	{
250 		.pipenum = __cpu_to_le32(3),
251 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
252 		.nentries = __cpu_to_le32(32),
253 		.nbytes_max = __cpu_to_le32(2048),
254 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
255 		.reserved = __cpu_to_le32(0),
256 	},
257 
258 	/* CE4: host->target HTT */
259 	{
260 		.pipenum = __cpu_to_le32(4),
261 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
262 		.nentries = __cpu_to_le32(256),
263 		.nbytes_max = __cpu_to_le32(256),
264 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
265 		.reserved = __cpu_to_le32(0),
266 	},
267 
268 	/* NB: 50% of src nentries, since tx has 2 frags */
269 
270 	/* CE5: target->host HTT (HIF->HTT) */
271 	{
272 		.pipenum = __cpu_to_le32(5),
273 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
274 		.nentries = __cpu_to_le32(32),
275 		.nbytes_max = __cpu_to_le32(512),
276 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
277 		.reserved = __cpu_to_le32(0),
278 	},
279 
280 	/* CE6: Reserved for target autonomous hif_memcpy */
281 	{
282 		.pipenum = __cpu_to_le32(6),
283 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
284 		.nentries = __cpu_to_le32(32),
285 		.nbytes_max = __cpu_to_le32(4096),
286 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
287 		.reserved = __cpu_to_le32(0),
288 	},
289 
290 	/* CE7 used only by Host */
291 	{
292 		.pipenum = __cpu_to_le32(7),
293 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
294 		.nentries = __cpu_to_le32(0),
295 		.nbytes_max = __cpu_to_le32(0),
296 		.flags = __cpu_to_le32(0),
297 		.reserved = __cpu_to_le32(0),
298 	},
299 
300 	/* CE8 target->host packtlog */
301 	{
302 		.pipenum = __cpu_to_le32(8),
303 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
304 		.nentries = __cpu_to_le32(64),
305 		.nbytes_max = __cpu_to_le32(2048),
306 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
307 		.reserved = __cpu_to_le32(0),
308 	},
309 
310 	/* CE9 target autonomous qcache memcpy */
311 	{
312 		.pipenum = __cpu_to_le32(9),
313 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
314 		.nentries = __cpu_to_le32(32),
315 		.nbytes_max = __cpu_to_le32(2048),
316 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
317 		.reserved = __cpu_to_le32(0),
318 	},
319 
320 	/* It not necessary to send target wlan configuration for CE10 & CE11
321 	 * as these CEs are not actively used in target.
322 	 */
323 };
324 
325 /*
326  * Map from service/endpoint to Copy Engine.
327  * This table is derived from the CE_PCI TABLE, above.
328  * It is passed to the Target at startup for use by firmware.
329  */
330 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
331 	{
332 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
333 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
334 		__cpu_to_le32(3),
335 	},
336 	{
337 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
338 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
339 		__cpu_to_le32(2),
340 	},
341 	{
342 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
343 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
344 		__cpu_to_le32(3),
345 	},
346 	{
347 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
348 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
349 		__cpu_to_le32(2),
350 	},
351 	{
352 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
353 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
354 		__cpu_to_le32(3),
355 	},
356 	{
357 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
358 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
359 		__cpu_to_le32(2),
360 	},
361 	{
362 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
363 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
364 		__cpu_to_le32(3),
365 	},
366 	{
367 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
368 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
369 		__cpu_to_le32(2),
370 	},
371 	{
372 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
373 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
374 		__cpu_to_le32(3),
375 	},
376 	{
377 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
378 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
379 		__cpu_to_le32(2),
380 	},
381 	{
382 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
383 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
384 		__cpu_to_le32(0),
385 	},
386 	{
387 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
388 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
389 		__cpu_to_le32(1),
390 	},
391 	{ /* not used */
392 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
393 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
394 		__cpu_to_le32(0),
395 	},
396 	{ /* not used */
397 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
398 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
399 		__cpu_to_le32(1),
400 	},
401 	{
402 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
403 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
404 		__cpu_to_le32(4),
405 	},
406 	{
407 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
408 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
409 		__cpu_to_le32(5),
410 	},
411 
412 	/* (Additions here) */
413 
414 	{ /* must be last */
415 		__cpu_to_le32(0),
416 		__cpu_to_le32(0),
417 		__cpu_to_le32(0),
418 	},
419 };
420 
421 static bool ath10k_pci_is_awake(struct ath10k *ar)
422 {
423 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
424 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
425 			   RTC_STATE_ADDRESS);
426 
427 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
428 }
429 
430 static void __ath10k_pci_wake(struct ath10k *ar)
431 {
432 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433 
434 	lockdep_assert_held(&ar_pci->ps_lock);
435 
436 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
437 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
438 
439 	iowrite32(PCIE_SOC_WAKE_V_MASK,
440 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
441 		  PCIE_SOC_WAKE_ADDRESS);
442 }
443 
444 static void __ath10k_pci_sleep(struct ath10k *ar)
445 {
446 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
447 
448 	lockdep_assert_held(&ar_pci->ps_lock);
449 
450 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
451 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
452 
453 	iowrite32(PCIE_SOC_WAKE_RESET,
454 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
455 		  PCIE_SOC_WAKE_ADDRESS);
456 	ar_pci->ps_awake = false;
457 }
458 
459 static int ath10k_pci_wake_wait(struct ath10k *ar)
460 {
461 	int tot_delay = 0;
462 	int curr_delay = 5;
463 
464 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
465 		if (ath10k_pci_is_awake(ar)) {
466 			if (tot_delay > PCIE_WAKE_LATE_US)
467 				ath10k_warn(ar, "device wakeup took %d ms which is unusally long, otherwise it works normally.\n",
468 					    tot_delay / 1000);
469 			return 0;
470 		}
471 
472 		udelay(curr_delay);
473 		tot_delay += curr_delay;
474 
475 		if (curr_delay < 50)
476 			curr_delay += 5;
477 	}
478 
479 	return -ETIMEDOUT;
480 }
481 
482 static int ath10k_pci_force_wake(struct ath10k *ar)
483 {
484 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
485 	unsigned long flags;
486 	int ret = 0;
487 
488 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
489 
490 	if (!ar_pci->ps_awake) {
491 		iowrite32(PCIE_SOC_WAKE_V_MASK,
492 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
493 			  PCIE_SOC_WAKE_ADDRESS);
494 
495 		ret = ath10k_pci_wake_wait(ar);
496 		if (ret == 0)
497 			ar_pci->ps_awake = true;
498 	}
499 
500 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
501 
502 	return ret;
503 }
504 
505 static void ath10k_pci_force_sleep(struct ath10k *ar)
506 {
507 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
508 	unsigned long flags;
509 
510 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
511 
512 	iowrite32(PCIE_SOC_WAKE_RESET,
513 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
514 		  PCIE_SOC_WAKE_ADDRESS);
515 	ar_pci->ps_awake = false;
516 
517 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
518 }
519 
520 static int ath10k_pci_wake(struct ath10k *ar)
521 {
522 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
523 	unsigned long flags;
524 	int ret = 0;
525 
526 	if (ar_pci->pci_ps == 0)
527 		return ret;
528 
529 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
530 
531 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
532 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
533 
534 	/* This function can be called very frequently. To avoid excessive
535 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
536 	 */
537 	if (!ar_pci->ps_awake) {
538 		__ath10k_pci_wake(ar);
539 
540 		ret = ath10k_pci_wake_wait(ar);
541 		if (ret == 0)
542 			ar_pci->ps_awake = true;
543 	}
544 
545 	if (ret == 0) {
546 		ar_pci->ps_wake_refcount++;
547 		WARN_ON(ar_pci->ps_wake_refcount == 0);
548 	}
549 
550 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
551 
552 	return ret;
553 }
554 
555 static void ath10k_pci_sleep(struct ath10k *ar)
556 {
557 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
558 	unsigned long flags;
559 
560 	if (ar_pci->pci_ps == 0)
561 		return;
562 
563 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
564 
565 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
566 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
567 
568 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
569 		goto skip;
570 
571 	ar_pci->ps_wake_refcount--;
572 
573 	mod_timer(&ar_pci->ps_timer, jiffies +
574 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
575 
576 skip:
577 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
578 }
579 
580 static void ath10k_pci_ps_timer(unsigned long ptr)
581 {
582 	struct ath10k *ar = (void *)ptr;
583 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
584 	unsigned long flags;
585 
586 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
587 
588 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
589 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
590 
591 	if (ar_pci->ps_wake_refcount > 0)
592 		goto skip;
593 
594 	__ath10k_pci_sleep(ar);
595 
596 skip:
597 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
598 }
599 
600 static void ath10k_pci_sleep_sync(struct ath10k *ar)
601 {
602 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
603 	unsigned long flags;
604 
605 	if (ar_pci->pci_ps == 0) {
606 		ath10k_pci_force_sleep(ar);
607 		return;
608 	}
609 
610 	del_timer_sync(&ar_pci->ps_timer);
611 
612 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
613 	WARN_ON(ar_pci->ps_wake_refcount > 0);
614 	__ath10k_pci_sleep(ar);
615 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
616 }
617 
618 void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
619 {
620 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
621 	int ret;
622 
623 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
624 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
625 			    offset, offset + sizeof(value), ar_pci->mem_len);
626 		return;
627 	}
628 
629 	ret = ath10k_pci_wake(ar);
630 	if (ret) {
631 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
632 			    value, offset, ret);
633 		return;
634 	}
635 
636 	iowrite32(value, ar_pci->mem + offset);
637 	ath10k_pci_sleep(ar);
638 }
639 
640 u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
641 {
642 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
643 	u32 val;
644 	int ret;
645 
646 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
