xref: /linux/drivers/net/wireless/ath/ath10k/pci.c (revision 9494a6c2e4f6ce21a1e6885145171f90c4492131)
1 /*
2  * Copyright (c) 2005-2011 Atheros Communications Inc.
3  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <linux/pci.h>
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/bitops.h>
23 
24 #include "core.h"
25 #include "debug.h"
26 #include "coredump.h"
27 
28 #include "targaddrs.h"
29 #include "bmi.h"
30 
31 #include "hif.h"
32 #include "htc.h"
33 
34 #include "ce.h"
35 #include "pci.h"
36 
37 enum ath10k_pci_reset_mode {
38 	ATH10K_PCI_RESET_AUTO = 0,
39 	ATH10K_PCI_RESET_WARM_ONLY = 1,
40 };
41 
42 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
43 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
44 
45 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
46 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
47 
48 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
49 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
50 
51 /* how long wait to wait for target to initialise, in ms */
52 #define ATH10K_PCI_TARGET_WAIT 3000
53 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
54 
55 /* Maximum number of bytes that can be handled atomically by
56  * diag read and write.
57  */
58 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
59 
60 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
61 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
62 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
63 
64 static const struct pci_device_id ath10k_pci_id_table[] = {
65 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
66 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
67 
68 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
69 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
70 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
71 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
72 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
73 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
74 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
75 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
76 	{0}
77 };
78 
79 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
80 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
81 	 * hacks. ath10k doesn't have them and these devices crash horribly
82 	 * because of that.
83 	 */
84 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
85 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
86 
87 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
88 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
89 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
90 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
91 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
92 
93 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
94 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
95 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
96 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
97 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
98 
99 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
100 
101 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
102 
103 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
104 
105 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
106 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
107 
108 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
109 };
110 
111 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
112 static int ath10k_pci_cold_reset(struct ath10k *ar);
113 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
114 static int ath10k_pci_init_irq(struct ath10k *ar);
115 static int ath10k_pci_deinit_irq(struct ath10k *ar);
116 static int ath10k_pci_request_irq(struct ath10k *ar);
117 static void ath10k_pci_free_irq(struct ath10k *ar);
118 static int ath10k_pci_bmi_wait(struct ath10k *ar,
119 			       struct ath10k_ce_pipe *tx_pipe,
120 			       struct ath10k_ce_pipe *rx_pipe,
121 			       struct bmi_xfer *xfer);
122 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
123 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
124 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
125 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
126 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
127 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
128 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
129 
130 static struct ce_attr host_ce_config_wlan[] = {
131 	/* CE0: host->target HTC control and raw streams */
132 	{
133 		.flags = CE_ATTR_FLAGS,
134 		.src_nentries = 16,
135 		.src_sz_max = 256,
136 		.dest_nentries = 0,
137 		.send_cb = ath10k_pci_htc_tx_cb,
138 	},
139 
140 	/* CE1: target->host HTT + HTC control */
141 	{
142 		.flags = CE_ATTR_FLAGS,
143 		.src_nentries = 0,
144 		.src_sz_max = 2048,
145 		.dest_nentries = 512,
146 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
147 	},
148 
149 	/* CE2: target->host WMI */
150 	{
151 		.flags = CE_ATTR_FLAGS,
152 		.src_nentries = 0,
153 		.src_sz_max = 2048,
154 		.dest_nentries = 128,
155 		.recv_cb = ath10k_pci_htc_rx_cb,
156 	},
157 
158 	/* CE3: host->target WMI */
159 	{
160 		.flags = CE_ATTR_FLAGS,
161 		.src_nentries = 32,
162 		.src_sz_max = 2048,
163 		.dest_nentries = 0,
164 		.send_cb = ath10k_pci_htc_tx_cb,
165 	},
166 
167 	/* CE4: host->target HTT */
168 	{
169 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
170 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
171 		.src_sz_max = 256,
172 		.dest_nentries = 0,
173 		.send_cb = ath10k_pci_htt_tx_cb,
174 	},
175 
176 	/* CE5: target->host HTT (HIF->HTT) */
177 	{
178 		.flags = CE_ATTR_FLAGS,
179 		.src_nentries = 0,
180 		.src_sz_max = 512,
181 		.dest_nentries = 512,
182 		.recv_cb = ath10k_pci_htt_rx_cb,
183 	},
184 
185 	/* CE6: target autonomous hif_memcpy */
186 	{
187 		.flags = CE_ATTR_FLAGS,
188 		.src_nentries = 0,
189 		.src_sz_max = 0,
190 		.dest_nentries = 0,
191 	},
192 
193 	/* CE7: ce_diag, the Diagnostic Window */
194 	{
195 		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
196 		.src_nentries = 2,
197 		.src_sz_max = DIAG_TRANSFER_LIMIT,
198 		.dest_nentries = 2,
199 	},
200 
201 	/* CE8: target->host pktlog */
202 	{
203 		.flags = CE_ATTR_FLAGS,
204 		.src_nentries = 0,
205 		.src_sz_max = 2048,
206 		.dest_nentries = 128,
207 		.recv_cb = ath10k_pci_pktlog_rx_cb,
208 	},
209 
210 	/* CE9 target autonomous qcache memcpy */
211 	{
212 		.flags = CE_ATTR_FLAGS,
213 		.src_nentries = 0,
214 		.src_sz_max = 0,
215 		.dest_nentries = 0,
216 	},
217 
218 	/* CE10: target autonomous hif memcpy */
219 	{
220 		.flags = CE_ATTR_FLAGS,
221 		.src_nentries = 0,
222 		.src_sz_max = 0,
223 		.dest_nentries = 0,
224 	},
225 
226 	/* CE11: target autonomous hif memcpy */
227 	{
228 		.flags = CE_ATTR_FLAGS,
229 		.src_nentries = 0,
230 		.src_sz_max = 0,
231 		.dest_nentries = 0,
232 	},
233 };
234 
235 /* Target firmware's Copy Engine configuration. */
236 static struct ce_pipe_config target_ce_config_wlan[] = {
237 	/* CE0: host->target HTC control and raw streams */
238 	{
239 		.pipenum = __cpu_to_le32(0),
240 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
241 		.nentries = __cpu_to_le32(32),
242 		.nbytes_max = __cpu_to_le32(256),
243 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
244 		.reserved = __cpu_to_le32(0),
245 	},
246 
247 	/* CE1: target->host HTT + HTC control */
248 	{
249 		.pipenum = __cpu_to_le32(1),
250 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
251 		.nentries = __cpu_to_le32(32),
252 		.nbytes_max = __cpu_to_le32(2048),
253 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
254 		.reserved = __cpu_to_le32(0),
255 	},
256 
257 	/* CE2: target->host WMI */
258 	{
259 		.pipenum = __cpu_to_le32(2),
260 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
261 		.nentries = __cpu_to_le32(64),
262 		.nbytes_max = __cpu_to_le32(2048),
263 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
264 		.reserved = __cpu_to_le32(0),
265 	},
266 
267 	/* CE3: host->target WMI */
268 	{
269 		.pipenum = __cpu_to_le32(3),
270 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
271 		.nentries = __cpu_to_le32(32),
272 		.nbytes_max = __cpu_to_le32(2048),
273 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
274 		.reserved = __cpu_to_le32(0),
275 	},
276 
277 	/* CE4: host->target HTT */
278 	{
279 		.pipenum = __cpu_to_le32(4),
280 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
281 		.nentries = __cpu_to_le32(256),
282 		.nbytes_max = __cpu_to_le32(256),
283 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
284 		.reserved = __cpu_to_le32(0),
285 	},
286 
287 	/* NB: 50% of src nentries, since tx has 2 frags */
288 
289 	/* CE5: target->host HTT (HIF->HTT) */
290 	{
291 		.pipenum = __cpu_to_le32(5),
292 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
293 		.nentries = __cpu_to_le32(32),
294 		.nbytes_max = __cpu_to_le32(512),
295 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
296 		.reserved = __cpu_to_le32(0),
297 	},
298 
299 	/* CE6: Reserved for target autonomous hif_memcpy */
300 	{
301 		.pipenum = __cpu_to_le32(6),
302 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
303 		.nentries = __cpu_to_le32(32),
304 		.nbytes_max = __cpu_to_le32(4096),
305 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
306 		.reserved = __cpu_to_le32(0),
307 	},
308 
309 	/* CE7 used only by Host */
310 	{
311 		.pipenum = __cpu_to_le32(7),
312 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
313 		.nentries = __cpu_to_le32(0),
314 		.nbytes_max = __cpu_to_le32(0),
315 		.flags = __cpu_to_le32(0),
316 		.reserved = __cpu_to_le32(0),
317 	},
318 
319 	/* CE8 target->host packtlog */
320 	{
321 		.pipenum = __cpu_to_le32(8),
322 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
323 		.nentries = __cpu_to_le32(64),
324 		.nbytes_max = __cpu_to_le32(2048),
325 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
326 		.reserved = __cpu_to_le32(0),
327 	},
328 
329 	/* CE9 target autonomous qcache memcpy */
330 	{
331 		.pipenum = __cpu_to_le32(9),
332 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
333 		.nentries = __cpu_to_le32(32),
334 		.nbytes_max = __cpu_to_le32(2048),
335 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
336 		.reserved = __cpu_to_le32(0),
337 	},
338 
339 	/* It not necessary to send target wlan configuration for CE10 & CE11
340 	 * as these CEs are not actively used in target.
341 	 */
342 };
343 
344 /*
345  * Map from service/endpoint to Copy Engine.
346  * This table is derived from the CE_PCI TABLE, above.
347  * It is passed to the Target at startup for use by firmware.