647 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
648 			    offset, offset + sizeof(val), ar_pci->mem_len);
649 		return 0;
650 	}
651 
652 	ret = ath10k_pci_wake(ar);
653 	if (ret) {
654 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
655 			    offset, ret);
656 		return 0xffffffff;
657 	}
658 
659 	val = ioread32(ar_pci->mem + offset);
660 	ath10k_pci_sleep(ar);
661 
662 	return val;
663 }
664 
665 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
666 {
667 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
668 }
669 
670 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
671 {
672 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
673 }
674 
675 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
676 {
677 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
678 }
679 
680 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
681 {
682 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
683 }
684 
685 static bool ath10k_pci_irq_pending(struct ath10k *ar)
686 {
687 	u32 cause;
688 
689 	/* Check if the shared legacy irq is for us */
690 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
691 				  PCIE_INTR_CAUSE_ADDRESS);
692 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
693 		return true;
694 
695 	return false;
696 }
697 
698 static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
699 {
700 	/* IMPORTANT: INTR_CLR register has to be set after
701 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
702 	 * really cleared. */
703 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
704 			   0);
705 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
706 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
707 
708 	/* IMPORTANT: this extra read transaction is required to
709 	 * flush the posted write buffer. */
710 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
711 				PCIE_INTR_ENABLE_ADDRESS);
712 }
713 
714 static void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
715 {
716 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
717 			   PCIE_INTR_ENABLE_ADDRESS,
718 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
719 
720 	/* IMPORTANT: this extra read transaction is required to
721 	 * flush the posted write buffer. */
722 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
723 				PCIE_INTR_ENABLE_ADDRESS);
724 }
725 
726 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
727 {
728 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
729 
730 	if (ar_pci->num_msi_intrs > 1)
731 		return "msi-x";
732 
733 	if (ar_pci->num_msi_intrs == 1)
734 		return "msi";
735 
736 	return "legacy";
737 }
738 
739 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
740 {
741 	struct ath10k *ar = pipe->hif_ce_state;
742 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
743 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
744 	struct sk_buff *skb;
745 	dma_addr_t paddr;
746 	int ret;
747 
748 	skb = dev_alloc_skb(pipe->buf_sz);
749 	if (!skb)
750 		return -ENOMEM;
751 
752 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
753 
754 	paddr = dma_map_single(ar->dev, skb->data,
755 			       skb->len + skb_tailroom(skb),
756 			       DMA_FROM_DEVICE);
757 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
758 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
759 		dev_kfree_skb_any(skb);
760 		return -EIO;
761 	}
762 
763 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
764 
765 	spin_lock_bh(&ar_pci->ce_lock);
766 	ret = __ath10k_ce_rx_post_buf(ce_pipe, skb, paddr);
767 	spin_unlock_bh(&ar_pci->ce_lock);
768 	if (ret) {
769 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
770 				 DMA_FROM_DEVICE);
771 		dev_kfree_skb_any(skb);
772 		return ret;
773 	}
774 
775 	return 0;
776 }
777 
778 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
779 {
780 	struct ath10k *ar = pipe->hif_ce_state;
781 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
782 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
783 	int ret, num;
784 
785 	if (pipe->buf_sz == 0)
786 		return;
787 
788 	if (!ce_pipe->dest_ring)
789 		return;
790 
791 	spin_lock_bh(&ar_pci->ce_lock);
792 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
793 	spin_unlock_bh(&ar_pci->ce_lock);
794 	while (num--) {
795 		ret = __ath10k_pci_rx_post_buf(pipe);
796 		if (ret) {
797 			if (ret == -ENOSPC)
798 				break;
799 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
800 			mod_timer(&ar_pci->rx_post_retry, jiffies +
801 				  ATH10K_PCI_RX_POST_RETRY_MS);
802 			break;
803 		}
804 	}
805 }
806 
807 static void ath10k_pci_rx_post(struct ath10k *ar)
808 {
809 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
810 	int i;
811 
812 	for (i = 0; i < CE_COUNT; i++)
813 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
814 }
815 
816 static void ath10k_pci_rx_replenish_retry(unsigned long ptr)
817 {
818 	struct ath10k *ar = (void *)ptr;
819 
820 	ath10k_pci_rx_post(ar);
821 }
822 
823 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
824 {
825 	u32 val = 0;
826 
827 	switch (ar->hw_rev) {
828 	case ATH10K_HW_QCA988X:
829 	case ATH10K_HW_QCA6174:
830 	case ATH10K_HW_QCA9377:
831 		val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
832 					  CORE_CTRL_ADDRESS) &
833 		       0x7ff) << 21;
834 		break;
835 	case ATH10K_HW_QCA99X0:
836 		val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
837 		break;
838 	}
839 
840 	val |= 0x100000 | (addr & 0xfffff);
841 	return val;
842 }
843 
844 /*
845  * Diagnostic read/write access is provided for startup/config/debug usage.
846  * Caller must guarantee proper alignment, when applicable, and single user
847  * at any moment.
848  */
849 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
850 				    int nbytes)
851 {
852 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
853 	int ret = 0;
854 	u32 buf;
855 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
856 	unsigned int id;
857 	unsigned int flags;
858 	struct ath10k_ce_pipe *ce_diag;
859 	/* Host buffer address in CE space */
860 	u32 ce_data;
861 	dma_addr_t ce_data_base = 0;
862 	void *data_buf = NULL;
863 	int i;
864 
865 	spin_lock_bh(&ar_pci->ce_lock);
866 
867 	ce_diag = ar_pci->ce_diag;
868 
869 	/*
870 	 * Allocate a temporary bounce buffer to hold caller's data
871 	 * to be DMA'ed from Target. This guarantees
872 	 *   1) 4-byte alignment
873 	 *   2) Buffer in DMA-able space
874 	 */
875 	orig_nbytes = nbytes;
876 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
877 						       orig_nbytes,
878 						       &ce_data_base,
879 						       GFP_ATOMIC);
880 
881 	if (!data_buf) {
882 		ret = -ENOMEM;
883 		goto done;
884 	}
885 	memset(data_buf, 0, orig_nbytes);
886 
887 	remaining_bytes = orig_nbytes;
888 	ce_data = ce_data_base;
889 	while (remaining_bytes) {
890 		nbytes = min_t(unsigned int, remaining_bytes,
891 			       DIAG_TRANSFER_LIMIT);
892 
893 		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, ce_data);
894 		if (ret != 0)
895 			goto done;
896 
897 		/* Request CE to send from Target(!) address to Host buffer */
898 		/*
899 		 * The address supplied by the caller is in the
900 		 * Target CPU virtual address space.
901 		 *
902 		 * In order to use this address with the diagnostic CE,
903 		 * convert it from Target CPU virtual address space
904 		 * to CE address space
905 		 */
906 		address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
907 
908 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
909 					    0);
910 		if (ret)
911 			goto done;
912 
913 		i = 0;
914 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
915 							    NULL) != 0) {
916 			mdelay(1);
917 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
918 				ret = -EBUSY;
919 				goto done;
920 			}
921 		}
922 
923 		i = 0;
924 		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
925 							    &completed_nbytes,
926 							    &id, &flags) != 0) {
927 			mdelay(1);
928 
929 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
930 				ret = -EBUSY;
931 				goto done;
932 			}
933 		}
934 
935 		if (nbytes != completed_nbytes) {
936 			ret = -EIO;
937 			goto done;
938 		}
939 
940 		if (buf != ce_data) {
941 			ret = -EIO;
942 			goto done;
943 		}
944 
945 		remaining_bytes -= nbytes;
946 		address += nbytes;
947 		ce_data += nbytes;
948 	}
949 
950 done:
951 	if (ret == 0)
952 		memcpy(data, data_buf, orig_nbytes);
953 	else
954 		ath10k_warn(ar, "failed to read diag value at 0x%x: %d\n",
955 			    address, ret);
956 
957 	if (data_buf)
958 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
959 				  ce_data_base);
960 
961 	spin_unlock_bh(&ar_pci->ce_lock);
962 
963 	return ret;
964 }
965 
966 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
967 {
968 	__le32 val = 0;
969 	int ret;
970 
971 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
972 	*value = __le32_to_cpu(val);
973 
974 	return ret;
975 }
976 
977 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
978 				     u32 src, u32 len)
979 {
980 	u32 host_addr, addr;
981 	int ret;
982 
983 	host_addr = host_interest_item_address(src);
984 
985 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
986 	if (ret != 0) {
987 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
988 			    src, ret);
989 		return ret;
990 	}
991 
992 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
993 	if (ret != 0) {
994 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
995 			    addr, len, ret);
996 		return ret;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1003 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1004 
1005 static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1006 				     const void *data, int nbytes)
1007 {
1008 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1009 	int ret = 0;
1010 	u32 buf;
1011 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1012 	unsigned int id;
1013 	unsigned int flags;
1014 	struct ath10k_ce_pipe *ce_diag;
1015 	void *data_buf = NULL;
1016 	u32 ce_data;	/* Host buffer address in CE space */
1017 	dma_addr_t ce_data_base = 0;
1018 	int i;
1019 
1020 	spin_lock_bh(&ar_pci->ce_lock);
1021 
1022 	ce_diag = ar_pci->ce_diag;
1023 
1024 	/*
1025 	 * Allocate a temporary bounce buffer to hold caller's data
1026 	 * to be DMA'ed to Target. This guarantees
1027 	 *   1) 4-byte alignment
1028 	 *   2) Buffer in DMA-able space
1029 	 */
1030 	orig_nbytes = nbytes;
1031 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1032 						       orig_nbytes,
1033 						       &ce_data_base,
1034 						       GFP_ATOMIC);
1035 	if (!data_buf) {
1036 		ret = -ENOMEM;
1037 		goto done;
1038 	}
1039 
1040 	/* Copy caller's data to allocated DMA buf */
1041 	memcpy(data_buf, data, orig_nbytes);
1042 
1043 	/*
1044 	 * The address supplied by the caller is in the
1045 	 * Target CPU virtual address space.
1046 	 *
1047 	 * In order to use this address with the diagnostic CE,
1048 	 * convert it from
1049 	 *    Target CPU virtual address space
1050 	 * to
1051 	 *    CE address space
1052 	 */
1053 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1054 
1055 	remaining_bytes = orig_nbytes;
1056 	ce_data = ce_data_base;
1057 	while (remaining_bytes) {
1058 		/* FIXME: check cast */
1059 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1060 
1061 		/* Set up to receive directly into Target(!) address */
1062 		ret = __ath10k_ce_rx_post_buf(ce_diag, NULL, address);
1063 		if (ret != 0)
1064 			goto done;
1065 
1066 		/*
1067 		 * Request CE to send caller-supplied data that
1068 		 * was copied to bounce buffer to Target(!) address.
1069 		 */
1070 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1071 					    nbytes, 0, 0);
1072 		if (ret != 0)
1073 			goto done;
1074 
1075 		i = 0;
1076 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1077 							    NULL) != 0) {
1078 			mdelay(1);
1079 
1080 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1081 				ret = -EBUSY;
1082 				goto done;
1083 			}
1084 		}
1085 
1086 		i = 0;
1087 		while (ath10k_ce_completed_recv_next_nolock(ce_diag, NULL, &buf,
1088 							    &completed_nbytes,
1089 							    &id, &flags) != 0) {
1090 			mdelay(1);
1091 
1092 			if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) {
1093 				ret = -EBUSY;
1094 				goto done;
1095 			}
1096 		}
1097 
1098 		if (nbytes != completed_nbytes) {
1099 			ret = -EIO;
1100 			goto done;
1101 		}
1102 
1103 		if (buf != address) {
1104 			ret = -EIO;
1105 			goto done;
1106 		}
1107 
1108 		remaining_bytes -= nbytes;
1109 		address += nbytes;
1110 		ce_data += nbytes;
1111 	}
1112 
1113 done:
1114 	if (data_buf) {
1115 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1116 				  ce_data_base);
1117 	}
1118 
1119 	if (ret != 0)
1120 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1121 			    address, ret);
1122 
1123 	spin_unlock_bh(&ar_pci->ce_lock);
1124 
1125 	return ret;
1126 }
1127 
1128 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1129 {
1130 	__le32 val = __cpu_to_le32(value);
1131 
1132 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1133 }
1134 
1135 /* Called by lower (CE) layer when a send to Target completes. */
1136 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1137 {
1138 	struct ath10k *ar = ce_state->ar;
1139 	struct sk_buff_head list;
1140 	struct sk_buff *skb;
1141 
1142 	__skb_queue_head_init(&list);
1143 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1144 		/* no need to call tx completion for NULL pointers */
1145 		if (skb == NULL)
1146 			continue;
1147 
1148 		__skb_queue_tail(&list, skb);
1149 	}
1150 
1151 	while ((skb = __skb_dequeue(&list)))
1152 		ath10k_htc_tx_completion_handler(ar, skb);
1153 }
1154 
1155 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1156 				     void (*callback)(struct ath10k *ar,
1157 						      struct sk_buff *skb))
1158 {
1159 	struct ath10k *ar = ce_state->ar;
1160 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1161 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1162 	struct sk_buff *skb;
1163 	struct sk_buff_head list;
1164 	void *transfer_context;
1165 	u32 ce_data;
1166 	unsigned int nbytes, max_nbytes;
1167 	unsigned int transfer_id;
1168 	unsigned int flags;
1169 
1170 	__skb_queue_head_init(&list);
1171 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1172 					     &ce_data, &nbytes, &transfer_id,
1173 					     &flags) == 0) {
1174 		skb = transfer_context;
1175 		max_nbytes = skb->len + skb_tailroom(skb);
1176 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1177 				 max_nbytes, DMA_FROM_DEVICE);
1178 
1179 		if (unlikely(max_nbytes < nbytes)) {
1180 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1181 				    nbytes, max_nbytes);
1182 			dev_kfree_skb_any(skb);
1183 			continue;
1184 		}
1185 
1186 		skb_put(skb, nbytes);
1187 		__skb_queue_tail(&list, skb);
1188 	}
1189 
1190 	while ((skb = __skb_dequeue(&list))) {
1191 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1192 			   ce_state->id, skb->len);
1193 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1194 				skb->data, skb->len);
1195 
1196 		callback(ar, skb);
1197 	}
1198 
1199 	ath10k_pci_rx_post_pipe(pipe_info);
1200 }
1201 
1202 /* Called by lower (CE) layer when data is received from the Target. */
1203 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1204 {
1205 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1206 }
1207 
1208 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1209 {
1210 	/* CE4 polling needs to be done whenever CE pipe which transports
1211 	 * HTT Rx (target->host) is processed.
1212 	 */
1213 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1214 
1215 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1216 }
1217 
1218 /* Called by lower (CE) layer when a send to HTT Target completes. */
1219 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1220 {
1221 	struct ath10k *ar = ce_state->ar;
1222 	struct sk_buff *skb;
1223 
1224 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1225 		/* no need to call tx completion for NULL pointers */
1226 		if (!skb)
1227 			continue;
1228 
1229 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1230 				 skb->len, DMA_TO_DEVICE);
1231 		ath10k_htt_hif_tx_complete(ar, skb);
1232 	}
1233 }
1234 
1235 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1236 {
1237 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1238 	ath10k_htt_t2h_msg_handler(ar, skb);
1239 }
1240 
1241 /* Called by lower (CE) layer when HTT data is received from the Target. */
1242 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1243 {
1244 	/* CE4 polling needs to be done whenever CE pipe which transports
1245 	 * HTT Rx (target->host) is processed.
1246 	 */
1247 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1248 
1249 	ath10k_pci_process_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1250 }
1251 
1252 static int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1253 				struct ath10k_hif_sg_item *items, int n_items)
1254 {
1255 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1256 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1257 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1258 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1259 	unsigned int nentries_mask;
1260 	unsigned int sw_index;
1261 	unsigned int write_index;
1262 	int err, i = 0;
1263 
1264 	spin_lock_bh(&ar_pci->ce_lock);
1265 
1266 	nentries_mask = src_ring->nentries_mask;
1267 	sw_index = src_ring->sw_index;
1268 	write_index = src_ring->write_index;
1269 
1270 	if (unlikely(CE_RING_DELTA(nentries_mask,
1271 				   write_index, sw_index - 1) < n_items)) {
1272 		err = -ENOBUFS;
1273 		goto err;
1274 	}
1275 
1276 	for (i = 0; i < n_items - 1; i++) {
1277 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1278 			   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1279 			   i, items[i].paddr, items[i].len, n_items);
1280 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1281 				items[i].vaddr, items[i].len);
1282 
1283 		err = ath10k_ce_send_nolock(ce_pipe,
1284 					    items[i].transfer_context,
1285 					    items[i].paddr,
1286 					    items[i].len,
1287 					    items[i].transfer_id,
1288 					    CE_SEND_FLAG_GATHER);
1289 		if (err)
1290 			goto err;
1291 	}
1292 
1293 	/* `i` is equal to `n_items -1` after for() */
1294 
1295 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1296 		   "pci tx item %d paddr 0x%08x len %d n_items %d\n",
1297 		   i, items[i].paddr, items[i].len, n_items);
1298 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1299 			items[i].vaddr, items[i].len);
1300 
1301 	err = ath10k_ce_send_nolock(ce_pipe,
1302 				    items[i].transfer_context,
1303 				    items[i].paddr,
1304 				    items[i].len,
1305 				    items[i].transfer_id,
1306 				    0);
1307 	if (err)
1308 		goto err;
1309 
1310 	spin_unlock_bh(&ar_pci->ce_lock);
1311 	return 0;
1312 
1313 err:
1314 	for (; i > 0; i--)
1315 		__ath10k_ce_send_revert(ce_pipe);
1316 
1317 	spin_unlock_bh(&ar_pci->ce_lock);
1318 	return err;
1319 }
1320 
1321 static int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1322 				    size_t buf_len)
1323 {
1324 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1325 }
1326 
1327 static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1328 {
1329 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1330 
1331 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1332 
1333 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1334 }
1335 
1336 static void ath10k_pci_dump_registers(struct ath10k *ar,
1337 				      struct ath10k_fw_crash_data *crash_data)
1338 {
1339 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1340 	int i, ret;
1341 
1342 	lockdep_assert_held(&ar->data_lock);
1343 
1344 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1345 				      hi_failure_state,
1346 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1347 	if (ret) {
1348 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1349 		return;
1350 	}
1351 
1352 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1353 
1354 	ath10k_err(ar, "firmware register dump:\n");
1355 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1356 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1357 			   i,
1358 			   __le32_to_cpu(reg_dump_values[i]),
1359 			   __le32_to_cpu(reg_dump_values[i + 1]),
1360 			   __le32_to_cpu(reg_dump_values[i + 2]),
1361 			   __le32_to_cpu(reg_dump_values[i + 3]));
1362 
1363 	if (!crash_data)
1364 		return;
1365 
1366 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1367 		crash_data->registers[i] = reg_dump_values[i];
1368 }
1369 
1370 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1371 {
1372 	struct ath10k_fw_crash_data *crash_data;
1373 	char uuid[50];
1374 
1375 	spin_lock_bh(&ar->data_lock);
1376 
1377 	ar->stats.fw_crash_counter++;
1378 
1379 	crash_data = ath10k_debug_get_new_fw_crash_data(ar);
1380 
1381 	if (crash_data)
1382 		scnprintf(uuid, sizeof(uuid), "%pUl", &crash_data->uuid);
1383 	else
1384 		scnprintf(uuid, sizeof(uuid), "n/a");
1385 
1386 	ath10k_err(ar, "firmware crashed! (uuid %s)\n", uuid);
1387 	ath10k_print_driver_info(ar);
1388 	ath10k_pci_dump_registers(ar, crash_data);
1389 
1390 	spin_unlock_bh(&ar->data_lock);
1391 
1392 	queue_work(ar->workqueue, &ar->restart_work);
1393 }
1394 
1395 static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1396 					       int force)
1397 {
1398 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1399 
1400 	if (!force) {
1401 		int resources;
1402 		/*
1403 		 * Decide whether to actually poll for completions, or just
1404 		 * wait for a later chance.
1405 		 * If there seem to be plenty of resources left, then just wait
1406 		 * since checking involves reading a CE register, which is a
1407 		 * relatively expensive operation.
1408 		 */
1409 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1410 
1411 		/*
1412 		 * If at least 50% of the total resources are still available,
1413 		 * don't bother checking again yet.