348  */
349 static struct service_to_pipe target_service_to_ce_map_wlan[] = {
350 	{
351 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
352 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
353 		__cpu_to_le32(3),
354 	},
355 	{
356 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
357 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
358 		__cpu_to_le32(2),
359 	},
360 	{
361 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
362 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
363 		__cpu_to_le32(3),
364 	},
365 	{
366 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
367 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
368 		__cpu_to_le32(2),
369 	},
370 	{
371 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
372 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
373 		__cpu_to_le32(3),
374 	},
375 	{
376 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
377 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
378 		__cpu_to_le32(2),
379 	},
380 	{
381 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
382 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
383 		__cpu_to_le32(3),
384 	},
385 	{
386 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
387 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
388 		__cpu_to_le32(2),
389 	},
390 	{
391 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
392 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
393 		__cpu_to_le32(3),
394 	},
395 	{
396 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
397 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
398 		__cpu_to_le32(2),
399 	},
400 	{
401 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
402 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
403 		__cpu_to_le32(0),
404 	},
405 	{
406 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
407 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
408 		__cpu_to_le32(1),
409 	},
410 	{ /* not used */
411 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
412 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
413 		__cpu_to_le32(0),
414 	},
415 	{ /* not used */
416 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
417 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
418 		__cpu_to_le32(1),
419 	},
420 	{
421 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
422 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
423 		__cpu_to_le32(4),
424 	},
425 	{
426 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
427 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
428 		__cpu_to_le32(5),
429 	},
430 
431 	/* (Additions here) */
432 
433 	{ /* must be last */
434 		__cpu_to_le32(0),
435 		__cpu_to_le32(0),
436 		__cpu_to_le32(0),
437 	},
438 };
439 
440 static bool ath10k_pci_is_awake(struct ath10k *ar)
441 {
442 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
443 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
444 			   RTC_STATE_ADDRESS);
445 
446 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
447 }
448 
449 static void __ath10k_pci_wake(struct ath10k *ar)
450 {
451 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
452 
453 	lockdep_assert_held(&ar_pci->ps_lock);
454 
455 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
456 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
457 
458 	iowrite32(PCIE_SOC_WAKE_V_MASK,
459 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
460 		  PCIE_SOC_WAKE_ADDRESS);
461 }
462 
463 static void __ath10k_pci_sleep(struct ath10k *ar)
464 {
465 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
466 
467 	lockdep_assert_held(&ar_pci->ps_lock);
468 
469 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
470 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
471 
472 	iowrite32(PCIE_SOC_WAKE_RESET,
473 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
474 		  PCIE_SOC_WAKE_ADDRESS);
475 	ar_pci->ps_awake = false;
476 }
477 
478 static int ath10k_pci_wake_wait(struct ath10k *ar)
479 {
480 	int tot_delay = 0;
481 	int curr_delay = 5;
482 
483 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
484 		if (ath10k_pci_is_awake(ar)) {
485 			if (tot_delay > PCIE_WAKE_LATE_US)
486 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
487 					    tot_delay / 1000);
488 			return 0;
489 		}
490 
491 		udelay(curr_delay);
492 		tot_delay += curr_delay;
493 
494 		if (curr_delay < 50)
495 			curr_delay += 5;
496 	}
497 
498 	return -ETIMEDOUT;
499 }
500 
501 static int ath10k_pci_force_wake(struct ath10k *ar)
502 {
503 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
504 	unsigned long flags;
505 	int ret = 0;
506 
507 	if (ar_pci->pci_ps)
508 		return ret;
509 
510 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
511 
512 	if (!ar_pci->ps_awake) {
513 		iowrite32(PCIE_SOC_WAKE_V_MASK,
514 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
515 			  PCIE_SOC_WAKE_ADDRESS);
516 
517 		ret = ath10k_pci_wake_wait(ar);
518 		if (ret == 0)
519 			ar_pci->ps_awake = true;
520 	}
521 
522 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
523 
524 	return ret;
525 }
526 
527 static void ath10k_pci_force_sleep(struct ath10k *ar)
528 {
529 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
530 	unsigned long flags;
531 
532 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
533 
534 	iowrite32(PCIE_SOC_WAKE_RESET,
535 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
536 		  PCIE_SOC_WAKE_ADDRESS);
537 	ar_pci->ps_awake = false;
538 
539 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
540 }
541 
542 static int ath10k_pci_wake(struct ath10k *ar)
543 {
544 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
545 	unsigned long flags;
546 	int ret = 0;
547 
548 	if (ar_pci->pci_ps == 0)
549 		return ret;
550 
551 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
552 
553 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
554 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
555 
556 	/* This function can be called very frequently. To avoid excessive
557 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
558 	 */
559 	if (!ar_pci->ps_awake) {
560 		__ath10k_pci_wake(ar);
561 
562 		ret = ath10k_pci_wake_wait(ar);
563 		if (ret == 0)
564 			ar_pci->ps_awake = true;
565 	}
566 
567 	if (ret == 0) {
568 		ar_pci->ps_wake_refcount++;
569 		WARN_ON(ar_pci->ps_wake_refcount == 0);
570 	}
571 
572 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
573 
574 	return ret;
575 }
576 
577 static void ath10k_pci_sleep(struct ath10k *ar)
578 {
579 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
580 	unsigned long flags;
581 
582 	if (ar_pci->pci_ps == 0)
583 		return;
584 
585 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
586 
587 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
588 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
589 
590 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
591 		goto skip;
592 
593 	ar_pci->ps_wake_refcount--;
594 
595 	mod_timer(&ar_pci->ps_timer, jiffies +
596 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
597 
598 skip:
599 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
600 }
601 
602 static void ath10k_pci_ps_timer(struct timer_list *t)
603 {
604 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
605 	struct ath10k *ar = ar_pci->ar;
606 	unsigned long flags;
607 
608 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
609 
610 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
611 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
612 
613 	if (ar_pci->ps_wake_refcount > 0)
614 		goto skip;
615 
616 	__ath10k_pci_sleep(ar);
617 
618 skip:
619 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
620 }
621 
622 static void ath10k_pci_sleep_sync(struct ath10k *ar)
623 {
624 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
625 	unsigned long flags;
626 
627 	if (ar_pci->pci_ps == 0) {
628 		ath10k_pci_force_sleep(ar);
629 		return;
630 	}
631 
632 	del_timer_sync(&ar_pci->ps_timer);
633 
634 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
635 	WARN_ON(ar_pci->ps_wake_refcount > 0);
636 	__ath10k_pci_sleep(ar);
637 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
638 }
639 
640 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
641 {
642 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
643 	int ret;
644 
645 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
646 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
647 			    offset, offset + sizeof(value), ar_pci->mem_len);
648 		return;
649 	}
650 
651 	ret = ath10k_pci_wake(ar);
652 	if (ret) {
653 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
654 			    value, offset, ret);
655 		return;
656 	}
657 
658 	iowrite32(value, ar_pci->mem + offset);
659 	ath10k_pci_sleep(ar);
660 }
661 
662 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
663 {
664 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
665 	u32 val;
666 	int ret;
667 
668 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
669 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
670 			    offset, offset + sizeof(val), ar_pci->mem_len);
671 		return 0;
672 	}
673 
674 	ret = ath10k_pci_wake(ar);
675 	if (ret) {
676 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
677 			    offset, ret);
678 		return 0xffffffff;
679 	}
680 
681 	val = ioread32(ar_pci->mem + offset);
682 	ath10k_pci_sleep(ar);
683 
684 	return val;
685 }
686 
687 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
688 {
689 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
690 
691 	ce->bus_ops->write32(ar, offset, value);
692 }
693 
694 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
695 {
696 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
697 
698 	return ce->bus_ops->read32(ar, offset);
699 }
700 
701 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
702 {
703 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
704 }
705 
706 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
707 {
708 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
709 }
710 
711 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
712 {
713 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
714 }
715 
716 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
717 {
718 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
719 }
720 
721 bool ath10k_pci_irq_pending(struct ath10k *ar)
722 {
723 	u32 cause;
724 
725 	/* Check if the shared legacy irq is for us */
726 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
727 				  PCIE_INTR_CAUSE_ADDRESS);
728 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
729 		return true;
730 
731 	return false;
732 }
733 
734 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
735 {
736 	/* IMPORTANT: INTR_CLR register has to be set after
737 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
738 	 * really cleared.
739 	 */
740 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
741 			   0);
742 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
743 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
744 
745 	/* IMPORTANT: this extra read transaction is required to
746 	 * flush the posted write buffer.
747 	 */
748 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
749 				PCIE_INTR_ENABLE_ADDRESS);
750 }
751 
752 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
753 {
754 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
755 			   PCIE_INTR_ENABLE_ADDRESS,
756 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
757 
758 	/* IMPORTANT: this extra read transaction is required to
759 	 * flush the posted write buffer.
760 	 */
761 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
762 				PCIE_INTR_ENABLE_ADDRESS);
763 }
764 
765 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
766 {
767 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
768 
769 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
770 		return "msi";
771 
772 	return "legacy";
773 }
774 
775 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
776 {
777 	struct ath10k *ar = pipe->hif_ce_state;
778 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
779 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
780 	struct sk_buff *skb;
781 	dma_addr_t paddr;
782 	int ret;
783 
784 	skb = dev_alloc_skb(pipe->buf_sz);
785 	if (!skb)
786 		return -ENOMEM;
787 
788 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
789 
790 	paddr = dma_map_single(ar->dev, skb->data,
791 			       skb->len + skb_tailroom(skb),
792 			       DMA_FROM_DEVICE);
793 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
794 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
795 		dev_kfree_skb_any(skb);
796 		return -EIO;
797 	}
798 
799 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
800 
801 	spin_lock_bh(&ce->ce_lock);
802 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
803 	spin_unlock_bh(&ce->ce_lock);
804 	if (ret) {
805 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
806 				 DMA_FROM_DEVICE);
807 		dev_kfree_skb_any(skb);
808 		return ret;
809 	}
810 
811 	return 0;
812 }
813 
814 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
815 {
816 	struct ath10k *ar = pipe->hif_ce_state;
817 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
818 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
819 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
820 	int ret, num;
821 
822 	if (pipe->buf_sz == 0)
823 		return;
824 
825 	if (!ce_pipe->dest_ring)
826 		return;
827 
828 	spin_lock_bh(&ce->ce_lock);
829 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
830 	spin_unlock_bh(&ce->ce_lock);
831 
832 	while (num >= 0) {
833 		ret = __ath10k_pci_rx_post_buf(pipe);
834 		if (ret) {
835 			if (ret == -ENOSPC)
836 				break;
837 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
838 			mod_timer(&ar_pci->rx_post_retry, jiffies +
839 				  ATH10K_PCI_RX_POST_RETRY_MS);
840 			break;
841 		}
842 		num--;
843 	}
844 }
845 
846 void ath10k_pci_rx_post(struct ath10k *ar)
847 {
848 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
849 	int i;
850 
851 	for (i = 0; i < CE_COUNT; i++)
852 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
853 }
854 
855 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
856 {
857 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
858 	struct ath10k *ar = ar_pci->ar;
859 
860 	ath10k_pci_rx_post(ar);
861 }
862 
863 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
864 {
865 	u32 val = 0, region = addr & 0xfffff;
866 
867 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
868 				 & 0x7ff) << 21;
869 	val |= 0x100000 | region;
870 	return val;
871 }
872 
873 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
874  * Support to access target space below 1M for qca6174 and qca9377.
875  * If target space is below 1M, the bit[20] of converted CE addr is 0.
876  * Otherwise bit[20] of converted CE addr is 1.
877  */
878 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
879 {
880 	u32 val = 0, region = addr & 0xfffff;
881 
882 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
883 				 & 0x7ff) << 21;
884 	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
885 	return val;
886 }
887 
888 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
889 {
890 	u32 val = 0, region = addr & 0xfffff;
891 
892 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
893 	val |= 0x100000 | region;
894 	return val;
895 }
896 
897 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
898 {
899 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
900 
901 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
902 		return -ENOTSUPP;
903 
904 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
905 }
906 
907 /*
908  * Diagnostic read/write access is provided for startup/config/debug usage.
909  * Caller must guarantee proper alignment, when applicable, and single user
910  * at any moment.
911  */
912 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
913 				    int nbytes)
914 {
915 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
916 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
917 	int ret = 0;
918 	u32 *buf;
919 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
920 	struct ath10k_ce_pipe *ce_diag;
921 	/* Host buffer address in CE space */
922 	u32 ce_data;
923 	dma_addr_t ce_data_base = 0;
924 	void *data_buf = NULL;
925 	int i;
926 
927 	spin_lock_bh(&ce->ce_lock);
928 
929 	ce_diag = ar_pci->ce_diag;
930 
931 	/*
932 	 * Allocate a temporary bounce buffer to hold caller's data
933 	 * to be DMA'ed from Target. This guarantees
934 	 *   1) 4-byte alignment
935 	 *   2) Buffer in DMA-able space
936 	 */
937 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
938 
939 	data_buf = (unsigned char *)dma_zalloc_coherent(ar->dev,
940 						       alloc_nbytes,
941 						       &ce_data_base,
942 						       GFP_ATOMIC);
943 
944 	if (!data_buf) {
945 		ret = -ENOMEM;
946 		goto done;
947 	}
948 
949 	/* The address supplied by the caller is in the
950 	 * Target CPU virtual address space.
951 	 *
952 	 * In order to use this address with the diagnostic CE,
953 	 * convert it from Target CPU virtual address space
954 	 * to CE address space
955 	 */
956 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
957 
958 	remaining_bytes = nbytes;
959 	ce_data = ce_data_base;
960 	while (remaining_bytes) {
961 		nbytes = min_t(unsigned int, remaining_bytes,
962 			       DIAG_TRANSFER_LIMIT);
963 
964 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &ce_data, ce_data);
965 		if (ret != 0)
966 			goto done;
967 
968 		/* Request CE to send from Target(!) address to Host buffer */
969 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)address, nbytes, 0,
970 					    0);
971 		if (ret)
972 			goto done;
973 
974 		i = 0;
975 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
976 							    NULL) != 0) {
977 			udelay(DIAG_ACCESS_CE_WAIT_US);
978 			i += DIAG_ACCESS_CE_WAIT_US;
979 
980 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
981 				ret = -EBUSY;
982 				goto done;
983 			}
984 		}
985 
986 		i = 0;
987 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
988 							    (void **)&buf,
989 							    &completed_nbytes)
990 								!= 0) {
991 			udelay(DIAG_ACCESS_CE_WAIT_US);
992 			i += DIAG_ACCESS_CE_WAIT_US;
993 
994 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
995 				ret = -EBUSY;
996 				goto done;
997 			}
998 		}
999 
1000 		if (nbytes != completed_nbytes) {
1001 			ret = -EIO;
1002 			goto done;
1003 		}
1004 
1005 		if (*buf != ce_data) {
1006 			ret = -EIO;
1007 			goto done;
1008 		}
1009 
1010 		remaining_bytes -= nbytes;
1011 		memcpy(data, data_buf, nbytes);
1012 
1013 		address += nbytes;
1014 		data += nbytes;
1015 	}
1016 
1017 done:
1018 
1019 	if (data_buf)
1020 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1021 				  ce_data_base);
1022 
1023 	spin_unlock_bh(&ce->ce_lock);
1024 
1025 	return ret;
1026 }
1027 
1028 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1029 {
1030 	__le32 val = 0;
1031 	int ret;
1032 
1033 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1034 	*value = __le32_to_cpu(val);
1035 
1036 	return ret;
1037 }
1038 
1039 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1040 				     u32 src, u32 len)
1041 {
1042 	u32 host_addr, addr;
1043 	int ret;
1044 
1045 	host_addr = host_interest_item_address(src);
1046 
1047 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1048 	if (ret != 0) {
1049 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1050 			    src, ret);
1051 		return ret;
1052 	}
1053 
1054 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1055 	if (ret != 0) {
1056 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1057 			    addr, len, ret);
1058 		return ret;
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1065 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1066 
1067 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1068 			      const void *data, int nbytes)
1069 {
1070 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1071 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1072 	int ret = 0;
1073 	u32 *buf;
1074 	unsigned int completed_nbytes, orig_nbytes, remaining_bytes;
1075 	struct ath10k_ce_pipe *ce_diag;
1076 	void *data_buf = NULL;
1077 	u32 ce_data;	/* Host buffer address in CE space */
1078 	dma_addr_t ce_data_base = 0;
1079 	int i;
1080 
1081 	spin_lock_bh(&ce->ce_lock);
1082 
1083 	ce_diag = ar_pci->ce_diag;
1084 
1085 	/*
1086 	 * Allocate a temporary bounce buffer to hold caller's data
1087 	 * to be DMA'ed to Target. This guarantees
1088 	 *   1) 4-byte alignment
1089 	 *   2) Buffer in DMA-able space
1090 	 */
1091 	orig_nbytes = nbytes;
1092 	data_buf = (unsigned char *)dma_alloc_coherent(ar->dev,
1093 						       orig_nbytes,
1094 						       &ce_data_base,
1095 						       GFP_ATOMIC);
1096 	if (!data_buf) {
1097 		ret = -ENOMEM;
1098 		goto done;
1099 	}
1100 
1101 	/* Copy caller's data to allocated DMA buf */
1102 	memcpy(data_buf, data, orig_nbytes);
1103 
1104 	/*
1105 	 * The address supplied by the caller is in the
1106 	 * Target CPU virtual address space.
1107 	 *
1108 	 * In order to use this address with the diagnostic CE,
1109 	 * convert it from
1110 	 *    Target CPU virtual address space
1111 	 * to
1112 	 *    CE address space
1113 	 */
1114 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1115 
1116 	remaining_bytes = orig_nbytes;
1117 	ce_data = ce_data_base;
1118 	while (remaining_bytes) {
1119 		/* FIXME: check cast */
1120 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1121 
1122 		/* Set up to receive directly into Target(!) address */
1123 		ret = ce_diag->ops->ce_rx_post_buf(ce_diag, &address, address);
1124 		if (ret != 0)
1125 			goto done;
1126 
1127 		/*
1128 		 * Request CE to send caller-supplied data that
1129 		 * was copied to bounce buffer to Target(!) address.
1130 		 */
1131 		ret = ath10k_ce_send_nolock(ce_diag, NULL, (u32)ce_data,
1132 					    nbytes, 0, 0);
1133 		if (ret != 0)
1134 			goto done;
1135 
1136 		i = 0;
1137 		while (ath10k_ce_completed_send_next_nolock(ce_diag,
1138 							    NULL) != 0) {
1139 			udelay(DIAG_ACCESS_CE_WAIT_US);
1140 			i += DIAG_ACCESS_CE_WAIT_US;
1141 
1142 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1143 				ret = -EBUSY;
1144 				goto done;
1145 			}
1146 		}
1147 
1148 		i = 0;
1149 		while (ath10k_ce_completed_recv_next_nolock(ce_diag,
1150 							    (void **)&buf,
1151 							    &completed_nbytes)
1152 								!= 0) {
1153 			udelay(DIAG_ACCESS_CE_WAIT_US);
1154 			i += DIAG_ACCESS_CE_WAIT_US;
1155 
1156 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1157 				ret = -EBUSY;
1158 				goto done;
1159 			}
1160 		}
1161 
1162 		if (nbytes != completed_nbytes) {
1163 			ret = -EIO;
1164 			goto done;
1165 		}
1166 
1167 		if (*buf != address) {
1168 			ret = -EIO;
1169 			goto done;
1170 		}
1171 
1172 		remaining_bytes -= nbytes;
1173 		address += nbytes;
1174 		ce_data += nbytes;
1175 	}
1176 
1177 done:
1178 	if (data_buf) {
1179 		dma_free_coherent(ar->dev, orig_nbytes, data_buf,
1180 				  ce_data_base);
1181 	}
1182 
1183 	if (ret != 0)
1184 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1185 			    address, ret);
1186 
1187 	spin_unlock_bh(&ce->ce_lock);
1188 
1189 	return ret;
1190 }
1191 
1192 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1193 {
1194 	__le32 val = __cpu_to_le32(value);
1195 
1196 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1197 }
1198 
1199 /* Called by lower (CE) layer when a send to Target completes. */
1200 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1201 {
1202 	struct ath10k *ar = ce_state->ar;
1203 	struct sk_buff_head list;
1204 	struct sk_buff *skb;
1205 
1206 	__skb_queue_head_init(&list);
1207 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1208 		/* no need to call tx completion for NULL pointers */
1209 		if (skb == NULL)
1210 			continue;
1211 
1212 		__skb_queue_tail(&list, skb);
1213 	}
1214 
1215 	while ((skb = __skb_dequeue(&list)))
1216 		ath10k_htc_tx_completion_handler(ar, skb);
1217 }
1218 
1219 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1220 				     void (*callback)(struct ath10k *ar,
1221 						      struct sk_buff *skb))
1222 {
1223 	struct ath10k *ar = ce_state->ar;
1224 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1225 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1226 	struct sk_buff *skb;
1227 	struct sk_buff_head list;
1228 	void *transfer_context;
1229 	unsigned int nbytes, max_nbytes;
1230 
1231 	__skb_queue_head_init(&list);
1232 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1233 					     &nbytes) == 0) {
1234 		skb = transfer_context;
1235 		max_nbytes = skb->len + skb_tailroom(skb);
1236 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1237 				 max_nbytes, DMA_FROM_DEVICE);
1238 
1239 		if (unlikely(max_nbytes < nbytes)) {
1240 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1241 				    nbytes, max_nbytes);
1242 			dev_kfree_skb_any(skb);
1243 			continue;
1244 		}
1245 
1246 		skb_put(skb, nbytes);
1247 		__skb_queue_tail(&list, skb);
1248 	}
1249 
1250 	while ((skb = __skb_dequeue(&list))) {
1251 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1252 			   ce_state->id, skb->len);
1253 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1254 				skb->data, skb->len);
1255 
1256 		callback(ar, skb);
1257 	}
1258 
1259 	ath10k_pci_rx_post_pipe(pipe_info);
1260 }
1261 
1262 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1263 					 void (*callback)(struct ath10k *ar,
1264 							  struct sk_buff *skb))
1265 {
1266 	struct ath10k *ar = ce_state->ar;
1267 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1268 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1269 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1270 	struct sk_buff *skb;
1271 	struct sk_buff_head list;
1272 	void *transfer_context;
1273 	unsigned int nbytes, max_nbytes, nentries;
1274 	int orig_len;
1275 
1276 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1277 	 * is processed other than init and deinit. Before releasing CE5
1278 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1279 	 */
1280 	__skb_queue_head_init(&list);
1281 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1282 						    &nbytes) == 0) {
1283 		skb = transfer_context;
1284 		max_nbytes = skb->len + skb_tailroom(skb);
1285 
1286 		if (unlikely(max_nbytes < nbytes)) {
1287 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1288 				    nbytes, max_nbytes);
1289 			continue;
1290 		}
1291 
1292 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1293 					max_nbytes, DMA_FROM_DEVICE);
1294 		skb_put(skb, nbytes);
1295 		__skb_queue_tail(&list, skb);
1296 	}
1297 
1298 	nentries = skb_queue_len(&list);
1299 	while ((skb = __skb_dequeue(&list))) {
1300 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1301 			   ce_state->id, skb->len);
1302 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1303 				skb->data, skb->len);
1304 
1305 		orig_len = skb->len;
1306 		callback(ar, skb);
1307 		skb_push(skb, orig_len - skb->len);
1308 		skb_reset_tail_pointer(skb);
1309 		skb_trim(skb, 0);
1310 
1311 		/*let device gain the buffer again*/
1312 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1313 					   skb->len + skb_tailroom(skb),
1314 					   DMA_FROM_DEVICE);
1315 	}
1316 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1317 }
1318 
1319 /* Called by lower (CE) layer when data is received from the Target. */
1320 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1321 {
1322 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1323 }
1324 
1325 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1326 {
1327 	/* CE4 polling needs to be done whenever CE pipe which transports
1328 	 * HTT Rx (target->host) is processed.
1329 	 */
1330 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1331 
1332 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1333 }
1334 
1335 /* Called by lower (CE) layer when data is received from the Target.
1336  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1337  */
1338 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1339 {
1340 	ath10k_pci_process_rx_cb(ce_state,
1341 				 ath10k_htt_rx_pktlog_completion_handler);
1342 }
1343 
1344 /* Called by lower (CE) layer when a send to HTT Target completes. */
1345 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1346 {
1347 	struct ath10k *ar = ce_state->ar;
1348 	struct sk_buff *skb;
1349 
1350 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1351 		/* no need to call tx completion for NULL pointers */
1352 		if (!skb)
1353 			continue;
1354 
1355 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1356 				 skb->len, DMA_TO_DEVICE);
1357 		ath10k_htt_hif_tx_complete(ar, skb);
1358 	}
1359 }
1360 
1361 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1362 {
1363 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1364 	ath10k_htt_t2h_msg_handler(ar, skb);
1365 }
1366 
1367 /* Called by lower (CE) layer when HTT data is received from the Target. */
1368 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1369 {
1370 	/* CE4 polling needs to be done whenever CE pipe which transports
1371 	 * HTT Rx (target->host) is processed.