1414 		 */
1415 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1416 			return;
1417 	}
1418 	ath10k_ce_per_engine_service(ar, pipe);
1419 }
1420 
1421 static void ath10k_pci_kill_tasklet(struct ath10k *ar)
1422 {
1423 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1424 	int i;
1425 
1426 	tasklet_kill(&ar_pci->intr_tq);
1427 	tasklet_kill(&ar_pci->msi_fw_err);
1428 
1429 	for (i = 0; i < CE_COUNT; i++)
1430 		tasklet_kill(&ar_pci->pipe_info[i].intr);
1431 
1432 	del_timer_sync(&ar_pci->rx_post_retry);
1433 }
1434 
1435 static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1436 					      u8 *ul_pipe, u8 *dl_pipe)
1437 {
1438 	const struct service_to_pipe *entry;
1439 	bool ul_set = false, dl_set = false;
1440 	int i;
1441 
1442 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1443 
1444 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1445 		entry = &target_service_to_ce_map_wlan[i];
1446 
1447 		if (__le32_to_cpu(entry->service_id) != service_id)
1448 			continue;
1449 
1450 		switch (__le32_to_cpu(entry->pipedir)) {
1451 		case PIPEDIR_NONE:
1452 			break;
1453 		case PIPEDIR_IN:
1454 			WARN_ON(dl_set);
1455 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1456 			dl_set = true;
1457 			break;
1458 		case PIPEDIR_OUT:
1459 			WARN_ON(ul_set);
1460 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1461 			ul_set = true;
1462 			break;
1463 		case PIPEDIR_INOUT:
1464 			WARN_ON(dl_set);
1465 			WARN_ON(ul_set);
1466 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1467 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1468 			dl_set = true;
1469 			ul_set = true;
1470 			break;
1471 		}
1472 	}
1473 
1474 	if (WARN_ON(!ul_set || !dl_set))
1475 		return -ENOENT;
1476 
1477 	return 0;
1478 }
1479 
1480 static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1481 					    u8 *ul_pipe, u8 *dl_pipe)
1482 {
1483 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1484 
1485 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1486 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1487 						 ul_pipe, dl_pipe);
1488 }
1489 
1490 static void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1491 {
1492 	u32 val;
1493 
1494 	switch (ar->hw_rev) {
1495 	case ATH10K_HW_QCA988X:
1496 	case ATH10K_HW_QCA6174:
1497 	case ATH10K_HW_QCA9377:
1498 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1499 					CORE_CTRL_ADDRESS);
1500 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1501 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1502 				   CORE_CTRL_ADDRESS, val);
1503 		break;
1504 	case ATH10K_HW_QCA99X0:
1505 		/* TODO: Find appropriate register configuration for QCA99X0
1506 		 *  to mask irq/MSI.
1507 		 */
1508 		 break;
1509 	}
1510 }
1511 
1512 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1513 {
1514 	u32 val;
1515 
1516 	switch (ar->hw_rev) {
1517 	case ATH10K_HW_QCA988X:
1518 	case ATH10K_HW_QCA6174:
1519 	case ATH10K_HW_QCA9377:
1520 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1521 					CORE_CTRL_ADDRESS);
1522 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1523 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1524 				   CORE_CTRL_ADDRESS, val);
1525 		break;
1526 	case ATH10K_HW_QCA99X0:
1527 		/* TODO: Find appropriate register configuration for QCA99X0
1528 		 *  to unmask irq/MSI.
1529 		 */
1530 		break;
1531 	}
1532 }
1533 
1534 static void ath10k_pci_irq_disable(struct ath10k *ar)
1535 {
1536 	ath10k_ce_disable_interrupts(ar);
1537 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1538 	ath10k_pci_irq_msi_fw_mask(ar);
1539 }
1540 
1541 static void ath10k_pci_irq_sync(struct ath10k *ar)
1542 {
1543 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1544 	int i;
1545 
1546 	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
1547 		synchronize_irq(ar_pci->pdev->irq + i);
1548 }
1549 
1550 static void ath10k_pci_irq_enable(struct ath10k *ar)
1551 {
1552 	ath10k_ce_enable_interrupts(ar);
1553 	ath10k_pci_enable_legacy_irq(ar);
1554 	ath10k_pci_irq_msi_fw_unmask(ar);
1555 }
1556 
1557 static int ath10k_pci_hif_start(struct ath10k *ar)
1558 {
1559 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1560 
1561 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1562 
1563 	ath10k_pci_irq_enable(ar);
1564 	ath10k_pci_rx_post(ar);
1565 
1566 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1567 				   ar_pci->link_ctl);
1568 
1569 	return 0;
1570 }
1571 
1572 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1573 {
1574 	struct ath10k *ar;
1575 	struct ath10k_ce_pipe *ce_pipe;
1576 	struct ath10k_ce_ring *ce_ring;
1577 	struct sk_buff *skb;
1578 	int i;
1579 
1580 	ar = pci_pipe->hif_ce_state;
1581 	ce_pipe = pci_pipe->ce_hdl;
1582 	ce_ring = ce_pipe->dest_ring;
1583 
1584 	if (!ce_ring)
1585 		return;
1586 
1587 	if (!pci_pipe->buf_sz)
1588 		return;
1589 
1590 	for (i = 0; i < ce_ring->nentries; i++) {
1591 		skb = ce_ring->per_transfer_context[i];
1592 		if (!skb)
1593 			continue;
1594 
1595 		ce_ring->per_transfer_context[i] = NULL;
1596 
1597 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1598 				 skb->len + skb_tailroom(skb),
1599 				 DMA_FROM_DEVICE);
1600 		dev_kfree_skb_any(skb);
1601 	}
1602 }
1603 
1604 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1605 {
1606 	struct ath10k *ar;
1607 	struct ath10k_pci *ar_pci;
1608 	struct ath10k_ce_pipe *ce_pipe;
1609 	struct ath10k_ce_ring *ce_ring;
1610 	struct sk_buff *skb;
1611 	int i;
1612 
1613 	ar = pci_pipe->hif_ce_state;
1614 	ar_pci = ath10k_pci_priv(ar);
1615 	ce_pipe = pci_pipe->ce_hdl;
1616 	ce_ring = ce_pipe->src_ring;
1617 
1618 	if (!ce_ring)
1619 		return;
1620 
1621 	if (!pci_pipe->buf_sz)
1622 		return;
1623 
1624 	for (i = 0; i < ce_ring->nentries; i++) {
1625 		skb = ce_ring->per_transfer_context[i];
1626 		if (!skb)
1627 			continue;
1628 
1629 		ce_ring->per_transfer_context[i] = NULL;
1630 
1631 		ath10k_htc_tx_completion_handler(ar, skb);
1632 	}
1633 }
1634 
1635 /*
1636  * Cleanup residual buffers for device shutdown:
1637  *    buffers that were enqueued for receive
1638  *    buffers that were to be sent
1639  * Note: Buffers that had completed but which were
1640  * not yet processed are on a completion queue. They
1641  * are handled when the completion thread shuts down.
1642  */
1643 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
1644 {
1645 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1646 	int pipe_num;
1647 
1648 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
1649 		struct ath10k_pci_pipe *pipe_info;
1650 
1651 		pipe_info = &ar_pci->pipe_info[pipe_num];
1652 		ath10k_pci_rx_pipe_cleanup(pipe_info);
1653 		ath10k_pci_tx_pipe_cleanup(pipe_info);
1654 	}
1655 }
1656 
1657 static void ath10k_pci_ce_deinit(struct ath10k *ar)
1658 {
1659 	int i;
1660 
1661 	for (i = 0; i < CE_COUNT; i++)
1662 		ath10k_ce_deinit_pipe(ar, i);
1663 }
1664 
1665 static void ath10k_pci_flush(struct ath10k *ar)
1666 {
1667 	ath10k_pci_kill_tasklet(ar);
1668 	ath10k_pci_buffer_cleanup(ar);
1669 }
1670 
1671 static void ath10k_pci_hif_stop(struct ath10k *ar)
1672 {
1673 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1674 	unsigned long flags;
1675 
1676 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
1677 
1678 	/* Most likely the device has HTT Rx ring configured. The only way to
1679 	 * prevent the device from accessing (and possible corrupting) host
1680 	 * memory is to reset the chip now.
1681 	 *
1682 	 * There's also no known way of masking MSI interrupts on the device.
1683 	 * For ranged MSI the CE-related interrupts can be masked. However
1684 	 * regardless how many MSI interrupts are assigned the first one
1685 	 * is always used for firmware indications (crashes) and cannot be
1686 	 * masked. To prevent the device from asserting the interrupt reset it
1687 	 * before proceeding with cleanup.
1688 	 */
1689 	ath10k_pci_safe_chip_reset(ar);
1690 
1691 	ath10k_pci_irq_disable(ar);
1692 	ath10k_pci_irq_sync(ar);
1693 	ath10k_pci_flush(ar);
1694 
1695 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
1696 	WARN_ON(ar_pci->ps_wake_refcount > 0);
1697 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
1698 }
1699 
1700 static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
1701 					   void *req, u32 req_len,
1702 					   void *resp, u32 *resp_len)
1703 {
1704 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1705 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
1706 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
1707 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
1708 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
1709 	dma_addr_t req_paddr = 0;
1710 	dma_addr_t resp_paddr = 0;
1711 	struct bmi_xfer xfer = {};
1712 	void *treq, *tresp = NULL;
1713 	int ret = 0;
1714 
1715 	might_sleep();
1716 
1717 	if (resp && !resp_len)
1718 		return -EINVAL;
1719 
1720 	if (resp && resp_len && *resp_len == 0)
1721 		return -EINVAL;
1722 
1723 	treq = kmemdup(req, req_len, GFP_KERNEL);
1724 	if (!treq)
1725 		return -ENOMEM;
1726 
1727 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
1728 	ret = dma_mapping_error(ar->dev, req_paddr);
1729 	if (ret) {
1730 		ret = -EIO;
1731 		goto err_dma;
1732 	}
1733 
1734 	if (resp && resp_len) {
1735 		tresp = kzalloc(*resp_len, GFP_KERNEL);
1736 		if (!tresp) {
1737 			ret = -ENOMEM;
1738 			goto err_req;
1739 		}
1740 
1741 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
1742 					    DMA_FROM_DEVICE);
1743 		ret = dma_mapping_error(ar->dev, resp_paddr);
1744 		if (ret) {
1745 			ret = EIO;
1746 			goto err_req;
1747 		}
1748 
1749 		xfer.wait_for_resp = true;
1750 		xfer.resp_len = 0;
1751 
1752 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
1753 	}
1754 
1755 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
1756 	if (ret)
1757 		goto err_resp;
1758 
1759 	ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, &xfer);
1760 	if (ret) {
1761 		u32 unused_buffer;
1762 		unsigned int unused_nbytes;
1763 		unsigned int unused_id;
1764 
1765 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
1766 					   &unused_nbytes, &unused_id);
1767 	} else {
1768 		/* non-zero means we did not time out */
1769 		ret = 0;
1770 	}
1771 
1772 err_resp:
1773 	if (resp) {
1774 		u32 unused_buffer;
1775 
1776 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
1777 		dma_unmap_single(ar->dev, resp_paddr,
1778 				 *resp_len, DMA_FROM_DEVICE);
1779 	}
1780 err_req:
1781 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
1782 
1783 	if (ret == 0 && resp_len) {
1784 		*resp_len = min(*resp_len, xfer.resp_len);
1785 		memcpy(resp, tresp, xfer.resp_len);
1786 	}
1787 err_dma:
1788 	kfree(treq);
1789 	kfree(tresp);
1790 
1791 	return ret;
1792 }
1793 
1794 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
1795 {
1796 	struct bmi_xfer *xfer;
1797 
1798 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
1799 		return;
1800 
1801 	xfer->tx_done = true;
1802 }
1803 
1804 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
1805 {
1806 	struct ath10k *ar = ce_state->ar;
1807 	struct bmi_xfer *xfer;
1808 	u32 ce_data;
1809 	unsigned int nbytes;
1810 	unsigned int transfer_id;
1811 	unsigned int flags;
1812 
1813 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data,
1814 					  &nbytes, &transfer_id, &flags))
1815 		return;
1816 
1817 	if (WARN_ON_ONCE(!xfer))
1818 		return;
1819 
1820 	if (!xfer->wait_for_resp) {
1821 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
1822 		return;
1823 	}
1824 
1825 	xfer->resp_len = nbytes;
1826 	xfer->rx_done = true;
1827 }
1828 
1829 static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe,
1830 			       struct ath10k_ce_pipe *rx_pipe,
1831 			       struct bmi_xfer *xfer)
1832 {
1833 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
1834 
1835 	while (time_before_eq(jiffies, timeout)) {
1836 		ath10k_pci_bmi_send_done(tx_pipe);
1837 		ath10k_pci_bmi_recv_data(rx_pipe);
1838 
1839 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp))
1840 			return 0;
1841 
1842 		schedule();
1843 	}
1844 
1845 	return -ETIMEDOUT;
1846 }
1847 
1848 /*
1849  * Send an interrupt to the device to wake up the Target CPU
1850  * so it has an opportunity to notice any changed state.