1372 	 */
1373 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1374 
1375 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1376 }
1377 
1378 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1379 			 struct ath10k_hif_sg_item *items, int n_items)
1380 {
1381 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1382 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1383 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1384 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1385 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1386 	unsigned int nentries_mask;
1387 	unsigned int sw_index;
1388 	unsigned int write_index;
1389 	int err, i = 0;
1390 
1391 	spin_lock_bh(&ce->ce_lock);
1392 
1393 	nentries_mask = src_ring->nentries_mask;
1394 	sw_index = src_ring->sw_index;
1395 	write_index = src_ring->write_index;
1396 
1397 	if (unlikely(CE_RING_DELTA(nentries_mask,
1398 				   write_index, sw_index - 1) < n_items)) {
1399 		err = -ENOBUFS;
1400 		goto err;
1401 	}
1402 
1403 	for (i = 0; i < n_items - 1; i++) {
1404 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1405 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1406 			   i, &items[i].paddr, items[i].len, n_items);
1407 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1408 				items[i].vaddr, items[i].len);
1409 
1410 		err = ath10k_ce_send_nolock(ce_pipe,
1411 					    items[i].transfer_context,
1412 					    items[i].paddr,
1413 					    items[i].len,
1414 					    items[i].transfer_id,
1415 					    CE_SEND_FLAG_GATHER);
1416 		if (err)
1417 			goto err;
1418 	}
1419 
1420 	/* `i` is equal to `n_items -1` after for() */
1421 
1422 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1423 		   "pci tx item %d paddr %pad len %d n_items %d\n",
1424 		   i, &items[i].paddr, items[i].len, n_items);
1425 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1426 			items[i].vaddr, items[i].len);
1427 
1428 	err = ath10k_ce_send_nolock(ce_pipe,
1429 				    items[i].transfer_context,
1430 				    items[i].paddr,
1431 				    items[i].len,
1432 				    items[i].transfer_id,
1433 				    0);
1434 	if (err)
1435 		goto err;
1436 
1437 	spin_unlock_bh(&ce->ce_lock);
1438 	return 0;
1439 
1440 err:
1441 	for (; i > 0; i--)
1442 		__ath10k_ce_send_revert(ce_pipe);
1443 
1444 	spin_unlock_bh(&ce->ce_lock);
1445 	return err;
1446 }
1447 
1448 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1449 			     size_t buf_len)
1450 {
1451 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1452 }
1453 
1454 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1455 {
1456 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1457 
1458 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1459 
1460 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1461 }
1462 
1463 static void ath10k_pci_dump_registers(struct ath10k *ar,
1464 				      struct ath10k_fw_crash_data *crash_data)
1465 {
1466 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1467 	int i, ret;
1468 
1469 	lockdep_assert_held(&ar->data_lock);
1470 
1471 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1472 				      hi_failure_state,
1473 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1474 	if (ret) {
1475 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1476 		return;
1477 	}
1478 
1479 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1480 
1481 	ath10k_err(ar, "firmware register dump:\n");
1482 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1483 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1484 			   i,
1485 			   __le32_to_cpu(reg_dump_values[i]),
1486 			   __le32_to_cpu(reg_dump_values[i + 1]),
1487 			   __le32_to_cpu(reg_dump_values[i + 2]),
1488 			   __le32_to_cpu(reg_dump_values[i + 3]));
1489 
1490 	if (!crash_data)
1491 		return;
1492 
1493 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1494 		crash_data->registers[i] = reg_dump_values[i];
1495 }
1496 
1497 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1498 					  const struct ath10k_mem_region *mem_region,
1499 					  u8 *buf, size_t buf_len)
1500 {
1501 	const struct ath10k_mem_section *cur_section, *next_section;
1502 	unsigned int count, section_size, skip_size;
1503 	int ret, i, j;
1504 
1505 	if (!mem_region || !buf)
1506 		return 0;
1507 
1508 	cur_section = &mem_region->section_table.sections[0];
1509 
1510 	if (mem_region->start > cur_section->start) {
1511 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1512 			    mem_region->start, cur_section->start);
1513 		return 0;
1514 	}
1515 
1516 	skip_size = cur_section->start - mem_region->start;
1517 
1518 	/* fill the gap between the first register section and register
1519 	 * start address
1520 	 */
1521 	for (i = 0; i < skip_size; i++) {
1522 		*buf = ATH10K_MAGIC_NOT_COPIED;
1523 		buf++;
1524 	}
1525 
1526 	count = 0;
1527 
1528 	for (i = 0; cur_section != NULL; i++) {
1529 		section_size = cur_section->end - cur_section->start;
1530 
1531 		if (section_size <= 0) {
1532 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1533 				    cur_section->start,
1534 				    cur_section->end);
1535 			break;
1536 		}
1537 
1538 		if ((i + 1) == mem_region->section_table.size) {
1539 			/* last section */
1540 			next_section = NULL;
1541 			skip_size = 0;
1542 		} else {
1543 			next_section = cur_section + 1;
1544 
1545 			if (cur_section->end > next_section->start) {
1546 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1547 					    next_section->start,
1548 					    cur_section->end);
1549 				break;
1550 			}
1551 
1552 			skip_size = next_section->start - cur_section->end;
1553 		}
1554 
1555 		if (buf_len < (skip_size + section_size)) {
1556 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1557 			break;
1558 		}
1559 
1560 		buf_len -= skip_size + section_size;
1561 
1562 		/* read section to dest memory */
1563 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1564 					       buf, section_size);
1565 		if (ret) {
1566 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1567 				    cur_section->start, ret);
1568 			break;
1569 		}
1570 
1571 		buf += section_size;
1572 		count += section_size;
1573 
1574 		/* fill in the gap between this section and the next */
1575 		for (j = 0; j < skip_size; j++) {
1576 			*buf = ATH10K_MAGIC_NOT_COPIED;
1577 			buf++;
1578 		}
1579 
1580 		count += skip_size;
1581 
1582 		if (!next_section)
1583 			/* this was the last section */
1584 			break;
1585 
1586 		cur_section = next_section;
1587 	}
1588 
1589 	return count;
1590 }
1591 
1592 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1593 {
1594 	u32 val;
1595 
1596 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1597 			   FW_RAM_CONFIG_ADDRESS, config);
1598 
1599 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1600 				FW_RAM_CONFIG_ADDRESS);
1601 	if (val != config) {
1602 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1603 			    val, config);
1604 		return -EIO;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 /* if an error happened returns < 0, otherwise the length */
1611 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1612 				       const struct ath10k_mem_region *region,
1613 				       u8 *buf)
1614 {
1615 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1616 	u32 base_addr, i;
1617 
1618 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1619 	base_addr += region->start;
1620 
1621 	for (i = 0; i < region->len; i += 4) {
1622 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1623 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1624 	}
1625 
1626 	return region->len;
1627 }
1628 
1629 /* if an error happened returns < 0, otherwise the length */
1630 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1631 				      const struct ath10k_mem_region *region,
1632 				      u8 *buf)
1633 {
1634 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1635 	u32 i;
1636 
1637 	for (i = 0; i < region->len; i += 4)
1638 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1639 
1640 	return region->len;
1641 }
1642 
1643 /* if an error happened returns < 0, otherwise the length */
1644 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1645 					  const struct ath10k_mem_region *current_region,
1646 					  u8 *buf)
1647 {
1648 	int ret;
1649 
1650 	if (current_region->section_table.size > 0)
1651 		/* Copy each section individually. */
1652 		return ath10k_pci_dump_memory_section(ar,
1653 						      current_region,
1654 						      buf,
1655 						      current_region->len);
1656 
1657 	/* No individiual memory sections defined so we can
1658 	 * copy the entire memory region.
1659 	 */
1660 	ret = ath10k_pci_diag_read_mem(ar,
1661 				       current_region->start,
1662 				       buf,
1663 				       current_region->len);
1664 	if (ret) {
1665 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1666 			    current_region->name, ret);
1667 		return ret;
1668 	}
1669 
1670 	return current_region->len;
1671 }
1672 
1673 static void ath10k_pci_dump_memory(struct ath10k *ar,
1674 				   struct ath10k_fw_crash_data *crash_data)
1675 {
1676 	const struct ath10k_hw_mem_layout *mem_layout;
1677 	const struct ath10k_mem_region *current_region;
1678 	struct ath10k_dump_ram_data_hdr *hdr;
1679 	u32 count, shift;
1680 	size_t buf_len;
1681 	int ret, i;
1682 	u8 *buf;
1683 
1684 	lockdep_assert_held(&ar->data_lock);
1685 
1686 	if (!crash_data)
1687 		return;
1688 
1689 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1690 	if (!mem_layout)
1691 		return;
1692 
1693 	current_region = &mem_layout->region_table.regions[0];
1694 
1695 	buf = crash_data->ramdump_buf;
1696 	buf_len = crash_data->ramdump_buf_len;
1697 
1698 	memset(buf, 0, buf_len);
1699 
1700 	for (i = 0; i < mem_layout->region_table.size; i++) {
1701 		count = 0;
1702 
1703 		if (current_region->len > buf_len) {
1704 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1705 				    current_region->name,
1706 				    current_region->len,
1707 				    buf_len);
1708 			break;
1709 		}
1710 
1711 		/* To get IRAM dump, the host driver needs to switch target
1712 		 * ram config from DRAM to IRAM.
1713 		 */
1714 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1715 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1716 			shift = current_region->start >> 20;
1717 
1718 			ret = ath10k_pci_set_ram_config(ar, shift);
1719 			if (ret) {
1720 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1721 					    current_region->name, ret);
1722 				break;
1723 			}
1724 		}
1725 
1726 		/* Reserve space for the header. */
1727 		hdr = (void *)buf;
1728 		buf += sizeof(*hdr);
1729 		buf_len -= sizeof(*hdr);
1730 
1731 		switch (current_region->type) {
1732 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1733 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1734 			break;
1735 		case ATH10K_MEM_REGION_TYPE_IOREG:
1736 			count = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1737 			break;
1738 		default:
1739 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1740 			if (ret < 0)
1741 				break;
1742 
1743 			count = ret;
1744 			break;
1745 		}
1746 
1747 		hdr->region_type = cpu_to_le32(current_region->type);
1748 		hdr->start = cpu_to_le32(current_region->start);
1749 		hdr->length = cpu_to_le32(count);
1750 
1751 		if (count == 0)
1752 			/* Note: the header remains, just with zero length. */
1753 			break;
1754 
1755 		buf += count;
1756 		buf_len -= count;
1757 
1758 		current_region++;
1759 	}
1760 }
1761 
1762 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1763 {
1764 	struct ath10k_fw_crash_data *crash_data;
1765 	char guid[UUID_STRING_LEN + 1];
1766 
1767 	spin_lock_bh(&ar->data_lock);
1768 
1769 	ar->stats.fw_crash_counter++;
1770 
1771 	crash_data = ath10k_coredump_new(ar);
1772 
1773 	if (crash_data)
1774 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1775 	else
1776 		scnprintf(guid, sizeof(guid), "n/a");
1777 
1778 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1779 	ath10k_print_driver_info(ar);
1780 	ath10k_pci_dump_registers(ar, crash_data);
1781 	ath10k_ce_dump_registers(ar, crash_data);
1782 	ath10k_pci_dump_memory(ar, crash_data);
1783 
1784 	spin_unlock_bh(&ar->data_lock);
1785 
1786 	queue_work(ar->workqueue, &ar->restart_work);
1787 }
1788 
1789 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1790 					int force)
1791 {
1792 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1793 
1794 	if (!force) {
1795 		int resources;
1796 		/*
1797 		 * Decide whether to actually poll for completions, or just
1798 		 * wait for a later chance.
1799 		 * If there seem to be plenty of resources left, then just wait
1800 		 * since checking involves reading a CE register, which is a
1801 		 * relatively expensive operation.
1802 		 */
1803 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1804 
1805 		/*
1806 		 * If at least 50% of the total resources are still available,
1807 		 * don't bother checking again yet.
1808 		 */
1809 		if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1))
1810 			return;
1811 	}
1812 	ath10k_ce_per_engine_service(ar, pipe);
1813 }
1814 
1815 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1816 {
1817 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1818 
1819 	del_timer_sync(&ar_pci->rx_post_retry);
1820 }
1821 
1822 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1823 				       u8 *ul_pipe, u8 *dl_pipe)
1824 {
1825 	const struct service_to_pipe *entry;
1826 	bool ul_set = false, dl_set = false;
1827 	int i;
1828 
1829 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1830 
1831 	for (i = 0; i < ARRAY_SIZE(target_service_to_ce_map_wlan); i++) {
1832 		entry = &target_service_to_ce_map_wlan[i];
1833 
1834 		if (__le32_to_cpu(entry->service_id) != service_id)
1835 			continue;
1836 
1837 		switch (__le32_to_cpu(entry->pipedir)) {
1838 		case PIPEDIR_NONE:
1839 			break;
1840 		case PIPEDIR_IN:
1841 			WARN_ON(dl_set);
1842 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1843 			dl_set = true;
1844 			break;
1845 		case PIPEDIR_OUT:
1846 			WARN_ON(ul_set);
1847 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1848 			ul_set = true;
1849 			break;
1850 		case PIPEDIR_INOUT:
1851 			WARN_ON(dl_set);
1852 			WARN_ON(ul_set);
1853 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1854 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1855 			dl_set = true;
1856 			ul_set = true;
1857 			break;
1858 		}
1859 	}
1860 
1861 	if (!ul_set || !dl_set)
1862 		return -ENOENT;
1863 
1864 	return 0;
1865 }
1866 
1867 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1868 				     u8 *ul_pipe, u8 *dl_pipe)
1869 {
1870 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1871 
1872 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1873 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1874 						 ul_pipe, dl_pipe);
1875 }
1876 
1877 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1878 {
1879 	u32 val;
1880 
1881 	switch (ar->hw_rev) {
1882 	case ATH10K_HW_QCA988X:
1883 	case ATH10K_HW_QCA9887:
1884 	case ATH10K_HW_QCA6174:
1885 	case ATH10K_HW_QCA9377:
1886 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1887 					CORE_CTRL_ADDRESS);
1888 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1889 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1890 				   CORE_CTRL_ADDRESS, val);
1891 		break;
1892 	case ATH10K_HW_QCA99X0:
1893 	case ATH10K_HW_QCA9984:
1894 	case ATH10K_HW_QCA9888:
1895 	case ATH10K_HW_QCA4019:
1896 		/* TODO: Find appropriate register configuration for QCA99X0
1897 		 *  to mask irq/MSI.
1898 		 */
1899 		break;
1900 	case ATH10K_HW_WCN3990:
1901 		break;
1902 	}
1903 }
1904 
1905 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1906 {
1907 	u32 val;
1908 
1909 	switch (ar->hw_rev) {
1910 	case ATH10K_HW_QCA988X:
1911 	case ATH10K_HW_QCA9887:
1912 	case ATH10K_HW_QCA6174:
1913 	case ATH10K_HW_QCA9377:
1914 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1915 					CORE_CTRL_ADDRESS);
1916 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1917 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1918 				   CORE_CTRL_ADDRESS, val);
1919 		break;
1920 	case ATH10K_HW_QCA99X0:
1921 	case ATH10K_HW_QCA9984:
1922 	case ATH10K_HW_QCA9888:
1923 	case ATH10K_HW_QCA4019:
1924 		/* TODO: Find appropriate register configuration for QCA99X0
1925 		 *  to unmask irq/MSI.
1926 		 */
1927 		break;
1928 	case ATH10K_HW_WCN3990:
1929 		break;
1930 	}
1931 }
1932 
1933 static void ath10k_pci_irq_disable(struct ath10k *ar)
1934 {
1935 	ath10k_ce_disable_interrupts(ar);
1936 	ath10k_pci_disable_and_clear_legacy_irq(ar);
1937 	ath10k_pci_irq_msi_fw_mask(ar);
1938 }
1939 
1940 static void ath10k_pci_irq_sync(struct ath10k *ar)
1941 {
1942 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1943 
1944 	synchronize_irq(ar_pci->pdev->irq);
1945 }
1946 
1947 static void ath10k_pci_irq_enable(struct ath10k *ar)
1948 {
1949 	ath10k_ce_enable_interrupts(ar);
1950 	ath10k_pci_enable_legacy_irq(ar);
1951 	ath10k_pci_irq_msi_fw_unmask(ar);
1952 }
1953 
1954 static int ath10k_pci_hif_start(struct ath10k *ar)
1955 {
1956 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1957 
1958 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1959 
1960 	napi_enable(&ar->napi);
1961 
1962 	ath10k_pci_irq_enable(ar);
1963 	ath10k_pci_rx_post(ar);
1964 
1965 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1966 				   ar_pci->link_ctl);
1967 
1968 	return 0;
1969 }
1970 
1971 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1972 {
1973 	struct ath10k *ar;
1974 	struct ath10k_ce_pipe *ce_pipe;
1975 	struct ath10k_ce_ring *ce_ring;
1976 	struct sk_buff *skb;
1977 	int i;
1978 
1979 	ar = pci_pipe->hif_ce_state;
1980 	ce_pipe = pci_pipe->ce_hdl;
1981 	ce_ring = ce_pipe->dest_ring;
1982 
1983 	if (!ce_ring)
1984 		return;
1985 
1986 	if (!pci_pipe->buf_sz)
1987 		return;
1988 
1989 	for (i = 0; i < ce_ring->nentries; i++) {
1990 		skb = ce_ring->per_transfer_context[i];
1991 		if (!skb)
1992 			continue;
1993 
1994 		ce_ring->per_transfer_context[i] = NULL;
1995 
1996 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1997 				 skb->len + skb_tailroom(skb),
1998 				 DMA_FROM_DEVICE);
1999 		dev_kfree_skb_any(skb);
2000 	}
2001 }
2002 
2003 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2004 {
2005 	struct ath10k *ar;
2006 	struct ath10k_ce_pipe *ce_pipe;
2007 	struct ath10k_ce_ring *ce_ring;
2008 	struct sk_buff *skb;
2009 	int i;
2010 
2011 	ar = pci_pipe->hif_ce_state;
2012 	ce_pipe = pci_pipe->ce_hdl;
2013 	ce_ring = ce_pipe->src_ring;
2014 
2015 	if (!ce_ring)
2016 		return;
2017 
2018 	if (!pci_pipe->buf_sz)
2019 		return;
2020 
2021 	for (i = 0; i < ce_ring->nentries; i++) {
2022 		skb = ce_ring->per_transfer_context[i];
2023 		if (!skb)
2024 			continue;
2025 
2026 		ce_ring->per_transfer_context[i] = NULL;
2027 
2028 		ath10k_htc_tx_completion_handler(ar, skb);
2029 	}
2030 }
2031 
2032 /*
2033  * Cleanup residual buffers for device shutdown:
2034  *    buffers that were enqueued for receive
2035  *    buffers that were to be sent
2036  * Note: Buffers that had completed but which were
2037  * not yet processed are on a completion queue. They
2038  * are handled when the completion thread shuts down.
2039  */
2040 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2041 {
2042 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2043 	int pipe_num;
2044 
2045 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2046 		struct ath10k_pci_pipe *pipe_info;
2047 
2048 		pipe_info = &ar_pci->pipe_info[pipe_num];
2049 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2050 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2051 	}
2052 }
2053 
2054 void ath10k_pci_ce_deinit(struct ath10k *ar)
2055 {
2056 	int i;
2057 
2058 	for (i = 0; i < CE_COUNT; i++)
2059 		ath10k_ce_deinit_pipe(ar, i);
2060 }
2061 
2062 void ath10k_pci_flush(struct ath10k *ar)
2063 {
2064 	ath10k_pci_rx_retry_sync(ar);
2065 	ath10k_pci_buffer_cleanup(ar);
2066 }
2067 
2068 static void ath10k_pci_hif_stop(struct ath10k *ar)
2069 {
2070 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2071 	unsigned long flags;
2072 
2073 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2074 
2075 	/* Most likely the device has HTT Rx ring configured. The only way to
2076 	 * prevent the device from accessing (and possible corrupting) host
2077 	 * memory is to reset the chip now.
2078 	 *
2079 	 * There's also no known way of masking MSI interrupts on the device.
2080 	 * For ranged MSI the CE-related interrupts can be masked. However
2081 	 * regardless how many MSI interrupts are assigned the first one
2082 	 * is always used for firmware indications (crashes) and cannot be
2083 	 * masked. To prevent the device from asserting the interrupt reset it
2084 	 * before proceeding with cleanup.
2085 	 */
2086 	ath10k_pci_safe_chip_reset(ar);
2087 
2088 	ath10k_pci_irq_disable(ar);
2089 	ath10k_pci_irq_sync(ar);
2090 	napi_synchronize(&ar->napi);
2091 	napi_disable(&ar->napi);
2092 	ath10k_pci_flush(ar);
2093 
2094 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2095 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2096 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2097 }
2098 
2099 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2100 				    void *req, u32 req_len,
2101 				    void *resp, u32 *resp_len)
2102 {
2103 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2104 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2105 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2106 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2107 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2108 	dma_addr_t req_paddr = 0;
2109 	dma_addr_t resp_paddr = 0;
2110 	struct bmi_xfer xfer = {};
2111 	void *treq, *tresp = NULL;
2112 	int ret = 0;
2113 
2114 	might_sleep();
2115 
2116 	if (resp && !resp_len)
2117 		return -EINVAL;
2118 
2119 	if (resp && resp_len && *resp_len == 0)
2120 		return -EINVAL;
2121 
2122 	treq = kmemdup(req, req_len, GFP_KERNEL);
2123 	if (!treq)
2124 		return -ENOMEM;
2125 
2126 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2127 	ret = dma_mapping_error(ar->dev, req_paddr);
2128 	if (ret) {
2129 		ret = -EIO;
2130 		goto err_dma;
2131 	}
2132 
2133 	if (resp && resp_len) {
2134 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2135 		if (!tresp) {
2136 			ret = -ENOMEM;
2137 			goto err_req;
2138 		}
2139 
2140 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2141 					    DMA_FROM_DEVICE);
2142 		ret = dma_mapping_error(ar->dev, resp_paddr);
2143 		if (ret) {
2144 			ret = -EIO;
2145 			goto err_req;
2146 		}
2147 
2148 		xfer.wait_for_resp = true;
2149 		xfer.resp_len = 0;
2150 
2151 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2152 	}
2153 
2154 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2155 	if (ret)
2156 		goto err_resp;
2157 
2158 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2159 	if (ret) {
2160 		dma_addr_t unused_buffer;
2161 		unsigned int unused_nbytes;
2162 		unsigned int unused_id;
2163 
2164 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2165 					   &unused_nbytes, &unused_id);
2166 	} else {
2167 		/* non-zero means we did not time out */
2168 		ret = 0;
2169 	}
2170 
2171 err_resp:
2172 	if (resp) {
2173 		dma_addr_t unused_buffer;
2174 
2175 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2176 		dma_unmap_single(ar->dev, resp_paddr,
2177 				 *resp_len, DMA_FROM_DEVICE);
2178 	}
2179 err_req:
2180 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2181 
2182 	if (ret == 0 && resp_len) {
2183 		*resp_len = min(*resp_len, xfer.resp_len);
2184 		memcpy(resp, tresp, xfer.resp_len);
2185 	}
2186 err_dma:
2187 	kfree(treq);
2188 	kfree(tresp);
2189 
2190 	return ret;
2191 }
2192 
2193 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2194 {
2195 	struct bmi_xfer *xfer;
2196 
2197 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2198 		return;
2199 
2200 	xfer->tx_done = true;
2201 }
2202 
2203 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2204 {
2205 	struct ath10k *ar = ce_state->ar;
2206 	struct bmi_xfer *xfer;
2207 	unsigned int nbytes;
2208 
2209 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2210 					  &nbytes))
2211 		return;
2212 
2213 	if (WARN_ON_ONCE(!xfer))
2214 		return;
2215 
2216 	if (!xfer->wait_for_resp) {
2217 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2218 		return;
2219 	}
2220 
2221 	xfer->resp_len = nbytes;
2222 	xfer->rx_done = true;
2223 }
2224 
2225 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2226 			       struct ath10k_ce_pipe *tx_pipe,
2227 			       struct ath10k_ce_pipe *rx_pipe,
2228 			       struct bmi_xfer *xfer)
2229 {
2230 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2231 	unsigned long started = jiffies;
2232 	unsigned long dur;
2233 	int ret;
2234 
2235 	while (time_before_eq(jiffies, timeout)) {
2236 		ath10k_pci_bmi_send_done(tx_pipe);
2237 		ath10k_pci_bmi_recv_data(rx_pipe);
2238 
2239 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2240 			ret = 0;
2241 			goto out;
2242 		}
2243 
2244 		schedule();
2245 	}
2246 
2247 	ret = -ETIMEDOUT;
2248 
2249 out:
2250 	dur = jiffies - started;
2251 	if (dur > HZ)
2252 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2253 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2254 			   dur, HZ, ret);
2255 	return ret;
2256 }
2257 
2258 /*
2259  * Send an interrupt to the device to wake up the Target CPU
2260  * so it has an opportunity to notice any changed state.
2261  */
2262 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2263 {
2264 	u32 addr, val;
2265 
2266 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2267 	val = ath10k_pci_read32(ar, addr);
2268 	val |= CORE_CTRL_CPU_INTR_MASK;
2269 	ath10k_pci_write32(ar, addr, val);
2270 
2271 	return 0;
2272 }
2273 
2274 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2275 {
2276 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2277 
2278 	switch (ar_pci->pdev->device) {
2279 	case QCA988X_2_0_DEVICE_ID_UBNT:
2280 	case QCA988X_2_0_DEVICE_ID:
2281 	case QCA99X0_2_0_DEVICE_ID:
2282 	case QCA9888_2_0_DEVICE_ID:
2283 	case QCA9984_1_0_DEVICE_ID:
2284 	case QCA9887_1_0_DEVICE_ID:
2285 		return 1;
2286 	case QCA6164_2_1_DEVICE_ID:
2287 	case QCA6174_2_1_DEVICE_ID:
2288 		switch (MS(ar->chip_id, SOC_CHIP_ID_REV)) {
2289 		case QCA6174_HW_1_0_CHIP_ID_REV:
2290 		case QCA6174_HW_1_1_CHIP_ID_REV:
2291 		case QCA6174_HW_2_1_CHIP_ID_REV:
2292 		case QCA6174_HW_2_2_CHIP_ID_REV:
2293 			return 3;
2294 		case QCA6174_HW_1_3_CHIP_ID_REV:
2295 			return 2;
2296 		case QCA6174_HW_3_0_CHIP_ID_REV:
2297 		case QCA6174_HW_3_1_CHIP_ID_REV:
2298 		case QCA6174_HW_3_2_CHIP_ID_REV:
2299 			return 9;
2300 		}
2301 		break;
2302 	case QCA9377_1_0_DEVICE_ID:
2303 		return 9;
2304 	}
2305 
2306 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2307 	return 1;
2308 }
2309 
2310 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2311 {
2312 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2313 
2314 	return ce->bus_ops->get_num_banks(ar);
2315 }
2316 
2317 int ath10k_pci_init_config(struct ath10k *ar)
2318 {
2319 	u32 interconnect_targ_addr;
2320 	u32 pcie_state_targ_addr = 0;
2321 	u32 pipe_cfg_targ_addr = 0;
2322 	u32 svc_to_pipe_map = 0;
2323 	u32 pcie_config_flags = 0;
2324 	u32 ealloc_value;
2325 	u32 ealloc_targ_addr;
2326 	u32 flag2_value;
2327 	u32 flag2_targ_addr;
2328 	int ret = 0;
2329 
2330 	/* Download to Target the CE Config and the service-to-CE map */
2331 	interconnect_targ_addr =
2332 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2333 
2334 	/* Supply Target-side CE configuration */
2335 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2336 				     &pcie_state_targ_addr);
2337 	if (ret != 0) {
2338 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2339 		return ret;
2340 	}
2341 
2342 	if (pcie_state_targ_addr == 0) {
2343 		ret = -EIO;
2344 		ath10k_err(ar, "Invalid pcie state addr\n");
2345 		return ret;
2346 	}
2347 
2348 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2349 					  offsetof(struct pcie_state,
2350 						   pipe_cfg_addr)),
2351 				     &pipe_cfg_targ_addr);
2352 	if (ret != 0) {
2353 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2354 		return ret;
2355 	}
2356 
2357 	if (pipe_cfg_targ_addr == 0) {
2358 		ret = -EIO;
2359 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2360 		return ret;
2361 	}
2362 
2363 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2364 					target_ce_config_wlan,
2365 					sizeof(struct ce_pipe_config) *
2366 					NUM_TARGET_CE_CONFIG_WLAN);
2367 
2368 	if (ret != 0) {
2369 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2370 		return ret;
2371 	}
2372 
2373 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2374 					  offsetof(struct pcie_state,
2375 						   svc_to_pipe_map)),
2376 				     &svc_to_pipe_map);
2377 	if (ret != 0) {
2378 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2379 		return ret;
2380 	}
2381 
2382 	if (svc_to_pipe_map == 0) {
2383 		ret = -EIO;
2384 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2385 		return ret;
2386 	}
2387 
2388 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2389 					target_service_to_ce_map_wlan,
2390 					sizeof(target_service_to_ce_map_wlan));
2391 	if (ret != 0) {
2392 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2393 		return ret;
2394 	}
2395 
2396 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2397 					  offsetof(struct pcie_state,
2398 						   config_flags)),
2399 				     &pcie_config_flags);
2400 	if (ret != 0) {
2401 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2402 		return ret;
2403 	}
2404 
2405 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2406 
2407 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2408 					   offsetof(struct pcie_state,
2409 						    config_flags)),
2410 				      pcie_config_flags);
2411 	if (ret != 0) {
2412 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2413 		return ret;
2414 	}
2415 
2416 	/* configure early allocation */
2417 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2418 
2419 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2420 	if (ret != 0) {
2421 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2422 		return ret;
2423 	}
2424 
2425 	/* first bank is switched to IRAM */
2426 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2427 			 HI_EARLY_ALLOC_MAGIC_MASK);
2428 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2429 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2430 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2431 
2432 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2433 	if (ret != 0) {
2434 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2435 		return ret;
2436 	}
2437 
2438 	/* Tell Target to proceed with initialization */
2439 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2440 
2441 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2442 	if (ret != 0) {
2443 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2444 		return ret;
2445 	}
2446 
2447 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2448 
2449 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2450 	if (ret != 0) {
2451 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2452 		return ret;
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2459 {
2460 	struct ce_attr *attr;
2461 	struct ce_pipe_config *config;
2462 
2463 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2464 	 * since it is currently used for other feature.