1851  */
1852 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
1853 {
1854 	u32 addr, val;
1855 
1856 	addr = SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS;
1857 	val = ath10k_pci_read32(ar, addr);
1858 	val |= CORE_CTRL_CPU_INTR_MASK;
1859 	ath10k_pci_write32(ar, addr, val);
1860 
1861 	return 0;
1862 }
1863 
1864 static int ath10k_pci_get_num_banks(struct ath10k *ar)
1865 {
1866 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1867 
1868 	switch (ar_pci->pdev->device) {
1869 	case QCA988X_2_0_DEVICE_ID:
1870 	case QCA99X0_2_0_DEVICE_ID:
1871 		return 1;
1872 	case QCA6164_2_1_DEVICE_ID:
1873 	case QCA6174_2_1_DEVICE_ID:
1874 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
1875 		case QCA6174_HW_1_0_CHIP_ID_REV:
1876 		case QCA6174_HW_1_1_CHIP_ID_REV:
1877 		case QCA6174_HW_2_1_CHIP_ID_REV:
1878 		case QCA6174_HW_2_2_CHIP_ID_REV:
1879 			return 3;
1880 		case QCA6174_HW_1_3_CHIP_ID_REV:
1881 			return 2;
1882 		case QCA6174_HW_3_0_CHIP_ID_REV:
1883 		case QCA6174_HW_3_1_CHIP_ID_REV:
1884 		case QCA6174_HW_3_2_CHIP_ID_REV:
1885 			return 9;
1886 		}
1887 		break;
1888 	case QCA9377_1_0_DEVICE_ID:
1889 		return 2;
1890 	}
1891 
1892 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
1893 	return 1;
1894 }
1895 
1896 static int ath10k_pci_init_config(struct ath10k *ar)
1897 {
1898 	u32 interconnect_targ_addr;
1899 	u32 pcie_state_targ_addr = 0;
1900 	u32 pipe_cfg_targ_addr = 0;
1901 	u32 svc_to_pipe_map = 0;
1902 	u32 pcie_config_flags = 0;
1903 	u32 ealloc_value;
1904 	u32 ealloc_targ_addr;
1905 	u32 flag2_value;
1906 	u32 flag2_targ_addr;
1907 	int ret = 0;
1908 
1909 	/* Download to Target the CE Config and the service-to-CE map */
1910 	interconnect_targ_addr =
1911 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
1912 
1913 	/* Supply Target-side CE configuration */
1914 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
1915 				     &pcie_state_targ_addr);
1916 	if (ret != 0) {
1917 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
1918 		return ret;
1919 	}
1920 
1921 	if (pcie_state_targ_addr == 0) {
1922 		ret = -EIO;
1923 		ath10k_err(ar, "Invalid pcie state addr\n");
1924 		return ret;
1925 	}
1926 
1927 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1928 					  offsetof(struct pcie_state,
1929 						   pipe_cfg_addr)),
1930 				     &pipe_cfg_targ_addr);
1931 	if (ret != 0) {
1932 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
1933 		return ret;
1934 	}
1935 
1936 	if (pipe_cfg_targ_addr == 0) {
1937 		ret = -EIO;
1938 		ath10k_err(ar, "Invalid pipe cfg addr\n");
1939 		return ret;
1940 	}
1941 
1942 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
1943 					target_ce_config_wlan,
1944 					sizeof(struct ce_pipe_config) *
1945 					NUM_TARGET_CE_CONFIG_WLAN);
1946 
1947 	if (ret != 0) {
1948 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
1949 		return ret;
1950 	}
1951 
1952 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1953 					  offsetof(struct pcie_state,
1954 						   svc_to_pipe_map)),
1955 				     &svc_to_pipe_map);
1956 	if (ret != 0) {
1957 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
1958 		return ret;
1959 	}
1960 
1961 	if (svc_to_pipe_map == 0) {
1962 		ret = -EIO;
1963 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
1964 		return ret;
1965 	}
1966 
1967 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
1968 					target_service_to_ce_map_wlan,
1969 					sizeof(target_service_to_ce_map_wlan));
1970 	if (ret != 0) {
1971 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
1972 		return ret;
1973 	}
1974 
1975 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
1976 					  offsetof(struct pcie_state,
1977 						   config_flags)),
1978 				     &pcie_config_flags);
1979 	if (ret != 0) {
1980 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
1981 		return ret;
1982 	}
1983 
1984 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
1985 
1986 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
1987 					   offsetof(struct pcie_state,
1988 						    config_flags)),
1989 				      pcie_config_flags);
1990 	if (ret != 0) {
1991 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
1992 		return ret;
1993 	}
1994 
1995 	/* configure early allocation */
1996 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
1997 
1998 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
1999 	if (ret != 0) {
2000 		ath10k_err(ar, "Faile to get early alloc val: %d\n", ret);
2001 		return ret;
2002 	}
2003 
2004 	/* first bank is switched to IRAM */
2005 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2006 			 HI_EARLY_ALLOC_MAGIC_MASK);
2007 	ealloc_value |= ((ath10k_pci_get_num_banks(ar) <<
2008 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2009 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2010 
2011 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2012 	if (ret != 0) {
2013 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2014 		return ret;
2015 	}
2016 
2017 	/* Tell Target to proceed with initialization */
2018 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2019 
2020 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2021 	if (ret != 0) {
2022 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2023 		return ret;
2024 	}
2025 
2026 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2027 
2028 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2029 	if (ret != 0) {
2030 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2031 		return ret;
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2038 {
2039 	struct ce_attr *attr;
2040 	struct ce_pipe_config *config;
2041 
2042 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2043 	 * since it is currently used for other feature.
2044 	 */
2045 
2046 	/* Override Host's Copy Engine 5 configuration */
2047 	attr = &host_ce_config_wlan[5];
2048 	attr->src_sz_max = 0;
2049 	attr->dest_nentries = 0;
2050 
2051 	/* Override Target firmware's Copy Engine configuration */
2052 	config = &target_ce_config_wlan[5];
2053 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2054 	config->nbytes_max = __cpu_to_le32(2048);
2055 
2056 	/* Map from service/endpoint to Copy Engine */
2057 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2058 }
2059 
2060 static int ath10k_pci_alloc_pipes(struct ath10k *ar)
2061 {
2062 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2063 	struct ath10k_pci_pipe *pipe;
2064 	int i, ret;
2065 
2066 	for (i = 0; i < CE_COUNT; i++) {
2067 		pipe = &ar_pci->pipe_info[i];
2068 		pipe->ce_hdl = &ar_pci->ce_states[i];
2069 		pipe->pipe_num = i;
2070 		pipe->hif_ce_state = ar;
2071 
2072 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2073 		if (ret) {
2074 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2075 				   i, ret);
2076 			return ret;
2077 		}
2078 
2079 		/* Last CE is Diagnostic Window */
2080 		if (i == CE_DIAG_PIPE) {
2081 			ar_pci->ce_diag = pipe->ce_hdl;
2082 			continue;
2083 		}
2084 
2085 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2086 	}
2087 
2088 	return 0;
2089 }
2090 
2091 static void ath10k_pci_free_pipes(struct ath10k *ar)
2092 {
2093 	int i;
2094 
2095 	for (i = 0; i < CE_COUNT; i++)
2096 		ath10k_ce_free_pipe(ar, i);
2097 }
2098 
2099 static int ath10k_pci_init_pipes(struct ath10k *ar)
2100 {
2101 	int i, ret;
2102 
2103 	for (i = 0; i < CE_COUNT; i++) {
2104 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2105 		if (ret) {
2106 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2107 				   i, ret);
2108 			return ret;
2109 		}
2110 	}
2111 
2112 	return 0;
2113 }
2114 
2115 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2116 {
2117 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2118 	       FW_IND_EVENT_PENDING;
2119 }
2120 
2121 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2122 {
2123 	u32 val;
2124 
2125 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2126 	val &= ~FW_IND_EVENT_PENDING;
2127 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2128 }
2129 
2130 /* this function effectively clears target memory controller assert line */
2131 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2132 {
2133 	u32 val;
2134 
2135 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2136 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2137 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2138 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2139 
2140 	msleep(10);
2141 
2142 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2143 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2144 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2145 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2146 
2147 	msleep(10);
2148 }
2149 
2150 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2151 {
2152 	u32 val;
2153 
2154 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2155 
2156 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2157 				SOC_RESET_CONTROL_ADDRESS);
2158 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2159 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2160 }
2161 
2162 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2163 {
2164 	u32 val;
2165 
2166 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2167 				SOC_RESET_CONTROL_ADDRESS);
2168 
2169 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2170 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2171 	msleep(10);
2172 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2173 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2174 }
2175 
2176 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2177 {
2178 	u32 val;
2179 
2180 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2181 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2182 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2183 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2184 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2185 }
2186 
2187 static int ath10k_pci_warm_reset(struct ath10k *ar)
2188 {
2189 	int ret;
2190 
2191 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2192 
2193 	spin_lock_bh(&ar->data_lock);
2194 	ar->stats.fw_warm_reset_counter++;
2195 	spin_unlock_bh(&ar->data_lock);
2196 
2197 	ath10k_pci_irq_disable(ar);
2198 
2199 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2200 	 * were to access copy engine while host performs copy engine reset
2201 	 * then it is possible for the device to confuse pci-e controller to
2202 	 * the point of bringing host system to a complete stop (i.e. hang).