2465 	 */
2466 
2467 	/* Override Host's Copy Engine 5 configuration */
2468 	attr = &host_ce_config_wlan[5];
2469 	attr->src_sz_max = 0;
2470 	attr->dest_nentries = 0;
2471 
2472 	/* Override Target firmware's Copy Engine configuration */
2473 	config = &target_ce_config_wlan[5];
2474 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2475 	config->nbytes_max = __cpu_to_le32(2048);
2476 
2477 	/* Map from service/endpoint to Copy Engine */
2478 	target_service_to_ce_map_wlan[15].pipenum = __cpu_to_le32(1);
2479 }
2480 
2481 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2482 {
2483 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2484 	struct ath10k_pci_pipe *pipe;
2485 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2486 	int i, ret;
2487 
2488 	for (i = 0; i < CE_COUNT; i++) {
2489 		pipe = &ar_pci->pipe_info[i];
2490 		pipe->ce_hdl = &ce->ce_states[i];
2491 		pipe->pipe_num = i;
2492 		pipe->hif_ce_state = ar;
2493 
2494 		ret = ath10k_ce_alloc_pipe(ar, i, &host_ce_config_wlan[i]);
2495 		if (ret) {
2496 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2497 				   i, ret);
2498 			return ret;
2499 		}
2500 
2501 		/* Last CE is Diagnostic Window */
2502 		if (i == CE_DIAG_PIPE) {
2503 			ar_pci->ce_diag = pipe->ce_hdl;
2504 			continue;
2505 		}
2506 
2507 		pipe->buf_sz = (size_t)(host_ce_config_wlan[i].src_sz_max);
2508 	}
2509 
2510 	return 0;
2511 }
2512 
2513 void ath10k_pci_free_pipes(struct ath10k *ar)
2514 {
2515 	int i;
2516 
2517 	for (i = 0; i < CE_COUNT; i++)
2518 		ath10k_ce_free_pipe(ar, i);
2519 }
2520 
2521 int ath10k_pci_init_pipes(struct ath10k *ar)
2522 {
2523 	int i, ret;
2524 
2525 	for (i = 0; i < CE_COUNT; i++) {
2526 		ret = ath10k_ce_init_pipe(ar, i, &host_ce_config_wlan[i]);
2527 		if (ret) {
2528 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2529 				   i, ret);
2530 			return ret;
2531 		}
2532 	}
2533 
2534 	return 0;
2535 }
2536 
2537 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2538 {
2539 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2540 	       FW_IND_EVENT_PENDING;
2541 }
2542 
2543 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2544 {
2545 	u32 val;
2546 
2547 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2548 	val &= ~FW_IND_EVENT_PENDING;
2549 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2550 }
2551 
2552 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2553 {
2554 	u32 val;
2555 
2556 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2557 	return (val == 0xffffffff);
2558 }
2559 
2560 /* this function effectively clears target memory controller assert line */
2561 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2562 {
2563 	u32 val;
2564 
2565 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2566 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2567 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2568 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2569 
2570 	msleep(10);
2571 
2572 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2573 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2574 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2575 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2576 
2577 	msleep(10);
2578 }
2579 
2580 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2581 {
2582 	u32 val;
2583 
2584 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2585 
2586 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2587 				SOC_RESET_CONTROL_ADDRESS);
2588 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2589 			   val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2590 }
2591 
2592 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2593 {
2594 	u32 val;
2595 
2596 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2597 				SOC_RESET_CONTROL_ADDRESS);
2598 
2599 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2600 			   val | SOC_RESET_CONTROL_CE_RST_MASK);
2601 	msleep(10);
2602 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + SOC_RESET_CONTROL_ADDRESS,
2603 			   val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2604 }
2605 
2606 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2607 {
2608 	u32 val;
2609 
2610 	val = ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS +
2611 				SOC_LF_TIMER_CONTROL0_ADDRESS);
2612 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS +
2613 			   SOC_LF_TIMER_CONTROL0_ADDRESS,
2614 			   val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2615 }
2616 
2617 static int ath10k_pci_warm_reset(struct ath10k *ar)
2618 {
2619 	int ret;
2620 
2621 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2622 
2623 	spin_lock_bh(&ar->data_lock);
2624 	ar->stats.fw_warm_reset_counter++;
2625 	spin_unlock_bh(&ar->data_lock);
2626 
2627 	ath10k_pci_irq_disable(ar);
2628 
2629 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2630 	 * were to access copy engine while host performs copy engine reset
2631 	 * then it is possible for the device to confuse pci-e controller to
2632 	 * the point of bringing host system to a complete stop (i.e. hang).
2633 	 */
2634 	ath10k_pci_warm_reset_si0(ar);
2635 	ath10k_pci_warm_reset_cpu(ar);
2636 	ath10k_pci_init_pipes(ar);
2637 	ath10k_pci_wait_for_target_init(ar);
2638 
2639 	ath10k_pci_warm_reset_clear_lf(ar);
2640 	ath10k_pci_warm_reset_ce(ar);
2641 	ath10k_pci_warm_reset_cpu(ar);
2642 	ath10k_pci_init_pipes(ar);
2643 
2644 	ret = ath10k_pci_wait_for_target_init(ar);
2645 	if (ret) {
2646 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2647 		return ret;
2648 	}
2649 
2650 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2651 
2652 	return 0;
2653 }
2654 
2655 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2656 {
2657 	ath10k_pci_irq_disable(ar);
2658 	return ath10k_pci_qca99x0_chip_reset(ar);
2659 }
2660 
2661 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2662 {
2663 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2664 
2665 	if (!ar_pci->pci_soft_reset)
2666 		return -ENOTSUPP;
2667 
2668 	return ar_pci->pci_soft_reset(ar);
2669 }
2670 
2671 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2672 {
2673 	int i, ret;
2674 	u32 val;
2675 
2676 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2677 
2678 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2679 	 * It is thus preferred to use warm reset which is safer but may not be
2680 	 * able to recover the device from all possible fail scenarios.
2681 	 *
2682 	 * Warm reset doesn't always work on first try so attempt it a few
2683 	 * times before giving up.
2684 	 */
2685 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2686 		ret = ath10k_pci_warm_reset(ar);
2687 		if (ret) {
2688 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2689 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2690 				    ret);
2691 			continue;
2692 		}
2693 
2694 		/* FIXME: Sometimes copy engine doesn't recover after warm
2695 		 * reset. In most cases this needs cold reset. In some of these
2696 		 * cases the device is in such a state that a cold reset may
2697 		 * lock up the host.
2698 		 *
2699 		 * Reading any host interest register via copy engine is
2700 		 * sufficient to verify if device is capable of booting
2701 		 * firmware blob.
2702 		 */
2703 		ret = ath10k_pci_init_pipes(ar);
2704 		if (ret) {
2705 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2706 				    ret);
2707 			continue;
2708 		}
2709 
2710 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2711 					     &val);
2712 		if (ret) {
2713 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2714 				    ret);
2715 			continue;
2716 		}
2717 
2718 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2719 		return 0;
2720 	}
2721 
2722 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2723 		ath10k_warn(ar, "refusing cold reset as requested\n");
2724 		return -EPERM;
2725 	}
2726 
2727 	ret = ath10k_pci_cold_reset(ar);
2728 	if (ret) {
2729 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2730 		return ret;
2731 	}
2732 
2733 	ret = ath10k_pci_wait_for_target_init(ar);
2734 	if (ret) {
2735 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2736 			    ret);
2737 		return ret;
2738 	}
2739 
2740 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2741 
2742 	return 0;
2743 }
2744 
2745 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2746 {
2747 	int ret;
2748 
2749 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2750 
2751 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2752 
2753 	ret = ath10k_pci_cold_reset(ar);
2754 	if (ret) {
2755 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2756 		return ret;
2757 	}
2758 
2759 	ret = ath10k_pci_wait_for_target_init(ar);
2760 	if (ret) {
2761 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2762 			    ret);
2763 		return ret;
2764 	}
2765 
2766 	ret = ath10k_pci_warm_reset(ar);
2767 	if (ret) {
2768 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2769 		return ret;
2770 	}
2771 
2772 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2773 
2774 	return 0;
2775 }
2776 
2777 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2778 {
2779 	int ret;
2780 
2781 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2782 
2783 	ret = ath10k_pci_cold_reset(ar);
2784 	if (ret) {
2785 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2786 		return ret;
2787 	}
2788 
2789 	ret = ath10k_pci_wait_for_target_init(ar);
2790 	if (ret) {
2791 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2792 			    ret);
2793 		return ret;
2794 	}
2795 
2796 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2797 
2798 	return 0;
2799 }
2800 
2801 static int ath10k_pci_chip_reset(struct ath10k *ar)
2802 {
2803 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2804 
2805 	if (WARN_ON(!ar_pci->pci_hard_reset))
2806 		return -ENOTSUPP;
2807 
2808 	return ar_pci->pci_hard_reset(ar);
2809 }
2810 
2811 static int ath10k_pci_hif_power_up(struct ath10k *ar)
2812 {
2813 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2814 	int ret;
2815 
2816 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2817 
2818 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2819 				  &ar_pci->link_ctl);
2820 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2821 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2822 
2823 	/*
2824 	 * Bring the target up cleanly.
2825 	 *
2826 	 * The target may be in an undefined state with an AUX-powered Target
2827 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2828 	 * restarted (without unloading the driver) then the Target is left
2829 	 * (aux) powered and running. On a subsequent driver load, the Target
2830 	 * is in an unexpected state. We try to catch that here in order to
2831 	 * reset the Target and retry the probe.
2832 	 */
2833 	ret = ath10k_pci_chip_reset(ar);
2834 	if (ret) {
2835 		if (ath10k_pci_has_fw_crashed(ar)) {
2836 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2837 			ath10k_pci_fw_crashed_clear(ar);
2838 			ath10k_pci_fw_crashed_dump(ar);
2839 		}
2840 
2841 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2842 		goto err_sleep;
2843 	}
2844 
2845 	ret = ath10k_pci_init_pipes(ar);
2846 	if (ret) {
2847 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2848 		goto err_sleep;
2849 	}
2850 
2851 	ret = ath10k_pci_init_config(ar);
2852 	if (ret) {
2853 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2854 		goto err_ce;
2855 	}
2856 
2857 	ret = ath10k_pci_wake_target_cpu(ar);
2858 	if (ret) {
2859 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2860 		goto err_ce;
2861 	}
2862 
2863 	return 0;
2864 
2865 err_ce:
2866 	ath10k_pci_ce_deinit(ar);
2867 
2868 err_sleep:
2869 	return ret;
2870 }
2871 
2872 void ath10k_pci_hif_power_down(struct ath10k *ar)
2873 {
2874 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2875 
2876 	/* Currently hif_power_up performs effectively a reset and hif_stop
2877 	 * resets the chip as well so there's no point in resetting here.
2878 	 */
2879 }
2880 
2881 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2882 {
2883 	/* Nothing to do; the important stuff is in the driver suspend. */
2884 	return 0;
2885 }
2886 
2887 static int ath10k_pci_suspend(struct ath10k *ar)
2888 {
2889 	/* The grace timer can still be counting down and ar->ps_awake be true.
2890 	 * It is known that the device may be asleep after resuming regardless
2891 	 * of the SoC powersave state before suspending. Hence make sure the
2892 	 * device is asleep before proceeding.
2893 	 */
2894 	ath10k_pci_sleep_sync(ar);
2895 
2896 	return 0;
2897 }
2898 
2899 static int ath10k_pci_hif_resume(struct ath10k *ar)
2900 {
2901 	/* Nothing to do; the important stuff is in the driver resume. */
2902 	return 0;
2903 }
2904 
2905 static int ath10k_pci_resume(struct ath10k *ar)
2906 {
2907 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2908 	struct pci_dev *pdev = ar_pci->pdev;
2909 	u32 val;
2910 	int ret = 0;
2911 
2912 	ret = ath10k_pci_force_wake(ar);
2913 	if (ret) {
2914 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2915 		return ret;
2916 	}
2917 
2918 	/* Suspend/Resume resets the PCI configuration space, so we have to
2919 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2920 	 * from interfering with C3 CPU state. pci_restore_state won't help
2921 	 * here since it only restores the first 64 bytes pci config header.
2922 	 */
2923 	pci_read_config_dword(pdev, 0x40, &val);
2924 	if ((val & 0x0000ff00) != 0)
2925 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2926 
2927 	return ret;
2928 }
2929 
2930 static bool ath10k_pci_validate_cal(void *data, size_t size)
2931 {
2932 	__le16 *cal_words = data;
2933 	u16 checksum = 0;
2934 	size_t i;
2935 
2936 	if (size % 2 != 0)
2937 		return false;
2938 
2939 	for (i = 0; i < size / 2; i++)
2940 		checksum ^= le16_to_cpu(cal_words[i]);
2941 
2942 	return checksum == 0xffff;
2943 }
2944 
2945 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2946 {
2947 	/* Enable SI clock */
2948 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2949 
2950 	/* Configure GPIOs for I2C operation */
2951 	ath10k_pci_write32(ar,
2952 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2953 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2954 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2955 			      GPIO_PIN0_CONFIG) |
2956 			   SM(1, GPIO_PIN0_PAD_PULL));
2957 
2958 	ath10k_pci_write32(ar,
2959 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2960 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2961 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2962 			   SM(1, GPIO_PIN0_PAD_PULL));
2963 
2964 	ath10k_pci_write32(ar,
2965 			   GPIO_BASE_ADDRESS +
2966 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2967 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2968 
2969 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2970 	ath10k_pci_write32(ar,
2971 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2972 			   SM(1, SI_CONFIG_ERR_INT) |
2973 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2974 			   SM(1, SI_CONFIG_I2C) |
2975 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2976 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2977 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2978 			   SM(8, SI_CONFIG_DIVIDER));
2979 }
2980 
2981 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2982 {
2983 	u32 reg;
2984 	int wait_limit;
2985 
2986 	/* set device select byte and for the read operation */
2987 	reg = QCA9887_EEPROM_SELECT_READ |
2988 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2989 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2990 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2991 
2992 	/* write transmit data, transfer length, and START bit */
2993 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
2994 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
2995 			   SM(4, SI_CS_TX_CNT));
2996 
2997 	/* wait max 1 sec */
2998 	wait_limit = 100000;
2999 
3000 	/* wait for SI_CS_DONE_INT */
3001 	do {
3002 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3003 		if (MS(reg, SI_CS_DONE_INT))
3004 			break;
3005 
3006 		wait_limit--;
3007 		udelay(10);
3008 	} while (wait_limit > 0);
3009 
3010 	if (!MS(reg, SI_CS_DONE_INT)) {
3011 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3012 			   addr);
3013 		return -ETIMEDOUT;
3014 	}
3015 
3016 	/* clear SI_CS_DONE_INT */
3017 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3018 
3019 	if (MS(reg, SI_CS_DONE_ERR)) {
3020 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3021 		return -EIO;
3022 	}
3023 
3024 	/* extract receive data */
3025 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3026 	*out = reg;
3027 
3028 	return 0;
3029 }
3030 
3031 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3032 					   size_t *data_len)
3033 {
3034 	u8 *caldata = NULL;
3035 	size_t calsize, i;
3036 	int ret;
3037 
3038 	if (!QCA_REV_9887(ar))
3039 		return -EOPNOTSUPP;
3040 
3041 	calsize = ar->hw_params.cal_data_len;
3042 	caldata = kmalloc(calsize, GFP_KERNEL);
3043 	if (!caldata)
3044 		return -ENOMEM;
3045 
3046 	ath10k_pci_enable_eeprom(ar);
3047 
3048 	for (i = 0; i < calsize; i++) {
3049 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3050 		if (ret)
3051 			goto err_free;
3052 	}
3053 
3054 	if (!ath10k_pci_validate_cal(caldata, calsize))
3055 		goto err_free;
3056 
3057 	*data = caldata;
3058 	*data_len = calsize;
3059 
3060 	return 0;
3061 
3062 err_free:
3063 	kfree(caldata);
3064 
3065 	return -EINVAL;
3066 }
3067 
3068 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3069 	.tx_sg			= ath10k_pci_hif_tx_sg,
3070 	.diag_read		= ath10k_pci_hif_diag_read,
3071 	.diag_write		= ath10k_pci_diag_write_mem,
3072 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3073 	.start			= ath10k_pci_hif_start,
3074 	.stop			= ath10k_pci_hif_stop,
3075 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3076 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3077 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3078 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3079 	.power_up		= ath10k_pci_hif_power_up,
3080 	.power_down		= ath10k_pci_hif_power_down,
3081 	.read32			= ath10k_pci_read32,
3082 	.write32		= ath10k_pci_write32,
3083 	.suspend		= ath10k_pci_hif_suspend,
3084 	.resume			= ath10k_pci_hif_resume,
3085 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3086 };
3087 
3088 /*
3089  * Top-level interrupt handler for all PCI interrupts from a Target.
3090  * When a block of MSI interrupts is allocated, this top-level handler
3091  * is not used; instead, we directly call the correct sub-handler.
3092  */
3093 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3094 {
3095 	struct ath10k *ar = arg;
3096 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3097 	int ret;
3098 
3099 	if (ath10k_pci_has_device_gone(ar))
3100 		return IRQ_NONE;
3101 
3102 	ret = ath10k_pci_force_wake(ar);
3103 	if (ret) {
3104 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3105 		return IRQ_NONE;
3106 	}
3107 
3108 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3109 	    !ath10k_pci_irq_pending(ar))
3110 		return IRQ_NONE;
3111 
3112 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3113 	ath10k_pci_irq_msi_fw_mask(ar);
3114 	napi_schedule(&ar->napi);
3115 
3116 	return IRQ_HANDLED;
3117 }
3118 
3119 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3120 {
3121 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3122 	int done = 0;
3123 
3124 	if (ath10k_pci_has_fw_crashed(ar)) {
3125 		ath10k_pci_fw_crashed_clear(ar);
3126 		ath10k_pci_fw_crashed_dump(ar);
3127 		napi_complete(ctx);
3128 		return done;
3129 	}
3130 
3131 	ath10k_ce_per_engine_service_any(ar);
3132 
3133 	done = ath10k_htt_txrx_compl_task(ar, budget);
3134 
3135 	if (done < budget) {
3136 		napi_complete_done(ctx, done);
3137 		/* In case of MSI, it is possible that interrupts are received
3138 		 * while NAPI poll is inprogress. So pending interrupts that are
3139 		 * received after processing all copy engine pipes by NAPI poll
3140 		 * will not be handled again. This is causing failure to
3141 		 * complete boot sequence in x86 platform. So before enabling
3142 		 * interrupts safer to check for pending interrupts for
3143 		 * immediate servicing.
3144 		 */
3145 		if (ath10k_ce_interrupt_summary(ar)) {
3146 			napi_reschedule(ctx);
3147 			goto out;
3148 		}
3149 		ath10k_pci_enable_legacy_irq(ar);
3150 		ath10k_pci_irq_msi_fw_unmask(ar);
3151 	}
3152 
3153 out:
3154 	return done;
3155 }
3156 
3157 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3158 {
3159 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3160 	int ret;
3161 
3162 	ret = request_irq(ar_pci->pdev->irq,
3163 			  ath10k_pci_interrupt_handler,
3164 			  IRQF_SHARED, "ath10k_pci", ar);
3165 	if (ret) {
3166 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3167 			    ar_pci->pdev->irq, ret);
3168 		return ret;
3169 	}
3170 
3171 	return 0;
3172 }
3173 
3174 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3175 {
3176 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3177 	int ret;
3178 
3179 	ret = request_irq(ar_pci->pdev->irq,
3180 			  ath10k_pci_interrupt_handler,
3181 			  IRQF_SHARED, "ath10k_pci", ar);
3182 	if (ret) {
3183 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3184 			    ar_pci->pdev->irq, ret);
3185 		return ret;
3186 	}
3187 
3188 	return 0;
3189 }
3190 
3191 static int ath10k_pci_request_irq(struct ath10k *ar)
3192 {
3193 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3194 
3195 	switch (ar_pci->oper_irq_mode) {
3196 	case ATH10K_PCI_IRQ_LEGACY:
3197 		return ath10k_pci_request_irq_legacy(ar);
3198 	case ATH10K_PCI_IRQ_MSI:
3199 		return ath10k_pci_request_irq_msi(ar);
3200 	default:
3201 		return -EINVAL;
3202 	}
3203 }
3204 
3205 static void ath10k_pci_free_irq(struct ath10k *ar)
3206 {
3207 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3208 
3209 	free_irq(ar_pci->pdev->irq, ar);
3210 }
3211 
3212 void ath10k_pci_init_napi(struct ath10k *ar)
3213 {
3214 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll,
3215 		       ATH10K_NAPI_BUDGET);
3216 }
3217 
3218 static int ath10k_pci_init_irq(struct ath10k *ar)
3219 {
3220 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3221 	int ret;
3222 
3223 	ath10k_pci_init_napi(ar);
3224 
3225 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3226 		ath10k_info(ar, "limiting irq mode to: %d\n",
3227 			    ath10k_pci_irq_mode);
3228 
3229 	/* Try MSI */
3230 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3231 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3232 		ret = pci_enable_msi(ar_pci->pdev);
3233 		if (ret == 0)
3234 			return 0;
3235 
3236 		/* fall-through */
3237 	}
3238 
3239 	/* Try legacy irq
3240 	 *
3241 	 * A potential race occurs here: The CORE_BASE write
3242 	 * depends on target correctly decoding AXI address but
3243 	 * host won't know when target writes BAR to CORE_CTRL.
3244 	 * This write might get lost if target has NOT written BAR.
3245 	 * For now, fix the race by repeating the write in below
3246 	 * synchronization checking.
3247 	 */
3248 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3249 
3250 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3251 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3252 
3253 	return 0;
3254 }
3255 
3256 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3257 {
3258 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3259 			   0);
3260 }
3261 
3262 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3263 {
3264 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3265 
3266 	switch (ar_pci->oper_irq_mode) {
3267 	case ATH10K_PCI_IRQ_LEGACY:
3268 		ath10k_pci_deinit_irq_legacy(ar);
3269 		break;
3270 	default:
3271 		pci_disable_msi(ar_pci->pdev);
3272 		break;
3273 	}
3274 
3275 	return 0;
3276 }
3277 
3278 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3279 {
3280 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3281 	unsigned long timeout;
3282 	u32 val;
3283 
3284 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3285 
3286 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3287 
3288 	do {
3289 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3290 
3291 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3292 			   val);
3293 
3294 		/* target should never return this */
3295 		if (val == 0xffffffff)
3296 			continue;
3297 
3298 		/* the device has crashed so don't bother trying anymore */
3299 		if (val & FW_IND_EVENT_PENDING)
3300 			break;
3301 
3302 		if (val & FW_IND_INITIALIZED)
3303 			break;
3304 
3305 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3306 			/* Fix potential race by repeating CORE_BASE writes */
3307 			ath10k_pci_enable_legacy_irq(ar);
3308 
3309 		mdelay(10);
3310 	} while (time_before(jiffies, timeout));
3311 
3312 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3313 	ath10k_pci_irq_msi_fw_mask(ar);
3314 
3315 	if (val == 0xffffffff) {
3316 		ath10k_err(ar, "failed to read device register, device is gone\n");
3317 		return -EIO;
3318 	}
3319 
3320 	if (val & FW_IND_EVENT_PENDING) {
3321 		ath10k_warn(ar, "device has crashed during init\n");
3322 		return -ECOMM;
3323 	}
3324 
3325 	if (!(val & FW_IND_INITIALIZED)) {
3326 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3327 			   val);
3328 		return -ETIMEDOUT;
3329 	}
3330 
3331 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3332 	return 0;
3333 }
3334 
3335 static int ath10k_pci_cold_reset(struct ath10k *ar)
3336 {
3337 	u32 val;
3338 
3339 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3340 
3341 	spin_lock_bh(&ar->data_lock);
3342 
3343 	ar->stats.fw_cold_reset_counter++;
3344 
3345 	spin_unlock_bh(&ar->data_lock);
3346 
3347 	/* Put Target, including PCIe, into RESET. */
3348 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3349 	val |= 1;
3350 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3351 
3352 	/* After writing into SOC_GLOBAL_RESET to put device into
3353 	 * reset and pulling out of reset pcie may not be stable
3354 	 * for any immediate pcie register access and cause bus error,
3355 	 * add delay before any pcie access request to fix this issue.