2203 	 */
2204 	ath10k_pci_warm_reset_si0(ar);
2205 	ath10k_pci_warm_reset_cpu(ar);
2206 	ath10k_pci_init_pipes(ar);
2207 	ath10k_pci_wait_for_target_init(ar);
2208 
2209 	ath10k_pci_warm_reset_clear_lf(ar);
2210 	ath10k_pci_warm_reset_ce(ar);
2211 	ath10k_pci_warm_reset_cpu(ar);
2212 	ath10k_pci_init_pipes(ar);
2213 
2214 	ret = ath10k_pci_wait_for_target_init(ar);
2215 	if (ret) {
2216 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2217 		return ret;
2218 	}
2219 
2220 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2221 
2222 	return 0;
2223 }
2224 
2225 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2226 {
2227 	if (QCA_REV_988X(ar) || QCA_REV_6174(ar)) {
2228 		return ath10k_pci_warm_reset(ar);
2229 	} else if (QCA_REV_99X0(ar)) {
2230 		ath10k_pci_irq_disable(ar);
2231 		return ath10k_pci_qca99x0_chip_reset(ar);
2232 	} else {
2233 		return -ENOTSUPP;
2234 	}
2235 }
2236 
2237 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2238 {
2239 	int i, ret;
2240 	u32 val;
2241 
2242 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2243 
2244 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2245 	 * It is thus preferred to use warm reset which is safer but may not be
2246 	 * able to recover the device from all possible fail scenarios.
2247 	 *
2248 	 * Warm reset doesn't always work on first try so attempt it a few
2249 	 * times before giving up.
2250 	 */
2251 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2252 		ret = ath10k_pci_warm_reset(ar);
2253 		if (ret) {
2254 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2255 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2256 				    ret);
2257 			continue;
2258 		}
2259 
2260 		/* FIXME: Sometimes copy engine doesn't recover after warm
2261 		 * reset. In most cases this needs cold reset. In some of these
2262 		 * cases the device is in such a state that a cold reset may
2263 		 * lock up the host.
2264 		 *
2265 		 * Reading any host interest register via copy engine is
2266 		 * sufficient to verify if device is capable of booting
2267 		 * firmware blob.
2268 		 */
2269 		ret = ath10k_pci_init_pipes(ar);
2270 		if (ret) {
2271 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2272 				    ret);
2273 			continue;
2274 		}
2275 
2276 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2277 					     &val);
2278 		if (ret) {
2279 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2280 				    ret);
2281 			continue;
2282 		}
2283 
2284 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2285 		return 0;
2286 	}
2287 
2288 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2289 		ath10k_warn(ar, "refusing cold reset as requested\n");
2290 		return -EPERM;
2291 	}
2292 
2293 	ret = ath10k_pci_cold_reset(ar);
2294 	if (ret) {
2295 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2296 		return ret;
2297 	}
2298 
2299 	ret = ath10k_pci_wait_for_target_init(ar);
2300 	if (ret) {
2301 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2302 			    ret);
2303 		return ret;
2304 	}
2305 
2306 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2307 
2308 	return 0;
2309 }
2310 
2311 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2312 {
2313 	int ret;
2314 
2315 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2316 
2317 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2318 
2319 	ret = ath10k_pci_cold_reset(ar);
2320 	if (ret) {
2321 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2322 		return ret;
2323 	}
2324 
2325 	ret = ath10k_pci_wait_for_target_init(ar);
2326 	if (ret) {
2327 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2328 			    ret);
2329 		return ret;
2330 	}
2331 
2332 	ret = ath10k_pci_warm_reset(ar);
2333 	if (ret) {
2334 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2335 		return ret;
2336 	}
2337 
2338 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2339 
2340 	return 0;
2341 }
2342 
2343 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2344 {
2345 	int ret;
2346 
2347 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2348 
2349 	ret = ath10k_pci_cold_reset(ar);
2350 	if (ret) {
2351 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2352 		return ret;
2353 	}
2354 
2355 	ret = ath10k_pci_wait_for_target_init(ar);
2356 	if (ret) {
2357 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2358 			    ret);
2359 		return ret;
2360 	}
2361 
2362 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2363 
2364 	return 0;
2365 }
2366 
2367 static int ath10k_pci_chip_reset(struct ath10k *ar)
2368 {
2369 	if (QCA_REV_988X(ar))
2370 		return ath10k_pci_qca988x_chip_reset(ar);
2371 	else if (QCA_REV_6174(ar))
2372 		return ath10k_pci_qca6174_chip_reset(ar);
2373 	else if (QCA_REV_9377(ar))
2374 		return ath10k_pci_qca6174_chip_reset(ar);
2375 	else if (QCA_REV_99X0(ar))
2376 		return ath10k_pci_qca99x0_chip_reset(ar);
2377 	else
2378 		return -ENOTSUPP;
2379 }
2380 
2381 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2382 {
2383 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2384 	int ret;
2385 
2386 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2387 
2388 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2389 				  &ar_pci->link_ctl);
2390 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2391 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2392 
2393 	/*
2394 	 * Bring the target up cleanly.
2395 	 *
2396 	 * The target may be in an undefined state with an AUX-powered Target
2397 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2398 	 * restarted (without unloading the driver) then the Target is left
2399 	 * (aux) powered and running. On a subsequent driver load, the Target
2400 	 * is in an unexpected state. We try to catch that here in order to
2401 	 * reset the Target and retry the probe.
2402 	 */
2403 	ret = ath10k_pci_chip_reset(ar);
2404 	if (ret) {
2405 		if (ath10k_pci_has_fw_crashed(ar)) {
2406 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2407 			ath10k_pci_fw_crashed_clear(ar);
2408 			ath10k_pci_fw_crashed_dump(ar);
2409 		}
2410 
2411 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2412 		goto err_sleep;
2413 	}
2414 
2415 	ret = ath10k_pci_init_pipes(ar);
2416 	if (ret) {
2417 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2418 		goto err_sleep;
2419 	}
2420 
2421 	ret = ath10k_pci_init_config(ar);
2422 	if (ret) {
2423 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2424 		goto err_ce;
2425 	}
2426 
2427 	ret = ath10k_pci_wake_target_cpu(ar);
2428 	if (ret) {
2429 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2430 		goto err_ce;
2431 	}
2432 
2433 	return 0;
2434 
2435 err_ce:
2436 	ath10k_pci_ce_deinit(ar);
2437 
2438 err_sleep:
2439 	return ret;
2440 }
2441 
2442 static void ath10k_pci_hif_power_down(struct ath10k *ar)
2443 {
2444 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2445 
2446 	/* Currently hif_power_up performs effectively a reset and hif_stop
2447 	 * resets the chip as well so there's no point in resetting here.
2448 	 */
2449 }
2450 
2451 #ifdef CONFIG_PM
2452 
2453 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2454 {
2455 	/* The grace timer can still be counting down and ar->ps_awake be true.
2456 	 * It is known that the device may be asleep after resuming regardless
2457 	 * of the SoC powersave state before suspending. Hence make sure the
2458 	 * device is asleep before proceeding.
2459 	 */
2460 	ath10k_pci_sleep_sync(ar);
2461 
2462 	return 0;
2463 }
2464 
2465 static int ath10k_pci_hif_resume(struct ath10k *ar)
2466 {
2467 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2468 	struct pci_dev *pdev = ar_pci->pdev;
2469 	u32 val;
2470 	int ret = 0;
2471 
2472 	if (ar_pci->pci_ps == 0) {
2473 		ret = ath10k_pci_force_wake(ar);
2474 		if (ret) {
2475 			ath10k_err(ar, "failed to wake up target: %d\n", ret);
2476 			return ret;
2477 		}
2478 	}
2479 
2480 	/* Suspend/Resume resets the PCI configuration space, so we have to
2481 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2482 	 * from interfering with C3 CPU state. pci_restore_state won't help
2483 	 * here since it only restores the first 64 bytes pci config header.
2484 	 */
2485 	pci_read_config_dword(pdev, 0x40, &val);
2486 	if ((val & 0x0000ff00) != 0)
2487 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2488 
2489 	return ret;
2490 }
2491 #endif
2492 
2493 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
2494 	.tx_sg			= ath10k_pci_hif_tx_sg,
2495 	.diag_read		= ath10k_pci_hif_diag_read,
2496 	.diag_write		= ath10k_pci_diag_write_mem,
2497 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
2498 	.start			= ath10k_pci_hif_start,
2499 	.stop			= ath10k_pci_hif_stop,
2500 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
2501 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
2502 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
2503 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
2504 	.power_up		= ath10k_pci_hif_power_up,
2505 	.power_down		= ath10k_pci_hif_power_down,
2506 	.read32			= ath10k_pci_read32,
2507 	.write32		= ath10k_pci_write32,
2508 #ifdef CONFIG_PM
2509 	.suspend		= ath10k_pci_hif_suspend,
2510 	.resume			= ath10k_pci_hif_resume,
2511 #endif
2512 };
2513 
2514 static void ath10k_pci_ce_tasklet(unsigned long ptr)
2515 {
2516 	struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr;
2517 	struct ath10k_pci *ar_pci = pipe->ar_pci;
2518 
2519 	ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num);
2520 }
2521 
2522 static void ath10k_msi_err_tasklet(unsigned long data)
2523 {
2524 	struct ath10k *ar = (struct ath10k *)data;
2525 
2526 	if (!ath10k_pci_has_fw_crashed(ar)) {
2527 		ath10k_warn(ar, "received unsolicited fw crash interrupt\n");
2528 		return;
2529 	}
2530 
2531 	ath10k_pci_irq_disable(ar);
2532 	ath10k_pci_fw_crashed_clear(ar);
2533 	ath10k_pci_fw_crashed_dump(ar);
2534 }
2535 
2536 /*
2537  * Handler for a per-engine interrupt on a PARTICULAR CE.
2538  * This is used in cases where each CE has a private MSI interrupt.
2539  */
2540 static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg)
2541 {
2542 	struct ath10k *ar = arg;
2543 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2544 	int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL;
2545 
2546 	if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) {
2547 		ath10k_warn(ar, "unexpected/invalid irq %d ce_id %d\n", irq,
2548 			    ce_id);
2549 		return IRQ_HANDLED;
2550 	}
2551 
2552 	/*
2553 	 * NOTE: We are able to derive ce_id from irq because we
2554 	 * use a one-to-one mapping for CE's 0..5.
2555 	 * CE's 6 & 7 do not use interrupts at all.
2556 	 *
2557 	 * This mapping must be kept in sync with the mapping
2558 	 * used by firmware.
2559 	 */
2560 	tasklet_schedule(&ar_pci->pipe_info[ce_id].intr);
2561 	return IRQ_HANDLED;
2562 }
2563 
2564 static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg)
2565 {
2566 	struct ath10k *ar = arg;
2567 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2568 
2569 	tasklet_schedule(&ar_pci->msi_fw_err);
2570 	return IRQ_HANDLED;
2571 }
2572 
2573 /*
2574  * Top-level interrupt handler for all PCI interrupts from a Target.
2575  * When a block of MSI interrupts is allocated, this top-level handler
2576  * is not used; instead, we directly call the correct sub-handler.
2577  */
2578 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
2579 {
2580 	struct ath10k *ar = arg;
2581 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2582 	int ret;
2583 
2584 	if (ar_pci->pci_ps == 0) {
2585 		ret = ath10k_pci_force_wake(ar);
2586 		if (ret) {
2587 			ath10k_warn(ar, "failed to wake device up on irq: %d\n",
2588 				    ret);
2589 			return IRQ_NONE;
2590 		}
2591 	}
2592 
2593 	if (ar_pci->num_msi_intrs == 0) {
2594 		if (!ath10k_pci_irq_pending(ar))
2595 			return IRQ_NONE;
2596 
2597 		ath10k_pci_disable_and_clear_legacy_irq(ar);
2598 	}
2599 
2600 	tasklet_schedule(&ar_pci->intr_tq);
2601 
2602 	return IRQ_HANDLED;
2603 }
2604 
2605 static void ath10k_pci_tasklet(unsigned long data)
2606 {
2607 	struct ath10k *ar = (struct ath10k *)data;
2608 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2609 
2610 	if (ath10k_pci_has_fw_crashed(ar)) {
2611 		ath10k_pci_irq_disable(ar);
2612 		ath10k_pci_fw_crashed_clear(ar);
2613 		ath10k_pci_fw_crashed_dump(ar);
2614 		return;
2615 	}
2616 
2617 	ath10k_ce_per_engine_service_any(ar);
2618 
2619 	/* Re-enable legacy irq that was disabled in the irq handler */
2620 	if (ar_pci->num_msi_intrs == 0)
2621 		ath10k_pci_enable_legacy_irq(ar);
2622 }
2623 
2624 static int ath10k_pci_request_irq_msix(struct ath10k *ar)
2625 {
2626 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2627 	int ret, i;
2628 
2629 	ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW,
2630 			  ath10k_pci_msi_fw_handler,
2631 			  IRQF_SHARED, "ath10k_pci", ar);
2632 	if (ret) {
2633 		ath10k_warn(ar, "failed to request MSI-X fw irq %d: %d\n",
2634 			    ar_pci->pdev->irq + MSI_ASSIGN_FW, ret);
2635 		return ret;
2636 	}
2637 
2638 	for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) {
2639 		ret = request_irq(ar_pci->pdev->irq + i,
2640 				  ath10k_pci_per_engine_handler,
2641 				  IRQF_SHARED, "ath10k_pci", ar);
2642 		if (ret) {
2643 			ath10k_warn(ar, "failed to request MSI-X ce irq %d: %d\n",
2644 				    ar_pci->pdev->irq + i, ret);
2645 
2646 			for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--)
2647 				free_irq(ar_pci->pdev->irq + i, ar);
2648 
2649 			free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar);
2650 			return ret;
2651 		}
2652 	}
2653 
2654 	return 0;
2655 }
2656 
2657 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
2658 {
2659 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2660 	int ret;
2661 
2662 	ret = request_irq(ar_pci->pdev->irq,
2663 			  ath10k_pci_interrupt_handler,
2664 			  IRQF_SHARED, "ath10k_pci", ar);
2665 	if (ret) {
2666 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
2667 			    ar_pci->pdev->irq, ret);
2668 		return ret;
2669 	}
2670 
2671 	return 0;
2672 }
2673 
2674 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
2675 {
2676 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2677 	int ret;
2678 
2679 	ret = request_irq(ar_pci->pdev->irq,
2680 			  ath10k_pci_interrupt_handler,
2681 			  IRQF_SHARED, "ath10k_pci", ar);
2682 	if (ret) {
2683 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
2684 			    ar_pci->pdev->irq, ret);
2685 		return ret;
2686 	}
2687 
2688 	return 0;
2689 }
2690 
2691 static int ath10k_pci_request_irq(struct ath10k *ar)
2692 {
2693 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2694 
2695 	switch (ar_pci->num_msi_intrs) {
2696 	case 0:
2697 		return ath10k_pci_request_irq_legacy(ar);
2698 	case 1:
2699 		return ath10k_pci_request_irq_msi(ar);
2700 	default:
2701 		return ath10k_pci_request_irq_msix(ar);
2702 	}
2703 }
2704 
2705 static void ath10k_pci_free_irq(struct ath10k *ar)
2706 {
2707 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2708 	int i;
2709 
2710 	/* There's at least one interrupt irregardless whether its legacy INTR
2711 	 * or MSI or MSI-X */
2712 	for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++)
2713 		free_irq(ar_pci->pdev->irq + i, ar);
2714 }
2715 
2716 static void ath10k_pci_init_irq_tasklets(struct ath10k *ar)
2717 {
2718 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2719 	int i;
2720 
2721 	tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long)ar);
2722 	tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet,
2723 		     (unsigned long)ar);
2724 
2725 	for (i = 0; i < CE_COUNT; i++) {
2726 		ar_pci->pipe_info[i].ar_pci = ar_pci;
2727 		tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet,
2728 			     (unsigned long)&ar_pci->pipe_info[i]);
2729 	}
2730 }
2731 
2732 static int ath10k_pci_init_irq(struct ath10k *ar)
2733 {
2734 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2735 	int ret;
2736 
2737 	ath10k_pci_init_irq_tasklets(ar);
2738 
2739 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
2740 		ath10k_info(ar, "limiting irq mode to: %d\n",
2741 			    ath10k_pci_irq_mode);
2742 
2743 	/* Try MSI-X */
2744 	if (ath10k_pci_irq_mode == ATH10K_PCI_IRQ_AUTO) {
2745 		ar_pci->num_msi_intrs = MSI_ASSIGN_CE_MAX + 1;
2746 		ret = pci_enable_msi_range(ar_pci->pdev, ar_pci->num_msi_intrs,
2747 					   ar_pci->num_msi_intrs);
2748 		if (ret > 0)
2749 			return 0;
2750 
2751 		/* fall-through */
2752 	}
2753 
2754 	/* Try MSI */
2755 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
2756 		ar_pci->num_msi_intrs = 1;
2757 		ret = pci_enable_msi(ar_pci->pdev);
2758 		if (ret == 0)
2759 			return 0;
2760 
2761 		/* fall-through */
2762 	}
2763 
2764 	/* Try legacy irq
2765 	 *
2766 	 * A potential race occurs here: The CORE_BASE write
2767 	 * depends on target correctly decoding AXI address but
2768 	 * host won't know when target writes BAR to CORE_CTRL.
2769 	 * This write might get lost if target has NOT written BAR.
2770 	 * For now, fix the race by repeating the write in below
2771 	 * synchronization checking. */
2772 	ar_pci->num_msi_intrs = 0;
2773 
2774 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2775 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
2776 
2777 	return 0;
2778 }
2779 
2780 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
2781 {
2782 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
2783 			   0);
2784 }
2785 
2786 static int ath10k_pci_deinit_irq(struct ath10k *ar)
2787 {
2788 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2789 
2790 	switch (ar_pci->num_msi_intrs) {
2791 	case 0:
2792 		ath10k_pci_deinit_irq_legacy(ar);
2793 		break;
2794 	default:
2795 		pci_disable_msi(ar_pci->pdev);
2796 		break;
2797 	}
2798 
2799 	return 0;
2800 }
2801 
2802 static int ath10k_pci_wait_for_target_init(struct ath10k *ar)
2803 {
2804 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2805 	unsigned long timeout;
2806 	u32 val;
2807 
2808 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
2809 
2810 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
2811 
2812 	do {
2813 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2814 
2815 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
2816 			   val);
2817 
2818 		/* target should never return this */
2819 		if (val == 0xffffffff)
2820 			continue;
2821 
2822 		/* the device has crashed so don't bother trying anymore */
2823 		if (val & FW_IND_EVENT_PENDING)
2824 			break;
2825 
2826 		if (val & FW_IND_INITIALIZED)
2827 			break;
2828 
2829 		if (ar_pci->num_msi_intrs == 0)
2830 			/* Fix potential race by repeating CORE_BASE writes */
2831 			ath10k_pci_enable_legacy_irq(ar);
2832 
2833 		mdelay(10);
2834 	} while (time_before(jiffies, timeout));
2835 
2836 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2837 	ath10k_pci_irq_msi_fw_mask(ar);
2838 
2839 	if (val == 0xffffffff) {
2840 		ath10k_err(ar, "failed to read device register, device is gone\n");
2841 		return -EIO;
2842 	}
2843 
2844 	if (val & FW_IND_EVENT_PENDING) {
2845 		ath10k_warn(ar, "device has crashed during init\n");
2846 		return -ECOMM;
2847 	}
2848 
2849 	if (!(val & FW_IND_INITIALIZED)) {
2850 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
2851 			   val);
2852 		return -ETIMEDOUT;
2853 	}
2854 
2855 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
2856 	return 0;
2857 }
2858 
2859 static int ath10k_pci_cold_reset(struct ath10k *ar)
2860 {
2861 	u32 val;
2862 
2863 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
2864 
2865 	spin_lock_bh(&ar->data_lock);
2866 
2867 	ar->stats.fw_cold_reset_counter++;
2868 
2869 	spin_unlock_bh(&ar->data_lock);
2870 
2871 	/* Put Target, including PCIe, into RESET. */
2872 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
2873 	val |= 1;
2874 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2875 
2876 	/* After writing into SOC_GLOBAL_RESET to put device into
2877 	 * reset and pulling out of reset pcie may not be stable
2878 	 * for any immediate pcie register access and cause bus error,
2879 	 * add delay before any pcie access request to fix this issue.