3356 	 */
3357 	msleep(20);
3358 
3359 	/* Pull Target, including PCIe, out of RESET. */
3360 	val &= ~1;
3361 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3362 
3363 	msleep(20);
3364 
3365 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3366 
3367 	return 0;
3368 }
3369 
3370 static int ath10k_pci_claim(struct ath10k *ar)
3371 {
3372 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3373 	struct pci_dev *pdev = ar_pci->pdev;
3374 	int ret;
3375 
3376 	pci_set_drvdata(pdev, ar);
3377 
3378 	ret = pci_enable_device(pdev);
3379 	if (ret) {
3380 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3381 		return ret;
3382 	}
3383 
3384 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3385 	if (ret) {
3386 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3387 			   ret);
3388 		goto err_device;
3389 	}
3390 
3391 	/* Target expects 32 bit DMA. Enforce it. */
3392 	ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3393 	if (ret) {
3394 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3395 		goto err_region;
3396 	}
3397 
3398 	ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3399 	if (ret) {
3400 		ath10k_err(ar, "failed to set consistent dma mask to 32-bit: %d\n",
3401 			   ret);
3402 		goto err_region;
3403 	}
3404 
3405 	pci_set_master(pdev);
3406 
3407 	/* Arrange for access to Target SoC registers. */
3408 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3409 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3410 	if (!ar_pci->mem) {
3411 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3412 		ret = -EIO;
3413 		goto err_master;
3414 	}
3415 
3416 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3417 	return 0;
3418 
3419 err_master:
3420 	pci_clear_master(pdev);
3421 
3422 err_region:
3423 	pci_release_region(pdev, BAR_NUM);
3424 
3425 err_device:
3426 	pci_disable_device(pdev);
3427 
3428 	return ret;
3429 }
3430 
3431 static void ath10k_pci_release(struct ath10k *ar)
3432 {
3433 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3434 	struct pci_dev *pdev = ar_pci->pdev;
3435 
3436 	pci_iounmap(pdev, ar_pci->mem);
3437 	pci_release_region(pdev, BAR_NUM);
3438 	pci_clear_master(pdev);
3439 	pci_disable_device(pdev);
3440 }
3441 
3442 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3443 {
3444 	const struct ath10k_pci_supp_chip *supp_chip;
3445 	int i;
3446 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3447 
3448 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3449 		supp_chip = &ath10k_pci_supp_chips[i];
3450 
3451 		if (supp_chip->dev_id == dev_id &&
3452 		    supp_chip->rev_id == rev_id)
3453 			return true;
3454 	}
3455 
3456 	return false;
3457 }
3458 
3459 int ath10k_pci_setup_resource(struct ath10k *ar)
3460 {
3461 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3462 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3463 	int ret;
3464 
3465 	spin_lock_init(&ce->ce_lock);
3466 	spin_lock_init(&ar_pci->ps_lock);
3467 
3468 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3469 
3470 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3471 		ath10k_pci_override_ce_config(ar);
3472 
3473 	ret = ath10k_pci_alloc_pipes(ar);
3474 	if (ret) {
3475 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3476 			   ret);
3477 		return ret;
3478 	}
3479 
3480 	return 0;
3481 }
3482 
3483 void ath10k_pci_release_resource(struct ath10k *ar)
3484 {
3485 	ath10k_pci_rx_retry_sync(ar);
3486 	netif_napi_del(&ar->napi);
3487 	ath10k_pci_ce_deinit(ar);
3488 	ath10k_pci_free_pipes(ar);
3489 }
3490 
3491 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3492 	.read32		= ath10k_bus_pci_read32,
3493 	.write32	= ath10k_bus_pci_write32,
3494 	.get_num_banks	= ath10k_pci_get_num_banks,
3495 };
3496 
3497 static int ath10k_pci_probe(struct pci_dev *pdev,
3498 			    const struct pci_device_id *pci_dev)
3499 {
3500 	int ret = 0;
3501 	struct ath10k *ar;
3502 	struct ath10k_pci *ar_pci;
3503 	enum ath10k_hw_rev hw_rev;
3504 	struct ath10k_bus_params bus_params;
3505 	bool pci_ps;
3506 	int (*pci_soft_reset)(struct ath10k *ar);
3507 	int (*pci_hard_reset)(struct ath10k *ar);
3508 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3509 
3510 	switch (pci_dev->device) {
3511 	case QCA988X_2_0_DEVICE_ID_UBNT:
3512 	case QCA988X_2_0_DEVICE_ID:
3513 		hw_rev = ATH10K_HW_QCA988X;
3514 		pci_ps = false;
3515 		pci_soft_reset = ath10k_pci_warm_reset;
3516 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3517 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3518 		break;
3519 	case QCA9887_1_0_DEVICE_ID:
3520 		hw_rev = ATH10K_HW_QCA9887;
3521 		pci_ps = false;
3522 		pci_soft_reset = ath10k_pci_warm_reset;
3523 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3524 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3525 		break;
3526 	case QCA6164_2_1_DEVICE_ID:
3527 	case QCA6174_2_1_DEVICE_ID:
3528 		hw_rev = ATH10K_HW_QCA6174;
3529 		pci_ps = true;
3530 		pci_soft_reset = ath10k_pci_warm_reset;
3531 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3532 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3533 		break;
3534 	case QCA99X0_2_0_DEVICE_ID:
3535 		hw_rev = ATH10K_HW_QCA99X0;
3536 		pci_ps = false;
3537 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3538 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3539 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3540 		break;
3541 	case QCA9984_1_0_DEVICE_ID:
3542 		hw_rev = ATH10K_HW_QCA9984;
3543 		pci_ps = false;
3544 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3545 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3546 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3547 		break;
3548 	case QCA9888_2_0_DEVICE_ID:
3549 		hw_rev = ATH10K_HW_QCA9888;
3550 		pci_ps = false;
3551 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3552 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3553 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3554 		break;
3555 	case QCA9377_1_0_DEVICE_ID:
3556 		hw_rev = ATH10K_HW_QCA9377;
3557 		pci_ps = true;
3558 		pci_soft_reset = NULL;
3559 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3560 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3561 		break;
3562 	default:
3563 		WARN_ON(1);
3564 		return -ENOTSUPP;
3565 	}
3566 
3567 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3568 				hw_rev, &ath10k_pci_hif_ops);
3569 	if (!ar) {
3570 		dev_err(&pdev->dev, "failed to allocate core\n");
3571 		return -ENOMEM;
3572 	}
3573 
3574 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3575 		   pdev->vendor, pdev->device,
3576 		   pdev->subsystem_vendor, pdev->subsystem_device);
3577 
3578 	ar_pci = ath10k_pci_priv(ar);
3579 	ar_pci->pdev = pdev;
3580 	ar_pci->dev = &pdev->dev;
3581 	ar_pci->ar = ar;
3582 	ar->dev_id = pci_dev->device;
3583 	ar_pci->pci_ps = pci_ps;
3584 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3585 	ar_pci->pci_soft_reset = pci_soft_reset;
3586 	ar_pci->pci_hard_reset = pci_hard_reset;
3587 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3588 	ar->ce_priv = &ar_pci->ce;
3589 
3590 	ar->id.vendor = pdev->vendor;
3591 	ar->id.device = pdev->device;
3592 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3593 	ar->id.subsystem_device = pdev->subsystem_device;
3594 
3595 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3596 
3597 	ret = ath10k_pci_setup_resource(ar);
3598 	if (ret) {
3599 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3600 		goto err_core_destroy;
3601 	}
3602 
3603 	ret = ath10k_pci_claim(ar);
3604 	if (ret) {
3605 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3606 		goto err_free_pipes;
3607 	}
3608 
3609 	ret = ath10k_pci_force_wake(ar);
3610 	if (ret) {
3611 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3612 		goto err_sleep;
3613 	}
3614 
3615 	ath10k_pci_ce_deinit(ar);
3616 	ath10k_pci_irq_disable(ar);
3617 
3618 	ret = ath10k_pci_init_irq(ar);
3619 	if (ret) {
3620 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3621 		goto err_sleep;
3622 	}
3623 
3624 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3625 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3626 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3627 
3628 	ret = ath10k_pci_request_irq(ar);
3629 	if (ret) {
3630 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3631 		goto err_deinit_irq;
3632 	}
3633 
3634 	ret = ath10k_pci_chip_reset(ar);
3635 	if (ret) {
3636 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3637 		goto err_free_irq;
3638 	}
3639 
3640 	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3641 	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3642 	if (bus_params.chip_id == 0xffffffff) {
3643 		ath10k_err(ar, "failed to get chip id\n");
3644 		goto err_free_irq;
3645 	}
3646 
3647 	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3648 		ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3649 			   pdev->device, bus_params.chip_id);
3650 		goto err_free_irq;
3651 	}
3652 
3653 	ret = ath10k_core_register(ar, &bus_params);
3654 	if (ret) {
3655 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3656 		goto err_free_irq;
3657 	}
3658 
3659 	return 0;
3660 
3661 err_free_irq:
3662 	ath10k_pci_free_irq(ar);
3663 	ath10k_pci_rx_retry_sync(ar);
3664 
3665 err_deinit_irq:
3666 	ath10k_pci_deinit_irq(ar);
3667 
3668 err_sleep:
3669 	ath10k_pci_sleep_sync(ar);
3670 	ath10k_pci_release(ar);
3671 
3672 err_free_pipes:
3673 	ath10k_pci_free_pipes(ar);
3674 
3675 err_core_destroy:
3676 	ath10k_core_destroy(ar);
3677 
3678 	return ret;
3679 }
3680 
3681 static void ath10k_pci_remove(struct pci_dev *pdev)
3682 {
3683 	struct ath10k *ar = pci_get_drvdata(pdev);
3684 	struct ath10k_pci *ar_pci;
3685 
3686 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3687 
3688 	if (!ar)
3689 		return;
3690 
3691 	ar_pci = ath10k_pci_priv(ar);
3692 
3693 	if (!ar_pci)
3694 		return;
3695 
3696 	ath10k_core_unregister(ar);
3697 	ath10k_pci_free_irq(ar);
3698 	ath10k_pci_deinit_irq(ar);
3699 	ath10k_pci_release_resource(ar);
3700 	ath10k_pci_sleep_sync(ar);
3701 	ath10k_pci_release(ar);
3702 	ath10k_core_destroy(ar);
3703 }
3704 
3705 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3706 
3707 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3708 {
3709 	struct ath10k *ar = dev_get_drvdata(dev);
3710 	int ret;
3711 
3712 	ret = ath10k_pci_suspend(ar);
3713 	if (ret)
3714 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3715 
3716 	return ret;
3717 }
3718 
3719 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3720 {
3721 	struct ath10k *ar = dev_get_drvdata(dev);
3722 	int ret;
3723 
3724 	ret = ath10k_pci_resume(ar);
3725 	if (ret)
3726 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3727 
3728 	return ret;
3729 }
3730 
3731 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3732 			 ath10k_pci_pm_suspend,
3733 			 ath10k_pci_pm_resume);
3734 
3735 static struct pci_driver ath10k_pci_driver = {
3736 	.name = "ath10k_pci",
3737 	.id_table = ath10k_pci_id_table,
3738 	.probe = ath10k_pci_probe,
3739 	.remove = ath10k_pci_remove,
3740 #ifdef CONFIG_PM
3741 	.driver.pm = &ath10k_pci_pm_ops,
3742 #endif
3743 };
3744 
3745 static int __init ath10k_pci_init(void)
3746 {
3747 	int ret;
3748 
3749 	ret = pci_register_driver(&ath10k_pci_driver);
3750 	if (ret)
3751 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3752 		       ret);
3753 
3754 	ret = ath10k_ahb_init();
3755 	if (ret)
3756 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3757 
3758 	return ret;
3759 }
3760 module_init(ath10k_pci_init);
3761 
3762 static void __exit ath10k_pci_exit(void)
3763 {
3764 	pci_unregister_driver(&ath10k_pci_driver);
3765 	ath10k_ahb_exit();
3766 }
3767 
3768 module_exit(ath10k_pci_exit);
3769 
3770 MODULE_AUTHOR("Qualcomm Atheros");
3771 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3772 MODULE_LICENSE("Dual BSD/GPL");
3773 
3774 /* QCA988x 2.0 firmware files */
3775 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3776 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3777 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3778 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3779 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3780 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3781 
3782 /* QCA9887 1.0 firmware files */
3783 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3784 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3785 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3786 
3787 /* QCA6174 2.1 firmware files */
3788 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3789 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3790 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3791 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3792 
3793 /* QCA6174 3.1 firmware files */
3794 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3795 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3796 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3797 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3798 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3799 
3800 /* QCA9377 1.0 firmware files */
3801 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3802 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3803 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3804