2880 	 */
2881 	msleep(20);
2882 
2883 	/* Pull Target, including PCIe, out of RESET. */
2884 	val &= ~1;
2885 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
2886 
2887 	msleep(20);
2888 
2889 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
2890 
2891 	return 0;
2892 }
2893 
2894 static int ath10k_pci_claim(struct ath10k *ar)
2895 {
2896 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2897 	struct pci_dev *pdev = ar_pci->pdev;
2898 	int ret;
2899 
2900 	pci_set_drvdata(pdev, ar);
2901 
2902 	ret = pci_enable_device(pdev);
2903 	if (ret) {
2904 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
2905 		return ret;
2906 	}
2907 
2908 	ret = pci_request_region(pdev, BAR_NUM, "ath");
2909 	if (ret) {
2910 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
2911 			   ret);
2912 		goto err_device;
2913 	}
2914 
2915 	/* Target expects 32 bit DMA. Enforce it. */
2916 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2917 	if (ret) {
2918 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
2919 		goto err_region;
2920 	}
2921 
2922 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2923 	if (ret) {
2924 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
2925 			   ret);
2926 		goto err_region;
2927 	}
2928 
2929 	pci_set_master(pdev);
2930 
2931 	/* Arrange for access to Target SoC registers. */
2932 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
2933 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
2934 	if (!ar_pci->mem) {
2935 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
2936 		ret = -EIO;
2937 		goto err_master;
2938 	}
2939 
2940 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
2941 	return 0;
2942 
2943 err_master:
2944 	pci_clear_master(pdev);
2945 
2946 err_region:
2947 	pci_release_region(pdev, BAR_NUM);
2948 
2949 err_device:
2950 	pci_disable_device(pdev);
2951 
2952 	return ret;
2953 }
2954 
2955 static void ath10k_pci_release(struct ath10k *ar)
2956 {
2957 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2958 	struct pci_dev *pdev = ar_pci->pdev;
2959 
2960 	pci_iounmap(pdev, ar_pci->mem);
2961 	pci_release_region(pdev, BAR_NUM);
2962 	pci_clear_master(pdev);
2963 	pci_disable_device(pdev);
2964 }
2965 
2966 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
2967 {
2968 	const struct ath10k_pci_supp_chip *supp_chip;
2969 	int i;
2970 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
2971 
2972 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
2973 		supp_chip = &ath10k_pci_supp_chips[i];
2974 
2975 		if (supp_chip->dev_id == dev_id &&
2976 		    supp_chip->rev_id == rev_id)
2977 			return true;
2978 	}
2979 
2980 	return false;
2981 }
2982 
2983 static int ath10k_pci_probe(struct pci_dev *pdev,
2984 			    const struct pci_device_id *pci_dev)
2985 {
2986 	int ret = 0;
2987 	struct ath10k *ar;
2988 	struct ath10k_pci *ar_pci;
2989 	enum ath10k_hw_rev hw_rev;
2990 	u32 chip_id;
2991 	bool pci_ps;
2992 
2993 	switch (pci_dev->device) {
2994 	case QCA988X_2_0_DEVICE_ID:
2995 		hw_rev = ATH10K_HW_QCA988X;
2996 		pci_ps = false;
2997 		break;
2998 	case QCA6164_2_1_DEVICE_ID:
2999 	case QCA6174_2_1_DEVICE_ID:
3000 		hw_rev = ATH10K_HW_QCA6174;
3001 		pci_ps = true;
3002 		break;
3003 	case QCA99X0_2_0_DEVICE_ID:
3004 		hw_rev = ATH10K_HW_QCA99X0;
3005 		pci_ps = false;
3006 		break;
3007 	case QCA9377_1_0_DEVICE_ID:
3008 		hw_rev = ATH10K_HW_QCA9377;
3009 		pci_ps = true;
3010 		break;
3011 	default:
3012 		WARN_ON(1);
3013 		return -ENOTSUPP;
3014 	}
3015 
3016 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3017 				hw_rev, &ath10k_pci_hif_ops);
3018 	if (!ar) {
3019 		dev_err(&pdev->dev, "failed to allocate core\n");
3020 		return -ENOMEM;
3021 	}
3022 
3023 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3024 		   pdev->vendor, pdev->device,
3025 		   pdev->subsystem_vendor, pdev->subsystem_device);
3026 
3027 	ar_pci = ath10k_pci_priv(ar);
3028 	ar_pci->pdev = pdev;
3029 	ar_pci->dev = &pdev->dev;
3030 	ar_pci->ar = ar;
3031 	ar->dev_id = pci_dev->device;
3032 	ar_pci->pci_ps = pci_ps;
3033 
3034 	ar->id.vendor = pdev->vendor;
3035 	ar->id.device = pdev->device;
3036 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3037 	ar->id.subsystem_device = pdev->subsystem_device;
3038 
3039 	spin_lock_init(&ar_pci->ce_lock);
3040 	spin_lock_init(&ar_pci->ps_lock);
3041 
3042 	setup_timer(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry,
3043 		    (unsigned long)ar);
3044 	setup_timer(&ar_pci->ps_timer, ath10k_pci_ps_timer,
3045 		    (unsigned long)ar);
3046 
3047 	ret = ath10k_pci_claim(ar);
3048 	if (ret) {
3049 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3050 		goto err_core_destroy;
3051 	}
3052 
3053 	if (QCA_REV_6174(ar))
3054 		ath10k_pci_override_ce_config(ar);
3055 
3056 	ret = ath10k_pci_alloc_pipes(ar);
3057 	if (ret) {
3058 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3059 			   ret);
3060 		goto err_sleep;
3061 	}
3062 
3063 	ath10k_pci_ce_deinit(ar);
3064 	ath10k_pci_irq_disable(ar);
3065 
3066 	if (ar_pci->pci_ps == 0) {
3067 		ret = ath10k_pci_force_wake(ar);
3068 		if (ret) {
3069 			ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3070 			goto err_free_pipes;
3071 		}
3072 	}
3073 
3074 	ret = ath10k_pci_init_irq(ar);
3075 	if (ret) {
3076 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3077 		goto err_free_pipes;
3078 	}
3079 
3080 	ath10k_info(ar, "pci irq %s interrupts %d irq_mode %d reset_mode %d\n",
3081 		    ath10k_pci_get_irq_method(ar), ar_pci->num_msi_intrs,
3082 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3083 
3084 	ret = ath10k_pci_request_irq(ar);
3085 	if (ret) {
3086 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3087 		goto err_deinit_irq;
3088 	}
3089 
3090 	ret = ath10k_pci_chip_reset(ar);
3091 	if (ret) {
3092 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3093 		goto err_free_irq;
3094 	}
3095 
3096 	chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3097 	if (chip_id == 0xffffffff) {
3098 		ath10k_err(ar, "failed to get chip id\n");
3099 		goto err_free_irq;
3100 	}
3101 
3102 	if (!ath10k_pci_chip_is_supported(pdev->device, chip_id)) {
3103 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3104 			   pdev->device, chip_id);
3105 		goto err_free_irq;
3106 	}
3107 
3108 	ret = ath10k_core_register(ar, chip_id);
3109 	if (ret) {
3110 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3111 		goto err_free_irq;
3112 	}
3113 
3114 	return 0;
3115 
3116 err_free_irq:
3117 	ath10k_pci_free_irq(ar);
3118 	ath10k_pci_kill_tasklet(ar);
3119 
3120 err_deinit_irq:
3121 	ath10k_pci_deinit_irq(ar);
3122 
3123 err_free_pipes:
3124 	ath10k_pci_free_pipes(ar);
3125 
3126 err_sleep:
3127 	ath10k_pci_sleep_sync(ar);
3128 	ath10k_pci_release(ar);
3129 
3130 err_core_destroy:
3131 	ath10k_core_destroy(ar);
3132 
3133 	return ret;
3134 }
3135 
3136 static void ath10k_pci_remove(struct pci_dev *pdev)
3137 {
3138 	struct ath10k *ar = pci_get_drvdata(pdev);
3139 	struct ath10k_pci *ar_pci;
3140 
3141 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3142 
3143 	if (!ar)
3144 		return;
3145 
3146 	ar_pci = ath10k_pci_priv(ar);
3147 
3148 	if (!ar_pci)
3149 		return;
3150 
3151 	ath10k_core_unregister(ar);
3152 	ath10k_pci_free_irq(ar);
3153 	ath10k_pci_kill_tasklet(ar);
3154 	ath10k_pci_deinit_irq(ar);
3155 	ath10k_pci_ce_deinit(ar);
3156 	ath10k_pci_free_pipes(ar);
3157 	ath10k_pci_sleep_sync(ar);
3158 	ath10k_pci_release(ar);
3159 	ath10k_core_destroy(ar);
3160 }
3161 
3162 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3163 
3164 static struct pci_driver ath10k_pci_driver = {
3165 	.name = "ath10k_pci",
3166 	.id_table = ath10k_pci_id_table,
3167 	.probe = ath10k_pci_probe,
3168 	.remove = ath10k_pci_remove,
3169 };
3170 
3171 static int __init ath10k_pci_init(void)
3172 {
3173 	int ret;
3174 
3175 	ret = pci_register_driver(&ath10k_pci_driver);
3176 	if (ret)
3177 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3178 		       ret);
3179 
3180 	return ret;
3181 }
3182 module_init(ath10k_pci_init);
3183 
3184 static void __exit ath10k_pci_exit(void)
3185 {
3186 	pci_unregister_driver(&ath10k_pci_driver);
3187 }
3188 
3189 module_exit(ath10k_pci_exit);
3190 
3191 MODULE_AUTHOR("Qualcomm Atheros");
3192 MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices");
3193 MODULE_LICENSE("Dual BSD/GPL");
3194 
3195 /* QCA988x 2.0 firmware files */
3196 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE);
3197 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3198 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3199 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3200 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3201 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3202 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3203 
3204 /* QCA6174 2.1 firmware files */
3205 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3206 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3207 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3208 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3209 
3210 /* QCA6174 3.1 firmware files */
3211 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3212 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3213 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3214 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3215 
3216 /* QCA9377 1.0 firmware files */
3217 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3218 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3219